
Operating System Fingerprinting Using
Machine Learning

Achintya Kumar, Ishan Soni, and M. Anand Kumar

1 Introduction

Since everyone is linked to the Internet these days, being safe from breaches and
incursions is crucial. For businesses, this external danger causes them to investigate
various security alternatives, such as firewalls and intrusion detection mechanisms,
to protect themselves against hackers. Operating system fingerprinting is a much-
needed approach for spotting and identifying a target machine’s identity by looking
at the TCP/IP packets it generates consistently. The most generally used technique
in the market is to employ rule-based matching methods to identify the OS. Unlike
machine learning, this approach does not require a significant quantity of data and
the speed for identification to take place is also very quick. In cases of insufficient
information from the packets received for identification due to network settings,
newer versions, or other factors, the method will not recognize the operating system,
and the resulting accuracy will be low.

Operating System fingerprinting techniques are categorized into two categories,
active and passive. In Active fingerprinting, packets are sent to a target and received
packets are analyzed. Nmap is a vital tool in this regard and is generally used by
network admins for security and testing purposes. Using Nmap [13], one can ensure
that all of the firewalls in their network are appropriately configured, and the TCP/IP
stacks are not malfunctioning. Passive fingerprinting works by sniffing the TCP/IP

A. Kumar (B) · I. Soni · M. Anand Kumar
Department of Information Technology, National Institute of Technology Karnataka Surathkal,
575025 Mangalore, India
e-mail: achintya.191it203@nitk.edu.in

I. Soni
e-mail: ishu.191it121@nitk.edu.in

M. Anand Kumar
e-mail: m_anandkumar@nitk.edu.in

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
B. Agarwal et al. (eds.), Proceedings of International Conference on Intelligent
Cyber-Physical Systems, Algorithms for Intelligent Systems,
https://doi.org/10.1007/978-981-16-7136-4_13

157

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-7136-4_13&domain=pdf
mailto:achintya.191it203@nitk.edu.in
mailto:ishu.191it121@nitk.edu.in
mailto:m_anandkumar@nitk.edu.in
https://doi.org/10.1007/978-981-16-7136-4_13


158 A. Kumar et al.

ports rather than using extra bandwidth for requests. Passive OS detection has gained
recent interest in identifying the host with no trace left behind. For this detection
technique, the primary focus is upon the different parameters of packet headers,
some of which are window size, do not fragment bit, time to live (lifetime), and TCP
flags.

In this paper, we use the Passive Fingerprintingmethod by analyzing TCP network
packet header info as well as info from HTTP header using several machine learning
methods, such as K-nearest neighbours (KNN), Artificial Neural Network, Decision
Trees, Naive Bayes, and Random Forest.

The motivation for this study was to decide the most suitable OS fingerprinting
approaches as the present tools in use for OS fingerprinting were not accurate enough
and were unable to detect dissimilarity in many cases. Moreover, many modern
operating systems have default policies and firewalls that messes with the network
services which in many cases might result in a lack of data for proper identification.

The rest of the paper is broken into six sections. Section 2 deals with the literature
survey, Sect. 3 explains the framework proposed, Sect. 4 discusses the dataset used
for the study, and Sect. 5 describes the methodology used. In Sect. 6, the outcomes
of the experimental work are analyzed. At last, the conclusion is discussed in Sect. 7.

2 Literature Survey

There has been some research for active and passive fingerprinting techniques [3,
17] in the last 12–15 years. Spitzner [6] was the first to identify what passive OS
fingerprintingwas, how it worked, and the use cases. They also extensively compared
both fingerprinting techniques using a wide array of tools. Al-Shehari et al. [1]
had proposed machine learning techniques combined with traditional tools to build
a system that can set up TCP/IP communication between different machines and
then capture and inspect the TCP/IP packets for significantly better OS detection.
Similarly,Matsunaka et al. [16] usedDNSTrafficAnalysis by analyzing the data sent
by each OS and extracting the characteristics for OS fingerprinting such as interval
time pattern of DNS queries and OS-specific query. Then, examine the estimation
method by using DNS traffic in their own intra-network.

Lippmann et al. [5] had an interesting approach for near-match fingerprints,
where they used machine learning classifiers to determine the most detectable OS
categories that used fingerprinting. Tyagi et al. [4] also had a similar approach of
using TCP/IP communication for identifying prohibited operating systems on private
internal networks. For optimization and quick results, Gu et al.[6] focussed on using
only memory for fingerprinting and caching the code hash of the kernel from the
guest Operating System for faster results.

Song et al. [2] analyzed the identification capabilities of several ML methods
with each having a unique approach for classifying. The models were based upon
Decision Trees, K-nearest neighbours, and Artificial Neural Networks and showed a
94% probability of getting the prediction correct. They found ANN to perform best



Operating System Fingerprinting Using Machine Learning 159

Table 1 Summary of literature survey

Authors Methodology Merits

Taher Al-Shehari et al. [1] TCP/IP header packet info
for ML and new extended tool

Simple algorithm and
use in real life

Martin et al. [10] Used TLS Fingerprints for OS
Identification

High accuracy as TLS,
TCP/IP and
HTTP headers are used

Song et al. [2] Analysis of OS identification
using ML techniques

Employed many ML models
for higher accuracy

Yufei et al. [7] Memory-Only Operating
System
Fingerprinting in the Cloud

Very quick results and
wide range

Tyagi et al. [4] TCP SYN packets for OS
fingerprinting

Easy to compute
and gather data

Takashi et al. [16] Analysis of DNS traffic Novel approach, works
better in some cases

of three when the dataset was large and adequately trained. KNN was second in line
with no bounds to data size and performed consistently. In the meanwhile, Beverly
[11] also used the Naive Bayes Classifier for the same approach.

This paper draws inspiration from such authors’ Machine Learning approach to
OS fingerprinting and has employed many such methods from different authors’
research (Table 1).

3 The Proposed Method

This paper deals with the following problem statement: To Determine the best ML
classifier and the most influencing parameter.

The problem statement can be broken further into two parts:

– How to analyze all the different classifiers to find themost suitable classifier taking
size, time taken, and other costs into consideration.

– How to determine which parameter(s) play a major role in the identification of
operating systems and are necessary for fingerprinting.

Many authors and researchers use TCP/IP and HTTP features [14] for passive OS
fingerprinting and TLS features [8, 11, 12] for fingerprinting specific browsers [9].
We propose a system that combines both of these features to identify all kinds of
desktop and mobile (handheld) operating systems.

We have used conventional machine learning algorithms such as Decision Trees,
K-nearest neighbours, and Artificial Neural Networks from [2] and tried some of the
newer algorithms such as Random Forest and Bayes algorithm too in the proposed



160 A. Kumar et al.

Fig. 1 Proposed model

implementation.Wehave also analyzed the probability of correct identification across
different operating systems and the role of various parameters involved in the process.

Figure 1 shows the architecture of OS fingerprinting by combining Machine
Learning Classifier and Conventional rule-based matching methods. Considering
the cost of computation and time taken, the proposed model first uses a cheap and
quick method of identification using Rule-based matching method, and in case of
an inconclusive or partial match, the data from TCP/IP packet headers and HTTP
headers go throughML classifier and then the results of both methods are compared.
In case of no discrepancy, the output is given as a result.

4 Dataset and Model Setup

The dataset was acquired from [4] paper where authors had posted the dataset on
Zenodo.org. It contains data from TCP/IP network, HTTP connection, and other
metadata from the connection. The following are the different fields available in the
dataset.

• Metadata about network

– Beginning of connection
– End of connection
– Port used
– Src IPv4 (address)
– Dst IPv4 (address)
– Receiver port

• Features of HTTP

– HTTP UA OS, MAJ, MIN, BLD (information about major/minor versions of
OS)

– HTTP Hostname

• TCP/IP features

– SYN size (packetsize)
– TCP SYN TTL (Time to live)
– TCP win (size of window)



Operating System Fingerprinting Using Machine Learning 161

After careful consideration and testing, some of the parameters were used for
training and testing the model. Unique identifying data fields were removed and the
rest were considered for the study.

– SYN size
– TCP win
– TCP SYN TTL
– HTTP UA OS
– HTTP UA OS MAJ
– HTTP UA OS MIN
– HTTP UA OS BLD
– Ground Truth OS

4.1 Pre-Processing

As shown in the Dataset Description, the data consisted of HTTP Features, network
packet information, and other metadata. Each attribute had some blanks for specific
instances, so the dataset was trimmed and prepared for the experiment. We took
232391 instances of data where approximately 80% of the data is for training the
model, and the rest 20% is used to test it.

4.2 Model Setup

In the mentioned study, the model incorporates one layer each for input, hidden, and
output. Seven attributes values were used for the input layer: SYN size, TCP win,
TCP SYN, TTL, HTTP UA OS, HTTP UA OS MAJ, HTTP UA

OS MIN, HTTP UA OS BLD. The output layer was configured to conceive four
outputs which covered basic and widely used Operating systems namely Windows,
Linux, Android, and MAC.

The calculated loss rate was close to 0.01% with near-perfect accuracy using test
data. The Mmodels were tested repeatedly with test data to record fluctuations in
output and corrected accordingly till the changes were insignificant

5 Methodology

This study compared the widely used Machine Learning algorithms suitable for our
use case. They consist of Decision Trees, KNN, Random forest, Bayes, and Artificial
Neural Network algorithms. Each of the algorithms is explained below, along with
their advantages and disadvantages and the approach taken in their implementation.



162 A. Kumar et al.

5.1 Decision Trees

Decision trees initially learn, then form decisions for splitting, and finally output in
a tree-like structure. It has the advantages of not converting data into the decimal,
less data cleaning required, and it works fast when the tree’s depth/height is speci-
fied. However, since depth has a significant role, results change sometimes. For our
implementation, Depth = (5, 15) was used.

5.2 Artificial Neural Networks

ANNs are machine learning algorithms that are meant to learn from data patterns. It
is separated into three layers input, hidden, and output layers. The input layer takes
the data from the user/source. There is no limit to the number of layers. It offers the
advantages of being fault-tolerant, great accuracy when there is a massive volume of
data contrary to other machine learning algorithms. Overfitting is a problem when
the dataset is not too large.

5.3 K-Nearest Neighbours

KNN is a machine learning method that uses the closest neighbours’ info by
measuring separation to previous data when novel data is entered. The distance is
calculated using the Euclidean calculation method. The KNN algorithm shines when
it requires fast processing speed, and comparison data is not significant because,
unlike others, learning is not necessary. Still, when the dataset is on the smaller side,
performance takes a hit. For the KNN model, three separate learning models, with
K = 5, 40, 100, were implemented.

5.4 Random Forest

RandomForest is based upon ensemble learning, which combinesmultiple classifiers
to solve a complex problem and slightly improves performance. More specifically,
Random Forest is a classifier that employs many decision trees and takes its average
to improve the accuracy of the dataset. Although it combines the Decision trees, it
takes a considerably big time and is not particularly good for OS that is rare to be
seen. For the Random Forest model, three separate learning models, with the number
of trees = 10, 50, and 120 variations, were implemented.



Operating System Fingerprinting Using Machine Learning 163

5.5 Naive Bayes

The Naive Bayes algorithm is loosely based on the famous Bayes Theorem of prob-
ability and statistics. It is simple and yet one of the powerful ML algorithms today
and is categorized as a probabilistic classifier. One of the reasons for this is that it
assumes one feature in a class does not affect the other. The drawback of Bayes is
that it does not relate all the parameters together and treats everything independently,
which can prove results to be unpredictable at times. Multiple runs were done using
this model and the average was taken.

In Table 2, a summary comprising of the algorithms used and the different
models implemented per algorithm is shown. Furthermore, a comprehensive list of
limitations and overall accuracy of all the algorithms tested are discussed in Table 3.

Table 2 Accuracy for different parameter settings

Algorithm Parameters Accuracy (%)

Decision tree Depth = 5 93.96

Depth = 10 95.02

Depth = 15 95.22

KNN K = 5 91.26

K = 40 96.17

K = 100 96.25

Random forest Trees = 10 92.46

Trees = 50 94.18

Trees = 120 95.88

Table 3 Comparison of algorithms

Model Limitations Accuracy (%)

Decision trees Unstable and High training time 95.62

KNN In the case of large data, the speed
suffers

96.22

ANN (Artificial Neural Network) For smaller quantity of data, accuracy
rate declines and possible Overfitting
occurs

75.22

Naive Bayes All features are assumed to be
independent, the
relationship between features is not
considered

79.88

Random forest It is not suitable for rare
outcomes and overfitting problems
possible

95.88



164 A. Kumar et al.

6 Experimentation and Results

This section explains the various different experiments performed, metrics used, and
the results obtained through each experiment by breaking them into sub-sections.

6.1 Comparing ML Algorithms

Here, in Fig 2, we can see different models compared using metrics such as precision
and accuracy. Here, Y-axis denotes the percentage, and X-axis the algorithm used.
F1-score is scaled to 100 for percentage depiction purposes. KNN appeared as the
best ML model for OS identification. Random Forest Classifier also performed well
and overtook KNN when the dataset was huge.

6.2 Comparison Between Parameters

A study was also done on the parameters involved to recognize the parameter that
had the most effect on identification. For this, we took an approach of removing
parameters one at a time and retraining the proposedmodel without the removed part.
The parameter whose absence showed the greatest significant decline was termed
the most influencing parameter. As shown in Table 4, it is evident that TCP SYN
TTL [shows a decline of 23.65%] is the most influencing parameter of the bunch.

Table 4 Influence of
parameters used

Parameter Description Decline (%)

SYN size Request sent before a
connection

16.44

TCP SYN TTL The lifecycle of a single
TCP SYN packet

23.65

TCP win The window size of TCP
connection

17.63

HTTP UA OS HTTP User-agent
Operating System

19.28

HTTP UA OS MAJ HTTP user-agent Major
Version of the OS

5.88

HTTP UA OS MIN HTTP user-agent Minor
Version of the OS

4.16

HTTP UA OS BLD HTTP user-agent Build
Version of the OS

9.39



Operating System Fingerprinting Using Machine Learning 165

Fig. 2 Comparison between different Models

6.3 Comparing Ease of Prediction Across OS

We also took time to compare the accuracy of prediction across different oper-
ating systems. We can see the chart comparing the accuracy of predicting different
operating systems in Fig. 3 with the Operating System category on the y-axis and
percentage accuracy obtained for each operating system in the x-axis.

Comparing the results with OS identification solutions that use traditional Rule-
based matching methods, an overall significant rise of 20% accuracy was observed
over recognized operating systems and the 5% improvement for unknown data
samples.

6.4 Comparison with Existing Tools

We compared the KNN, which has the best accuracy, to some of the most popular
alternatives present in the market. In our case, p0f [15, 18] was used for Operating
System identification. WireShark is a network packet analyzer that was used to
capture essential data from the data obtained in p0f for comparison. The data from
four different types of Operating systems (Mac, Linux, Windows, and Android)
was available, disregarding the different versions and distributions available for the
same OS.

A total of 1956 known and 490 unknown data samples from p0f were used for this
study. Network Miner, another OS fingerprinting tool that uses only packet sniffing
for identification, was used to obtain the anonymous data.



166 A. Kumar et al.

Fig. 3 Comparison between the different OS accuracy

In our results, we found that our best performing model KNN gave an accuracy of
95% (Fig. 2), with a 72% probability for the unknown OS. Among the 1956 datasets
used, p0f had a precision of 52%, and the Artificial neural network model correctly
identified the OS with a chance of 79%.

7 Conclusion and Future Scope

This proposed model using machine learning and Operating system attributes (SYN
size, TCP win, TCP SYN TTL, HTTP UA OS, HTTP UA OS MAJ,

HTTP UA OS MIN, HTTP UA OS BLD) achieved probability of accurate deter-
mination of OS more than 96%, much higher than traditional methods. On the other
hand, individual OS versions could not be precisely categorized due to them having
similar attribute values and generally little implementation changes between them.
Moreover, recently launched Operating Systems could not be identified in many
cases in the rule-based strategy as the information about them is scarce.

Comparing the parameter’s influence for identification of the Operating system,
one can infer that the TTL(Time to Live) of a SYN Packet differs across different
operating systems. Using TLS features withHTTP parameters enhanced themachine



Operating System Fingerprinting Using Machine Learning 167

learning model’s efficiency, and as a result, we found that the proposed model, using
theMachineLearning approach in tandemwith the conventional rule-basedmatching
method, can yield better results than the tools we use now.

References

1. Al-Shehari, Taher., Shahzad, Farrukh.: Improving operating system fingerprint- ing using
machine learning techniques. Int. J. Comput. Theory. Eng. 6. King Fahd university of petroleum
and minerals, Saudi Arabia

2. Song, Jinho., Cho, ChaeHo., Won, Yoojae.: Computers and Electrical Engineering 78.
Chungnam National University, Korea (2019)

3. Anderson, Blake., McGrew, David.: OS Fingerprinting: New Techniques and a Study of Infor-
mation Gain and Obfuscation:2017 IEEE Conference on Communica- tions and Network
Security (CNS), Cisco Systems

4. Tyagi, R., Paul, T., Manoj Bs., Thanudas B.: Packet Inspection for Unauthorized OS Detection
in Enterprises. IEEE Security Privacy. 13. 60–65 (2015)

5. Lippmann, R., Fried, D., Piwowarski, K., Streilein W.: Passive Operating System Identifica-
tion from TCP/IP Packet Headers :IEEE Workshop on Data Mining for Computer Security
(DMSEC), pp. 40–49 (2003)

6. Spitzner, L.: Passive Fingerprinting 3, 1–4 (May 2003)
7. Gu., Yufei, Fu., Yangchun, Prakash, A., Lin, Z., Yin, H.: OS- SOMMELIER: Memory-Only

Operating System Fingerprinting in the Cloud : SOCC’12, October 14–17. CA USA, San Jose
(2012)

8. Dierks, Tim., Rescorla, Eric.: The Transport Layer Security (TLS) Protocol: Version 1.2. RFC
5246 (Proposed Standard) (2008)

9. Durumeric, Zakir., Ma, Zane., Springall, Drew., Barnes, Richard., Sullivan, Nick., Bursztein,
Elie., Bailey, Michael., Alex Halderman, J., Paxson, Vern.: The security impact of https
interception. In: Network and distributed systems symposium (NDSS17) (2017)

10. Elkan, Charles.: The foundations of cost-sensitive learning: In International Joint Conference
on Artificial Intelligence,(IJCAI), pp. 973–978 (2001)

11. Friedl, Stephan., Popov, Andrei., Langley, Adam., Stephan, Emile.:Transport Layer Security
(TLS) Application-Layer Protocol Negotiation Extension :RFC 7301 (Pro- posed Standard)
(2014)

12. Lastovicka, Martin., Spacek, Stanislav., Velan, Petr., Celeda, Pavel.: Using TLS Fingerprints
for OS Identification in Encrypted Traffic: NOMS 2020–2020 IEEE,pages 1–6 04/2020

13. Greenwald, Lloyd., Tavaris Thomas, T.: Toward undetected operating system fingerprinting. :
In USENIX Workshop on Offensive Technologies (WOOT), pp. 1–10 (2007)

14. Husak, Martin., Cˇerm´ak, Milan., Jirs´ık, Tom´aˇs., Cˇeleda, Pavel.: HTTPS traffic anal-
ysis and client identification using passive SSL/TLS fingerprinting. EURASIP Journal on
Information Security volume 2016, Article number: 6 (2016)

15. Majkowski, M.: SSL fingerprinting for p0f. https://idea.popcount.org/2012-06-17- ssl-
fingerprinting-for-p0f/

16. Matsunaka, T., Yamada, A., Kubota, A.: Passive OS fingerprinting using DNS traffic analysis.
Advanced Information Networking and Applications (2013)

17. Allen, Jon Mark.: OS and application fingerprinting techniques. SANS.edu Grad- uate Student
Research

18. Michal, Zalewski.: p0f v3 (version 3.09b). https://lcamtuf.coredump.cx/p0f3/README

https://idea.popcount.org/2012-06-17
https://lcamtuf.coredump.cx/p0f3/README

	 Operating System Fingerprinting Using Machine Learning
	1 Introduction
	2 Literature Survey
	3 The Proposed Method
	4 Dataset and Model Setup
	4.1 Pre-Processing
	4.2 Model Setup

	5 Methodology
	5.1 Decision Trees
	5.2 Artificial Neural Networks
	5.3 K-Nearest Neighbours
	5.4 Random Forest
	5.5 Naive Bayes

	6 Experimentation and Results
	6.1 Comparing ML Algorithms
	6.2 Comparison Between Parameters
	6.3 Comparing Ease of Prediction Across OS
	6.4 Comparison with Existing Tools

	7 Conclusion and Future Scope
	References


