Chapter 4 )
Statistical Analysis of Cellular e
Directional Movement: Application

for Research of Single Cell Movement

Masahiro Kanai, Kazuo Tonami, and Hideto Tozawa

4.1 Single Cell Movement

Cell movement plays a fundamental role in physiological collective phenomena,
especially in self-organization. In earlier studies, it has been mainly discussed
whether cell movement may be considered as random walk or not. We note that by
random walk or Brownian motion, we denote the random motion of small particles
driven by external force although these two terms have a different mathematical
definition.

Due to Einstein’s theory of Brownian motion, the mean squared displacement
(MSD), which we can estimate from experimental data, is endorsed as a criterion
for the motility to be random walk. The MSD of a cell trajectory x(¢), the position
of a single cell at time ¢, is defined as the following equation:

MSD(7) = (|x(t) — x(0)[?),

where |x| and (- - - ) denote, respectively, the norm of vector x and the expectation.
The MSD of a Brownian motion is proportional to time: MSD(t) ¢, whereas that
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of linear movement with a constant velocity is proportional to the square of time:
MSD(t) 2. These two cases are called diffusive and ballistic, respectively, and
the others are anomalous.

Recent studies [1, 2, 4, 6-9], based on experimental data of high accuracy, have
tended to claim that cells move with a directional trend and a persistent random
walk is suitable for modeling cell movement. The persistence parameter included in
those models appears in the MSD and reveals a crossover from persistent movement
to random. We will cover the persistent movement in the next section.

On the other hand, we consider another 2-dimensional model in which a cell
moves with a constant speed prescribed and decides his direction entirely randomly
at each time step. This model requires another method for analysis, namely circular
statistics. In the latter section, as well as the MSD, circular statistics will be applied
for the sample of cell movement.

4.1.1 Persistent Random Walk

One of the simplest ways to introduce the persistent random walk is to adopt, as
equation of motion for cells, a Langevin-type equation in 2 dimension:

d
zd—'; — —v+ V2D, 4.1)

where v = v(¢) denotes the velocity vector of a cell at time ¢, and a vector £ =

E@) = <§1> represents the white noise, i.e., a random force which obeys the
2

following properties:

8(s —1) (i =)
(6) =0, (§i(s)§;(0)) { 0 G4
where (- - - ) denotes the expectation. Here, & (¢) denotes Dirac’s delta function which
takes the value of 0 unless + = 0. The two components of the random force vector
& are independent, and each has no auto-correlation. Note that one can arrange the
coefficient of the friction term —v to be 1 without loss of generality.

The parameter 7, taking positive values, does no longer represent the inertial
mass because a cell can move by itself without any external force, and hence the
relationship between the acceleration and the force is not retained in general. It is,
however, still true that if t is large the acceleration remains small. This means that
the velocity will not change rapidly. Hence, t should be regarded as a criterion for
persistent movement and is called the persistence time since it has dimension of
time.

The parameter D controls the strength of the random force and hence shows the
motility of cells. From a macroscopic point of view, it corresponds exactly to the
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so-called diffusion coefficient originally introduced from Fick’s law. Actually, in
Fick’s second law, the diffusion coefficient manifests itself in a diffusion equation.

4.1.2 Mean Squared Displacement (MSD) and the Fiirth
Formula

We calculate the MSD for the persistent random walk introduced in (4.1).
The velocity auto-correlation function (VACF) is obtained by integrating (4.1) as

2D
(@) - v(0)) = —e 7, (4.2)
T
where v; - v denotes the inner product of vectors v; and v;, and (- - -) denotes the

2D
expectation. The coefficient — is determined from the Green—Kubo formula:
T

D= l/oo(v(l‘) -v(0))dt.
2 Jo

In general, one can obtain the MSD from the VACF as follows.
Since

dx
V= —
dt

by definition, we have

t 2
(x()?) = <(/ v(s)ds) >
0
t t
= </ v(s)ds/ v(s’)ds/>
0

0
t t
Z/ / (v(s) - v(s))dsds’
0 Jo
t t
:/0 /0 (v(s —5") - v(0)) dsds’. 4.3)

Note that we can let x(0) = (0, 0) without loss of generality. From (4.2), we
calculate the integral and thus obtain the MSD referred to as the Fiirth formula [3]:

x()?) =4D@ — t(1 — e7'/7Y). (4.4)
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We remark that, as already noted in [1, 8], the Fiirth formula can be derived from
other models than the Langevin equation.
In the short time region, i.e. for t < t, (4.4) is approximated as

u@f>:32ﬂ.

2D
We note that from (4.2), the coefficient — coincides with (v(0) - v(0)). This leads
T
to v/ {x (1)) ~ /{(v(0) - v(0))¢, and hence this time region is called ballistic.

In the large time region, i.e. for t > t, (4.4) is approximated as
(x(1)%) ~ 4Dt.

This time region is called diffusive. In this region, the persistence time T approx-
imately vanishes in the MSD. This suggests that the mobility of cells may be
considered as random walk in the long run.

4.2 Circular Statistics

In this section, we introduce statistical methods for analysis of circular data:
numeric data measured in the form of angles or two-dimensional orientations.

Now, we have a wide variety of circular data as a set of vectors/axes, e.g., wind
directions, circadian rhythms, cell division axis, directional movement of animals,
and so on. In contrast, most scientists may not be familiar with the methods to deal
with those data. The latter part of this section will be hence devoted to cell migration
data measured as planar vectors; however, we do not refer to the general ways how
these data should be recorded.

This section is concerned with basic methods for statistical analysis of a single
sample of circular data {61, 65, ...,6,} including methods for displaying and
summarizing the sample. You may consider that the sample should present angles.

4.2.1 Raw Data Plot

First we consider the advantage of descriptive methods for statistical data. These
enable us to gain an initial idea of the important characteristics of the sample:
whether the sample does appear from a uniform distribution, from a unimodal
distribution, or from a multimodal distribution. Moreover the distribution may be
regarded as one of the fundamental distributions.

Here we refer to the distribution for a sample as the counts of sample points
distributed over all possible values. Raw data plot is the first important step to
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analyzing the data because it implies that we will have the next measurement in
the range in which the major part of the data concentrate.

Example: Wind Direction

Table 4.1 gives the sample of wind directions at Kurume City, Fukuoka, Japan
observed on March 8th, 2018. The angles, figured in degree, are measured clockwise
from the north direction. Figure 4.1 shows an angular plot for the raw data given in
Table 4.1. This diagram enables one to recognize the whole aspect of the data.

4.2.2 Histograms

The next step is to exploit histograms. Histograms are constructed as a type of bar
plot for numeric data that group the data into bins, i.e. a series of intervals dividing
the entire range of values. First, there are two types of histograms/diagrams: linear
and angular, and then some variations in the angular diagram. A table of unprocessed
numerics is often referred to as raw data, compared to processed data (Fig. 4.2).

1. A simple angular histogram is obtained by plotting bars each of which is centered
at the midpoint of its grouping interval, with the length of the bar proportional to
the relative frequency in the group.

2. The rose diagram is more commonly used for angular data than the angular
histogram above is, in which each group is displayed as a sector. The radius
of each sector is taken so as to be proportional to the square root of the relative
frequency of the group; the area of the sector is thus proportional to the group
frequency (Fig. 4.3).

Example: Wind Direction Statistics (Rose Diagram)
Figure 4.4 shows a rose diagram for the data in Table 4.1. As immediately seen,
the rose diagram is named for its shape.

3. The stem-and-leaf diagram is a histogram retaining the raw data values; in
particular, their mode is immediately found from the sample. Each stem, as a
column sequence of integers, consists of the data falling in a 10° interval with
the leaves being the data values in that interval, sorted in an increasing order.
The stem-and-leaf diagram is superior in displaying data without detracting the
individual measurements.

Example: Wind Direction Statistics (Stem-Leaf Diagram)

Figure 4.3 gives a stem—leaf diagram for the data in Table 4.1. In order to make
this diagram, we process the raw data in Table 4.1 by dividing all the numerics
by 30°. Accordingly, the stem consists of 12 items, and stems 0, 1, 2, 3, ...
present actual angles 0°, 30°,60°, 90°, ..., respectively. Then, for example,
leaf 2 | 3 present actual angle 67.5°. We remark that this processing of the raw
data changes numerics superficially but does not detract intrinsic statistics at all.
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Table 4.1 Wind directions at
Kurume City, Fukuoka, Japan
on March 8, 2018 [5]

M. Kanai et al.

Time | Direction | Time Direction | Time | Direction
0:10 | 45° 8:10 | 0° 16:10 | 22.5°
0:20 | 45° 8:20 |337.5° 16:20 | 22.5°
0:30 | 45° 8:30 | 0° 16:30 | 0°
0:40 | 45° 8:40 |337.5° 16:40 |45°
0:50 | 45° 8:50 |22.5° 16:50 | 22.5°
1:00 | 45° 9:00 |0° 17:00 | 22.5°
1:10 |22.5° 9:10 |22.5° 17:10 | 22.5°
1:20 |22.5° 9:20 |0° 17:20 | 0°
1:30 | 45° 9:30 |292.5° 17:30 | 22.5°
1:40 |22.5° 9:40 | 45° 17:40 |22.5°
1:50 |22.5° 9:50 | 180° 17:50 |22.5°
2:00 | 45° 10:00 |225° 18:00 | 45°
2:10 | 45° 10:10 | 225° 18:10 | 22.5°
2:20 |22.5° 10:20 | 157.5° 18:20 | 22.5°
2:30 |22.5° 10:30 | 157.5° 18:30 | 0°
2:40 |22.5° 10:40 | 157.5° 18:40 | 0°
2:50 |22.5° 10:50 | 180° 18:50 | 45°
3:00 |45° 11:00 | 135° 19:00 | 0°
3:10 | 45° 11:10 | 180° 19:10 | 0°
3:20 | 45° 11:20 | 180° 19:20 | 22.5°
3:30 | 45° 11:30 | 225° 19:30 |22.5°
3:40 | 45° 11:40 |202.5° 19:40 | 0°
3:50 | 45° 11:50 |225° 19:50 | 0°
4:00 |45° 12:00 | 247.5° 20:00 |0°
4:10 |45° 12:10 | 247.5° 20:10 | 22.5°
4:20 | 45° 12:20 | 247.5° 20:20 |22.5°
4:30 |45° 12:30 | 292.5° 20:30 |22.5°
4:40 |67.5° 12:40 | 270° 20:40 | 22.5°
4:50 |22.5° 12:50 | 247.5° 20:50 |0°
5:00 |45° 13:00 | 247.5° 21:00 |0°
5:10 |22.5° 13:10 |247.5° 21:10 |22.5°
5:20 | 45° 13:20 |247.5° 21:20 |0°
5:30 | 45° 13:30 | 225° 21:30 |0°
5:40 | 45° 13:40 | 225° 21:40 |0°
5:50 |0° 13:50 | 225° 21:50 |22.5°
6:00 | 45° 14:00 | 225° 22:00 |45°
6:10 |22.5° 14:10 | 225° 22:10 |22.5°
6:20 | 45° 14:20 | 225° 22:20 | 22.5°
6:30 | 45° 14:30 | 247.5° 22:30 | 22.5°
6:40 | 45° 14:40 | 225° 22:40 |22.5°
6:50 | 45° 14:50 | 292.5° 22:50 |22.5°

(continued)
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Table 4.1 (continued) Time | Direction | Time | Direction | Time | Direction

7:00 | 67.5° 15:00 |337.5° 23:00 |22.5°
7:10 | 45° 15:10 | 0° 23:10 | 22.5°
7:20 | 67.5° 15:20 | 90° 23:20 |337.5°
7:30 | 45° 15:30 |22.5° 23:30 | 0°
7:40 | 22.5° 15:40 |0° 23:40 |0°
7:50 | 0° 15:50 | 0° 23:50 | 0°
8:00 |22.5° 16:00 |22.5° 0:00 0°
) 0°
LY
0000 270 ° 90 * 600000000000000000000000000
)

[
180 °
/"
Fig. 4.1 An angular plot for the data on the raw data is given in Table 4.1. The angles are measured
clockwise from the north direction

4. We introduce a kernel density estimation, which is one of nonparametric methods
to estimate the distribution for a sample. This method is different from the
histograms described above in that the contribution of each data point 6 is
defined as

1 0 — O
—u( )ds.,
nh h

where w(@) presents a smooth function of 6 taking the form of a bump, d6
denotes an infinitely small interval, and h controls the amount of smoothing
effect. Then, the kernel density estimation f(#) is given by the sum of all the
contributions:

n

forao =5 w(P= %Yo,

k=1 h
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Fig. 4.2 A linear histogram for the data on the wind directions at Kurume City, Fukuoka, Japan.
The binwidth is 50°. The raw data is given in Table 4.1
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Fig. 4.3 A stem-leaf diagram for the wind directions at Kurume City, Fukuoka, Japan on March
8,2018 [5]

Function w(0) called the kernel function should be chosen so that its support D,
a region where the function takes nonzero values, is small enough for w(0) to
ensure the condition

f w(0)do = 1.
D

However, the choice is not crucial to the density estimation but the magnitude of
h is because it determines the amount of smoothing effect, namely, the larger &
is, the more the density function gets blurred. It is, however, another issue how
you determine the value of A.
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Fig. 4.4 A rose diagram for the data on the wind directions at Kurume City, Fukuoka, Japan. The
raw data is given in Table 4.1

We note some important points in plotting histograms: Some choice of group
boundaries can give rise to a serious distortion of the information about the modal
groups observed in the sample; as well, the choice of the bin width should be
carefully made so that we can anticipate the shape of the underlying distribution
of the sample. It is, however, another issue whether your choice is correct or not.

4.2.3 Summary Statistics

The diagrams described above suggest the existence of the population from which
the sample was drawn. Here we introduce basic quantities which describe important
features of the sample distribution.
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(A) Sample Circular Mean and Sample Circular Standard Deviation
The most popular as well as important statistic is the sample mean, which is
ordinarily given by the arithmetic mean:

1 n
- 0;.

Is it correct even for a sample of circular data? No, and it will be obvious if one
considers, for example, the sample {10°, 350°}. We have the arithmetic mean 180°,
but this cannot be acceptable.

The natural way is to consider that each circular data corresponds to a point
located on the unit circle, and thereby the sample of circular data directly transforms
into a sample of unit vectors and the sample mean for circular data is to be figured
out from the mean vector. The mean vector in terms of vector addition is carried out
as

1 <& 1 &
C=—§ 0;, S=—§:'0~, R=+C2?+ 82,
nj_]COS j nj_lsln j

where R should be chosen to be positive. Then, the mean direction 0 of the sample
of unit vectors is obtained from

Q

_ - S
cosf = —, sinf = —.
R

=

This mean direction § corresponds to the mean of the sample of circular data 6;s.

On the other hand, R defined above presents the length of the resultant vector and
is no longer a unit vector. R takes the value in the range [0, 1]; if R = 1, it means
that all the vectors are in the same direction and hence all data ;s are coincident. By
contrast, R = 0 does not always mean that all the unit vectors distribute in uniformly
random directions. A simple counterexample is the sample data {10°, 180°, 350°}.
This point will become more clear when we consider statistics for axial data. We
hence note that R cannot be a useful measure of deviation.

However, R may present the variance as

V=1-R

in the case that the sample shows a single modal distribution. We note that circular
data is restricted to a finite range and so is the variance. Again, V = 1 does not
immediately imply that the sample has a dispersed distribution.

The sample circular standard deviation is also defined as

v=,/—2log(l -V).



4 Statistical Analysis of Cellular Directional Movement 153

(We may have other definitions for the standard deviation.) If V is nearly equal to
1, v can be well approximated by +/2V.

(B) Advanced Circular Summary Statistics

In order to define advanced statistics, we need some mathematics in complex
numbers. From the mean direction 6 and the resultant vector length R, we define
the first trigonometric moment

mi = R(cosf + i sinf),

where i = +/—1. In an analogous manner as the mean direction, the pth
trigonometric moment is then defined as

my = Rp(Cp+iSp),
where
1 1 . o
szzz;cospei, szr—lz;smp@', R,=./C2+S2.
1= 1=

Note that R} = R.

Using Euler’s formula in complex analysis, ¢! = cos6 + isinf, we have a

simple expression:
1 n
Cp+iSy=—>) "
n
j=1

Then, we introduce argument 1), as
1 n
Rpe'tr = — Zelpef.
n -
Jj=1

In particular, ;1 = 6, but however »F p6 for p > 2 in general.
The centered sample trigonometric moments are also defined as
I p/ ’ .ol
m, = Rp(Cp + lSp),

where

I ¢ - [ -
Cp=—D cospO;—0), S, =3 sinp@®;—0),
j=1 j=1
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and

R, = /(Cp2 + (S~

Since a little calculation leads to C| = R and S} = 0, we have m| = R.
Using Euler’s formula, we have

7ip§

n n
R e = 1 3 e @-0) e et = Ryl tr=r),
n n

j=1 j=1

and therefore ,u'p =y — p0o, and R;, =R,.

As for a unimodal distribution of the sample, we exploit the first and second
centered trigonometric moments, defining advanced statistics: the sample circular
dispersion

1 — R,
T 2(RDY

the sample circular skewness

s: R}, sin(u), — 2u))
J1 — R}

)

and the sample circular kurtosis

o = Rocos(uy —2u) — (R
- (1 - RD?

The circular dispersion § is concerned with confidence interval for the sample mean
direction. The skewness s presents the asymmetry of the sample distribution. The
kurtosis k presents the peakedness of the sample distribution, and so it is also called
peakedness.

Example: Wind Direction Statistics

We have summary quantities for the wind directions given in Table 4.1 as follows:
the mean direction & = 71.7°, the sample circular variance V = 0.43, and the
circular standard deviation v = 1.1. See Figs. 4.2 and 4.4, and verify these results.
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4.2.4 Probability Models

Statistical analysis, especially statistical inference, of a sample data is based on the
probability of it being obtained. Probability in statistics takes a role in formulating
uncertainty of the data, i.e., the data we obtain is drawn from an underlying
population. Each sample of the population contains the probability that one will
draw it, and we call the set of the probability the probability distribution or
distribution simply.

Probability models provide with a distribution for the data a priori. Some
probability models have parameters to be inferred from the sample, and other
models called nonparametric do not. One usually applies the normal distribution
for linear data, then obtaining acceptable results. For circular data, some models
appear as a counterpart of the normal distribution for linear data, and the von Mises
distribution described below is one of them.

Example: von Mises Distribution

Figure 4.5 shows a von Mises distribution. This distribution is a continuous
probability distribution on the circle and was introduced as a circular analogue of
the normal distribution. The probability density function is defined by

e cos(0—pun)

where the parameters © and 1/k correspond, respectively, to the mean value and
the variance. We note that the normalization is given by a modified Bessel function
Ip(k). We have some analytic expressions for the function as

1 2
In(k) = E/ e cos0—m gg.
0

and

o) = 32 &)
r=0

However, these may not be useful for numerical calculation. The use of a software
on computer is practical.
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1.5~

-1.51

Fig. 4.5 The von Mises distribution. We illustrate a von Mises distribution in polar plot; the outer
curve presents the value of probability increasing upon the unit circle (the inner curve)

For example, we apply the von Mises distribution to the wind direction data given
in Table 4.1. As already calculated above, the circular mean u = 71.7° and the
circular variance 1/k = 0.43. Figure 4.6 shows the probability density function in
polar plot.

4.3 Application for Single Cell Movement

In this final section, we apply the circular statistical analysis introduced above for
single cell movement. We obtain the sample of a single 3T3 cell in vitro. The 3T3
cell line is a spontaneously immortalized mouse fibroblast cell line established from
mouse embryonic tissue.
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1.5

-1.5

Fig. 4.6 The von Mises distribution applied for the wind direction data given in Table 4.1.
Parameters are chosen so that the mean © = 71.7° and the variance 1/xk = 0.43. We find that
this fits with the rose diagram given in Fig.4.4. To be precise, we illustrate the graph of polar
equation p = f(6) + 1 with u = 1.25 and the variance x = 2.33

Figure 4.7 shows the sample trajectory of a single 3T3 cell moving on a dish
freely. We plot the data points by time lapse imaging of the cell movement and then
connect them with line segments in time sequence.

Figure 4.8 shows the directions of motion obtained from the sample trajectory in
both circular histogram and rose diagram. From the data, we have the mean circular
mean direction 121° and the circular variance 0.93. Since the circular variance takes
a value in between 0 and 1 and the greater it is the more random (irregular) the
movement is, we consider from the present result that the 3T3 cell chooses the
direction of movement with almost equal probability (Fig. 4.9).

Furthermore, we calculate the mean squared displacement from the sample
trajectory data, so we test that the movement observed is a random walk or not.
We use a log-log plot for the figure, and hence the line of the linear minimum mean
squared error estimator gives the exponent A for the MSD with respect to time: MSD
o t*. The slope of the line is read as 1.0, i.e. A = 1.0, and accordingly the result
suggests that the present cell movement should be considered as diffusive. Hence
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Fig. 4.7 The sample of a single 3T3 cell moving freely on a dish

we conclude from the sample data given in Fig.4.7 that the 3T3 cell moves as a
random walk.

We finally make a remark on the calculation of the MSD from the sample data
before closing the chapter. From a sample trajectory containing N + 1 points of
position (x(z), y(¢)) at time ¢z, we actually compute the MSD as

MSD(7) = ((x(t + 7) — x(1))* + (y(t + 7) — y(1))?)

1 N—n . . X
= NTatl ; [+ man - xaan)

where 1 = nAr(n=0,1,2,...,N).
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Fig. 4.9 The mean squared displacement for the sample trajectory
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