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Abstract In this study, a convolutional neural network (CNN)-based deep learning
was applied to evaluate settlement of the ground. Firstly, the database of 1200 images
was captured and labeled for three classes of damage levels. Seven CNN architectures
were then selected for the transfer learning, in which the highest accuracy of approx-
imately 96.11% for the testing set was observed from the DenseNet121 architec-
ture. Herein, a comparison in terms of accuracy with various optimizers-algorithms
for optimizing the loss function in machine learning-have been implemented in the
DenseNet121 architecture. The goal of this study is to propose a better architecture
with higher accuracy for practical applications in geotechnical engineering using the
CNN technique. The results indicated that the DenseNet121 architecture using the
Adam optimizer performed the most effectively with accuracies of 97.59%, 95.00%,
and 96.11% on training, validation, and testing sets, respectively.

Keywords Convolutional neural network (CNN) - Damage classification * Deep
learning + Ground settlement

1 Introduction

Over years, automated structural health monitoring (SHM) techniques has been
developed to efficiently obtain reliable information from maintaining the structural
health of the building. Among such information, the ground settlement-an impor-
tant source regarding the certain structural damages to buildings-needs to be quickly
detected and assessed to prevent against the spread of damages. Thus, evaluating the
level of the ground settlement plays a crucial role for SHM and damage inspection
of buildings. Since the rapid advancement of computer vision techniques, several
vision-based methods, mainly are image processing techniques, have been applied
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to the damage classification issues. Deep learning-based on a CNN has been consid-
ered as an efficient approach for the object identification [1-3]. The architecture of
CNN-a multi-stage or multi-layer architecture-was firstly proposed by LeCun [4]. For
a given the robustness of the deep learning models, the CNNs have been considered
as the dominant method of machine learning for visual object recognition. The CNN
transforms raw data into representative feature spaces via different combinations of
linear and non-linear operations. Then, the feature spaces can be further transformed
in accordance with the goal of the tasks. Numerous SHM techniques using CNN have
been developed to replace time-consuming and costly traditional methods [5—8], and
most such methods only classify specific types of structure, such as concrete or steel
[9-13]. In the design of a good classification system, image properties resulting from
low-level image processing operations should be extracted to be highly detailed and
distinct from the represented class, called features extraction [14, 15]. Many deep
learning models together with pre-trained weights are promising frameworks because
of their high accuracy predictions in image classification and recognition, such as
Xception, VGG16, InceptionV3, MobileNet, DenseNet121, NASNetMobile, Effici-
enNetBO0. In these CNN architectures, many loss function optimization algorithms
are often coupled inside the architecture to update and optimize the learned network
parameters, for instances, SGD, AdaGrad, RMSprop, Nadam, Adam, Adamax, Ftrl.
In this study, the performance of various CNN-based models on the datasets of over
thousand images of ground settlement was in cross comparision in terms of the eval-
uation of accuracy. Then, the model with the highest accuracy was optimized with
numbers of optimization algorithm to improve the accuracy of training, validation,
and testing sets.

2 Datasets

The database contains 1200 images (ground settlement) taken by the camera of
smartphone Iphone 12 Promax, and were labeled for three categories of damage
level. These images were taken approximately 1 m away from the surfaces, in which
the camera were aligned perpendicularly to the ground surface. The representative
images of three classes are shown in Fig. 1. We noted that the captured figures were
artificially meshed with the grid size ~ Smm, in which the mesh at settled zones were
nonlinear distributed with different level of settlement as shown in Fig. 1.

The image datasets were then selected for training, validation, and testing sets.
As a general rule of thumb, 70% of randomly selected images from the database are
used for training while 15% of that are used for validation throughout the training,
and the rest of 15% are used for testing. Table 1 presents the number of images used
for training, validation, and testing.
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Fig. 1 Three categories of damage level with artificially meshed grid

Table 1 Nl.n‘{lber of .ima.ges Image source Level 1 Level 2 Level 3

used for training, validation,

and testing Training 280 280 280
Validation 60 60 60
Testing 60 60 60
Total 400 400 400

3 Results and Discussions

3.1 Performance of the Models

Seven state-of-art pretrained networks, including: Xception, VGG16, InceptionV3,
MobileNet, DenseNet121, NASNetMobile, EfficienNetBO were used for the inspec-
tion of the damage classification of the ground. All networks were pre-trained on
ImageNet data by Python code, and the deep learning models were formulated based
on Tensorflow library. Each of pre-trained networks was trained with the training
datasets as shown in Table 1 for 50 epochs. Figure 2 presents the results of accuracy
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Fig. 3 Accuracy on a training and b validation sets

on the training and validation set. It can be seen that the convergence stays at around
30 epochs for the most networks.

For the testing set, the performance of these networks was lastly evaluated with
the results of accuracy as shown in Table 2. It is interesting that the VGG16 network
demonstrates the lowest value with an accuracy of 87.22%, whereas the DenseNet121
network performs the highest one with an accuracy of up to 96.11%.

3.2 Performance of the Optimizers

To minimize the loss of neural networks, backpropagation algorithm was used in
this study. The algorithm calculates derivative of the cost function for parameters in
the neural network. When a neural network passed through a batch with a returned
value, the decision on the use of differences between the returned value and the
foreknown value needs to be correct in order to adjust the weights of the nodes
in the network. The algorithm used in this step can be called as the optimization
algorithm. Seven optimizers, including: SGD, AdaGrad, RMSprop, Nadam, Adam,
Ftrl, Adamax, were observed in this study. The results of accuracy and loss on the
training and validation sets are shown in Figs. 3, and 4, respectively.

The accuracy on testing set of all optimizers is shown in Table 3. As clearly,
the DenseNet121 architecture using the Adam optimization algorithm performs the
highest accuracy of 96.11%, while the SGD optimization algorithm presents the
lowest accuracy of 87.22%.

3.3 Performance of DenseNet121 Network

In the DenseNet architecture, each layer receives additional inputs from the all
previous layers and passes its own feature maps to all subsequent layers to maintain
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on the estng st for seven | NEAvrks Accuracy (%)

networks Xception 93.89

VGG16 87.22

InceptionV3 94.44

MobileNet 9222

DenseNet121 96.11

NASNetMobile 88.33

EfficienNetBO 87.78

exin st of seven optmizers NEAYOrs Accuracy (%)

SGD 87.22
AdaGrad 91.67
RMSprop 92.78
Nadam 94.44
Adam 96.11
Firl 92.22
Adamax 95.00

the forwarding nature of the feed. Therefore, the problem of vanishing derivatives
can be solved in this kind of architecture. Concept of the architecture is illustrated

in Fig. 5.

Figure 6 depicts the change of loss and accuracy values versus epoch. It can be seen
that the value of losses during the training is continuously decreased, however, with
a slow rate. Apparently, the convergence stays at around 30 epochs. Figure 7 shows
the confusion matrix and normalized confusion matrix, in which the accuracy of
each class tests is represented by the color saturation contours. The results showed
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Fig. 5 AS5-layerdense block with a growth rate of k = 4. Each layer takes all preceding feature-maps
as inputs [16]
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Fig. 8 a ROC curve and b Precision-recall curve

that 7 out of 180 images were misclassified. Additionally, the receiver operating
characteristic (ROC) and Precision-Recall curves are shown in Fig. 8.

4 Conclusions

Since the ground settlement can result to cracks of the buildings or failure of the
diagram wall during excavation phase. It is needed to monitor and detect these kinds
of settlement by real-time image processing. Recently, with the advancement of artifi-
cial intelligence, the deep learning technique has been widely applied to various fields
for detection and classification using image database. In this study, the feasibility of
deep learning technique application to the assessment of ground damage is presented.
Seven network architectures, including: Xception, VGG16, InceptionV3, MobileNet,
DenseNet121, NASNetMobile, and EfficienNetB0 were in cross comparison in terms
of accuracy.

Consequently, the pre-trained networks were highly applicable for the classifica-
tions of damage level, although they were trained on completely different datasets
due to the sharing of low-level features. These features were learned during the
training process and transferred to other objects with a rapid convergence and high
accuracy. The pre-trained networks are promising for their implementation in CNN
architecture with a limited number of training samples. Among seven selected CNN
architectures, the DenseNet121 network architecture performs the most efficiently
accuracy of 96.11% for testing set. Furthermore, seven different optimizers were
coupled on DenseNet121 model, in which the Adam optimizer performs the highest
accuracy in comparison with other optimizers.

In further researches, the database with images of ground settlement should be
captured considering various conditions (such as lighting, camera distances, and
angle to the ground sufaces) to improve the accuracy and robustness of the proposed
method.
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