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Abstract In this study, the nondeterministic linear static response of planar
microbeams accounting for the influence of material microstructures and mate-
rial uncertainty is investigated by the method of spectral stochastic isogeometric
analysis (SSIGA). The beam formulation is developed based upon Timoshenko
hypothesis and modified couple stress theory. The uncertainty of Young’s modulus
is modelled as a homogeneous Gaussian random field over a one-dimensional space
occupied by the beam axis.Within the framework of SSIGA, the random field, repre-
sented by Karhunen-Loève expansion, is discretized by the univariate non-uniform
B-spline basis functions. The arbitrary polynomial chaos expansion is subsequently
adopted to predict the statistical characteristics (e.g., mean and standard deviation)
of the stochastic deflection. Finally, a numerical study on a representative cantilever
microbeam is presented to demonstrate the significance of integrating the material
uncertainty in the analysis of micro-scaled beams.

Keywords Modified couple stress theory · Microstructure effects · Material
uncertainty · Spectral Stochastic Isogeometric analysis · Timoshenko beam

1 Introduction

In recent years, the growing demand on applications of microelectromechanical
systems (MEMS) in diverse subjects of sciences and engineering has led to an upsurge
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Fig. 1 Reference coordinate system and geometry of a microscale beam

of interests in developingmicroscale beam-type structures. It has been experimentally
observed that those tiny-scale structures exhibit significant size-dependent behaviors
[1]. Among theories capable of modeling such characteristics, the modified couple
stress theory (MCST) [2] has been widely used by many researchers to develop the
governing equations ofmicrostructure-dependent beams [3–5]. The variational beam
formulation based upon the MCST, however, requires C1 or higher-order continuity
interpolation functions in the solution procedure, and this strong requirement does
not flavor the use of conventional finite element method in the analysis. Such short-
coming has been recently overcome by the development of the isogeometric analysis
(IGA) [6], being able to deal with higher-order elements (e.g., [7]). However, an
intensive literature survey has indicated that most of existing studies on microscale
structures, especially the micro-beams, were limited mainly to the deterministic
analysis, which generally ignores inherent uncertainties possibly induced during the
fabrication process and throughout their lifespan. Only few investigations to fully
integrate the nondeterministic aspect in the simulations have been documented. For
instance, Mohammadi et al. [8] studied the influence of the randomness in mate-
rial properties and geometric parameters on the mechanical response of geometrical
nonlinear functionally graded micro-beams using Monte Carlo simulation (MCS).
Although the MCS possesses several desirable features including the simplicity and
accuracy, the method itself has been found computationally demanding. Recently,
the so-called spectral stochastic finite element method (SSFEM) [9], intensively
employed to quantify the effects of uncertainties, was extended within the frame-
work of IGA and termed the spectral stochastic isogeometric analysis (SSIGA) [10].
The implemented scheme exhibits not only a powerful ability to model random
fields within complex domains and a smooth and effective spectral decomposition
of the covariance function of the random fields via Karhunen-Loève (K-L) expan-
sion, but also a high computational efficiency in comparison with the MCS. Due to
the attractive advantages of the SSIGA, the technique is implemented, for the first
time, to integrate the structural material uncertainty into the analysis of Timoshenko
microscale beams based on the MCST.
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2 Isogeometric Timoshenko Beam Formulation Based
on MCST

Consider a straight micro-beam of length L and rectangular-cross section b × h as
shown schematically in Fig. 1. The beam is made of a linear elastic material with
Young’s modulus E , shear modulusμ, and length scale parameter �, and loaded by a
uniformly distributed transverse load qz . Non-zero components of the displacement
vector following Timoshenko beam theory can be expressed as [3]

ux (x, z) = u(x) − zφ(x), uy(x, z) = 0, uz(x, z) = w(x) (1)

where {u, w, φ} denote the axial displacement, transverse displacement, and rotation
of the cross section, respectively. From linearized kinematics and constitutive laws,
the non-zero components of the strain {εxx , εxz, εzx } and the curvature {χxy, χyx } are
related to the displacements and rotation {u, w, φ} and the non-zero components of
the force stress {σxx , σxz, σzx } and the couple stress {mxy,myz} by [3]:

εxx = du

dx
− z

dφ

dx
, εxz = εzx = 1

2

(
dw

dx
− φ

)
, χxy = χyx = −1

4

(
dφ

dx
+ d2w

dx2

)
(2)

σxx = Eεxx , σxz = σzx = 2μεxz,mxy = myx = 2μ�2χxy (3)

From the principle of virtual work, the force-stress and couple-stress components
must satisfy

∫
�

(σxxδεxx + 2σxzδεxz + 2mxyδχxy)d� =
L∫

0

qzδwdx (4)

where δεxx , δεxz , δχxy are the virtual strains and virtual curvature resulting from any
virtual displacements and rotation {δu, δw, δφ} via the kinematics (2). According to
the framework of IGA [6], the B-spline basis functions used to describe the geometry
of the beam are also adopted in the discretization of the displacement field:

u(ξ) = [ u w φ ]T =
Ncp∑
i=i

Ni,p(ξ)ui (5)

where Ni,p(ξ) is the B-spline basis function of order p and ui is the displacement
vector at the control point. Substituting (5) and all involved fields into (4) leads to a
system of linear algebraic equations
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Ku = F (6)

whereK andF denote the global stiffnessmatrix and global force vector, respectively.

3 Spectral Stochastic Isogeometric Analysis

In the present study, the uncertainty on the elastic modulus E is taken into account by
considering its spatial variation as a Gaussian stochastic field which is represented
by the K-L expansion of the second kind with the covariance function C(x, x ′) [10]:

EG(x, θ) =
⎡
⎣μE +

∞∑
j=1

√
λ jζ j (θ)ϕ j (x)

⎤
⎦E (7)

∀ j = 1, . . .
∫
D

C(x, x ′)ϕ j (x
′)dDx ′ =λ jϕ j (x) (8)

where μE is the mean of the random field, ζ j (θ) is a set of orthogonal random
variables, λ j and ϕ j (x) are eigenvalues and the corresponding eigenfunctions of the
given covariance functionC(x, x ′) of two points x and x ′ in the random field domain
D, respectively, and θ indicates the sample set of the probability space.

To obtain the eigen-solution of Fredholm integral Eq. (8) for arbitrary covariance
functions or domains, Galerkin isogeometric method [10] is employed. In particular,
each eigenfunction ϕ j (x) can be represented by

ϕ j (x) =
Ncp∑
i=1

Ni,p(ξ)υ
j
i (9)

where υ
j
i is the unknown coefficient associated with the ith B-spline basis function.

Hence, the random field given by (7) with a constant mean can be discretized by

EG(x, θ) =
⎡
⎣μE +

∞∑
j=1

√
λ jζ j (θ)

⎛
⎝ Ncp∑

i=1

Ni (ξ)υ
j
i

⎞
⎠

⎤
⎦E (10)

Enforcing (10) together with the discretization (5), the weak form Eq. (4) now
becomes
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⎡
⎣ ∞∑

j=0

K j (θ)ζ j (θ)

⎤
⎦ · u(θ) = F (11)

where ζ0(θ) = 1 and

K0 = μEK (12)

K j (θ) = √
λ j

⎛
⎝ Ncp∑

i=1

Ni,p(ξ)υk
i

⎞
⎠K with ∀ j = 1, . . . (13)

By adopting the arbitrary polynomial chaos expression (aPCE) [10], the structural
displacement of the stochastic linear system (11) can be represented by

u(θ) =
∞∑
k=0

ukψk(θ) (14)

where {ψk(θ), k = 0, 1, . . . ,∞} denotes the polynomial chaos basis function of
order p. By substituting (14) into (11), it leads to the stochastic governing equation
of the micro-beam:

⎡
⎣ ∞∑

j=0

K j (θ)ζ j (θ)

⎤
⎦

[ ∞∑
k=0

ukψk(θ)

]
= F (15)

A finite number of terms are finally retained in both expansions (i.e., M terms in
the K-L expansion and P terms in the aPCE) leading to a residual of (15) that has to
be minimized in the mean square sense in order to obtain the optimal approximation
of the exact solution u(θ)[10]. After some algebraic manipulations, the following
system is finally obtained:

P−1∑
k=0

Kkguk = Fg (g = 0, . . . , P − 1) (16)

where Kkg =
M∑
j=0

c jkgK j , c jkg = 〈
ζ j (θ)ψk(θ), ψg(θ)

〉
, Fg = 〈

F, ψg(θ)
〉
, 〈·〉 denotes

the mathematical expectation, and the integer P is computed by

P =
(
M + p

p

)
= (M + p)!

M !p! (17)
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The approximate stochastic displacement u(θ) can then be obtained by solving
the stochastic system (16) together with the approximation (14). Consequently, its
mean vector and covariance matrix can be directly determined:

〈u〉 = u0 (18)

COV (u,u) =
P−1∑
k=1

〈
ψ2

k

〉
ukuT

k (19)

4 Preliminary Results

The normalized deterministic mid-span deflections, w = wE I/qL4, of a simply
supported microbeam made from epoxy and subjected to a uniformly distributed
transverse load q0 = 1 N/m are compared with those reported by Reddy [5] in
Table 1. The following material and geometric parameters are used in the numerical
analysis: E = 1.44GPa, � = 17.6 × 10−6 m, v = 0.38, L = 20h, b = 2h with
h/� = {1, 5}. As can be seen in the Table 1, the polynomial order p = 3 exhibits
higher accuracy and convergence rate than p = 2 in comparison with the reported
benchmark solutions. Upon the convergence study, the cubic B-spline patch with 20
control points is sufficient to generate accurate results and used in the subsequent
analysis.

Next, preliminary results of the nondeterministic analysis for a representative
cantilever micro epoxy beam with the length L = 10h and b = 2h subjected to a
uniformly distributed transverse load q0 = 1 N/m are presented and discussed. To
demonstrate the accuracy and efficiency of the implemented scheme, the mean and
standard deviation (Std. D) of the normalized tip deflection with h = � are compared
with those predicted by MCS using 5000 simulation cycles in Table 2. It is noted
that the mean and Std. D of the random field and the covariance function are taken
as μE = 1, σE = 0.1, and C(x, x ′) = σ 2

E exp(
∣∣x − x ′∣∣/2L), respectively. Note, in

addition, that results of the SSIGA are reported for M = 5 in the K-L expansion and
the PCE with various orders. It is seen that the presented results not only exhibit an

Table 1 Comparison of normalized mid-span deflections of a simply supported micro epoxy beam

h/� p Number of control points Reddy [5]

5 10 15 20 25 30

1 2 0.002283 0.002455 0.002461 0.002462 0.002463 0.002463 0.002464

3 0.002447 0.002464 0.002464 0.002464 0.002464 0.002464

5 2 0.009710 0.011108 0.011154 0.011159 0.011161 0.011162 0.011162

3 0.010741 0.011162 0.011162 0.011162 0.011162 0.011162
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Table 2 Comparison of
results obtained from the
SSIGA and MCS

Method Results Time (s)

Mean Std. D

MCS 0.0344 0.0034 614.523

SSIGA (1-order PCE) 0.0344 0.0033 0.059

SSIGA (2-order PCE) 0.0344 0.0034 0.106

SSIGA (3-order PCE) 0.0344 0.0034 0.236

Table 3 Mean and Std. D of the normalized tip deflection with various values of h/� and σE

h/� σE = 0.1 σE = 0.2 σE = 0.3

Mean Std. D Mean Std. D Mean Std. D

0.2 0.0147 0.0015 0.0152 0.0034 0.0164 0.0074

0.4 0.0178 0.0018 0.0184 0.0041 0.0199 0.0089

0.6 0.0223 0.0022 0.0231 0.0051 0.0250 0.0111

0.8 0.0280 0.0028 0.0289 0.0064 0.0313 0.0139

1.0 0.0344 0.0034 0.0356 0.0079 0.0385 0.0171

2.0 0.0667 0.0066 0.0690 0.0152 0.0747 0.0331

excellent agreement between the SSIGA and MCS approaches, but also indicate the
superior computational efficiency of the SSIGA to the MCS.

Finally, the influence of the material microstructure and the material uncertainty
on the static response of the cantilever microbeam is investigated by using various
values of the ratio h/� and the Std. D of the random field σE . Numerical results of
the mean and Std. D of the normalized tip deflection calculated from M = 5 and the
PCE of order 3 are reported in Table 3. Obviously, the obtained results (e.g., the mean
and Std. D) exhibit the strong size-dependent behavior when the beam thickness h
is comparable to the material length scale �. It is also apparent from results in Table
3 that the randomness of Young’s modulus has a major influence on both mean and
Std. D of the predicted normalized tip deflection.

5 Conclusions

A spectral stochastic isogeometric analysis of Timoshenko microbeams based on
the modified couple stress theory has been successfully implemented by taking the
spatial variation of Young modulus into account in the nondeterministic analysis.
The excellent agreement between results obtained in the present study and Monte
Carlo simulation employing 5000 random samples through a numerical verifica-
tion experiment has confirmed the validity of the stochastic analysis scheme. A
set of preliminary results have demonstrated the significant role of the randomness
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of Young’s modulus on the predicted stochastic deflection of the microstructure-
dependent beams. It should be remarked that the effect of uncertainties for other
material properties and the geometry on the mechanical response of microscale
curved beams in both static and dynamic aspects are also of key interest and still
under investigation.
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