
The Effect of Sampling in the Machine
Learning-Based Malware Analysis

K. Sakshi Thimmaiah, Lakshmi S. Raj, Prasanthi Bolimera,
and M. Anand Kumar

1 Introduction

Android Operating System has become very popular over the years, and it is a
Linux-based operating system. It has been designed primarily for touchscreenmobile
devices and tablets. They are increasingly used to access services, such asmessaging,
video/music sharing and e-commerce transactions that havebeenpreviously available
on PCs only. Subsequently, it has attracted several Malware developers who target
these mobile users [3, 10].

We must detect this malicious software that tampers with the device performance
and steals personal data, such as accessing contacts, media and personal messages,
without the user’s knowledge. Machine Learning techniques can be used to classify
software into two categories: malware and safeware. This classification can be done
by using the XML file called “Android Manifest” to present in each Android appli-
cation. It provides essential information to the operating system, like the first class
to use when starting the app or the type of permissions used in the application [3].

Only permissions provided in the file will be used in the application, and this is
done only after asking the user to grant these permissions. If the application tries to
use some other permissions which were not allowed in the Android Manifest file,
the execution fails. Unfortunately, many users tend to grant permissions to unknown
applications, which is why malicious software infects the device [3].

K. S. Thimmaiah (B) · L. S. Raj · P. Bolimera · M. A. Kumar
Department of Information Technology, National Institute of Technology Karnataka,
Surathkal, India
e-mail: ksakshithimmaiah.191it124@nitk.edu.in

L. S. Raj
e-mail: lakshmisraj.191it225@nitk.edu.in

P. Bolimera
e-mail: prasanthibolimera.191it240@nitk.edu.in

M. A. Kumar
e-mail: m_anandkumar@nitk.edu.in

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
B. Agarwal et al. (eds.), Proceedings of International Conference on Intelligent
Cyber-Physical Systems, Algorithms for Intelligent Systems,
https://doi.org/10.1007/978-981-16-7136-4_12

143

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-7136-4_12&domain=pdf
mailto:ksakshithimmaiah.191it124@nitk.edu.in
mailto:lakshmisraj.191it225@nitk.edu.in
mailto:prasanthibolimera.191it240@nitk.edu.in
mailto:m_anandkumar@nitk.edu.in
https://doi.org/10.1007/978-981-16-7136-4_12


144 K. S. Thimmaiah et al.

Thus, users must be made aware of the type of software they are installing so that
they do not fall prey to malicious software and lose essential data from their mobile
devices. For this particular project, we are making use of the DREBIN dataset. It
contains 5,560 applications from 179 different malware families. The samples have
been collected from August 2010 to October 2012 [5].

2 Literature Survey

There are two approaches to detecting malware in Android operating systems. The
first one is a signature-based approach which generates a signature for every kind of
malware and compares it with the application [1]. Typical antivirus software (e.g.,
Norton andMcAfee) use signature-basedmethods to identifymalware.However, this
can be easily evaded by attackers. Example methods involve changing signatures
using code obfuscation or repackaging [11]. The second is behavioural detection.
The behaviour of an application is compared at runtime to identify malicious intent
[1, 3].

In recent years, there has been an increasing trend using machine learning to over-
come the challenges mentioned above to develop automatic and intelligent malware
detection methods. These techniques are capable of discovering certain patterns to
detect previously unseen malware samples and identifying the malware families of
malicious samples. These systems can be classified into two categories: Dynamic
analysis and Static analysis [3, 11].

Dynamic analysis [12–14] involves accumulating information regarding API
calls, environmental variables and data transmission during the execution of an appli-
cation. Dynamic analysis gives precise predictions and has lower false positive rates
[3, 11].

Static analysis involves two parts—feature extraction and classification. The fea-
tures are first extracted from the source file and amodel is created to identify the mal-
ware families. A number of known datasets are used for feature extraction. DroidMat
is used for static analysis using the manifest file and source code to extract features
and k-means clustering and k-NN classification [7]. DREBIN uses the manifest file
to extract features from 5,560 applications and SVM as a classifier [3, 5, 11].

Some effort has been to integrate static and dynamic analyses for better perfor-
mance. Dynamic analysis could be used to reduce false positives obtained after static
analysis but doing so could in turn increase the false positive if a particular path is
not executed during the dynamic analysis [3, 8, 9, 11].

Permissions accessed by Android Applications have been significantly studied to
understandmalicious intent. TheAndroid operating systemprovides a coarse-grained
mandatory access control (MAC). A permission-based classifier can identify more
than 81% of malicious software. It can be used for preliminary malware check before
a complete second analysis [3, 3].



The Effect of Sampling in the Machine Learning-Based Malware Analysis 145

These applications are classified as malicious or benign by the combination of
permissions required by them. The DREBIN dataset contains 5,560 applications and
the respective permissions from 179 different malware families were making it a
sufficient dataset [3, 5].

DREBIN database, in comparisonwith older datasets, gives a better False Positive
Ratio parameter overall. Most Machine Learning algorithms provide high accuracy
rates,which aremore significant than85%using thedataset.DREBINperformsbetter
than older datasets and 9 out of 10 popular anti-virus scanners [2]. The analysis of the
DREBIN dataset is speedy, usually taking lesser than a second on computer systems
and lesser than a few seconds on a smartphone [3, 5].

On this dataset, Random Forest Classifier shows better results than Naive Bayes
and Logistic Regression [2]. The Random Forest Classifier is most suited for high-
dimensional datamodelling. It is easy to use as it can handle all data types andmanage
dataset inconsistencies easily [4]. Support Vector Machine is a good choice for a
classifier as it gives high precision and recall values. DREBIN data has embedded
feature sets that make it suitable to run the SVM algorithm. Compared to the other
two methods, the SVM algorithm takes longer to run but gives accurate results [6].

3 Dataset Description

The DREBIN approach made in this paper for malware detection and classification
is to gather as many features as possible from the application’s manifest and code
and embed these features into a joint vector space where each feature is grouped
into sets. Some machine learning techniques are used to identify patterns in these
features, which were gathered earlier. These features, each collected from each appli-
cation, have the following properties, which are further grouped into sets: feature as
Set S1 (Hardware Components) permission as Set S2 (Requested Permission) activ-
ity, service receiver, provider, service as set S3 (App Components) intent as set S4
(Filtered Intents) api call as set S5 (Restricted API calls) real permission as set S6
(Used Permission) call as set S7 (Suspicious API Calls) url as set S8 (Network
Addresses) [3].

Due to the large size of features, the actual contents have not been used. Some
have different values running into thousands, and not many are the same across other
application files. Therefore, building one hot encoder and exponential growth in the
feature vectors has been used in the algorithms. The number of feature properties
of each feature set has been counted and stored in the dataset. A feature vector
of size eight was used where each feature has count values and the output being
True (malware) or False (not malware). The input vector looks in the following way
(Fig. 1):



146 K. S. Thimmaiah et al.

Fig. 1 A snapshot of the feature_vectors_dataċsv file

4 Proposed Work

Using the dataset, the machine learning techniques are used to classify the appli-
cations as malware or non-malware. As there is much advancement in the usage of
Android apps, it becomes a need for us to detect the malicious behaviour of Android
apps for users’ security, privacy and safe usage. Our approach is detecting malware
systems using machine learning techniques that classify the apps as malicious and
benign and suggest a better detection method.

4.1 Sampling Data

A graph between the count of malware and safeware+malware is plotted (Fig. 2),
and it can be seen that the number of malware are 5560 and safeware+malware are
129013. It can be observed that there is a huge difference between the values, and
this implies that the data is imbalanced. To balance this data, we use the methods
of upsampling and downsampling it. Since the malware is very less in number, it is
made as a minority class, and safeware+malware are made as a majority class.

• Upsampling: It is the process of inserting zero-valued samples between original
examples in order to increase the sampling rate. In this dataset, the minority class
is upsampled using resample method of the scikit-learn library with the number
of samples set to 123453 and a random state of 123. The number of malware now
is 123453, and the number of malware+safeware is also the same (Fig. 3).

• Downsampling: It is the method of removing samples of a disproportionately low
subset of the majority class examples, decreasing the sampling rate. In this dataset,
the majority class is downsampled using the resample method with the number of
samples set to the length of the minority class (i.e., 5560) and random state to 123.
The number of malware now is 5560, and the number malware+safeware is also
the same (Fig. 4).

For both upsampled and downsampled data, the data is preprocessed, standardised
and split into 70% as training set and 30% as testing set.



The Effect of Sampling in the Machine Learning-Based Malware Analysis 147

Fig. 2 A graph between the
count of malware and
safeware+malware in the
Drebin dataset

Fig. 3 A graph between the
count of malware and
safeware+malware after
upsampling the DREBIN
dataset

Fig. 4 A graph between the
count of malware and
safeware+malware after
downsampling the DREBIN
dataset



148 K. S. Thimmaiah et al.

4.2 Logistic Regression

Logistic regression is a classification algorithm that is used to assign observations
to a discrete set of classes. In this project, binary classification has been employed
as we are classifying the software into two categories, viz. malware and safeware.
The model, in which the data was split into training and testing sets, is trained with
the logistic regression method from the linear model of scikit-learn. Then the labels
of test data are predicted, and metric methods are used on these labels to calculate
accuracy, precision, model recall and F1 score of the model. The same procedure was
followed for unsampled, upsampled and downsampled data to calculate the results.

4.3 Random Forest Classifier

A random forest classifier is a classifying method that combines many decision trees
by recursively selecting subsets of datasets to build different decision trees. It does so
by building multiple decision trees and then merging them to get a more accurate and
stable prediction. The model is trained with the Random Forest Classifier method
from the linear model of the scikit-learn. The test data labels are then predicted,
and metric methods are used to calculate accuracy, precision, model recall and F1
score of the model. The same procedure is followed for unsampled, upsampled and
downsampled data to calculate the results.

4.4 Support Vector Machines

Support VectorMachine is a popular Supervised Learning algorithmused for classifi-
cation. This algorithm aims to create the best decision boundary or line (hyperplane),
which can segregate n-dimensional space into classes to make it easier for us to put
the new data point in the correct category in the future. The algorithm involves
choosing extreme points, called support vectors, in creating hyperplanes. The model
is trained with the Support Vector Classifier (SVC) method from the SVM of scikit-
learn. Prediction on the model andmetric calculations on unsampled, upsampled and
downsampled are similar to other classification methods.

5 Results and Analysis

The output plots, along with the results, are given below. We notice that all the three
classifying methods have successfully classified the software in the given DREBIN
dataset to Malware and Safeware, respectively.



The Effect of Sampling in the Machine Learning-Based Malware Analysis 149

(Formulae Used For calculations:)

TruePosi tives% = T P

P

TrueNegatives% = T N

N

Accuracy = T P + T N

P + N

Precision = T P

T P + FP
= TruePosi tives%

Recall = T P

P

F1 = 2 ∗ Precision ∗ Recall

Precision + Recall

(TP = True Positives, TN = True Negatives, FN = False Negatives, FP = False
Positives, P = Positives = TP+FN, N = Negatives = FP+TN)
Here, Positives are Malware and Negatives are Safeware.
Confusion matrix representation (Fig. 5):

Below are the confusion matrices of all three classications performed on unsam-
pled, upsampled and downsampled data:

From the results given in Table1, we can observe that the classification performed
on the initial form of the dataset, which has not undergone resampling, produces
inconsistent results. It is also clear that the three classifying methods perform better
when the dataset has been upsampled or downsampled [3] (Fig. 6, 7, 8, 9, 10).

We can see that theRandomForest Classifier gives us the best results with an accu-
racy of 0.993 with the upsampled dataset, whereas with the downsampled dataset, it
gives slightly lesser accuracy. It produced 99.7% true positives and 78.8% true neg-
atives. The Logistic Regression method, on the other hand, gives a good accuracy
of around 0.82. And on the other hand, the Support Vector Machine gives an accu-
racy of 0.866 when upsampled and 0.863 when downsampled, but these values are
much lesser than the Random Forest Classifier method. Hence, we can conclude that
the Random Forest Classifier method is a better method for malware classification
among the three (Fig. 11, 12, 13, 14).

Fig. 5 Representation of a
confusion matrix



150 K. S. Thimmaiah et al.

Ta
bl
e
1

R
es
ul
ts
of

cl
as
si
fie

rs
on

un
sa
m
pl
ed
,u

ps
am

pl
ed

an
d
do
w
ns
am

pl
ed

da
ta

C
la
ss
ifi
er

A
cc
ur
ac
y

Pr
ec
is
io
n

R
ec
al
l

F1
Sc
or
e

T
ru
eP

os
iti
ve
s
%

T
ru
eN

eg
at
iv
es

%

L
og
is
tic

re
gr
es
si
on

(w
ith

ou
ts
am

pl
in
g)

0.
96
10
11

0.
67
15
32

0.
21
68
53

0.
32
78
39

99
.5
1

21
.6
8

L
og
is
tic

re
gr
es
si
on

(u
ps
am

pl
ed
)

0.
81
97
56

0.
85
27
73

0.
77
32
77

0.
81
10
82

85
.3

77
.3

L
og
is
tic

re
gr
es
si
on

(d
ow

ns
am

pl
ed
)

0.
82
13
42

0.
85
48
38

0.
78
12
5

0.
81
63
89

86
.2
8

78
.1
2

R
an
do
m

fo
re
st

(w
ith

ou
ts
am

pl
in
g)

0.
98
95
61

0.
93
53
53

0.
81
85
03

0.
87
30
35

99
.7
3

81
.7
3

R
an
do
m

fo
re
st

(u
ps
am

pl
ed
)

0.
99
36
27

0.
98
90
14

0.
99
83
54

0.
99
36
62

99
.0
1

99
.7
3

R
an
do
m

fo
re
st

(d
ow

ns
am

pl
ed
)

0.
94
06
47

0.
93
85
24

0.
94
51
65
0

0.
94
18
33

93
.6

94
.4
5

Su
pp
or
tv

ec
to
r

m
ac
hi
ne

(w
ith

ou
t

sa
m
pl
in
g)

0.
95
60
76

0.
45
45
45

0.
00
88
39

0.
01
73
41

99
.9
5

0.
00
88

Su
pp
or
tv

ec
to
r

m
ac
hi
ne

(u
ps
am

pl
ed
)

0.
86
66
56

0.
98
92
75

0.
85
00
39

0.
86
44
88

88
.3
2

85
.0
0

Su
pp
or
tv

ec
to
r

m
ac
hi
ne

(d
ow

ns
am

pl
ed
)

0.
86
36
09

0.
87
90
47

0.
84
84
66

0.
86
34
86

87
.9
2

84
.8
4



The Effect of Sampling in the Machine Learning-Based Malware Analysis 151

Random Forest Classifier

1. Without sampling

Fig. 6 Confusion matrix obtained for Random Forest Classifier method performed on the non-
sampled data

2. For Upsampled data

Fig. 7 Confusion matrix obtained for Random Forest Classifier method performed on the upsam-
pled data



152 K. S. Thimmaiah et al.

3. For Downsampled data

Fig. 8 Confusion matrix obtained for Random Forest Classifier method performed on the down-
sampled data

Logistic Regression

1. Without Sampling

Fig. 9 Confusion matrix obtained for Logistic Regression method performed on the non-sampled
data



The Effect of Sampling in the Machine Learning-Based Malware Analysis 153

2.For Upsampled data

Fig. 10 Confusion matrix obtained for Logistic Regression method performed on the upsampled
data

3.For Downsampled data

Fig. 11 Confusionmatrix obtained for Logistic Regressionmethod performed on the downsampled
data



154 K. S. Thimmaiah et al.

Support Vector Machine

1. Without sampling

Fig. 12 Confusion matrix obtained for SVM method performed on the non-sampled data

2. For Upsampled data

Fig. 13 Confusion matrix obtained for SVM method performed on the upsampled data



The Effect of Sampling in the Machine Learning-Based Malware Analysis 155

3. For Downsampled data

Fig. 14 Confusion matrix obtained for SVM method performed on the downsampled data

6 Conclusion and Future Work

In this paper, safeware static analysis has been carried out using the AndroidMani-
fest.xml file to extract the features such as “permissions” and “API calls” after which
the results of the classification carried out by the three methods have been analysed
and compared.We have concluded from the results that the Random Forest Classifier
method is more effective in malware classification among the three. For future work,
the software can be classified using dynamic analysis by extracting system calls.

References

1. Patel, Z.D.: Malware Detection in Android Operating System, Department of Computer Engi-
neering, Sarvajanik College of Engineering and Technology, Surat, India

2. de la Puerta, J.G., Sanz, B., Grueiro, I.S., Bringas, P.G.: The Evolution of Permission as Feature
for Android Malware Detection

3. Huang, C-Y., Tsai, Y-T., Hsu C-H.: Performance Evaluation on Permission-Based Detection
for Android Malware

4. Jehad Ali, J., Khan, R-U., Ahmad, N., Maqsood, I.: Random Forests and Decision Trees
5. Arp,D., Spreitzen-Barth,M.,Hubner,M.,Gascon,H.,Rieck,K.:Drebin:Effective andExplain-

able Detection of Android Malware in Your Pocket
6. Rana, M.S., Sung, A.H.: Malware Analysis on Android Using Supervised Machine Learning

Techniques, University of Mississippi
7. Wu, D.J., Mao, C-H., Wei, T-E., Lee, H-M., Wu, K-P.: Droidmat: Android Malware Detection

Through Manifest and Api Callstracing



156 K. S. Thimmaiah et al.

8. Ge, X, Taneja, K., Xie, T., Tillmann, N.: Dyta: Dynamic Symbolic Execution Guided with
Static Verification Results

9. Jiang, Y.Z.X., Xuxian, Z.: Detecting Passive Content Leaks and Pollution in Android Appli-
cations

10. Bose, A., Hu, X., Shin, K.G., Park, T.: Behavioral Detection of Malware on Mobile Handsets
11. Li, C., Zhu, R., Niu, D., Mills, K., Zhang, H., Kinawi, H.: Android Malware Detection Based

on Factorization Machine
12. Enck, W., Gilbert, P., Han, S., Tendulkar, V., GonChun, B., Cox, L.P., Jung, J., McDaniel, P.,

Sheth. A.N.: TaintDroid: An Information-flow Tracking System for Realtime Privacy Moni-
toring on Smartphones

13. Tam, K., Khan, S.J., Fattori, A., Cavallaro, L.: CopperDroid: Automatic Reconstruction of
Android Malware Behaviors

14. Wu, W.-C., Hung, S.-H.: DroidDolphin: A Dynamic Android Malware Detection Framework
Using Big Data and Machine Learning


	 The Effect of Sampling in the Machine Learning-Based Malware Analysis
	1 Introduction
	2 Literature Survey
	3 Dataset Description
	4 Proposed Work
	4.1 Sampling Data
	4.2 Logistic Regression
	4.3 Random Forest Classifier
	4.4 Support Vector Machines

	5 Results and Analysis
	6 Conclusion and Future Work
	References


