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Preface

It was a great honor for us, the Beijing Society of Image and Graphics, to organize the
16th Conference of Image and Graphics Technology and Application (IGTA 2021)
held at the Beijing Institute of Technology on June 6, 2021, which was a great success
and attracted extensive attention from the academic community. For the last two years,
COVID-19 has changed our way of life and brought far-reaching effects to the whole
world. However, the rampant pandemic cannot stop our enthusiasm for academic
exchange. We therefore gathered at IGTA 2021 to share and exchange opinions on the
latest progress achieved in the past year.

IGTA is a professional meeting and an important forum for image processing,
computer graphics, and related topics including, but not limited to, image analysis and
understanding, computer vision and pattern recognition, data mining, virtual reality and
augmented reality, and image technology applications.

This year, we received 86 technical submissions from authors in different countries
and regions. Despite of the influence of the COVID-19 pandemic, the paper selection
remained highly competitive this year. Each manuscript was reviewed by at least two
reviewers, and some of them were reviewed by three reviewers. After careful evalu-
ation, 21 manuscripts were selected for oral and poster presentations.

The keynote, oral, and poster presentations of IGTA 2021 reflected the latest pro-
gress in the field of image and graphics, and the papers are included in this volume of
proceedings, which we believe will provide valuable references for scientists and
engineers in related fields.

As the conference general chairs and program chairs, we are very grateful to the
Program Committee and Organizing Committee members for their support, for the time
spent to review and discuss the submitted papers, and for doing so in a timely and
professional manner.

We would like to express our sincere gratitude to the authors of the excellent papers
accepted for submitting and presenting their works at the conference, and to all the
conference attendees for making IGTA an excellent forum on image and graphics,
facilitating the exchange of ideas, fostering new collaborations, and shaping the future
of this exciting research field. We hope the readers will find in these pages interesting
material and fruitful ideas for their future work.

When everybody adds fuel, the flames rise high. We believe that, with our joint
efforts, we will be able to conquer the pandemic, and we look forward to seeing you
face to face at IGTA 2022 next year!

June 2021 Yongtian Wang
Weitao Song
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Residual Multi-resolution Network
for Hyperspectral Image Denoising

Shiyong Xiu, Feng Gao(B), and Yong Chen

School of Information Science and Engineering, Ocean University of China,
Qingdao, China

gaofeng@ouc.edu.cn

Abstract. Hyperspectral image (HSI) denoising is an important tool to
improve the quality of HSIs for subsequent tasks. In this paper, we pro-
pose a novel method based on Residual Multiresolution Network (RMR-
Net) for HSI denoising, which exploits multiscale information better from
multiresolution versions of HSIs produced by pixelshuffle operation. The
convolutional neural network (CNN) is used for extracting the spatial
information among different resolution HSI, respectively. Enhanced rep-
resentation will be obtained by fusing these multiresolution features.
Wide receptive fields are provided by dilated convolution. Spectral infor-
mation is also considered in the proposed network. To ease the flow of
low-frequency information, we use a residual structure in our method. In
addition, the experiment results on the simulated dataset demonstrate
the superiority of our RMRNet.

Keywords: Hyperspectral image (HSI) denoising · Convolutional
neural network · Multi-resolution · Adjacent spectral correlation

1 Introduction

Hyperspectral images (HSIs), which are made up of both spatial and spectral
information of real world scenes, have already been used for many remote sens-
ing tasks, such as classification [1] and change detection [2]. High quality HSIs
are essential to improve the performance in the above-mentioned applications.
Nevertheless, HSIs commonly suffer from noise during the acquisition process
because of the limited light, sensor internalmalfunction, photon effects, and
atmospheric interference. Therefore, it is a critical process to reduce the noise of
the HSIs before the image analysis and interpretation.

Many image denoising methods have been conducted over the last decades,
such as non-local means (NLM) [3] and block-matching and 3-D filtering (BM3D)
[4]. NLM and BM3D search 2-D image fragments similar to the reference patch
within a specific range of the image for denoising. These 2-D image denoising
methods could also be employed to HSI denoising band by band. However, dif-
ferent from the RGB image, the HSIs could deliver spectral information of the

c© Springer Nature Singapore Pte Ltd. 2021
Y. Wang and W. Song (Eds.): IGTA 2021, CCIS 1480, pp. 3–9, 2021.
https://doi.org/10.1007/978-981-16-7189-0_1
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Fig. 1. Framework of the proposed RMRNet for HSI denoising. The main component
of the RMRNet is the residual multi-resolution block (RMRB) which is used for captur-
ing the features among different resolution and the spatial-spectral information in HSIs.
It also allows information fusion across parallel streams via shuffling and unshuffling
operations in order to consolidate the high-resolution features with the help of low-
resolution information. Different green colors of the convolution layers denote different
dilations. (Color figure online)

real world scenes. Therefore, bandwise 2-D denoising methods will cause spec-
tral distortion if they are directly employed on HSIs, since they do not consider
the spectral correlations among different bands. To solve this problem, some
3-D denoising methods were proposed for HSIs denoising. Maggioni et al. [5]
proposed BM4D which is an extended version of the BM3D filter to 3-D data.
Some low-rank matrix recovery approaches [6,7] are proposed by performing
both the spatial low-rank approximation and spectral dimensionality reduction.
Although these methods produce satisfying performance by effectively utilizing
the underlying characteristics of HSIs, most of them formulate the HSI denoising
as a complex optimization problem to be solved iteratively. Therefore, they are
commonly time-consuming and unintelligent.

Recently, deep learning-based methods have achieved great success in com-
puter vision and natural language processing tasks. They commonly use an end-
to-end strategy to solve complex tasks without any human handcrafted prior,
and provide an effective yet time-saving tool to tackle tricky problems. Several
deep learning-based image denoising methods have been proposed, such as resid-
ual dense network [8] and encoder-decoder network [9]. Convolutional neural
networks (CNNs) are employed to exploit feature representations, which have
achieved significant success on image denoising. Nevertheless, these methods
lack knowledge about spatial-spectral correlation and global correlation along
the spectrum in HSIs.

In this paper, we propose a Residual Multi-Resolution Network (RMRNet)
for HSI denoising. Both spatial and adjacent correlated spectral information
is taken into account. The proposed method is capable of reducing the noise
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from different HSI sensors, and it can simultaneously preserve the details and
structural information. To better exploit the correlation between different scales,
multiresolution versions of the HSIs are considered in the proposed network, and
then multiresolution feature representations are integrated to produce noise-free
HSIs.

2 Methodology

2.1 Network Architecture

The framework of the proposed method is described in Fig. 1. The network is
based on a recursive residual structure. The residual multiresolution block is
the basic component in RMRNet. To exploit more spatial-spectral information,
simulated kth noisy band and its adjacent K bands are taken as the inputs into
the proposed network to produce the residual map. The input data of the size
(K + 1) × W × H represents the current noisy band with the current spatial-
spectral cube with K adjacent bands. In addition, both the initial and final
output features are composed of one convolutional layer.

We optimize the proposed network using the L1 loss:

L(w) =
1
N

N∑

i

‖RMRNet(xi) − yi‖1 (1)

where N is the batch size, x is the noisy input and y is the ground truth, w
denotes all trainable network parameters.

2.2 Residual Multi-Resolution Block

The Residual Multi-Resolution Block (RMRB) is the critical part of the proposed
network. It is comprised of two components: 1) Parallel convolution streams
for multiresolution HSIs generated by the shuffling operation to extract rich
multiscale and spatially features; 2) three branch convolutions to provide a wide
receptive field through kernel dilation.

The main idea of the multiresolution branch is taking advantage of the low-
resolution information to guide the HSI denoising process at high-resolution
scale. Many tasks like semantic segmentation obtain multiscale features by apply-
ing down-sampling operation or convolution layers with different strides to the
original input. However, more loss of fine details and higher calculation are
caused by these methods. Compared with other strategies, shuffling is able to
reduce spatial resolution but keeps all the information of inputs at the same time.
Therefore, we use shuffling instead of down-sampling or convolution operations
to generate multiresolution versions as

P(IH,W,C) = I ′
�H/r�,�W/r�,C·r·mod(H,r)+C·r·mod(W,r) (2)

where, I is the input feature of size H × W × C, shuffling operation P produce
I ′ with spatial dimension H/r×W/r×r2C, r is the ratio of the operation. Since



6 S. Xiu et al.

the low-resolution of I ′ is r times smaller than that of the original input, the
convolution layer in low-resolution is able to capture large-scale contextual infor-
mation. Having the lower resolution information, we propagate it to the higher
resolution to help the feature extraction. Finally, the multiresolution information
will be gathered at the original resolution to generate the enhanced representa-
tion of the HSI. As shown in Fig. 1, two Conv+LeakyReLU layers are used as
feature extraction within each branch. In addition, one convolution is employed
as feature transformation at the beginning of the RMRB, features from different
resolution branches are fused by concatenation.

To capture features from wide receptive fields, we use kernel dilation in
each RMRB for three branch convolutions. Compared with general convolu-
tion, dilated convolution can capture large-scale correlation without increasing
the computational burden.

3 Experimental Results and Analysis

3.1 Experimental Setup

Table 1. Quantitative results of denoising results in simulated experiments.

Noise Index Noisy LRMR BM4D LRTV Proposed

σ = 5 PSNR 34.585 40.679 41.211 40.543 41.316

SSIM 0.921 0.994 0.995 0.993 0.993

SAM 0.205 0.053 0.059 0.063 0.049

σ = 30 PSNR 17.781 32.074 30.811 29.953 32.216

SSIM 0.362 0.956 0.950 0.941 0.957

SAM 0.779 0.193 0.207 0.181 0.179

σ = 50 PSNR 14.23 28.921 26.785 26.461 29.074

SSIM 0.183 0.907 0.898 0.900 0.899

SAM 0.981 0.192 0.211 0.233 0.178

σ = 70 PSNR 12.133 26.721 25.074 24.839 26.931

SSIM 0.112 0.892 0.859 0.881 0.883

SAM 1.104 0.321 0.368 0.411 0.318

To prove the effectiveness of the proposed method, simulated experiments are
performed in this paper. Mainstream methods LRMR [6], BM4D [5], LRTV [7]
are chosen as baselines to evaluate the proposed model. Each input HSI band is
normalized to [0, 1]. The adjacent spectral band number K is set to 16. Adam [10]
is used to optimize the model with momentum β1 = 0.9, β2 = 0.999. The learning
rate is initialized to 0.0001 and halved every 30 epochs. The Washington DC Mall
image obtained by the Hyperspectral Digital Imagery Collection Experiment
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Fig. 2. Results for the Washington dc Mall image with σ = 50

Airborne Sensor [11] with the size of 1280 × 303 × 191 is employed to generate
the noisy synthetic data. 1080 × 303 × 191 is used for training and the rest part
is used for testing. The training dataset is cropped into patches of size 64 × 64.
We use the deep learning framework Pytorch on a machine with NVIDIA GTX
2080Ti GPU, Intel(R) Xeon(R) E5-2678 CPU of 2.50 GHz and 32 GB RAM to
train RMRNet.

The simulated noise is generated through imposing additive white Gaussian
noise. The noise intensity is multiple and conforms to a fixed distribution or
random probability distribution for different experiments. Data augmentation
(angles of 0◦, 90◦, 180◦, and 270◦) is employed to increase the number of training
samples for better performance.

3.2 Results and Analysis

PSNR, SSIM [12], and SAM [13] are utilized as evaluation metrics in our exper-
iments. Higher PSNR, SSIM, and lower SAM values mean better denoising per-
formance. The averages and standard deviations of the contrasting evaluation
indexes of the four cases with different noise levels and are listed in Table 1 and
the best performance for each quality index is marked in bold. Under weak noise
levels, the BM4D algorithm has a good noise reduction performance, as shown
in Table 1 with σ = 5, but it is not able to deal with strong noise levels such
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(a) GT (b) noisy (c) LRMR

(d) BM4D (e) LRTV (f) Ours

Fig. 3. Results for the Washington dc Mall image with σ = 30 in the pseudocolor
image with bands (60, 27, 17).

as σ = 100. LRMR performs well in SSIM under equal noise intensity for differ-
ent spectra in Table 1. However, it generates some fake artifacts in Fig. 2. The
proposed method achieves the highest PSNR and SSIM values and the lowest
SAM values in most noise levels. Due to the large number of bands in an HSI,
only one band is selected to give the visual results in each case. We show the a
single band visual results with σ = 50 in Fig. 2 and pseudocolor view of bands
17, 27, and 60 in Fig. 2. Our RMRNet is capable of preserving more details and
structural information. The noise is eliminated effectively (Fig. 3).

4 Conclusion

In this paper, we proposed a novel RMRNet for HSIs denoising. Both the mul-
tiresolution correlation and adjacent spectral information are simultaneously
assigned to the proposed network. The experiments indicated that the proposed
RMRNet outperforms mainstream models in both evaluation metrics and visual
effects.

In our future work, we will investigate more efficient learning framework to
remove the mixed noise in HSI data such as stripe noise, impulse noise, dead-
lines and more complex noisy case. The adaptive methods such as attention
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mechanism, dynamic convolution and other useful strategies will be taken into
consideration in next work.
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Skin Reflectance Reconstruction Based
on the Polynomial Regression Model

Long Ma(B) and Yingying Zhu

School of Science, Shenyang Jianzhu University, Shenyang 110168, Liaoning, China

Abstract. Skin spectral reflectance has applications in numerous medical fields
including the diagnosis and treatment of cutaneous disorders and the provision of
maxillofacial soft tissue prostheses. This paper describes the polynomial model
based on the least square (LS) method for skin spectral reflectance from RGB.
Furthermore, this paper uses the real human skin data, which makes our results
more practical. The performance is evaluated by themean, maximum and standard
deviation of color difference values under other sets of light sources. The values of
standard deviation of rootmean square (RMS) errors and goodness of fit coefficient
(GFC) between the reproduced and the actual spectra were also calculated. Results
are compared with the Xiao’s method. All metrics show that the proposed method
leads to considerable improvements in comparison with the Xiao’s method.

Keywords: Skin spectral reflectance reconstruction · Polynomial regression
model · Color difference · Root mean square error · Goodness of fit coefficient

1 Introduction

The skin spectral reflectance is gaining importance in many fields, including medical
diagnosis [1, 2], computer graphics [3], cosmetic industry [4], and even social sciences
[5]. Therefore, it is increasingly important to obtain hyperspectral information of the
skin spectral reflectance.

Hyperspectral imaging devices can capture high resolution radiance spectral at
every pixel in an image, which is invisible to human eyes and customer RGB cam-
eras [6]. However, the hyperspectral devices are complicated and bulky, which limit
their usefulness.

Under any conditions, the spectrum data of a color is unique, which ensures the
accuracy of spectral reproduction [7]. Spectral reflectance reconstruction from RGB
images is another method to catch hyperspectral information [8–10]. Due to the rapid
development of digital cameras in recent years, great progress has been made in image
clarity and color reproduction. And the digital camera is easy to carry, flexible to use,
and does not need to be contacted for measurement. What’s more, digital cameras can
measure small areas of skin with high resolution [11]. Therefore, it is easy for us to
reconstruct the spectral reflectance and get the RGB images from the digital cameras.

In the past decades, various skin spectral construction algorithmshavebeenproposed.
Among them, Imai and his colleagues [12] constructed the skin spectral with principal
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component analysis, and concluded that skin spectral can be reconstructed by 99.5%
with the first three basics functions. Chen and Liu [13] proposed a modified Winner
estimation for predicting the skin spectral for tissue measurements. Xiao and Zhu [14]
proposed a direct method, which transformed camera RGB to skin reflectance directly
using a principal component analysis (PCA) approach. The basic function obtained by
a real new skin reflectance database. The results show that the new direct method has
significantly better performance than the traditional method.

For the employment of the polynomial regression model, several previous literature
shows that polynomial regression models can improve results. Connah [15] used the
polynomial regressionmodel to reconstruct spectral, which indicated that the polynomial
regression model was superior than the standard linear transform. Martinkauppi [16]
reconstructed the Arctic Charr’s RGB with the polynomial regression, which showed
that the result of using the polynomial regression was better. All of these prompt us apply
the polynomial regression model to skin spectral reconstruction.

This paper makes two main contributions:

• We use the real human skin data. Because the surface of the skin is uneven, the skin
color of each part of the body is not uniform, and the measurement of the skin will be
affected by many factors, such as the distance of the measurement, the size of the field
of view, the pressure applied to the skin and body area [17] and so on. It is difficult
to compare skin measurements obtained with different instrument parameters under
different conditions. Therefore, there are still very few real skin data sets at present.

• We propose a new algorithm with the polynomial regression model based on the
Xiao’s method [14]. We evaluate the performance of the two methods, the proposed
method leads to considerable improvements compared with the Xiao’s method.

2 Related Work

In this section, the characteristics of the human skin spectral and the polynomial
regression model will be introduced.

2.1 Human Skin Spectral

The human skin spectral reflectance has two characteristics [4]. One characteristic is
that the spectral reflectance of human skin generally increases gradually. The other
characteristics is that skin spectral reflectance shows “W-shaped” or “U-shaped” hollow
in the range of 520 nm to 600 nm as shown belowwhich is different from general spectral
reflectance (Fig. 1).

2.2 Polynomial Regression Model

Since any function can be approximated by a polynomial, polynomial regression has
a wide range of applications [18]. The response vector obtained by the digital camera
is appropriately expanded by the polynomial regression model [19]. The polynomial
regression expands the channel response to add more channel response information,
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Fig. 1. The spectral reflectance of the three real human skin

thereby improving the accuracy of spectral reconstruction. In this paper, we mainly used
the following polynomial regress model, as shown in Table 1. The polynomial can be
expanded into second-order (includes 7 items and 10 items), third-order and fourth-
order forms. Too many items cause the over-fitting problems [15], we use these usual
four expansion forms to expand.

Table 1. Polynomial expansion term

The order of the polynomial (m) Expansion term

m = 2 (7 items) 1 R G B RG RB GB

m = 2 (10 items) 1 R G B RG RB GB R2 G2 B2

m = 3 (20 items) 1 R G B RG RB GB R2 G2 B2 RGB RG2 RB2 GB2 R2G

R2B G2B R3 G3 B3

m = 4 (35 items) 1 R G B RG RB GB R2 G2 B2 RGB RG2 RB2 GB2 R2G

R2B G2B R3 G3 B3 R2GB RG2B RGB2 R2G2 R2B2 G2B2

R3G R3B G3B RG3 RB3 GB3 R4 R4 R4
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3 Algorithms

In this section, the Xiao’s algorithm was reviewed and the proposed algorithm was
introduced.

3.1 The Xiao’s Algorithm

Xiao et al. [14] proposed an improved method to reconstruct skin reflectance based on
principal component analysis (PCA). Skin spectra can be represented by the first k basis
functions [20] Bk = (b1, b2, b3, . . . , bk), which can be obtained using the new skin
database. For each reflectance r, the best coordinates (represented by α) under this set
of basic functions are uniquely calculated as the following Eq. (1).

α = (Bk)
T r. (1)

Where the column vector α represent the best coordinates of the testing sample, Bk
represents k basis functions, and T represents the transpose of the matrix. The trained
polynomial was used to map the camera RGB to the best coordinate vector α as the
Eq. (2).

α =
∑

0≤j1+j2+j3
aj1,j2,j3R

j1Gj2Bj3 . (2)

Where aβi,j1,j2,j3 is the coefficients of polynomial regression, j1, j2 and j3 are the
nonnegative indices, m represents the order of the polynomial regression, and R, G, B
are the camera respond signals. Hence, the skin spectral reflectance can be predicted
using Eq. (3) as follows.

r = Bkα. (3)

Where α was derived by the new skin database, the R, G, B were obtained by the
polynomial regression model, and the basic functions Bk were derived by the new skin
database. The result of reconstruction was improved.

3.2 The Proposed Algorithm

The aim of the skin spectral reconstruction is to recover the spectral reflectance as close
to the correct skin spectral reflectance as possible from RGB. We consider that the
polynomial model can be trained to map the skin spectral reflectance to the camera
RGB, as is shown in Eq. (4).

r =
∑

0≤j1+j2+j3≤m
wj1,j2,j3R

j1Gj2Bj3 . (4)

Where R, G and B are the camera signals, r is the skin spectra reflectance, m is the
order of the polynomial model, and j1, j2, j3 are nonnegative integer indices, and wj1,j2,j3
is the model coefficients to be determined. The matrix form of the Eq. (4) is written as:

r = M ∗ P. (5)
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Here, the transformation matrix M can be determined by the training database Rtr

and Ptr is camera response after polynomial regression transformation.

Rtr = M ∗ Ptr . (6)

In order to facilitate the solution of M, transpose the two sides of the equation
respectively.

Rtr
T = Ptr

T ∗ MT . (7)

Here, T denotes the transpose of the matrix. Ptr
T is not a full-rank matrix, and this

equation cannot find an accurate solutionM. The least-squares regression-based spectral
reconstruction seeks the M that minimizes:

min‖Rtr
T − Ptr

T ∗ MT‖2F. (8)

Where ‖Rtr
T − Ptr

T ∗ MT‖2F denotes the squared F-norm. It follows that we can
solve MT as:

MT = (PtrPtr
T )

−1
PtrRtr

T . (9)

To transpose r, we get:

M = RtrPtr
T (Ptr

TPtr)
−1

. (10)

It is solved for, that is. We can use the matrix M, and use the testing sample to
reconstruct the skin spectral reflectance as shown in Eq. (11).

Rte = M ∗ Pte. (11)

3.3 Regularization

Measurement noise and numerical instability can have very unpleasant effects during the
experiment. Due to the noise in the measurement, it may cause the problem of overfitting
to the training set. The function of regularization is to use some prior information to
reduce the influence of noise in the data, and to provide reasonable estimates where the
data is missing or unreliable [21]. Regularization is to add a regular term after the cost
function to get the matrix M, as shown in Eq. (12).

Whereλ is the regular termcoefficient,which is used toweigh the proportion between
the regular term and the cost function term.

‖Rtr
T − Ptr

T ∗ MT‖2F + λ‖MT‖2F . (12)
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4 Experiment Setup

In this section, the evaluation metrics of the experiment performance and the experiment
data will be explained.

4.1 Evaluation Metrics

In this paper, the performance is evaluated by themean,maximumand standard deviation
of color difference values under other sets of light sources. The values of standard
deviation of root mean square errors (RMSE) and goodness of fit coefficient (GFC)
between the reproduced and the actual spectra were also calculated.

The color differences [22], which can be calculated by the Eq. (13). Where (�L ∗
)2, (�a ∗ )2 and (�b ∗ )2 are the squared differences of the L*a ∗ b transforms of two
spectra.

�E∗
ab =

[(
�L∗)2 + (

�a∗)2 + (
�b∗)2]

1
2

(13)

The root-mean-square error shows the two spectral shape differences [23], it
is calculated with Eq. (14) as follows. Where Pm(λi) is the reconstructed spectral
reflectance,Pe(λi) is the true spectral reflectance, and N is the total number of samples.

εRMSE =
√∑N

i=1[Pm(λi) − Pe(λi)]2
N

(14)

The goodness of fit coefficient can reflect the color difference in perceptual [24],
which can be calculated by Eq. (15). Where Pm(λi) is the reconstructed spectral
reflectance, Pe(λi) is the true spectral reflectance, and N is the total number of sam-
ples. hen εGFC ≥ 0.99 is acceptable reconstruction performance, and εGFC ≥ 0.999

Fig. 2. The reflectance spectra of the new skin reflectance database
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is regarded as very good performance and εGFC ≥ 0.9999 means nearly exact
reconstruction [6].

εGFC = |∑N
i=1Pm(λi)Pe(λi)|√∑N

i=1(Pm(λi))
2
√∑N

i=1(Pe(λi))
2
. (15)

4.2 Experiment Data

The reflectance spectra of the new skin reflectance database composed of 4392 data
[17] shown in Fig. 2, which measured nine body areas of 482 subjects from three ethnic
groups (Caucasians, Chinese and Kurdish). The reflectance spectra of 34 test sample
[11] data shown in Fig. 3 are measured from real human skin, facial images for 17
subjects were captured and the reflectance of their foreheads and cheeks were measured,
the subjects consisted of 8 Caucasians, 8 Chinese and 1 Indian. The reflectance spectra
image of 90 silicone skin data [11] shown in Fig. 4 are developed by Spectromatch Ltd.
to provide an accurate reference chart for soft tissue prostheses applications, and used
silicone to imitate human skin and measured the skin spectral reflectance.

Fig. 3. The reflectance spectra of 34 test Sample samples



Skin Reflectance Reconstruction 17

Fig. 4. The reflectance spectra of the 90 silicon skin samples

5 Result and Discussion

The aimof the experiment is to compare the reconstruction accuracy of theXiao’smethod
and the proposedmethod. This paper used theXiao’smethod and the proposedmethod to
construct the skin spectra reflectance under silicone skin database and the new database
(The new database combines test skin spectral and silicone skin database.) respectively.
Because the order of the polynomial can influence the accuracy of the reconstruction,
we evaluate the reconstruction under the polynomial order m is changed from 2 to 4 and
the change of basis vector from 3 to 6 by using leave one out methods (Tables 3 and 4).

Firstly, compared to the reconstruction performance of the Xiao’s method in Table
2, the proposed method shows great advantage in spectral reconstruction accuracy.

Next, it can be seen clearly from Table 2 that when the number of basis vectors is
3 and the second order (10 terms) polynomial regression model are used, the Xiao’s
method can arrive the highest reconstruction accuracy with the silicon skin dataset.

Lastly, for the proposed method, especially when we use the silicon skin database,
the reconstruction accuracy increased by 50% at least. Since the two datasets are more
similar, the creation accuracy will be higher. Therefore, the silicon skin database is better
than the new database.
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Table 2. The reconstruction performance of the Xiao’s algorithm (the table Only show the best
performance of polynomial order from 2–4 when the number of basis functions is constant)

Evaluation procedure The number of basis
function

N = 3 N = 4 N = 5 N = 6

The polynomial
order

2 (10 items) 2 (10 items) 3 3

D65 Color difference mean 2.0558 2.4475 2.3199 2.3143

med 1.9144 2.3347 2.217 2.259

min 0.3601 0.3389 0.1995 0.2832

max 5.1291 6.2009 6.8947 6.6923

A Color difference mean 2.179 2.0687 1.8666 1.9136

med 1.97 1.8484 1.6679 1.7801

min 0.2411 0.4969 0.3024 0.4636

max 6.3787 6.8586 8.3483 8.1379

D50 Color difference mean 2.1305 2.3627 2.2101 2.2052

med 1.95 2.2005 2.1197 2.1277

min 0.4838 0.36775 0.2264 0.19359

max 5.6365 6.5373 7.487 7.2657

F2 Color difference mean 2.0304 2.273 2.0772 2.1366

med 1.8474 2.0847 1.9517 2.0244

min 0.3272 0.46208 0.5013 0.4313

max 5.4316 5.8918 6.299 6.3538

F11 Color difference mean 2.6471 2.981 2.7272 2.6297

med 2.5673 2.8447 2.6017 2.5767

min 0.4555 0.67105 0.3203 0.6325

max 7.0536 7.4702 10.053 9.5677

RMSE mean 0.0158 0.014005 0.0144 0.01428

med 0.0148 0.013485 0.0132 0.01308

min 0.0054 0.002158 0.0027 0.00276

max 0.0571 0.053565 0.0563 0.05607

GFC mean 0.9983 0.99873 0.9988 0.99887

med 0.9986 0.99919 0.9993 0.99929

min 0.9839 0.98616 0.9885 0.98849

max 0.9994 0.99972 0.99974 0.99973
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Table 3. The reconstruction performance of the proposed algorithm under the new database

Evaluation procedure Sample The new database

The polynomial order 2 (7 items) 2 (10 items) 3 4

D65 Color difference mean 2.0965 2.084 2.1945 2.3569

med 1.7017 1.6542 1.7646 1.9386

min 0.2148 0.2187 0.3146 0.2641

max 8.1383 8.0423 8.4115 10.408

A Color difference mean 2.1374 2.1425 2.2624 2.4083

med 1.6402 1.6227 1.8125 2.0077

min 0.2663 0.2328 0.2324 0.4387

max 8.4551 8.262 8.6213 11.407

D50 Color difference mean 2.1147 2.1077 2.2297 2.3832

med 1.694 1.6692 1.778 1.9533

min 0.2381 0.2271 0.3396 0.3087

max 8.1369 8.0406 8.5615 10.793

F2 Color difference mean 2.046 2.0313 2.13 2.2866

med 1.6655 1.5829 1.7251 1.8242

min 0.3253 0.2235 0.2651 0.0789

max 8.1532 8.2476 8.4813 10.338

F11 Color difference mean 2.331 2.349 2.4946 2.6315

med 1.8672 1.8624 1.9873 2.232

min 0.5144 0.2963 0.4313 0.3172

max 8.5804 8.3113 9.3946 12.470

RMSE mean 0.0178 0.0178 0.0188 0.0203

med 0.0141 0.0139 0.0153 0.0156

min 0.0031 0.0028 0.0019 0.0021

max 0.084 0.083 0.081 0.1127

GFC mean 0.999 0.999 0.999 0.9991

med 0.999 0.999 0.999 0.9994

min 0.990 0.989 0.992 0.9919

max 0.99996 0.99997 0.99996 0.99998
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Table 4. The reconstruction errors of the proposed method under the silicon skin database

Evaluation procedure Sample The silicon skin database

The polynomial order 2 (7 items) 2 (10 items) 3 4

D65 Color difference mean 1.4203 1.3146 1.2402 1.4197

med 1.2861 1.1442 1.0781 1.1897

min 0.3986 0.2876 0.3341 0.2702

max 5.9333 5.7321 3.7339 4.5871

A Color difference mean 1.3946 1.3255 1.2526 1.4371

med 1.1945 1.091 1.0905 1.2467

min 0.3534 0.3315 0.2886 0.3162

max 5.2776 7.2806 4.0333 4.7539

D50 Color difference mean 1.3974 1.2996 1.2315 1.4153

med 1.2212 1.1216 1.0632 1.205

min 0.3760 0.3134 0.3733 0.2928

max 5.6912 6.3257 3.7914 4.6367

F2 Color difference mean 1.4075 1.3117 1.2519 1.4739

med 1.2337 1.0497 1.0612 1.1325

min 0.3979 0.2622 0.2241 0.2131

max 6.292 5.3595 3.5224 5.334

F11 Color difference mean 1.5133 1.444 1.3962 1.6253

med 1.4001 1.1745 1.2522 1.2587

min 0.2864 0.1778 0.3165 0.3377

max 5.5934 7.2449 4.1807 6.1592

RMSE mean 0.0111 0.0110 0.0116 0.0134

med 0.0097 0.0096 0.0096 0.0105

min 0.0027 0.0014 0.0023 0.0022

max 0.0492 0.0506 0.0545 0.0662

GFC mean 0.9992 0.9991 0.9993 0.9992

med 0.9994 0.9995 0.9996 0.9995

min 0.9927 0.9835 0.9934 0.9943

max 0.99998 0.99998 0.99998 0.99999
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6 Conclusion

Spectral reconstruction is a promising solution to acquiring hyperspectral images, which
maps the RGB to hyperspectral images. Skin spectral information is playing an increas-
ingly important role in all walks of life. In order to improve the reconstruction accuracy,
this paper uses the polynomial regression model to expand RGB for more channel
response information. We evaluation the performance of the proposed method and the
Xiao’smethod by color difference, goodness of fit coefficient, rootmean square error. All
metrics show that the proposed method leads to considerable improvements in compar-
ison with the Xiao’s method. When we use the silicon skin database, the reconstruction
accuracy increases by 50% at least.
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Abstract. Although many computer vision tasks such as autonomous
driving and robot autonomous navigation as well as object recognition
and grasping need to use accurate depth information to improve per-
formance, the captured depth images from practical scene are always
troubled by low-resolution and contamination. To resolve this problem,
we propose a deep single depth image super-resolution method, which
includes three parts: depth dual decomposition block, depth image ini-
tialization block and depth image rebuilding block. First, we propose a
deep dual decomposition network to separate single low-resolution depth
image into two high-resolution parts: fine-detail and coarse-structure
images with high quality. Second, weighted fusion mechanism is pro-
posed in depth image rebuilding block for feature integration. Finally,
these fused features are fed into residual learning-based reconstruction
block in depth image rebuilding block to produce high-quality depth
image. Experimental results demonstrate that the proposed method can
outperform several state-of-the-art depth map super-resolution methods
in term of root mean squared error.

Keywords: Depth image · Image super-resolution · Deep neural
network · Image decomposition

1 Introduction

Extremely vital roles are played by depth information in practical applications
for a miscellany of computational vision tasks such as the identification and
capture of industrial objects or commodity, automatic driving, intelligent robot
navigation, etc. Nowadays scene geometric information can be easily captured by
depth camera in the consumer class such as Kinect and TOF, and this kind infor-
mation are always stored as depth images with the limited resolution. The quality
of captured depth images is also affected by the complexity of the natural scene
and the sensitivity of camera imaging sensors. As a result, only low-resolution
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depth image is available, but its quality cannot meet the practical requirements.
Thus, depth image super-resolution (SR) technique should be deeply explored
to enhance image quality and increase spatial resolution of depth images [1–5].

The goal of single depth image SR is to cast low-resolution depth image
to high-resolution one when only depth image is available. Unlike joint depth
super-resolution [1–3], single depth image SR is a more ill-posed yet challenging
problem, since only depth information provides geometric structure enhancement
without scene’s other auxiliary messages. Depth image SR approaches can be
coarsely categorized as two classes: classic depth image SR methods and deep
learning-based depth image SR methods.

In the early literatures, image filtering is a key way to achieve classic depth
image SR methods. For instance, guided image filtering is a kind of fast and non-
approximate linear-time filtering, which uses color image as a guidance map to
enhance depth image quality [6]. To gradually improve depth accuracy, bilateral
filter is iteratively applied into the cost volume for depth image SR [7], since the
surfaces of most objects are characterized by piece-wise smooth, and the pixels
with similar color values in the same object always have similar depth values.
Although image filtering can greatly improve depth quality, these image filtering-
based methods always use local information without considering image global
relevance. Another way is to construct objective function with certain priors and
obtain optimal solution by optimization. In [8], markov random field method is
constructed for depth reconstruction by using both depth data potential and
depth smoothness prior, whose global solution is achieved by optimization algo-
rithm. To further achieve high quality upsampling, nonlocal means regulariza-
tion is incorporated into least-square optimization [9] in addition to depth data
potential and depth smoothness prior. Meanwhile, a global energy optimiza-
tion regularized by total generalized variation (TGV) is formulated for depth
image SR [10]. Considering that the interdependency exists between color image
and depth map, a bimodal co-sparse analysis model is introduced to resolve the
inverse problem of depth upsampling [11].

Different from these optimization approaches, sparse depth SR method first
segments color image as piece-wise smoothness image to explicitly use color
boundary information [12]. After that, corresponding depth regions in each seg-
ment are reconstructed respectively and then these depth reconstructions are
combined. Unlike all the above methods, patch-based synthesis method searches
the best candidate high-resolution patch to match with the given low-resolution
depth patch [13]. This method is a new way to achieve depth image SR, but the
high-low resolution patch matching procedure is time-consuming. In [5], depth
image SR problem is reformulated as the boundary compensation problem, which
is solved by multiple residual dictionary learning strategy. Although these classic
methods can improve depth accuracy, they cannot be accelerated by the hard-
wares such as GPU or TPU, which greatly limits its wide usage for computer
vision tasks.

Compared with traditional depth image SR methods, a class of deep learning-
based image SR approaches have achieved great progresses in the last few years.
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These approaches always use deep neural networks to learn nonlinear mapping
from low-resolution to high-resolution. For example, super-resolution convolu-
tional neural network (SRCNN) is the earliest representative SR method [14],
which solely uses three convolutional layers to play different roles. After that,
sparse coding-based network is designed according to sparse coding theory [15],
whose topology is interpretable. These two approaches can well resolve natural
color image SR problem and they can also be applied for depth image SR. There
is a big difference between color image and depth map, that is, color image is
used for display, while depth map provides scene geometry information for us. In
[16], depth map super-resolution task is cast as a series of novel view synthesis
sub-tasks to generate multiple-viewpoint depth maps, which finally form high
quality depth image by up-shuffle operation. Without directly learning an end-to-
end depth SR mapping, two-stage method [17] firstly uses CNN to predict high-
quality edges and then TV synthesis is used to refine low quality depth image
with the estimated high-quality edges. In [18], multi-scale network (MS-Net)
uses three-step: feature extraction, multi-scale upsampling and reconstruction
for depth image SR. The contribution of the above networks lies in the topol-
ogy. Different from them, a visual appearance-based metric in perceptual deep
depth SR method is used as SR loss function to significantly improve 3D object’s
perceptual quality [19]. Although these methods have improved depth quality,
but more accurate depth image is expected to be generated from corresponding
low-resolution depth image. Consequently, single depth image super-resolution
problem should be further researched.

In this paper, we introduce a deep single depth image super-resolution
method, which has three components: depth dual decomposition block, depth
image initialization block and depth image rebuilding block. Considering that
depth images have salient structures when removing fine detail information, we
propose to use a deep dual decomposition network to cast single low-resolution
depth image as fine-detail and coarse-structure image with high quality. Mean-
while, depth image SR fusion module is proposed to extract convolutional fea-
tures from fine-detail image, coarse structure image and initialized image, and
then these features are merged together to prepare for the final reconstruction.
After feature fusion, these features are fed into residual learning-based recon-
struction module of depth image rebuilding block to produce high-quality depth
image.

The rest of this paper is organized as follows. First, we will introduce the
proposed method in Sect. 2. Secondly, experimental results are given in Sect. 3.
Finally, we conclude this paper in Sect. 4.

2 The Proposed Method

Previous depth SR methods always design cascaded convolutional neural net-
works to learn image nonlinear upsampling mapping from low-resolution to high-
resolution. However, this kind of network is always troubled by back-propagation
problem, when the total convolutional layer number of deep neural networks is
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set to be especially large. Although ResNet-like networks can extremely allevi-
ate this problem, existing network topology need to be improved. Meanwhile,
most CNN-based methods always only learn direct low-to-high mapping, that
is, single-task loss is used to supervise network training. To better train deep
neural network, multi-task loss is adopted in the proposed method. An image
dual mapping from low-resolution image to high-resolution fine-detail image and
coarse-structure image can be learned better than direct low-to-high mapping.
Consequently, we design a new CNN structure, which consists of three parts:
depth dual decomposition block, depth image initialization block and depth
image rebuilding block, as depicted in Fig. 1. Next, these three parts will be
detailed.

2.1 Depth Dual Decomposition Block

Low-resolution degraded depth images L can be decomposed as two low-
resolution parts: low-resolution coarse-structure image Slow and fine-texture
image Tlow = L − Slow with traditional image smoothing operators such as
L0 gradient minimization [20–26]. Meanwhile, these operators can be learned by
deep CNN, when paired image dataset of {L, Slow} is available. It is a possible
manner to leverage both low-resolution coarse-structure image and fine-texture
image for deep depth image SR. However, it is not an elegant manner to improve
depth precision in this manner. We propose to learn dual decomposition to pre-
dict two high-resolution parts Shigh and Thigh, whose input is low-resolution
degraded depth images L, because this learning is more useful for depth quality
enhancement than simple learning from L to Slow. The corresponding labeling
images are the coarse-structure SGT and fine-texture image TGT = IGT − SGT ,
which is generated by traditional image smoothing operator of L0 gradient min-
imization [26]. Here, IGT is the ground-truth image of L. As shown in Fig. 1,
depth dual decomposition block is designed to learn a low-to-high mapping from
L to a pair of high-resolution images Shigh and Thigh. In this block, we use
three convolutional layers to extract low-resolution features, after which trans-
posed convolutional layer upsamples these features to obtain F 0

2X . Next, F 0
2X

and 2X upsampled prior image are concatenated along the channel dimension,
whose results F 1

2X are as the input of the next stage. Obviously, these opera-
tions from L to F 1

2X can written as: F 1
2X = FStage1(L). As done in the first

stage, the second stage can be given as follows: F 1
4X = FStage2(F 1

2X). Here, all
the four operations in the second stage consist of three convolutional layers and
one transposed convolutional layer. Finally, one convolutional layer is used to
cast multi-channel features F 1

4X as a residual map, which are added with 4X-
upsampled prior image to get the high-resolution coarse-structure image Shigh.
As done in the high-resolution coarse-structure prediction, the similar network
structure is used for high-resolution fine-detail prediction, but the pixel-wise add
operation is removed for high-resolution fine-detail prediction.
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Fig. 1. The diagram of the proposed network. Here, BN denotes the batch normaliza-
tion, while Conv64 and Conv1 mean that the output channels in these convolutional
layers are 64 and 1 respectively.

2.2 Depth Image Initialization Block

Since depth image quality of the final reconstruction in the depth image rebuild-
ing block depends on the quality of triple inputs of this block, e.g., predicted
depth coarse-structure image and fine-detail image as well as initialized image,
depth image initialization block is introduced to enhance the quality of the low-
resolution depth image. As done in the coarse-structure prediction path of depth
dual decomposition block, depth image initialization block has the same network
topology and they have the same feature maps as their inputs, but they have
different outputs. In other words, they have different functions when they learn
an end-to-end nonlinear mapping.
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2.3 Depth Image Rebuilding Block

To explore potential information of three images: the initialized depth image
D0, predicted depth coarse-structure image Shigh and fine-detail image Thigh,
three convolutional layers are used to extract shallow features from these three
images respectively. Then, we design a weighted fusion mechanism to merge three
features from shallow layers together. In this mechanism, the absolute-value is
taken for these three features, after which three convolutional layers followed
by sigmoid function are utilized to form three weights respectively. Afterwards,
these three weights are normalized to get three new weights and then the three
shallow features are averaged according to three new weights. To deeply extract
the fused feature from the weighted fusion mechanism, we use three ResConvs
and one convolutional output layer to extract more informative features and
reconstruct the residual image. Finally, the add operation is done to generate
the final output D1 with depth residual image and initialized depth image.

2.4 Loss Function

CNN-based depth image SR methods always only choose single-task loss func-
tion to train their network. To better constrain the parameter updating of deep
neural network, we optimize the parameter set ζ of depth SR network in the
proposed method with the objective function in Eq. (1), in which || · ||1 denotes
L1 norm. Our objective function is composed of two terms: depth dual decompo-
sition loss and depth reconstruction loss. Depth dual decomposition loss includes
both depth coarse-structure prediction loss and depth fine-detail prediction loss,
which restricts the learning of deep dual decomposition block. Meanwhile, depth
reconstruction loss has the initial depth reconstruction loss and the final depth
reconstruction loss. Here, the initial depth reconstruction loss supervises the
learning of depth image initialization block, while the final depth reconstruction
loss affect not only the training of depth image rebuilding block but also the
training of depth image initialization block as well as depth dual decomposition
block.

arg min
ζ

||Thigh − TGT ||1 + ||Shigh − SGT ||1
︸ ︷︷ ︸

Depth Dual Decomposition Loss

+ (||D0 − IGT ||1 + ||D1 − IGT ||1)/2
︸ ︷︷ ︸

Depth Reconstruction Loss

(1)

3 Experimental Results

3.1 Training Details

We choose three datasets to form our training dataset. Specifically, the first one
is MPI Sintel depth dataset including 58 single depth images. The second one is
Middlebury dataset with 34 single depth images, which consists of 6 images from
2001 dataset and 10 images from 2006 dataset, as well as 18 images from 2014
dataset. The third dataset is synthetic training data [13], whose total number
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Table 1. Quantitative comparison for depth SR in term of root mean squared error
(RMSE) when testing on dataset A.

Image name Art Books Moebius Ave.

Scalar factor 2X 4X 2X 4X 2X 4X

Bilinear 2.834 4.147 1.119 1.673 1.016 1.499 2.048

MRFs [8] 3.119 3.794 1.205 1.546 1.187 1.439 2.048

BF [7] 4.066 4.056 1.615 1.701 1.069 1.386 2.316

Park et al. [9] 2.833 3.498 1.088 1.53 1.064 1.349 1.894

GF [6] 2.934 3.788 1.162 1.572 1.095 1.434 1.998

Kiechle et al. [11] 1.246 2.007 0.652 0.918 0.640 0.887 1.058

Ferstl et al. [10] 3.032 3.785 1.290 1.603 1.129 1.458 2.050

SRCNN(RE) [27] 1.614 2.233 1.129 1.106 1.045 1.002 1.355

DnCNN(RE) [28] 0.566 1.619 0.404 0.775 0.354 0.754 0.745

MS-Net*(RE) 1.336 1.941 0.566 0.914 0.588 0.871 1.036

MS-Net(RE) 0.793 1.788 0.439 0.787 0.412 0.766 0.831

MS-Net [18] 0.813 1.627 0.417 0.724 0.413 0.741 0.789

Ours 0.476 1.517 0.365 0.705 0.331 0.704 0.683

is 62. Two hole-filled Middlebury RGBD datasets: dataset-A and dataset-C are
adopted to evaluate the performance of different depth SR methods. We train
the proposed model with Adam optimizer with a learning rate of 2e−4.

3.2 The Objective Quality Comparison of Different Methods

We compare the proposed methods with traditional approaches and CNN-based
ones in term of root mean squared error (RMSE). The objective results are
provided in Table 1 and 2. Here, SRCNN(RE), MS-Net*(RE), MS-Net(RE) and
DnCNN(RE) denote the re-implementation of SRCNN [27], MS-Net [18] and
DnCNN [28] according to the network topology described in their papers. MS-
Net(RE) uses the residual as input like [18], while MS-Net*(RE) directly feeds
low-resolution depth image into corresponding network.

To fairly compare these four methods with the proposed approach, the chan-
nel number of convolutional layers in our re-implementation is increased to make
the parameter number of these models approximate to that of the proposed
method. Note that the result of MS-Net in [18] is also given in Table 1 and 2.
From these tables, it can be seen that the proposed method outperforms Bilinear
method, MRFs [8], BF [7], Park et al. [9], GF [6], Kiechle et al. [11], Ferstl et al.
[10], Lu et al. [12], SRCNN(RE) [27], MS-Net*(RE), MS-Net(RE) and MS-Net
[18] for depth 2X and 4X super-resolution. Meanwhile, the RMSE measurement
of proposed method is also beyond DnCNN(RE) [28] in average. As described
above, our method uses multi-task loss to optimize the proposed network, while
depth image initialization block and depth image rebuilding block are designed
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Table 2. Quantitative comparison for depth SR in term of root mean squared error
(RMSE) when testing on dataset C.

Image name Tsukuba Venus Teddy Cones Ave.

Scalar factor 2X 4X 2X 4X 2X 4X 2X 4X

Aodha et al. [13] 8.993 12.39 2.175 2.597 3.233 4.03 4.262 5.74 5.428

Timofte et al. [27] 9.135 12.09 2.099 2.331 3.253 3.718 4.257 5.49 5.297

Kiechle et al. [11] 3.653 6.212 0.607 0.819 1.198 1.822 1.465 2.974 2.344

Ferstl et al. [10] 5.254 7.352 1.108 1.742 1.694 2.595 2.185 3.498 3.179

Lu et al. [12] N/A 10.29 N/A 1.734 N/A 2.723 N/A 3.985 N/A

SRCNN(RE) [27] 3.116 7.060 0.772 1.031 1.494 2.013 1.929 3.409 2.603

DnCNN(RE) [28] 1.342 3.878 0.202 0.436 0.653 1.505 0.646 2.803 1.433

MS-Net*(RE) 3.257 5.954 0.668 0.886 1.220 1.843 1.458 3.063 2.294

MS-Net(RE) 2.186 5.199 0.301 0.762 0.835 1.668 1.005 2.821 1.847

MS-Net [18] 2.472 4.996 0.259 0.422 0.822 1.533 1.100 2.770 1.797

Ours 1.318 4.009 0.212 0.412 0.643 1.355 0.640 2.382 1.371

to better reconstruct depth image. As a result, depth accuracy has been greatly
improved by the proposed method for depth image SR, when it is compared with
the other depth SR approaches.

3.3 The Visual Quality Comparison of Different Methods

In this subsection, we compare the visual quality of different depth map super-
resolution methods. In Fig. 2 and Fig. 3, 4X super-resolved images for Moebius
depth map from dataset-A and Tsukuba depth map from dataset-C are provided
for comparison. From these figures, it can be seen that the SRCNN depth super-
resolution method only uses three convolutional layer to extract features, whose
receptive field are very limited. In contrast, the edge of depth map MS-Net(RE)
and MS-Net*(RE) is more sharper than that of SRCNN, but their quality is less
than that of DnCNN (RE), while visual quality of MS-Net(RE) is better than
that of MS-Net*(RE). Among all the comparative methods, our method can
overcome the above shortcomings, since the proposed method uses multi-task
loss functions to supervise the learning of depth map super-resolution network.
Additionally, image dual mapping from low-resolution images to high-resolution
fine images and coarse structure images is easier than that of direct low-to-high
mapping. It can be seen from Fig. 2 and Fig. 3 that the edge of the depth map
processed by the proposed method is clearer and the surface is smoother than
the other approaches. These visual comparisons further verify the effectiveness
of proposed method.
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(a) SRCNN(RE) (b) DnCNN(RE)

(c) MS-Net(RE) (d) MS-Net*(RE)

(e) Ours (f) Ground Truth

Fig. 2. The visual comparison of different depth 4X SR approaches for Moebius depth
map from dataset-A.
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(a) SRCNN(RE) (b) DnCNN(RE)

(c) MS-Net(RE) (d) MS-Net*(RE)

(e) Ours (f) Ground Truth

Fig. 3. The visual comparison of different depth 4X SR approaches for Tsukuba depth
map from dataset-C.

4 Conclusion

In this paper, we propose a deep single depth image super-resolution method
based on image decomposition, in which deep dual decomposition network is
designed to map single low-resolution depth image as high-resolution fine-detail
and coarse-structure images with high quality. Meanwhile, both these two images
and the initialized image are combined as one group of feature maps accord-
ing to weighted fusion mechanism. After feature fusion, residual learning-based
reconstruction module uses these features in the depth image rebuilding block
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to produce high-quality depth image. Extensive experimental results show that
the proposed method is beyond several traditional and CNN-based depth SR
methods. In future work, we will study light-weight deep models for single depth
super-resolution based on image decomposition.
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Abstract. Solar radio bursts are an important part of the study of solar activity, and
automatic classification of solar radio spectrum can greatly improve the efficiency
of solar activity research. Based on the preprocessing of the original solar radio
spectrum images, this paper proposes a solar radio spectrum images classification
method based on the VGG16 convolutional neural network and transfer learning.
In this method, the pre-trained VGG model is applied to solar radio spectrum
recognition. Trained on the generated target data set and adjusted the parameters.
The experimental results show that compared with the traditional manual classi-
fication method and the existing deep learning classification method, the VGG16
transfer learning classification shows that the TPR of the solar radio burst is better
than before. The situation has increased by 12.2%. For the overall classification
result analysis, the experimental effect is greatly improved on the basis of the
original classification.

Keywords: Classification · Convolutional neural network · Transfer learning ·
VGG16 model · Denoising · The solar radio spectrum

1 Introduction

The significance of Solar radio spectrum observation is to study solar bursts, and solar
radio bursts contained important information about solar activities. There aremany types
of solar radio bursts that correspond to different physical events. With the development
of radio spectrum instruments, the observation data presents a huge trend. It is difficult to
detect and classify solar radio bursts manually. Is there a way to efficiently and quickly
detect and classify solar radio bursts from this vast amount of information? With deep
learning methods have proven to be effective in many complex data classification tasks,
deep learning can learn useful features directly from labeled or unlabeled data, which
solvesmany tasks that can only be completed byhumans, this provides awayof analyzing
and processing solar radio bursts data.

Although some scholars have combined deep learning to classify solar radio spec-
trum images, they have failed to achieve a good classification effect due to the limited
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amount of data, choice of data form, choice of classification method, the performance
of computers, and other reasons. Such as Chen Zhuo, Xu Long, et al. [1, 2] proposed the
use of Automatic Encode (AE) [2] and Deep Belief Network (Deep Belief Network).
DBN [1] method to learn the characteristics of these massive data and try to use the sup-
port vector machine PCA plus SVM [2] method to classify solar radio spectrum data.
Chen Sisi et al. [3] proposed the classification algorithm research of solar radio spectrum
image based on convolutional neural network, since they are using deep learning meth-
ods to automatically learn the representation of solar radio spectrum for the first time,
therefore, in the combination classification of solar radio spectrum images and deep
learning, there are still some deficiencies in image form selection, image preprocessing
and some adjustment of network parameters, resulting in the final classification effect
does not reach the expected results.

Because there are too few labeled data of solar radio spectrum and too few training
samples for general deep learning algorithms, the classification effect is not good. In this
paper, a transfer learning method based on the VGG16 convolutional neural network is
proposed to apply the VGG16 network pre-trained in the source domain to the solar
radio spectrum images dataset. In this study, we used the data obtained by China’s Solar
Broadband Radio Spectrometer (SBRS) [4]. After visualizing the original data, image
normalization [5] and channel normalization are used to preprocess the image. The
processed image samples are divided into a training set and a test set. Fine-tuning in the
network to achieve the best parameters of the network, and finally through the test set
to verify the model’s ability to classify solar radio spectrum images.

2 VGG16 and Transfer Learning

2.1 VGG16 Convolutional Neural Network Model

The VGG16 convolutional neural network model [6] (see Fig. 1) was proposed by the
VGG group of the University of Oxford in 2014. It can be known from the development
and application of VGG that VGG16 has outstanding achievements in image classifica-
tion and object detection tasks, which is the reason why this paper chooses the VGG16
convolutional neural network model as the study of transfer learning. VGG16 has a total
of 16 layers, 13 convolutional layers, and three fully connected layers. A poolingmethod
will be used after the first two convolutions of 64 convolution kernels; a pooling method
will be used after the second two convolutions of 128 convolution kernels; a pooling
method will be used after the second two convolutions of 512 convolution kernels; a
pooling method will be used after the third fully connections. Multiple convolutional
layers and pooling layers are stacked together to make the network have a larger Recep-
tive Field while reducing network parameters. In addition, the original linear function
becomes nonlinear through the ReLU activation function, which increases the learning
ability of the network. The image is classified by the fully connected layer and the output
layer, and the probability distribution of the current sample belonging to different cate-
gories can be obtained by the Softmax activation function. The size of the convolution
kernel (3× 3) adopted by this network is to replace the previous larger convolution ker-
nel, and the network can better learn the important features of the image by increasing
the depth of the network.
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224×224×3
224×224×64

112×112×128
56×56×256 28×28×512

14×14×512

7×7×512

1×1×4096

max pooling 

fully connected+ReLU

softmax 

1×1×1000

convolution+ReLU

Fig. 1. Structure chart of VGG16 convolutional neural network

2.2 Transfer Learning

With the emergence of more and more machine learning application scenarios, the exist-
ing well-performing supervised learning requires a large amount of labeled data. Since
labeling data is a boring and costly task, transfer learning has received more and more
attention.

Transfer learning [7] is amachine learningmethod that applies the knowledge learned
by convolutional neural networks in other image fields with sufficient labeled data to the
research field. This paper introduces the idea of transfer learning because the solar radio
spectrum data is limited, and it is not enough to establish a new network structure to
train data samples. The overfitting phenomenon is likely to occur in the training process.
However, transfer learning can be divided into many categories. According to the trans-
fer scenario, transfer learning can be divided into Inductive Transfer Learning, Trans-
ductive Transfer Learning, and Unsupervised Transfer Learning; According to whether
the feature space is the same, it can be divided into Homogeneous Transfer Learning
and Heterogeneous Transfer Learning; However, the most common transfer method is
classified into Instance-based Transfer Learning, Feature-based Transfer Learning, and
Parameter-based Transfer Learning. This article mainly uses parameter-based transfer
learning, using some network parameters of the pre-trained model VGG16 of Imagenet,
which has a huge sample size of natural images and combines solar radio spectrum data
with the transfer learning model (see Fig. 2) for training.

3 Spectrum Image Preprocessing and Classification Algorithm

3.1 Preprocessing of Solar Radio Spectrum Data

The solar radio spectrum classification method based on convolutional neural networks
is difficult to process the original data directly, so it is particularly important to preprocess
the original data. In this paper, the solar radio spectrum data are preprocessed as follows:
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Fig. 2. Transfer learning

(1) Data visualization
The solar radio spectrum data collected by SBRS observation has the char-

acteristics of high time resolution, high-frequency resolution, and high sensitivity,
which can producemassive data. The average data collected by observation is about
3-5T per day. The observed and collected solar radio spectrum data are stored in
binary form, which can be read in IDL language with HuaiRS software [8–10].
There are many formats of solar radio spectrum data, as shown in Table 1. The data
observed by SBRS contains the left and right circular polarization parts of the data
(see Fig. 3), because our goal is to accurately classify the three types of images in
the solar radio spectrum image of burst, non-burst, and calibration in the data set.
To achieve higher accuracy, it is necessary to perform corresponding image pro-
cessing on the image after data visualization, so that the network can better learn
the characteristics of the three types of images.

(2) Channel normalization denoising
In the SBRS data, there are multiple different channels to monitor the solar

radio spectrum signals of multiple frequencies at the same time, there is a certain
amount of interference between different channels, which causes a large amount of
channel noise. However, in themonitoring results, there are little data that originally
generated a burst. It is difficult to identify the solar radio spectrum of such a burst.
Therefore, the channel normalization method [1] is proposed here to adjust the
channel unevenness, reduce the noise in the image, and make the place where the



Classification of Solar Radio Spectrum Based on VGG16 39

Table 1. SBRS data format

Frequency Time File name/extension Time resolution

1.0–2.0GHz 1999–2002.5.14 Time information naming

1.08–2.04GHz 2002.5.14–2002.6.24 .NLP/.NLS/.CLS/.NLM 10 s/0.2 s/0.2 s/5 ms

1.10–2.06GHz 2002.6.25–2004.10.26 .NLP/.NLS/.CLS/.NLM 10 s/0.2 s/0.2 s/5 ms

1.10–1.34GHz 2004.10.24-new .NLP/.NLS/.CLS/.NLM 10 s/0.2 s/0.2 s/1.25 ms

2.6–3.8GHz 1999-new .NUP/.NUS/.CUP/.CUS 10 s/0.2 s/0.2 s/8 ms

5.2–7.6GHz 1998.8-new .NPP/.NUS/.CPS/.NPM 10 s/0.2 s/0.2 s/5 ms

Fig. 3. Visualization of solar radio spectrum data

burst occurs in the image of the explosion more obvious, The formula is as follows:

G = f − fLM + fGM (1)

Where f is the visualized image after conversion, G is the image after channel
normalization, fLM and fGM represent the local mean and global mean of the image,
respectively. fLM is the average value of pixels in a frequency channel, the purpose
is to alleviate the influence of horizontal stripe interference caused by channel
imbalance. fGM is the average of the pixels of the entire image, the purpose is to
add a global to compensate for the background of each pixel. It can be seen from
Fig. 4 and Fig. 5 that by using the channel normalization method, the horizontal
stripes generated by the channel imbalance can be effectively improved.

Due to the separate visualization of the left circular polarization part (see Fig. 6)
and the right circular polarization part (see Fig. 7) of the solar radio spectrum, the
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radio burst phenomenon is not very obvious. As a result, the introduction of a
neural network does not improve classification accuracy. Therefore, the left and
right circular polarization (see Fig. 8) are superimposed together in this paper. In
this way, when the time is the same and the frequency is different, the phenomenon
of solar radio spectrum burst is more obvious, and the classification accuracy of
the solar radio spectrum is also improved very well. Visualizations of the solar
radio spectrum obtained from the above image processing are as follows: burst (see
Fig. 9), non-burst (see Fig. 10), and calibration (see Fig. 11).

Fig. 4. The solar radio spectrum before
channel normalization

Fig. 5. The solar radio spectrum after
channel normalization

Fig. 6. Left circular polarization spectrum
image

Fig. 7. Right circular polarization spectrum
image

Fig. 8. After left and right circular
polarization Superimposed Spectrum

Fig. 9. Burst spectrum image

(3) Image normalization
Since the original visualization graph of data collection is a time-domain signal,

there is no obvious difference in the classification of the image. Therefore, the image
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Fig. 10. Non-burst spectrum image Fig. 11. Calibration spectrum image

must be processed to a certain extent to convert the time-domain signal graph into
a gray-scale image, under the IDL language to read through the displayed image
pattern choice, selected learning network model suitable for depth image mode.
The invariant moment of the image is used to find a set of parameters that can
eliminate the influence of other transformation functions on image transformation,
and the original image to be processed can be converted into the corresponding
unique standard form. The image normalization makes the image resistant to the
attack of geometric transformation, it can find the invariants in the image, so that
these images are originally the same or a series of. The formula for the conversion
is as follows:

P = Q − min(Q)

max(Q)− min(Q)
(2)

(4) Multi-scale testing
A visual (798 × 614) grayscale image is obtained after the above data are

converted into display mode and the image channel is de-noised. However, the
VGG16 network requires the input format of the image to be 224 × 224 × 3 and
the pixel to be 224 × 224. Because the new classifier needs to be trained and the
weight parameters of the full connected layer are retrained, the size of the source
image and the target image must be consistent. The image processing method in
this paper is the image preprocessing method in reference [11]. Multi-scale tests
(see Fig. 12) were used for image enhancement, re-scale the image with the size of
798 × 614 to 256 × 256, then the shortest side S is 256 at this time. Then random
cropping and center cropping are performed from the rescaled training images (each
imagewas cropped once for each SGD iteration). In this way, not only the fixed-size
images are sent to the network for training, but also the data enhancement is carried
out to increase the stability of the model.
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256×256

224×224

Fig. 12. Multi-scale testing

The total amount of solar radio spectrum data is shown in Table 2:

Table 2. The amount of data marked on the solar radio spectrum

Type Burst Non-burst Calibration Total

Amount 1846 2060 1614 5520

The total amount of data after data enhancement is shown in Table 3:

Table 3. The amount of data after data enhancement

Type Burst Non-burst Calibration Total

Amount 9230 10300 8070 27600

3.2 VGG16 Transfer Learning Algorithm

The key to transfer learning is what transfer learning is used, how to perform transfer
learning, and when it is suitable for transfer. Since the classification effect of natu-
ral images in the classification task of deep learning is the most significant in image
classification at present, some network parameters of the pre-trained model VGG16 of
the natural image Imagenet with a huge amount of label samples are used for transfer
learning. Feature-based Transfer Learning, and Parameter-based Transfer Learning, this
article chooses a Parameter-based Transfer Learning, the research of parameter-based
migration is to find the common parameters or prior distribution between the spatial
model of the source data and the target data, and through further processing, the purpose
is to achieve knowledge transfer, the means of transfer learning are:
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(1) Transfer Learning: Freeze all the convolution layers of the pre-training model, and
only train the self-customized fully connected layer.

(2) Extract Feature Vector: Firstly, the feature vectors of the convolution layer of the
pre-training model to all the training and test data are calculated. Then, the pre-
training model is abandoned and only the customized fully connected network is
trained.

(3) Fine-tuning: Freeze part of the convolutional layer of the pre-trainingmodel (usually
most of the convolutional layers close to the input, because these layers retain a lot
of underlying information) without freezing even any of the network layers, and
train the remaining convolutional layers (usually part of the convolutional layers
close to the output) and the fully connected layer.

This paper is based onVGG16 for transfer learning, three classifications are achieved
through training target data sets. The method is to freeze the feature extraction layer of
the original network so that the weights of the convolutional layer and the pooling layer
remain unchanged. Since the data to be classified is different from the original VGG16
classification data, the original fully connected layer should be deleted. Two new fully
connected layers are added, the classification number of the last fully connected layer
matches the number of classes in the data set, and the Softmax function is added to
classify the new problems. The parameter information of the last few layers is retrained
to achieve the classification goal. Figure 13 shows the process of transfer the model.

Source 
data

Pre-training CONV3-64 CONV3-128 CONV3-256 CONV3-512

Fully Connected layer

target  
data 

Preprocessing 
Image Trans-

formation 
Channel  
Denoising Retraining 

Fixed  
weight  
parameter 

Fully Connected layer 
Softmax layer 

Burst

Non-burst

Calibration

Fig. 13. VGG16 transfer learning process

4 Experimental Results and Analysis

The network is mainly run on the PyTorch framework using Python experiments, using
the optimizer is SGD, the learning rate is 0.001, the loss function is cross-entropy, the
final classifier is Softmax. The distribution of the training set and test set of solar radio
spectrum graph data is shown in Table 4 and Table 5.
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Table 4. Solar radio spectrum training set

Type Burst Non-burst Calibration Total

Amount 7380 8240 6455 22075

Table 5. Solar radio spectrum test set

Type Burst Non-burst Calibration Total

Amount 1850 2060 1615 5525

In the applicationprocess of theVGGtransfermodel, the parameters are continuously
optimized to match the characteristics of the solar radio spectrum data, so that new
network layer parameters are trained and then verified with the test set. Due to the
lack of solar radio spectrum data, the number of iterations for parameter selection is 10
during the training process, and the number of samples (batch_size) for each gradient
descent is 32. Verification is performed after each round and finally calculated by the
test set. The accuracy of the classification. From the loss value graph obtained after
network training (see Fig. 14), it can be seen that the loss value quickly stabilizes in
the iterative process, because the characteristics of the solar radio spectrum image are
less complicated compared with the natural image characteristics, its three types (burst,
non-burst, calibration) images are grayscale images, and the distribution of features is
different so that the network can learn image features better and faster.

Fig. 14. Visualization result of Loss value

It is important to note that the accuracy here uses TPR (True Positive Rate) and FPR
(False Positive Rate) to measure the whole classification. TPR refers to the data that
is judged as a positive sample in its environmental test and is still judged as a positive
sample after network learning classification. The greater the value of TPR, the better
the classification effect of the network model applied. On the contrary, FPR refers to the
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classification in which the judgment of data in its environmental test is inconsistent with
the judgment result after classification in the network model. The greater the value of
FPR, the worse the classification effect of the network model applied. The experimental
results are shown in Table 6:

Table 6. Statistics of classification results of solar radio spectrumdata ofVGG16 transfer learning

VGG16 transfer learning

TPR (%) FPR (%)

Burst 96.8 1.4

Non-burst 97.1 1.3

Calibration 99.6 1.8

The experimental results of this paper have achieved a certain improvement in accu-
racy both compared with the traditional artificial classification method and with the
solar radio spectrum classification attempted by many scholars in recent years using
deep learning (see Table 7). The burst TPR is 12.2% higher than the previous best case,
the non-burst TPR is 7.1% higher than the previous best case, and the calibration TPR
is 0.4% lower than the previous best case. The value of FPR is also generally reduced.
For example, the value of FPR in the burst is 8% lower than the previous best case, and
the value of FPR in the non-burst is 7.4% lower than the previous best case, and the
value of FPR in the calibration is 1.1% higher than the previous best case. Although the
classification of some images is a little worse than that of previous scholars, in general,
the TPR and FPR of the burst are much better than the previous accuracy. However,
for the classification of the solar radio spectrum, the improvement of the classification
accuracy of the burst data is especially important, because the purpose of this experi-
ment is to classify the burst pictures from a large number of images, and the detected
burst parameter values and burst types create indexes together to facilitate query, statis-
tics, and analysis of follow-up research. Forecast the future space weather based on the
corresponding analysis results.

ChenSisi, the author of the literature [3], also used the sameVGG16model to transfer
and learn solar radio spectrum data classification. Compared with Chen Sisi’s experi-
mental results (see Table 8), the main reasons for the improvement in the classification
accuracy of solar radio spectrum data in this paper are as follows:

(1) The form of data visualization is different. The data used by the previous scholars
for classification is basically in the form of left circular polarization, and the image
phenomenon of the burst after visualization of this data form is not particularly
obvious. However, the data sets used in this article are all visualized images after
superimposing the left circular polarization and the right circular polarization, so
that the explosion phenomenon of the visualized burst image is more obvious, and
it also makes the burst image more visually different from the other two images.,
So that the network can better learn different features to better classify.
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Table 7. Comparison of the classification accuracy of the VGG16 transfer learning model and
the previous model

VGG16
transfer
learning

CNN Multimodel DBN PCA + SVM

TPR
(%)

FPR
(%)

TPR
(%)

FPR
(%)

TPR
(%)

FPR
(%)

TPR
(%)

FPR
(%)

TPR
(%)

FPR
(%)

Burst 96.8 1.4 84.6 9.4 70.9 15.6 67.4 3.2 52.7 2.6

Non-burst 97.1 1.3 90 8.7 80.9 13.9 86.4 14.1 0.1 16.6

Calibration 99.6 1.8 100 0.7 96.8 3.2 95.7 0.4 38.3 72.2

Table 8. Chen Si-si usedVGG16 transfer learning to classify the accuracy of solar radio spectrum
data

Accuracy of solar radio spectrum classification combined with CNN and transfer learning

TPR (%) FPR (%)

Burst 60.1 19.2

Non-burst 64.5 16.6

Calibration 72.8 12.8

(2) Increase in the amount of data. Due to the continuous increase of SBRS statistical
data, the burst data obtained also continues to increase, thereby reducing the phe-
nomenon of data imbalance. In Chen Sisi’s data set, there are 1158 bursts, 6670
non-bursts, and 988 calibrations. The imbalance of the three types of data can be
seen. However, reducing the imbalance of data is also the main reason for the
improvement of accuracy.

(3) Different data preprocessing methods. The size of the image processed by Chen
Sisi is to process the image into a pixel size of 224 × 224 and send it to the
network through continuous dimension upgrade and dimensional reduction. This
processing method will cause the image to lose some important feature information
before it is sent to the network, leading to network learning If the useful features are
reduced, the final classification accuracy will also decrease. The random cropping
and center cropping used in this article can not only expand the data, but also
establish the weight relationship between each factor feature and the corresponding
category, reduce the weight of the background (or noise) factor, and make the
model insensitive to missing values. Produce better learning effects, improvemodel
accuracy and increase model stability.

(4) The difference of network parameters and the improvement of operating equipment
performance.After the above data preprocessing, combinedwith the parameters and
operating equipment used by the network in the VGG16 transfer learning process,
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will have a certain impact on the results.During training, the best results are achieved
by continuously updating network parameters suitable for the data set.

5 Conclusion

Aiming at the task of classification of solar radio spectrum data, this paper proposes a
classification method based on VGG16 transfer learning. The main tasks are as follows:

(1) Create a new data set. The selected image form of the burst feature is more obvious
than other types of images, and the network is easier to recognize the burst feature.

(2) The new method of image preprocessing makes the features of the image clearer
and the data-enhanced before the image is sent to the network.

(3) Comparedwith the traditionalmanual classification and someexisting deep learning
model classification, the selected network model for transfer learning achieves a
higher classification accuracy.

The experimental results show that by combining the classification of solar radio
spectrum data with the deep learning network, the network can also have good feature
extraction ability, and the VGG16 transfer learning model designed can also achieve
good algorithm performance in the classification task under the condition of limited
data.
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Abstract. Chroma intra prediction is an importantmodule inVersatileVideoCod-
ing (VVC) and Cross-Component Linear Model (CCLM) is an effective coding
tool for it, which establish a linear model between the predicted chroma compo-
nent and the reconstructed luma component. When the video content has complex
textures, the chroma prediction performance of CCLM will be suppressed. To
further improve chroma prediction ability, we present a simple yet efficient chan-
nel attention-based network to predict chroma component, namely, CACNN. The
proposed channel attention module is significant, which can control the contri-
bution of each neighboring reference sample when predict chroma component in
the current block. We also use multi-line reference samples to further improve the
chroma prediction performance. The proposed CACNN is incorporated into the
VVC test model version 8.2 (VTM 8.2). Experimental results demonstrate that
comparing with VTM 8.2 anchor, the proposed method can achieve 2.89%, 2.36%
chroma components bit rate savings in high QPs.

Keywords: Versatile video coding · Chroma intra prediction · Channel attention

1 Introduction

Video is an important information carrier. In recent years, with the gradual increase in
the application fields of video, such as entertainment video, telemedicine, surveillance
video, teleconference, etc., the number of videos has also increased sharply. At the
same time, people have higher requirements for video quality, such as High Definition
(HD), High Dynamic Range (HDR) [1] and Wide Color Gamut (WCG) [1] that have
emerged over the past few years. Due to the increase in the number of videos and the
improvement in video quality, the amount of video data has greatly increased, which has
brought great challenges to the storage and transmission of videos. Therefore, improving
video compression performance is an urgent problem. At present, the latest International
Video Coding Standard is Versatile Video Coding (VVC) [2].
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Compared with HEVC [3], the previous generation of International Video Coding
Standard, the coding framework of VVC does not improved. It still adopts a block-based
hybrid coding framework, which mainly includes intra prediction coding module, inter
prediction coding module, transform coding module, quantization coding module and
entropy coding module. But almost all the modules in VVC have been improved with
new coding tools. In particular, the intra predictionmodule includes luma intra prediction
and chroma intra prediction. The luma intra prediction mode of VVC has been increased
from 35 to 67 comparedwithHEVC,where 32more angular modes are included to adapt
to the diverse contents. Different from luma intra prediction, there are 8 chroma intra
prediction modes in VVC, which are Planar, DC, Vertical, Horizontal, Derived Mode
(DM), Cross Component Linear Model (CCLM) and Multi-Directional Linear Model
(MDLM), where MDLM consists of left (MDLM_L) and top (MDLM_T) versions.
Among the 8 chroma intra prediction modes, CCLM, MDLM_L, and MDLM_T are
unique to VVC.When using CCLM,MDLM_L, andMDLM_T, the chroma component
is predicted from the already-reconstructed luma samples using a linear model, the two
parameters of the linear model are derived from the neighboring reconstructed luma and
chroma component. Although the linear models have achieved coding gain to a certain
degree, there are still several shortcomings. Firstly, when the content of the prediction
block is complex, a single linear model cannot accurately describe the relationship
between the reconstructed luma component and the chroma component to be predicted.
Secondly, the linear models are obtained by manual design, which may limit chroma
prediction performance. To alleviate the above issues, the deep learning-based methods
have appeared and shown impressive chroma prediction performance.

In [4], a hybrid network was proposed to predict chroma components, which first
extracts the features from the reconstructed luma samples of the current block. Then,
using a fully connected network to extract features from the neighboring reconstructed
luma and chroma samples. Finally, the extracted twofold features are fused to predict the
Cb and Cr component. It is worth mentioning that they use the same network but with
different hyperparameters for 4 × 4, 8 × 8 and 16 × 16 chroma blocks. [5] proposed a
novel network for chroma intra prediction, which proposed an efficient attention mech-
anism to modulate spatial relations between reference and predicted samples. Similar to
[4], [5] also used the same network structure but with different hyperparameters for 4
× 4, 8 × 8 and 16 × 16 chroma blocks. Zhu et al. [6] presented a deep learning-based
intra chroma prediction method (CNNCP), which included two sub-networks for luma
down-sampling and chroma prediction. Different from [4, 5], one CNNCPmodel is only
applied for 64 × 64 chroma block, such that the chroma blocks smaller than 64 × 64
will copy the chroma predictions of the corresponding position. Compared with [4, 5],
[6] is not only more efficient, but also can further improve the coding performance. To
further reduce the redundancy between luma component and chroma component, we
propose a novel network for intra chroma prediction. Our main contributions include:

(1) We first use the channel attention mechanism to better explore the relationship
between the neighboring reference sample and the predicted chroma component.

(2) We use multi-line reference samples to improve the accuracy of chroma prediction.
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The remainder of this paper is structured as follows. Section2 introduces the proposed
network CACNN. The experimental results and analyses are provided in Sect. 3. Finally,
we conclude in Sect. 4.

2 Proposed Method

Feature fusion module

Current block information extraction module

Channel attention module

Neighboring block information extraction module

conv conv

128@64 64× 64@64 64× 2@64 64×

1 1× 1 1×

1O 2O 3O

conv conv conv

128@64 64×64@64 64×32@64 64×1@64 64×

3 3× 3 3× 3 3×

2I 1C 2C 3C

3@132 4× 1@128 1× 128@64 64×

128@1 1× 128@1 1×

128@64 64×

1I 1T 1A1F

Fig. 1. Framework of the proposed channel attention-based CNN.

The proposed channel attention-based CNN (CACNN) aims to predict the chroma
component of the current block by using the neighboring luma and chroma components
and the current already reconstructed luma component. As show in Fig. 1, the proposed
CACNN includes three modules: neighboring block information extraction module,
current block information extraction module and feature fusion module. The neighbor-
ing block information extraction module aims to explore the relationship between the
neighboring reference sample and the predicted chroma components. The current block
information extraction module extracts features from the current reconstructed luma
block. Then, the features from the neighboring block information extraction module
and current block information extraction module are added at corresponding positions
to achieve feature fusion. Finally, the fused feature is fed into feature fusion module to
predict the final chroma components (i.e., Cb and Cr).

It is worth noting that our network is used to predict chroma component of 64 ×
64 chroma block and is suitable for YUV4:2:0 format. In the next, we will discuss the
detailed structure of neighbor information extraction module, current block information
extraction module and feature fusion module.

2.1 Neighboring Block Information Extraction Module

Neighboringblock information extractionmodule extractsweighted features fromneigh-
boring reference Y, Cb and Cr components. As shown in Fig. 2, The neighboring refer-
ence Y is composed of 8 rows of neighboring reconstructed Y component adjacent to the
top of the current reconstructed Y block and 8 columns of neighboring reconstructed Y
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Fig. 2. Schematic diagram of obtaining neighboring reference samples

component adjacent to the left of the current reconstructed Y block and then it is down-
sampled by a factor of 2. The neighboring chroma reference component is composed of
4 rows of neighboring reconstructed chroma component adjacent to the top of the current
predicted chroma block and 4 columns of neighboring reconstructed chroma component
adjacent to the left of the current predicted chroma block. By concatenating the neighbor-
ing reference Y, Cb and Cr components, we obtain the input of neighboring block infor-
mation extraction module, denoted as I1 ∈ R

3×132×4. I1 is fed into a fully connected
layer and we can obtain features F1(I1) = [

f1, f2, · · ·, f128], fi ∈ R. Then, We tile
F1(I1) = [

f1, f2, · · ·, f128] into the matrix T1(I1) = [
t1, t2, · · ·, t128], ti ∈ R

1×64×64.

tix,y = fi, i ∈ [1, 128], x, y ∈ [1, 64] (1)

Finally, the weighted features A1(I1) ∈ R
128×64×64 are produced using the chan-

nel attention module [7]. The details of the channel attention module [7] is shown in
Fig. 3, T1(I1) = [

t1, t2, · · ·, t128] is first fed into the global average pooling layer
and go through two fully-connected (FC) layers, then the weighted score V1(I1) =
[v1,v2, · · · ,v128] can be obtained by a sigmoid activation.

We denoted the final output of the channel attention module as A1(I1) = [a1, a2, · ·
·, a128], A1(I1) is obtained by rescaling T1(I1) with the weighted score V1(I1):

ai = Fscalar(ti, vi) = tivi, i ∈ [1, 128] (2)

Fig. 3. Channel attention module
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2.2 Current Block Information Extraction Module

The current block information extraction module aims to extracts features from the
current reconstructed luma block. The input of the current block information extraction
module is the reconstructed luma samples I2 ∈ R

1×64×64. Then consecutive 3 × 3
convolutional layers are applied to extracts current reconstructed luma block features.
In this process, we get features C1(I2) ∈ R

32×64×64, C2(I2) ∈ R
64×64×64 and C3(I2) ∈

R
128×64×64. C1(I2),C2(I2),C3(I2) are represented as

⎧
⎨

⎩

C1(I2) = σ(W1 ∗ I2)
C2(I2) = σ(W2 ∗ C1(I2))
C3(I2) = σ(W3 ∗ C2(I2))

(3)

where C1(I2),C2(I2),C3(I2) are the extracted features, σ refers to the ReLU
function [8],W1,W2,W3 are 3 × 3 convolutional filters.

2.3 Feature Fusion Module

The feature fusion branch is used to map the fused features from the neighboring block
information extraction module and the current block information extraction module
into the final output Cb and Cr predictions. The fused featuresO1(I1, I2) is produced by
adding the output of the neighboring block information extractionmoduleA1(I1) and the
output of the current block information extraction module C3(I2) at the corresponding
positions.

O1(I1, I2) = A1(I1) + C3(I2) (4)

Finally, the Cb and Cr predictions, denoted as O3(I1, I2), are produced using the
consecutive 1 × 1 convolutional operations:

{
O2(I1, I2) = σ(W4 ∗ O1(I1, I2))
O3(I1, I2) = σ(W5 ∗ O2(I1, I2))

(5)

Where O2 are the extracted features, σ refers to the ReLU function, W4,W5 are 1
× 1 convolutional filters.

3 Experiment Results

Our training dataset consisted of two parts. The first part includes 800 images from
DIV2K database which are used for training. The second part includes 1124 images
from Youku. In detail, we sought 1124 videos from Youku and extracted the first frame
of the video to get 1124 images. Finally, the 1924 images are encoded by the VVC Test
Model (VTM) version 8.2 [9] with QP = 22 under all intra (AI) configuration.

For training phase, to enhance the generalization ability of the network, we adopted
a simple data augmentation strategy, i.e., randomly select the patch with a size of 128 ×
128 as the input of the CACNN. The initial learning rate is 1 × 10–4. We implemented
our method on the Pytorch platform with a single NVIDIA RTX 2080 Ti GPU.
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Next, we will briefly introduce how to integrate the CACNN into VVC test model
VTM 8.2. Similarly to [6], the CACNN was integrated in both the video encoder and
decoder and we took the CACNN as the 9th chroma intra prediction mode, namely, the
CACNN mode. At the encoder side, optimal chroma intra prediction mode selection is
conducted based on rate distortion optimization (RDO), such that the mode with the
minimum RD cost will be selected. An additional binary flag is used to indicate that the
current block choose the traditional chroma intra prediction mode or the CACNNmode.
At the decoder side, the binary flag will be decoded firstly. If the binary flag is 1, the
optimal chroma intra prediction mode of the current block is CACNN mode, else is the
traditional chroma intra prediction mode.

3.1 The Robustness Analysis of Chroma Prediction Performance

In order to verify the accuracy of the proposed network for predicting the chroma com-
ponent of patches encoded by different QPs, we selected VVC test sequences to evaluate
the performance of the proposed network. We selected the first frame of each VVC test
sequence, and use QPs {22, 42, 52} to encode these images. For each encoded image,
we intercepted some 256 × 256 patches from it with a step size of 128. Finally, for each
image in classA,B,C andE,we take out 420, 91, 32, 10 patches, respectively.All patches
are fed into CACNN for chroma prediction. The average of the PSNR of all patches in
an image is used as the PSNR of the image. The quantitative results were shown in Table
1 (PSNR was used to assess the prediction performance). The CACNN trained by QP22
is applied to predict the chroma component of the patch encoded with QPs {22, 42, 52},
the average Cb PSNR values are 34.68dB, 34.43 dB and 33.76 dB; the average Cr PSNR
values are 34.38 dB, 34.13 dB and 33.24 dB, respectively. It can be seen that the coding
performance of CACNN did not does not fluctuate significantly under other unseen QPs
(i.e., 42 and 52). In other words, CACNN showed strong generalization ability.

Table 1. Prediction performance evaluation with different QPs (PSNR).

Class Sequence QP22 QP42 QP52

Cb Cr Cb Cr Cb Cr

A Tango2 43.33 38.92 42.64 38.42 39.97 36.49

FoodMarket4 39.71 39.82 39.40 39.42 38.11 37.21

Campfire 38.88 35.51 37.18 34.95 36.34 33.50

CatRobot1 34.11 32.89 34.00 32.78 33.32 31.87

DaylightRoad2 40.43 37.99 40.14 37.71 39.19 36.10

ParkRunning3 30.30 33.01 30.24 32.94 29.64 32.48

B MarketPlace 37.41 37.81 37.39 37.46 37.02 36.60

RitualDance 40.97 39.84 40.96 39.34 40.58 36.97

(continued)
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Table 1. (continued)

Class Sequence QP22 QP42 QP52

Cb Cr Cb Cr Cb Cr

Cactus 32.14 30.44 32.14 30.44 31.71 30.07

BasketballDrive 36.09 34.74 35.90 34.68 34.65 33.71

BQTerrace 35.81 37.82 35.69 37.40 35.27 37.34

C BasketballDrill 29.41 31.87 29.41 31.96 29.29 31.57

BQMall 30.84 30.34 30.76 30.31 30.81 30.46

PartyScene 27.95 27.28 27.93 27.35 27.79 27.29

RaceHorses 25.31 26.30 25.24 26.20 24.72 25.48

E FourPeople 34.83 34.85 34.65 34.65 34.73 34.09

Johnny 34.31 35.22 33.98 34.61 33.22 34.39

KristenAndSara 32.51 34.29 32.17 33.84 31.45 32.77

Average 34.68 34.38 34.43 34.13 33.76 33.24

(2176,640)

(768,128)

(640,128)

(128,384) (a) Original (b) Our Method(QP22) (c) Our Method(QP42) (d) Our Method(QP52)

Fig. 4. Chroma prediction results of our method under different QP, (x, y) represents the position
coordinates of the upper left corner of the patch.
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To visualize the prediction results of our network under differentQPs,we selected the
first frame of the four sequences of ParkRunning3, BQTerrace, BQMall and FourPeople
from Class A, B, C, E, and encoded them with QPs {22,42,52}. For each image encoded
by different QPs, selecting a patch with a size of 128 × 128 to visualize the prediction
results. Figure 4 shown the qualitative results (from top to bottom, the sequence indicates
ParkRunning3, BQTerrace, BQMall, and FourPeople, respectively).

3.2 Coding Performance

The proposed method was tested under the common test conditions (CTC) [10], test
sequences included 18 video sequences known as Classes A, B, C and E. Since our
training set was all natural sequences and the proposed method was suitable for large-
resolution videos, the screen content sequences (Class F) and small resolution video
(Class D) were removed from the test sequences. We use the all-intra configuration and
QPs were set to 42, 47, 52 and 57, respectively. The results are summarized in Table 2.
It can be observed that compared with VTM 8.2, an average 2.89% and 2.36% BD-rate

Table 2. BD-rate results anchoring to VTM version 8.2 (Our method).

Class Sequence Cb Cr

A Tango2 −14.08% −4.12%

FoodMarket4 4.27% −1.90%

Campfire 3.07% −0.47%

CatRobot1 −3.92% −3.15%

DaylightRoad2 −2.93% −14.18%

ParkRunning3 −3.02% −3.34%

B MarketPlace −2.27% −1.07%

RitualDance −9.57% 1.54%

Cactus −2.20% −4.42%

BasketballDrive −4.41% −0.50%

BQTerrace −7.65% 3.79%

C BasketballDrill −2.68% −1.87%

BQMall −2.82% −1.59%

PartyScene −3.56% −3.29%

RaceHorses 7.10% 5.81%

E FourPeople −6.67% −4.83%

Johnny 0.43% −8.51%

KristenAndSara −1.10% −0.42%

Average −2.89% −2.36%
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Table 3. BD-rate results anchoring to VTM version 8.2 [6].

Class Cb Cr

A 3.82% −2.58%

B 0.06% 2.40%

C 0.21% 1.93%

E −0.09% −2.12%

Overall 0.68% 0.31%

[11] reductions can be achieved by the proposed method for Cb and Cr components,
respectively.

Additionally, in order to compare with themethod proposed in [6], under the premise
of ensuring that all configurations (dataset, loss functions, etc.) remain unchanged, we
retrain the networkmodel proposed in [6] and use the retrained networkmodel to replace
our proposed networkmodel inVTM8.2. As shown in Table 3, the final BD-rate increase
by 0.68% and 0.31% for Cb and Cr components, respectively, which indicates that the
proposed method achieves better performance.

To further illustrate the effectiveness of the proposed method, we have counted
the proportion of blocks for which the proposed method is selected for chroma intra
prediction under different QPs for each test sequence. The results were shown in Table
4. It can be seen that the percentage that selects CACNNcan reach 13.4%, 21.7%, 31.7%,
and 42.7% on average for four different QP settings. Meanwhile, we observed that with
the increase of QP, more and more blocks were chose to use the proposed method, which
meant that our method may be more effective for low quality video.

Finally, as shown in Fig. 5, we provide the visualization results of the chroma block
division on the sequence ParkRunning3 (3840 × 2160), BQTerrace (1920 × 1080),
BQMall (832 × 480), and FourPeople (1280 × 720), where the red block represents
that the block selects the CACNN mode for chroma intra prediction. They are encoded
with all-intra configuration and QP was set to 42. It also can be seen from Table 4
that in this configuration, 5.2%, 18.5%, 11.4%, and 15.6% of the chroma blocks for
the ParkRunning3, BQTerrace, BQMall, and FourPeople sequences choose to use the
CACNN mode.

Through the visual block results, we can also see that it was easier to use CACNN for
chroma intra prediction in regions with complex texture, it further proved that CACNN
can fully explore the relationship between the neighboring reference sample and the
current predicted chroma components.
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(c) FourPeople (d) BQMall

(a) ParkRunning3 (b) BQTerrace

Fig. 5. CACNN selected in chroma intra prediction.

Table 4. Percentage of the proposed method selected.

Class Sequence QP

42 47 52 57

A Tango2 19.20% 29.50% 35.70% 44.50%

FoodMarket4 11.40% 20.70% 38.10% 46.20%

Campfire 15.60% 25.50% 39.10% 49.10%

CatRobot1 12.20% 21.30% 33.90% 46.80%

DaylightRoad2 24.70% 36.50% 54.70% 65.00%

ParkRunning3 25.20% 28.40% 37.40% 37.50%

B MarketPlace 10.80% 16.00% 28.10% 54.20%

RitualDance 10.10% 23.90% 37.40% 47.00%

Cactus 13.80% 17.30% 30.70% 48.10%

BasketballDrive 13.90% 19.30% 32.00% 48.00%

BQTerrace 18.50% 29.50% 47.40% 59.80%

C BasketballDrill 9.00% 13.20% 13.60% 31.70%

BQMall 11.40% 15.20% 16.80% 28.80%

PartyScene 8.00% 16.30% 22.50% 14.20%

RaceHorses 7.00% 13.60% 13.10% 22.80%

E FourPeople 15.60% 29.00% 38.30% 57.90%

Johnny 10.40% 21.60% 27.80% 37.90%

KristenAndSara 5.00% 14.40% 24.10% 29.10%

Average 13.40% 21.70% 31.70% 42.70%
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4 Conclusion

In this paper, we proposed a channel attention-based CNN (i.e., CACNN) for intra
chroma prediction. The proposed method first introduces the channel attention module
to predict the chroma components, which fully exploring the relationship between the
neighboring reference sample and the predicted chroma component. Then, to make the
prediction more accurate, we use multi-line reference samples. It is worth mentioning
that even CACNN only uses the patches which are encoded by QP22 for training, the
experiments have proved that CACNN can be easily generalized to the other unseenQPs.
CACNN can be easily integrated into the VTM 8.2 as a new intra chroma prediction
mode. The experimental results show that the proposedmethod can achieve a remarkable
compression performance for Cb and Cr components in high QPs compared with VTM
8.2 anchor.
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Abstract. Deep learning used to achieve face mosaic removal is in full swing. In
this paper, a novel deep residual attention network (DRAN) is proposed for face
mosaic removal. Inspired by the application of attention mechanism, we apply
channel attention (CA) and pixel attention (PA) to DRAN to make the network
focus on more informative information. In addition, we improve the conventional
pixel attention which we superimpose three convolutional kernels of different
sizes. DRAN consists of an encoder and a decoder, which the clean and real face
image is reconstructed by convolutional neural network. In the encoder, the feature
maps of each convolutional layer are used as the input of CA, the output of CA is
sent to PA, and the output of PA is directly concatenated with the corresponding
featuremaps of the decoder. As the same time, inspired by the residual learning,we
propose the parallel residual block for more detailed feature extraction. Extensive
experiments show that DRAN performs better than state-of-the-art methods, the
best PSNR (peak signal-to-noise ratio) and SSIM (structural similarity index)
based on the test set are 20.67 dB and 0.8509, respectively.

Keywords: Face mosaic removal · Image reconstruction · Residual learning ·
Channel attention mechanism

1 Introduction

The transformation from low-resolution (LR) face to high-resolution (HR) face has
always been a hot topic in face analysis. Many researchers have made great contribution
to this, and the proposed methods are worthy of reference for subsequent researches
[10, 11]. With the development of image super-resolution (SR) technology, it is used in
various computer vision application [12–14]. At the same time, it is also successfully
applied to face mosaic removal.

Kim et al. proposed a very deep SR convolutional network (VDSR) inspired by
VGGNet [26] for ImageNet classification, which can achieve accurate single-image
super-resolution [1]. Affected by the depth of the network, the convergence speed will
slow down [2]. To solve this problem, the authors proposed to learn residuals only and
use extremely high learning rates [1]. But this method is not satisfactory when applied
to face mosaic removal, especially when the degree of the blur is deep.

© Springer Nature Singapore Pte Ltd. 2021
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However, most image SR methods are based on faster and deeper convolutional
neural networks (CNN) [1, 21], but we cannot recover the more details and it is related
to the fact that most methods focus on minimizing the mean square error (MSE) [3].
Ledig et al. [3] proposed super-resolution generative adversarial network (SRGAN),
and a perceptual loss function was introduced which consists of an adversarial loss and
a content loss. The mean-opinion-score (MOS) is used to evaluate the quality of the
images generated by SRGAN, but MOS is not objective and it is difficult to follow for
fair comparison [4].

Chen et al. [4] proposed an end-to-end learning face super-resolution network (FSR-
Net) with facial priors which face alignment and parsing are taken as the new evaluation
metrics to address the problem of MOS in SRGAN. FSRNet successfully combines SR
technology with facial priors, and it is composed of coarse SR network, fine SR encoder,
prior estimation network and fine SR decoder. Two kinds of facial priors: facial land-
mark heatmaps and parsing maps are introduced in this method. In order to produce
more realistic HR faces, Face Super-Resolution Generative Adversarial Network (FSR-
GAN) is introduced which embeds the adversarial loss into FSRNet [4]. The FSRNet
achieves state-of-the-art performance, but the training set of FSRNet needs the segmen-
tation masks of facial attributes which are based on manual annotation [24]. Obviously,
it is not usually the job that one person can do, and it will be time-consuming. If the
object we deal with is not a face, we still need to label other kinds of images manually.

Menon et al. [5] proposed an alternative formulation of the SR problem, and the
novel SR algorithm can generate HR, realistic images which has never been in previous
literatures. Self-supervised photo upsampling via latent space exploration of generative
models (PULSE) is a completely self-supervised learning mode, unlike the previous
works such as FSRNet which requires training on datasets of LR-HR pairs for supervised
learning [5]. In previous works, some researchers optimize their methods by calculating
the MSE between the generated image and the corresponding ground truth. But Menon
et al. found that generated images still show signs of blurring in high variance areas of
the images based on the pureMSE loss function, and this problem is improved by finding
points which actually lie on the natural image manifold and downscaling correctly [5].
While LR face images need to be aligned in advance, and this process is realized through
the pre-trained face key points predictor, which may produce some unexpected results
[19]. For example, some LR face images cannot obtain the corresponding facial key
points based on the predictor (In our 100 test face images, there are 24 face images are
not detected by the predictor for any facial key points with mosaic level 5.).

In order to discard the facial priors [4, 23] and improve PULSE, we propose a novel
method of face mosaic removal, that is DRAN which we propose the parallel residual
block for more detailed feature extraction, and we utilize CA for treating the information
of different channels differently. DRAN shows satisfactory results in terms of PSNR and
SSIM, although there is still room for improvement in generating richer facial details.
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Fig. 1. The architecture of DRAN proposed in this paper.

2 The Proposed Method

In this paper, we propose a novel deep residual attention network to capture multi-scale
features, and it is an end-to-end trainable network. But deeper networks aremore difficult
to train [2], for example, the loss may prematurely converge, and the features extracted
from convolutional layers may be lost.

Inspired by the deep residual learning [2], we propose the parallel residual block
to address these problems that may appear in the training process of DRAN. The face
mosaic removal has always been a challenging work for researchers, in particularly, it
is difficult to ensure that the removal results can restore the details of the ground truth
to the greatest extent. We try to use a method different from the previous works, that is
channel attention mechanism, which can make the network focus on more informative
information [6], and no extra works are introduced.

What DRAN needs to do is to make the face image generated by network as close
to the ground truth as possible, and we achieve it by minimizing the MSE between the
generated image and the corresponding ground truth. The loss function of DRAN can
be written as follows:

L = 1

2N

N∑

i=1

∥∥ŷi − yi
∥∥2 (1)

where ŷi and yi are the face image generated by DRAN and the ground truth, respec-
tively. N denotes the size of the batch, and the architecture of DRAN is shown in
Fig. 1.

2.1 Parallel Residual Block

Residual network (ResNet) proposed by He et al. successfully solves the problem that
deeper networks aremore difficult to train [2]. Inspired by ResNet, we design the parallel
residual block (PRB), and we applied the batch normalization (BN) to the PRB which
can make the network converge quickly [7]. The architecture of the PRB is shown
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Fig. 2. The framework of parallel residual block which contains two branches.

in Fig. 2. We have changed the common residual learning, because we add a series
of convolutional output to the input at the element-wise level which can treat the input
information equally butmake theuseless information retained again. InPRB,wemultiply
a series of convolutional output and the input at the element-wise level, and the distinctive
information is given higherweights.We can see fromFig. 3 that the element-wise product
makes the contour of face, facial features andhair getmore attention, and they have higher
weights.

The PRB has two branches, and each branch consists of three convolutional layers,
and each convolutional (Conv) layer follows BN. We select rectified linear unit (ReLU)
as the activation function which is added after the Conv-BN pairs except for the last
one [16]. We assume that the input of the PRB is X = [x1, · · · , xc, · · · , xC ] which is
equivalent to the feature maps with the size of H ×W ×C. The process of the PRB can
be written as follows:

PRB1
c = Conv(δ(Conv(δ(Conv(xc))))) (2)

PRB2
c = Conv(δ(Conv(δ(Conv(xc))))) (3)

PRBc = δ(Conv(δ(PRB1
c · xc) ⊕ δ(PRB2

c + xc))) (4)

where δ(·) is the ReLU function,PRB1
c andPRB

2
c are the outputs of the last Conv-BN

pairs in the two branches, respectively. Then we compute the product of PRB1
c and xc,

and the sum of PRB2
c and xc at the element-wise level, respectively. Finally, δ(PRB1

c ·xc)
is directly concatenated with δ(PRB2

c + xc), and passes through the convolutional layer
to get PRBc, which is the output of PRB on the c-th channel.

2.2 Channel Attention

Previousmethods based onCNNalways treat the channel-wise ofmosaic images equally,
but this is not the case. Zhang et al. proposed a channel attention (CA) mechanismwhich
can make the network focus on more informative information [6]. CA is widely applied
to image dehazing [8] and other feature extraction works, and the architecture of CA
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Fig. 3. Visual results of the featuremaps from two branches of PRB and the correspondingweight
maps.

proposed in this paper is shown in Fig. 4. The global average pooling (GAP) and global
max pooling (GMP) can capture the global average common and the most characteristic
information [25], respectively. They are used to take the channel-wise global spatial
information into a channel descriptor at first [6], the size of input X (defined in 2.1.) is
shrunk from H × W × C to 1 × 1 × C via the GAP and GMP:

Ac = HGAP(xc) = 1

H × W

H∑

i=1

W∑

j=1

xc(i, j) (5)

Mc = HGMP(xc) = max(xc) (6)

whereHGAP(·) andHGMP(·) denote theGAP andGMP function, respectively. xc(i, j)
is the value at the position of (i, j) in the c-th feature map, Ac and Mc are the shrinking
results of the c-th channel-wise feature map xc.

Zhang et al. introduce a gating mechanism which sigmoid function is utilized due
to the two criteria it meets: First, it can be able to learn nonlinear interactions between
channels. Second, it can be able to learn a non-mutually-exclusive relationship [17].

A′
c = σ(Conv(δ(Conv(Ac)))) (7)

M ′
c = σ(Conv(δ(Conv(Mc)))) (8)

where σ(·) and δ(·) are the sigmoid function and ReLU function [16], respectively.
We element-wise sum A′

c and M ′
c to get CA′

c, and finally, we multiply CA′
c by xc at an

element-wise mode to get CAc:

CAc = CA′
c · xc (9)

then CA = [CA1, . . . ,CAc, · · · ,CAC ] can be obtained.

2.3 Pixel Attention

Pixel attention makes the network pay more attention to more important features in
the pixel dimension, and it first appeared in the related work of image dehazing. Qin
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Fig. 4. The architecture of channel attention used in our paper.

et al. proposed a feature fusion attention network for single image dehazing which they
applied channel attention to their work and proposed a pixel attention (PA) module.
However, different sizes of convolutional kernels have different mapping regions in the
input image, namely receptive field. At the pixel level, we use three convolutional kernels
of different sizes to enrich the features captured by the network which is different from
the conventional PA, and the architecture is shown in Fig. 5.

Fig. 5. The architecture of pixel attention proposed in this paper.

First, we assume that the input of PA isH×W ×C, and we use convolutional kernels
of 3× 3, 5× 5 and 7× 7 to compress the channel dimension from C to

⌊
C

/
8
⌋
and then

to 1. After that, we concatenated three different feature maps in channel dimension to
get the feature maps of H × W × 3 which needs to be compressed into H × W × 1.
Finally, the information of the feature maps is activated by sigmoid function, and we
multiply the activated values with the input at an element-wise mode.

3 Experimental Results

3.1 Experimental Settings

Tang et al. proposed a large-scale CelebFaces attributes (CelebA) dataset which contains
more than 200k celebrity images, and there are 40 attribute annotations for each. The
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size of each image in CelebA is 178 × 218, and all images cover large pose variations
and background clutter [15, 20]. In the experiment, we select the first 18000 images for
training, and the following 100 images for evaluation which is similar to the previous
work [4]. For each face image, we add a certain level of mosaic to it, and we use α to
express it. The meaning of α is shown in Fig. 6, and we set α = 5, 10 and 15 in the
experiment to compare the performance of DRAN in different mosaic levels.

Fig. 6. The α proposed in this paper to express a level of mosaic. Each square with a side length
of α contains α2 pixels, and each pixel has the same value (In the experiment, we set α = 5, 10
and 15, respectively.).

In the encoder, each Conv-BN-ReLU pair follows PRB, and the size of c filters is
3 × 3 which C = {3, 32, 64, 128, 256, 512, 1024} and c = {x|x ∈ C }, and the feature
maps are down-sampled by max pooling and average pooling which the size of the filter
and the size of the stride are both 2. We element-wise sum the output of max pooling
and the output of average pooling, and the result is the input of PRB. In PRB, the size
of c filters in Conv layers is 3× 3, and the value of padding is 1 to ensure that the output
size of the feature maps is the same as the input size of the feature maps. The output of
PRB is the input of CA, we assume the input size of CA is H × W × c, the size of the
feature maps after GAP and GMP becomes 1× 1× c, the size of the feature maps after
the first Conv layers changes from 1×1× c to 1×1×⌊

c
/
8
⌋
, and the size of the feature

maps after the second Conv layers changes from 1 × 1 × ⌊
c
/
8
⌋
to 1 × 1 × c. The size

of all filters in CA is 1 × 1, and the padding is not needed.
The bilinear interpolation is used for upsampling, and the result of each upsampling

is concatenated with the output of corresponding CA, and then sent to the Conv layers.
The parameter settings in the decoder are the same as the encoder, and the last feature
maps with 3 channels should be element-wise summed by the input mosaic image. The
whole network is trained for 150, and we trained the dataset in batches, and the size of
each batch is 20. We use Adam [18] optimizer which the initial learning rate is 1×10−4,
β1 and β2 take the default values of 0.9 and 0.999, respectively. While the decay strategy
of learning rate has a crucial impact on training. In previousworks,most researchers used
linear and exponential decay strategies, at the same time, other effective decay strategies
are constantly being studied. Loshchilov et al. [9] proposed a learning rate decay strategy
based on cosine annealing which the learning rate changes from the initial value to 0 by
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following the cosine function. We assume the total number of batches is T, the initial
learning rate is η, then the learning rate ηt at batch t is computed as:

ηt = 1

2
(1 + cos(

tπ

T
))η (10)

All the experiments are carried out in the PyTorch [22] environment running on a PC
with Intel Core i5-9400F CPU 2.90 GHz and a Nvidia GeForce GTX 1070Ti 8G GPU.

Fig. 7. Visual results of different face mosaic removal methods. The first row is the case of α = 5,
the second row is α = 10, and the last raw is α = 15.

Fig. 8. Eye details of different mosaic removal methods. The first row is the case of α = 5, the
second row is α = 10, and the last row is α = 15.

3.2 Quantitative and Qualitative Evaluation

In this paper, we use PSNR and SSIM as the evaluation metrics to evaluate our DRAN
and other state-of-the-art methods. Based on the same test face images, we compare
DRAN with VDSR, FSRNet and PULSE with mosaic level 5, 10, and 15. Some visual
results are shown in Fig. 7. Among the three methods in Fig.7, DRAN is obviously
the best in terms of the quality of the demosaicking images. It seems that there is not
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much difference betweenVDSR andmosaic images, andVDSR ismuch inferior to other
methods for face mosaic removal. However, the results of FSRNet are somewhat bizarre,
especially the facial features and facial contour are very uncoordinated and unreal. As for
PULSE, the face mosaic images need to be aligned in advance through the pre-trained
face key points predictor, but the predictor may fail for some mosaic images [19]. For
example, in our 100 test face images, there are 24 face images are not detected by the
predictor for any facial key points when α = 5, so PULSE can only achieve the mosaic
removal of the remaining 76 face images. While when α = 10 and 15, the predictor
fails for all 100 mosaic images, and this may be a drawback of PULSE. From Fig. 8, we
can see that DRAN is the best in detail processing of the face compared with the other
two methods, and no other noise is introduced. We synthesize the average PSNR and
SSIM of VDSR, FSRNet and DRAN on the test set with different mosaic levels, and
show them in Table 1. It is obviously that our DRAN is the best in both PSNR and SSIM
in Table 1. Especially SSIM, DRAN is far superior to other methods and the SSIM of
DRAN keeps above 0.7000 at three different mosaic levels.

Table 1. Average PSNR (dB)/SSIM results of different methods for face mosaic removal with
mosaic level (α) 5, 10 and 15.

Mosaic level VDSR FSRNet DRAN

PSNR/SSIM PSNR/SSIM PSNR/SSIM

5 19.49/0.5565 17.81/0.5495 20.67/0.8509

10 16.68/0.4794 15.93/0.4255 16.77/0.7585

15 14.59/0.4554 14.42/0.3437 15.07/0.7101

4 Conclusion

The proposed DRAN is different from the previous image demosaicking methods, and
we have made a lot of improvements to the previous methods, for example, we discard
the generative adversarial network which is easy to produce blurry images, and no facial
priors are needed. For the latest method PULSE, it depends on the face key points
predictor, and we prove that the predictor will fail for some or even all face mosaic
images, but DRAN can achieve the face mosaic removal for all images with different
mosaic levels. In terms of the quality of the demosaicking images, DRAN is acceptable
and satisfactory, but we still need to focus on how to maximize the detailed texture of
the face images, including hair, facial features, beard, earrings and so on.
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Abstract. Measuring the material reflectance of surfaces is a key tech-
nology in inverse rendering, which can be used in object appearance
reconstruction. In this paper we propose a novel deep learning-based
method to extract material information represented by a physically-
based bidirectional reflectance distribution function from an RGB image
of an object. Firstly, we design new deep convolutional neural network
architectures to regress material parameters by self-supervised train-
ing based on a differentiable image-based renderer. Then we generate
a synthetic dataset to train the model as the initialization of the self-
supervised system. To transfer the domain from the synthetic data to
the real image, we introduce a test-time training strategy to finetune the
pretrained model to improve the performance. The proposed architecture
only requires one image as input and the experiments are conducted to
evaluate the proposed method on both the synthetic data and real data.
The results show that our trained model presents dramatic improvement
and verifies the effectiveness of the proposed methods.

Keywords: Material prediction · Inverse rendering · Deep learning

1 Introduction

Acquiring the material reflectance of an object is very important for such appli-
cations as mixed reality, robotics, and artistic creation. The reflectance of surface
material requires complicated optical devices to conduct dense measurements of
the target object [1]. However, such devices can usually only be used for a cer-
tain class of objects and the measurements need an extremely strict experiment
environment, which is a costly effort and merely used in a few scenes.

A more general and efficient method with the name of inverse rendering is to
infer the material from the objects’ images [2]. However, this is a highly ill-posed
problem as quite a few combinations among the ambient light, geometry, and
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material may lead to the same observed image. How to address the ambiguities is
the key to acquire these properties from images. Benefiting from the development
of deep learning, many methods have been proposed to estimate the material
reflectance using a single image. However, training such deep models requires
large amounts of labeled data that are extremely difficult to acquire in practice.
Most of the existing methods usually adopt computer-generated data to train the
model instead of the real captured one, but the models trained by the synthetic
data suffer from the domain gap between the different datasets, which presents
poor performance over the captured dataset.

To tackle the problem of the absence of real labeled data, this paper extracts
material information from an object’s image using deep convolutional neural net-
works (CNN) by self-supervised learning, which is initialized with the pretrained
model trained by the synthetic data. The self-supervised architecture based on
a differentiable image-based renderer is designed and the synthetic dataset used
for initializing the CNN is generated. To overcome the domain gap with good
performance, a test-time training strategy is also introduced to our designed
architecture.

In summary, we make the following two main contributions:

– We design two self-supervised material capturing architectures with a phys-
ically based differentiable renderer, which can be implemented with variable
CNN. The performance of the designed models is evaluated with the synthetic
data and the real one.

– We propose an approach of initializing the self-supervised model to solve
the ambiguity introduced by the random initialization. Combining with the
test-time training strategy, the performance of the model over real data is
improved by a domain adaption procedure.

2 Related Work

Inverse rendering is a fundamental problem in computer vision and graphics,
which is a highly ill-posed problem due to the mixture of material, geometry,
and ambient light. Among these properties, the material is more complicated to
represent and describe. According to the interaction process of light and matter,
the appearance of objects with isotropic and opaque surfaces is usually described
by bidirectional reflection distribution function (BRDF), which physically repre-
sents the ratio of the reflected energy from a point on the surface to the incident
energy. Some existing methods adopt the automatic optical equipment to con-
duct dense measurements of BRDF with an object. Marschner et al. construct a
hand-held camera measurement system mainly equipped with the CCD sensor,
RGB color filter array, and industrial electronic flash to measure simple geomet-
ric objects such as sphere and cylinder [3]. The gonioreflectometer is also used
for measuring BRDF, which is composed of the light source, material sample
rack, turntable, and detector [4,5]. Catadioptric systems adopting reflected light
and refracted light to eliminate aberration and spherical or hemispherical gantry
structures are also suitable for dense BRDF measurement [6–8]. The method of



Pretrained Self-supervised Material Reflectance Estimation 79

using such acquisition equipment for measurement needs a strict experimental
environment and the efficiency is low, thus it is only suitable for a few objects
with simple material and shape, and the practical application scene is very lim-
ited.

Image-based BRDF estimation methods utilize one or few images to obtain
the reflectance, but it suffers from the shortcomings of ambiguities. Some existing
methods solve this challenging problem by constructing a set of priors over the
constituted properties or assuming one of the object’s geometry and the lighting
condition being known, and then iteratively optimize a hand-crafted mathemat-
ical model to find the solutions [9–11]. Compared with the above-mentioned
methods, recently CNN makes great progress in this task. A deep lambertian
model is proposed by Tang et al. to predict diffuse material, point light direction,
and orientation map from a single image with Gaussian Restricted Boltzmann
Machines [12]. Georgoulis et al. predict the normal maps and reflectance maps
from a single image with the designed CNN [13]. Liu et al. design three separate
CNNs to predict the material parameters, normal maps as well as environment
maps from a single image, which is followed by a differentiable rendering layer
[14]. However, these methods use synthetic data to train their CNN, which makes
the model suffers from a domain gap leading to a low performance over real data.

3 Self-supervised Architectures

Training the CNN model requires a lot of annotation data to obtain material
reflection properties, but in practice, measuring the reflectance of object surface
material is extremely complex and tedious, and even impossible in some cases.

To solve such a problem, this paper uses an embedded image-based renderer
to construct two self-supervised architectures to obtain the reflectance of surface
material from an object’s 2D image without real labeled data. Some existing
works verify that the differentiable renderer can be embedded in the CNN to
construct the perceptual reconstruction loss between the input and the output,
which works as an additional constraint to generate better results in the view of
perception for inverse rendering [15,16].

Assuming that the surface of an object is composed of a single material and
the reflectance of the material is represented by a parametric BRDF, obtaining
the reflection properties from the image can be regarded as mapping the 2D
image of the object to the BRDF parameters. Specifically, the designed self-
supervised architectures for material reflectance obtaining are composed of an
encoder and an image-based renderer as shown in Fig. 1. The encoder maps the
input image to a vector that represents the material and the renderer takes
the vector as input to render an input-like image given the ambient light and
geometry information.

The first self-supervised architecture is composed of a single encoder and an
image-based renderer. The encoder outputs the material parameters and the
renderer renders an image as shown in Fig. 1(a). The second self-supervised
architecture is the combination of the Siamese network and two renderers. In
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this architecture, the input is a pair of images and the Siamese encoder maps
the two inputs to two vectors. The rendering is implemented by the dual renderer
which outputs two rendered images. The Siamese network is composed of two
CNN with the same structure and has the same weights through the weights
sharing mechanism. It was originally used to measure the similarity degree of
the two inputs [17].

Fig. 1. Diagram of two self-supervised architecture

4 Image-Based Differentiable Renderer

In the self-supervised training architecture, the core of the system is the image-
based renderer which can be embedded into CNN to generate images. In this
paper, the physical image formation procedure is adopted to construct the ren-
derer [18], which can be formulated as the rendering equation:

Lo(x, �ωo) = Le(x, �ωo) + Lr(x, �ωo)

= Le(x, �ωo) +
∫

Ω+
f(x, �ωi, �ωo)Li(x, �ωi)(�ωi · �nx)d�ωi

(1)

where Lo expresses the radiance leaving the point x with normal �nx in direction
�ωo as the emitted Le and reflected radiance Lr, which is a function of incoming
light Li over the hemisphere from direction �ωi. f represents the BRDF which
describes the material in this paper. For objects that do not emit light them-
selves, all the emitted light is reflected, namely Le(x, �ωo) = 0.
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4.1 Normal Representation

We adopt the normal map to store the normal information of the object. Specif-
ically, the normal map is a H × W × 3 map of which each channel stores the
x, y, and z coordinate respectively of the point on the object for an image of
H × W × 3.

4.2 Ambient Light Representation

The panoramic high dynamic range (HDR) environment map is used to represent
the fixed incident light [19]. The environment map is based on the assumption
that the light source is infinite and there is no light emitted or reflected from the
object into the environment, and usually does not consider the internal reflection
of the object.

As shown in Fig. 2 the spherical panorama can be flattened into a 2D image.
Each pixel in the image can be mapped to the spherical coordinate and the
corresponding incident direction can be calculated. Each pixel value represents
the light intensity in the incident direction, and the Z-axis of the coordinate in
the image points to the screen direction.

Fig. 2. Panaramic environment map

Assuming that H and W represent the height and width of the environment
map respectively, for the pixel i in the environment map, h and w represent the
index of the pixel, and its coordinates in the spherical coordinate are:

⎧⎪⎨
⎪⎩

θi =
h

H
π

φi =
w

W
2π

(2)

In addition, the weight dwi of the pixel i can be computed as the ratio of
latitude perimeter to equatorial perimeter:

dwi =
2πR sin θi

2πR
= sin θi (3)
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4.3 Material Representation

In this paper, we focus on opaque objects without considering transmitted and
scattered light, so the material is represented by the reflectance that can be
fully formulated as BRDF that describes how the incident light is reflected off
the surface. It can be defined as:

f(x, �ωi, �ωo) =
dL(x, �ωo)
dE(x, �ωi)

(4)

which is the ratio of the radiance dL leaving the surface at point x in direction
�ωo and irradiance dE arriving at x from direction �ωi.

For all kinds of opaque materials in the real world, this paper uses the direc-
tional statistics bidirectional reflection distribution function (DSBRDF) model
to describe the reflectance, which has a small set of parameters and an analytic
expression to model a wide range of real-world isotropic BRDF accurately [20].
Compared with non-parametric models adopting a lookup table to store the
reflectance information and the existing micro-facets-based models, DSBRDF
achieves higher accuracy without the linear combination of different paramet-
ric models and can be differentiated to support the back-propagation in deep
learning. Specifically, the DSBRDF model is composed of a set of hemispherical
exponential power distributions known as lobes that enable encoding a variety
of the BRDFs. In a typical setting, the number of the lobes is 3 and there are
108 coefficients in total in such a model.

Based on the above-mentioned elements representation, DSBRDF based on
renderer can be formulated as:

Ic
p(�Lc, �np, �ml,c

κ , �ml,c
γ ) =

N∑
i=1

(
3∑

l=0

(eκl(θd;�ml,c
κ )(�h·�np)γc

l (θd;�m
l,c
γ ) −1))Lc

i (�ωi ·�np)dwi (5)

where Ic
p is the pixel value of the point p on the object, c = 0, 1, 2 represents the

RGB channel, �np is the normal of point p, �ml,c
κ and �ml,c

γ are the parameters of
DSBRDF, and �L is the vector form of the environment map.

The back-propagation can be implemented by computing the derivatives of
the rendering equation.

5 Synthetic Dataset

CNNs require a lot of labeled data to train and the collecting of real mate-
rial data is often very complicated. To solve the problem of insufficient training
data, computer-generated data is usually used for training CNN, because they
can be labeled according to the requirement of the task. In this paper, we gen-
erate a synthetic dataset for evaluating the performance of our self-supervised
architectures and verifying the improvement by our pretrained initialization.

The dataset is generated with the DSBRDF based rendering equation (Eq. 5).
Rendering an image requires normal maps, material parameters, and environ-
ment maps. In this paper, we use the public normal dataset and divide it into
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(a) Single (b) Siamese

Fig. 3. The example of our synthetic dataset

training data and test data according to the defined classification [13]. The res-
olution of the normal image in the dataset is 256 × 256 × 3. Besides, the normal
map is normalized to [−1, 1]. In order to simulate the illumination of the real
environment, 100 real outdoor environment maps are downloaded from the Inter-
net. We define a split to classify the environment maps into 80 training samples
and 20 testing samples according to their scenes. Moreover, random rotation
is adopted to augment the lighting data. To balance the rendering quality and
efficiency, the resolution is scaled from 512 × 1024 × 3 to 64 × 128 × 3. For the
material, we use the DSBRDF parameters which are obtained by fitting to the
MERL dataset [1].

A total of 50,440 training images and 9,930 testing images is generated and
no materials, normal maps, and environment maps are shared between them. In
addition, for the self-supervised networks, we generate the special data according
to the desired input. The visualized examples from our synthetic dataset are
shown in Fig. 3.

Besides, verifying the self-supervised framework on the generated dataset, we
also use the real captured image to evaluate our methods [13]. An inverse tone
mapping method based on deep learning is also used to preprocess the images
in the dataset and transform them into HDR images [21] (Fig. 4).

(a) Captured (b) HDR

Fig. 4. Captured image and its HDR version
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6 Loss Functions

The self-supervised training is supervised by the Euclidean distance between the
rendered image and the input image. The rendered image can be generated by
the rendering equation with the HDR environment map, therefore the value of
each pixel in the rendered image represents the intensity of the reflected light
by the material, which is also HDR images. However, the numerical range and
physical meaning of pixels in the low dynamic range (LDR) input image are
completely different from that in HDR rendering image, and there is a nonlinear
process of dynamic range mapping between them. Taking the difference into
consideration, two loss functions are defined. The first one is based on HDR
input:

LHDR
rec = ‖ln(1 + Irendering) − ln(1 + Iinput)‖2 (6)

where Irendering and Iinput represent the rendered image and input image respec-
tively. We also map the dynamic range in the logarithmic domain to avoid the
error introduced by the excessively high dynamic range.

The second is the HDR mapping loss function for LDR input image, which
linearly scale the HDR rendered image for different color channels so that the
pixel value is consistent with the value range of the LDR image in the range of
[0, 255]:

LLDR
rec = ‖λIrendering − Iinput‖2 (7)

where λ is the channel-wise normalization factor. It is defined as:

λk =
255 ∗ Ik

rendering

max Ik
rendering

(8)

where k = 0, 1, 2 is RGB channels.
When training the single encoder architecture, Eq. (6) or Eq. (7) is used as

the loss function. When training the Siamese encoder architecture, the Siamese
encoder maps two input images into two material parameter vectors, which can
be used to render two images. When the two input images are rendered sepa-
rately, the trend of optimization is inconsistent, which will stop the convergence
of CNN. Consequently, one of the input images is used as the benchmark, and
two material parameters are used to render such an input image with the same
normal and HDR environment map. In addition to the loss function of image
reconstruction, the two predicted material parameters of the Siamese network
�m

′
1 and �m

′
2 can be used to construct the loss of view and illumination invariance:

LSiamese
material =

∥∥∥�m
′
1 − �m

′
2

∥∥∥
2

(9)

Finally, the joint loss function is used to train the Siamese encoder architec-
ture, and the HDR joint loss function is:

LSiamese = σ1LSiamese
material + σ2LHDR

rec (�m
′
1) + σ3LHDR

rec (�m
′
2) (10)
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The LDR joint loss function is:

LSiamese = σ1LSiamese
material + σ2LLDR

rec (�m
′
1) + σ3LLDR

rec (�m
′
2) (11)

where Lrec(�m
′
1) and Lrec(�m

′
2) represent the image reconstruction loss function

with the material parameters �m
′
1 and �m

′
2 as well as the same normal and envi-

ronment map, which are defined as Eq. (6) and Eq. (7).

7 Experiments

The experiments are conducted in Caffe framework [22], using adadelta solver on
GTX2080Ti graphics card. The initial learning rate is set to 0.1 and decreases
with the increase of iterations. All networks are initialized randomly.

In order to eliminate the influence of network depth, the encoder part of
the two architectures refers to the network of Liu’s work [14]. However, the
implementation of the self-supervised architecture is not unique and the other
network can also be suitable for the architecture.

Existing research results show that a self-supervised task can achieve perfor-
mance improvement through test time training strategy [23,24]. In order to make
the above-mentioned self-supervised architectures achieve better performance,
the single target test time training strategy is introduced in the experiment.

For the synthetic dataset, the quantitative results are given by the mean
square error (MSE) between predicted parameters and the groundtruth as well
as MSE and the Structural Similarity(SSIM) [25] between rendered images with
the predicted material and the input. In addition, the encoder in the first self-
supervised architecture is trained separately in a supervised way to show the
difference between self-supervised learning and supervised learning. The loss
function of the encoder is the Euclidean distance between the predicted material
parameter vector and the groundtruth.

Since the real captured image does not have the groundtruth of the mate-
rial, we only show the quantitative results through MSE and SSIM between the
rendered image and input image. The normal map and HDR environment maps
required by the rendering are obtained by the U-Net that is trained with our
synthetic dataset [26].

Table 1 shows the results of supervised and two self-supervised architectures
over the synthetic dataset. It can be seen from the result in Table 1 that the accu-
racy of the self-supervised framework is lower than that of supervised learning.
In self-supervised learning, the result of the LDR input image is worse than that
of the HDR input image, which indicates that it is more difficult to obtain mate-
rial information from LDR image only depending on image reconstruction loss.
The mapping between dynamic ranges is mixed in the training, thus increasing
the complexity of the task. The self-supervised learning takes the HDR rendered
image as the output, which is more sensitive to the dynamic range of the input
image. The HDR input image is more helpful to convergence and optimization.
In contrast, supervised learning is not sensitive to dynamic range. Besides, the
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Table 1. The results of the proposed self-supervised architectures on the synthetic
dataset

Material Rendered image

MSE SSIM MSE

HDR LDR HDR LDR HDR LDR

Supervised 4.2359 6.5146 0.9703 0.9718 169.2571 148.5959

Single encoder
self-supervised

13.5179 19.6680 0.8835 0.8243 2153.8299 2606.65

Siamese encoder
self-supervised

12.8039 17.5599 0.8827 0.8364 2204.4459 3237.17

Siamese architecture cannot provide obvious advantages but has a more compli-
cated network than the single encoder architecture.

The qualitative results of the three architectures on the synthetic dataset and
real dataset under different dynamic range input are shown in Fig. 5, from left to
right are (a) input image, (b) supervised learning with HDR input (SE. H), (c)
supervised learning with LDR input (SE. L), (d) single encoder self-supervised
architecture with HDR input (SES. H), (e) single encoder self-supervised archi-
tecture with LDR input (SES. L), (f) Siamese encoder self-supervised architec-
ture with HDR input (SiES.H) and (g) Siamese encoder self-supervised archi-
tecture with LDR input (SiES.L). It can also be seen from the result that the
rendering result is quite different from the input image. Although the loss func-
tion converges during the training, the obtained material is not consistent with
the image. The possible reason is that the random initialization at the beginning
of training leads to the uncertainty of the subsequent optimization, which means
that the randomly initialized CNN may not be able to find the corresponding
material parameters only with the image reconstruction loss.

Table 2 shows the quantitative results on the real dataset. For supervised
architecture, real images are tested directly on a trained model with our synthetic
data. It can be seen from Table 2 that the result of HDR input is better than
that of LDR input, which verifies that CNN combined with embedded image-
based renderer is more sensitive to dynamic range, and HDR input is more
helpful to the optimization. Besides, it can be found from the results of the
real image in Fig. 5 that the error of supervised learning is larger than that of
self-supervised architecture in the case of HDR input. The reason is that the
distribution of the real image dataset and the synthetic dataset is different,
resulting in the data domain mismatch on the supervised model. Since the self-
supervised architectures are not trained through the synthetic datasets, they can
learn the real data distribution.

It can be seen from the experimental results that the result of supervised
learning is better than that of single target self-supervised learning, but the
result of single target self-supervised learning is better when it is used for real
images. It can be inferred that the combination of the above two processes can
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(a) Input (b) SE.H (c) SE.L (d) SES.H (e) SES.L (f) SiES.H (g) SiES.L

Fig. 5. The comparison between different architectures on synthetic and real dataset

Table 2. The results of the proposed self-supervised architectures on the real dataset

Rendered image

SSIM MSE

HDR LDR HDR LDR

Supervised 0.8741 0.8674 555.2043 625.4508

Single encoder self-supervised 0.8928 0.8730 368.1826 1412.0228

Siamese encoder self-supervised 0.8847 0.8689 484.2412 1834.7536

obtain the reflectance of materials more accurately in the real image. Firstly,
the correct optimization direction is determined through the supervised learning
of synthetic data, which avoids the uncertainty caused by random initialization,
and then the data domain is transferred to the real image based on the single
target self-supervised learning.

Based on such assumption, we firstly use the supervised training model with
HDR input to initialize the single encoder self-supervised architecture and then
perform the single target test-time training strategy. The results can be found in
Table 3 and Fig. 6. The qualitative results of the supervised and pretrained self-
supervised model on the real dataset are shown in Fig. 6, from left to right are
(a) input image, (b) supervised learning with HDR input (SE.H), (c) pretrained
self-supervised learning with HDR input (PSES.H).

It can be seen from Table 3 and Fig. 6 that the obtained material by the final
results are better, and the material, as well as specular highlight, are consis-
tent with the original image. Compared with the random initialization, the self-
supervised architecture based on pretrained initialization can learn the results
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Table 3. The result of pretrained initialization

Rendered image

SSIM MSE

Supervised 0.8741 555.2043

Self-supervised 0.8959 344.9891

(a) Input (b) SE.H (c) PSES.H

Fig. 6. The comparison of supervised model and pretrained self-supervised model

Fig. 7. Image editing with our proposed method (Color figure online)

correctly. More results can be seen in Fig. 7 which shows the cases of editing
the material using our proposed method. The image marked with a yellow box
in the diagonal direction is the real captured image, and the rest are rendered
images.
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8 Conclusion

To solve the problem of insufficient material annotation data, an embedded image
renderer based on DSBRDF is developed and two self-supervised architectures
are proposed. Based on the experiments over the synthetic and real dataset,
uncertainty caused by random initialization in self-supervised learning and the
domain gap between the synthetic data and real data in supervised learning
are revealed. By initializing the single encoder self-supervised architecture with
the pretrained model using synthetic data, we improve the self-supervised per-
formance on real data combining the single target test-time training, which is
verified by the quantitative and qualitative results.

Currently, DSBRDF is still a hand-crafted model and its physical meaning
is not clear enough, the types of materials that can be expressed by DSBRDF
are also limited. In the future, the appearance description model based on deep
learning should be studied to optimize the ability for representing the material.
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Abstract. Embedding networks trained with a limited number of samples have
a poor capability in localizing objects. Therefore, models of few-shot learning
(FSL) are easily affected by object-irrelevant information in the background,
which will lead to low accuracy. An Object-Aware Attention (OAA) mechanism
is proposed to improve the generalization ability of models. In OAA module,
object-relevant area is obtained by a fully convolutional network to guide the net-
work in extracting object-relevant features. Besides, a general few-shot learning
framework with OAA as a plug-and-play module is proposed, in which original
images and object-aware images are fused to get the rectified prototypes. Under
the general framework, the performance of most existing few-shot learning meth-
ods can be improved effectively. Comprehensive experiments show that the OAA
can improve the accuracy of four mainstream baselines significantly. On bench-
mark mini-ImageNet, the method achieves a state-of-the-art performance on the
5-way-1-shot task and 5-way-5-shot task.

Keywords: Few-shot learning · Object-aware attention · Object-relevant
features · Rectified prototypes

1 Introduction

Deep learning has made significant progress in image recognition in recent years. How-
ever, deep neural networks haveweak scalability and poor performancewith limited data,
far inferior to human intelligence. It is ameaningful and interesting issue to learn through
a limited number of samples, which is called Few-Shot Learning (FSL). Intuitively, it
is expected that the embeddings are more relevant to the objects themselves and have
a more considerable margin in inter-class variance than in intra-class. With sufficient
training data, the performance of convolutional neural networks (CNN) is impressive
on image recognition. Studies on class activation maps [1, 2] show that even though
there is no location information of objects, the convolutional unit of each layer in CNN
can still act as an object detector. The well-trained CNN with massive data can detect
the bounding boxes of objects in the conventional image recognition task, while it is
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difficult for an FSL model to obtain the location information of objects. In other words,
due to the lack of data, the feature embeddings in few-shot learning models cannot be
well concentrated on essential regions of objects, which will compromise the robustness
of models.

For a one-shot learning task, there is only one support sample of each category
available for training. Hence, the most discriminative dimensions in embeddings have a
significant impact on the final classification boundary. If the background regions among
different categories are similar, the object-irrelevant information will have a negative
effect on the classification of query samples in the inference phase. As shown in Fig. 1,
the query sample is a rabbit, with the same background as the dog in the support set. As
Fig. 1(a) shows, the background of the query sample q is similar to that of the support
sample s2, while its object category is the same as the support sample s3. In this case,
the background is not related to the object, and the background can be regarded as
object-irrelevant information. In the distance metric stage, object-irrelevant information
introduced by backgrounds will cause interference to classification. As Fig. 1(b) shows,
Object-Aware Attention (OAA) module replaces all samples with the same background,
which helps the model focus on the inherent differences among these categories.

Transductive inferring mechanism [3–6] is proposed to obtain category prototypes
with more category-relevant information. However, the prototypes produced by these
transductive settings are dynamic, and the quality of prototypes depends on the query
samples in the task. Therefore, an attention mechanism is established for few-shot learn-
ing to reduce the influence of irrelevant information and enhance the intrinsic object
features. Some existing methods [7, 8] introduce the key-query attention mechanism
into the few-shot learning framework to calculate the value matrix in order to weigh the
different dimensions of feature vectors. Inspired by attention module design [9–11] in
the fine-grained task, an OAA module is proposed in this paper to guide the embed-
ding network in order to extract the features of the object-relevant regions and reduce
background interference.

In order to obtain the localization of the object region, the saliency object detection
algorithm is used in the OAAmodule to generate object-aware images. First, the original
image is fed into a fully convolutional network (FCN). The encoders and down-sampling
modules extract the high-level semantic features, and then the decoders and up-sampling
modules generate saliency maps with different resolutions. Thus, the saliency maps in
different resolutions are fused to obtain the final prediction, thereby obtaining object-
aware images. After the object-aware image generation, two weight-shared networks
are utilized to get original features and object-aware features, and then features from
two branches are fused to get rectified prototypes. Since object-irrelevant features are
weakened in object-aware images, the rectified prototypes will be closer to the essence
of categories, reducing the interference information on the classification.

To compare the effect of background interference explicitly, a novel datasetAnimals5
is established to evaluate the robustness of existing methods, which consists of five kinds
of animals with similar backgrounds. Main contributions of the paper are as following:

1. A novel Object-Aware Attention (OAA) module, which is efficient and plug-and-
play, is proposed to reduce the influence of irrelevant information and enhance the
object-relevant features.
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Fig. 1. The interference of object-irrelevant features. The combination of colors and shapes is used
to simplify an image, representing background and object, respectively. At stage a, the background
of q is similar to that of s2, and the object of q is similar with that of s3. This brings interference to
classification. At stage b, backgrounds of all the samples are replaced with the same background
with Object-Aware Attention module, which helps the model easily find the differences among
categories.

2. A novel dataset Animals5 with similar backgrounds is established for the first time,
aiming to evaluate the models under the interference of background.

3. A two-branch general few-shot learning framework with the Object-Aware Atten-
tion module is constructed to efficiently compromise the robustness of irrelevant
background interference and improve the performance of most existing methods.

4. We conduct comprehensive experiments on mini-ImageNet and Animals5 and
achieve a significant improvement over the state-of-the-art approaches. The model
with OAA method has achieved higher state-of-the-art performance on 1-shot and
5-shot tasks on standard mini-ImageNet dataset.

2 Related Work

2.1 Few-Shot Learning

Existing few-shot learningmethods can be categorized into two branches:meta-learning-
based approaches and metric-learning based approaches.

On the one hand, meta-learning-based methods focus on updating parameters for a
particular task. It aims to train a meta-learner on multiple few-shot tasks to expand the
generalization ability on new tasks. In themeta-testing phase, themeta-learnermodel can
be applied to new tasks with a few support samples. Typical methods MAML [12] aims
to learn good initial parameters to guide models to adapt to new tasks in a few iterations.
Reptile [13] is an improved version of MAML, and it retains first-order gradients based
onMAML. To learn a task agnostic model, TAML [14] modifies the parameter updating
formula of MAML and proposes the entropy-based method to learn an unbiased initial
model in order to prevent over-performing in classification tasks.MAML and its variants
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[12–17] have achieved impressive performance by optimizing model parameters, which
guide the model adapt to new tasks quickly. In general, existing meta-learning methods
train the learner with multiple tasks in the same mode and fine-tune it on new tasks.
However, these methods are still prone to the interference of object-irrelevant features
mentioned in Fig. 1.

On the other hand, metric-learning based methods focus on establishing a metric
to calculate the similarity of samples. The similarity is generally defined as a distance
function, such as Cosine or Euclidean distance in the embedding space. Most of the
methods proposed in recent studies are based on metrics and can be subdivided into
three types. The first type improves the performance by calculating and optimizing
prototypes [3–6, 18–20]. Prototypical Network (PN) [18] regards the mean value of
feature embeddings of each category as its prototype and assigns the query samples to the
nearest prototype at the inference stage. The second type improves the performance with
large-scale datasets, such as ImageNet [21], as auxiliary information [22, 23]. Typical
methodMTL [22] uses a large-scale dataset to train deep neural networks and adopts the
meta-learning strategy to learn the parameters combined with fixed feature extracting
layers. The third type improves the performance by utilizing Graph Neural Network
(GNN) as a parameter update mechanism [24–27]. Classic GNN-based method EGNN
[25] establishes an edge-labeling graph neural network that calculates the intraclass
similarity and the inter-class dissimilarity by updating the edge labels.

In order to reduce the interference mentioned in Fig. 1, several methods rectify
the prototype to contain less category-irrelevant information. For example, Category
Transversal Module (CTM) proposed in [3] identifies category-relevant features based
on both intra-class commonality and inter-class uniqueness in the embedding space. The
embeddings of CTM reduce category-irrelevant embedding, thereby improving the pro-
totype generalization and classification performance. MCT [4], CSPN [5] and LST [6]
establish a transductive inferring mechanism similar to semi-supervised learning, which
iteratively predicts the query samples and rectifies the prototypes in the query phase.
Recently, transductive settings have been applied to many few-shot learning methods,
which utilize the information of query samples to improve the performance of recog-
nition. Inspired by the concept of transductive setting, the motivation of Object-Aware
Attention proposed in this paper is to select category-relevant features from the prototype
adaptively.

2.2 Saliency Object Detection

Saliency object detection aims to locate the most visually prominent object(s) in a given
scene. Early studies integrate shallow features including color, edge, and texture, to locate
salient regions. Some studies focus on predicting pixel-wise saliency maps, inspired by
the fully convolutional networks. Wang et al. [28] produce saliency prior by low-level
appearance cues and further apply it to rectify saliency prediction recurrently. Hou et al.
[29] introduce short connections into fully convolutional networks to integrate features
from different layers. R3net [30] and SRM [31] design strategies to iteratively refine
the saliency maps step-by-step, with features from deep and shallow layers. Basnet [32]
proposes a hybrid loss to use boundary information in prediction. These methods can
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achieve good performance on saliency object detection tasks, and can be used as possible
solutions to obtain object-aware images in OAA.

U2-Net [33] is a two-level nested U-structure. Units of the U-structure are fully-
convolutional network proposed in [34], which can achieve the state-of-the-art perfor-
mance on different segmentation applications with a limited number of training samples.
In few-shot recognition, the object to be recognized usually occupies a prominent posi-
tion in an image. Therefore, the saliency detection algorithm can locate the object area
to reduce the interference of object-irrelevant features mentioned in Fig. 1.

3 Method

3.1 Preliminaries

In few-shot learning, the dataset is usually divided into two parts, training set Dtrain =
{(xi, yi)|yi ∈ Ytrain} and testing set Dtest = {(xi, yi)|yi ∈ Ytest}. Ytrain and Ytest are sets
of training and testing labels, and yi is the label of sample xi, and Ytrain ∩ Ytest = φ.
In meta-learning, the episodic strategy proposed in [1] is usually adopted to train the
learner. First, Dtrain and Dtest are randomly sampled to get episode sets Ttrain = {τ i |τ i
⊂ Dtrain} and Ttest = {τ i |τ i ⊂ Dtest}, and every episode τ i contains support set S and
query set Q as Eq. (1) shows. For N-way-K-shot setting:

S =
{
xkn

}
, Q = {

xmn
}
, n = 1, . . . , N , k = 1, . . . ,K, m = K + 1, . . . ,K + M (1)

K and M are the number of samples of each category in the support set and query
set, and N is the number of categories. That means each episode τ i = (Si, Qi) has N
categories and K + M samples per category. For an episode τ , support set Si is used to
calculate the prototypes of the N categories, and to predict the category of each sample
in Qi. Then the loss is calculated in the training phase, or the accuracy is evaluated in
the test phase. Since Ytrain and Ytest are disjoint, this setting ensures that the model is
only trained on K samples of each category in the testing phase.

3.2 Framework

Ageneral few-shot learning frameworkwithObject-AwareAttentionmodule is proposed
to reduce the interference of object-irrelevant features. As shown in Fig. 2, the framework
comprises three stages: an Object-Aware Attention module to produce object-aware
images, a two-branch structure with shared weights to extract feature embeddings, and
a fusion module to combine the features of the two branches.

Stage I. For a recognition task, objects to be recognized are visually salient in images.
Based on this assumption, an Object-Aware Attention module is designed with the idea
of saliency object detection to obtain the object-aware region. A fully convolutional
network [35] FCN(·) is trained with an auxiliary dataset to evaluate the significance of
each pixel in the image. As shown in Eq. (2), saliency map is obtained by FCN(·), where
each value represents the saliency of the pixel at that position, and then the object-aware
image x* is produced according to the saliency map. σ t (·) is a characteristic function
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Fig. 2. General Few-shot Learning Framework with Object-Aware Attention Module. The
framework consists of three stages. Stage I: Object-Aware images are obtained by the OAA
module, in which object-irrelevant regions are replaced with the same pixels. Stage II: Images
are input into two encoders respectively to obtain features, and the object-irrelevant features in
object-aware features are effectively suppressed. Stage III: Original features and object-aware
features are fused to calculate the rectified prototypes of categories (for support samples) and
the rectified query features (for query samples), then the category of query features is predicted
according to support prototypes in metric module.

that output 1 if the input larger than threshold t and output 0 if the input smaller than t.
In experiments, t is set as 1.

x∗ = σt(FCN (x)) � x (2)

As shown in Fig. 2, the object-irrelevant pixels in the object-aware image are replaced
with the same zero-value pixels, ensuring that the distinctive information of categories
comes from the pixels of the object-relevant region. Specifically, the details on OAA
module are introduced in Sect. 3.3.

Stage II. For example, there are two support samples x1spt , x2spt and one query sample
xqry in Fig. 2. At Stage I, object-aware images x1*spt , x2*spt and x*qry are calculated.
Then as Eq. (3) shows, x and x* are fed into two encoders En1(·) and En2(·) respectively,
which are weight-shared.

vi = En1(xi), ui = En1
(
x∗
i

)
(3)

It can be seen in Stage II of Fig. 2 that the original features vi obtained by En1(·)
contain several dimensions, including object-relevant ones and object-irrelevant ones.
In the upper branch, the values of irrelevant dimensions are close to the values of the
relevant dimensions. As a result, the object-irrelevant information will be introduced
when calculating category prototypes, which will lead to a poor generalization ability. In
the bottom branch, it is obvious that the values of irrelevant dimensions are suppressed
while the values of relevant dimensions are enhanced. Therefore, it helps reduce the
intra-class variance and increase the inter-class distance.

Nevertheless, there are some situations where the Object-Aware Attention module
cannot perceive good object-aware regions, such as chaotic backgrounds or camouflage
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colors. Hence, a two-branch structure with a feature fusion module is utilized as a
trade-off to enhance object-relevant information.

Stage III. As Eq. (4) shows, original features and object-aware features are combined
with the fusion module F(·), in which α is a hyperparameter and set to be 0.5. Compared
with the original feature, the object-relevant dimensions after fusion are enhanced as
expected. Hence, the category prototype calculated by the fused features contains essen-
tial object-relevant features while weakening the irrelevant information. The experi-
mental results in the following section show that the rectified prototype has a better
generalization ability.

F(vi, ui) = α · vi + (1 − α) · ui (4)

Lcls = LCE(P(yi|F(vi, ui), yi)) (5)

In the metric module, Euclidean distance is used to measure the similarity between
prototype and query features. Besides, the cross-entropy loss function in Eq. (5) is used
to iteratively update the model after predicting the category in the training phase.

Fig. 3. The structure of object-aware attention module. The high-resolution original image is
encoded to a low-resolution feature map. Then the feature map is reconstructed into high-
resolution. Finally, saliency maps of different levels are combined together as the final saliency
map to obtain the object-aware image.

3.3 Object-Aware Attention Module

The OAA module utilizes the idea of saliency object detection to locate objects in the
image in order to obtain object-aware images. Inspired by [33], network inOAA is a fully
convolutional network consisting of symmetrical encoders and decoders. The network
is able to capture more contextual information from different scales with the mixture of
receptive fields, and the network can capture richer local and global information with the
nested symmetry with residual U-block. Actually, any saliency object detection method
with a good performance can be applied instead. As shown in Fig. 3, the input is fed
into the encoders and the down-sample modules, and the high-resolution original image
is encoded to a low-resolution feature map. Then the feature map is reconstructed into
high-resolution by the decoders and up-sample modules.
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The output of the encoder and that of the decoder with the same resolution are
combined to obtain the intermediate saliency map. Several saliency maps are combined
with a saliency map fusion module. In order to obtain the saliency detection result with
better resolution, the encoder and decoder are composed of symmetrical convolutional
layers. Besides, the high-resolution features are combined with the up-sampled output
to get a more accurate output. Supervision information mentioned in [33] is used to
train the network on the dataset DUTS-TR [36], which can help to get the localization
information of the objects in the image. Finally, the original image is element-wised
multiplied with the saliency map to generate the object-aware image.

4 Experiments

4.1 Datasets

• mini-ImageNet was initially proposed in [37] and consists of 100 categories, which
are randomly chosen from ILSVRC2012 [21]. The 100 categories are divided into
three parts: 64 for training, 16 for validation and 20 for testing. Each category contains
600 RGB-colored images with the size of 84 × 84.

Fig. 4. Animals5 dataset examples. The dataset includes 1204 images of 5 animal categories, with
only one object in each image. The background of images in Animals5 is grassland or white wall,
which can be used to explore the impact of similar backgrounds on algorithm performance.

• Animals5 is proposed here to evaluate the robustness of methods under similar back-
ground interference. The dataset is constructed by online images according to category
keywords. The dataset includes 1204 images of 5 animal categories, with only one
object in each image. Specifically, there are 257 images of cats, 276 images of dogs,
236 images of rabbits, 211 images of cows and 224 images of sheep. The background
of images in Animals5 dataset is grassland or white wall, which can be used to explore
the impact of similar backgrounds on algorithm performance. Examples of Animals5
dataset are demonstrated in Fig. 4.
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4.2 Baseline Models and Experiment Details

• MAML [12] learns to search for the optimal initialization to fast adapt to a new few-
shot task. A lightweight network which contains four groups of Conv-Bn-Relu units
(a unit contains a convolution layer, a batch normalization layer and a Relu layer) is
used in MAML. The initial learning rate of network is set as 0.001, and the learning
rate of the specific episode is set as 0.01. Model trains within 6 epochs and each epoch
includes10kepisodes.

• PN [18] defines the mean embedding of every class as category prototypes, and the
query samples are assigned to their nearest prototype in the test phase. The same
network is applied as used in MAML [12], and the initial learning rate is set to 0.001,
which decays by 0.5 times every 20epochs. Model trains within 200 epochs and each
epoch is consisted of 100 episodes.

• MCT [4] meta-learns the confidence for each query sample to assign optimal weights
to unlabeled queries such that they improve the transductive inference performance
of the model on unseen tasks. In order to simplify the model and better explore the
impact of OAA on the performance of the model, the dense classification loss ofMCT
[4] is removed and the method is denoted as w-MCT. A classicResNet-12 network as
mentioned in [4] is applied, and the model is trained with 50k episodes in one epoch.
The learning rate is set to 0.1 at first, and it decays to 0.006and 0.0012 at 25k-th
episode and 35k-th respectively (Fig. 5).

Fig. 5. Object-aware images of several categories in ImageNet. Thefirst line is the original images,
the second line is the saliency maps, and the third line is the object-aware images.

MAML [12] and PN [18] are two representative methods based on meta-learning
and metric-learning, respectively. Besides, MCT [4] is also a representative method
with transductive inference and achieves state-of-the-art results on several benchmark
datasets. Therefore, these three methods are chose as baselines.
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4.3 Experiment Result

Following previous work, all classification accuracy results are averaged over 600 test
tasks. The results in Table 1 compare the performance of some existing methods and 4
baselines with the OAAmodule onmini-ImageNet. Two settings are adopted to evaluate
OAA module, denoted as (·)+ and (·)++ respectively.

The first setting is to use OAA module only in support set, which helps to evaluate
the generalization ability of the prototypes extracted by the model after adding OAA.
Methods denoted as (·)+ in Table 1 are under this setting. For the two tasks, i.e., 5-way-
1-shot and 5-way-5-shot, OAA module under this setting improves the performance by
0.27/0.54, 0.11/0.22, 2.29/0.85 and 0.97/0.74 points on four baselines (MAML, PN,
w-MCT and MCT), respectively. The results show that after adding OAA to support
samples, the final accuracy rate is significantly improved, which means that the rectified
prototypes aremore object-relevant, and the generalization ability is stronger. This shows

Table 1. Classification results on mini-ImageNet under 5-way-1-shot and 5-way-5-shot setting.
Methods denoted as (·)* are the results that we reimplement. Methods denoted as (·)+ means OAA
is only implemented on support set. Methods denoted as (·)++ means OAA is implemented on
both support set and query set. w-MCT denotes MCT without dense classification loss.

Method 5-way-1-shot Acc 5-way-5-shot Acc

MatchingNet [37] 46.60 ± 0.84 55.31 ± 0.73

Reptile [13] 49.97 ± 0.32 65.99 ± 0.58

BAN [7] 53.74 ± 0.89 71.90 ± 0.76

TPN [19] 52.78 ± 0.27 66.59 ± 0.28

HPN [38] 55.17 ± 0.61 71.26 ± 0.69

FGNN [27] 64.15 ± 0.28 80.08 ± 0.35

CAN [40] 67.19 ± 0.55 80.64 ± 0.35

MAML [12] 48.70 ± 1.84 63.11 ± 0.92

MAML+(ours) 48.97 ± 1.43 63.65 ± 0.98

MAML++(ours) 49.40 ± 1.22 63.92 ± 1.01

PN* [18] 49.21 ± 0.38 68.20 ± 0.66

PN+(ours) 49.32 ± 0.40 68.42 ± 0.49

PN++(ours) 50.84 ± 0.37 71.34 ± 0.57

w-MCT* [4] 63.62 ± 0.43 74.94 ± 0.55

w-MCT+(ours) 65.91 ± 0.40 75.79 ± 0.52

w-MCT++(ours) 68.59 ± 0.26 77.00 ± 0.59

MCT [4] 76.16 ± 0.89 85.22 ± 0.42

MCT+(ours) 77.13 ± 0.41 85.96 ± 0.44

MCT++(ours) 77.16 ± 0.37 86.67 ± 0.49
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that excluding irrelevant information in the background is helpful for the final object
recognition.

The other approach is to use OAA module in both support set and query set, and
these methods are denoted as (·)++. For the two tasks, i.e., 5-way-1-shot and 5-way-5-
shot, OAAmodule under this setting improves the performance by 0.70/0.81, 1.63/3.14,
4.97/2.06 and 1.00/1.45 points on four baselines (MAML, PN, w-MCT and MCT),
respectively.

Table 2. Classification results on Animals5 under 5-way-1-shot and 5-way-5-shot setting. Meth-
ods denoted as (·)* are the results that we reimplement. Methods denoted as (·)+ means OAA is
only implemented on support set. Methods denoted as (·)++ means OAA is implemented on both
support set and query set. w-MCT denotes MCT without dense classification loss.

Method 5-way-1-shot Acc 5-way-5-shot Acc

MAML[12] 21.52 ± 1.36 25.44 ± 0.98

MAML+(ours) 28.40 ± 1.10 35.08 ± 0.84

MAML++(ours) 26.68 ± 1.02 33.70 ± 0.94

PN* [18] 36.11 ± 0.18 44.05 ± 0.28

PN+(ours) 37.03 ± 0.20 45.10 ± 0.31

PN++(ours) 36.67 ± 0.24 44.70 ± 0.35

w-MCT* [4] 33.86 ± 0.21 44.15 ± 0.39

w-MCT+(ours) 34.22 ± 0.27 45.11 ± 0.46

w-MCT++(ours) 33.66 ± 0.19 44.50 ± 0.38

MCT [4] 33.72 ± 0.25 43.36 ± 0.46

MCT+(ours) 34.60 ± 0.20 45.01 ± 0.44

MCT++(ours) 34.36 ± 0.18 44.34 ± 0.48

It can be seen that under this setting, OAA brings a higher improvement to the
baselines, which means applying OAA on both the support set and the query set can
effectively reduce the intra-category variance and help the network extract common
features within the category. It is worth emphasizing that OAAmodule is able to improve
the performance of w-MCT with relatively accuracy gain of nearly 5 points. For the
two tasks, i.e., 5-way-1-shot and 5-way-5-shot, MCT++ succeed in achieving a higher
state-of-the-art performance at 77.16% and 86.67% on mini-ImageNet dataset.

The experiment results on the Animals5 are directly obtained with the model trained
on themini-ImageNet, which is in line with the setting of meta-learning [12]. It notes that
Animals5 accuracy in Table 2 is obviously lower than mini-ImageNet accuracy, which
shows that the existing baselines are vulnerable to interference fromsimilar backgrounds.
After applying OAA, the model learns to pay attention to object-aware features, thus the
accuracy of (·)+ and (·)++ has been significantly improved. This illustrates the impor-
tance of finding object-relevant features in few-shot learning research. The rectified
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prototypes contain less category-irrelevant information, which can be applied to reduce
the interference in the background.

5 Conclusion

In this paper, an efficient and plug-and-play Object-Aware Attention module is proposed
to reduce the influence of object-irrelevant information and enhance the object-aware
features. Besides, the Animals5 dataset is established to evaluate models under similar
background interference. Experiments results show thatOAAhas the ability to reduce the
interference of irrelevant information and extract object-relevant intrinsic information.
With OAA, few-shot learning methods are able to focus on the feature of the object. The
general framework with OAA has improved the performance of most existing few-shot
learning approaches efficiently and promoted the robustness and generalization ability
of these models.
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Abstract. Optical flow information is one of the most commonly used
temporal cues in video object segmentation algorithms. However, as
it is difficult to label real-world video data with motion annotations,
video segmentation methods are often forced to use external optical flow
datasets and additional flow prediction models. In this paper, we propose
an optical flow synthesizing approach which can generate artificial object
flow from video segmentation masks, reliving the constraint of manual
motion annotations for joint learning of video segmentation and optical
flow prediction tasks. Extensive experiments and analysis are carried out
on the DAVIS video segmentation datasets and the self-constructed syn-
thetic flow database, demonstrating that the proposed synthetic flow has
a better training effect compared with external flow datasets, and that
this target-specific flow synthesizing training scheme can help video seg-
mentation networks to better distinguish the motion patterns of certain
targets in multiple-instance video segmentation scenes.

Keywords: Object flow · Target-specific flow synthesizing training ·
Joint learning and single/multiple instance video object segmentation

1 Introduction

Proposed in recent years, video object segmentation is a challenging video pro-
cessing task which requires methods to track and segment a target instance
throughout video frames pixel-wisely with very little prior knowledge. It has
attracted much research interest due to its wide range of potential applications,
e.g. autonomous driving [4,10,26], video editing [8,30] and human-machine inter-
action [1,5].

Video object segmentation tasks can be categorized into ‘unsupervised’ and
‘semi-supervised’ depending on whether an initial object mask is given in the
test video. ‘Semi-supervised’ video segmentation task can further be classified
into ‘single-instance’ and ‘multiple-instance’ settings by the number of target
objects. Note that for the ‘unsupervised’ video object segmentation task, the
c© Springer Nature Singapore Pte Ltd. 2021
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Fig. 1. Comparison of real-world and synthetic flow on the DAVIS 2016 dataset. This
figure shows the real-world optical flow data (3rd column) and the proposed synthetic
object flow (4th column). Note that the DAVIS 2016 dataset does not have motion
annotations, therefore its real-world optical flow is approximately represented by the
prediction results of [12]. We can see that the proposed synthetic flow is similar to
real-world flow data.

test video should only contain one primary instance; otherwise, methods can
not differentiate the target instance from other objects.

Numerous algorithms have been developed to tackle these tasks. As a test
video provides no more than one glimpse of the initial target appearance with
unknown object category, methods extensively exploit the available informa-
tion in space and temporal dimensions. There are the appearance-based mod-
ules [6,23,29,34,37] who segment each frame independently, recognizing target
instance only by its appearance feature; and the propagation-based modules
[15,36] who process videos frame by frame, utilizing the temporal flow connec-
tions to track instances. For example, the appearance-based module [34] mainly
relies on the extraordinary representation ability of CNN: it fine-tunes specific
networks on the initial frames, and then segments the test video frame by frame,
independent from other information; while the propagation-based module [15]
guides previous segmentation masks by optical flow to segment the next frame.
The mainstream of state-of-the-art video object segmentation methods use both
the appearance and temporal information, e.g. [13] takes in previous frames as
well as the optical flow amplitude maps and trains a network to link and group
segmentation proposals along video frames. Similar to [13], most such methods
incorporate the video temporal information in the form of optical flow, which
contains rich and dense motion context between adjacent frames, i.e. the pixel-
wise coordinate correspondence. Figure 1 provides some examples of the optical
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flow motion maps in real-world videos, illustrating that optical flow is very infor-
mative for video segmentation (pixels within one target tend to have the similar
optical flow).

However, flow estimation itself is a challenging problem. Inaccurate flow infor-
mation may harm segmentation performance instead of improving it. Moreover,
video segmentation datasets are composed of real-world videos without ground
truth optical flow labels, making it hard for methods to learn the exact motion
pattern for each video target. Therefore, most existing methods are forced to
use additional optical flow prediction models trained upon external virtual flow
datasets (like the SINTEL dataset [2], the SceneFlow datasets [22]), resulting
in a complex and redundant segmentation framework. Only a few joint learning
based methods have simpler frameworks without upfront flow estimation mod-
ules while maintaining high performance. For example, the SegFlow [7] network
is a unified, end-to-end trainable convolutional neural network for video object
segmentation which can jointly predict segmentation mask and optical flow in
videos. Figure 2 shows the network structure of SegFlow, where we can see that
it has a straightforward prediction framework which only needs video frames
as input. However, even such clean networks face the problem of lacking motion
annotations. [7] smartly deals with this problem by iteratively switching through
one dataset with segmentation annotations and another one with flow annota-
tions during training. The iterative training scheme does enable the network to
predict optical flow (Fig. 2), but its flow estimation confuses segmentation pre-
diction when the video has a dynamic background as warned itself in [7]. Another
drawback of training with an irrelevant flow database is that without a specific
target motion pattern, SegFlow can only extract the global motion feature even
in the ‘semi-supervised’ setting and cannot be applied to multiple-instance video
segmentation tasks.

As described above, there is a lack of datasets with both segmentation and
optical flow annotations. This is because that optical flow can be computed in
a simulation scene where objects and background are all in control, but is very
complicated to measure in the real-world situation. As a result, video object
segmentation algorithms which require motion information often need to include
extra data and estimation results from some vastly different virtual optical flow
datasets. To tackle this problem, we propose an object flow synthesizing method
which can produce virtual object motion in video segmentation datasets. The
proposed synthesizing step can generate target movement and its corresponding
flow ground truth from the segmentation images and annotations (examples of
the generated flow are shown in Fig. 1, column 4). We prove that our synthetic
flow data can resemble real-world object movements and provide infinite train-
ing data once given the segmentation dataset. We use SegFlow as an example
model, showing that it can be optimized favorably with only one video segmen-
tation dataset via the proposed training scheme. Besides, we also provide novel
evaluation criteria to quantitatively measure the flow quality in videos with seg-
mentation masks as reference.

The closest to our work is [17], which focuses on data synthesizing to help
train networks on video object segmentation datasets. However, the data synthe-
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Fig. 2. Framework of the SegFlow joint prediction model. The network has a dual-
branch structure (top-left corner), and is optimized iteratively between two datasets
for three rounds (example results from each round are shown on the right).

sizing process in [17] is very complicated: they generate a large amount of training
data per video by cutting out object area, inpainting background area, trans-
forming both areas and recomposing them to obtain the final result. Although
[17] proves that their network can achieve state-of-the-art performance with only
the synthetic data, with the complexity in each of their data synthesizing steps,
it needs massive time (half an hour or so) for data preparation per test video
before training networks. In addition, the ground truth of their synthetic optical
flow stays unused in the training and testing process. In this paper, we propose
to use a simple and fast way to generate object flow data and its corresponding
ground truth. We also show that with this synthetic data, we can train seg-
mentation as well as optical flow predictions using a single video segmentation
dataset, which is one step further than SegFlow [7] that requires an additional
optical flow dataset.

To demonstrate the effectiveness of the proposed network, we carry out exten-
sive experiments on both the single-instance and multiple-instance video object
segmentation tasks [24,25], as well as the self-constructed virtual flow dataset.
The contributions of this work are as follows:

– we propose an object flow synthesizing algorithm, which can generate object
movement and corresponding ground truth from the segmentation annota-
tion in a fast and simple way, producing object motion and labels for video
segmentation target(s);

– we train the joint-learning network, SegFlow, with the proposed synthetic
flow data, validating that the proposed flow synthesizing training scheme is
able to train segmentation and flow joint prediction models without manual
motion annotations;
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Fig. 3. Object flow synthesizing process. We randomly select two images from the
training set, from which one is used as a static background image, and the object in
the other one is cut out and transformed via transformation, rotation and scaling before
being embedded to the background image. The object flow ground truth is obtained
via transformation matrix defined in Sect. 2.2.

– the single dataset trained SegFlow performs better than the one trained from
multiple datasets, demonstrating the effectiveness of the proposed training
scheme.

2 Methodology

2.1 Base Model

We use the video object segmentation and optical flow joint prediction model,
SegFlow as the base model to validate the proposed data synthesizing and train-
ing scheme. The SegFlow is a dual-branch, end-to-end convolutional neural net-
work which is inspired by the effectiveness of fully-convolutional networks in
image segmentation [20] and the deep structures in image classification [11,28].
It consists of a segmentation branch and an optical flow estimation branch, whose
features in different convolution levels densely interact and fuse with each other.
The original training scheme of SegFlow is to freeze one branch and train the
other branch on a corresponding dataset (i.e. the DAVIS dataset for segmenta-
tion branch, and the SINTEL dataset for optical flow branch). After about three
rounds of iterative training, the network converges to a joint optimization point
where both segmentation and flow predictions are favorable (Fig. 2).

Instead of using another flow dataset and iteratively switching between two
different kinds of data and labels, in this paper, we optimize the SegFlow with
only the video object segmentation dataset, simultaneously training the network
with both the segmentation and the proposed synthetic flow.

2.2 Object Flow Synthesizing

As mentioned above, there is a lack of large datasets with both annotations of
segmentation mask and optical flow, making it difficult for algorithms to exploit
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Fig. 4. Examples of the synthetic flow data generated from the DAVIS segmentation
datasets with single target and multiple targets.

the combination of these two features. Besides, current optical flow methods are
mostly trained on external virtual data [2,22], where objects and surroundings
are very different from real-world videos in video object segmentation datasets
[24,25,38]. Based on this observation, we propose an object flow synthesizing
algorithm which can imitate the movement of any video object in the segmenta-
tion dataset. Our synthesizing method is simple, fast and can effectively provide
target motion patterns for video object segmentation datasets. We show that
with the synthetic flow data, the base net SegFlow can be trained with only
video segmentation datasets, which is more convenient than [7] that requires to
train its flow branch on the SINTEL flow dataset. We also demonstrate in Sect. 4
that SegFlow can obtain even better segmentation results with this synthetic flow
training scheme.

Object Flow Computation. During synthesizing, we focus on object move-
ment in videos and ignore other environmental factors. To generate more realistic
object flow on videos with segmentation labels, we first observe the optical flow
estimation in object area by state-of-the-art algorithms [12]. Figure 1 shows some
examples of the flow estimation, from which we find that most object movements
are quite simple, and resemble affine transformation, e.g. translation, rotation,
scaling. Therefore, we can manually move, rotate and resize the video objects
and calculate their corresponding flow with formula (1):

[u, v, 0] = [h,w, 1] ∗ (T − I), (1)

where [u, v] denotes the optical flow at position [h,w] in the image, and T denotes
the transformation matrix in Eq. (2). Note that T integrates the transformation
matrix To, scaling matrix Ts and rotation matrix Tr:

T = To ∗ Ts ∗ Tr, (2)
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To =

⎡
⎣

1 0 hoff

0 1 woff

0 0 1

⎤
⎦ , (3)

Ts =

⎡
⎣

1 + sc 0 0
0 1 + sc 0
0 0 1

⎤
⎦ , (4)

Tr =

⎡
⎣

cosθ −sinθ 0
sinθ cosθ 0

0 0 1

⎤
⎦ . (5)

The parameters woff , hoff denote the horizontal and vertical object translation
respectively, sc denotes the scaling factor, and θ controls the rotation angle.

Synthesis Process. We generate two kinds of object flow, i.e. with single
moving object and multiple moving objects respectively.

– Single Object. We randomly select one frame (Ibg) from training videos as
background, and another frame (Ifg) with its object (area of foreground anno-
tation larger than 100) as foreground. The foreground object is cut from Ifg
using the segmentation annotation, and added to a random position in Ibg
as the initial image. We keep a static background, and assign a minor move-
ment to the foreground object using the transformation matrix described
above. Then we obtain a synthetic frame and its optical flow ground truth
by adding the transformed object to the same position in Ifg. Figure 3 shows
the pipeline of our synthesizing process.

– Multiple Objects. Similarly, we randomly select one frame (Ibg) from training
videos as background, and another frame (Ifg) with objects (from videos with
instance-level segmentation annotations) as foreground. We move one object
at a time by adding the extracted object and its transformation format to
Ibg. We ensure that objects do not occlude each other to a large extent by
calculating the overlap rate before adding to Ibg (we stop adding the current
object if it overlaps too much with previous ones). Figure 4 presents some
examples of our synthetic flow data with single or multiple objects.

3 Network Implementation and Training

Training of the SegFlow network have two major steps: offline training and
online training, where the offline training step uses all training videos to train
a generic segmentation model that can segment all foreground video targets;
and the online training step uses one annotated test video frame to fine-tune a
specific model that locates onto a particular video target.
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Fig. 5. Visualization of the flow prediction results and the masks warped via flow
results on the DAVIS dataset.

3.1 Offline Training

For the offline training, the original SegFlow needs to iteratively train between
two separate datasets with segmentation and optical flow annotations, respec-
tively. With the synthetic object flow, we can train the SegFlow using only
the video object segmentation dataset: we pretrain the flow branch upon our
self-constructed flow dataset, and then feed pairs of synthetic frames with cor-
responding motion labels to train the joint network. During training, we use the
cross-entropy loss for the segmentation branch, and the end-point-error loss for
the optical flow branch; both branches are optimized simultaneously. We set the
learning rate to be 1e−6, and train for about 100’000 iterations until the two
losses both reach convergence.

3.2 Online Training

For the online training, without the synthetic flow, the original SegFlow model
updates only the segmentation branch from the initial frame; its flow branch
still provides motion representations to segmentation, but its parameters do not
update. In contrast, our object flow synthesizing algorithm enables SegFlow to
update optical flow branch parameters as well in the online updating process.
We randomly generate synthetic flow using the initial frame as Ifg and Ibg (see
Sect. 2.2 for details), and update both branches with a fixed learning rate of
1e−8. As a result, the network learns from the information of both flow and
segmentation and has a better cognition of target instances.

One important difference is that the SegFlow without the synthetic flow data
cannot tell the difference among several object motions in multiple-instance seg-
mentation scenes, and can only be applied to single-instance video object seg-
mentation task. When training with the synthetic flow, the network is provided
with the specific object motion pattern and can therefore train its flow branch
to focus on one instance, enabling the network to distinguish different targets in
the multiple-instance video object segmentation task.
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Table 1. Ablation study on the DAVIS 2016 validation set. We show performance of
SegFlow with different training settings, i.e. removing the online-training, flow branch,
synthetic flow in the offline (-SynFlow offline) and online (-SynFlow online) training
process.

Method Online training Motion annotation Flow branch J mean F mean T mean

Ours � � 0.770 0.766 0.223

-SynFlow online � � 0.749 0.746 0.240

-flow branch � 0.720 0.720 0.251

Ours offline � 0.667 0.667 0.317

-SynFlow offline � � 0.672 0.653 0.274

-flow branch 0.643 0.615 0.324

4 Experimental Results

In this section, we present experimental results and analysis on both the single-
instance and multiple-instance video object segmentation datasets, as well as
our self-constructed synthetic flow data.

4.1 Dataset and Evaluation Metrics

Video Object Segmentation Datasets. We use two high-quality video object
segmentation datasets, the DAVIS 2016 [24] dataset and the DAVIS 2017 [25]
dataset for single-instance and multiple-instance segmentation tasks, respec-
tively. The DAVIS 2016 [24] dataset is a single-instance video object segmen-
tation dataset that consists of 50 sequences and 3455 annotated frames for real-
world moving objects. While the DAVIS 2017 [25] dataset is a larger and more
complex video segmentation dataset with multiple targets and instance-level
annotations of 10459 frames from 150 videos. We use the pre-defined training
set to optimize our framework and its validation set to test the segmentation
quality. To evaluate the network performance, we use three measures (evalu-
ation code from [24]): region similarity J , contour accuracy F and temporal
stability T .

Synthetic Flow Dataset. For evaluation of the optical flow estimation ability,
we test the performance of SegFlow on our self-constructed synthetic object
flow datasets: DAVIS-sin and DAVIS-multi. DAVIS-sin contains 52000 pairs of
frames with a single moving object generated from the train set of the DAVIS
2016 dataset (details in Sect. 2.2), which is split into training (50000) and testing
(2000) set. DAVIS-multi contains 52000 pairs of frames with more than one
moving object from the train set of the DAVIS 2017 dataset, which is also split
into 50000 for training and 2000 for testing. Some examples of these two datasets
are shown in Fig. 4. In addition to the traditional end-point-error (EPE) value [9],
we also use the segmentation measurement J to evaluate the flow estimation with
segmentation mask annotations. Specifically, we warp the segmentation mask of
frame t via flow estimation to obtain a flow-based segmentation prediction in
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Table 2. Overall segmentation results on the DAVIS 2016 validation set. We ana-
lyze various settings for different video object segmentation algorithms, including their
performance, training requirement (initial mask, future frames, external data) and
add-ons. Methods with the same training settings are listed together.

Method Initial mask Future frames External data Add-ons Speed J mean

OnAVOS [35] � � Online update, crf 13 s 0.861

OSVOS [3] � � Contour, super-pixel 10 s 0.798

MSK [18] � � Optical flow, crf 12 s 0.797

SFL [7] � � 7.9 s 0.761

MSK-flow [18] � � 12 s 0.748

CTN [16] � � Optical flow 29.95 s 0.735

Lucid [17] � Optical flow, crf 40 s 0.848

Ours+CRF � Crf 11.3 s 0.817

Ours � 10.3 s 0.770

Lucid-flow [17] � 40 s 0.767

VPN [14] � 0.63 s 0.702

PLM [27] � – 0.702

OFL [33] � Optical flow 60 s 0.680

ARP [19] � Candidate regions – 0.762

LVO [32] � Optical flow – 0.759

FSEG [13] � Optical flow 7 s 0.707

LMP [31] � Optical flow 18 s 0.700

frame t + 1, and then test the region similarity performance J of this warping
result. This J value is consistent with the flow prediction quality, as a more
accurate flow should provide better temporal correspondence (see Fig. 5 for some
visualization examples).

4.2 Ablation Study on Video Object Segmentation

To analyze the necessity and importance of each step in the proposed frame-
work, we carry out extensive ablation studies on the DAVIS 2016 validation set,
and summarize the results in Table 1. We compare the performance of SegFlow
trained with different settings, i.e. without online training, flow branch, synthetic
flow in the offline (SynFlow offline) and online (SynFlow online) training.
The detailed settings are explained as follows:

Ours Offline: only using the offline training without the first frame annotation
in each test video (‘unsupervised’ video object segmentation setting).

-flow branch: training the model with only the segmentation branch.

-SynFlow offline: training the network with the SINTEL dataset instead of
our synthetic flow data in the offline training process.

-SynFlow online: training the network without synthetic flow (only updating
segmentation branch) in the online training process.

As shown in Table 1, the SegFlow trained with and without synthetic flow
data are compared (i.e. Ours vs −SynF low online, Ours offline vs −SynF low
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Fig. 6. Segmentation results on the DAVIS 2017 dataset. We show some multi-object
segmentation results of SegFlow with and without optical flow branch.

Table 3. Segmentation results on the DAVIS 2017 validation set. We show the ablation
study and comparison with other algorithms on the DAVIS 2017 dataset. Ours+CRF
denotes adding CRF post-processing step; and −flo denotes the network structure
without the optical flow branch.

Method External data Add-ons DAVIS 2017

Ours+CRF Crf 0.524

OSVOS [21] � Contour, super-pixel 0.566

OFL [33] � Optical flow model 0.549

Ours 0.498

Ours-flo 0.475

Offline) to validate the effectiveness of the proposed synthetic flow training
scheme. The quantitative results in Table 1 show that our synthetic flow data
improves Jmean by 2.1% in the online training process; and that in the offline
training process, the synthetic data can train network as well as external optical
flow dataset, demonstrating that our object flow synthesizing training scheme is
capable of relieving dataset constraints for joint learning models.

4.3 Segmentation Results

Single-Instance Video Object Segmentation. In Table 2, we compare
the performance with state-of-the-art algorithms [3,18,35] and analyze their
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Fig. 7. Examples of flow predictions from the network trained with our synthetic flow.

attributes on the DAVIS 2016 validation set. For semi-supervised methods, our
model with synthetic object flow outperforms the original version (SFL) by 5.6%.
It also performs favorably against OnAVOS [35], OSVOS [3] and Lucid [17], who
require repeatedly updating on test videos (OnAVOS updates network with its
own predictions in test videos) or additional inputs (i.e., super-pixels in OSVOS
and optical flow in MSK) to achieve higher performance. With image as the only
input, the Jmean of MSK [18] on the DAVIS validation set is 74.8%, which is
lower than ours without post-processing as 77.0%. Besides, with a simple CRF
post-processing step, our network performance can achieve the Jmean of 81.7%.
Among algorithms using only original or synthetic data from the DAVIS dataset,
our SegFlow outperforms other methods with the same input (Lucid-flow, VPN,
PLM).

Multiple-instance Video Object Segmentation. As mentioned above, the
synthetic data enables SegFlow to learn specific motion patterns in multiple-
object segmentation tasks. We test its ability on the DAVIS 2017 validation
set. Different from the single-object segmentation task, we change the output
channel to the number of instances in test video during online training. This
means we still need to finetune one network per video, but the last classifica-
tion layer changes according to the number of target objects. Table 3 shows the
performance on the DAVIS 2017 dataset, which has instance-level segmentation
annotations; and Fig. 6 provides some examples of network segmentation pre-
dictions with and without flow branch. We once again demonstrate that optical
flow plays an important role in video segmentation model SegFlow, and that
synthetic object flow can help training the flow branch to locate onto a specific
target, enabling the joint network to distinguish multiple target instances.
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Table 4. Evaluation of flow predictions. FlowNetS denotes the results of [9]; SegF low
and Flow denote the SegFlow network and its flow branch, respectively. Both Flow and
SegF low are trained with our synthetic object flow datasets which have single or mul-
tiple moving objects (denoted by sin or mul in column 3 of the table). Corresponding
end-point-errors (EPE) for these two synthetic datasets and the segmentation perfor-
mance of mask warping results on DAVIS are evaluated for flow quality comparison.
Lower EPE and higher J, F denote better performance.

Method SynFlow Setting EPE DAVIS train DAVIS test

sin mul J F J F

FlowNetS [9] 0.945 1.155 0.741 0.725 0.716 0.708

Flow � sin 0.612 0.751 0.749 0.734 0.733 0.714

� mul 0.683 0.742 0.747 0.729 0.736 0.692

SegF low 0.777 1.007 0.742 0.710 0.726 0.705

� sin 0.609 0.731 0.756 0.734 0.744 0.722

� mul 0.618 0.721 0.747 0.735 0.733 0.721

4.4 Object Flow

To validate the effectiveness of the synthetic object flow, we test the flow predic-
tions on self-constructed synthetic flow datasets (DAVIS-sin and DAVIS-multi),
as well as the DAVIS 2016 segmentation dataset. For synthetic flow datasets,
we train networks on training samples and test the end-point-error of estimated
flow on the validation set. For the video segmentation dataset where optical
flow ground truth is not available, we warp the segmentation mask from frame
t to frame t + 1 via flow estimation and evaluate the quality of this warped
mask (Fig. 5). As we focus on object area, this metric consistently measures the
performance of object flow prediction in real-world videos. Figure 7 shows some
example results on synthetic flow datasets, from which we can see the advan-
tage of joint learning (SegFlow has better performance than the flow prediction
network).

Table 4 shows the results of overall comparison, where FlowNetS denotes
the model directly obtained from [9], Flow denotes the optical flow branch in
SegFlow, and SegF low denotes the proposed dual-branch network. Networks
trained with the synthetic flow have checkmarks in the SynFlow column, while
FlowNetS and SegF low without this checkmark are trained using other opti-
cal flow datasets. sin and mul denotes the training datasets that have single
(DAVIS-sin) and multiple (DAVIS-mul) moving objects respectively. The end-
point-errors (EPE) are tested on the validation set for both. Results in Table 4
validate that segmentation branch helps boost optical flow estimation (under
same condition, SegFlow performs consistently better than Flow).

In addition, from the evaluation of warped mask on training and validation
set of the DAVIS 2016 dataset, we show that the synthetic object flow generated
from the same dataset helps boost segmentation better than external optical flow
datasets (the last three rows). The best performance in this setting is obtained
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by SegF low trained with a single moving object, which is 2.8% (0.744 vs 0.716)
higher than FlowNetS and 1.1% (0.744 vs 0.733) higher than the flow branch on
the DAVIS validation set. In Fig. 7, we show some examples of flow predictions
and mask warping results.

4.5 Runtime Analysis

SegFlow trained with the synthetic flow data has the same prediction speed as
the one trained with external optical flow datasets, i.e. predicting two outputs
(segmentation and optical flow) simultaneously at the speed of 0.3 s per frame.
When taking the online training step into account, our system runs at 7.9 and
11.3 s per frame for without and with the synthetic flow (averaged over the
DAVIS validation set). We present a speed comparison in Table 2.

5 Concluding Remarks

In this paper, we propose a simple and fast object flow synthesizing algorithm
which can generate object movement and its corresponding ground truth to
relieve the data constraint in joint learning of video object segmentation and
optical flow. We use the dual-branch, end-to-end, fully-convolutional network,
SegFlow as a base net to show that joint prediction models can be trained upon
a single video segmentation dataset without manual motion annotations via
the proposed object flow synthesizing method. We carry out extensive ablation
studies and analysis to validate the effectiveness of the object flow synthesizing
training scheme, demonstrating that it has a better training effect than external
virtual flow datasets, and that it enables the SegFlow to distinguish different
targets in multiple-instance video segmentation scenes. Besides, we also propose
that this flow synthesizing and joint-training scheme can be easily adapted to
other related networks.
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Abstract. At present, the artificial recognition method is mainly used to identify
IMU strain detection data of the whole pipe section by segment, which has some
problems such as low efficiency, high cost and long cycle. Therefore, this paper
realizes the intelligent recognition of the BendingDeformed Section inGeological
Disaster Area (BDPIGDA) by establishing an ensemble learning model. Firstly, it
is statistically obtained that the pipe sections with bending strain value exceeding
0.125% in an oil pipe include bend, dent section, BDPIGDA. Then, combinedwith
geometric detection data, sample data of different pipe sections are intercepted, and
11 typical data feature values are extracted. Through principal component analysis,
kernel principal component analysis, and independent component analysis, the
data dimension of the 11 feature data is reduced. Finally, an ensemble learning
model combining support vector machine and K-means clustering is established.
The research results show that the accuracy rate of the test set of the model is
93.26%, and the recognition rate of the bent deformedpipe section in the geological
disaster area is 88.70%, which meets the engineering requirements and provides
a certain reference for pipe integrity management.

Keywords: Data dimension reduction · Support vector machine · K-means
clustering · Ensemble learning

1 Introduction

Reasonable and effective analysis of pipe parameters is an important factor to ensure
the safe operation [1]. The strain of pipes in abnormal state and specific areas would
have certain change characteristics. The strain fluctuation in bend and dent sections is
relatively large, and the strain fluctuation range in bending deformed pipe sections is
relatively wide [2].

At present, IMU detection technology is an effective method to quickly obtain the
bending strain of the whole pipe. The gyroscope is used to obtain the rotational angu-
lar velocity of the object in three directions, and the accelerometer is used to obtain
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the motion acceleration of the object in three directions, which can obtain the speed,
position and attitude information of the detector at any time, and then calculate and
transform the horizontal strain and vertical strain of the pipe [3–5]. According to the
requirements of Appendix I of GB32167-2015 “Code for Integrity Management of Oil
and Gas Transmission Pipes”, the performance specifications measured by IMU shall
meet the bending characteristics of pipes with bending deformed curvature >1/400 D
(strain value exceeds 0.125%) identified by single test. It is an important measure to
ensure safe operation of pipes on screening out dangerous sections of bending deformed
from these characteristics.

By analyzing the strain data obtained after transformation, Zhao Xiaoming, et al. [6]
judged high-risk points with potential threats combined with geometric detection data
based on artificial recognition to locate pipe defects. FangWeilun, et al. [7] summarized
the strain data characteristics of bend, dent and BDPIGDA based on IMU internal detec-
tion data. However, for massive strain detection data in IMU, artificial recognition takes
a long time, and the recognition results vary from person to person.

In this paper, a machine learning based recognitionmethod based on ensemble learn-
ing model is proposed by taking IMU strain detection data B and C of an oil pipe in
2019 as sample data, in which B is the training set and C is the test set. Firstly, the
strain data of pipe section is preprocessed, According to the physical characteristics of
the pipe section, three dimensionality reduction methods, principal component analy-
sis (PCA), kernel principal component analysis (KPCA) and independent component
analysis (ICA), are used to reduce the dimensions of 11 characteristics of the sample
data. Then, support vector machine and K-means clustering [8, 9] are used to build a
classification method. Finally, an ensemble learning model combining the two classifi-
cation methods is proposed to realize an intelligent classification of bending deformed
segments.

2 Feature Engineering

2.1 Typical Pipe Section

Combined with geometric detection data labels and research by Fang Weilun scholars,
typical pipe sections in bend, dent and Bending Deformed Pipe Section in Geological
Disaster Area (BDPIGDA) are shown in Fig. 1. The strain characteristics of bends are
often long, thin and spiky, and the vertical strain mostly exceeds 0.5%. The Dent is short,
thick and sharp, and the strain value is relatively flat. The BDPIGDA based on IMU data
are mainly divided into “W” shape.

2.2 IMU Data Feature Construction

According to the physical meaning of IMU strain data and referring to the relevant meth-
ods of signal analysis [10, 11], this paper extracts 11 eigenvalues from each sample data,
namely length, amplitude, peak-to-peak value, minimum value, mean value, standard
deviation, skewness, kurtosis, peak factor, pulse factor and margin factor.

PCA, KPCA and ICA are used to reduce the dimension of data. Among them, PCA
is a linear feature extraction method, which recombines P observed variables intoM new
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Fig. 1. Characteristic diagram of IMU strain curve of typical pipe section with anomalies

unrelated variables through orthogonal transformation, and the transformed variables are
called main components. In this paper, the first three principal components are selected,
and the cumulative contribution rate is 87.82%. KPCA introduces kernel function, thus
mapping nonlinear original data to high-dimensional space or even infinite-dimensional
space, making it linearly separable. Then, through PCA dimension reduction, this paper
selects the first three kernel principal components, with a cumulative contribution rate
of 91.99%. ICA is a dimension reduction method to find potential independent factors,
which can effectively unmix data [12]. After subsequent model tests, it is found that
selecting the first two factors has the best recognition effect.

3 Ensemble Learning

3.1 Support Vector Machine

The basic idea of Support VectorMachine (SVM) is that nonlinear inseparable problems
can be partitioned by hyperplane. The specific method is to map the low-dimensional
feature space where the sample data is located to the high-dimensional space first, which
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completes the construction of the classificationmodel by high-dimensional support plane
division [13].

Because the support vector machine model adopts the optimization idea of minimiz-
ing structural risk, the generalization ability of the model often needs to be further tested
after training.

3.2 K-means Clustering

K-means clustering is a typical unsupervised learning method based on distance mea-
surement to judge the distribution category of samples in feature space. The process of
this method is shown in Fig. 2. Commonly used distance measures include Euclidean
distance, correlation distance, Manhattan distance, and cosine similarity [14, 15].

At the beginning of the algorithm, K points are randomly selected as the initial
clustering center points in the sample space. The distance from the sample point to the
center point is calculated, then each sample point is classified according to the nearest
distance. The sample points divided into the same category are solved with the average
value, and finally the average value is used to replace the initial clustering center, which
iterates repeatedly until the clustering center does not change or the number of iterations
reaches the upper limit.

This clustering method is not applicable to some interlaced feature spaces, so it is
necessary to use generalization test sets to further test the performance of the model.

Fig. 2. K-means clustering model diagram

3.3 Ensemble Learning Based on Voting Method

First of all, this paper selects 1050 segments of IMU strain data from the research data
(i.e. 350 segments of bend, dent and BDPIGDA) as training sets, and trains the SVM
model and the K-means model respectively. The recognition rate of the two models in
the three feature spaces is over 80%, and they have good classification performance.

The voting method is adopted to ensemble the learning model [16], and the sup-
port vector machine and K-means clustering are combined to improve the accuracy and
robustness of the model. Figure 3 is a specific ensemble learning flow chart. Firstly,
according to the requirements of national standard, the pipe section with strain ampli-
tude exceeding 0.125% and length exceeding 12 m is screened out by the built-in func-
tion Findpeaks of Matlab. The bends and dents are marked according to the labels of
geometric detection data. Next, six classifiers are fused for ensemble learning by voting
method. Finally, bends and dent in the ensemble learning recognition results are checked
according to the geometric test results, and the recognition results of geological disaster
segments are output.
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Fig. 3. Ensemble learning flow chart

3.4 Analysis of Results

The ensemble learning model passed the Five-fold cross-validation on the training set,
and the model recognition rate was 95.43%. On the test set, the model recognition rate
is 93.26%, as shown in Fig. 4, which is slightly lower than the training set.

Fig. 4. Ensemble learning results

From the test set recognition results of each classifier (Table 1), it can be seen that
among the three feature spaces of the test set, SVM andK-means methods have the high-
est recognition rate in ICA feature space, both exceeding 80%. Compared with a single
classifier, the ensemble learning model has the best generalization ability, especially the
recognition rate of BDPIGDA is the highest, reaching 88.70%.

As shown in Fig. 5, a total of 699 pipe sections with large strain were found in the
ensemble learning model, including 40 suspected bends, 259 suspected dents and 400
suspected BDPIGDA. According to the manual check after drawing, it is determined
that the maximum strain amplitude in these pipe sections exceeds 0.125%, and the strain
curves of 40 suspected bends and 40 suspected Dents show that the model has better
recognition ability.
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Table 1. Comparison of test set recognition results of each classifier

Category Recognition rate

Bend Dent BDPIGDA Overall

ICA + SVM 98.78% 56.76% 88.50% 87.31%

PCA + SVM 90.19% 87.93% 42.71% 73.61%

KPCA + SVM 95.58% 50.17% 49.14% 65.07%

ICA + K-means 98.00% 74.29% 70.57% 80.95%

PCA + K-means 94.86% 49.14% 72.86% 72.29%

KPCA + K-means 98.57% 58.86% 76.00% 77.81%

Ensemble learning 100% 100% 88.70% 93.26%

Suspected Bending
Deformed Pipe 

Section in 
Geological Disaster 

Area,
400 sections, 57%

Suspected Dent ,
40 sections, 6%

Suspected Bend ,
259 sections, 37%

Fig. 5. Newly discovered pipe section predicted by the model

4 Conclusion

The bending strain data of the whole pipe are obtained by IMU test, and the following
conclusions can be drawn by analyzing the data by using the ensemble learning model
based on voting method:

(1) In this paper, three dimension reductionmethods, PCA, KPCA and ICA, are used to
reduce the dimension of 11-dimensional feature data. ICA realizes data unmixing
by finding independent components. After subsequent tests, ICA is found to be the
best dimension reduction method among the three dimension reduction methods.

(2) In the test set of SVMandK-means clusteringmethods in these three feature spaces,
only in ICA feature space, the recognition rate exceeds 80%, indicating that ICA
+ SVM and ICA + K-means have better generalization performance.

(3) Comparatively speaking, the generalization ability of ensemble learning is stronger
than that of a single model. The generalization accuracy of the BDPIGDA is close
to 90%, which can meet the engineering requirements, reduce the cost of artificial
recognition, and provide a certain reference for pipe integrity management.
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Abstract. Contrastive Learning aims at embedding positive samples close to each
other and push away features from negative samples. This paper analyzed different
contrastive learning architectures based on thememory bank network. The existing
memory-bank-based model can only store global features across few data batches
due to the limited memory bank size, and updating these features can cause the
feature drift problem. After analyzing these issues above, a network for contrastive
learning with visual representations is proposed in this paper. First, the model
is combined with a memory bank and memory feature clustering mechanism;
Second, a new feature clustering method is proposed for memory bank network
to find and store cross-epoch global feature centers for training epochs based on
the memory bank architecture. Third, the centers in memory bank are treated as
class features to construct positive and negative samples with current batch data
and apply contrastive learning methods to optimize a feature encoder to learn a
better feature representation. Finally, this paper designed a training pipeline to
update the memory bank and encoder individually to circumvent the feature drift
problem. To test the performance of proposed memory bank clustering method
with on unsupervised image classification, our experiment used a self-supervised
online evaluator with an extra non-linear layer. The experiment results show that
our proposed model can achieve good performance on image classification tasks.

Keywords: Contrastive learning · Self-supervised learning · Image classification

1 Introduction

Deep learningmethods can learn patterns from the huge amount of data.With the contin-
uous development of deep learning, in most Computer Vision (CV) tasks, the supervised
learning methods can learn feature representation from large amounts of labeled sam-
ples. The supervised learning methods may have problems with generalization caused
by model overfitting or require a large amount of human-labeled data. Under these cir-
cumstances, unsupervised and self-supervised methods gradually emerge, while these
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methods do not need labeled data and can achieve similar performance to supervised
algorithms.

Learning a better feature representation is essential for unsupervised or self-
supervised algorithms. Unsupervised deep learning methods map the input to high-
dimensional latent space and apply clustering algorithms to learn feature representation
from the input data.

Self-supervised contrastive learning methods can learn feature representation by
similarity function that measures how similar or related two feature representations are.
Contrastive Learning is a discriminative approach, which often uses similarity measure-
ment methods to divide the positive and negative samples from input data, then group the
distribution of positive feature embeddings closer andmake negative feature embeddings
farther away.

In image classification tasks, self-supervised contrastive learning methods need to
know the similar sample or diverse samples and use a suitable loss function to optimize
the deep neural encoder network to group the feature of similar samples closer and
farther diverse samples. Metric Learning methods aim to establish similarity or dissim-
ilarity between objects. Contrastive Learning and Metric Learning are closely related.
Matric learning methods can measure the distance between features in high-dimensional
space and distinguish positive and negative samples from the features. However, it is
often challenging to design metrics suited to the detailed data and the task. There are
different deep metric learning algorithms in different scenarios. The objective function
is constructed for deep contrastive algorithms, and the cost function (loss) is minimized
to get better feature representations.

This paper compares two commonly used architectures for contrastive Learning,
the end-to-end architecture, and Memory Bank based architecture in Sect. 2. Our main
work is: (1) This paper proposes a contrastive learning network architecture with a
dynamically updated memory bank for image classification. (2) A feature clustering
method is designed to store and update the feature center with a memory bank. (3) A
contrastive loss is applied to the model. The loss based on feature centers stored in
the memory bank to optimize our feature encoder. We tested the results of the proposed
model in this paper on multiple datasets. The experiments show that our proposed model
has good performance on self-supervised image classification tasks. The center features
stored in the memory bank can provide global information for optimization so the model
can get a good feature representation.

2 Related Work

As a self-supervised method, contrastive Learning relies on the number of samples for
generating feature representations then learning the differences between similar features
and different types of features usingmetric methods that measures how similar or related
two objects are. Memory bank can store feature representations for accessing negative
samples [3]. This paper analyzes some memory bank related contrastive learning meth-
ods. The architecture of different architecture pipelines for contrastive learning, as Fig. 1,
end-to-end contrastive training architecture [14, 23], consists of two encoders generating
feature representation for positive samples and treat others as the negative. The memory
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bank based contrastive architecture contains memory bank to store and retrieve feature
embeddings of negative and positive samples [12, 20].

Fig. 1. Different architecture for Contrastive Learning [14]: End-to-End contrastive learning
architecture (left), Memory bank based architecture (right).

2.1 Self Supervised Contrastive Learning

We have studied earlier works in the field of contrastive Learning with self-supervised
learning [4, 5, 15]. The related methods include constructing positive and negative sam-
ples, then grouping positive samples closerwhile differing negative samples in the feature
representation from each other.

To construct positive and negative sample pairs, somemethods [6, 7, 12] use data aug-
mentation methods. Most commonly used data augmentation operators can be divided
into the following parts: color transformation, geometric transformation, context-based
transformation, and cross-modal-based transformation. These data augmentation meth-
ods are applied to construct positive and negative sample pairs.An example of augmented
data is shown in Fig. 2.

Fig. 2. Illustrations of augmentation operators used in our training data. Image (a) is the original
image. From left to right and top to bottom, the operators include (b) Color Distort (drop), (c)
Gaussian Blur, (d) Random Flip, (e) Random Crop and (f) Color Distort.
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2.2 Memory Bank Based Method

Memory network [21] provides a memory component that can be read and written to,
which has long-term storage capabilities. As one of the memory network structures,
Memory Bank has been widely used in contrastive learning methods [18, 20, 22]. In the-
ory, the more feature information the model can be referred to, the better the contrastive
model will be. It is important to maintain separate feature embeddings and accumulate
many feature representations used as positive and negative samples during training.

The feature embeddings stored in the memory bank may become outdated as
the model optimization process continuously updates the encoder network. This phe-
nomenon is called feature drift. The feature drift of input x at t-th iteration with step �t
is defined [20] as:

D(x, t;�t) := ∥
∥f

(

x; θ t
) − f

(

x; θ t−�t)
∥
∥ (1)

To avoid feature drift problem caused by the encoder update, previous work [20]
apply a pre-train method, other approaches such as MOCO [12] use momentum to
update the encoder slowly, while this paper propose a new train method to avoid feature
drift, which will be discussed at Sect. 3.

The work of this paper is based on the contrastive learning methods with mem-
ory bank and is improved based on the existing method. First, this paper proposes a
contrastive learning network architecture with a dynamically updated memory bank for
image classification, compared to general ideas withmemory bank, ourmethod can store
more features in memory bank for feature representation learning. Second, we design
a memory bank clustering method to store and update the feature centers based on the
memory bank. The model can construct positive and negative pairs from the feature rep-
resentation obtained after memory bank clustering. Third, a contrastive loss is designed
based on centers stored in the memory bank to optimize our feature encoder.

3 Method

3.1 Contrastive Learning with Memory Bank Clustering

This section will introduce our model architecture shown in Fig. 3, the contrastive loss
based on memory bank clustering, and the network training pipeline. First, the experi-
ments use random data augmentation operator to construct samples in the training data
batch. Second, a dynamically updated memory bank architecture is used to store the
class center from feature embeddings and use the metric learning algorithm to distin-
guish positive and negative samples corresponding to each feature, then use a memory-
feature-clustering based loss function to optimize the encoder network, the above step
called as Memory Bank Clustering. The contrastive learning method can be used to
update the encoder network M Third, and the train pipeline update the feature encoder
(M ) and memory bank (B) separately to reduce the error of feature drift [20].
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Fig. 3. The architecture of our self-supervised Contrastive learning model. The training of the
model apply the data augmentationmethod for every input data batch and use a deep convolutional
neural networkM as the backbone encoder to extract feature F . The feature F will be stored in a
dynamic memory bank and cluster into feature center C, the model use a batch feature F based
contrastive loss Lb and a memory center based C contrastive loss Lmem to optimize our encoder
network M .

3.2 Training with Dynamic Memory Bank

As Fig. 3 shows, the training apply an end-to-end contrastive learning method with data
augmentation to an encoder network [13]. The model use the origin training data and
augmented data forward to the encoder and get two corresponding features as a similar
pair.

Our data augmentation method is inspired by SimCLR [14]. Given an input image
I , the model use several different data augmentation methods to generate positive input
pair Ĩ , the illustrations of data augmentation operators shown in Fig. 2. The method
combines I and Ĩ together as the output feature of the encoder. During the training phase
of the model, then randomly select one data augmentation operator for each input image

Ii and output one augmented image
∼
Ii. So our encoder input data batch B of the model

consists of:

B =
{(

I1,
∼
I1

)

,

(

I2,
∼
I2

)

· · ·
(

Ibs,
∼
Ibs

)}

. (2)

Where bs denotes training batch size. Each image pair

(

Ii,
∼
Ii

)

as a positive sample

pair and

(

Ij,
∼
Ik

)

, where j �= k as a negative pair. Then use batch data based contrastive

loss Lb to optimize the encoderM . Given an input batch B, and encoder network byM ,
The output features show as:

(

Fi, F̃i

)

= M

(

Ii,
∼
Ii

)

. (3)

Formemory update,Fi denotes the feature of input Ii extract byM whereFi ∈ R(1×c).

In order to update our encoder network, (Fi,
∼
Fi) as a positive pair and others as negative



Memory Bank Clustering for Self-supervised Contrastive Learning 137

pair. For every step of our training process, it will store the feature F to the memory
bank and apply the clustering method to update the feature center in memory bank.
The model use the similarity measurement method sim(x, y) to calculate the similarity
between center C and feature Fi, if similarity between Fi and memory center Ci greater
than similarity threshold T ∗, then use all features. (Fm, · · · ,Fn) similar to center Ci to
update Ci as a new center Cnew:

Cnew =
m

∑

i

(
sim(Fi,Ci) × D(Fi,Ci)

∑m
i (sim(Fi,Ci))

)

+ Ci (4)

Where sim(Fi,Ci) is the similarity value between feature Fi and center Ci, m is the
total number of features stored in the memory bank, F include features where similarity
sim(Fi,Ci) between center Ci greater than similarity threshold T ∗, D represents the
direction measurement from the feature to the corresponding center. In our experiment,
our experiments use cosine similarity as sim(x1, x2)

sim(x1, x2) = x1 · x2
max(‖x1‖2 · ‖x2‖2, ε)

(5)

Two memory bank merge methods are designed in our training phase of the memory
center dynamic merge stage which called memory bank clustering. The memory update
and merge methods in SimCLR [6] and MoCo [7] are shown in Fig. 4. We use the
pre-trained encoder M to generate a batch of features F . For every step in the training
epoch, we add the feature F to the memory bank and use similarity matrix mf and
threshold T ∗ to update the feature center. If one feature Fi is not similar to other centers
(sim(Fi,C) ≤ T ∗), we consider it a center Cm. After updating the memory bank with all
batch data in this training step, wemerge our memory bank center use sim

(

Ci,Cj
)

where
i, j ∈ M and T ∗, same as updating the memory center with the feature. After the update

Fig. 4. The train pipeline with memory bank. We apply the data augmentation method for every
input data batch and use a deep convolutional neural network M as backbone encoder to extract
feature F . The feature F will merge with the memory centers in every train step and we use batch
loss Lb and memory-bank based loss Lmem to update encoder parameters and memory feature in
each training step.
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and merge step, the training of the model use memory loss Lmem and batch-based loss
Lb optimizer our encoder. When every train epoch end, memory bank will be emptied
to reduce the feature drift error, so the model only calculate the center from the features
of the current epoch to avoid the feature drift problem.

In this paper, another train pipeline is designed for memory bank updating and clus-
tering. As mentioned before, if updating the encoder and memory bank simultaneously,
the feature drift will affect our network performance. Due to optimizing our encoder
networkM in one train step, the model get a feature FC with data I , and in the next train
epoch, if using the same data I , encoder will output a feature Fn, there will be differences
between Fc and Fn. The training of the model try to update the memory bank with the
encoder networkM throughout the epoch and the parameters of the encoder network are
frozen. Our training process is as Fig. 5. The training pipeline with memory bank and
memory bank clustering method as designed. M denotes the encoder network, F denotes
the feature, and C denotes the center in the memory bank. After pretraining M, freeze M
and use an epoch to get feature F to update and merge with C. In this epoch, the model
only calculate batch loss as experiment data and do not apply backward. Next epoch,
unfreezeM , freeze the memory bank and use batch data based loss Lb and memory loss
Lmem optimize M . After a memory training and encoder network training epoch, the
features stored are cleared in memory bank so the feature drift in stored features can be
minimized.

Fig. 5. The pipeline of our model. After pretraining ofM , we freezeM and only use the training
data forward to M then training our memory bank and apply clustering method to the feature
stored in the memory bank. Next epoch, we unfreeze M and freeze our memory bank, use batch
loss Lb and memory loss Lmem optimize M .

3.3 Contrastive Loss with Dynamic Memory Bank

Contrastive loss was designed to encourage positive pairs to be as close as possible and
negative pairs to be apart over a given threshold [10]. The loss function L consists of
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two parts, batch sample based contrastive loss Lb and memory bank based contrastive
loss Lmem.

L = Lb + Lmem (6)

Themodel applies cosine similarity as measurement method of positive and negative
samples. The batch based loss Lb as:

Lb = −[log(exp(sim(Fi,
∼
Fi))) − log(

∑

k �=j

exp(sim(Fk ,Fj)))] (7)

For each center in the memory bank, the memory bank based contrastive loss should
be able to make the feature and center encoding of the same class close, while far away
from other centers. In order to achieve our goal, the model use the same cosine similarity
to find the memory bank centers {Cm, · · · ,Cn} corresponding to each feature Fi as a
positive pair. The model use similarity matrix result Slabel for each feature Fi with every
center in memory bank as a softmax label and apply label smooth to Slabel , the memory
loss as:

Lmem = mean(
∑

F

log

(

exp(Slabel)i
∑

jexp(Slabel)j

)

) (8)

Where i denotes themax similarity betweenmemory bank centers and current feature
Fi. j denotes the number of centers in memory bank.

As mentioned before, Due to the feature drift problem mentioned before as Eq. 1, if
we update the feature encoder M and memory bank center simultaneously, the feature
drift will affect our model performance. We test two update methods, update encoder
and memory bank at the same training step or use one epoch train encoder with a batch
loss Lb and use one epoch generate feature and merge them to center and store in the
memory bank.We try both of the training methods with batch based loss Lb and memory
center-based loss Lmem with the same training hyperparameters.

We also try ArcFace [8] loss and Dsam [16] loss as our memory feature based
loss. ArcFace loss [8] use margin to measure the distance between different classes. We
calculate a similarity matrix between F and C and use similarity threshold T ∗ to divide
thememory bank center as a class label for each featureFi.We consider each Sim(Fi,Cj)

as loss weight in ArcFace loss. s denotes the similarity weight for each feature Fi.

L = − 1

N

N
∑

i=1

log
es·(cos(θCi+m))

es·(cos(θCi+m)) + ∑n
j=1,j �=Ci

es·cosθj
(9)

4 Experiment

To verify our proposed method, we use pytorch-lightning [9] to build self-supervised
contrastive network as Fig. 3, use Resnet [13] as feature encoder M , The model is
trained and evaluated on Cifar10 [17], Stl-10 [26] and Imagenet-10 [25] dataset. When
evaluating our model, our experiment follows the linear evaluation protocol [1, 24].
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4.1 Experiment Details

During the training phase of our network, the encoder network is trained n epoch only
with the batch sample based loss Lb. This training method [20] can minimize the feature
drift. In our experiment, pretrain the model for 4000 steps, about 120 epochs only with
Lb, then use both memory loss Lmem and batch data based loss Lb to optimize the encoder
network. Larger batch size can usually make contrastive learning model obtain better
results. If the training data set contains multiple categories, the feature saved in memory
before clustering will increase andmay occupy a lot of GPUmemory, so the experiments
only test the model on datasets of fewer categories.

To find the best parameters for the training of our model, we use hydra [27] to
configure the parameters and use auto tune for each dataset. To find the best settings, the
experiments set different hyperparameters like Table 1.

Table 1. The hyperparameters. We use hydra to tune the hyperparameters for each training phase.

Parameter Min value Max value Next training value

τ 0.1 0.4 0.05 + τ

L 0.000001 0.001 10 × L

T∗ 0.4 0.9 0.1 + T∗

i 20 120 10 + i

Batch size 32 256 16 + B

In the experiments, due to GPU memory limitations, there is a trade-off between
larger batch size and dynamic update memory bank. The feature saved in memory bank
will the stored feature information will take up a lot of GPU memory space. At the start
of training, if the experiment trained the memory bank with a high clustering threshold,
the GPU often runs out of memory because the memory bank stored to many features
as data category centers. The final experiment hyperparameters shows in Table 2.

When finding the hyperparameters, we find that the model always get benefit from
larger batch size. But the GPU memory limit the batch size, and if we chose a lower
merge threshold T ∗, feature in memory bank can be merged well but the clustering
result for centers may have a bad influence on contrastive method for learning feature
representation.

Dynamic threshold T ∗ is also applied in the experiments. If we fix the value of T ∗
at the start of training epoch, the similarity of same class features always less than T ∗.
And we try to use dynamic T ∗. We set the T ∗ a small value, as the training of our model,
keep increase the value of T ∗ to a max value. This have the same effect as our pretrain
pre-training strategy and there is almost no difference in the results of the twomethods. It
is necessary to find a find a suitable threshold is really import impact on the performance
of the model.
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Table 2. Hyperparameters for each dataset in our final experiments

Hyperparameters Cifar 10 Stl10 Imagenet-10

τ 0.1 0.1 0.3

L 0.0001 0.0001 0.0001

T∗ 0.7 0.6 0.7

Batch size 256 256 256

Pretrain epoch 300 300 400

4.2 Experimental Results

The experiment results are in Table 3. * denotes train, update and merge memory bank
simultaneously. R50 denotes use resnet50 backbone. As the Table 3 shows, the training
process proposed in this paper can get accuracy improvement on Cifar10 and Imagenet-
10 dataset. Themore complex backbone also improves the results. The contrastivemodel
with memory bank clustering method have 4% accuracy higher than the mainstream
method TSUC [11] on Cifar10 dataset.

Table 3. Comparison results with other sota models on Cifar10, Stl-10, Imagenet-10 dataset,
MBC denotes our memory bank clustering model in this paper

Model Cifar10 (acc-%) Stl-10 (acc-%) Imagenet-10 (acc-%)

JULE [28] 27.2 27.7 30.0

DEC [29] 30.1 35.9 38.1

DAC [5] 52.2 47.0 52.7

DCCM [30] 62.3 48.2 71.0

GATCluster [31] 61.0 58.3 76.2

CC [32] 79.0 85.0 89.3

TSUC [11] 81 66.5 N/A

IDFD [19] 81.5 75.6 95.4

SCAN [33] 87.6 76.7 N/A

SPICE [34] 92.6 93.8 96.7

MBC* 80.3 82.1 84.9

MBC 85.69 81.4 90.3

MBC (R50) 91.7 87.9 93.4

Other losses are also tested in the experiment. We modify additive angular margin
loss [8] and dsam loss [16] for optimizing our encoder M with memory bank centers
C and test on cifar10 dataset. The experiment result show in Table 4, the result shows
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that our loss can achieve a good accuracy for image classification task. lb means only
use our batch loss to optimize the model without memory bank. The premise of using
memory for training is use lb to pretrain the model, so no result for only use memory
bank clustering loss, but we apply our loss directly to memory bank feature without
clustering the result shows in MBC-nc.

Table 4. Ablation experiment result

Loss Cifar10-Acc (%) Backbone

Dsam [16] 83.5 resnet 18

Arc face [8] 84.92 resnet 18

MBC-lb 81.7 resnet 18

MBC-nc 84.52 resnet 18

MBC 85.69 resnet 18

As Fig. 6 shows, we use the t-SNE [2] algorithm to map High-dimensional data
points to a 2D plane. With the continuous optimization of the encoder network, We can
see the number of centers in the memory bank gradually decrease are getting closer to
the number of categories used in training data. The distance between different centers is
getting farther with model optimization. The number of red points in Fig. 6 denotes the
hypothetical class center. In the training epoch, the center in the memory bank can be
appropriately and reasonably merged as a new class center of similar features or training
data. The distance between two adjacent red dots gradually increases, proving that our
network learns the difference between different classes well.

Fig. 6. The t-SNE [2] result, this t-SNE method can map memory clustering results on cifar10
dataset to 2D plane distribution. This figure shows the illustration of the memory centers
distribution during 200, 500, 800, 1000, 1200 and 1400 epoch respectively
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5 Conclusion

This paper proposes a new network architecture for self-supervised contrastive Learning
based on a dynamically updated and memory bank with feature clustering. A feature
clustering algorithm is designed for the memory bank. This paper also designed a con-
trastive method to construct sample pairs between batch features and memory centers
and applied contrastive loss with memory bank centers to optimize the encoder net-
work. As the experiments result on the Cifar10, Stl10 and Imagenet-10 dataset shows,
the Memory Bank Clustering method can provide positive and negative samples for the
contrastive network, and the model can learn a good feature representation.
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Abstract. Traditional visual question answering algorithms based on relation-
ship perception help answer questions by modeling the relationship in the input
image. Although better visual question answering performance can be obtained,
the model learns the language deviation of the image appearance during training
and performs slightly worse on test sets with different data distributions. A model
based onCounterfactual Samples andRelationship Perception (CSRP) is proposed
by us to solve this problem. The counterfactual sample generation mechanism can
generate a large number of counterfactual samples by shielding key objects, forc-
ing the model to focus on key objects to answer questions. Counterfactual samples
as feature enhancements can reduce the learning appearance language bias during
training. And the relationship between image objects perceives semantics. Exten-
sive experiments on the VQA-CP v2 and VQA V2 datasets demonstrate that our
proposed model outperforms most state-of-the-art methods.

Keywords: Relationship perception · Counterfactual samples · Visual question
answering

1 Introduction

In recent years, deep learning is booming. At the same time, natural language processing
and computer vision have also made qualitative leaps. Visual question answering (VQA)
task that combines image and text has also attracted much attention. Many large datasets
such as VQA V2 [11] and VQA-CP v2 [2] have also been released to promote the
proposal of numerous VQA algorithms. For the VQA task, under the multimodal input
of a given image and image-based questions, it aims to obtain answers to the questions
according to the content of the image.

In computer vision tasks, relationships between objects in images are extremely
important formodeling algorithms. Earlywork [4, 8, 10] alsomade some explorations on
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this. Divvala et al. [8] applied the relationship information between the objects contained
in the image to the task of object detection. The modeling of co-occurrence and relative
position information between image objects [10] has also been successfully applied to
object classification tasks. Different sizes of relationships between image objects [4]
can also be modeled as advanced visual features. The semantic and spatial relationship
between images [26] is used tomodel image description tasks to obtain sentences similar
to human language descriptions. Similarly, the relationships between these image objects
have also been well applied to the VQA task. Li et al. [14] proposed a relationship
perception model ReGAT, which defined the spatial and semantic relationships between
objects as explicit relationships, and defined the high-level relationships captured by the
fully connected graphs between modeled objects as implicit relationships. Li et al. [14]
usedgraph attentionnetwork tomodel the explicit relationships and implicit relationships
between image objects, and achieved excellent VQA performance.

Although many algorithms [1, 9, 14, 15, 17] have been proposed in VQA tasks, due
to the large amounts of deviations in their datasets, the above algorithms often learn the
pseudo-correlation of the image surface and cannot learn the real relationships between
the visual characteristics. For instance, for the question “What is the color of the banana
in this picture?”, themodel directly answers “yellow” according to the learned deviation,
but the banana in the picture may also be black or cyan. These learned language biases
will perform poorly on test sets with different question answering distributions. The
current methods to reduce language bias mainly include: (1) Obtain a more balanced
dataset. For example, the proposal of the VQA-CP v2 dataset divides the training set
and the test set into completely different distributions, which greatly reduces the data
deviation and alleviates the long-tail distribution problem of different types of data. (2)
Design a more suitable network structure. Chen et al. [6] proposed a counterfactual
sample generation model CSS, which generates a good deal of counterfactual samples
by masking the key objects of images or the keywords of questions, so that the model
is forced to focus on the key objects to answer the question and generate better vision
question answering results.

A visual question answering model based on Counterfactual Samples and Relational
Perception (CSRP) was raised by us to solve the above problems. Our model integrates
the counterfactual sample generation mechanism with the relational perception mod-
ule and has a new loss function. The counterfactual sample generation mechanism can
cover up the key objects in the image or cover up the keywords in the question or replace
them with synonyms to generate a great many counterfactual samples to enhance image
features, which reduces the long tail distribution problem in the dataset and forces the
model to focus on the key object. The relationship perception mechanism can learn more
fine-grained visual features by using explicit relationships such as spatial location infor-
mation between image objects, semantic relationships, and perceiving dynamic implicit
relationships between image regions. These visual features include deeper relationships
between objects to answer complex semantic questions. The fusion of counterfactual
samples and relationship perception can perceive a variety of complex relationships
between image objects to enhance visual features while using counterfactual sample
generationmechanisms to balance datasets, reduce language bias, and obtain more accu-
rate results for complex semantic problems result. Experimental results demonstrate that



Robust Visual Question Answering Based on Counterfactual Samples 147

our model can surpass most current models on the VQA-CP v2 dataset and VQA V2
dataset.

In conclusion, we have made the following contributions:

– We put forward a VQA model based on Counterfactual Samples and Relationship
Perception (CSRP). And we design a new loss function for our model. This is the first
time that counterfactual samples are combined with relational perception. The graph
convolutional attention network is used to perceive the complex semantic relationship
between image objects. The counterfactual sample generation mechanism generates
numerous counterfactual samples to reduce the learned language bias.

– A good deal of experimental results shows that this method surpasses most of the
advanced models on the VQA-CP v2 dataset and has made significant progress. Our
CSRP model reduces the deviation of the experimental results between the VQA-CP
v2 dataset and the VQA V2 dataset.

2 Related Work

2.1 Visual Question Answering

The general idea of the current visual question answering task is to use the image feature
extractor (usually CNN) and the question feature extractor (usually RNN) to encode the
input images and the questions respectively, and then to fuse the multimodal features
of the images and the questions. Finally, the fusion feature is used as the input of the
classifier to obtain the VQA result. Some works [16, 20, 27] explored the use of an
attention mechanism as an image feature extractor to obtain problem-related image
regions. The new problem feature extractor [15, 16] was also designed to explore the
visual features related to the problem.We directly encode the relationship between image
objects as fine-grained visual features to be applied to the visual question answering task.

2.2 Counterfactual Sample Synthesis Mechanism for VQA

Some recent research works [1, 6, 18] began to focus on the direction of counterfactual
sample generation to enhance the input image and problem features to reduce language
bias. Agarwal et al. [1] proposed the use of a GAN-based [30] model to re-synthesize
images from a causal point of view. Inspired by [6], the counterfactual sample synthesis
mechanism we adopted uses the visual features extracted by Faster R-CNN to mask
several key objects to obtain the counterfactual image or mask or replace the problem
features encoded by the problem to obtain the counterfactual problem. This method only
cuts and replaces the original image or problem, which is more convenient and simpler.

2.3 Relationship Perception in VQA

We define the spatial position relationship, size relationship, co-occurrence relation-
ship, and semantic relationship representing action interaction between image objects
as explicit relationships. At the same time, there are some high-level implicit relation-
ships between image regions that are not visible but can be learned through the network.
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Generally [13, 22] dynamically captured implicit relationships by constructing a fully
connected graph of input features. Santoro et al. [22] used the attention mechanism to
model pairwise relationships end-to-end. Our relationship perception includes explicit
relationships and implicit relationships. By using graph attention networks to model
explicit relationships, different nodes can be assigned different weights. Implicit rela-
tionships are realized by constructing a fully connected relationship graph. We model
explicit and implicit relationships to obtain high-level features of the image, which helps
the VQA task.

3 Method

We first make a simple definition of the VQA task: based on taking VQA as a multi-
classification task, given the input image I, the question Q and the standard answer a
∈ A, our goal is to pass the mapping function f vqa: I × Q → [0, 1]|A|. The predicted
answer a* obtained by learning can approximate the real answer a to the greatest extent.

a∗ = fvqa(V , Q) = Pvqa(a|I , Q). (1)

The basic framework of our proposed CSRP model is revealed in Fig. 1. We propose
a relationship perception module and a counterfactual sample generation module based
on the UpDn model [3]. The input image is passed through the Faster R-CNN encoder
to extract visual features, and the input question is passed through the problem encoder
to extract semantic features. Then the extracted visual and semantic features are fused,
and the answer to the question is obtained through the classifier.

Our CSRP model first adds a relational perception module after the image encoder
and the question encoder and combines the visual features and semantic features into
visual semantic pairs to construct the relation graph, so that the relation graph will be
based on the question semantics. Relations related to the problem are assigned greater
weight. The gained relationship graph features and the text features acquired by the ques-
tion encoder are further multimodally fused in the fusionmodule of UpDn. After passing
through the UpDn classifier module, the predicted answer obtained in the above process
is combined with the input image and the question feature as the input of our counterfac-
tual sample generation mechanism. The counterfactual sample generation mechanism
will acquire counterfactual samples by overspreading key objects of the original image
or covering keywords in the question. The generated counterfactual samples and original
samples will be used as input samples to the VQA model to obtain our final predicted
answer.

3.1 Relationship Perception Network

The content of the blue box in Fig. 1 represents our relationship perception module. All
object features and problem features of the input image will be combined into pairs to
construct an explicit relationship graph and an implicit relationship graph to obtain high-
level visual features. Next, we will introduce three parts: implicit graph construction,
explicit graph construction, and question-adaptive relational encoder.
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Fig. 1. A model framework based on Counterfactual Samples and Relationship Perception
(CSRP). Among them, I, I+, I− represent the original image, factual image and counterfactual
image, Q, Q+, Q− represent the original question, factual question and counterfactual question.
Obj represents the object, R represents the relationship.

Implicit Graph Construction. The implicit relationship refers to the high-level
dynamic relationship existing between the object regions of the image. Although it is
not visible, it can be obtained through learning. Implicit relations are extremely efficient
for answering complex questions in VQA. Constructing implicit relationships into an
implicit graph can facilitate updating with the help of graph structure. For each object vi

obtained by Faster R-CNN encoding of the image, i = 1, 2,… k, we regard each object vi

as a vertex, which can form a fully connected undirected graph G = (V, E), where V is
the set of all object vertices, and E is the set of k × (k − 1) edges. This fully connected
undirected graph can be expressed as an implicit graph, and each edge in E is used to
learn the implicit relationship between different objects.

Explicit Graph Construction. Pre-trained classifiers are used to extract different rela-
tionships between input objects and obtain prior knowledge about the edges between
objects. For the implicit relational graph, we can cut out the edges without relevant
knowledge to convert the implicit graph to the explicit graph based on prior knowledge.
For the explicit relationship between image objects, we explore the spatial relationship
and semantic relationship. Inspired by [14], we model spatial relations and semantic
relations as spatial graphs and semantic graphs. The spatial graphs can be expressed
as <objecti − predicate − objectj>, where predicate represents the spatial position
relationship of objecti relative to objectj. As shown in the left picture of Fig. 2, <horse
− over − chair> means the toy horse is over the chair. The spatial diagram relationship
must be symmetrical. The semantic graphs can be expressed as <subjecti − predicate
− objectj>. As shown in the right picture of Fig. 2, <man − surfing − surfboard>
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means that the man is surfing on a surfboard. The relationship between semantic graphs
is unidirectional.

Fig. 2. Examples of spatial relations and semantic relations. The arrow indicates the direction of
the relationship, and the text in the middle of the arrow indicates the specific relationship.

Question-Adaptive Relational Encoder. After constructing the visual and textual fea-
tures into explicit and implicit graphs, the problem-adaptive relational encoder is used
to extract the dynamic relationship between these objects. The details are as follows:
we combine question features with visual relation features to design a question-based
relational encoder and input the semantic information carried in the question into the
relational encoder. A relational graph can be learned in line with the importance of the
question, where the edges related to the question will have greater significance. This is
done by embedding the problem feature q with the visual feature vi, i = 1, 2,… k. As
shown in formula 2:

v
′
i = [

vi||q
]

i = 1, · · · , k (2)

After feature embedding, the self-attention mechanism is used for each object in the

relationship graph to learn the hidden fine-grained relationship features
{
v∗

i

}k
i=1. Among

them:

v∗
i = σ

(∑

j∈Ni
aij · Wv

′
j

)
. (3)

In formula 3, σ represents a nonlinear activation function. aij is the attention weight
coefficient of the relation graph, and different relation graphs have different coefficients.
W is the projection matrix, W ∈ Rdh×(dq+dv). We continue to fuse the high-level rela-
tionship feature v∗

i obtained by the above operation with the original question feature q
in the feature fusion layer, and then pass it to the classifier to obtain the predicted answer
result.

3.2 Counterfactual Sample Generation Mechanism

Our counterfactual sample module is shown in the green box in Fig. 1. After the rela-
tionship perception based UpDn algorithm, we can get the triple (I, Q, a*), where a* is
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the predicted answer we get. Inputting the above triples into the counterfactual sample
generation mechanism to obtain image triples (I, I+, I−) and question triples (Q, Q+,
Q−), and use the obtained image and question features as the input of the VQA model.
According to the more evenly distributed input data, we can get a better visual question
answering performance. The process is shown in Algorithm 1. First, use the original
sample to train the model to get the triples (I, Q, a*), and execute the image counter-
factual or problem counterfactual according to the generated random numbers, use the
generated counterfactual image or question together with the original sample as the input
of the training model to continue training. Next, we will give a detailed introduction to
the image counterfactual generation mechanism and the problem counterfactual genera-
tion mechanism. We also introduce the loss function. In the following, for convenience,
we use a to denote a∗.

Algorithm 1 CSRP Model Based on VQA Task
1: function CSRP (I, Q, a)
2: def function VQA(I, Q a)
3: V ev(I)
4: Q eq(Q)
5: Pvqa fvqa(V, Q)
6: Loss XE(Pvqa, a)
7: end function
8: V, Q, Pvqa(a) VQA(I, Q, a)
9: if cond then
10: execute Image-Counterfactual
11:    else
13: execute Problem-Counterfactual
14: VQA( I, Q−, a−) Or VQA( I−, Q, a−)
15: end function

Image Counterfactual Generation Mechanism. Based on the visual objects in the
text question and answer pair (Q, a), not all visual objects I are related to the question
or answer. Therefore, we crop all visual objects according to the questions and answers
to delete irrelevant visual objects and reduce the scope of related visual objects. In a
specific implementation, we first perform part-of-speech tagging on (Q, a) to extract the
noun entity, calculate the cosine similarity between the noun and the object category, and
use the first N image objects with the highest cosine similarity score as our benchmark
object set I. Then calculate the importance of each entity object to the answer on the
benchmark object set.

We use a modified Grad-Cam [22] to calculate the relative importance of a single
object to the ground truth. The calculation formula for the relative importance of the i-th
object is:

s(a, vi) = S
(
Pvqa(a), vi

) = (∇viPvqa(a)
)T1. (4)

where vi represents the i-th object feature, and Pvqa(a) represents the predicted
probability of answer a obtained through the VQA model. 1 is a vector all ones. After
getting s(a, vi), we sort the object set in descending order according to it, and take the
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first K objects in the object set as the key object set I+. The selection of K value is
dynamic. I− is generated by subtracting I+ from the set of objects I. Figure 3 displays a
case of how we generate I+ and I−. For the counterfactual image, it forms a triple (I−,
Q, a−) with the original question and the counterfactual answer. The a− is generated by
adding negative words to the original answer, such as “Not”.

Fig. 3. Examples of counterfactual images and counterfactual questions generated by the original
image question pair.

Problem Counterfactual Generation Mechanism. For the problem counterfactual,
its generation steps are similar to the image counterfactual generation mechanism. First,
compute the significance of the i-th word feature in question to ground truth answer:

s(a, wi) = S
(
Pvqa(a), wi

) = (∇wiPvqa(a)
)T1. (5)

Then divide the question into words that mark the question type and the remaining
words. As shown the question “What is the color of this dog?” in Fig. 3, the wordmarked
with the question type is: “What is”. We select the top M words with the highest s(a,
wi) among the remaining words as key words, and replace the key words we get with
special characters “[Mask]” to get the counterfactual question sentence Q−. As in the
example, get Q−: “What is the color of this [Mask]?”. Then Q+ is to remain the key
words we achieved in Q− in the remaining words under the condition that the problem
type remains unchanged, and replace all the remaining words with “[Mask]”.

3.3 Loss Functions

Generally, during VQA training, this task is regarded as a multi-classification task. And
employ the soft maximum cross-entropy function for training:

Lvqa = −1

N

∑N

i=1
log

(
softmax

(
fvqa(Xi), ai

))
. (6)

And our training model has made some improvements on this basis. Our fvqa(Xi)

can be computed by:

fvqa(Xi) = α Psem(X = Xi) + β Pspa(X = Xi) + (1 − α − β) Pimp(X = Xi). (7)
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where Psem(X = Xi), Pspa(X = Xi), and Pimp(X = Xi) represent the predicted prob-
ability of the answer gained using the pre-trained semantic relationship model, spatial
relationship model, and implicit relationship model. α, β are training hyperparameters.

During training, the traditional cross-entropy loss function cannot improve the data
with the long-tailed distribution. Inspired by the good performance of focal loss proposed
in [28] on object detection tasks, we use this loss function in VQA tasks. The focal loss is
based on the standard cross-entropy loss function. Aiming at the problem of unbalanced
data category difficulty, the design function pays more attention to difficult-to-classify
samples. As shown in the following formula:

Lvqa = −1

N

∑N

i=1
{(1 − softmax(fvqa(Xi), )

γ log(softmax(fvqa(Xi), ai))}. (8)

where γ is called the focusing parameter, γ ≥ 0. The purpose of adding this mod-
ulation factor is to assign greater weight to difficult-to-classify samples to balance the
difficulty of the samples.

4 Experiment

4.1 Dataset

Ourmodel has conducted extensive experiments on two challenging benchmark datasets,
the VQA V2 dataset, and the VQA-CP v2 dataset. The VQA V2 dataset contains real
images from the MSCOCO dataset. It consists of 82783 training image samples, 40504
validation set sample images and 81434 test sample images, and includes multiple open
questions and answers provided by real people. The VQA-CP v2 dataset rest on the
VQA V2 dataset. The training set and the validation set are re-divided to punish the
type of answer given based on the deviation of the question. The VQA-CP v2 dataset is
proposed to simulate the distribution of the actual application dataset.

4.2 Parameter Setting

In our model implementation, we use predefined classifiers to extract prior knowledge
about explicit relationships. Specifically, Resnet-101 is used to extract the bounding box
features and target detection features of the original input image. For the counterfactual
image module, we select 9 basic objects with the highest cosine similarity score as our
basic object set. In the counterfactual question module, only using “[Mask]” to replace
one key object works best. Ourmodel is implemented in Pytorch, and the batch size is set
to 256. Our loss function is focal loss. We use the Adamax optimizer for training. And
in terms of learning rate adjustment, we apply a warm-up strategy. In order to reduce the
parameters, dropout operation and normalization are performed after each linear layer.

4.3 Performance on the VQA-CP v2 Dataset

We verify the experimental performance of our proposed CSRP model on the VQA CP
v2 dataset and VQA V2 dataset and compare them with the advanced models of the
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two datasets. On the VQA-CP v2 dataset, the models we compared are divided into four
categories: The first category is SAN-based methods [25], for example, GVQA [2]. The
second basic model is a non-reorganized method, including CF [23] and CF+GS [23].
The third method is based on UpDn [3], which is currently the moremainstreammethod,
including RUBi [5], LMH [7], etc. The fourth method is based on the VQA reasoning
model, including multi-modal reasoning MuRel [5] and causal-based reasoning CIKD
[19]. Our CSRP model can achieve 58.55% of the experimental performance, which is
better than the othermodels in Table 1. And comparedwith 57.59% of the second-ranked
SSL model in the table, our model improves the experimental performance by 0.96%.
On the Num problem, we obtained the best result of 50.80%. The experimental effect
of the CSRP model we proposed has reached the first-class level in the VQA-CP v2
dataset.

4.4 Performance on the VQA V2 Dataset

Table 2 demonstrates the experimental results of our CSPR model on the VQA V2
dataset. On the VQA V2 dataset, we compare seven advanced models including GVQA
and RUBi. The experimental results indicate that our model can get relatively leading
experimental results on this dataset, and the accuracy rate is as high as 62.37%. Although
it is 1.11% lower than the experimental result of UpDn, our experimental result exceeds
the other models in Table 2. In general, our CSRP model can still achieve high results
on the VQA V2 dataset.

4.5 Ablation Experiment of CSRP Model

To explore the significance of our proposed model, we conducted ablation experiments
to compare our CSRP model with the CSS model using only the counterfactual sample
synthesismechanism and the ReGATmodel using only the relational perceptionmodule.
Table 3displays the results of our experiment.On theVQA-CPv2dataset,CSRPachieves
a good performance of 58.55%. Compared with the ReGAT model, the experimental
results have increased from 39.60% to 58.55%, an increase of 18.95%. And increased
the CSSmodel from 57.74% to 58.55%, an increase of 0.81%. Such excellent results can
be achieved because the CSRP model can combine the advantages of the counterfactual
sample synthesis mechanism and the relational perception module. On the VQA V2
dataset, we get a result of 62.37%. Compared with the CSS model, our experimental
results increased by 2.46%, which indicates that the relational perception learned by our
CSRP module can further improve the performance of VQA. Compared with ReGAT,
our model reduces by 1.21%. This may be because the counterfactual sample generation
mechanism interferes with the surface deviation that the model learns on the dataset,
thereby reducing performance. And the experimental results in Table 3 display that
the CSRP model can reduce the result deviation between these two datasets to 3.82%.
This is compared with the 23.98% data deviation of the ReGAT model, indicating that
our CSRP model can effectively learn the true correlation of the dataset to different
distributed datasets. And effectively reduce the language deviation in the VQA dataset,
and enhance the migration ability of the model.
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Table 1. Experimental results on theVQA-CPv2dataset, * indicates thatwehave re-implemented
the experimental results of the model, and the best experimental results are shown in bold.

VQA-CP v2 test

Model Venue Expl Overrall Yes/No Num Other

SAN [25] CVPR’16 24.96 38.35 11.14 21.74

GVQA [2] CVPR’18 31.30 57.99 13.68 22.14

Unshuffing [24] ECCV’20 42.39 47.72 14.43 47.24

+CF [23] ECCV’20 HAT 46.00 61.30 15.60 46.00

+CF+GS [23] ECCV’20 HAT 46.80 64.50 15.30 45.90

UpDn [3] CVPR’18 39.74 42.27 11.93 46.05

+ReGAT*[14] ICCV’19 39.60 42.57 12.08 45.60

+AREG [21] NeurIPS’18 41.17 65.49 15.48 35.48

+GRL [12] ACL’19 42.33 59.74 14.78 40.76

+RUBi [5] NeurIPS’19 44.23 67.05 17.48 39.61

+LMH [7] EMNLP’19 52.01 72.58 31.12 46.97

+SSL [29] AAAI’20 57.59 86.53 29.87 50.03

MuRel [5] CVPR’19 39.54 42.85 13.17 45.04

CIKD [19] MMAsia’21 54.05 90.01 15.10 45.88

CSRP (Ours) 58.55 88.22 50.80 45.13

Table 2. The experimental results on the VQA V2 dataset, the results of best experiment are
shown in bold.

VQA V2 val

Model Overrall Yes/No Num Other

GVQA [2] 48.24 72.03 31.17 34.65

RUBi [5] 50.56 49.45 41.02 53.95

CSS [6] 59.91 73.25 39.77 55.11

Unshuffling [24] 61.08 78.32 42.16 52.81

LMH [7] 61.64 77.85 40.03 55.04

CIKD [19] 61.29 76.34 40.20 55.43

UpDn [3] 63.48 81.18 42.14 55.56

CSRP (Ours) 62.37 80.72 41.58 53.93
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Table 3. The ablation experiment of the CSRP model, * indicates that we have re-implemented
the experimental results of the model. The best experiment is highlighted in bold.

Model VQA V2 val VQA-CP v2 test GAP

Overrall Y/N Num Other Overrall Y/N Num Other

ReGAT* 63.58 81.94 43.97 54.86 39.60 42.57 12.08 45.60 23.98

CSS* 59.91 73.25 39.77 55.11 57.74 83.18 47.59 47.19 2.17

CSRP kik (Ours) 62.37 80.72 41.58 53.93 58.55 88.22 50.80 45.13 3.82

5 Conclusion

To improve the performance of visual question answering and reduce the language
bias learned in the training dataset, we put forward a model based on Counterfactual
Samples and Relational Perception (CSRP). This is the first time that the counterfactual
sample synthesis mechanism has been integrated with the relational perception module.
The model can learn more visually fine-grained relational features through relational
perception. Moreover, it can obtain counterfactual samples by shielding the key objects
of the original sample, forcing themodel to focus on answering questionsmost relevant to
the object. This can enhance the characteristics of the input data and reduce the deviation
of the dataset. Our proposed model can surpass most other models on the VQA-CP v2
data set and VQA V2 data set, which proves the effectiveness of our model.
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Abstract. Semi-supervised network is an important branch in video anomaly
detection. Previous methods committed to modeling the common feature or dis-
tribution of normal data. With the introduction of the pose graph, the model can
focus on the behavior of the human body. However, graph embedded networks
suffer from the heavy computational cost and could not accurately predict the dis-
tribution of normal data. To better tackle these issues, a prototype generation-based
graph convolutional network is proposed for anomaly detection, which introduce
shift operation and prototype generation module to obtain the distribution of nor-
mal data while simplifying the model. Extensive experiments is implemented on
ShanghaiTech dataset, the result (76.7 AUC) shows that the proposed approach
outperforms most of mainstream models.

Keywords: Human pose · Shift operation · Graph convolution · Prototype
generation

1 Introduction

Video Anomaly Detection (VAD) aims to identify the abnormal video and locate the
position of the abnormal video snippet. As one of the essential supporting technologies
for understanding human behavior, VAD has been widely used in real-world scenarios,
e.g. video surveillance, customs inspection, and medical treatment. In recent years,
methods that used deep learning have achieved remarkable results [1, 3, 13, 14].

Although deep learning methods for VAD have been numerously investigated, there
are many problems with these methods. On the one hand, the definition of anomaly is
ambiguous. For example, holding a knife can be judged as anomalous if the event happens
outside the kitchen. This example indicates that the scene information is indispensable
for detection process. Thus noises such as light and background will have a critical effect
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on the judgement result. To address this problem, Markovitz et al. [1] proposed to use
the result of pose estimation directly, which exceedingly improves the performance of
the model when facing various scenes. On the other hand, there is a massive gap in
the number of normal and abnormal videos in the dataset. Even the abnormal videos,
only a few frames or snippets are identified as anomalous. For the characteristics of
the data set, some methods [13, 15, 16] were proposed to create compact, efficient, and
robust features. These methods are also called the weak supervision method. Others
focus on modeling the commonality of normal video clips. These methods only use
normal video clips during the training phase, so we refer to these methods collectively
as semi-supervised in the rest of the paper. They either utilize a proxy task [1, 3, 6] or
predict the distribution of normal videos [4, 7, 8, 11]. Previous work shows that the latter
is more practical and more challenging in real-world scenarios.

However, semi-supervisedmethods faced a commonproblem, thus thediscriminative
of normal/abnormal videos. Owing to anomaly video clips do not participate in the
training phase. Recently, Lv et al. [3] used a predictive model and proposed a DPU
module to map the normal video into prototypes. Different from the method mentioned
above, we focus on the human action itself and propose a novel approach that uses
prototypes to save and update the distribution of anomaly action.

As discussed above, we put forward a novel Dynamic Prototype based Graph convo-
lutional network for video anomaly detection, which takes advantage of the human pose
to boost the robustness of the network and a dynamic prototype unit to map the pattern
of normal data to the prototype pool. As illustrated in Fig. 1, our model takes a series of
pose graphs as input. Next, we expand the joint point coordinates into RGB patches and
send them to the shift graph convolution module to get the features of the video clips.
Then, we implement a prototype generation module to capture the distribution of normal
prototypes according to joint patches and time information. Finally, we followed [1] and
adopt a deep clustering model to calculate anomaly scores. We perform comprehensive
experiments on ShanghaiTech [5], achieving frame-level AUC scores of 76.7%.

In summary, we summarize the contribution into the following three points:
First, a novel shift graph convolution module is designed for reducing the calculation

amount.
Secondly, a novel Prototype Generation-based Graph convolutional network is pro-

posed for VAD, which locate the pivotal time clips and human body parts. With a simple
module added, the performance improves a lot.

Thirdly, the novel network is verified on ShanghaiTech Dataset, which outperforms
the current mainstream semi-supervised method.

2 Related Work

2.1 Video Anomaly Detection

Since VAD is always regarded as an unsupervised issue, current approaches that adopt
CNN methods typically utilize another task as a proxy to learn some features and rep-
resentations. For example, Markovitz et al. [1] used frame reconstruct, and Liu et al. [6]
uses the frame predict method. Just like the problems faced by other semi-supervised
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methods, the powerful representation ability of CNN leads to an ‘over-generalizing’
dilemma. Inspired by MIL, Morais et al. [13] used a weakly-supervised method. Each
video is viewed as a set of video clips that will be assigned a label, which greatly reduce
the workload of manual labeling. Recently, Park et al. [4] introduced a memory module
into semi-supervised task where each item in the memory bank represents the normal
prototypical patterns. With an update scheme, diversified normal patterns are preserved,
which improves the model’s ability to discriminate. Previous work proved that ana-
lyzing human body parts at the instance level is of great significance to the study of
human behavior [20]. However, none of the methods mentioned above considers human
pose. Markovitz et al. [1] firstly took human pose into consideration and achieve inspire
improvement. However, the method has two drawbacks, compute costly and feature rep-
resent. In our method, we aim to use the pose to train the model and optimization the
feature to get a simple and effective method.

Fig. 1. Overview of Prototype Generation Based Graph Convolutional Network. Firstly, we use
pose estimation methods to extract human poses. Then, the shift temporal and spatial graph
convolution network (SST-GCN) is implemented to abstract movement features of the human
body. Next, we send embedding features into the prototype generationmodule. After redistributing
weights in the time dimension and the key point dimension, a deep clustering layer calculate the
final anomaly scores.

2.2 Graph Convolutional Networks

By using the adjacency matrix to assign different weights to the information importance
of various neighbors, the graph convolutional network (GCN) can capturemore complete
feature information. Although it requires more calculations, GCN has a wide range of
versatility.

Recently, many approaches were proposed for introducing graph data into computer
vision and natural language processing. Following Kipf and Welling [17], Yan et al.
[18] and Yu et al. [19] proposed to combine temporal and spatial graph convolution (ST-
GCN). To better model the positional relationship of human skeleton nodes, Markovitz
et al. [1] proposes to use three parallel graph convolutions to obtain static, global, and
attention-based feature information. We follow their spatial attention graph convolution
module, illustrated in Fig. 2. In recent years, a lot of work attempt to reduce the amount
of calculation for graph convolution. Among these approaches, Cheng et al. [2] simplify
skeleton-based network with shift graph convolutional network. In this paper, we intro-
duce Shift-GCN to a spatial attention graph convolution module. What’s more, we also
use the time shift to simplify our model further.
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2.3 Prototype Generation Module

By directly modeling the data or establishing a conditional probability distribution, the
generative model can accurately predict the possible distribution of the data. Nowadays,
a lot of work based on deep learning has introduced generative models. This trend is
particularly evident in the field of unsupervised tasks.

For VAD, the generation module can effectively deal with the problem of ‘over-
generalizing’. Sabokrou et al. [7] believe that normal data obey an overall distribution
and map them into a hypersphere. Yet they did not consider the complexity of the
context and the diversity of normal patterns. Further, Gong et al. [8] and Park et al.
[9] introduce a memory bank into the autoencoder for anomaly detection. Although
they prove the performance of the methods, the memory cost has become a problem to
consider. Recently, Lv et al. [3] propose to model the prototypes of normal data and use
pixel-level attention mechanisms to locate normal patterns. We follow their Dynamic
Prototype Unit (DPU), but we change the attention map to frames and human key points.

3 Method

In this section, we first give an overview of the dynamic prototype-based graph convolu-
tional network (DP-GCN) and describe the details of the feature extracting module and
prototype generationmodule later. Next, the details of the object function and implement
will be introduced.

3.1 Architecture Overview

Our proposed DP-GCN is illustrated as Fig. 1, in which the feature extraction module
obtains the representationof normal humanpose sequencewhile the prototypegeneration
module is designed to assign weights for feature maps and model the prototypes of
normal data. Given a sequence of video frames, our method first exacts the human
pose information. After a shift GCN autoencoder, the exacted features are sent to the
prototype generation module. Finally, the aggregation features are re-clustered as the
method mentioned in [1].

3.2 Feature Extraction Module

The based Spatio-temporal Graph Convolution Block (ST-GCN) is illustrated in Fig. 2.
The spatial attention and shift GCN operation [2] is introduced into ST-GCN, and they
construct a Shift Spatio-temporal GCN Auto Encoder (SST-GCAE).

As for the graph convolution block, the two branches of Spatial Attention GCN in [1]
are retained, which use a globally-learnable matrix A and inferred adjacency matrices
B. Another shift branch is utilized to simplify the model while ensuring the performance
of graph convolution. The Shift GCN Spatial Attention block is illustrated in Fig. 3.
F ∈ R

C×T×V represents the processed skeleton graph information, where the C, T, and
V are the input dimension of the channel, time, and human key points. Three copies
are generated and are performed standard graph convolution operations on two of them
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Fig. 2. The basic block used for constructing Shift Spatio-temporal GCN Auto Encoder (SST-
GCAE). The module consists of a shift spatial attention GCN, a temporal shift operation block,
and a batch normalization block. The shift spatial attention GCN is designed to embed the features
of adjacent key points. The temporal shift operation block performs a typical shift operation in
the time dimension. The result after regularization is aggregated with the residual branch and sent
to the Activation function.

with A and B. It should be noted that the size of B is [N , V , V ], while adjacency A
is [V , V ] matrices branch. So that the branch of A can capture dataset-level key point
relations and the branch of B can capture batch-level relations. The third copy of F is
sent to perform shift operations. For each frame of feature map Ft ∈ R

C×V, the shift
distance of i − th channel is set to i mod V . Finally, the output of three branches are
stacked in the channel dimension.

Fig. 3. The detail of Shift Spatial Attention Graph Convolutional Network. The N, C, T, and V are
the input dimension of the batch size, channel, time, and human key points. The shift branch uses
the topology of the human body after shift operation. And the adjacency matrixes A and B learned
global information and attention-based information separately. The result of three branches are
stacked into a [N , 3 ∗ C, T , N ] feature map.

Behind the Shift GCN Spatial Attention block, the module also introduce the shift
operation into the temporal convolution. After the Shift GCN Spatial Attention block,
the embedded feature map G ∈ R

C′×T×V is given, where C
′ = 3×C. The shift distance

of the time dimension is set as a learnable variable Di, i = 1, 2, ...,C
′
. And the variable
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is no longer limited to an integer, but a real number:

G̃(v,t,i)= (1−λ) · G(v,�t+Di�,i) + λ · G(v,�t +Di�+1,i) (1)

where λ = Di − �Di�. After our lightweight SST-GCAE, information-rich features in
space and time dimensions can be obtained.

3.3 Prototype Generation Module

The prototype generation module (PGM) aims to maps the normal data into proto-
types and update them during the training phase. Inspired by [3], a prototype generation
module is introduced into our network. Different from previous work, the proposed app-
roach focuses on key frames and important joint points. By introducing the attention
mechanism in the temporal dimension and key point dimension, the normal patterns of
important positions and time periods can be captured.

Figure 4 shows the prototype generation module. Concretely, with the input feature
maps X ∈ R

C′×T×V, N attention maps are set to assign normalcy weights to encoding
vectors. Here, Wn ∈ R

T×V denotes the n − th attention map. Then, N prototypes are
generated:

pn =
T∑

i=1

V∑

j=1

wn
ij

T∑

i′=1

V∑

j′=1

wn
i′ j′

xij (2)

Where wn
ij ∈ Wn. Next, prototypes are used to reconstruct a normalcy feature map:

x̃ij =
N∑

n=1

βn
ij · pn (3)

Where βn
ij = xijpn

∑N
n
′ =1

xijpn
′ denotes the relevant score between the vector at i − th

frame and the j− th key points and the n− th prototype. Finally, the normalcy feature is
aggregated with the original X and apply a deep cluster layer to calculate the anomaly
score. The detail of the cluster layer is the same as [1]. Since the cluster layer is not the
focus of our research, we will not introduce it here.

3.4 VAD Objective Functions

The training process is divided into two steps. Firstly, we pre-train an autoencoder to
reconstruct features. Next, we fine-tune our model by fixing decoder parameters.

Pre-training. This phase aims to extract the feature of normal data with our SST-GCAE
and PGM. The loss function is composed of a reconstruction loss Lrec and a generation
loss Lgen. Lrec is the L2 distance of the input and the reconstructed pose graph map. And
Lgen formula is as:

Lgen = Lc + λLd (4)
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Where λ is the weight parameter. Lc is the L2 loss of the input vector of PGM and
the closest prototype:

Lc = 1

T × V

T∑

i′=1

V∑

j′=1

∥∥xij − p∗∥∥
2,

s.t., ∗ = arg max
1≤n≤N

βn
ij (5)

Ld is used to keep distance between prototypes, ensure the diversity of prototypes.

Ld = 2

N (N − 1)

N∑

n=1

N∑

n′=1

[−
∥∥∥pn − pn

′ ∥∥∥
2
+ γ ] (6)

Where γ is set to control the margin between prototypes.

Fine-tuning. During this phase, the cluster loss Lcluster is considered. Finally, the
objective function is generated by combining three losses mentioned above:

L = Lrec + λ1Lgen + λ2Lcluster (7)

Where λ1 and λ2 are the coefficient used to control the proportion of the three losses.

Fig. 4. The construction of prototype generation module. The C, T, and V are the input dimension
of the channel, time, and human key points. The module firstly constructsN attention maps. In the
figure, N is set to 4, and Generate N normal prototypes according to the weight of each attention
map. Next, the input is split at the pixel level and the split vector is reconstructed according to the
relationship with each prototype. After the prototype generation module, the feature map focus
on crucial joint points and frames.
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4 Experiments

We evaluated the performance of our model on the ShanghaiTech dataset [5] and an
Ablation study is designed to verify the impact of each part of the model on the network.

4.1 Experiments on ShanghaiTech

Dataset. The ShanghaiTech dataset is one of the most commonly used databases in
anomaly detection, which contains 330 training videos and 107 testing videos.The length
of each video varies from 15 s to 1 min. The data is collected from 13 scenes. For each
video clips, the number of people range from 0–20. All of the training video are normal
video, and there are various of anomaly event in testing video like running, robbing and
fighting.

Evaluation Metrics. Following previous work [4, 9, 10], we adopt Area under ROC
Curve (AUC) as the indicator of model performance. By setting different thresholds
and frame-level anomaly scores, it is easy to find the influence of any threshold on the
generalization performance of the learner.

Implementation Details. We extract the human pose from the input RGB images and
for each exacted pose, we expand 18 coordinate points outward into 18× 18× 3 patches.
Then we merge the patch information into the channel dimension, the channel is set to
64. We use 9 GCN layers to extract feature maps and add one PGM at the last layer.
During the pre-training phase, the model is trained with the learning rate as 0.0008 and
batch size as 64. The training epoch is set to 10. During the fine-tuning phase, we set
the learning rate and batch size as 0.0001 and 128. The training epoch is set to 25. The
balance weights in the objective functions are set as λ1 = 0.0001, λ2 = 0.0001, λ = 1.
The experiment was carried out on a Nvidia RTX-2080Ti GPU.

Results. The AUC result on ShanghaiTech is shown in Table 1. Compared with other
state-of-the-art methods, our DP-GCN achieves 76.7% AUC score, which outperforms
the previous state-of-the-art semi-supervised methods by a large margin. When com-
paredwithweakly-supervisedmethods, ourmodel also shows encouraging performance.
Notice that our method doesn’t need any annotation during the training phase, which
has more extensive applications in real-world scenarios. [1] and [3] are the most related
methods to our approach, it can be seen that our mothed outperforms them by 0.6 point
and 2.9 points. The results prove that the combination of the generated prototype model
and the shift graph convolutional network has excellent advantages.



Prototype Generation Based Shift Graph Convolutional Network 167

Table 1. Experiments performance on ShanghaiTech

Supervision Method AUC

Semi-Supervised Conv-AE [16] 60.9

Stacked-RNN [5] 68.0

Mem [4] 70.5

Mem-AE [8] 71.2

CGAN [6] 72.8

U-Net [12] 73.0

ST-GCN [1] 76.1

DPU [3] 73.8

rGAN*[11] 73.7

Weakly Supervised MPED-RNN [13] 73.4

Noisy labels + GCN [14] 76.4

Deep MIL [15] 82.3

Semi-Supervised Ours 76.7

4.2 Ablation Study

In this section, we first demonstrate the importance of each module in the network, and
then, we analyze the impact of batch size and patch size. As shown in Table 2, the basic
model comes from [1], in which the GCN module adopts 3 adjacency matrixes, and
temporal convolution block is ordinary 2D convolution.

Shift Operation. As can be seen from the first two lines that the temporal shift is better
than shift GCN operation, in the case of introducing only one-shift operation. The reason
may be that the original temporal convolution cannot well extract the distribution feature
of normal data in the time dimension. While the spatial attention graph convolution is
able to extract spatial features well, due to its complex structure. Hence, the introduction
of shift GCN makes the final result lower than the basic model. The result of the third
line shows that the net result of combining the two shifts of temporal and spatial is

Table 2. Results of ablation experiments on ShanghaiTech Dataset

Shift GCN Shift TCN PGM AUC

76.1√
75.5√
76.2√ √
76.4√ √ √
76.7
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Table 3. Comparisons between different Batch Size and Patch Size

Batch Size Patch Size AUC

64 16 73.0

18 76.4

20 73.2

128 16 76.3

18 76.7

better than using one of the networks alone. We finally add the PGM to our network, the
performance of our network reach 76.7 AUC.

Patch Size. We tried to use different batch sizes and patch sizes. The result is shown
in Table 3. In the case of the same batch size, the performance of the model is not
positively correlated with the size of the patch size. On the one hand, the small size of
patches causes the loss of scene information. On the other hand, setting the size too large
will introduce unnecessary noise. When we set the patch size to 18, the captured image
patches just cover the person.

Batch Size.We have chosen two batch size settings of 64 and 128. The performance of
the latter is better than the former in general. The reason is that large batches help the
model better learn the distribution of normal data.

5 Conclusion

In this paper, we proposed a novel Dynamic Prototype-based Graph convolutional net-
work (DPM-GCN) for video anomaly detection. By replacing the basic graph convolu-
tional with shift operation, DPM-GCN outperforms the original spatial attention graph
convolution with less calculation. In addition, we introduced a prototype generation
module to better predict the distribution of normal data. Sufficient Experiments prove
that our method has superior performance compared with mainstream methods. Future
work includes validate ourmodel onmore data sets and combinemore scene information
to optimize the model.
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Abstract. In the process of imagedenoising basedon anisotropic diffusionmodel,
the problem of edge information loss and “staircase effect” often appear. On the
basis of anisotropic diffusion model, this paper combines the fractional diffusion
model with the gradient based integer diffusion model, and introduces washout
filter as the control term of themodel, a new image super-resolution reconstruction
algorithm based on hybrid diffusionmodel is proposed. In our proposedmodel, the
fractional derivative will adjust its size adaptively according to the local variance
of the image, and because the threshold k in the traditional diffusion function
requires a lot of data experiments to get the best results, we also propose an
adaptive threshold k function, whose value changes adaptively with the gradient
of the image. Simulation results show that, compared with other algorithms, the
new model still has a strong ability to retain image details and edge information
after image reconstruction, and the introduced washout filter will also speed up
the rapid convergence of the system to a stable state, and improve the convergence
speed and stability of the system.

Keywords: Anisotropic diffusion · Fractional-order partial derivative · Mixed
diffusion · Image super-resolution reconstruction

1 Introduction

Image resolution represents the number of pixels contained in a unit area of an image,
and is one of the important indicators for evaluating image quality. The quality of the
image will also directly affect the visual perception. The richness of the information con-
tained in the image is closely related to the resolution of the image. The higher the image
resolution, the image will convey more detailed information, and the visual perception
effect of people will be better [1]. However, limited by image hardware equipment,
environment, cost and other factors, in many fields such as security monitoring, medi-
cal treatment, low-resolution images can no longer meet people’s needs. At this time,
higher-resolution images are needed. The technology of restoring and reconstructing
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a high-resolution image from a low-resolution image is essentially an ill-conditioned
inverse problem. It has always been a research difficulty in the field of image process-
ing. It can be roughly divided into two recovery methods, hardware and software. To
improve the resolution of an image from the hardware aspect, a high-definition camera
is often required, and the equipment investment and cost are relatively high. Therefore,
the image-based super-resolution reconstruction technology has emerged as the times
require. Image super-resolution reconstruction technology refers to the use of signal
processing technology [2] on the basis of not improving the hardware conditions, to
supplement the missing part of the input low-resolution image with high-value informa-
tion, and perform processing on the input low-resolution image. The method to increase
the resolution.

The super-resolution reconstruction technology based on a single image can be
divided into three categories [3]: super-resolution technology based on interpolation,
super-resolution technology based on reconstruction, and super-resolution technology
based on learning. The interpolation-based image super-resolution reconstruction algo-
rithm generally obtains the gray value of the pixel to be interpolated by weighting
and estimating the pixel to be interpolated through the neighboring known pixels. The
reconstruction-based super-resolution technology [4] is a method to establish different
a priori models based on the information in the image degradation process, and to solve
them in reverse to improve the image resolution. At present, most research is based on
the image super-resolution reconstruction technology based on learning. Unlike other
methods, the learning-based method includes a training step. A large number of high-
resolution images will be used to construct a learning library to generate a learning
model. In the process of image restoration, the prior knowledge obtained by the learn-
ing model is introduced to obtain the high-frequency details of the image and obtain a
better image restoration effect. This article uses super-resolution technology based on
reconstruction.

In recent years, image processing technology based on partial differential equations
has developed rapidly, and it has good effects in image denoising and image super-
resolution reconstruction. Afraites [5] proposed an image denoising model constrained
and optimized by high-order partial differential equations. The partial differential equa-
tions are composed of second- order and fourth-order diffusion tensors, which combines
the diffusion advantages of the PMmodel in uniform areas and near sharp edges, an effi-
cient image denoising model is obtained. Tian [6] proposed two image segmentation and
image denoising models based on partial differential equations, and constructed a trend
fidelity term that can effectively suppress the staircase effect. At the same time, based on
the wavelet transform image denoising model of curvature change, the level-enhanced
image set is used to establish a curvature driving function based on the curvature of the
level set, and then the curvature driving function is introduced as a correction factor into
the variational model. The experiment verifies two improved models both have obvi-
ous denoising effects and good visual effects. Faiba [7] proposed a new hybrid image
denoising algorithm based on integer order and fractional total variation. The proposed
model is a combination of ROF model and fractional total variation, using the two mod-
els Advantages, and after introducing an appropriate norm space, it proves the existence
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and uniqueness of the model. The anisotropic diffusion method based on partial differ-
ential equation is a physical model-based image denoising algorithm. This method can
obtain a better denoising effect after multiple iterations of the denoised image. Chen [8]
proposed an image denoising model through adaptively weighted anisotropic diffusion,
which combines local diffusion components and patch-based diffusion components to
perform image denoising. In addition, a variable time step is also designed to solve the
problem of excessive smoothing. Bai [9] proposed a generalized anisotropic diffusion
image denoisingmodel. Themain idea is to introduce theG-derivative of the image inten-
sity function into the general anisotropic diffusion model and use it for image denoising.
Yin [10] proposed an image super-resolution reconstruction algorithm based on differ-
ential curvature-driven fractional nonlinear diffusion. Using a new edge indicator can
better identify edges, slopes and flat areas.

Aiming at the problems of incomplete denoising, loss of high-frequency information
and edge information, and ladder effect in the process of image denoising and super-
resolution reconstruction based on anisotropic diffusion equation, and considering that
the essence of fractional order is based on image nonlocal operator, it is introduced into
image reconstruction, it can deal with the ladder effect of image better. In this paper, a
new image super-resolution reconstruction algorithm based on mixed diffusion model
is proposed by combining fractional order anisotropic diffusion model with integer
order gradient diffusion model and introducing washout filter as the control term of
the system. In the proposed new model, the fractional derivative will adjust its size
adaptively according to the local variance of the image, and because the traditional
diffusion function needs a lot of data to get the best results, we also propose an adaptive
threshold K function, whose value changes adaptively with the gradient of the image.

2 Related Work

2.1 Characteristics of Fractional Differential Operators

The concept of fractional calculus can be traced back more than 300 years ago, was
founded by Leibniz and Newton, and can be seen as a generalization of integer order.
The research of fractional calculus mainly focuses on the analysis of time domain and
frequency domain. Fourier transform and Laplace transform are two commonly used
definitions of frequency domain. According to the differential properties of the Fourier
transform, for any function f(x, y) ∈ L2(R), the following definition of the fractional
partial derivative in the Fourier transform domain can be obtained:

Dv
xf (x, y) = F−1

(
(jw1)

v f̂ (w1,w2)
)
, (1)

Dv
yf (x, y) = F−1

(
(jw2)

v f̂ (w1,w2)
)
, (2)

whereF−1 is a two-dimensional continuousFourier transformoperator,which represents
the inverse Fourier transform.

As shown in Fig. 1, they are the amplitude-frequency characteristic curves of the
fractional differential operator when the order of the fractional order is v = 0.2, v = 0.5,
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v = 0.7, v = 1, v = 2. The frequency response of the fractional differential operator can
be regarded as a nonlinear high-pass filter. When α > 0, the high-frequency information
of the signal will be nonlinearly enhanced, and the low-frequency information of the
signal will be modified. That is to say, in areas where ω > 1, such as the detailed texture
part and edge part of the image, the enhancement effect of the fractional differential
operator on its signal will be nonlinearly enhanced as the fractional order increases; at
0 < ω < 1 is the smooth area of the image, the suppression ability of the fractional
differential operator is relatively weaker than that of the integer order, so it can better
keep the amplitude of the smooth area unchanged. On the whole, the use of fractional
differential operators can increase the amplitude of high-frequency information, while
the intermediate and low-frequency information will be non-linearly preserved.

Fig. 1. Amplitude frequency characteristic curve of fractional differential

2.2 Fractional Anisotropic Diffusion Model

The anisotropic diffusion model was first applied to image denoising. Perona and Malik
proposed a classic image denoising model based on the anisotropic diffusion equation
in response to the shortcoming of heat conduction equations that cannot be selectively
diffused in the denoising process [11] (PM diffusion model), its expression is:

∂u

∂t
= div(C(|∇u|)∇u), (3)

where div is the divergence symbol, C(·) is the diffusion coefficient, and ∇u represents
the gradient of the image. From a mathematical point of view, the PM model uses the
image gradient∇u as an effective means to detect the flat area and the texture area of the
image. In areas with large gradients such as the edge area and texture area of the image,
the gradient of the image |∇u| is relatively large, and a smaller diffusion coefficient will
be used; in the non-edge area of the image, such as the flat area, the gradient of the image
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|∇u|. Relatively small, a larger diffusion coefficient will be used. Therefore, Perona and
Malik gave two diffusion functions C(|∇u|) related to |∇u| in their model.

C(∇u) = exp

(
−

( |∇u|
K

)2
)

, (4)

C(∇u) = 1(
1 +

( |∇u|
K

)2) . (5)

In Eqs. (4) and (5), k is a given parameter that controls the degree of diffusion. In
this way, for the texture area of the image, the degree of diffusion of the function is
small, thereby retaining the texture detail information of the original image, and for
the noise part of the image, the degree of diffusion of the function is increased, so
that the noise of the image can be effectively removed. However, with this diffusion
method, the preservation of details in the image is not clear enough, and the image after
image denoising and reconstruction is prone to have a staircase effect. Therefore, Bai
[9] extended the gradient diffusion model based on integer order to fractional order, and
proposed a class of image denoising model based on fractional anisotropic diffusion.

∂u

∂t
= div

(
C

(∣∣∇αu
∣∣)∇αu

)
(6)

The fractional diffusion functionC(|∇αu|) is used for edge detection, which can con-
trol the degree of diffusion according to the local characteristics of the image. Therefore,
many models have appeared. The diffusion function is optimized to increase the accu-
racy of edge detection. Improve the denoising effect of the image. Zhang [12] realized
a new method for calculating the spread function using the hyperbolic tangent function.
V.B.S Prasath [13] proposed a fuzzy diffusion coefficient, which takes into account the
variability of local pixels in order to better remove edge noise and selectively smooth
the image.

The energy functional corresponding to Eq. (6) is:

E(u) =
∫

Ω

f (|Dαu|)d� (7)

Therefore, the denoising process of the image will be transformed into solving the
minimum value problem of the energy functional. Then use the variational method of the
functional to solve the Euler-Lagrange equation corresponding to the energy functional,
and finally introduce the time variable t, and use the gradient descentmethod to transform
into the following partial differential equation solution.

∂u

∂t
= −D∗

αx

(
c
(
|Dαu|2

)
Dαxu

)
− D∗

αy

(
c
(
|Dαu|2

)
Dαyu

)
(8)
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3 Model Algorithm and Design

3.1 Proposal of Mixed Diffusion Model

In order to solve the problems of incomplete denoising, unclear image edges, and stair-
case effects in the reconstruction process when image denoising based on the fractional
diffusion model at this stage, based on the anisotropic diffusion model, Combining the
fractional-order diffusion model with the gradient-based integer-order diffusion model,
and introducing the washout filter as the control item of the model, a new image super-
resolution reconstruction and image denoising algorithm based on the hybrid diffusion
model is proposed. In our new model, the fractional differential will adaptively change
with the size of the local variance of the image. At the same time, for the diffusion func-
tions C(|∇u|) and C(|∇αu|), we propose an adaptive threshold k function whose value
changes adaptivelywith the gradient of the image. Combining the integer-order diffusion
model and the fractional-order anisotropic diffusion model, the following model can be
obtained.

E(u) =
∫

Ω

f
(∣∣Dαu

∣∣)d� + λ ·
∫

Ω

f (|∇u|)d�. (9)

Among them, λ is a parameter that balances integer-order diffusion and fractional-

order diffusion, |Dαu| =
√
D2

αx + D2
αy, |∇u| =

√
D2
x + D2

y when α = 1, it can

degenerate to the classical PM model. In order to solve Eq. (9), we define the function:

h(ε) = E(u + εη) =
∫

Ω

f (|Dα(u + εη)|)d� + λ · f (|∇(u + εη)|)d� (10)

Let h
′
(ε)|ε=0 = 0, we can get:

h′(ε)
∣∣
ε=0 =

∫

Ω

(
D∗

αx

(
c
(
|Dαu|2

)
Dαxu

)
+ D∗

αy

(
c
(
|Dαu|2

)
Dαyu

)
+ λ ·

(
D∗
x

(
c
(
|Du|2

)
Dxu

)

+ D∗
y

(
c
(
|Du|2

)
Dyu

)))
η dx dy. (11)

Then further simplification can obtain the corresponding Euler-Lagrange equation.

D∗
αx

(
c
(
|Dαu|2

)
Dαxu

)
+ D∗

αy

(
c
(
|Dαu|2

)
Dαyu

)
+ λ ·

(
D∗
x

(
c
(
|Du|2

)
Dxu

)
+ D∗

y

(
c
(
|Du|2

)
Dyu

))
= 0.

(12)

Then, by using gradient descent method and introducing time variable t, the above
Eq. (12) can be converted into the following nonlinear fractional partial differential
equation.

∂u

∂t
= −D∗

αx

(
c
(
|Dαu|2

)
Dαxu

)
− D∗

αy

(
c
(
|Dαu|2

)
Dαyu

)
− λ ·

(
D∗
x

(
c
(
|Du|2

)
Dxu

)

+ D∗
y

(
c
(
|Du|2

)
Dyu

))
(13)

Next, the washout filter is added to the nonlinear fractional differential equation, and
the new model is obtained.
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{
∂u
∂t = −D∗

αx

(
c
(
|Dau|2

)
Dαxu

)
− D∗

ay

(
c
(
|Dαu|2

)
Dαyu

)
− λ ·

(
D∗
x

(
c
(
|Du|2

)
Dxu

)
+ D∗

y

(
c
(
|Du|2

)
Dyu

))
+ β ∂w

∂t
∂w
∂t = −γw + (u − u0)

(14)

where, β ∂w
∂t is washout filter, which is the control term of the model, β. It is a weight

control constant, which is used to balance the proportion between the diffusion term
and the control term, and to maximize the effect of the diffusion term and the control
term. Usually γ is a constant, and γ = m/n, where m, n are positive integers and satisfy
(m, n) = 1.

3.2 Realization of Adaptive Diffusion Function

The two edge diffusion functions proposed in the classical PMmodel often have staircase
effect in the process of image denoising. Therefore, a new adaptive diffusion function is
constructed based on the edge spread function proposed by Guo.

c(|∇u|) = 1

1 + (|∇u|/K)δ(|∇I |) , (15)

where δ(|∇I |) = 2 − 2
1+(|∇u|/K)2

, this diffusion function starts to weaken the diffusion

from the place where the gradient is relatively large, which can effectively remove the
noise and retain the texture details of the image to the maximum extent. There is also a
threshold parameter k in the proposed diffusion coefficient, whose value determines the
gradient value that begins to weaken the diffusion ability, which will affect the overall
smoothing effect. If the value of k is too large, it will cause the image flat area to be
too smooth and the image to be blurred; If value of k is too small, the image diffusion
time will be shortened, and the denoising effect is not complete. Therefore, choosing a
reasonable and accurate threshold parameter k will have a great impact on the overall
effect of the model. Therefore, we propose an adaptive function of k, which will change
adaptively with the gradient of the image. The expression of the threshold parameter k
function is as follows.

k = k0e
− 1

6 nt, (16)

where k0 = mean(|∇u0|), mean is the average operator, n is the number of iterations,
and t is the time step. The function of k is a decreasing function with the increase of
the number of iterations. Its basic idea is: with the increase of the number of iterations,
the peak signal ratio (PSNR) of the system will be larger and larger, the noise image will
be smoother and smoother, the gradient of the image will be smaller and the value of k
will be smaller.
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At the same time, for the fractional diffusion model, the order of the fractional
differential operator will adaptively change with the local variance of the image. The
expression of the adaptive fractional α is shown below.

α = 0.5 + exp

(
0.693 × σx,y − min

(
σx,y

)

max
(
σx,y

) − min
(
σx,y

)
)

. (17)

Among them, σx,y is the variance of the image u(x, y), min
(
σx,y

)
represents the

minimum variance of the image, andmax
(
σx,y

)
represents the maximum variance of the

image. It can be seen from Eq. (17) that in the edge and other parts of the image, the
local variance of the image is larger, so the order α is larger, and in the non-edge parts
of the image, the local variance of the image is smaller, and the order α is smaller, and
the more effective the noise can be removed.

3.3 Numerical Calculation of the Algorithm

In order to deal with the calculation of fractional derivative conveniently, we can first
performdiscrete Fourier transformonEq. (14) to obtain its solution in frequency domain,
and then obtain its solution in time domain through inverse Fourier transform. We will
use the difference method to rewrite the left ∂u

∂t and
∂w
∂t in f Eq. (14) into the difference

scheme uk+1−uk
t , wk+1−wk

t , where t is the time step, uk is the previous output, which is
used to calculate the next iteration result uk+1. The following formula can be obtained
by Fourier transform on both sides of the formula.
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t
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)
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(
D∗
x

(
c
(|Du|2)Dxu
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y

(
c
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αy

(
c
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)
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3
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x

(
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(|Du|2)Dxu

)) − λ × K∗
4 × F

(
D∗
y

(
c
(|Du|2)Dyu

)) + γ · βwk+1 + β · (uk+1 − uk )

wk+1 − wk

t
= −γwk+1 + (uk+1 − uk ). (18)

Where F represents the Fourier transform, K∗
1 ,K∗

2 respectively represent the conju-
gate operator of the α-order differential operator in the x direction and y direction of the
image, and K∗

3 ,K∗
4 is expressed as the conjugate operator of the first-order differential

operator in the x and y directions of the image respectively.

K∗
1 = conj(1 − exp(−j2πω1/m))α × exp(−jπαω1/m)

K∗
2 = conj(1 − exp(−j2πω2/m))a × exp(−jπαω2/m)

K∗
3 = conj(1 − exp(−j2πω1/m)) × exp(−jπαω1/m)

K∗
4 = conj(1 − exp(−j2πω2/m)) × exp(−jπαω2/m) (19)
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Therefore, the proposed image super-resolution reconstruction algorithm based on
hybrid diffusion model is shown in Algorithm 1.

Algorithm 1: image super-resolution reconstruction based on hybrid diffusion model
Initial low resolution image , time step , , and 
initialization .

Calculate the adaptive fractional order of the image according to equation (17)
Solving ; 
Calculate the adaptive spread function according to equation (15)
Calculate
Solving
According to equation (18), iteratively calculate and , and set the number of 
iterations . When the PSNR value is maximum, the iteration is terminated and 
the reconstructed image is output. 

End for

4 Experiment and Analysis

All experiments in this paper are run on a laptop computer configured as Inter (R) core
(TM) i5-4200h CPU @ 2.80 GHz, and all programs are implemented by MATLAB
R2018b. In the experiment, we choose six images such as “Lena”, “butterfly” and “bird”
as test images. In order to verify the effectiveness of the proposed super-resolution algo-
rithm based on hybrid diffusion model, the test results of this algorithm are compared
with the super-resolution reconstructionmethod of adaptive sparsity image [14] (ASDS),
the super-resolution method of anchoring neighborhood regression [15] (A+),the super-
resolution reconstruction method of image based on deep convolution network [16]
(SRCNN) and the denoising algorithm based on generalized anisotropic diffusion equa-
tion [17] (GAD) are compared. Here, we take PSNR and SSIM as the main evaluation
indexes of image super-resolution reconstruction. In the experiment, the test image is
magnified twice and three times in sequence, and the corresponding PSNR values and
SSIM values of the respective algorithms were compared, and the data as shown below
were obtained.
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Table 1. PSNR and SSIM comparison table of different methods at twice magnification.

Image Scale ASDS A+ SRCNN GAD Proposed

Head ×2 27.1130
0.7576

31.9346
0.7717

32.9043
0.7941

32.7293
0.8089

33.6415
0.8685

Lena ×2 29.7871
0.8328

29.4512
0.8755

33.5293
0.8971

33.4886
0.8814

34.2691
0.9321

Butterfly ×2 21.5973
0.7838

28.3173
0.9159

26.5581
0.9047

26.3546
0.9245

27.3518
0.9014

Bird ×2 28.5741
0.8730

32.1194
0.8903

34.9014
0.9403

35.0074
0.9621

35.5666
0.9713

Baby ×2 31.0585
0.8965

32.2132
0.8754

33.2786
0.8921

34.0296
0.9427

35.8913
0.9489

Peppers ×2 29.3634
0.8117

29.9529
0.8510

31.3301
0.8631

31.1792
0.8723

31.8173
0.8465

Table 2. Comparison table of PSNR and SSIM for different methods when magnification is three
times.

Image Scale ASDS A+ SRCNN GAD Proposed

Head ×3 27.0995
0.8035

27.8996
0.7532

27.7842
0.8165

27.8417
0.8446

30.3625
0.8610

Lena ×3 27.0728
0.8043

28.3499
0.7801

29.5133
0.8044

30.1058
0.7893

30.7992
0.8679

Butterfly ×3 20.5918
0.7232

23.4902
0.7853

26.3010
0.8118

27.1006
0.8715

26.8146
0.8756

Bird ×3 26.0868
0.7991

27.8103
0.8249

29.0654
0.8609

28.6141
0.9018

29.4197
0.9132

Baby ×3 28.2968
0.8326

29.9442
0.8115

31.1893
0.8440

30.6984
0.7769

32.5712
0.9002

Peppers ×3 26.8017
0.7634

28.3244
0.7910

29.1079
0.8110

28.9743
0.8652

29.6572
0.8558
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As can be seen from Table 1 and Table 2, the super-resolution images of six different
images with different magnification are reconstructed with different reconstruction algo-
rithms, and the bold data in the table is expressed as the maximum values of PSNR and
SSIM obtained under the same conditions. It can be seen from the data in the table that
the hybrid diffusion algorithm proposed in this paper is better than other reconstruction
algorithms in terms of image quality and the integrity of image structure information and
detail information. At the same time, as shown in Fig. 2 and Fig. 3, we select “Butterfly”
and “bird” images for the contrast experiment of twice and triple magnification, which
contains a lot of texture and structure information.

Fig. 2. Reconstruction results of “Butterfly” image by different algorithms.

As shown in Fig. 2 and Fig. 3, the reconstruction effects of different algorithms on
“Butterfly” and “bird” images with different magnification are given respectively. At the
same time, from the comparison of PSNR and SSIM values, it can be comprehensively
verified that the image reconstruction effect of this algorithm is obviously better than
other algorithms. It can be seen from the comparison figure that the images reconstructed
by ASDS algorithm and A+ algorithm have obvious sawtooth effect and staircase effect;
about based onSRCNNalgorithm, thewhole reconstructed image is too smooth, the local
area has low contrast, and the edge area also has a certain staircase effect; Although the
effect of the reconstructed image based onGADalgorithm is better than other algorithms,
the phenomenon of local blur appears. After using the hybrid diffusion algorithm in this
paper to reconstruct the image, the sawtooth effect and staircase effect of the image are
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Fig. 3. Reconstruction results of “Bird” image by different algorithms.

significantly reduced, the edge smoothness of the image is better, and the reconstructed
image is closer to the original image. Therefore, in general, this algorithm has more
advantages than other traditional image reconstruction algorithms, and has a certain
research value.

In order to more intuitively reflect the superiority of the proposed algorithm in image
super-resolution reconstruction, we have drawn the line graphs between the PSNR and
SSIM values of each algorithm and different test images, as shown in Fig. 4 and Fig. 5.
The abscissa represents different test images, the ordinate represents the PSNR and
SSIM values, and each colored broken line represents a different algorithm. It can be
seen more intuitively from Fig. 4 and Fig. 5 that the algorithm proposed in this article
has a higher value whether it is in the PSNR value or the SSIM value.
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Fig. 4. PSNR of different algorithms for different images.

In order to examine the overall comprehensive performance of the algorithm in this
article and the other four comparison algorithms, first, according to Table 1 and Table 2,
we find the average PSNR value and average SSIM value of each algorithm on different
images, and then according to the PSNR and SSIM average values Evaluate the overall
performance of each algorithm. Therefore, we take the average PSNR value of each
algorithm as the X axis and the average SSIM value as the Y axis, and draw the scatter
diagram as shown in Fig. 6. The farther the algorithm’s corresponding scatter points are
from the origin of the coordinates, the overall performance will be the better. It can be
seen intuitively from Fig. 6 that the overall performance of the ASDS algorithm is the
worst, while the overall performance of the algorithm in this paper is the best.

Fig. 5. SSIM of different algorithms for different images.
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Fig. 6. Comprehensive performance comparison of each algorithm.

At the same time, the washout filter is added as the control term of the model in
this algorithm. The simulation results show that the washout filter as the control term
can accelerate the convergence speed of the system and improve the stability of the
system. In the experiment, “bird” image is selected as the reference. Firstly, Gaussian
noise with mean value of 0 and variance of 15 is added to the image, and then the image
super-resolution reconstruction and image denoising simulation experiment are carried
out. The growth relationship between the PSNR value in the experiment and the iteration
number k of the system is compared.

Fig. 7. Waveform of PSNR value and iteration number k.

As shown in Fig. 7 (a), the waveform of PSNR value and iteration number k when
washout filter is introduced.When the iteration number k is about 40, the system tends to
be stable; Fig. 4 (b) shows the waveform of PSNR value and iteration number k without
washout filter. Even if the iteration number k is about 400, the system is still not stable. It
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can be seen from Fig. 4 that when washout filter is introduced into the model, the effect
of fast convergence and stability of the system can be achieved.

5 Conclusion

The existing anisotropic diffusion equation can achieve good visual effect in image
denoising and image reconstruction, but in the process of denoising and reconstruc-
tion, it is easy to appear the phenomenon of fuzzy edge details and staircase effect,
which affects the subsequent image feature extraction, image decomposition and other
image processing technologies. To solve this problem, this paper proposes an image
super-resolution reconstruction algorithm based on hybrid diffusion model. Because the
traditional diffusion function requires a large number of data experiments to get the best
results, we propose an adaptive threshold k function, whose value changes adaptively
with the image gradient. At the same time, by introducing washout filter as the control
term of the system, the fast convergence of the system is achieved. Experimental results
show that the proposed algorithm is superior to other traditional algorithms in many
indexes.
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Abstract. Image quality evaluation is an important research topic in the field of
image processing. Contrast is a common image quality assessment index which
can reflect the level of difference between the colors. However, the traditional
method of global contrast calculation always has misdescribe when uniform color
or nearly uniform color blocks appear in the image. We propose a global con-
trast method based on RGB-difference among regions. First, divide the image into
several regions, and get the difference information of RGB-components between
different regions. Second, calculate the parameter value of grayscale transfor-
mation which preserve the contrast information of the original image. Finally,
combine the difference information and the parameter value of grayscale transfor-
mation to get the global contrast information. Compared with traditional method,
our method is less affected by the uniform color blocks of the experimental image,
it can describe the contrast of experimental image more objectively and fairly. In
addition, the contrast value obtained by our method is consistent with the trend of
human visual judgement, and conform to the objective law.

Keywords: Global contrast · RGB-difference · Grayscale transformation

1 Introduction

In recent years, with the development of technology, image processing technology is
widely used in intelligent devices and become a hot research area [1, 2]. In actual
projects, different methods and processes will affect the quality of the result image, and
the quality of image directly affects the access of information and subjective feelings.
Therefore, image quality assessment is a very important research topic in the field of
image processing [3, 4].

In the common image quality assessment values [5, 6], global contrast reflects the
level of difference between the colors or between bright and dark areas in an image,
that is, the degree to which the details in the image can be distinguished [7, 8]. Global
contrast is important in object detection and recognition [9, 10]. A high-contrast image
has higher definition and clarity with more gray levels and details and identifying objects
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in it would be easier, while a low-contrast image appears hazy and identifying objects in
it would be difficult. Traditional calculation of global contrast depends on the absolute
grayscale value of pixel rather than considering the color information, and do not take
into account the color distribution characteristics between regions [11, 12]. However,
when there are large uniform or nearly uniform color blocks in the image, the traditional
contrast calculation value will be relatively smaller, this cannot reasonably and fairly
represent the contrast information of original image.

Image contrast has a direct impact on visual observation results, its value should not
only be reflected in the numerical difference between adjacent pixels, it should also be
reflected in the color difference between different regions of the image [13, 14].

This paper proposes a method to calculate the global contrast value based on RGB-
difference between different regions. Firstly, we calculate the difference of R, G and B
channels in different regions of the image. Then get the linear decoloring parameters
which retain the most information of image contrast. Finally, combine the difference
information of R, G, B channel with the linear decoloring parameters to get the final
contrast information.We believe that this work can provide a new idea for the calculation
of global contrast.

2 Related Work

The global contrast is the most crucial characteristic of the image, which largely deter-
mines its visual perception. In this section, we briefly introduce global contrast measures
defined in the literature.

The Weber-Fechner and Michelson contrasts are the first global contrast definitions
which has beenwidely used inmany scenes, such as contrast enhancement, image quality
assessment, and quantization. These contrastmethods are used to study theHVS (Human
Visual System) mechanisms or physical phenomena in specific scene. Although these
contrast methods are simple and limited to specific experiments, they have been used in
many image analysis and processing methods [12, 15, 16].

Lillesaeter contrast is considered to be the first attempt to consider both photometric
and geometric aspects in the computation of contrast information [17]. First, this method
only considers the contrast definition of brightness, and then integrates the form of the
perceived object [18, 19]. However, in practice, it is not easy to use, because it requires a
priori knowledge of the object contour and computation of the curvilinear integral along
the boundaries of the objects contained in the observed image.

In 2003, Calabria and Fairchild introduced two global measures for perceived con-
trast in color images in the CIELAB 1976 color space [20]. One is called Reproduction
Versus Preferred (RVP) contrast and the other one is the Single Image Perceived (SIP)
contrast. These two concepts are based on the observer perceptual contrast preference.
The contrast model is established by studying the relative lightness, chroma, and sharp-
ness. However, the key parameters of the experiment are only obtained by simple linear
regression model experiments, this limits the reliability of the method.

Some methods based on statistical has been proposed for practical applications [21–
23]. While these methods could not be fully considered as a contrast measures, they
express or contain some information related to the contrast. These methods have only
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one single value associated with each image, and the calculation is ease and simple, they
have been widely used in practical applications, from texture and image classification
to face detection [10].

In 2017, Shaus et al. proposed a Potential Contrast (PC) method [24], this method is
based on theWeber-Fechner’s model and calculates the contrast information by dividing
the image into the background and the foreground. Although the method conforms to
the mathematical concepts and criteria set out by the authors, the method ignores the
frequency and directional of the structures in images.

In 2020, Yuriy et al. proposed a method to quickly quantify the contrast of the image
by measuring its incomplete integral contrast [8]. At the heart of this method is the
assessment of contrast for each object in the image relative to the adaptation level given
the sizes (area) of these objects. However, it is not easy to use in practice, because it
requires a priori information of the object in the image.

3 Method

In this section, we introduce a widely used traditional method of global contrast calcu-
lation, and point out its error in specific environment. Then we describe the calculation
process of contrast calculation method based on RGB-difference among regions.

3.1 Traditional Method of Global Contrast

The traditional method of global contrast calculation is to calculate gray difference
between pixel and other pixels, so as to reflect the administrative levels and definition
of images.

Haralick et al. proposed a global contrast method based on the Gray Level Co-
occurrenceMatrix (GLCM) computed from the luminance component of a digital image
[21, 26]. This method can capture the average local variations and spatial dependence
of the pixels. Because of simple calculation and easy expression, the calculation idea of
GLCM has been proposed for various applications. The global contrast of GLCM can
be expressed by formula (1):

C =
∑

δ

δ(I , J )2Pδ(I , J ) (1)

In formula (1), two adjacent pixel points are denoted by I and J, δ(I , J ) = |I − J | is
the value of gray difference between two adjacent pixel points,Pδ(I , J ) is the probability
of distribution when the gray difference between adjacent pixels is δ(I , J ).

The traditional image grayscale processing algorithm is as Formula (2):

Gray = R ∗ 0.299 + G ∗ 0.587 + B ∗ 0.114 (2)

In generally, traditional method of GLCM can objectively reflect the contrast degree
of the image. However, when there are large uniform or nearly uniform color blocks in
the image, the value of traditional global contrast calculation will be different from the
visual perception results of human beings (see Fig. 1).
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(a) C=61.5 (b) C=88.7

Fig. 1. Results of traditional contrast. (Color figure online)

In Fig. 1, C is GLCM value of the image. The yellow object in the left image is
obviously different from the background environment. And the texture details are clear,
in contrast, there is obvious blurred in the right picture. From the perspective of subjective
vision, we judge that the visual effect of the left image is better than that of the right
image. However, due to the large similar area in the background of the left image, the
color difference of this area is small, the GLCM value of left image is smaller than that
of the right image. This is inconsistent with the judgment of human visual observation.
In this case, the traditional global contrast method cannot reasonably and objectively
reflect the visual effect of the image.

We design a special synthetic images (see Fig. 2) to analyze the problemof traditional
global contrast value.

(a) (b) 

(128,128,128)
(255,039,255)
(255,063,128)
(255,088,000)
(192,120,000)
(128,103,255)
(000,169,255)
(144,144,004)
(064,173,064)
(016,207,016)

Fig. 2. An image (a) with different colors, but its gray values calculated by the formula (2) are
exactly the same on all pixels (b). This causes the contrast value C = 0.

Figure 2(a) is an image composed of pure color regions. From the perspective of
human vision, the image has obvious color differences between different regions, but its
contrast value C is zero. This is because after transforming it from rgb to grayscale, the
values of all pixels in it will be the same 128, which means the color difference is lost.
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In order to objectively explain the problems of traditional global contrast calculation
method.Wemake different combinations of pure color regions to obtain the experimental
image, and display the contrast calculation results of the GLCM method with different
RGB channel combinations. The different combinations are as follows:

• Use formula (2) to get the grayscale image, and then use theGLCMmethod to calculate
the contrast C1.

• First, calculate the GLCM values CR, CG, CB corresponding to the R, G, and B
channels of the image. Then contrast value C2 = CR * 0.299 + CG * 0.587 + CB *
0.114.

• Contrast value C3 = (CR + CG + CB)/3.
• Contrast value C4 = (C1 + CR * 0.299 + CG * 0.587 + CB * 0.114)/2.

Fig. 3. GLCM method results of different experimental images.

In Fig. 3, each image consists of sixteen square regions of the same size and pure
color, the components are eight blue (RGB value is (0, 0,255)) color regions and eight
green (RGB value is (0, 200,0)) color regions. Figure 3(a) image shows the 16 color
regions staggered combination by color difference; Fig. 3(b) image shows different color
regions staggered combination by color difference after two regions of the same color
are combined; Fig. 3(c) image shows different color regions staggered combination by
color difference after four regions of the same color are combined; Fig. 3(d) image shows
color regions combination after the same color are combined. In Fig. 3, the number and
value of pixels in the four images are the same, and the only difference is the arrangement
of the color regions. From the perspective of human vision, the contrast perception of
the four images are similar.

From the data in Fig. 3, we can find that GLCM values C are different. And the
more the same color regions combination, the smaller the value of C. This result is in
contradiction with the fact that the contrast perception of four images is consistent in
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human visual observation. It shows that the traditional global contrast calculationmethod
has a large error in this case. Because the trend of each C value is consistent, we use the
C1 calculation method as the contrast value of the GLCM method in the following.

Contrast information is a kind of psychological feeling, it contains the whole image.
The value of contrast should take into account the differences between different color
regions of the image.

3.2 Global Contrast Calculation Considering Color Differences

In this paper, we propose a new method of global contrast computation by combine the
difference information of RGB channels between different regions with the optimization
results of the linear decoloring parameters. First, divide the original image is into several
regions of equal size. Then calculate the average value of three channels in each region,
and count the difference value of three channel average values among the regions, get the
difference information of three channels in different regions. At the same time, calculate
the linear decoloring parameter value with the image contrast information preserved.
Finally, combine the difference information of three channels in different regions with
the linear decoloring parameter to get the contrast information. The flow diagram of the
proposed method is shown as Fig. 4 in the following subsections, we present the detailed
description of the process of our method.

Input
image

Output
image

Regional 
differences
parameter

Linear 
parameter

Parameter 
combination

Fig. 4. Flow diagram of our method.



Research on Global Contrast Calculation Considering Color Differences 195

3.2.1 Color Difference Among Regions

First of all, we divide the original image into m * n regions of equal size, among them,
m is the average number of horizontal axis divided, n is the average number of vertical
axis divided. And calculate the average value Az (i, j) of R, G and B channels in each
region. Az (i, j) define the average value of Z-channel values in the region of (i, j), and Z
∈ (R,G,B).

The difference information of three channels in different regions (denoted as DZ )
can be expressed by Eq. (3):

Dz
z∈(R,G,B)

=
∑

�A2
z P�Az

n ∗ m
(3)

In Eq. (3), �Az denote the difference value of Z-channel mean value between two
regions, P�Az represents the probability value that the mean difference among regions
is �Az .

In order to combine the difference information into a contrast value which is con-
sistent with the observation effect of human eyes, we need to combine the difference
values of each channel in a scientific proportion.

3.2.2 Contrast Preserving Grayscale Processing

In most time, the linear combination ratio of R, G and B channels in the traditional image
decoloring algorithm is consistent with the human visual observation effect.

The linear combination of image grayscale processing algorithm is as Formula (4):

g = R ∗ wr + G ∗ wg + B ∗ wb (4)

And the restraint condition of (wr , wg, wb) is Eq. (5):

wr > 0;wg > 0;wb > 0

wr + wg + wb = 1
(5)

The traditional grayscale transformation ratio is wr = 0.299, wg = 0.587, wb =
0.114.

However, in some application scenes, the result of using the traditional decolor
conversion ratio is not good, the difference of the different color in the original picture
is smaller after transformed into a grayscale image, the original contrast information is
lost. As shown in Fig. 6(a) and Fig. 6(b).

By comparing the two images of Fig. 5(a) and Fig. 5(b), some obvious color differ-
ences in the original picture, such as the yellow-blue difference at the edge, is difficult
to detect after traditional grayscale processing. This loss of contrast information may
not be a problem for general image processing, but it is very disadvantageous to analyze
the accuracy of objective evaluation parameters of image.

Therefore, it is necessary to calculate the linear combination ratio of R, G and B
channels to retain the color contrast information of the original image, this kind of
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Fig. 5. Different grayscale results (a) Original image; (b) Grayscale result of formula (2); (c)
Grayscale result with contrast information (Color figure online)

algorithm usually aims at minimizing the following energy function (6) to preserve the
contrast information [27]:

min
g

∑

x,y

(
gx − gy − δx,y

)2 (6)

In function (6), gx and gy is the gray value of point x and point y. δx, y denotes the
color contrast of point x and point y. Based on the Euclidian distance in the CIELab
color space, the color contrast is generally expressed formula (7)

∣∣δx,y
∣∣ =

√(
Lx − Ly

)2 + (
ax + ay

)2 + (
bx + by

)2 (7)

After the deduction by Lu et al. [28], the energy function (7) can be rewritten as
formula (8)

E(g) = −
∑

ln
(
Nσ

(
�gx,y + δx,y

) + Nσ

(
�gx,y + δx,y

))
(8)

In formula (8), �gx,y = gx − gy, denotes the gray difference between the point A
and the point B. When the linear combination parameters (wr , wg, wb) of gray level g
make the value of E(g) in formula (8) minimum, the contrast information in the original
image is retained to the greatest extent.

There are infinite combinations of (wr , wg, wb) combinations satisfying the restraint
condition. Considering that the small change of coefficient has little influence on the
result, the parameter only need to take the value of 0.1 interval between [0, 1]. There-
fore, (wr , wg, wb) only have 66 kind of values. Through exhaustive method, the linear
decoloring parameters (lR, lG, lB) with the most contrast information can be found out
from 66 candidates.

In theprocess of calculating (lR, lG, lB), in order to reduce the timeconsumption, high-
resolution input image can be reduced to low-resolution image, and get the corresponding
parameter values in low-resolution images.

The grayscale image obtained by using the method of contrast preserving is shown
in Fig. 5(c).

By observing three images in Fig. 5, comparedwith the Fig. 5(b), Fig. 5(c) can reflect
the difference between different colors in the original image (Fig. 5(a)) more accurately.
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From the perspective of visual effects, the result of grayscale processing method of
preserving the contrast are more consistent with the visual effect of human.

Combining formula (3) and formula (8), contrast value L based on the difference of
RGB channels among regions can be expressed by formula (9)

L = DR ∗ lR + DG ∗ lG + DB ∗ lB (9)

4 Experimental Results

In order to verify the performance of our method, we counted the time spent in exper-
iments. The computer we used to do the experiments is model MSI micro star GP62
2QE-215XCN, with the configuration of Intel Core i7 5700HQ CPU, 2.7 GHz main
frequency, 8G memory, and dual graphics card, the size of experimental image is 640 *
480. By statistic, the average time of image processing is about 92 ms.

In order to verify the rationality of our method, the calculation result of our contrast
method (L) of the experimental image in Fig. 3 is shown in Fig. 6.

Fig. 6. Comparison with our method.

From Fig. 6. The GLCM method have a large numerical change rate, this is unrea-
sonable; and our method have a small numerical change rate, this is more consistent
with the objective fact that the experimental images are similar.

In order to verify the advantage of our method, we calculate the contrast value L of
the natural environment image in Fig. 1, as shown in Fig. 7, and analyzed in the aspect
of subjective vision.

In Fig. 8, from the subjective visual effect, the yellow object on the left image is
obviously different from the background, and the texture details are clear. The visual
effect of the image is better than that of the right imagewith obvious blurred phenomenon.
But the GLCM value of the left image is lower than that of the right image, this is
inconsistent with the subjective visual observation results. The contrast value calculated
by our method shows that the contrast value in the left image is much greater than that
of the right image, this is consistent with the visual observation results.



198 J. Qian and B. Kong

(a) C=61.5; L=179.2 (b)   C=88.7; L=88.1

Fig. 7. Results of different contrast.

In order to verify the effectiveness of ourmethod, the proposedmethodwas compared
with multiple methods, i.e., The methods used include: GLCM [21], RMS [25], SD [22],
AQOC [8]. We select some natural environment images and calculate the contrast value.
The results are shown in Fig. 8.

Fig. 8. The contrast calculation results of different methods for different images. (Color figure
online)

In Fig. 8, we show the calculation results of different contrast methods. From the
calculated contrast value, GLCM method and RMS method have individual data items
that are quite different from other methods, this is because they are affected by uniform
or nearly uniform color blocks in the original image; From the contrast value of our
method and other methods, the value trend of the image contrast value is similar. When
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there are obvious bright areas in the image (such as images in the fourth row in Fig. 8),
the corresponding contrast values of each method will be higher. When there is obvious
color bias in the image (such as images in the fifth row in Fig. 8), the corresponding
contrast values of each method will be lower. This shows that our method can effectively
reflect the information of image contrast.

5 Conclusion

Aiming at the calculation error of the traditional global contrast method for the original
imagewith a large uniform or nearly uniform color blocks. This paper presents a contrast
calculation method based on RGB-difference among regions. Firstly, divide the image
into several regions to obtain the difference information of three channels in different
regions of the image. At the same time, we perform grayscale processing on the image,
and obtain the proportion value of the grayscale processing parameters which save the
contrast information of the original image. Finally, combine the difference information
of the three channels among regions with the grayscale processing parameters to get the
contrast information of the original image. The verification results show that compared
with the widely used traditional global contrast method, this method has less affected by
the uniform or nearly uniform color blocks in original image, and can reflect the image
contrast information more objectively and fairly. In addition, the contrast information
obtained by this method is consistent with the observation results of human vision on
the image quality, which conforms to the objective law.

However, when some regions of the original image are severely exposed, the contrast
value of this methodwill be higher, this is unreasonable. In response to this phenomenon,
we still need to do more optimization research in future work.
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Abstract. Intelligent live interactive classroom in the era of AI+ is a quality
assessment method of precision teaching based on deep learning and big data
behavior analysis. It has gradually developed into an important teaching approach
and method. On the issues of teaching standard missing in adult open education
online live class, education quality supervision is not in place and lack of interac-
tivity, this paper explores the key technologies of live interactive teaching platform
for open education, and puts forward the design method of AI+ live classroom
framework and functions from the aspects of teachingmanagement and evaluation,
so as to realize learner-centered comprehensive intelligence. This method plays
an important role in promoting the individualized teaching and accurate service
of open education.

Keywords: The age of AI plus · Open education · Simultaneous live classroom ·
Intelligent teaching

1 Introduction

Broadcast online classroom refers to the teaching activities that can be carried out any-
time and anywhere through computers or mobile devices. It is a new generation teaching
mode of “Internet plus Traditional Education” generated with the rapid development of
internet technology [1–3]. According to statistics, in 2016, the number of online educa-
tion users in China was 90.14 million, with a market size of 150.62 billion yuan. It is
expected to reach 160 million in 2019, with a market size of more than 260 billion yuan.
Compared with traditional school learning and online learning, live education provides a
more open platform for students and teachers, which helps break through time and space
constraints, enhances the sharing of educational resources, promotes educational equity,
and solves many problems existing in traditional offline education. This study mainly
focuses on the changes AI has made to the online live-streaming teaching platform under
the background of adult higher education, elaborates the problems existing in the current
adult higher education industry, analyzes the present situation of live online teaching

© Springer Nature Singapore Pte Ltd. 2021
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platform and mainly introduces the application and role of AI technology in the syn-
chronous live broadcast platform, and provides feasible suggestions for the development
direction of “AI+ live broadcast teaching” in the future.

2 Advantages and Disadvantages of Webcast Classroom

2.1 Advantages of Webcast Class

1) Break the time and space limit of education
The combination of traditional education and Internet technology has also com-

pletely changed the traditional offline education model, bringing revolutionary
changes to traditional education. The breakthrough of time and space in synchronous
live class is reflected in two aspects: time and space. In terms of time, simultaneous
broadcast classroom teaching does not require students to go to offline teaching
classes, which greatly saves students’ time cost. In terms of space, live teaching
classes do not require students to go to the teaching place. Online learning can be
conducted at any place with Internet access at any time. Recorded courses can also
be learned after downloading, which is not limited by time and space, and can help
some professional workers solve time pressure to a large extent.

2) Promoting the sharing of quality educational resources
A prominent feature of online broadcast teaching is to promote the sharing

of high-quality teaching resources, which helps to promote the fairness of social
education. However, online broadcast classroom breaks the restriction of closed
teaching resources, which enables all the people with Internet access to have the
opportunity to enjoy high-quality teaching, and enables famous teachers to spread
better teaching results to a wider range of people without considering the limitations
of the school site.

3) Reduce the cost of education
There are also many problems in online live classroom education, among

which the two most important ones are the supervision of teaching quality and
the interaction between teachers and students.

2.2 Disadvantages of Webcast Class

1) Education quality supervision is not in place
Both offline and online education, classroom teaching and examination evalu-

ation, education quality supervision problem widely exists in every link of adult
higher education, the main problem is the student’s learning environment variety,
students’ learning attitude and learning quality is difficult to guarantee, the learning
process is also difficult to be effectively monitored.

At the same time, current education and teaching evaluation pays more attention
to process assessment, and students’ daily performance in class is often taken as an
important indicator of assessment. It is basically impossible for live class to monitor
the learning process of students, and it can only be carried out by examination.
Therefore, the evaluation results may be accidental or not objective.
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2) The interaction is relatively poor
In the process of teaching, the interaction between teachers and students is of

great significance for both sides to grasp the teaching and learning progress and
understand the learning situation of students. Face-to-face classroom teaching can
strengthen the communication between teachers and students, solve students’ prob-
lems in real time, fully guarantee teachers’ teaching progress and monitor students’
learning quality.

However, the synchronous teaching platform is mainly dominated by teach-
ers, who can teach courses and answer questions to students in various forms such
as video, voice and text, while students can only interact with each other through
text, thus the communication efficiency between teachers and students is relatively
low. In addition, the number of students is large, the quality of the questions is
difficult to guarantee, and some simple questions occupy the whole discussion
area, which consumes a lot of teachers’ time. These situations greatly affect the
interaction between teachers and students in teaching and reduce the efficiency of
communication between teachers and students.

3 AI Plus Key Technology of Synchronous Live Broadcast in Class

The integration of Internet technology and offline classroom teaching enriches the forms
of education and teaching, accelerates the circulation of educational resources, breaks
the space-time limitation of traditional teaching, and is of great significance to promoting
educational equity [4]. At present, artificial intelligence technology is in a new stage of
continuous development. Many new technologies are constantly applied in production
and living practice. In the development of education industry, they are mainly applied
to the following technologies.

3.1 Face Recognition Technology

The most direct application of face recognition technology in AI classroom is to realize
automatic classroom check-in. By comparing the image information collected by the
camera with the pre-stored face information in the database, the automatic face retrieval
is realized. The main technical route of face recognition is transformed from manu-
ally designed features and classification recognition to end-to-end autonomous feature
learning based on DCNN, as shown in Fig. 1. DCNN uses BP algorithm for supervised
learning. BP algorithm is the core algorithm of deep network training. It uses the chain
derivative rule to solve the weight gradient of the objective function with respect to
the multi-layer neural network. DCNN is designed to process multi-dimensional data
such as images. It uses four key ideas to make use of the attributes of natural signals:
local connection, weight sharing, pooling and multiple network layers. Different from
artificially designed features (LBP, etc.), DCNN can autonomously learn high-level and
abstract feature expression vectors from end to end. For input of multidimensional face,
with the increase of the depth of the neural network, convolution and pooling layer upon
layer overlay, the number of neurons is the corresponding decrease, eventually form a
specific, compact, low dimension, the global face feature expression vector (usually the
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second from bottom of hidden layer) is used for face recognition (by KNN classifier,
etc.), Face verification (calculating distance) and other tasks.

Fig. 1. DCNN network structure

3.2 Human Behavior and Expression Analysis

Human behavior analysis and expression analysis are mainly used in classroommanage-
ment and monitoring students’ learning status. Based on 3D convolutional neural net-
work, the characteristics of human behavior in time and space dimension were extracted
from the surveillance video, and the abnormal behaviors of students were inferred and
analyzed, which provided an evaluation basis for the automatic evaluation system. In
addition, facial expression analysis, on the one hand, can infer students’ learning attitude
in class; on the other hand, facial expression analysis can solve students’ understanding
of problems through current analysis, so as to remind teachers to control the pace of
class in real time and understand students’ knowledge mastery.

There are two main research methods of behavior and expression recognition: one
is based on manual feature extraction, and the other is based on deep network feature
learning, of which the latter is the current research hotspot and development trend.
The method of feature representation based on deep network learning is to automati-
cally learn features from original data, this method is end-to-end, input video, output
classification results. The deep networks used for behavior recognition in deep learn-
ing mainly include convolutional neural network (CNN) and recursive neural network
(RNN). Convolutional neural networks usually follow a three-layer architecture, namely,
the convolutional layer, the pooling layer and the fully connected layer. The classic is the
two-stream CNN proposed by Simonyan et al. [5]. for behavior recognition, as shown
in Fig. 2. Recursive neural network is also commonly used in deep learning models.
It takes data of previous moments as data input of the current moment, so as to retain
information in time dimension. LSTM (Long Short-Term Memory) type RNN is an
extension of ordinary RNN. Niebles et al. [6] proposed an unsupervised LSTM model
to calculate the presentation information of video.

3.3 Natural Language Processing

Natural language processing technology ismainly used in the teacher-student interaction
process, students are relatively simple questions to automatically reply. Through the
LSTM network +CRF statistical method, understand the text semantics, and conduct
online search at the same time, match the answers to questions, help students answer
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Fig. 2. The two-stream CNN workflow

simple questions, and improve the efficiency of communication between teachers and
students.

In the past three years, most applications in natural language processing have used
deep learning to solve problems. In 2017, Kadari et al. [7] proposed a method to solve
the CCG hypertag task. By combining bidirectional long-term short-term memory and
conditional random field (BLSTM-CRF) model, this method extracted input features
and completed labeling, and achieved excellent results. In 2017, Kim et al. [8] proposed
a neural network frame diagram that uses sets to perform dependency analysis on natural
statements. The set method assigns the sliding input position to a component classifier
containing the label position to be predicted. In 2017, Xiao et al. [9] proposed a Chi-
nese sentiment classification model based on the concept of convolutional control block
(CCB). Based on the CCB model, this method takes the sentence as the unit, considers
the short-term and long-term contextual dependence for emotion classification, connects
the word participle in the sentence into five layers of CCB, and achieves a good predic-
tion accuracy of 92.58% for positive emotion. In 2018, Wu et al. [10] proposed a hybrid
unsupervised method to solve the two important tasks of long-term extraction (ATE)
and opinion objective extraction (OTE) in sentiment analysis.

3.4 Knowledge Graph and Expert Systems

The knowledge graph is widely applied. It can not only be applied to the automatic
question-answering assistance to solve students’ classroom problems, but also be com-
bined with the expert system to make decisions on various things in the system, such as
students’ classroom performance evaluation and teachers’ teaching evaluation, through
other technical means such as identification and behavior analysis, as shown in Fig. 3.

In 2005, researchers fromDalianUniversity ofTechnology for thefirst timedescribed
the basic concepts and data algorithms of knowledge graph, as well as the new progress
and application prospect in the field of knowledge graph. Since then, knowledge graph
has entered the field of vision of researchers in China. The commonly used knowledge
graph constructionmethods include: bibliometrics, citation analysis, co-citation analysis,
multivariate statistical analysis, word frequency analysis and social network analysis.

Chen Yulin et al. [11] analyzed the knowledge graph in the field of educational
technology and concluded that He Kekang et al., through the study of author co-citation
network, was the core author of educational technology. Yang Guoli et al. [12] used
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Fig. 3. Application of artificial intelligence expert system

CiteSpace software to construct the knowledgemap of library science in China, explored
the core institutions and authors of library science, and explained the knowledge base,
frontier and hot spot of this field.Wang Youmei et al. [13] explored the research hotspots
of MOOC in China through multivariate statistical analysis and put forward research
suggestions. Li Changchun et al. [14] analyzed the hot current situation and development
trend of network education based on knowledge graph.DingXueyang et al. [15] analyzed
the research hotspots and future trends of educational equity in China based on the
knowledge graph of coword matrix.

4 The Main Functions of Open Education AI Live Class

Compared with closed education, open education is a type of education supported by
the educational concepts of “openness, inclusiveness and lifelong”. It realizes the value
concept of lifelong education that “everyone, everywhere and all times” can learn through
the all-round openness of the objects, resources, process and management of higher
education. The online live class platform of open education mainly reflects the relevant
concepts of open education.

4.1 Basic Framework of the Platform

AI live interactive classroom adopts AI plus Internet live classroom to help realize
remote teaching and intelligent classroom management. The platform mainly adopts
mature artificial intelligence technologies such as face recognition technology, behavior
recognition, natural language processing and intelligent recommendation technology,
etc. The main system framework is shown in Fig. 4.

The teaching resource cloud platform can integrate and share the rich teaching
resources. To realize the learning space for everyone, high-quality resources for all
classes.
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Fig. 4. Schematic diagram of AI live platform architecture of Open Education

4.2 Introduction of AI Live-Streaming Classroom Functions

Open education teaching platformof the live interactionmainly from the aspects of teach-
ing tube evaluation to realize learner centered comprehensive intellectualized, imple-
ment teaching aspects: intelligent digital teaching resource, diversified teaching envi-
ronment and interaction teaching, network of online courses, intelligent data statistics
and analysis, multi-campus interactive teaching and learning aspects of implementation:
Interactive learning space, online learning platform, intelligent classroom interaction,
learning behavior collection, teaching resource sharing and other functions. In terms
of management, centralized network management, Internet of things environment con-
trol, face recognition and identity authentication, information release, intelligent space
management, artificial intelligence analysis, and in terms of evaluation: Teaching course
evaluation, online course resource sharing, teacher teaching evaluation, student learning
evaluation, data statistics and analysis and other functions.

1) One place to teach, many places live, repeated replay
“More than one to teach, to live, repeats” is inheriting the advantages of the

original Internet broadcast live online, teachers and students online at the same
time, teachers in the teaching, the remote broadcast system will be taught the audio
and video data transfer to the stream media encoder, compressed into data flow,
and synchronous transmission by streaming media server through the Internet to the
receiver class, Students inmanyplaces canwatch the videoof different teaching at the
same time online, and can interact with the live teaching. At the same time, students
who fail to participate in the live lecture in time can also watch the video recorded
in the live class after class to consolidate the learning of classroom knowledge, as
shown in Fig. 5.

2) Multi-channel synchronous live broadcast
Compared with the traditional dual-channel synchronous live broadcast, there

are only two information transmission channels: teacher’s image and courseware
playback. This platform adds a video transmission channel for teachers writing on
blackboard to realize three channels of synchronous video transmission of “teacher,
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Fig. 5. Teaching resources platform display

courseware and blackboard writing”. Technically, three-channel multimedia trans-
mission is similar to two-channel multimedia transmission, but it requires more
network services in the process of synchronous transmission.

3) Intelligent online discussion
Compared with the traditional online discussion and speech process, this plat-

form continues to make the following improvements while retaining the application
functions of the original live broadcast platform:

One is to retain the original text communication mode, while expanding the
audio and video questioning mode. The original text communication mode can
allow teachers to give timely feedback on some valuable questions in the process
of explanation, as well as in the process of questioning and communication, so
as to help students to understand quickly and to avoid confusion in the process
of questioning in targeted explanation. Extended audio and video modes enable
students to communicate with each other through audio or video in a timely manner
for some valuable and complex problems, thus improving communication efficiency
and saving time and cost.

The second is to add the self-help question and answer function, aiming at some
simple question platform, through BLSTM-CRF technology, analyze and identify
the content of the question, and the system platform will automatically answer. If
you can’t answer the questions, you can communicate with the teacher via text, voice
or video.

The intelligent interaction mode can greatly reduce the teacher’s interaction
burden and improve the interaction efficiency.

4) Intelligent classroom management and teaching quality control
Online teaching is the most difficult monitoring content is aimed at students in

teachers’ learning attitude and learning action, intelligent AI management system
provides a set of feasible solutions, through the automatic monitoring system, AI the
classroom DeepFace of face recognition, behavior identification technology, such
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as RCNN automatically evaluate the behavior of college students. Real-time video
monitoring to remind students, and online evaluation.

5) Intelligent evaluation of teaching process
AI intelligent live broadcasting platform can not only automatically monitor

the teaching process, but also objectively evaluate the teaching process through AI
technology, including the evaluation of teachers and students, and assist classroom
management.

AI platform can make comprehensive evaluation based on teachers’ class behav-
ior, teaching and explanation, student evaluation and other aspects. Compared with
other subjective evaluations, AI intelligent evaluation system is more objective and
fair.

For students of evaluation mainly includes the main performance of the students
in class and record the process of computer operation, such as the existence of
watching video, whether in the treatment of other files, and whether to take an active
part in class discussions, etc., through the behavior recognition, emotion recognition
analysis, eyeball is over, on-linemonitoring students’ learning attitude, learning style
and application of knowledge, Give the students a grade evaluation in class, and at
the same time remind the students to participate in the class seriously, as shown in
Fig. 6.

6) Personalized recommendation
Individualized training and adaptive education is an ideal mode of talent train-

ing, and also a means and method to solve the confusion of youth in the process
of accepting adult higher education. Adaptive education and personalized learning
are AI teaching platforms, which use the acquired learning data of different stu-
dents to provide personalized training programs for students with different learning
progress and learning ability through knowledge mapping and other methods, and
provide targeted guidance for students to help them improve their ability level to the
maximum.

Fig. 6. Intelligent analysis of teaching process
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The AI teaching platform can recommend learning courses according to stu-
dents’ learning data such as class behavior response, learning progress, learning
ability and learning status. At the same time, personalized training can be carried
out according to students’ needs. Personalized education can maximize the value
of adult education, and prevent students with good foundation from wasting time
in simple tasks, and students with poor foundation from failing to keep up with the
pace of learning. Let every student who accepts higher education learn something,
learn something, let adult education play the maximum value.

5 Conclusion

This study explores the era of AI, AI technology and Internet technology under the
background of the development of network broadcast classroom interaction research
problem, to the current problems existing in the development process of adult education
for simple summary, but theAIplusEra the applicationof open education is still relatively
shallow, in fact the AI plus Era of open education teaching ways and teaching methods
more rich. AI live class is more intelligent and more convenient for interaction.
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Abstract. Brain tumor segmentation methods using deep neural net-
works have recently achieved significant performance breakthroughs.
However, the existing brain tumor segmentation networks are directly
implemented on whole brain images, resulting in possibly reduced seg-
mentation performance due to the disturbance of background regions.
To solve this problem, inspired by the Mask R-CNN, a novel brain
tumor segmentation model called BrainSeg R-CNN is proposed in this
work, which classifies the brain tumor areas and boundaries based on the
detected region of interest in an end-to-end manner to achieve segmen-
tation result. Also, an effective feature extraction strategy is presented
in BrainSeg R-CNN, which in detail extracts various kinds of informa-
tion from separate channels for each modality and immediately adopts a
cross-connection operator to realize the information transmission among
different channels. Moreover, concatenation and add calculation are inte-
grated to improve the fusion efficiency of multi-scale features from brain
tumor images. Additionally, a multi-weighted and multi-task loss func-
tion which fully considers tumor size and overlap label is introduced, sig-
nificantly improving the segmentation performance. Experimental results
on BraTS 2017 dataset demonstrate that our BrainSeg R-CNN obtains
competitive performance with state-of-the-arts.

Keywords: Convolutional neural network · Segmentation · Brian
tumor · BrainSeg R-CNN

1 Introduction

With the rapid development of deep learning in the field of medical imaging,
brain tumor segmentation task, as a key step in brain function analysis and
disease diagnosis, has also made a major breakthrough in recent years [1,2].
The initial deep segmentation networks take brain tumor segmentation as patch
classification problem, mainly employing typical convolutional neural networks
(CNN) architectures in visual classification task. Also, sliding window and post
processing are adopted to achieve the entire segmentation result. The main
c© Springer Nature Singapore Pte Ltd. 2021
Y. Wang and W. Song (Eds.): IGTA 2021, CCIS 1480, pp. 217–226, 2021.
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disadvantages of these methods lie in redundant calculations and global informa-
tion loss. Then, fully convolutional networks (FCNs) are introduced to provide a
pixel-to-pixel solution for brain tumor segmentation with effective expansion of
receptive fields, leading to the superior segmentation accuracy and efficient cal-
culation reduction [3,4]. Specially, an evolutionary version of FCN called UNet
[5,6], which well integrates high-level and low-level features of medical images
and achieves significant performance improvement in a variety of medical seg-
mentation tasks, gradually becomes the mainstream of brain tumor segmentation
methods. To further improve its segmentation performance, residual module [7],
attention mechanism [8] and multi-scale fusion cascade ideology [9] are injected
into the baseline model, which largely promotes the development of brain tumor
segmentation methods. Although promising segmentation performance has been
achieved, existing brain tumor segmentation networks [10–13] are directly per-
formed on whole images, resulting in possibly reduced segmentation performance
due to the disturbance of background regions.

To resolve this problem, inspired by the recent Mask R-CNN [15], a small
and flexible object instance detection network with a segmentation branch for
natural images, we propose a novel brain tumor segmentation model named
BrainSeg R-CNN in this work. BrainSeg R-CNN classifies brain tumor areas
and boundaries based on the detected region of interest (RoI) in an end-to-
end manner to achieve segmentation result, providing a new pipeline for brain
tumor segmentation. In addition, an effective feature extraction strategy is given
in BrainSeg R-CNN, and it in detail extracts various kinds of information from
separate channels for each modality with cross-connection operator to realize
the information transmission among different channels. Also, concatenation and
add calculation are integrated to improve the fusion efficiency of multi-scale fea-
tures from brain tumor images. Moreover, a multi-weighted and multi-task loss
function which fully considers tumor size and overlap label is introduced, and
it significantly improves the segmentation performance. The proposed Brain-
Seg R-CNN is extensively evaluated in the brain tumor segmentation challenge
(BraTS) [16], and experiment results illuminate that it gains competitive perfor-
mance with state-of-the-arts. Specially, it achieves the whole tumor segmentation
accuracy of 91.54% in slices with brain tumors. The overall architecture of the
proposed BrainSeg R-CNN is illustrated in Fig. 1. The main contributions of
this work are three folds: (1) A novel brain tumor segmentation network called
BrainSeg R-CNN is proposed, which significantly distinguishes from the existing
networks for this task. (2) BrainSeg R-CNN introduces effective feature extrac-
tion and fusion strategies as well as an effective loss function for brain tumor seg-
mentation, largely improving the performance of the network. (3) Experimental
results on a widely used dataset demonstrate its competitive performance with
state-of-the-arts.

2 Method

The BrainSeg R-CNN is mainly inspired by the Mask R-CNN to provide a
novel pipeline for brain tumor segmentation task. It adopts the similar two-stage
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Fig. 1. Overview of BrainSeg R-CNN. It is mainly comprised by feature learning,
contextual fusion and network head. It employs multi-channel and cross-modality con-
nection to extract more discriminate features, followed by an improved feature pyramid
structure for contextual fusion. An extra Dice loss is introduced on the top of network
in parallel with other losses.

procedure as Mask R-CNN. Differently, as shown in Fig. 1, our BrainSeg R-
CNN consists of three different parts, i.e., feature learning, contextual fusion
and network head, aiming at gaining superior performance for this task.

2.1 Mask R-CNN

Here, we briefly review the Mask R-CNN [15] that is highly related to our work.
Mask R-CNN takes advantage of the principle of Faster R-CNN [17] while intro-
ducing the extra mask branch so that it can predict object mask on RoI generated
by region proposal network (RPN) for fast instance segmentation. Besides, Mask
R-CNN improves the coarse spatial quantization of RoIPool in Faster R-CNN
and alternatively proposes the quantization-free layer RoIAlign for avoiding mis-
alignment. Mask R-CNN has provided strong baselines for multiple vision tasks
such as human poses estimation and instance segmentation. As such, we follow
the similar principle to deal with brain tumor segmentation task. Unfortunately,
compared to natural image tasks, medical image tasks face almost very differ-
ent situations, such as multi-modality images, fewer labeled samples as well as
various instance shapes. Therefore, Mask R-CNN cannot be directly transferred
to the brain tumor segmentation task, and we have to redesign the architecture
to fit for this task.
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2.2 BrainSeg R-CNN

Multi-path and Cross-Modality Feature Learning. Although four modal-
ities (T1, T1c, T2 and Flair) contain spatially and semantically similar informa-
tion, they describe brain tumor from different views and provides complementary
information to each other. Effective feature learning will provide better repre-
sentation of brain tumor image for following segmentation of RoI. Meanwhile,
in the family of mainstream CNN models, different convolutional layers capture
different visual features and varying scales information. The backbone models
encode the entire input or larger feature maps spatially in lower layers, thereby
harvesting finer spatial information for pixel-wise segmentation. However, due to
the local convolution with small receptive fields, lower layers have poor semantic
capturing capability. In higher layers, the stacked multiple convolutional lay-
ers progressively sense the entire input with larger receptive view and possess
strong semantic information, but the outputs of higher layers are spatially coarse
after the downsampling. Overall, the lower layers provide more accurate spatial
characteristics while the high ones predict more accurate semantic labels. To
this end, we design the effective features learning strategy from multi-path and
cross modality, combining the inherent merits of varying convolutional layers
and complementary information of four modalities.

To achieve that goal, the four modalities are separately fed into four CNN
models, shown in Fig. 1(a), from left to right are T1, T1c, T2 and Flair, respec-
tively. Motivated by the shortcut in ResNet, the features in the i-th level from T1
are combined with features in j-th (j = i+1) level from T2 though element-wise
addition. Note that the two feature maps always have different spatial size. We
conduct extra convolution with downsampling on the larger one, making them
have same size. The resulting features then pass though the next convolutional
layer. For other modalities, we repeat the similar operation. In this way, each
modality integrates features of every level from one or more adjacent modalities
except the first T1. The network not only learns features from individual CNN
model and modality, but also gets multi-scale and cross-modality features, fully
considering the interaction among modalities to obtain discriminative features of
brain tumor. Besides, all features of the i-th level of every modality are concate-
nated along the channel dimension to form a new feature map to characterize
brain tumor at i-th level, fed into next contextual fusion part.

Feature Pyramid Structure Based Contextual Fusion. To get better
global contextual information, we present an improved feature pyramid structure
to fuse features gained from feature learning period under different pyramid reso-
lutions, depicted in Fig. 1(b). After feature learning, we get concatenated feature
maps of each layer. Here the number of channels and spatial size per concate-
nated feature maps are different. The feature maps at deeper layers get more
small spatial size with more channel number. We first perform bottleneck block
on them to give them the same dimension. The UAC block is then carried out
to fuse features, which primarily involves Upsampling, Add and Concatenation
operations (UAC) as shown in Fig. 2.
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In UAC block, given two inputted feature maps from adjacent i-th and j-th
levels, denoted respectively as A and B, the low resolution feature map B is 2×
bilinear upsampled, producing feature map B*, to match the spatial size with
high resolution A followed by 1 × 1 convolutional layer. The resulting B* and
A are added in element-wise manner, obtaining feature map C = B* + A. The
added feature map C then are concatenated with feature map A, getting new
map D =

[
A, C

]
, which contains global and local information with stronger

semantic and finer spatial resolution, particularly helpful for segmentation. Sub-
sequently, the fused feature maps D are connected to one bottleneck block for
feature adaption. From the deepest layer to the shallowest layer, we keep repeat-
ing above operation progressively. The outputs of all UAC blocks hold the same
dimension but have different resolutions. We upsample all of them up to the
same resolution as the largest with different times ratio except the shallowest
one. After that, we combine them with concatenation along the channel direc-
tion. The final fused features go though vanilla RPN to generate RoI of brain
tumor, and produced each RoI is fed into the network head for bounding-box
recognition and mask prediction.

Fig. 2. The basic structure of the given UAC block. The UAC block is designed to fuse
multi-channel features, which primarily involves Upsampling, Add and Concatena-tion
operations. The outputs of UAC block holds the same dimension but has different res-
olutions. Additionally, it contains global and local information with stronger semantic
and finer spatial resolution, which will be helpful for brain tumor segmentation.
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Network Head. Our network head is similar in structure to Mask R-CNN,
focusing on the guidance of training by loss function. However, due to the
high similarity between tumors and tissues, their various shapes and small size,
the loss function employed in Mask R-CNN actually pays too less attention on
desired tumor regions, possibly resulting in poor segmentation performance and
unsuitable for brain tumor segmentation task. Therefore, following [14], Brain-
Seg R-CNN adds a multi-weighted loss function in conjunction with ones of Mask
R-CNN in parallel fashion for brain tumor segmentation (Fig. 1(c)). The total
loss is defined as following:

L = Lrpn + λ1 · Lcls + λ2 · Lmask + λ3 · Lbox + λ4 · Ldice (1)

where Lrpn, Lcls and Lbox are identical as Mask R-CNN, which are used to train
the branch of detection. Lmask means the average binary cross-entropy loss, and
Ldice is the added Dice loss to optimize segmentation branch. λi (1 ≤ i ≤ 4) is
the hyper-parameter that controls the importance of each loss.

3 Experiments

3.1 Dataset and Settings

We evaluate the proposed BrainSeg R-CNN on the commonly used BraTS 2017
dataset. For each MRI image, there are four modalities: FLAIR, T1-weighted
(T1), T1 with gadolinium enhancing contrast (T1c), and T2-weighted (T2). The
dimensions of all images are 240 × 240 × 155 voxels. The BraTS 2017 training
set is composed of 210 cases of high-grade gliomas (HGG) and 75 cases of low-
grade gliomas (LGG). Each ground-truth for brain tumors is given by experts
[18,19]. Here, we divided the original training set into three subsets for model
training, validation and testing, respectively. Figure 3 demonstrates two typical
multi-mode brain tumor image samples in BraTS 2017 dataset.

Our experiments mainly consist of two parts: (1) Compared experiments
using slices with tumors; (2) Compared experiments using all slices (whole brain
image). As the BrainSeg R-CNN is based on the detection model, which will
result in a higher level of false positive for slices without brain tumors. Therefore,
the first part of our experiments is carried out on slices which definitely contain
brain tumors to verify the effectiveness of BrainSeg R-CNN, specially to evaluate
the three designed parts, i.e., feature learning, contextual fusion and network
head. In the second experiment, we compare BrainSeg R-CNN with several state-
of-the-art methods by using whole brain image with the same protocol as [20].
Moreover, Dice score is adopted in all of the experiments.

3.2 Compared Experiments Using Slices with Tumors

Comparison with Mask R-CNN. Here, we take Mask R-CNN architecture
without multi-path and cross-modality feature (MCF), multi-scale fusion (MF)
and multi-weighted dice (MD) loss as our naive baseline. Based on the different
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Fig. 3. Typical multi-model brain tumor images in BraTS 2017 dataset

Table 1. Comparison with Mask R-CNN [15] using slices with tumors (%)

Methods Whole Core Enhance

Baseline 85.94 80.12 78.20

Baseline+MCF 86.42 82.07 80.13

Baseline+MD 87.24 82.14 80.28

Baseline+MCF+MD 87.63 82.35 80.52

Baseline+MF 88.43 83.08 80.75

Baseline+MF+MD 90.02 84.19 80.96

Baseline+MCF+MF 89.04 83.81 80.88

BrainSeg R-CNN 91.54 86.22 81.05

combinations of adding MCF, MF and MD, we conduct a series of comparative
experiments on BraTS 2017 dataset whose results are reported in Table 1. As
shown in Table 1, by introducing MCF and MF as well as the MD loss, our Brain-
Seg R-CNN achieves the optimal segmentation performance of 91.54%, 86.22%
and 81.05% on whole, core and enhance tumors, which outperforms that of Mask
R-CNN over 5.58%, 6.10% and 2.85%, respectively. In addition, following conclu-
sions can be drawn from Table 1. All of the MCF, MF and MD gain performance
improvement over the baseline. Among them, MF is superior to the others while
MCF achieves the smallest effect. Further performance improvements can be
achieved through the combination of MCF, MF and MD.

Comparison with U-Net Models. Here, we mainly compare BrainSeg R-
CNN with several typical 2D U-Net models including basic U-Net, Res-UNet and
Res-UNet with weighted-Dice (Res-UNet+WD) on BraTS 2017 dataset to give a
further evaluation, and the compared results are shown in Table 2. Table 2 illumi-
nates that BrainSeg R-CNN achieves promising performance improvement over
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Table 2. Comparison with U-Net models using slices with tumors (%). * indicates
the result of our recurrence.

Methods Whole Core Enhance

U-Net* [5] 83.41 80.38 76.08

Res-UNet* 86.32 84.96 79.27

Res-UNet+Weighted-Dice [7] 88.51 87.96 80.17

BrainSeg R-CNN(ours) 91.54 86.22 81.05

basic U-Net and Res-UNet. Compared with Res-UNet+WD, BrainSeg RCNN
respectively gains 3.03% and 0.88% performance improvement on whole and
enhance tumor segmentation results. Meanwhile, it is inferior to Res-UNet+WD
on core tumor segmentation. However, the overall experimental results demon-
strate the effectiveness of our BrainSeg R-CNN method for brain tumor segmen-
tation.

3.3 Compared Experiments Using Whole Brain Image

To further test BrainSeg R-CNN, we compare it with several state-of-the-art
methods on all slices (whole brain image) with the same setting as [20], and
experiment results on BraTS 2017 dataset are given in Table 3. Among them,
dense FCN (DFCN) employs typical 2D FCN model and introduces dense con-
nection to improve the segmentation accuracy [20]. In contrast, FCN+CRF
adopts 2D FCN model followed by conditional random field (CRF) as post
processing [12,13]. As BrainSeg R-CNN is based on detection model, it will
result in a high level of false positive for slices without brain tumors. However,
this problem can be resolved by adding a pre-classifier before feature learning.
Here, we take U-Net as the pre-classifier and denote this method as BrainSeg
R-CNN+Classifier.

Table 3. Comparison with state-of-the-art methods using whole brain image (%)

Methods Whole Core Enhance

DFCN [20] 84.00 83.00 80.00

FCN+CRF [13] 87.20 83.00 76.00

U-Net [5] 83.00 80.00 75.00

Res-UNet+WD [7] 88.13 87.36 80.12

BrainSeg R-CNN(ours) 86.54 84.88 78.49

BrainSeg R-CNN+Classifier (ours) 91.22 85.62 80.71

Table 3 illustrates that BrainSeg R-CNN overall outperforms DFCNN, FCN+
CRF and U-Net methods. Due to the high false positive on slices without tumors,
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it is inferior to the Res-UNet+WD method. However, with a simple pre-classifier
as supplement, our BrainSeg R-CNN+Classifier obtains the optimal performance
for both of whole and enhance tumor segmentation. Specially, it gains 91.22%
Dice score for whole tumor segmentation, which is significantly higher than the
others.

4 Conclusion

In this paper, inspired by Mask R-CNN, we propose a novel brain segmentation
method called BrainSeg R-CNN, which classifies brain tumor areas and bound-
aries based on the detected RoI to finish segmentation, avoiding invalid segmen-
tation calculation in the background area as well as providing a new pipeline
for this task. Additionally, three improvements are presented in BrainSeg R-
CNN to achieve better segmentation performance. Extensive experiment results
on widely used brain tumor segmentation dataset demonstrate the effectiveness
of our proposed BrainSeg R-CNN method. In the future, the more powerful
pre-classifier will be integrated into current BrainSeg R-CNN model to further
improve its performance on the entire brain image. In addition, we will extend
the proposed BrainSeg R-CNN method into 3D model, and this could further
avoid the wrong detection existing in 2D method.
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Abstract. Tracking accuracy and frame rate are the two most important indexes
of satellite video tracking. Now, the research of close-range tracking algorithm
is gradually developing from short-term to long-term, and has been widely used.
This paper refers to the idea of long-term tracking strategy and introduces it into
satellite video target tracking. With a variety of features as precision guarantee,
the redetection function is added to the tracker to ensure the robust tracking. At
the same time, the feature dimension is properly reduced. The validity of the
algorithm is verified by the video sequence obtained from Skybox-1 satellite. The
results show that the tracking effect is good, and the performance of the dimension-
reduced version has no significant decrease, and the frame rate is improved by
37.8%. It shows the high feasibility and wide application prospect of long-term
tracking strategy in space-based video tracking.

Keywords: Remote sensing · Satellite videos · Object tracking · Correlation
filter

1 Introduction

As a new observation development direction, high resolution dynamic imaging has a
wide application prospect in civil traffic monitoring, emergency response and major
engineering progress [1]. With the development of space-borne imaging technology,
quite a few countries and some international agencies have launched space video satel-
lites. For instance, Skybox-1 [2], UrtheCast, and Jilin-1 all guarantee imaging quality at
least sub meter level. Therefore, with the development of high spatial resolution video
satellites and the increasing demand for commercial remote sensing applications, how
to make full use of space-based video data is an important research direction at present
and in the future.

Target tracking is the essential part of remote sensing applications of commercial
video satellite, but the state-of-the-art motion tracking methods lack the adaptability
to space-based imaging disturbances, which turns out to be the main constraint on the
development of video field [3]. Specifically, this ismainly due to the fact that themajority
of small targets in the satellite video are almost composed of a small number of pixels
with similar brightness. There is almost no texture and features to be extracted inside, and
it is difficult to describe and relate features. In addition, the size of satellite video image
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is about 100 times that of ordinary video image, which puts forward higher real-time
requirements for tracking algorithm. In order to solve these problems, it is necessary to
study and improve the target tracking algorithm.

Correlation filtering tracking algorithm is one of the most commonly used tracking
methods. It is popular among researchers because of its fast real-time performance and
high accuracy. Based on this, researchers also proposedmany space-based video tracking
methods [4, 5], and achieved good results. However, the correlation filtering methods
have problems such as negative samples leading to boundary effect, which may lead to
tracking failure. Satellite video data exacerbate this problem.

Aiming at the above problems, this paper improves the correlation filtering tracking
method, and proposes a long time target real-time trackingmethod based on space-based
video. This method introduces a long-term tracking strategy which consists of tracking,
learning and detection, and enables the algorithm to activate the redetection function
after losing the target. Meanwhile, in order to ensure the accuracy of the algorithm,
the multi-feature fusion methods of Histogram of oriented gradient (HOG) [6], Color
Name (CN) [7] and Histogram of Local Intensities (HOI) are used to obtain enhanced
descriptors. Finally, principal component analysis (PCA) is used to reduce the dimension
of the tracker features to reduce the computational complexity.

2 Method Framework

In this paper, according to the long-term tracking mechanism, the algorithm is divided
into four modules: translation filter, scale filter, long-term filter and re-detection
mechanism. The overall framework of the algorithm is as follows (Fig. 1):

Fig. 1. The long-term tracking framework used in this paper

The details of the algorithm will be discussed in Sect. 2.1–2.3 of this paper.

2.1 Feature Extraction

The selection of features is the most important factor affecting accuracy. Compared with
close-range video, the background of satellite video image is complex and changeable, so
the single feature cannot guarantee the industrial requirements. Therefore,more andmore
researchers choose to use the fusion of multiple features to obtain enhanced descriptors
and achieve better performance. This algorithm also follows this idea, as shown in Fig. 2.
Three features, including HOG, CN, HOI, are respectively used in different parts of the
algorithm.
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Fig. 2. Detailed construction of the three filters in the algorithm

Histogram of Oriented Gradient (HOG)
HOG is a feature descriptor commonly used in target tracking. The basic idea is that the
flexible target is greatly non-rigid, and its color and texture change a lot, so it is difficult
to effectively describe the matching of color and texture features and shape template. In
contrast, in an image, the directional density distribution of gradients or edges is a good
description of the appearance and shape of local objects.

The high-dimensional features are introduced into the framework of correlationfilter-
ing.Based on the structure ofHOGeigenmatrix, the researchers use sparse representation
and dot product processing of eigenmatrix. Because of the sensitivity and insensitivity
of the original direction, the pixel level features were mapped, and after normalization,
truncation, projection and dot product processing, the 31-dimensional FHOG feature
was obtained [8]. In this way, under the condition of fewer model parameters and faster
detection speed, the better performance of the algorithm can be guaranteed.

Color Name (CN)
CN is a template class feature made up of 11 colors. The researchers have searched a
large number of Google images to obtain a generic color feature matrix, including black,
blue, brown, gray, green, orange, pink, purple, red, white and yellow. The feature model
is further optimized to make the algorithm highlight the colors with higher frequency
and be more representative.

Histogram of Local Intensities (HOI)
The intensity gradients are not robust to the appearance change caused by deforma-
tion. Therefore, [9] build local statistical features by referring to the principle of sim-
ilarity of distribution field scheme, and obtains HOI feature descriptors respectively
through the intensity channel and the channel after applying non-parametric local rank
transformation to the intensity channel. The robustness is greatly enhanced.
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Multi-feature Selection and Fusion
Figure 2 illustrates the feature selection of the three filters in the algorithm. These three
filters play different roles in the tracking process, and the learning sample sizes are
also different. The translation filter learns information about the target and background.
HOG is robust to local deformation and illumination changes, but unstable to image
blurring. CN feature compensates the background clutter effectively, and the two are
complementary to distinguish positive and negative samples. The scale filter is similar
to the long-term memory filter in that it does not extract background information. [10]
shows that the addition of HOI features cannot improve the accuracy of scale estimation,
so only the addition of HOG and HOI fusion features in the long-term memory filter
improves the sensitivity of features to intensity changes.

The kernel is composed of dot product or norm of parameters. Extracting features
yields a matrix with C channels connected. Therefore, the fusion feature descriptor is
obtained by the single dot product sum calculation of each channel. The correlation filter
in the algorithm adopts linear kernels, so the multi-channel version is:

κ
(
x, x′) = xTx′ (1)

kxx
′ = F−1

(∑

c
x̂∗
c � x̂′

c

)
(2)

Where F−1 is the inverse discrete Fourier transform, x̂∗
c represents the complex

conjugate form of the sample in the Fourier domain, and� represents the multiplication
of the elements between matrices.

2.2 Re-detection Mechanism

When the translation filter loses the target in the tracking, the tracker can be reinitialized
by the detector. In other words, the detector obtained by off-line training can give the
initial position of the target. After tracking failure, the translation filter converts to the
online detector (Fig. 3).

Fig. 3. The process of long-term tracking
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The appearance of the target will change over time, and the long-term memory filter
needs to be updated.

x̃t = (1 − η)x̃t−1 + ηxt (3)

ãt = (1 − η)ãt−1 + ηat (4)

Where x̃ and ã are the target size and appearance models in the Fourier domain
respectively. t is the current frame and η ∈ (0, 1) is the learning rate.

Meanwhile, as a switch of the re-detection mechanism, the long-term memory filter
balances the maximum response value Cmax with a predetermined threshold Tr .

Cmax = max(f (z)) (5)

Where f (z) is the response map of an image patch z in the Fourier domain.
Cmax is set to the confidence score. The detector will only be turned on when the

re-detection threshold is exceeded. This is to prevent the algorithm from performance
sliding window detection on the video every frame, thus reducing the computational
cost.

The online SVM classifier is selected as detector in the long-term tracking frame-
work. The training samples of the classifier are determined by the estimated position
and scale changes, and the samples are assigned binary tags for training SVM. We refer
to the method in [11] and use non-parametric local rank transformation. Therefore, the
hyperplane objective function for calculating the SVM detector is:

min
h

λ

2
‖h‖2 + 1

N

∑

i

ρ(h; (vi, ci)) (6)

ρ(h; (vi, ci)) = max{0, 1 − c〈h, v〉} (7)

Where 〈h, v〉 represents the inner product ofh and v,λ is the regularization coefficient,
and (vi, ci) is the training set of N samples in a frame.

2.3 PCA Based Dimensionality Reduction

Compared with the current research direction of tracking algorithms, satellite video
tracking methods pay more attention to the performance of algorithm speed. In general,
the real-time performance of the algorithm should be 20fps/s.

The computational complexity of the tracker is proportional to the feature dimen-
sions. Adaptive dimensionality reduction technology is adopted to reduce the computa-
tional cost and increase the frame rate of the algorithm while retaining a large amount
of target feature information.

Principal Components analysis (PCA) is the core principle of this dimensionality
reduction technique: computing covariance matrix, allowable eigenvector, projection
data and obtaining principal component dimension. See [12] for the detailed calculation
process.
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Considering that the algorithm has three filters and different feature selection, we
believe that both HOI and CN features are auxiliary features of HOG, so the focus of
dimensionality reduction is not the latter. Therefore, the dimensionality reduction object
used in this paper is the feature of the translation filter. HOG feature is reduced from
33 dimensions to 27 dimensions, and CN feature is reduced from 10 dimensions to
2 dimensions. The dimension can be reduced without greatly affecting the accuracy.
Similar to the method in [13], a smoothing term is added to ensure the robustness of the
projection learning matrix:

ϕt
total = αtϕ

t
data +

t−1∑

i=1

αiϕ
i
smooth (8)

Whereϕdata is the corresponding data term after dimensionality reduction processing
of the current frame appearance model, ϕsmooth is the smoothness term coefficient to
ensure the robustness of the projection matrix learning, while both are controlled by the
weights αi.

3 Experimental Results and Analysis

Three groups of video sequences from different locations were selected to perform
target tracking experiments to confirm the performance of the proposed algorithm. These
meter-resolution satellite videos were captured by the Skybox-1 satellite in Turkey, Las
Vegas, and Dubai (Fig. 4). The video parameters are shown in Table 1. The experimental
platform is Intel i7-9750H 2.60 GHz CPU and 16 GB RAM, and the development
environment is MatlabR2018a.

Satellite video data does not have groundtruth boxes for professional detection, so
precision testing cannot be carried out. Therefore, we refer to the tests of most current
satellite video tracking studies and use the method of visual comparison of target track-
ing to analysis the algorithm performance. In order to evaluate the performance of the
algorithm more accurately, we selected the relevant sequence of OTB100 [14] set as a
supplementary experiments. Because the close-range video dataset has the groundtruth
value annotated manually, the precision plot and success plot are used for quantitative
analysis.

Precision plot shows the percentage of frames in which the estimated target position
is within a certain threshold distance from the groundtruth. And the success plot is
defined as:

S = |rt ∩ ra|
|rt ∪ ra| (9)

Where rt is the tracking bounding box, and ra is the groundtruth bounding box.
The experiment selects this algorithm (Ours) and its dimensionality reduction version

(Ours -PCA) as well as three currently popular methods for testing. Figure 5(a)-Fig. 5(d)
respectively show the tracking results of the five algorithms in the Skysat-1 satellite video
data. The tracking boxes of algorithm Ours, Ours-PCA, SAMF [15], LCT and CN are
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Fig. 4. (a) Turkey1 (b) Turkey2 (c) Las Vegas (d) Dubai

Table 1. Skysat-1 satellite video and tracking target parameters

Video sequence Frame number Image size Target size

Turkey1 1799 1280 × 720 13 × 15

Turkey2 1799 1280 × 720 14 × 11

Las Vegas 1799 1920 × 1080 8 × 20

Dubai 899 1920 × 1080 39 × 41

respectively represented by blue, green, red, yellow and orange. Four frames from each
video were extracted for analysis.

As shown in Fig. 5(a) of the tracking of the aircraft in the Dubai video, a target
of this size is not difficult for existing advanced trackers. However, when the size of
the target is too small and the interference of similar objects is too much, most of the
trackers are difficult to ensure the tracking of the target. Both Fig. 5(a2) and Fig. 5(c3)
have unrelated targets coming into view. The features of the target itself are untextured,
making it difficult to obtain useful information. The comparison algorithms all failed to
track.

It can be concluded from Fig. 5 that only the algorithmwe proposed can successfully
track all the target. The dimensionality reduction version only gradually deviates from
the target after frame 1670 in Fig. 5(d4). The frame rate of the algorithm is improved by
37.8%, and real-time tracking above 25fps/s can be guaranteed in all videos (Table 2).
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(a1) (a2) (a3) (a4)
(a)

(b1) (b2) (b3) (b4)
(b)

(c1) (c2) (c3) (c4)
(c)

(d1) (d2) (d3) (d4)
(d)

Fig. 5. Satellite video sequences tracking results
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Table 2. Dimension difference and frame rate of each tracker

Algorithm Feature dimension Re-detection FPS

Ours 43 Yes 31.58

Ours-PCA 29 Yes 43.53

LCT 47 Yes 17.15

SAMF 43 No 9.49

CN 2 No 230.76

Figure 6 shows the tracking results of five algorithms in the OTB dataset for partial
sequences that conform to space-based characteristics. The accuracy of this algorithm
is 83.4% and the success rate is 63.2%. The reduced dimension version only lost 0.9%
and 0.3% of the two indicators, while the frame rate increased by 15%.

(a)                                                            (b)

Fig. 6. Part of the OTB100 data precision plot and success plot

Overall, the selected features of the proposed algorithm complement each other’s
shortcomings, and the experimental ressults show that are effective. In addition, the long-
term tracking framework solves the loss problem in the tracking process, and improves
the robustness by detecting retrieving the target again. More importantly, the introduc-
tion of dimensionality reduction technology also doesn’t affect the performance loss,
allowing the algorithm to maintain high-speed tracking.

4 Conclusion

In this paper, tracking framework and computational complexity are the two directions
of algorithm improvement. The gradient histogram, color name and local intensity his-
togram were selected as features to improve the accuracy of the algorithm. Then, a long-
term tracking framework is introduced to provide re-detection for the tracker. Finally,
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principal component analysis is used to select the most appropriate target and dimen-
sion according to the different characteristics of the algorithm. It solves the problems
of low precision and poor real-time in space-based remote sensing video of traditional
algorithm. The effectiveness of the proposed method is verified by three satellite video
experiments. The results show that the comprehensive performance of this method is
better than the existing correlation tracking methods.

It is worth noting that the algorithm misses the target many times when the back-
ground is similar to the target. It shows that the selection of features needs to be further
improved. In addition, the number of filters is proportional to the cost of computation.
In the following research, we will make further improvement on whether the scale filter
is necessary for the target whose size only changes slightly.
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Abstract. Accurate orbit information plays an important role in space and
national defense security, such as space object prediction, maneuver detection,
collision prevention and so on. Therefore, it is highly necessary to master the
characteristics of orbital elements of space objects. In this paper, the Fourier series
fitting method is proposed, in which the TLE orbit data is used to analyze the orbit
elements of GEO, LEO and HEO. According to the orbit elements of different
types of targets, the orbit elements variation rule is approximated by using the
fitting method, and the resulting variation function can be used for predictions.
The experimental results show that the predictions of this method is promising.

Keyword: Space object · TLE orbit data · Orbital elements · Variation rule

1 Introduction

Since the launch of the first artificial earth satellite Sputnil-1 onOctober 4, 1957,mankind
has embarked on a journey of space exploration. With the increasing number of human
space activities, more and more spacecraft are launched into space, creating an increas-
ingly crowded space environment [1]. In the entire space environment, there are a large
number of space objects, including a lot of space debris [2]. Orbital research and pre-
diction of space debris plays an important role in current space situation awareness
[3].

With the development of space exploration capabilities, the research on space debris
has developed from its orbit positioning and orbit prediction to more comprehensive and
accurate applications such as collision prevention. For these studies and applications, all
rely on the orbit information of space debris. Therefore, more accurately understanding
of the orbital elements’ variation rule is very helpful for studying the characteristics and
variation rule of its orbit. Most of the research on space debris orbits is based on the
traditional SGP4/SDP4 algorithm. Through this method, the TLE (Two-Line Elements)
track data reported by NORAD (North American Aerospace Defense Command) can
be directly converted into position and velocity, so as to further predict the track [4].
However, this result can only reflect the space information of the debris, and cannot
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obtain the results of its orbital elements at various times. However, different orbital
types of space debris are affected by different factors, and the variation rule of each
track element is also different. Therefore, it is necessary to classify and research the
orbital types and summarize them.

Based on the orbital elements of space debris, this paper proposes a fitting method
for variation rule of space debris orbital parameters of different orbital types, which can
better describe the rule of existing data as a function.When predicting orbital parameters
for the next seven days, the accuracy of the prediction results is better using the variation
rule function.

The rest is arranged as follows. Related work is discussed in Sect. 2. In Sect. 3, the
method of data fitting is introduced. Experiments and analysis are introduced in Sect. 4.
Finally, a brief conclusion is drawn in Sect. 5.

2 Related Works

2.1 TLE Orbit Data

TLE provides the average Kepler orbit parameters, which uses a specific method to
remove the periodic disturbance term. The research in this paper is based on the TLE
published by NORAD [5]. We extract the orbital elements corresponding to each space
object from the TLE, and then conduct experiments and analysis. Therefore, a brief
introduction to the TLE track report.

TLE is called the two-line elements, which is the orbital data used by the NORAD
to determine the position and velocity of space targets. Since two rows of meaningful
character strings are used to represent orbital elements, it is called the two-line elements.

Example
1 25544U 98067A   04236.56031392  .00020137  00000-0  16538-3 0  9993
2 25544  51.6335 344.7760 0007976 126.2523 325.9359 15.70406856328906

The two rows of TLE data represent meanings as shown in Table 1 and 2 below:

Table 1. TLE track describes the format in the first line

Columns Example Description

01 1 Line Number

03–07 25544 Satellite Catalog Number

08 U Elset Classification

10–17 98067A International Designator

(continued)
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Table 1. (continued)

Columns Example Description

19–32 04236.56031392 Element Set Epoch (UTC) *Note: spaces are acceptable in
columns 21 & 22

34–43 .00020137 1st Derivative of the Mean Motion with respect to Time

45–52 00000-0 2nd Derivative of the Mean Motion with respect to Time
(decimal point assumed)

54–61 16538-3 B* Drag Term

63 0 Element Set Type

65–68 999 Element Number

69 3 Checksum

Table 2. TLE track describes the format in the second line

Columns Example Description

01 2 Line Number

03–07 25544 Satellite Catalog Number

09–16 51.6335 Orbit Inclination (degrees)

18–25 344.7760 Right Ascension of Ascending Node (degrees)

27–33 0007976 Eccentricity (decimal point assumed)

35–42 126.2523 Argument of Perigee (degrees)

44–51 325.9359 Mean Anomaly (degrees)

53–63 15.70406856 Mean Motion (revolutions/day)

64–68 32890 Revolution Number at Epoch

69 6 Checksum

2.2 Orbit Elements

Usually the orbital elements refer to the six parameters ofKepler’s orbit: orbit semi-major
axis a; orbit eccentricity e; mean anomaly angleM ; orbit inclination angle i; ascending
node right ascension �; argument of perigee ω. The first two parameters determine the
shape and size of the orbit, the last three parameters determine the position of the orbit
surface in space, and the remaining parameter determines the instantaneous position of
object on the orbit in space. As shown in the Fig. 1, these six orbital parameters are
represented:

The orbital parameters mentioned above have their rate of change in a certain period
of time. According to the rate of change, they can be divided into fast variables and
slow variables. Fast variables such as the mean anomaly angle M; slow variables include
semimajor axis a, eccentricity e, orbital inclination i, ascending node right ascension �,
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Fig. 1. Schematic diagram of orbital elements

argument of perigee ω, these five orbital elements do not change much in one orbital
period, and the change is mainly caused by the perturbation force factor.

This paper mainly studies the characteristics of the variation rule of these five slow
variables. Different orbital heights of space debris are subject to different perturbation
forces. Therefore, for space debris with different orbital heights, the variation rule of
the same orbital parameters are different. In order to more accurately summarize the
variation rule of orbital parameters, this paper mainly studies the orbital characteristics
of space debris with three types of orbital heights of GEO (Geosynchronous EarthOrbit),
LEO (Low Earth Orbit), and HEO (High Earth Orbit), and summarizes the variation rule
of orbital elements and applies them to the prediction of their orbital elements.

3 Data Fitting

Curve fitting is a data processing method that uses a continuous curve to approximate or
compare the function relationship of discrete points on a plane [6]. It is often used for
model prediction, accuracy evaluation and error analysis of discrete data.

3.1 Commonly Used Fitting Algorithms

Commonly used fitting algorithms mainly include the following eight categories:

1) Polynomial fitting, using a polynomial expansion to fit all observation points in a
small analysis area containing several analysis grid points to obtain the analysis
model of the observation data. The formula can be expressed as:

Y (x) =
∑N

i=1
aix

N i = 0, 1, 2, · · · ,N (1)

Where ai is the expansion coefficient; N is the expansion series.
2) Fourier series fitting, mainly use a pair of orthogonal functions to fit the data.

Compared with the general method, the expansion parameters have two constant
coefficients. The calculation formula can be expressed as:

Y (t) = a0 +
∑∞

i=1
(ai cos(iωt) + bi sin(iωt)) i = 1, 2, · · · ,N (2)
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Where a0 and ω are the constant coefficient; ai and bi are coefficient at various
levels; N is the expansion series.

3) Exponential fitting, mainly for exponential function curves. For different curve
trends, there are two forms of different orders. The formula can be expressed as:

Y (x) = aebx,Y (x) = aebx + cedx (3)

Where a, b, c, d are expansion coefficients.
4) Gaussian fitting, which has a good fitting effect under the curve trend of normal

distribution, and its formula can be expressed as:

Y (t) =
∑N

i=1
aiexp

(
−

(
x − bi
ci

)2
)

i = 1, 2, · · · ,N (4)

Where ai,bi, ci are coefficient at various levels; N is the expansion series.
5) Power function fitting,mainly for power function curve, its formula can be expressed

as:

Y (x) = axb + c (5)

6) Rational number fitting, mainly based on hyperbolic function model, the formula
can be expressed as:

Y (x) =
∑

i PixN+1−i

xM+1 + ∑
j QjxM−j

i = 1, 2, · · · ,N + 1 j = 1, 2, · · · ,M (6)

Where Pi, Qj are coefficient at various levels;M and N are the expansion series
of the denominator and numerator.

7) Sine fitting, using the sum of multiple-order sine functions for fitting, the formula
can be expressed as:

Y (x) =
∑N

i=1
ai sin(bi x + ci) i = 1, 2, · · · ,N (7)

Where ai, bi, ci are coefficient at various levels; N is the expansion series.
8) Weibull fitting, which is a special type of S-curve fitting method. The fitting model

has a fixed form and a small applicable range. The formula can be expressed as:

Y (x) = abxb−1exp
(
−axb

)
(8)

It canbe seen that different fittingmethods havedifferent usage ranges due to different
curve trends. Aiming at the trend of changes in the orbital elements of space objects or
debris, the advantages and disadvantages of the above methods are compared through
calculations [7]. The experimental comparison data are given in Sect. 4. Therefore, the
Fourier series fitting method is finally chosen to fit the orbital elements, which is also
the most consistent with the characteristics of the orbital elements of space debris.
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3.2 Fourier Series Fitting

Asweall know, theFourier series is a periodic function, so it canbeused tofit anyperiodic
function. There are two ways to express Fourier series. One is the way of trigonometric
function. This method is more troublesome for human calculation and analysis, but its
mathematical meaning is clear. Computers usually use this when performing Fourier
series fitting processing. Fourier series calculation formula is as follows:

Y (t) = a0 +
∑∞

i=1
(ai cos(iωt) + bi sin(iωt)) i = 1, 2, · · · ,N (9)

Fourier series is a superposition sequence, in a time interval, the frequency of sine
and cosine is an integer multiple of the time interval. The constant is called the average
value of the series, and the pairing of sine and cosine at a specific frequency is called
the harmonic of the series. The Fourier series can be tailored to any period length. As
the number of harmonics increases, the Fourier series converges to any smooth periodic
function [8].

4 Experiment and Analysis

4.1 Classification Selection of Experimental Samples

This paper mainly studies the orbital elements of three types of space objects or debris:
GEO, LEO, and HEO. Select specific objects from these three types for statistics and
research of orbital elements. The following is the basis for the classification of different
types of tracks:

GEO : 0.99 ≤ MeanMotion ≤ 1.01&&Eccentricity < 0.01

LEO : MeanMotion > 11.25&&Eccentricity < 0.25

HEO : Eccentricity > 0.25

Where MeanMotion epresents the average number of motion circles of the orbit of the
space object or debris; Eccentricity represents the orbit eccentricity of the space object
or debris.

This paper selects three types of orbit objects: GEO, LEO, and HEO, and selects
data from January 1, 2018 to December 31, 2020, for a total of three years for processing
and analysis.

4.2 Data Pre-processing

After selecting the number of a space object or debris, we collect statistics on the TLE
corresponding to the ID number in three years. It should be noted that these space
objects or debris will not be observed every day for three years. There will be days
without observation data. At this time, we set the orbital element corresponding to that
day to 0. Similarly, there may be cases where there are multiple sets of TLEs for the
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observed target in a day. In this case, we usually only select the last set of TLEs as the
day’s orbital data.

Take the GEO object as an example, select GEO ID = 31577, as shown in Fig. 2(a)–
(e) below, which shows the target’s statistical results of orbital semi-major axis, orbital
eccentricity, orbital inclination, ascending node right ascension and argument of perigee
for the three years (2018–2020).

Fig. 2. (a) Orbit semi-major axis (b) Orbital eccentricity (c) Orbital inclination (d) Ascending
node right ascension (e) Argument of Perigee

Then, in order to explore the trend of variation in the three-year period, these zero
points, where there is no observation data, are interpolated to supplement the complete
three-year data to ensure the completeness of the three-year data. After statistics and
observations of existing data, we found that except for some special locations, these
orbital elements generally show a linear trend (linear increase or linear decrease), so
linear interpolation can be used. As shown in Fig. 3(a)–(e) below, it is the result of the
interpolation of each orbital element:

For the argument of argument of perigee, it is a change modulo 360°, so it is spliced
into continuous changes and then interpolated:

In this link, it should be noted that the appearance of 0 usually has two forms: one is
the appearance of a single zero, and the other is the appearance of multiple consecutive
zeros. For these two cases, the first case can directly use the average value of the day
before and after zero to represent the supplementary data of that day. If there are multiple
consecutive zeros, we need to find the first non-zero and last non-zero position where
consecutive zeros appear and corresponding data. Perform linear interpolation based on
these two known data to supplement the data corresponding to the positions of these
consecutive zeros. Supplementing all the data for three years will lay a foundation for



Fourier Series Fitting of Space Object Orbit Data 245

Fig. 3. (a) Orbit semi-major axis interpolation (b) Orbital eccentricity interpolation (c) Orbital
inclination interpolation (d) Ascending node right ascension interpolation (e) Argument of Perigee
interpolation

the subsequent use of Fourier series to fit its variation rule, so that the fitting result is
more in line with the variation rule of the orbital elements of space objects or debris.

4.3 Evaluation Criteria of Fitting Results

The following four evaluation indicators are used to measure the quality of the fitting
results [9]:

a) SSE (sum of squares due to error): The sum of squares due to error. The closer the
value is to 0, the better the effect ofmodel selection and fitting. This parameter counts
the sum of the squares of the errors between the fitted data or predicted data and the
corresponding points of the original data. The calculation formula is as follows:

SSE =
∑ (

Yactual − Ypredict
)2
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b) RMSE (root mean square error): Root mean square error. The closer the value is
to 0, the better the curve fitting effect. This statistical parameter, also called the
standard deviation of the regression coefficient, is the square root of the MSE, and
the calculation formula is as follows:

RMSE = √
MSE =

√
1

n

∑ (
Yactual − Ypredict

)2

Among them, MSE is the mean value of the corresponding error sum of squares,
MSE = SSE/n.

The above two evaluation indicators are based on the error between the original
data and the fitted data, that is, the point-to-point error. The following two evaluation
indicators are developed relative to the average value of the original data.

c) R-square (coefficient of determination): coefficient of determination, the calculation
formula is as follows:

R2 = 1 −
∑(

Yactual − Ypredict
)2

∑
(Yactual − Ymean)2

The denominator can be understood as the degree of dispersion of the original
data, and the numerator is the error between the fitted data or the predicted data
and the original data. Dividing the two can eliminate the influence of the degree of
dispersion of the original data. The closer the coefficient is to 1, the stronger the
ability of the equation’s variables to solve y and the better the model’s fit to the data.

d) Adjusted R-square (degree-of-freedom adjusted coefficient of determination): The
adjusted coefficient of determination. The closer the value is to 1, the better the curve
fitting effect. Calculated as follows:

R2
adjusted = 1 −

(
1 − R2

)
(n − 1)

n − p − 1

Among them, n is the number of samples and p is the number of features. Com-
pared with the coefficient of determination, the correction coefficient of determination
eliminates the influence of the number of samples and the number of features.

4.4 Data Fitting

The fitting of each orbit element of different orbit types needs to determine two points.
One is the selection of fittingmodels for each orbital element of different orbit types. The
second is that after determining the selected fitting model, it is necessary to determine
the fitting model series suitable for the orbital element.

For the space debris of GEO orbit type, select the space object with ID = 31577
for simulation selection and confirmation. The five orbital elements of the target are
processedwith different fittingmodels, and the fitting results are compared, so as to select
a fitting model that can more accurately describe the variation rule of orbital elements
in GEO type. Taking the fitting of the semi-major axis of its orbit as an example, the
comparison results are shown in the following table:
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Table 3. GEO ID = 31577 Comparison of the results of different models fitting the semi-major
axis of the orbit

Fitting method SSE RMSE R-square Adjusted R-square Series

Polynomial 150.2514 0.3723 0.0015 −0.0049 7

Fourier 6.6144 0.0784 0.9560 0.9954 3

Exponential 150.2912 0.3717 0.0013 −0.0015 2

Gauss 137.5248 0.3584 0.0860 0.0689 7

Power 150.2904 0.3715 0.0013 −5.7011e-04 2

Rational – – – – –

Sine 1.3633e+08 354.7926 −9.0593e+05 −9.1263e+05 3

Weibull 1.9926e+12 4.2756+04 −1.3241e+10 −1.3254e+10 –

It can be seen from Table 3 above that according to the evaluation criteria of the
fitting results, the closer the R-square and Adjusted R-square results are to 1, the better
the result; and the closer the RMSE is to 0, the better the result. Therefore, it can be
seen that in all fitting models among them, the Fourier series fitting method has the best
results, so this model is selected.

In the same way, the selection of fitting models for orbital eccentricity, orbital incli-
nation, right ascension of ascending node, and argument of perigee adopts the same
method for the semi-major axis of the orbit. For the space objects of GEO orbits, it is
more appropriate to use the Fourier series fitting method for the variation rule of these
five orbital elements.

The LEO and HEO orbital space debris are processed by the samemethod of analyz-
ing GEO types. The comparison experiment results show that the Fourier series fitting
model is better for the orbital elements of LEO and HEO type space objects.

In the use of Fourier series to fit data, it is necessary to consider the series of the
model according to actual needs to avoid problems such as under-fitting and over-fitting
in the calculation time process. Therefore, in the selection of the fitting series, the fitting
results need to be considered, and the actual significance of the fitting results must also
be considered. Perform 2–9-order Fourier fitting calculations on each orbit parameter of
the three orbit types of targets, and compare the fitting results, as shown in the following
table:

It can be seen from Table 4 that for the orbit semi-major axis of the GEO target,
considering the calculation complexity, fitting effect and practical significance [10], it
is finally determined that the third-order Fourier fitting is better. In the same way, we
determined the Fourier fitting series of the remaining four orbital elements, and fitted
the four-order Fourier for the orbital eccentricity, orbital inclination, right ascension of
the ascending node, and argument of perigee.

Using the same processing and comparison method, the Fourier series fitting is
performed on LEO and HEO targets, and the fitting series of the five orbital elements of
these two types of targets are determined respectively. Select LEO ID = 40960, HEO
ID = 15680, and the final fitting series are shown in the following Table 5:
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Table 4. Fitting results of orbit semi-major axis with GEO ID = 31577 under different orders

Fitting evaluation index Series

1 2 3 4 5 6 7 8

SSE 8.3377 6.7191 5.9738 5.9717 5.9696 5.9502 6.6144 6.6082

RMSE 0.0875 0.0787 0.0742 0.0743 0.0743 0.0743 0.0784 0.0784

R-s 0.9446 0.9553 0.9603 0.9603 0.9603 0.9605 0.9560 0.9561

A R-s 0.9444 0.9551 0.9600 0.9600 0.9599 0.9600 0.9554 0.9554

Table 5. Determination of fourier fitting series for each track element of different types of targets

GEO LEO HEO

Orbital semi-major axis 3 7 5

Orbital eccentricity 4 6 6

Orbital inclination 4 7 7

Ascending node right ascension 4 – –

Argument of Perigee 4 – –

The ascending node right ascension and argument of perigee of the LEO and HEO
orbits are relatively special due to their special variation. Here is a statistical diagram of
the two orbital elements of the LEO target, as shown in Fig. 4(a)–(b) below.

Fig. 4. (a) Ascending node right ascension interpolation (b) Argument of Perigee interpolation

When fitting these two orbital elements, the Fourier series fitting method is not used,
and the linear representation can be used with a period of 360°. Whenever it increases
from 0° to 360°, it restarts from 0° in the same increment. Or the decreasing trend linearly
increases or decreases.
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4.5 Predicting Results

This paper predicts the five orbital elements of the three types of targets, GEO, LEO,
and HEO, and predicts the data for the next seven days by fitting seven days of known
data. Taking GEO ID = 31577 as an example, this paper selects the data of the 900th
to 906th days in three years as the original data of the fitting, and predicts the data of
906th to 912th days. As shown in the figure below, the triangle corresponds to these
seven days. The actual value obtained from the TLE data, and the diamond shape is the
predicted result obtained through prediction.

Taking HEO ID = 15680 as an example, the prediction results of its various orbital
elements:
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Taking LEO ID = 40960 as an example, the prediction results of its various orbital
elements:

According to the prediction results of GEO, LEO, and HEO, it can be seen that
the accuracy of predicting orbit elements is better. Therefore, the fitted variation rule
function can be used to predict orbit elements within seven days.

5 Conclusion

This paper mainly analyzes the orbital elements of the three orbital types of space debris,
and proposes a fitting method for different orbital parameter variation rule of the three
types of orbital space debris: GEO, LEO and HEO. Themain fitting method uses Fourier
series fitting, which determines the order of Fourier series fitting for different targets. For
the prediction of space debris orbital requirements, the variation rule function obtained
by fitting the known seven-day orbit elements is used to predict the orbit elements of the
next seven days. The experimental results prove that the variation rule function obtained
by the fitting can be more accurate. Finally the orbital elements are predicted.

Acknowledgment. The authors gratefully acknowledge the support to this work from all our col-
leagues in Beijing Engineering Research Center of Aerial Intelligent Remote Sensing Equipment.
This work was supported by National Natural Science Foundation of China No. 11772067.

References

1. Li, B.: Research on several key issues of rapid and precise orbit determination and prediction
of space debris (2017)

2. Zhang, P.: A method for determining the initial orbit of a space target using only angular
observations (2017)



Fourier Series Fitting of Space Object Orbit Data 251

3. Song, B.: Development of U.S. space-based situational awareness system. Int. Space (2015)
4. Liu, W., Miao, Y.: Forecast reliability analysis of SGP4/SDP4 model. Astron. Res. Technol.

2, 128–131 (2011)
5. Diao, N., Liu, J., Sun, C., et al.: Satellite orbit calculation based on SGP4model. In: The Fifth

YoungMarine Scientists Forum of the Chinese Ocean Society and the First Symposium of the
YoungMarine Science Foundation of the StateOceanicAdministration. ChinaOceanographic
Society; First National Oceanic Administration (2011)

6. Shi, L., Nie, X., Ji, M., et al.: List curve fitting based on Matlab curve fitting toolbox. New
Technol. New Process (7), 39–41 (2007)

7. Qu, W., Liu, H., Qin, C., Liu, J.: Antenna tracking accuracy evaluation method based on
MATLAB Fourier curve fitting. Electron. Meas. Technol. 43(12), 91–95 (2020)

8. Brooks, E.B., Thomas, V.A., Wynne, R.H., et al.: Fitting the multitemporal curve: a fourier
series approach to the missing data problem in remote sensing analysis. IEEE Trans. Geosci.
Remote Sens. 50(9), 3340–3353 (2012)

9. Wei, Y., Zhao, F.: Evaluation criteria for curve best fit. Surv. Mapp. Sci. (1), 195–196 (2010)
10. Qu, W., Li, Y., Li, Y., et al.: Two-antenna signal endpoint identification method using Fourier

fitting. J. Ordnance Equip. Eng. 241(8), 98–102 (2018)



Mapping Methods in Teleoperation of the Mars
Rover

Jia Wang1, Tianyi Yu1, Junjie Yuan2, Lichun Li1, Man Peng3, Fan Wu1, Shiying Liu1,
Wenhui Wan3(B), and Ximing He1

1 Beijing Areospace Control Center, Beijing 100094, China
heximing15@nudt.edu.cn

2 Key Laboratory of Spacecraft In-Orbit Fault Diagnosis and Maintenance, Xi’an 710043, China
3 State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute,

Chinese Academy of Sciences, Beijing 100101, China
{pengman,wanwh}@radi.ac.cn

Abstract. Mapping methods based on multi-source images are the core technol-
ogy in the teleoperation of Mars rovers. This study discusses the related unique
control characteristics and introduces a teleoperation control mode of the Mars
rover based on the “perception, detection,movement” patrol cycle. Themulti-scale
landing site mapping method based on multi-source data (orbit/descent/ground
images) supporting the teleoperation control is described in detail, and its applica-
tions in lunar exploration missions are demonstrated. The wide baseline mapping
method aimed at mapping large (e.g., mountain peaks) and long-distance targets
after landing is proposed,with relevant experiments conducted by theYutu-2 rover.
The ranging error of the panoramic camera in 560 m range is about 4.1 m, and the
accuracy is about 0.73%. The wide baseline model was experimentally confirmed
to effectively guide task implementation with a high-precision acquisition of the
long baseline stereo, laying the foundation for high-precision terrain applications.

Keywords: Mars rover · Teleoperation ·Mapping ·Multi-source images ·Wide
baseline

1 Introduction

Mars is not only located near the Earth but also the most Earth-like planetary neighbour
[1, 2]. Therefore, the exploration and study of Mars will help to further understand the
formation and evolution of Earth and the solar system and predict the future trend of the
Earth [3].

The exploration of Mars is significantly more difficult compared with lunar explo-
ration because the distance from Earth to Mars is much larger than the distance from
Earth to the Moon. Therefore, up to now, human exploration of Mars has only involved
three kinds of methods: overflight, orbitally-based-remote sensing, and descend-land
and patrol exploration [4]. The implementation of these Mars missions, where some
of the probes are still in orbit, has obtained a large number of images of the surface
of Mars. These images have been widely used in Mars scientific research during and
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after the missions; they have enabled important engineering progress and a large num-
ber of scientific research achievements. In 2015, the National Aeronautics and Space
Administration (NASA) held a press conference to announce the indirect evidence of
the existence of liquid water on Mars [5], which once again stimulated expectations and
the enthusiasm for Mars exploration.

Compared with overflight and orbitally-based-remote sensing, descend-land and
patrol exploration can explore the surface of Mars in situ at a higher resolution, which is
an important means for surface exploration and scientific research of Earth-like planets
[6]. High-precision mapping based on multi-source images is crucial for the successful
completion of a variety of deep space mission operations and scientific investigations
[6]. By combining orbital/descent images and ground data, different scales of landing
site mapping and topographic analysis can be realized. Herein, we present some of the
results of these analyses collected by the teleoperation team of the Beijing Area Con-
trol Center, in collaboration with the Planetary Remote Sensing team of the State Key
Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth,
ChineseAcademyof Sciences. Themulti-scalemappingmode discussed here effectively
supports the teleoperation control of the rover during each planning stage.

The remainder of this study is organized as follows: Sect. 2 introduces the teleop-
eration mode of the Mars rover based on the predesigned “perception, detection and
movement” cycle. In Sect. 3, we elaborate on the mapping method based on the col-
lection of multi-scale multi-source data. Furthermore, we report on the mapping results
based on the wide baseline of the Yutu-2 rover using panoramic cameras. Conclusions
and future developments are finally discussed in Sect. 4.

2 Mars Rover Teleoperation Control Mode

After landing on the Mars surface, the rover is required to adapt to the Martian sur-
face environment by performing patrol activities in the landing area and sending the
detection data back to Earth [7]. The specific functions include [8]: cooperating with the
landing platform to complete the separation process and safely reach the Mars surface;
navigate on the landing area using the mobile abilities such as moving forward and
backward, steering, climbing, obstacle surmounting; environmental perception, attitude
determination, relative positioning, path planning, motion control, etc.; carrying and
placing payload to specifically detected targets; establishing measurement, control, and
communication links with data management and transmission capabilities.

As opposed to the lunar high-vacuum and rigid environment, the Mars surface
exhibits time-varying characteristics of the atmosphere and wind fields, while possess-
ing a higher surface rock coverage [9]. Due to long-term weathering, the outer surface
is soft, and the terrain can be deceptive. Moreover, the solar radiation intensity on the
Mars surface is approximately 20% of that on the lunar surface. If there is dust, solar
radiation will be further mitigated, and thus, the solar cell power generation of the rover
will be severely hindered [10]. These factors have brought considerable challenges to
the energy generation functionality of the Mars rover. Considering the limited tracking,
telemetry, and command (TT&C) resources of the mission, along with the complex and
changeable Mars surface environment and large communication delay, the Mars rover
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should improve its autonomous performance in energy management, mission planning,
thermal control management, and communication management [11].

In the Mars exploration missions that have been carried out as of now, the rover
driving operations were not fully automatically; hence, it had to be operated remotely
from the ground control center. In the ground control center, the operators integrated the
surface environment of Mars, autonomous ability of the rover, the demand for scientific
exploration, measurement and control conditions and other factors, to reasonably plan
the routes, scientific and engineering scopes of the rover, and finally converted them into
control instructions [12].

Themost important basic data of theMars rover teleoperation planning is information
regarding the Mars surface terrain [13]. The unique planning characteristics of each
stage require specific terrain data, mainly in terms of coverage area size and resolution.
Specifically, a primary requirement for the strategic layout of the overall planning is a
sufficiently large coverage of terrain features, i.e., in the order of 100 km. The cycle
planning is usually formulated after landing, and its scope is required to accurately
cover the landing site (generally in the order of kilometers or hundreds of meters),
while considering the trajectory factor of the descent process. Unit planning is mainly
employed for a specific rover movement; hence, the first requirement is a sufficiently
high resolution of the terrain features (generally in the centimeter scale).

3 Multi-scale Mapping Mode Based on Multi-source Data

This section discusses the multi-scale mapping method with multi-source data, namely
orbit/descent/ground images taken from the rover (Fig. 1). The process is divided into
four stages: (1) Before launch, where prior data of Mars orbiters are used to analyze
the geological background and identify a large range of landing area terrain. (2) In the
parking orbit, the high-resolution camera captures multi-orbit images from the landing
area, which are used to determine the surface terrain of the landing area accurately.
These data are primarily used for overall planning. (3) During the entry/descent/landing
(EDL) process, specific imaging equipment on the lander/rover probe will be turned on;
these equipment will send a sequence of images of the Mars surface. By integrating
the relevant data, a more accurate terrain imaging of the landing site can be generated
for future cycle planning. (4) During the surface operations, the navigation terrain and
obstacle avoidance cameras are used periodically to image the forward direction at each
navigation point. Local digital elevation models (DEMs) will be routinely produced,
which combined with ground-level topographic analysis, will support the waypoint-to-
waypoint path planning. Themappingmethods of (1) and (2) are similar. The data source
is the orbiter images, and the imaging equipment is the linear array camera. The stereo
coverage is realized by the side swing of the probe.

3.1 Large Area Mapping Using Orbit Images Based on the Two-Stage Method

Large area image mapping involves an enormous number of images, which combined
with the refinement of each image file, will lead to low efficiency and accuracy. In addi-
tion, in the process of image mapping, a DEM is needed to help eliminate the projection
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Fig. 1. Multi-scale mapping method based on multi-source data.

difference caused by the terrain, and therefore, alleviating the geometric inconsistencies
between the images and the control data is also required. To guarantee both processing
efficiency and mapping precision, a “two-stage” high-precision geometric processing
scheme for large area imaging is adopted, in which the large areas are partitioned into
several subareas processed in parallel [14].

Initially, the images in the entire predefined landing area are partitioned based on the
established geometric image model, and planar block adjustments are applied in each
subarea, so as to alleviate the geometric deviations between the images in the partition
as well as the geometric inconsistencies between the images and the control data. On
this basis, orthophoto correction and image mosaic functions are implemented. Owing
to the resolution limitation of the reference source, some positional inconsistencies of
the digital orthophoto map (DOM) mosaics between neighboring subareas persisted.
Therefore, a thin plate function (TPS) model-based image registration is applied to the
generatedDOMmosaics of each subarea. Tomaintain grayscale and contrast homogene-
ity, a histogram matching-based grayscale balancing method is applied to every DOM.
Finally, a seamless DOM product of the entire predefined landing area is generated via
mosaicking. The technical process steps are illustrated in Fig. 2 [14, 15].

During the preparations of the Chang’e-5 (CE-5), we utilized this method to generate
a seamless DOMmosaic of the entire predefined landing area. The generated radiomet-
rically homogeneous and geometrically seamless DOM mosaic is illustrated in Fig. 3
(zoomed-out view). The control point root mean square (RMS) errors were approxi-
mately one SLDEM2015 grid cell in size, signifying that the produced DOM had been
registered to SLDEM2015 with high precision. The final DOMmosaic image contained
224721 columns and 44945 rows with a ground resolution of 1.5 m, covering a surface
of 413.8 km × 121.4 km [14]. This DOM played a vastly important role in the specific
selection of the landing site, along with the evaluation of the geological environment
and the analysis of the terrain/geomorphic characteristics specific to the CE-5 mission.
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It was also used as one of the base maps for visual localization of the CE-5 lander using
descent images [16].

Fig. 3. High-resolution LROC NAC DOM mosaic of the CE-5 landing site region in Lambert
conformal conic projection.

The design index of the high-resolution camera of Tianwen-1 probe can achieve an
image resolution that exceeds 0.6 m at an orbit height of 300 km near the Mars point of
landing [17]. By employing the image data from a high-resolution camera, the landing
area can bemore accuratelymapped; the resolution is expected to surpass themeter-level
scale.
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3.2 Landing Site Mapping Using Descent Sequence Images

Compared with the orbit images, the landing area terrain product generated by the
descent sequence images has a higher resolution andmore accurate coverage. During the
descent process, the landing areawas continually imagedwith the descent camera, which
obtained sequence images with a higher resolution than that of the orbiter images. Such
imaging can generate more precise terrain features for detection cycle planning [18].
Owing to the presence of the atmosphere and wind during landing, image enhancement
based on haze removal is carried out before image matching; the main technical scheme
of this process is shown in Fig. 4:
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Fig. 4. Mapping process of descent sequence images.

In CE-5, 87 descent images capturing 2.8 km of the lunar surface were selected to
map the landing area (Fig. 5). The corresponding DOM resolution was 0.5 m, and the
coverage area was 2.5 km × 1.8 km. Because the dynamic descent trajectory of the
detector was inclined, there was an obvious intersection angle between the sequence
images; therefore, we generated the high-resolution DEM in a synchronous manner.
Using the descent sequence images and the predefined DOM produced from the LROC
NAC images as the base map, we achieved a precise and prompt landing localization
[16]. The high-precision mapping products of the landing area provided the key basic
information for the rapid analysis of the sampling area, as well as the rapid positioning
of the sampling, lifting, and canning, and the subsequent ascension sequence.

During the EDL process, the descent camera will send a sequence of images of the
Mars surface. Using similar technology, high-resolution and accurate range mapping of
the landing site can be obtained, with a resolution quality exceeding the meter scale.
This data can also be used for post-landing cycle planning. In addition, feature matching
and positioning based on descent images and high-resolution images of the orbiter are
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Fig. 5. CE-5 landing site DEM and DOM (0.05-m resolution) generated from descent images.
DEM on the left, and DOM on the right.

important for the Mars rover to carry out follow-up scientific exploration activities.
Antenna pointing control, attitude determination and other behaviors require accurate
landing site longitude, latitude, and elevation information [7].

3.3 3D Terrain Reconstruction Based on Image Fusion

Terrain reconstruction is not only an important tool to understand theMars environment,
but also an essential component in the autonomous navigation of the rover. Addition-
ally, realistic terrain reconstruction helps enhance the immersion for the teleoperators,
effectively improving their efficiency.

Before the rover moves, the teleoperation center adjusts the pitch and yaw drives of
the mast to enable the navigation camera (Navcam) to capture stereo images at different
angles. The teleoperators then use dense matching technology to process the downlinked
images. In view of the complex terrain environment and the rugged terrain of the landing
area, a pair of obstacle avoidance cameras is placed at the front and rear of the rover,
which can realize obstacle detection in any direction [19]. Therefore, the image fusion
processing method can be adopted, and the terrain data from the hazard avoidance
camera (Hazcam) are used to fill in the blind spot in the terrain data from the Navcam.
The specific implementation of this process is shown in Fig. 6.

Figure 7 shows the path planning of Yutu-2 rover to select the path to the “dormant”
point. Figure 7(a) shows the DOM at this waypoint, which was automatically generated
from 16 pairs of Navcam images captured at a fixed pitch angle, and Fig. 7(b) is the left
Hazcam image that shows a large pit in the area around the front left wheel of the rover.
Figure 7(c) is the DOM generated from Hazcam images. Considering the low resolution
of Hazcam image in the far range, we only cut and used the DOM within the range
of 3.5 m. Figure 7(d) shows the merged Navcam and Hazcam DOM, within which the
Hazcam DOM is indicated by the red oval.
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Fig. 7. The DOMs and Hazcam image: (a) Automatically generated DOM from Navcam stereo
images; (b) Left Hazcam image; (c) Automatically generated DOM from Hazcam stereo images;
(d) DOM after merging.

3.4 Wide Baseline Mapping Using Multi-site Images

Among the numerous scientific equipment carried on the Mars rover, the Navcams and
Hazcams are the most important instruments for mapping. However, due to the short
baseline, their terrain products are incapable of supporting medium - and long-term path
planning. By establishing a wide baseline using multi-sites, the effective mapping range
of the rover can be extended from tens to hundreds of meters [20].

According to the principle of photogrammetry and error-propagation derivation, the
range error can be calculated as [21, 22]:

σ 2
Y = Y 2B2

8b2navcam f 2navcam
σ 2
p + (

Y 2

Bfpancam
)2σ 2

p (1)

where σY is the standard error of range Y , σp is the parallax measurement error, B is the
wide baseline, and bnavcam is the baseline of the navigation terrain cameras. Note that the
first term is the baseline error, and the second term represents the parallax measurement
error.

By substituting the camera parameters [23, 24] of Yutu-2 rover into Eq. (1), we
can generate the range measurement errors of the targets at different distances from the
camera (100 to 700 m) under different wide baselines (Fig. 8). From the aforementioned
discussion, it can be inferred that the mapping errors do not change monotonically with
respect to the baselines, and that an optimal baseline exists for a given distance to the
target. Table 1 presents the optimal baselines for targets at different distances.
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Fig. 8. Range measurement error of different Pancam wide baselines for the Yutu-2 rover.

Table 1. Optimal baseline for targets at different distances based on theoretical analysis. (unit:
m).

Target distance 100 200 300 400 500 600 700

Optimal baseline 5.1 7.2 9.0 10.2 1.4 12.6 13.5

Range error 0.270 0.763 1.402 2.159 3.018 3.966 4.999

To verify the validity of the wide baseline mapping method, we designed the corre-
sponding data acquisition strategy and implemented it on the 4th and 5th lunar day. The
captured stereo images and their detailed views are shown in Figs. 9 and 10 and Table 2.

Fig. 9. Four left Pancam images captured at site 1 (on the 4th lunar day).

Fig. 10. Four left Pancam images captured at site 2 (on the 5th lunar day).
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Table 2. Imaging information of the Pancam images.

Stereo image No. Position of Yutu-2 (m) Attitude of the
Yutu-2 (°)

Attitude of the mast (°)

x y z Roll Yaw Pitch Roll Yaw Pitch

9-a 33.52 −112.1 0.82 1.11 166.02 2.52 −0.066 −43.11 −6.86

9-b −30.15

9-c −17.12

9-d −56.12

10-a 36.71 −119.2 1.09 0.21 164.56 6.86 −0.088 −43.11 −6.92

10-b −30.15

10-c −17.12

10-d −56.12

Weused theSURF-64 feature descriptor process and applied a distance-ratiomeasure
(the ratio of Euclidean distance of the closest neighbor to that of the second-closest
neighbor) for matching [21]. As a result, SURF provided a sufficient number of matched
points for close-and-medium-range terrain, but only a few for far-range terrain. By
combining thematched points from both the Förstner and the SURFmatching processes,
we were able to obtain a sufficient number of matched points for close-medium- and
far-range terrain scenarios.

The left side of Fig. 11 illustrates the partial feature-pointmatching of awide baseline
stereo pair taken by the Yutu-2 rover. If a line shows significant differences in orientation
and length compared to the neighboring lines, it is a mismatch. To eliminate these
mismatches, we computed the fundamental matrix between the wide baseline image
pair using the RANSAC [25] procedure. Under this iterative procedure, mismatches
were automatically eliminated as outliers. The right side of Fig. 11 illustrates the results
of the feature-point matching process after outlier elimination.

Therefore, only thewide baseline tie pointswere selected from the correctedmatched
points. By drawing a grid (e.g., 3× 3) on the image and selecting the one-tie point having
the highest correlation coefficient (or distance ratio) in each patch, we can obtain evenly
distributed wide baseline tie points that are suited for the subsequent bundle adjustment.
Finally, the three-dimensional coordinates of the matching points were calculated using
the corrected exterior orientation parameters (EOPs).
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Fig. 11. Matched feature points. Left – before, and right – after outlier elimination.

By selecting some obvious large impact craters from the image, we calculated the
distance between the crater and the rover based on the feature points of the crater. Accord-
ing to the calculations, the distance between the crater and the rover was approximately
560.1m. Simultaneously, wemeasured the distance between the two sites and the impact
crater in the LRONAC images, which were 566.5 m and 558.1 m, respectively (Fig. 12).
The results indicated that the ranging error and accuracy were approximately 4.1 m and
0.73%, respectively, which were consistent with the derived ranging error.

Fig. 12. Distance between the impact crater and the Yutu-2 rover measured on the LRONAC base
map, which is a high resolution (0.9 m/pixel) DOM [26] generated from Lunar Reconnaissance
Orbiter Camera Narrow Angle Camera imagery [27].
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4 Conclusions

In this study, the remote operation control mode ofMars rover based on three-layer plan-
ning was introduced. We then discussed the method of multi-scale and high precision
2D and 3D mapping of the Mars surface using multi-source data in each planning stage
and verified the method with Chang’E data. At present, the Mars exploration mission
of Tianwen-1 is planned to realize orbiting, landing and surface inspection in a signal
mission. This demands superior remote operation and environment perception perfor-
mance. The method proposed here is expected to provide technical reference for remote
operation detection of Mars rovers.

Future work that might contribute to the field of Mars remote sensing mapping
includes: global surface mapping of Mars based on multi-source, multi-coverage remote
sensing data; improving the Mars global control network; mass and automatic remote
sensing data processing and information mining; real-time long-distance navigation and
mapping of the routes of the Mars rover.
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Abstract. Restricted by the scanning environment and the shape of the target to be
detected, the obtained projection data fromcomputed tomography (CT) are usually
incomplete, which leads to a seriously ill-posed problem, such as limited-angle
CT reconstruction. In this situation, the classical filtered back-projection (FBP)
algorithm loses efficacy especially when the scanning angle is seriously limited.
By comparison, the simultaneous algebraic reconstruction technique (SART) can
deal with the noise better than FBP, but it is also interfered by the limited-angle
artifacts. At the same time, the total variation (TV) algorithm has the ability to
address the limited-angle artifacts, since it takes into account a priori information
about the target to be reconstructed, which alleviates the ill-posedness of the prob-
lem. Nonetheless, the current algorithms exist limitations when dealing with the
limited-angle CT reconstruction problem. This paper analyses the distribution of
the limited-angle artifacts, and it emerges globally. Then, motivated by TV algo-
rithm, tight frame wavelet decomposition and group sparsity, this paper presents a
regularizationmodel based on sparsemulti-level information groups of the images
to address the limited-angle CT reconstruction, and the corresponding algorithm
called modified proximal alternating linearized minimization (MPALM) is pre-
sented to deal with the proposed model. Numerical implementations demonstrate
the effectiveness of the presented algorithms compared with the above classical
algorithms.

Keywords: Limited-angle CT · Group sparsity · Wavelet tight frame ·
Regularization · Proximal alternating linearized minimization

1 Introduction

Computed Tomography (CT) is one of the best nondestructive testing techniques, which
shows the internal structure and defect information of the objects to be detected in a
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nondestructive and accurate way [1]. It is widely used in the field of biomedical industry
security inspection and so on. X-ray CT is used to obtain the CT image of the target
to be detected, and the target detection is realized through enhanced segmentation and
recognition of the CT image. However, due to the different limitations and requirements
on CT scanning speed and X-ray dose level in different application scenarios, as well as
the limitations of some applications in the field scanning environment and the structure
of the target to be detected, the acquired projection data are incomplete and contain a
certain level of noise in industrial nondestructive testing (NDT), the scanning of objects
(such as castings) by CT system usually does not consider the radiation dose of the
detected object. However, due to its particularity, such as the shape of the object being
too large or too long, incomplete projection data are often obtained. For example, in the
nondestructive testing of pipelines in service [2], the X-ray source and detector can only
rotate within a limited-angle scanning range usually less than 180° + fan-angle, which
dues to the limitation of the scanning environment such as the surface attached to the
pipeline to be tested [3]. In terms of medicine, in view of excessive X-ray radiation to
human body may lead to cancer or other diseases [4, 5], CT detection is still one of the
important detection methods in medical diagnosis. During the outbreak, for example,
many hospitals were preliminary data and reports suggest that a virus nucleic acid testing
positive result has a certain lag, experts recommend CT image as the main diagnostic
basis currently COVID-19 [6], therefore, for the human body (such as internal organs,
organizations, bones, etc.) of the scan, X-ray dose must be strictly controlled. In general,
the most direct way to reduce X-ray radiation dose is lower tube voltage or current, but it
would introduce additional noise in obtain the projection data [7, 8] and another way is
to reduce the number of X ray through the targets to be detected, this will lead to obtain
the projection data of scan angle is usually less than 180° + fan-angle. For example,
dental CT [9], C-arm CT [10], chest CT and breast CT [11], etc.

In the above scenario, it is difficult to get the complete projection data directly, so
from incomplete projection data CT image reconstruction is a ill-posed inverse problem
[12, 13] in limited-angle projection data, the reconstructed image from the classical
filtered-back projection algorithm (FBP) [1] is affected by limited-angle artifacts, which
will lead to the medical diagnosis and non-destructive testing in the late. The basic idea
of the regularization method is to approximate the solution of the limited-angle CT
reconstruction problem by the solution of a kind of relatively well-posed problem. In a
certain extent, optimization method based on regularization not only can alleviate the
problem of limited-angle reconstruction which is not qualitative, but also can inhibit
limited-angle artifacts and noise compared with classic commercial FBP algorithm.

In recent years, the based regularization optimization reconstruction model has been
widely researched and applied [14–17], and the corresponding computing techniques
and algorithms have also been developed. Different regularization parameters and dif-
ferent transformations will lead to different models, and the obtained solutions will also
be different. Frikel et al. introduced the sparse image under the curvelet sparse transform
into the reconstruction process as the prior information, and proposed a regularization
method that could stably maintain the boundary, namely the curvelet sparse regular-
ization method CSR [18]. Compared with FBP algorithm and SART technology [12],
CSR algorithm improves the quality of limited-angle image reconstruction, but there are
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still limited-angle artifacts in the reconstructed image. Although it is difficult to com-
pletely solve the problem of limited-angle reconstruction, there are methods to analyze
the limited-angle artifacts in some feature boundaries of the image [19]. In order to
suppress the limited-angle artifacts, many researchers have made some efforts to solve
these intractable problems. Take TV algorithm as an example, it has been successfully
applied to few-view reconstruction [20]. Although TV algorithms are capable of han-
dling artifacts and perturbations in a small range, they cannot successfully modify global
artifacts. due to incomplete limited-angle projection data. Xiaohao et al. improved the
first step of the Mumford-Shah (MS) segmentation model [21], and obtained anMS-like
model [22], which can obtain a better restored image. Recently, Zeng Li et al. studied
an iterative reconstruction algorithm based on wavelet tight frame and �0 quasi-norm
regularization [23], which can better suppress the limited-angle artifacts and protect the
edge. However, for the targets with rich features and details, this algorithm can suppress
the limited-angle artifacts to a certain extent, but the features and details of the image
are blurred to a certain extent.

In order to further research the limited-angle reconstruction problem, this paper
presents a regularization model based on sparse multi-level information groups of the
images to address the limited-angle CT reconstruction, and the corresponding algorithm
called modified proximal alternating linearized minimization (MPALM) is presented to
dealwith the proposedmodel. The presentedmodel takes into account several key points:
the advantages of TV algorithm, the multi-level of tight frame wavelet decomposition
and group sparsity of the transformed image.

The rest of the paper is composed of Sect. 2 to Sect. 6. Section 2 introduces the
analysis of group sparsity model. Section 3 gives the proposed model in this paper.
Section 4 demonstrates the corresponding algorithms and Sect. 5 exhibits a number of
numerical experiments. Finally, conclusions and prospects are made in Sect. 6.

2 Analysis of Group Sparsity Model

In order to deal with the limited-angle CT reconstruction problem, this paper analyses
the globally distribution of the limited-angle artifacts and they exist not only in high
frequency part but also in low frequency part. Then, there is an urgent need for a trans-
formation that can cover both high and low frequencies, i.e. the multi-level information
structure. Therefore, this paper considers the following model:

argmin
x

{
1

2
‖Ax − b‖2D + λ‖Tx‖p,q

}
. (1)
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Where x denotes the image to be reconstructed,D is a diagonal matrix, A denotes the
systemmatrix, b is the obtained projection data, T is the sparse transform, ‖ξ‖2D = ξ ′Dξ ,
‘is the transpose of the matrix, λ is a balancing parameter between the fidelity term and
regularization term and 0 ≤ q ≤ p ≤ 2, and ‖ξ‖p,q can be expressed as follows:

‖ξ‖p,q =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(

r∑
i=1

∥∥ξGi

∥∥q
p)

1/q q > 0,

r∑
i=1

∥∥ξGi

∥∥0
p q = 0.

(2)

These are many cases that need to be considered in the proposed model, and here
are the key consideration as follows:

1. The choice of the sparse transform T is of great importance. This idea originally
came from compressed sensing (CS) [24]. It mainly utilized the prior information
of the image to be reconstructed. For the transform T, it can choose a great diver-
sity of the sparse transforms. Especial typicals are gradient transform and wavelet
frame decomposition for the image processing (including image restoration, image
reconstruction, etc.). Additionally, shearlet transform and curvelet transform are also
higher frequency transforms. In this study, wavelet frame decomposition is used to
address the limited-angle CT reconstruction problem. It includes a few advantages:
firstly, it can be referred to as the generalization of the gradient transform; secondly,
it not only includes the high frequency information, but also contains the low fre-
quency information of the reconstructed image (this proposition can deal with the
limited-angle artifacts); thirdly, it includes the high order gradients of the multiple
directions.

2. The �p,q norm includes the group structure. It involves group size and the overlapping
nature of the groups. In general, the group size can be selected as (2l+1)× (2l+1),
where l is a natural number. Generally, l can be set to 0, 1 and 2. It’s worth noting
that the group sparsity not only consider of the transformed image, but also takes
into account the structure sparsity. When l is set 1, it degenerates into:

argmin
x

{
1

2
‖Ax − b‖2D + λ‖Tx‖q

}
. (3)

Currently, the similar studies have been conducted on above model in references
[23]. Suppose that the object Tx is divided into r groups, i.e., Gi, i = 1, 2, ..., r,
where Gi is the finite set. If Gi ∩ Gj = �, then they are the overlapping groups.

3. This model needs to consider one important parameter λ. It depends on the image x
and the transform T. When T is the gradient transform, the only one parameter λ is
properly set to balancing the fidelity term and the regularization term.When T is tight
frame decomposition, λ will depend on the level of T. If let L denotes the number of
the all levels, then there are L parameters to be identified, i.e., λi, i = 1, 2, ...,L.

4. There’s something else to consider is the evaluation of p and q. They are usually set
as 0 ≤ q ≤ 1 ≤ p ≤ 2. The value of p implies a measure within the elements of
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the group. q stands for the measure among the groups. In the existing application
studies, p tends to 1 and 2. The other parameter q is generally set to 0 and 1. For
the different values of p and q, there will demonstrate different models which can
be listed in Table 1. Since the group sparsity is the key idea of the presented model,
GSL is utilized to represent the relevant model as shown in Table 1.

Table 1. Types of models.

p q Model Denoted

2 1 argmin
x

{
1
2‖Ax − b‖2D + λ‖Tx‖2,1

}
GSL21

2 0 argmin
x

{
1
2‖Ax − b‖2D + λ‖Tx‖2,0

}
GSL20

1 1 argmin
x

{
1
2‖Ax − b‖2D + λ‖Tx‖1,1

}
GSL11

1 0 argmin
x

{
1
2‖Ax − b‖2D + λ‖Tx‖1,0

}
GSL10

One thing to note here is the regularization term, which is the �p,q norm of the group
structure defined by the model (1). The value of p represents the sparsity among the
groups Gi, i = 1, 2, ..., r. p = 0 is more sparser than p = 1.

To solve the limited-angle CT image reconstruction problem, this paper researches
the corresponding situations:

{(p, q)|p ∈ {1, 2}, q ∈ {0, 1} }.
The group size considers 1 × 1, 3 × 3. The sparse transform is set as wavelet frame

decomposition. In all, there are eight situations to be experimented. Corresponding to the
limited-angle CT reconstruction, the remaining will not be covered for the time being.

3 The Proposed Model

The proposed model is based on the group sparsity and wavelet frame decomposition,
which can be shown as follows:

argmin
x

{
1

2
‖Ax − b‖2D +

L∑
i=1

λi‖(Tx)i‖p,q
}

. (4)

Where T is selected as wavelet frame decomposition, p is set as 1 or 2, q is set as
0 or 1. The combined treatment of �p,q norm and T is more difficult. They need to be
decoupled and processed separately. Then inspired by the work of Bin Dong and Jérôme
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Bolte etc. [25, 26], by introducing an auxilary variable α converted into the following
modality:

argmin
x

{
1

2
‖Ax − b‖2D +

L∑
i=1

λi‖(α)i‖p,q
}

, s.t.α = Tx. (5)

The solution of the converted form (5) has a lot ofways. The current common solution
methods include the Alternating Direction Method of Multipliers (ADMM) [27] and the
penalty function method. In this research, the second method is utilized and the model
(5) can be converted into the unconstrained form as follows:

argmin
x,α

{
1

2
‖Ax − b‖2D +

L∑
i=1

λi‖(α)i‖p,q + γ

2
‖α − Tx‖22

}
. (6)

When p = 2 or 1 and q = 1, the model (6) is convex and in the convex set, the
Gauss-Seidel method [28] is able to address (6) with good convergent results but in
order to obtain these good results, the key assumption is that the minimum in every step
has a unique solution. When p = 2 or 1 and q = 0, the model (6) is nonconvex and
nonsmooth. So the proximal Alternating Linearized Minimization (PALM) method can
be utilized to address (6). But PALM needs minor revision where the number of the
parameters has been expanded in the process to be suitable for the proposed model in
this paper.

Since the wavelet frame decomposition has L levels. The balancing parameters
include λi, i = 1, 2, ...,L, while �p,q term of the model (6) has only one parameters
λ. In order to facilitate the later numerical experiments, in this research, λi can be set as
λ ∗ (0.25)i. So if λ is confirmed, λi is also confirmed.

4 Algorithms

For different models and problems, appropriate algorithms should be adopted to solve
them. In order to better solve the model (6), this paper first gives some notations and
introduces some related basic definitions and algorithms.

Denote:

f (x) = 1

2
‖Ax − b‖2D, (7)

g(α) =
L∑

i=1

λi‖(α)i‖p,q, (8)

h(x, α) = γ

2
‖α − Tx‖22, (9)

�(x, α) = f (x) + g(α) + h(x, α). (10)
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Definition 1. [26]: Let σ : Rn → (−∞,+∞] be a proper and lower semi-continuous
function. For a given x ∈ Rn and u > 0, the proximal map associated to σ is defined as
following:

Pr oxσ
u (x) := argmin

y∈Rn

{
σ(y) + u

2
‖y − x‖22

}
. (11)

A. PALM Algorithm
The PALMalgorithm can be viewed as alternating the steps of the well-known proximal-
forward-backward (PFB) scheme. As is known to all, PFB scheme is to minimize the
sum of a smooth function with a nonsmooth function. For dealing with the model (6),
the flowchart of PALM algorithm can be given as Algorithm 1 [26].

Algorithm 1: PALM (Proximal Alternating Linearized Mnimization)

J·Bolte et al. [26] utilized the Kurdyka-Lojasiewicz (KL) property to derive a critical
point of the bounded sequence generated by PALM algorithm. This conclusion also
needs some corresponding assumptions, like assumptions in the reference [26].

B. Assumptions

Assumption 1: f : Rn → (−∞,+∞] are proper and lower semi-continuous functions.
h : Rn × Rm → R is a continuously differentiable function, where m depends on the
sparse transform T.

Assumption 2: (i) inf
Rn×Rm

� > −∞, inf
Rn

f > −∞ and inf
Rm

g > −∞.

(ii) For any given α, x1, x2 ∈ Rn, the function h(x, α) is C1,1
L1(α), namely the partial

gradient ∇xh(x, α) is globally Lipschitz with moduli L1(α) as following:

‖∇xh(x1, α) − ∇xh(x2, α)‖2 ≤ L1(α)‖x1 − x2‖2
For any given x, α1, α2 ∈ Rm, the function h(x, α) is C1,1

L2(x)
, namely the partial

gradient ∇αh(x, α) is globally Lipschitz with moduli L2(x) as following:

‖∇αh(x, α1) − ∇αh(x, α1)‖2 ≤ L2(x)‖α1 − α2‖2
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(iii) According to the sequences {L1(αk)} and {L2(xk)}, there exist ρ−
i , ρ+

i > 0, i =
1, 2 such that:

inf{L1(αk) : k ∈ N } ≥ ρ−
1 , sup{L1(αk) : k ∈ N } ≤ ρ+

1 ,

inf{L2(xk) : k ∈ N } ≥ ρ−
2 , sup{L2(xk) : k ∈ N } ≤ ρ+

2 .

C. MPALM (Modified Proximal Alternating Linearized Minimization)
Based on the PALM scheme, it is theoretically effective to the limited-angle CT image
reconstruction problem [29], the inverse matrix (A′DA + ckI)−1 is difficult to obtain,
so it needs to modify the PALM scheme for the current troublesome problem. Then the
definition of the modified proximal mapping can be given as following:

Definition 2 [30]: Let σ : Rn → (−∞,+∞] be a proper and lower semi-continuous
function. Let V ∈ Rn×n be a symmetric positive definite matrix. For any given x ∈ Rn,
the proximal map associated to σ with the induced V can be defined as:

Pr oxσ
V (x) := argmin

y∈Rn

{
σ(y) + 1

2
‖y − x‖2V

}
. (12)

Including above definition, themodified PALM(MPALM) can be given as following:

Algorithm 2: MPALM (Modified Proximal Alternating Linearized Minimization)

By modifying PALM, it has the ability of dealing with the limited-angle CT image
reconstruction problem. It can also avoid computing (A′DA+ckI)−1. Then it can obtain
the exact minimization of the first problem of Algorithm 2 as shown in:

xk+1 = (γ I + V )−1[V (xk − V−1A′D(Axk − b)) + γT ′αk ]. (13)

Where γ I + V and V are diagonal matrix. The minimization of the second problem
of Algorithm 2 depends on p and q.

(1) When p = 2 and q = 1, the soft thresholding (ST) [31] can deal with that, for
i = 1, 2, ...,L, βGi = (Txk+1)Gi , the solution is given as following:

αk+1
Gi

=

⎧⎪⎨
⎪⎩

(1 − λi/d∥∥βGi

∥∥
2

)βGi ,
∥∥βGi

∥∥
2 > λi/d ,

0 , otherwise.

(14)
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(2) When p = 2 and q = 0, the hard thresholding (HT) [32] can deal with that, for
i = 1, 2, ...,L, βGi = (Txk+1)Gi , the solution is given as following:

αk+1
Gi

=

⎧⎪⎪⎨
⎪⎪⎩

βGi ,
∥∥βGi

∥∥
2 >

√
2λi/d ,

{0, βGi },
∥∥βGi

∥∥
2 = √

2λi/d ,

0 , otherwise.

(15)

(3) When p = 1 and q = 1, ST can deal with that, for i = 1, 2, ...,L, βGi = (Txk+1)Gi ,

the solution is given as following:

αk+1
Gi

= βGi − 2λi
d

sign(βGi ). (16)

(4) When p= 1 and q= 0, HT can deal with that, for i = 1, 2, ...,L, βGi = (Txk+1)Gi ,

the solution is given as following:

αk+1
Gi

=

⎧⎪⎪⎨
⎪⎪⎩

βGi ,
∥∥βGi

∥∥
1 >

√
2λi/d ,

{0, βGi },
∥∥βGi

∥∥
1 = √

2λi/d ,

0 , otherwise.

(17)

5 Numerical Experiments

In order to check the effectiveness of the presented model and responding algorithm,
a digital NURBS based cardiac torso (NCAT) phantom [33] is utilized which can be
shown as Fig. 1. To analyze the influence of the limited-angle artifacts, the experiments
had not taken the other factors into account. The projection data can be generated by
projecting a 256×256 discretized NCAT phantom from the scanning angles [0, 160°],
[0, 140°], [0, 120°] and [0, 100°]. The corresponding simulated geometrical scanning
parameters can be shown in Table 2.

For the numerical experiments, this paper utilizes the presented algorithms (include
GSL21,GSL20,GSL11 andGSL10) to implement the simulated experiments, compared
with FBP [12], SART [12], TV [20]. To reveal the details and edges in the reconstructed
results, the local areas havebeenmagnified. In addition, the quantitative assessments have
been utilized to verify the effectiveness of the above algorithms by the root mean squared
error (RMSE) [34], peak signal to noise ratio (PSNR) [34] and structural similarity index
(SSIM) [35] as shown in formulas (18)–(20).

RMSE =
√√√√ 1

M × N

N∑
i=1

M∑
j=1

(
xi,j − xri,j

)2
(18)

PSNR = 10 log10
‖xr‖2∞
RMSE2 (19)

SSIM (x, xr) = 2μxμxr (2Cov{x, xr} + c2)

(μ2
x + μ2

xr + c1)(σ 2
x + σ 2

xr + c2)
(20)
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There into, xr is the reference image; x shows the reconstructed result;M ×N denotes
the total number of the image pixels; μx and μxr are the mean values of x and xr ,
respectively; σx and σxr are the standard deviations of x and xr ; Cov{x, xr} denotes the
covariance between x and xr ; c1 = (0.01R)2 and c2 = (0.03R)2,R is the dynamic range
of pixel values. The closer to 1 the value of SSIM is, the higher similarity between the
reference image and the reconstructed image is.

Fig. 1. It is the reference image and the rectangles stand for the locally zoom-in positions.

Table 2. The scanning parameters of simulated CT imaging system for NCAT

Parameter Value

The distance from X-ray source to rotation center 900.0 mm

The distance from X-ray source to detector 1300.0 mm

Interval angle between two adjacent projection views 0.6679°

The number of detector units 256

Image size 256 × 256

Pixel size of the image 1.0 × 1.0mm2

In numerical experiments, the parameters are chose by trial and error for better image
quality, and the relevant values will be in quantitative table. Nmax stands for the number
of iterations. NTV is the number of TV minimization step. ω denotes the relaxation
parameter of SART. λ, γ and d are the parameters in model (6). The model adopts the
non-overlapping group 1×1 and 3×3.
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Fig. 2. It shows the reconstructed images from the given algorithms.

A total of four numerical experiments were conducted. One of these experiments is
shown here like Fig. 2. It demonstrates the images reconstructed using FBP, SART, TV,
GSL21, GSL20, GSL11 and GSL10 algorithms from the scanning scope [0,100°], and
the corresponding algorithm is indicated in the lower right corner of the Fig. 2, where
GSL21-1 denotes the GSL21 algorithm adopts the 1× 1 group and the others are similar.
It can be seen that the results by TV, GSL20 and GSL10 has the ability of addressing
the limited-angle artifacts while preserving the details and edges, which also indicates
the advantages of the �0 regularization. The results reconstructed using FBP and SART
suffer from the artifacts and noise seriously. In order to better reflect the difference of the
above results, the histogram and quantitative assessments are utilized as shown in Fig. 3
and Table 3. Figure 3 represents the 83th row histogram of the reconstructed images
using nine algorithms from the scanning angle [0,100°]. The histogram image indicates
that the GSL10 is capable of dealing with the limited-angle artifacts and it is the closest
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Fig. 3. It shows the 83th row histogram of the images from the scanning angle [0,100°].

the reference image. The quantitative assessments in Table 3 also demonstrates that the
result by GSL10 can obtain the best evaluation.

Table 3. Quantitative assessments of the reconstructed images and the corresponding parameters.

Angle Algorithm Parameter RMSE PSNR SSIM UQI

[0, 160°] FBP None 21.6661 21.0233 0.6684 0.9428

SART Nmax = 200, ω = 1.0 3.4509 37.3723 0.9854 0.9989

TV Nmax = 200, ω = 1.0, Ntv =
20, λ = 0.2

2.0235 42.0087 0.9968 0.9996

GSL21-1 Nmax = 200, ω = 1.0, λ =
0.0005, γ = 0.8, d = 0.002

2.5342 40.0541 0.9953 0.9994

GSL21-3 Nmax = 200, ω = 1.0, λ =
0.001, γ = 0.8, d = 0.002

2.9970 38.5970 0.9936 0.9992

GSL20-1 Nmax = 400, ω = 1.0, λ =
0.008, γ = 0.8, d = 0.002

1.7479 43.2805 0.9967 0.9997

GSL20-3 Nmax = 600, ω = 1.0, λ =
0.003, γ = 0.8, d = 0.002

2.0627 41.8419 0.9958 0.9996

GSL11-1 Nmax = 600, ω = 1.0, λ =
0.001, γ = 0.8, d = 0.002

2.8101 39.1564 0.8899 0.9993

GSL10-1 Nmax = 1200, ω = 1.0, λ =
0.001, γ = 0.8, d = 0.002

0.4296 55.4688 0.9995 1.0000

[0, 140°] FBP None 29.5853 18.7093 0.6466 0.8984

(continued)
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Table 3. (continued)

Angle Algorithm Parameter RMSE PSNR SSIM UQI

SART Nmax = 300, ω = 1.0 5.3814 33.5128 0.9755 0.9973

TV Nmax = 300, ω = 1.0, Ntv =
20, λ = 0.2

3.2616 37.8622 0.9942 0.9990

GSL21-1 Nmax = 300, ω = 1.0, λ =
0.0005, γ = 0.8, d = 0.002

4.3798 35.3018 0.9912 0.9982

GSL21-3 Nmax = 300, ω = 1.0, λ =
0.001, γ = 0.8, d = 0.002

4.9463 34.2453 0.9889 0.9977

GSL20-1 Nmax = 500, ω = 1.0, λ =
0.008, γ = 0.8, d = 0.002

2.3210 40.8175 0.9943 0.9995

GSL20-3 Nmax = 800, ω = 1.0, λ =
0.003, γ = 0.8, d = 0.002

3.8192 36.4914 0.9920 0.9986

GSL11-1 Nmax = 800, ω = 1.0, λ =
0.001, γ = 0.8, d = 0.002

3.6001 37.0045 0.8860 0.9988

GSL10-1 Nmax = 1400, ω = 1.0, λ =
0.001, γ = 0.8, d = 0.002

1.1913 46.6101 0.9982 0.9999

[0, 120°] FBP None 35.5614 17.1112 0.6476 0.8485

SART Nmax = 400, ω = 1.0 7.7719 30.3203 0.9557 0.9943

TV Nmax = 400, ω = 1.0, Ntv =
20, λ = 0.2

4.7504 34.5962 0.9919 0.9979

GSL21-1 Nmax = 400, ω = 1.0, λ =
0.0005, γ = 0.8, d = 0.002

6.9805 31.2530 0.9851 0.9954

GSL21-3 Nmax = 400, ω = 1.0, λ =
0.001, γ = 0.8, d = 0.002

7.6527 30.4545 0.9823 0.9945

GSL20-1 Nmax = 800, ω = 1.0, λ =
0.001, γ = 0.8, d = 0.002

4.6196 34.8387 0.9917 0.9980

GSL20-3 Nmax = 1000, ω = 1.0, λ =
0.003, γ = 0.8, d = 0.002

5.3449 33.5720 0.9887 0.9973

GSL11-1 Nmax = 1000, ω = 1.0, λ =
0.001, γ = 0.8, d = 0.002

5.8517 32.7852 0.8787 0.9968

GSL10-1 Nmax = 1600, ω = 1.0, λ =
0.001, γ = 0.8, d = 0.002

1.8614 42.7341 0.9970 0.9997

[0, 100°] FBP None 42.4681 15.5695 0.6521 0.7624

SART Nmax = 500, ω = 1.0 10.5055 27.7025 0.9137 0.9896

TV Nmax = 500, ω = 1.0, Ntv =
20, λ = 0.2

5.7517 32.9350 0.9890 0.9969

GSL21-1 Nmax = 500, ω = 1.0, λ =
0.0005, γ = 0.8, d = 0.002

9.3168 28.7455 0.9762 0.9918

GSL21-3 Nmax = 500, ω = 1.0, λ =
0.001, γ = 0.8, d = 0.002

10.0004 28.1305 0.9732 0.9905

(continued)
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Table 3. (continued)

Angle Algorithm Parameter RMSE PSNR SSIM UQI

GSL20-1 Nmax = 1400, ω = 1.0, λ =
0.001, γ = 0.8, d = 0.002

4.8702 34.3799 0.9912 0.9978

GSL20-3 Nmax = 1400, ω = 1.0, λ =
0.003, γ = 0.8, d = 0.002

6.3227 32.1128 0.9870 0.9962

GSL11-1 Nmax = 1400, ω = 1.0, λ =
0.001, γ = 0.8, d = 0.002

7.7149 30.3842 0.8695 0.9944

GSL10-1 Nmax = 1800, ω = 1.0, λ =
0.001, γ = 0.8, d = 0.002

3.6386 36.9121 0.9941 0.9988

6 Conclusions and Prospects

In order to address the limited-angle CT reconstruction problem, this paper investigates
a regularization model based on sparse multi-level information groups of the images,
which takes TV algorithm, tight frame wavelet decomposition and group sparsity into
consideration, and themodified proximal alternating linearizedminimization (MPALM)
is presented to deal with the proposed model. Although, to some extent, it has the ability
to deal with the limited-angle artifacts, the corresponding parameters are chose by trial
and error and the size of group sparsity should be researched in the future, and a random
group will be used in the presented model.
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