Web-Based Simulator for Operating)
Systems oo

K. Prajwal, P. Navaneeth, K. Tharun, Trupti Chandak,
and M. Anand Kumar

1 Introduction

In the operating system field, we come across various concepts and solution to prob-
lems that have unique ways of being solved. Some of the various such concepts are
CPU scheduling, memory management, disk scheduling, file system management,
semaphores and some more. All the concepts mentioned above are fundamental when
considering the operating system, as these algorithms that are suggested increase the
operating system’s speed significantly. Problems like deadlock and loss of infor-
mation have been overcome by implementing these operating system’s algorithms.
Some of the concepts like Dining Philosophers and Consumer Producer are put
forth as problems whose solutions have significantly affected how computers work
today. Therefore, in light of this, we have decided to implement these concepts as a
simulation.

To make the simulation more interactive and creative, we have combined the
knowledge of web technologies and operating systems to come up with the following

K. Prajwal (<) - P. Navaneeth - K. Tharun - T. Chandak - M. A. Kumar

Department of Information Technology, National Institute of Technology Karnataka, Surathkal
575025, India

e-mail: kprajwal.191it222 @nitk.edu.in

P. Navaneeth
e-mail: navaneethp.191it132 @nitk.edu.in

K. Tharun
e-mail: tharunk.191it255 @nitk.edu.in

T. Chandak
e-mail: al.trupti @nitk.edu.in

M. A. Kumar
e-mail: manandkumar @nitk.edu.in

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022 117
B. Agarwal et al. (eds.), Proceedings of International Conference on Intelligent

Cyber-Physical Systems, Algorithms for Intelligent Systems,
https://doi.org/10.1007/978-981-16-7136-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-7136-4_10&domain=pdf
mailto:kprajwal.191it222@nitk.edu.in
mailto:navaneethp.191it132@nitk.edu.in
mailto:tharunk.191it255@nitk.edu.in
mailto:al.trupti@nitk.edu.in
mailto:manandkumar@nitk.edu.in
https://doi.org/10.1007/978-981-16-7136-4_10

118 K. Prajwal et al.

web application. For our project, we created a web application that simulates various
CPU and OS concepts such as the ones mentioned above using graphical ways.

We have deployed our app at https://os-simulator.herokuapp.com/ which can be
accessed by anyone, anywhere with internet access. Building the simulator was the
main objective we were trying to achieve, a tool which can be used by anyone who
wants to acquire knowledge on Operating System concepts, but reading text books
or reference books is hard for them. This graphical way gives a whole new way of
learning to either a student or a professor who wishes to use our web application.

Keeping the objective of building an educational tool in mind, we first decided to
start with some basic yet essential algorithms to simulate with further research on
advanced topics such as Socket Programming, Threading and System Calls.

2 Literature Survey

Operating System simulators simulate various Operating System concepts, and they
vary from basic to complex real-time simulators. These simulators are used as educa-
tional tools at many top-tier institutions to make learning more interactive than just
conventional reading from textbooks or reference books. Below, we have listed the
popular and trending simulators available on the Internet with a short description.
We have also tabulated this data, making it easier to see the differences and compare
the available simulators.

SchedulerSim [1]: Here, a simulator of operating system was developed using various
scheduling concepts. There was no simulation of the CPU processes. One of the main
concepts here that was implemented in this project was the scheduling concept [1].

Sim. + assembler [2]: This project has a well-implemented CPU simulation. There
is no OS simulation. Some of the important concepts that were implemented here
were 1O processing and interrupt handling [2].

MK:irt [3]: This project consisted of a very well-maintained OS simulator. No
CPU simulation was implemented. Some of the concepts implemented were data
path simulation as well as control unit management systems [3].

SOsim [4]: A simulator for an operating system was deployed in this project. There
was no simulation on any CPU-based concepts. Some of the concepts implemented
here are process management and memory management systems [4].

PsimJ sim [5]: It has an OS simulator set in place with various isolated OS component
simulations that are present [5].

We have looked into each of these applications and felt like they could have
included a few other concepts such as Memory Allocation Techniques, Page Replace-
ment, Disk Scheduling which are also considered important in the field of Operating
Systems. Hence, we decided to provide a graphical and interactive way of imple-
menting the concepts including the other topics which were touched upon by the

https://os-simulator.herokuapp.com/

Web-Based Simulator for Operating Systems 119

previous works such as CPU Scheduling algorithms. Using the concepts of oper-
ating system, to build an educational web app that simulates these concepts in an
efficient and graphical way.

3 Proposed Work

We have implemented a simulation for six Operating System concepts.

Process Scheduling
Semaphores
Memory Allocation
File Systems

Disk Scheduling
Page Replacement.

AR e e

We have built a web application using the following technologies which are
available.

— Python3—used for scripting the algorithms

— JavaScript—used for scripting the algorithms

— Django—used as back-end for our web application

— HTML/CSS—used as frontend for our web application.

‘We have used python as to implement all the algorithms and concepts mentioned
above and we used HTML, CSS and Javascript to implement, style and simulate
them in a web environment.

We used Django framework to inter-link all these files into a web server which
can be hosted on a server to make it available.

3.1 Process Scheduling

Pseudo Code for some of the scheduling concepts implemented have been written
below. We have implemented the following algorithms.

— First Come First Serve (FCFS)
— Shortest Job First (SJA)

— Round Robin (RR)

— Priority Scheduling (PS)

— Shortest Run Time First (SRTF)
— Multi-level Queue Scheduling

Turnaround Time = Completion Time — Arrival Time (D

120 K. Prajwal et al.

First Come First Serve: Here, we implement the processes in the increasing order of
their arrival time. First come, first serve is a non-preemptive algorithm and therefore
will only take the next job after it completes the implementation of the process that
it is already implementing.

Shortest Job First: Here, the processes are implemented in ascending order of their
burst time while keeping in mind their arrival time. Shortest Job First algorithm is
a non-preemptive and therefore cannot implement any other process when a certain
process is being implemented.

Round Robin: In the round robin algorithm, we take a quantum and continually keep
doing different processes until all the processes are finished.

Priority Scheduling: In this algorithm, we implement the processes in the increasing
order of their priorities keeping in mind the arrival time of each process. Priority
scheduling can be made both preemptive and non-preemptive. Here, the pseudo
code discussed below shows how to implement a non-preemptive priority scheduling
algorithm.

Shortest Run Time First: Shortest run time first algorithm is inspired from the shortest
job first algorithm that we have implemented above. But shortest run time first algo-
rithm is a preemptive algorithm, implying that at any point of time if there is a
process that has lesser burst time than that process that is being implemented, then,
that process is implemented. Shortest run time first algorithm takes into consideration
the burst time of all the processes along with their arrival time.

Multi-level Queue Scheduling: The modern CPU has processes in a queue known as
Ready Queue. This ready queue is further partitioned or sub-divided into separate
queues, namely, and not limited to:

— Foreground
— Background

Each queue has its own scheduling algorithm, you can assign any type of
algorithm, hence the name, Multi-level Queue Scheduling.
Scheduling must be done between the queues

— The foreground queue will be run first and given higher priority over the back-
ground queue; the background queue will be run once the foreground has been
exhausted.

— This scheduling method also requires a Time Slice or Time Quanta similar to that
of Round Robin, which is the time after which the next process will be attended
to by the CPU during process scheduling.

Web-Based Simulator for Operating Systems 121

3.2 Semaphores

Semaphores are functions that can be used to solve various problems that are used
to solve various critical section problems using wait and signal operations. Some
of the concepts that use semaphores, that we implemented were producer consumer
problem and dining philosophers.

Producer Consumer Problem: The following problem is a synchronization problem.
There is a fixed size buffer that the producer can put his products into. The consumer
takes the products from the buffer and consumes them. The problem occurs either
when the buffer is empty and the consumer tries to take the product or when the
buffer is full and the consumer tries to fill the buffer. This problem can be solved
using semaphores.

Dining Philosopher: Dining Philosopher is a problem that is often used to display
the synchronization problem that occurs in operating systems. It also shows us a
technique for solving them. In our simulation, we have five philosophers that decide
to dine together in round table. Each philosopher can either eat, think or wait. To
eat, the philosopher needs two chopsticks, meaning that both the chopsticks beside
him must be free. Since there are only five chopsticks on the table, two beside each
philosopher, we need to time which philosopher eats when perfectly, so as to avoid
deadlock or a situation where a philosopher starves forever. This too can be solved
using semaphores.
Algorithm for Dining Philosopher (Output)

1. The array Chopsticks contain all the relation between
the chopstick that each philosopher uses.

2. The number of philosophers is given by the number
n.

3. fori in Philosophersdo

4. while true do

5. Think

6. Callpickup (chopsticks[i], chopsticks[(i + 1)%n])

7. Eat

8. Callputdown (chopsticks[i], chopsticks [(1 + 1)%nl)
9. end while

10. end for

3.3 Disk Scheduling

Disk Scheduling concept is a process that is implemented by the operating system to
schedule and process the input output requests that it receives. It is similar to process
scheduling. There are many requests that come at different times and have different

122 K. Prajwal et al.

execution times. Some of the algorithms that handle these kinds of requests are the
following:

First Come First Serve: Here, the first request that arrives into the operating system
is executed first.

Shortest Seek Time First: Here, we take into consideration all the request’s seek time
and their arrival time. The operating system then implements the requests in the
increasing order of their seek time while taking into consideration their arrival time.

Scan Algorithm: In this algorithm, there is a head that traverses through the requests
from the start to the end and executes them. Once the head reaches the end of the
disk, the direction of the head is reversed and again the processes are implemented
when the head reaches that request.

Look Algorithm: The look algorithm is similar to the scan algorithm, but here instead
of going to the end of the disk the head goes only to the last request to be serviced
in front of the head and then reverses its direction from there itself.

Circular Scan and Circular Look Algorithm: The pseudo code and the implementa-
tion for the circular scan and the circular look algorithm is quite similar to the scan
and the look algorithm. The difference being that in the Circular Scan and Circular
Look Algorithms, we jump to the beginning of the disk instead of reversing the
direction.

3.4 Memory Allocation

These are the algorithms that helps the operating system in allocating spaces in the
memory to programs that the operating system comes across. Memory allocation
algorithms are spilt into two cases. One, when the partition size is fixed and when
the partition size is varying.

The Fixed Sized Partition: Here, the partition is divided into equal or different
sized partitions whose size is fixed and constant. Some of the algorithms that we
implement to allocate memory to the blocks of programs are:

— FirstFit: The first fit algorithm finds the first block that fits the process/program
and assigns the block to it.

— Best Fit: The best fit algorithm finds the smallest block that fits the
program/process and assigns the block to it.

— Worst Fit: The worst fit algorithm finds the largest block that fits the
program/process and assigns the block to it.

Web-Based Simulator for Operating Systems 123

3.5 Page Replacement

‘When a new block of memory arrives and the old block of memory has to be replaced
with the new one, the operating system uses some of the below mentioned algorithms:

— First In First Out: The first process/page that arrives first is the first one to be
replaced. The operating system keeps a queue of all the process that arrives and
the first process/page to arrive is at the front of the queue.

— Optimum: The page/program that is most likely to be not used in the future for a
long time is replaced with the page that arrives. These page replacement algorithms
are very hard to implement as the OS has no way of knowing whether a particular
page/process may be used in the future.

— Least Recently Used: The page/program that is least recently used will be replaced
with that of the incoming program or page.

3.6 File Structure

File structures are different ways of structuring the files in secondary memory that
helps reduce the access time.

We have implemented a terminal style output of Linux commands which create,
delete the files and folders. Hence, the user can also learn how files and folders can
be created and deleted on a Linux terminal.

— Single Level: Here, there is only a big list of all the files that are present in the
directory. The user can have only one directory and all the files must be present
inside that. The implementation of this is very simple and the deletion and insertion
is very fast and easy, but we cannot have two files with the same name and the
protection of files are not guaranteed for multiple users.

— Two Level: In this File Structure algorithm, the user has two levels of files; the
first level, being the directory and the second level being the files. Files cannot be
created without being in a directory. Multiple folders having multiple files can be
created.

— Tree Structure: Tree Structure is how modern operating systems implement file
structure. A directory can have several files and sub-directories. These sub-
directories can then further branch to contain additional files and sub-directories.

4 Result and Analysis

Given the process ID, arrival time and burst time, the process scheduling algorithms
compute the Gantt chart, waiting time and the turnaround time. Additionally, the
steps taken to arrive at the result and the time stamp in the simulation are presented
at the bottom left (Fig. 1).

124 K. Prajwal et al.

Gantt chart

AVG WT: 4.50 AVG TAT: 7.50

Operations Taking Place able

PNO. Asivaltime Bursttime Completion time Waiting lime Tum-around time

2

Fig. 1 Graphical representation of the data, along with the Gantt chart and the tabular format of
experimental data

In the Reader Writer simulation. We need to select what the seven processes want
to do, i.e., read, write or stay idle. Then on submitting using the “Submit Query”
button, the result shows that if the process was permitted to continue, it is shown with
blue indicating the process is allowed to read and with red indicating the process is
allowed to write. We see that parallel reads are allowed but only one process can
write at a time.

Given the cache size and a space separated list of requests, the cache hits rep-
resented by green tick and the cache miss represented by red cross can be visualized.
The “Proceed” button processed the next request and displays if it is cache hit or
miss. The algorithms FIFO, LRU and Optimum can be selected by the tabs provided.

Fig. 2 shows is the simulation of the file tree implemented step by step. The files
and directories in the selected directory are shown at the top. The path to the current
directory is shown above that. For every action, the equivalent terminal command to
act is shown.

Fig. 3 shows the seek graph for the FCFS disk scheduling algorithm. The seek
requests are given as a space separated list. Using the current position and the number
of cylinders parameter, the order in which the seek happens is shown in the graph.

5 Conclusion and Future Scope

We successfully implemented all of the objectives, including concepts such as File
Systems and Disk Scheduling, which have been entirely made into a graphical and
interactive simulation, making it an immersive experience for the end-user, which
helps understand how the concepts work.

‘Web-Based Simulator for Operating Systems 125

Tree Structured Directory

. dir1 dir2
I e I

Terminal

Fig. 2 Output of one of the algorithms used in file systems

Disk Scheduling

Current positan: Previcus request Requests (space seperated):

Nusmber of Cyseders Satecs Agontnm

Seek-Time : 152

Fig. 3 Seek graph for the FCFS disk scheduling algorithm using experimental data

We have also deployed our app on Heroku web servers for easy access; it is
deployed at https://os-simulator.herokuapp.com/.

One can open this using a device with internet access and a browser app. Just
click on the link or copy-paste in the address bar to access the web page. There are
no other requirements, making it very light and standalone, which is not the case
with other simulators available, which requires various libraries and to run it locally
on your machine.

https://os-simulator.herokuapp.com/

126 K. Prajwal et al.

The complete source code to our implementation can be found on the GitHub of
one of the authors, using which we collaborate to put together this Operating System
Simulator.

The link to the GitHub repository is https://github.com/navaneethp123/os_sim
ulator/. Our future works are not limited to including advanced and latest Operating
Systems such as Socket Programming and Parallel Programming\.

References

1. Chan, T.W.: A software tool in java for teaching CPU scheduling. JCSC 19 (2004)

2. Than, S.: Use of a simulator and an assembler in teaching input-output processing and interrupt
handling. JCSC 22 (2007)

3. Nishita, S.: MKit simulator for introduction of computer architecture. In: 31st International
Symposium on Computer Architecture, June 19, 2004. Munich, Germany

4. Maia, L.P, Pacheco, A.C.: A simulator supporting lectures on operating systems. In: 33rd
ASEE/IEEE Frontiers in education Conference, November 5-8, 2003. Boulder, CO

5. Garrido, J.M., Schlesinger, R.: Principles of Modern Operating Systems (2008)

https://github.com/navaneethp123/os_simulat

	 Web-Based Simulator for Operating Systems
	1 Introduction
	2 Literature Survey
	3 Proposed Work
	3.1 Process Scheduling
	3.2 Semaphores
	3.3 Disk Scheduling
	3.4 Memory Allocation
	3.5 Page Replacement
	3.6 File Structure

	4 Result and Analysis
	5 Conclusion and Future Scope
	References

