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Synchronization and Fluctuation
of Cardiac Muscle Cells

Tatsuya Hayashi, Kenji Yasuda, and Guanyu Zhou

3.1 Introduction

Following on from the dramatic progress in the life sciences in the twentieth
century, starting with determination of the way in which genetic information is
stored, encoded, and transmitted, another challenge has arisen regarding epige-
netic information. Epigenetic information is complementary to genetic information
and essential to understand the entire landscape of living systems, such as how
living cells can choose, reserve, share, and inherit acquired epigenetic informa-
tion among neighboring cells and between generations. As we move into the
post-genomic/proteomic era, such complementarity to genetic information should
become more apparent. The cells in a group are individual entities, and differences
arise even among cells with identical genetic information that have developed under
the same conditions. These cells respond differently to perturbations [42]. Why
and how do these differences arise? How are these differences of individual cells
ironed out when they become groups, clusters, or tissues? We call this behavior the
“community effect” of cells as induced uniformity. To understand the community
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effect, we need to understand the potential underlying differences of cells, and
why and how their characteristics change when they form networks as epigenetic
information.

If we are to obtain a comprehensive understanding of a living system, we need
to analyze its epigenetic information, such as adaptation processes and community
effect in a group of cells. As cells are minimal units in terms of both genetic and
epigenetic information, we must analyze their epigenetic information starting from
the twin complementary perspectives of cell regulation being an “algebraic” system
(with emphasis on temporal aspects; nongenetic adaptation) and a “geometric”
system (with emphasis on spatial aspects; spatial pattern-dependent community
effect) using identified single cells and their patterned groups. We thus commenced
a series of studies to analyze the epigenetic information of single cells and the spatial
structures of cell networks to expand our understanding of how the fates of living
systems are determined and how they can be changed.

The importance of understanding epigenetic information is expected to become
apparent in cell-based biological and medical fields such as cell-based drug
screening and the regeneration of organs from stem cells, fields in which phenomena
cannot be interpreted without taking epigenetic factors into account. We thus started
a series of studies focusing on developing a system that could be used to evaluate
the epigenetic information in cells by continuously observing specific examples
of cells and their interactions under fully controlled conditions as a constructive
experimental method. However, the issues of limitations regarding the quality of
cells and control of their conditions remained. Mathematical modeling is one of the
most powerful approaches to overcome these problems.

In this chapter, a mathematical approach for analyzing the synchronization
behavior of spontaneously beating cardiomyocytes was examined, starting from
modeling of the firing of cardiomyocytes and progressing to spatially arranged
cardiomyocyte networks, based on the twin complementary perspectives of cell
regulation, namely, as an “algebraic” system (emphasis on temporal aspects) and
as a “ geometric” system (emphasis on spatial aspects). Our experimental and
mathematical results on the community effect in the synchronization behavior of
beating in cardiomyocyte networks are introduced and discussed.

3.2 The Stochastic Phase Models for the Cardiomyocyte
Beating

Massive mathematical models have been proposed to investigate the mechanism
of cardiomyocyte beating. For example, the work [10] studies an elaborated
mathematical model composed of a large number of equations, which looks into the
complex electrophysiological processes causing cardiomyocyte synchronization.
On the other hand, using just a few ordinary equations, one can reproduce the key
phenomenon of the membrane currents and action potentials (see, for example,
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[22, 37]), such as the famous Hodgkin–Huxley model, the FitzHugh–Nagumo
model, and the Van der Pol model. In this section, we focus on investigating
the statistical behavior of beating/synchronization period of cardiomyocyte. To
explain the essence of synchronization period, we can regard the cardiac muscle
cells as oscillators, to which the phase model is well applicable [29, 32, 56]. It is
also regarded as the well-known integrate-and-fire model which has been widely
used as a spiking neuron model [2, 23, 40]. However, to capture the features of
cardiomyocyte beating, we have to incorporate the conventional stochastic phase
models with three important conceptions: irreversible at firing, a refractory period
after firing, and induced pulsation associated with firing of neighboring cells. In this
section, we introduce the stochastic phase models for the beating of the isolated
and coupled cardiac muscle cells. The theoretical analysis concerned with the
synchronization period is provided, which involves the stochastic equation, the Itô
formula, and the calculation of expected value, variance, and coefficient of variance
(CV) of the beating/synchronization period.

3.2.1 Some Preliminaries for the Stochastic Phase Model

Before describing the stochastic phase models for the cardiomyocyte beating,
we briefly introduce some mathematical preliminaries on the phase model and
stochastic differential equation.

3.2.1.1 The Phase Model

We start from a simple phase model. Let φ be the phase of an oscillator with intrinsic
frequency (or drift) μ > 0 and initial state φ(0) = 0. The phase model is given by

φ(t) = μt. (3.1)

Assuming that the phase returns to 0 when approaching 2π , we see that T = 2π
μ

is the period of the oscillator. We can also write (3.1) into an equivalent differential
form:

dφ(t) = μdt, (3.2a)

φ(0) = 0. (3.2b)

Think of the oscillator as a cardiomyocyte, which beats when the phase reaches
2π and then returns to 0 immediately to begin a new beating process (see Fig. 3.1a).
The phase equation (3.1) describes the rhythmic beating with period T .

In general, one can consider the phase model with time-dependent and state-
dependent drift, that is, μ(t, φ(t)) is a function depending on t and φ. Then, the
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Fig. 3.1 (a) The phase model
with constant drift μ = 1,
where the beating interval is
2π . (b) The phase model with
drift μ = 1 and “white noise”
ζ , where the beating interval
varies each time

(a)

t

(b)

t

phase model with initial value φ0 becomes

dφ = μ(t, φ)dt, φ(0) = φ0.

The above equation is equivalent to the following integration form:

φ(t) =
∫ t

0
μ(s, φ(s)) ds + φ0, (3.3)

which is also called the “integrate-and-fire” model.
However, for a cardiomyocyte, the beating process is often affected by the

internal/external noise. As a result, the beating interval varies each time (see
Fig. 3.1b for an example of beating process with noise).

3.2.1.2 The Brownian Motion and White Noise

Incorporating the phase model (3.2) with noise effect, we write the phase model in
a formal way:

dφ(t) = μdt + σζ(t), (3.4a)

φ(0) = 0, (3.4b)

where ζ(t) denotes the “white noise” (which has been widely applied in many
mathematical models), and σ is a constant representing the strength of the noise. In
general, one can take σ as a function of φ, i.e., σ(φ). Since the white noise can be
regarded as the time derivative of Brownian motion (or called the Winner process)
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denoted by W(t), (3.4a) becomes

dφ(t) = μdt + σdW(t), (3.5)

which is a stochastic differential equation. Figure 3.1b shows a sample path of φ

with μ = σ = 1.
Before we discuss the stochastic differential equation (3.5), let us explain the

conceptions of the Brownian motion and white noise, where we need the Gaussian
(or normal) distribution.

For μ ≥ 0 and σ > 0, N(μ, σ 2) represents the Gaussian (or normal) distribution
with mean μ and variance σ 2. The probability density function of N(μ, σ 2) is given
by

f (x) = 1√
2πσ 2

e
− |x−μ|2

2σ2 , −∞ < x < ∞. (3.6)

For an N(μ, σ 2) random variable X (i.e., X ∼ N(μ, σ 2)), one can compute the
probability of the event a < X < b using the density function f :

P(a < X < b) =
∫ b

a

f (x) dx.

The expected value (or mean) of X is calculated as

E(X) =
∫ ∞

−∞
xdP (X ≤ x) =

∫ ∞

−∞
xf (x)dx

=
∫ ∞

−∞
x

1√
2πσ 2

e
− |x−μ|2

2σ2 dx = μ.

(3.7)

And we derive the variance of X:

Var(X) = E([X − E(X)]2)

= E(X2) − [E(X)]2

=
∫ ∞

−∞
x2 1√

2πσ 2
e
− |x−μ|2

2σ2 dx − μ2 = σ 2.

(3.8)

The two (Gaussian) random variables X1 and X2 are independent means the
probability of the events a1 < X1 < b1 and a2 < X2 < b2 equals the product
of P(a1 < X1 < b1) and P(a2 < X2 < b2), i.e.,

P(a1 < X1 < b1, a2 < X2 < b2) = P(a1 < X1 < b1)P (a2 < X2 < b2),

where {ai}2
i=1 and {bi}2

i=1 are any real numbers with ai < bi .
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Fig. 3.2 Four sample paths
of Brownian motion W(t)

t

Sample path 1

Sample path 2

Sample path 3

Sample path 4

W
(t
)

For two independent random variables X1 and X2, we have

E(X1X2) = E(X1)E(X2). (3.9)

With the help of Gaussian random variable, we introduce the one-dimensional
Brownian motion.

A collection of random variables {Xt | t ≥ 0} is called a stochastic process. The
Brownian motion {W(t) | t ≥ 0} is a stochastic process satisfying:

• W(0) = 0.
• For all 0 ≤ s < t , W(t) − W(s) ∼ N(0, t − s).
• For any 0 < t1 < t2 < · · · < tn, the random variables W(t1), W(t2) −

W(t1), · · · ,W(tn) − W(tn−1) are independent.

We plot four sample paths (or trajectories) of Brownian motion W(t) (see
Fig. 3.2). Noting that W(t) ∼ N(0, t), we have the mean and variance of W(t):

E[W(t)] = 0, Var[W(t)] = E[W 2(t)] − 02 = t. (3.10)

Moreover, for t > s ≥ 0,

E[W(t)W(s)] = E[(W(t) − W(s) + W(s))W(s)]
= E[(W(t) − W(s))W(s)] + E[W 2(s)]
= E[W(t) − W(s)]E[W(s)] + s (by (3.9))

= 0 + s,

(3.11)

where we have used the fact that W(t)−W(s) ∼ N(0, t − s), W(s) ∼ N(0, s), and
the random variables W(t) − W(s) and W(s) are independent.

We have described Brownian motion. As mentioned above, the “white noise”
ζ(t) is the formal time derivative of W(t), i.e., ζ(t) = dW(t)

dt
. However, in fact, the

sample path of W(t) is not differentiable for t ≥ 0; that is, dW(t)
dt

does not really
exist (in the classical sense).
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To get a better understanding of the “white noise” (or dW(t)), we introduce Itô’s
integral to interpret dW(t) in the integral form.

3.2.1.3 Itô’s Integral

Analogously to the integral form (3.3) of the phase model, we write the model (3.5)
into the integral equation

φ(t) =
∫ t

0
μdt +

∫ t

0
σdW(s) + φ0. (3.12)

The task is to provide a proper definition of the integral that involves dW(s), i.e.,∫ t

0 σ dW(s), such that (3.12) makes sense. For the simple case that μ and σ are
constants, we immediately have (by

∫ t

0 dW(s) = W(t))

φ(t) = μt + σW(t) + φ0.

See Fig. 3.1b for a sample path of φ(t) with μ = σ = 1 and φ0 = 0 and under
the setting that φ jumps to 0 when φ(t) reaching 2π . However, for a stochastic
process X(t), the definition of

∫ T

0 X(t) dW(t) is not straightforward. The famous
Itô’s integral addresses this issue.

The rigorous mathematical definition of Itô’s integral involves the filtration and
measurability theories of stochastic process, which is omitted in the following
argument and replaced by some intuitive description. One can refer to [6, 35] for
a detailed mathematical definition.

First, we consider a simple case that X(t) is a step process: for 0 = t0 < t1 <

· · · < tn = T ,

X(t) = Xk for tk ≤ t < tk+1, k = 0, 1, . . . , n − 1,

where {Xk}nk=0 are the random variables independent of t , satisfying:

(c1) Xk is independent of the information of W(t) for all t ≥ tk .
(c2) E(

∫ T

0 |X(t)|2 dt) < ∞.

Then, the Itô stochastic integral of X(t) on (0, T ) is defined by

∫ T

0
X(t) dW(t) =

n−1∑
k=0

Xk(W(tk+1) − W(tk)). (3.13)
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It is apparent that, for any constants a and b and the step processes X1 and X2
satisfying (c1) and (c2), the following equality holds:

∫ T

0
aX1(t) + bX2(t) dW(t) = a

∫ T

0
X1 dW(t) + b

∫ T

0
X2 dW(t). (3.14)

In statistical analysis, the expected value (mean) and variance (fluctuation) are
important features of a random variable. Let us investigate the expected value
involving Itô’s integral.

The assumption that X(t) only depends on the past history of the Brownian
motion {W(s) | s < t} but is independent of the future behavior {W(s) | s ≥ t}
plays crucial role in the obtention of the following properties of Itô’s integral.

According to the definition (3.13),

E
(∫ T

0
X(t) dW(t)

)
=

n−1∑
k=0

E [Xk(W(tk+1) − W(tk))] .

The assumption (c1) implies that Xk is independent of W(tk+1) and W(tk)). As a
result,

E [Xk(W(tk+1) − W(tk))] = E(Xk)E(W(tk+1) − W(tk))

= 0 (by W(tk+1) − W(tk) ∼ N(0, tk+1 − tk)).

Hence, we conclude

E
(∫ T

0
X(t) dW(t)

)
= 0. (3.15)

Next, we consider the expected value of
(∫ T

0 X(t) dW(t)
)2

. By the definition

(3.13),

E

[(∫ T

0
X(t) dW(t)

)2]
=

n−1∑
k=0

n−1∑
j=0

E
[
Xk(W(tk+1)

− W(tk))Xj (W(tj+1) − W(tj ))
]
.

For k �= j , without loss of generality, we assume k > j . Since (W(tk+1) − W(tk))

and (W(tj+1) − W(tj )) are independent, and Xj is only dependent upon the past
information {W(t) | t < tj } and independent of the future behavior {W(t) | t ≥ tj },
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we find that (W(tk+1) − W(tk)) is independent of XkXj (W(tj+1) − W(tj )), which
implies

E
[
Xk(W(tk+1) − W(tk))Xj (W(tj+1) − W(tj ))

]
= E(W(tk+1) − W(tk))E[XjXk(W(tj+1) − W(tj ))]
= 0 (because W(tk+1) − W(tk) ∼ N(0, tk+1 − tk)).

Therefore,

E

[(∫ T

0
X(t) dW(t)

)2]
=

n−1∑
k=0

E
[
X2

k(W(tk+1) − W(tk))
2
]
.

Again, the assumption (c1) yields the independence between X2
k and (W(tk+1) −

W(tk))
2, which gives

E
[
X2

k(W(tk+1) − W(tk))
2
]

= E(X2
k)E
[
(W(tk+1) − W(tk))

2
]

= E(X2
k)E
[
W 2(tk+1) − 2W(tk+1)W(tk) + W 2(tk)

]

= E(X2
k)(tk+1 − 2tk + tk) (by (3.10) and (3.11))

= E(X2
k)(tk+1 − tk) = E

[∫ tk+1

tk

X2(t) dt

]
,

where we have used the fact that X(t) = Xk for tk ≤ t < ttk+1 . Summing up the
above equation from k = 0 to k = n − 1 yields

E

[(∫ T

0
X(t) dW(t)

)2]
= E
(∫ T

0
X2(t) dt

)
. (3.16)

We have introduced Itô’s integral for the step process X(t) and derived the
properties (3.14), (3.15), and (3.16). For arbitrary progressive measurable process
X(t) (generally speaking, X is a progressive measurable process means that X(t) is
independent of the future behavior of the Brownian motion {W(s) | s ≥ t} and
is well defined and measurable providing the past information of the Brownian
motion {W(s) | s < t}) satisfying the boundedness

∫ T

0 |X(t)|2 dt < ∞, we can
approximate X(t) by a sequence of step processes {X(m)(t)}∞m=1 and define Itô’s

integral as the limitation of
∫ T

0 X(m)(t) dW(t), i.e.,

∫ T

0
X(t) dW(t) = lim

m→∞

∫ T

0
X(m)(t) dW(t).
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The readers can refer to [6, 35] for the detailed approximation technique and conver-
gence analysis. In fact, one can verify that the properties (3.14), (3.15), and (3.16)
are also satisfied. Therefore, we have extended Itô’s integral to arbitrary progressive
measurable process X(t) with bounded L2-norm (i.e.,

∫ T

0 |X(t)|2 dt < ∞).
Itô’s integral ensures the meaning of the integral equation (3.12). Usually, it is

more convenient to write (3.12) into the differential form (3.5), where the white
noise ζ = dW(t) should be understood in the sense of Itô’s integral.

3.2.1.4 Itô’s Formula

Given a smooth function g(x) and a stochastic process X(t) satisfying the following
stochastic differential equation:

dX(t) = μ(X(t))dt + σ(X(t))dW(t), (3.17a)

X(0) = X0, (3.17b)

where μ(X(t)) and σ(X(t)) are two functions depending on X(t), we aim to
investigate the random variable g(X(t)).

We give an explicit statement of Itô’s formula. Assume that g(x) is a twice
continuously differentiable function and X satisfies (3.17). Then, we have

g(X(t)) − g(X(0)) =
∫ t

0
g′μ + 1

2
g′′σ 2 ds +

∫ t

0
g′σ dW(s), (3.18)

where g′, g′′, σ , and μ are all functions of X(s). One can write the above formula
in a more compact form:

dg(X) = g′(X)dX + 1

2
g′′(X)σ 2dt

=
(

g′(X)μ + 1

2
g′′(X)σ 2

)
dt + g′(X)σdW.

(3.19)

The readers can refer to [6, 35] for the proof of (3.18).
We introduce another expression of (3.19) by the following expansion of dg(X):

dg(X) = g′(X)dX + 1

2
g′′(X)(dX)2, (3.20)

where (dX)2 is decomposed by

(dX)2 = μ2(dt)2 + μσ(dtdW + dWdt) + σ 2(dW)2.
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Roughly speaking, we have

(dW)2 = dt
(
or equivalently, dW = (dt)

1
2
)
,

according to which dWdt = dtdW = (dt)
3
2 . And we omit the terms of (dt)2,

dWdt , and dtdW since they are of a higher order than dt . Then, the expansion
(3.20) reduces to (3.19). But rigorously speaking, dX and dW have no meaning
alone.

If we apply the ordinary differential chain rule, then we get

dg(X) = g′(X)dX = g′(X)μdt + g′(X)σdW,

which is not correct.
For g(x, t) with continuous differential ∂g

∂t
,

∂g
∂x

, and ∂2g

∂x2 , Itô’s formula becomes

g(X(t), t) − g(X(0), 0) =
∫ t

0

∂g

∂s
+ ∂g

∂x
μ + 1

2

∂2g

∂x2
σ 2 ds +

∫ t

0

∂g

∂x
σ dW(s),

(3.21)

or equivalently,

dg(X, t) = ∂g

∂t
dt + ∂g

∂x
dX + 1

2

∂2g

∂x2 σ 2dt

=
(

∂g

∂t
dt + ∂g

∂x
μ + 1

2

∂2g

∂x2
σ 2
)

dt + ∂g

∂x
σdW.

(3.22)

We end up this section with an application of Itô’s formula. Consider a particle
moves with a constant drift μ in one-dimensional space starting from the position
x = 0. Moreover, the particle is affected by a white noise with strength σ . There are
two barriers at x = ±1, and we assume that the particle is absorbed when touching
the barriers. We denote by φ(t) the position of the particle at time t . Suppose that
the particle touches the barriers at time τ , i.e., φ(τ) = ±1. τ is a random variable.
What is the expected value (mean) of τ?

To compute the expected value of τ , we first notice that φ satisfies the stochastic
differential equation

dφ(t) = μdt + σdW(t), φ(0) = 0.

See Fig. 3.3 for two examples. Noting that

φ(t) = μt + σW(t),
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(a)
= 1

= −1

t

(b)
= 1

ϕ= −1

t

Fig. 3.3 (a) A sample path of φ(t) with μ = 0 and σ = 1. (b) A sample path of φ(t) with μ = 1
and σ = 1. The movement is stopped when reaching the boundary ±1

φ is the stochastic process with mean

E(φ(t)) = μt

and variance

Var(φ(t)) = E(φ2(t)) − [E(φ(t))]2 = σ 2t.

In fact, φ(t) is called the (μ, σ ) Brownian motion, and W(t) is the standard
Brownian motion. And we see that φ(t) ∼ N(μt, σ 2t) and W(t) ∼ N(0, t).

By Itô’s formula (3.18), for a function g with continuous g′ and g′′,

g(φ(τ)) − g(0) =
∫ τ

0
g′μ + 1

2
g′′σ 2 dt +

∫ τ

0
g′σ dW(t).

Since τ is regarded as the first time that the particle reaches x = ±1, we see that
g(φ(τ)) = g(±1). Assume that g is the solution of the following boundary value
problem:

g′μ + 1

2
g′′σ 2 = −1 for − 1 < x < 1, (3.23a)

g(±1) = 0. (3.23b)

Then, we find that

0 − g(0) = −
∫ τ

0
1 dt +

∫ τ

0
g′σ dW(t) = −τ +

∫ τ

0
g′σ dW(t).
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Applying (3.15),

0 − g(0) = −E(τ ) + E
(∫ τ

0
g′σ dW(t)

)

= −E(τ ) + 0.

Therefore, the expected value of the absorbed time is given by

E(τ ) = g(0).

The problem reduces to solving the boundary value problem (3.23). For the case
that μ = 0, it is obvious that

g(x) = σ−2(1 − x2),

which yields E(τ ) = σ−2.
We have introduced some preliminaries of stochastic differential equation.

Next, we turn attention to our stochastic phase models for the beating process of
cardiomyocyte, where we apply the properties of Itô’s integral and Itô’s formula for
analysis.

3.2.2 The Phase Model for an Isolated Cardiomyocyte

The beating process for an isolated cardiomyocyte is regarded as the increase of a
stochastic phase function from 0 to 2π , where the phase starts from 0, increases
with an intrinsic frequency μ, and is effected by a white noise with strength σ .
When the phase approaches 2π , we say the cell beats and the phase then returns
to 0. Hence, from 0 to 2π , the cell completes an oscillation cycle (see Fig. 3.4). To
incorporate the irreversibility of beating, we impose a reflective boundary at 0 state
(see Figs. 3.4b and 3.5a).

Let φ(t) denote the phase of an isolated cardiomyocyte at time t . The model is
stated as follows:

dφ(t) = μdt + σdW(t) + dL(t), (3.24)

where μ denotes the intrinsic frequency, σ represents the noise strength, and W(t)

stands for the standard Brownian motion. dW(t) is the generalized derivative of
W(t), which is known as the Gaussian white noise. We impose the conception of
irreversibility after beating. When the cell beats, we have φ(t−) = 2π and φ(t) =
0. Since the phase is affected by noise σdW , when φ(t−) = 0 and σdW(t−) < 0,
the phase may become negative, i.e., φ(t) goes back to 2π (see Fig. 3.4b). The
irreversibility says that when φ(t−) = 0, φ cannot be driven back to 2π by negative
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Fig. 3.4 (a) The cardiac action potential. (b) The beating process is modeled by the increase of
the phase function φ(t) from 0 to 2π . The cell beats when the phase φ approaches 2π and then
returns to 0 to start a new oscillation circle. The reflective boundary is imposed at φ(t) = 0, which
ensures that φ ≥ 0 always holds even when φ(t) = 0 and the noise σdW(t) is negative
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Fig. 3.5 (a) A trajectory of φ(t) with (μ, σ ) = (1, 2), 0 ≤ t ≤ 6. When φ approaches 2π , it
returns to 0 immediately. (b) The CV of beating interval

noise. To prevent the reversibility of beating, we add the process L(t) to cancel the
negative part of noise such that φ(t) ≥ 0 always holds (see Fig. 3.5a). Hence, the
reflective boundary is described by L(t), which satisfies [9, 41]:

1. L(t) increases only when φ(t) = 0 such that φ(t) ≥ 0.
2. L(t) = 0 when the cell beats.

Every time φ approaches 2π , φ returns to 0, which means that φ is a renewal
process. The beating interval T is a random variable owing to the noise dW(t). Next,
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we investigate the expected value and variance of T , i.e., the mean and fluctuation
of beating interval of cardiomyocyte.

For any function g with continuous differential dg
dx

and d2g

dx2 , Itô formula gives

g(φ(T )) − g(φ(0)) =
∫ T

0

[
μ

dg

dx
(φ(t)) + σ 2

2

d2g

dx2
(φ(t))

]
dt

+
∫ T

0

dg

dx
(φ(t))[σdW(t) + dL(t)].

(3.25)

By the properties of Itô’s integral [6, 35], we have, for any G(t) and H(t) satisfying∫ T

0 |G|2 dt < ∞ and
∫ T

0 |H |2 dt < ∞,

E
(∫ T

0
G(t) dW(t)

)
= 0, (3.26a)

E
(∫ T

0
G(t) dW(t)

∫ T

0
H(t) dW(t)

)
= E
(∫ T

0
GH dt

)
. (3.26b)

Equation (3.26a) means that the expected value of Itô’s integral with respect to
dW equals 0.

Now, in view of φ(0) = 0 and φ(T ) = 2π , if g satisfies

g(2π) = 0, μ
dg

dx
+ σ 2

2

d2g

dx2
= −1, (3.27)

then it follows from (3.25) that

0 − g(0) = −T +
∫ T

0

dg

dx
(φ(t))σ dW(t) +

∫ T

0

dg

dx
(φ(t)) dL(t).

Since L(t) is a process that increases only when φ(t) = 0, dL(t) is nonzero only
when φ(t) = 0. Thus, we have

∫ T

0

dg

dx
(φ(t)) dL(t) =

∫
{t |0<t<T, φ(t)=0}

dg

dx
(0) dL(t).

Therefore, if g satisfies additionally

dg

dx
(0) = 0, (3.28)

then we get

0 − g(0) = −T +
∫ T

0

dg

dx
(φ(t))σ dW(t) + 0. (3.29)
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Taking the expected value of the above equation and according to (3.26a),

E[T ] = g(0).

Now, what is left is to find the function g satisfying (3.27) and (3.28). In fact, one
can validate that

g(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

4π2 − x2

σ 2 for μ = 0,

2π − x

μ
−

σ 2
(
e
− 2μx

σ2 − e
− 4πμ

σ2
)

2μ2 for μ > 0.

As a result, we obtain the mean value of the beating interval T :

E(T ) = g(0) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

4π2

σ 2 for μ = 0,

2π

μ
−

σ 2
(

1 − e−4πμ/σ 2
)

2μ2 for μ > 0.

(3.30)

Next, we consider the fluctuation of beating interval T , i.e., the variance
Var(T ) = E(T 2) − [E(T )]2. By virtue of (3.29),

T 2 = g2(0) + 2g(0)

∫ T

0

dg

dx
(φ(t)) dt +

[∫ T

0

dg

dx
(φ(t)) dt

]2

.

Taking the expectation of the above equation and with the help of (3.26), we derive

E[T 2] = g2(0) + σ 2E

[∫ T

0

∣∣∣∣dg

dx
(φ(t))

∣∣∣∣
2

dt

]
.

Recalling that g(0) = E(T ),

Var(T ) =E

[∫ T

0
σ 2
∣∣∣∣dg

dx
(φ(t))

∣∣∣∣
2

dt

]
=
∫ 2π

0
σ 2
∣∣∣∣dg

dx
(x)

∣∣∣∣
2

E
[∫ T

0
1dx(φ(t)) dt

]

=E(T )

∫ 2π

0
σ 2
∣∣∣∣dg

dx

∣∣∣∣
2

p(x) dx,
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where p(x)dx represents that the probability of φ(t) exists in [x, x+dx) for t → ∞
(see [4, Chapter 9 (1.22) (2.25)]). Via a similar calculation to [9], one can obtain the
probability density p:

p(x) =

⎧⎪⎪⎨
⎪⎪⎩

2π − x

2π2 for μ = 0,

θ(e2πθ − eθx)

1 + 2πθe2πθ − e2πθ
for μ > 0,

where θ = 2μ/σ 2. With the help of g and p, we calculate the variance of beating
interval:

Var(T ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

32π4

3σ 4
for μ = 0,

−5 + e−4πθ + 4e−2πθ + 8πθe−2πθ + 4πθ

μ2θ2
for μ > 0.

(3.31)

The coefficient of variance (CV) of beating interval T is given by

CV(T ) =
√

Var(T )

E(T )
=
{√

2/3 for μ = 0,

K(θ) for μ > 0,
(3.32)

where K(θ) = e2πθ
√

−5+e−4πθ+4e−2πθ+8πθe−2πθ+4πθ

1+2πθe2πθ−e2πθ . We find that CV only depends

on θ = 2μ/σ 2. Moreover, one can validate that the CV decreases as θ increases,
and it has an upper bound

√
2/3 ≈ 0.8165 (see Fig. 3.5b), i.e.,

CV(T ) ↑ √3/2 θ ↓ 0.

Hence, the phase model (3.24) is only suitable for the cardiomyocyte with CV less
than

√
2/3.

In experiment, the distribution of the beating interval T of each isolated
cardiomyocyte has been recorded [28, Figure 3. a, Table 1 and Table 2]). Using
the above formulas (3.30) and (3.32), we can determine the parameters (μ, σ ) of
the phase model (3.24) for each cardiomyocyte from the mean and CV of beating
interval obtained from experiments. To validate the efficiency of our model, we
compare the numerical simulation results with the experimental data (see Sect. 3.3).

3.2.3 The Phase Model for Two Coupled Cardiomyocytes

For two coupled cardiomyocytes, denoting by φi the phase function of cell i (i =
1, 2), we introduce the reaction term Ai,j f (φj −φi) between cell i and cell j , where
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{Ai,j }i,j are constants and f is a 2π -periodic function with f (x) = −f (−x) (for
example, f (x) = sin(x)). We denote by (μi, σi) the intrinsic frequency and noise
strength of cell i. Then, (φ1, φ2) satisfies, for i, j = 1, 2, i �= j ,

dφi(t) = μidt + Ai,j f (φj − φi)dt + σidWi(t) + dLi(t), (3.33a)

φi(0) = 0, (3.33b)

where dWi represents the white noise of cell i (W1 and W2 are independent
Brownian motion), and Li(t) is the process to cancel the negative noise when
φi(t) = 0 such that φi(t) ≥ 0, which ensures the irreversibility of beating (see
(i) and (ii) of Sect. 3.2.2).

For two coupled cardiomyocytes, we also incorporate the conception of induced
beating and refractory:

(R1) When cardiac muscle cell i beats, if cell j is out of refractory, then both the
cells beat.

(R2) When cardiac muscle cell i beats, if cell j is in refractory, then only cell i

beats.

In phase model, the beating of cell i is described by the phase φi approaching 2π .
For cell j , we set a refractory threshold 0 ≤ Bj < 2π . Then, the above (R1) and
(R2) are equivalent to the following statements:

(R1) If φi(t−) = 2π and φj (t−) > Bj , then both the cells beat and return to 0
phase, that is, φi(t) = φj (t) = 0 (see Fig. 3.6a).

(R2) If φi(t−) = 2π and φj (t−) ≤ Bj , then only cell i beats and returns to 0
phase, that is, φi(t) = 0, φj (t) = φj (t−) (see Fig. 3.6b).
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Fig. 3.6 (a) (R1) Cell 1 beats and cell 2 is out of refractory, and then cell 2 is induced to beat.
φ(t−) = 2π and φ2(t−) > B2, then φ1(t) = φ2(t) = 0. (b) (R2) Cell 1 beats, but cell 2 is in
refractory, and then only cell 1 returns to 0 phase. φ(t−) = 2π and φ2(t−) <= B2, then φ1(t) = 0
and φ2(t) = φ2(t−)
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(a)

t

refractory threshold

induced beating

(b)

1

2

refractory threshold

t

1

2

Fig. 3.7 The trajectories of (φ1(t), φ2(t)) with parameters (μ1, μ2) = (2, 1), A1,2 = A2,1 = 2,
and B1 = B2 = 0.6π . (a) The strong noise strength (σ1, σ2) = (1, 1). (b) The weak noise strength
(σ1, σ2) = (0.3, 0.3)

In fact, (R1) represents the synchronization of beating, and (R2) is the independent
beating of cell i. In Fig. 3.7, we show two examples of (φ1, φ2) with different noise
strengths.

In the numerical simulation of Sect. 3.3, we also impose a tiny delay τ for the
induced beating, which means that the induced beating of cell j happens at time t+τ

when its neighborhood cell i beats at time t (i.e., if φi(t−) = 2π and φj (t) > Bj ,
then φ(t) = 0 and φj (t + τ) = 0).

3.2.4 The CV of Synchronization

For sufficiently small noise, we introduce the synchronization phase function φs
i for

two coupled cardiomyocytes, i = 1, 2,

φs
i = μst + ψs

i , (3.34)

where μs is the synchronization frequency for the two cardiomyocytes, and
{ψs

i }i=1,2 are two constants. When the noise strengths {σi}i=1,2 are small, one can
take the synchronization phase function {φs

i }i=1,2 as the linear approximation of the
expected value of {φi}i=1,2 (see Fig. 3.8).

Without loss of generality, we assume ψs
1 ≥ ψs

2 . Then, the expected value of
synchronization period is given by T s = (2π − ψs

1)/μs .
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Fig. 3.8 (a) A trajectory of (φ1(t), φ2(t)) with parameters (μ1, μ2, σ1, σ2) = (1, 2, 0.3, 0.5),
A1,2 = A2,1 = 2, and B1 = B2 = 0.6π . The synchronization solution (φs

1, φ
s
2) is a linear

approximation of (E(φ1(t)), E(φ2(t))). (b) (E(φ1(t)), E(φ2(t)))

For simplicity of analysis, the effect of reflective boundary at φi(t) = 0 is
approximated by adding a small positive constant ψ

app
i to the initial state:

dφ
app
i = [μi + Ai,j f

(
φ

app
j − φ

app
i

)]
dt + σidWi(t), (3.35a)

φ
app
i (0) = ψ

app
i . (3.35b)

The phase function φ
app
i is regarded as the approximation of φi .

Instead of considering the CV of the synchronization period, we investigate the
variance of the difference between the phase φ

app
i (T s) and the synchronization

phase φs
i (T

s) (cf. [29]):

CVi ≈
√

Var[φapp
i (T s) − φs

i (T
s)].

Putting ξi = φ
app
i − φs

i ,

f (φ
app
j − φ

app
i ) = f (ξj − ξi + φs

j − φs
i )

= f (φs
j − φs

i ) + f ′(φs
j − φs

i )(ξj − ξi) + O(|ξj − ξi |2).

Since ξi is a small variable when the noise strength is small (see Fig. 3.8a), ignoring
the tiny quadratic term O(|ξj − ξi |2), and noting that φ

app
j − φ

app
i = ψs

j − ψs
i , the

above equation becomes

f (φ
app
j − φ

app
i ) = f (ψs

j − ψs
i ) + f ′(ψs

j − ψs
i )(ξj − ξi).



3 Synchronization and Fluctuation of Cardiac Muscle Cells 105

The equations of ξi are stated as follows: for 0 < t < T s and i, j = 1, 2, i �= j ,

dξi = νidt + Ai,j f
′(ψs

j − ψs
i )(ξj − ξi)dt + σidWi, (3.36a)

ξi(0) = ξ0
i , (3.36b)

where νi = μi − μs + Ai,j f (ψs
j − ψs

i ) and ξ0
i = ψ

app
i − ψs

i .
In view of

ξi(T
s) − ξi(0) = φ

app
i (T s) − φ

app
i (0) − (φs

i (T
s) − φs

i (0)),

CVi ≈
√

Var[φapp
i (T s) − φs

i (T
s)] is equivalent to

CVi ≈
√

Var[ξi(T s) − ξ0
i ] = √Var[ξi(T s)].

Setting the notations

ξ =
[

ξ1

ξ2

]
, ν =

[
ν1

ν2

]
, ξ0 =

[
ξ0

1
ξ0

2

]
, W =

[
W1

W2

]
,

B =
[

b12 −b12

−b21 b21

]
, σ =

[
σ1 0
0 σ2

]
,

where bij = Ai,j f
′(ψs

j − ψs
i ), we rewrite (3.36) into

dξ = νdt − Bξdt + σdW (t).

Next, we compute the solution ξ . Multiplying the above equation by e−Bt , we get

d
(
eBtξ
)

= eBt [νdt + σdW ],

which yields

ξ(t) = e−Btξ0 +
∫ t

0
e−B(t−s)ν ds +

∫ t

0
e−B(t−s)σ dW (s). (3.37)

By Itô’s integral (3.26a), we calculate

E(ξ(t)) = [E(ξ1(t)), E(ξ2(t))] = e−Btξ0 +
∫ t

0
e−B(t−s)ν ds,

E((ξi(t))
2) = [E(ξi(t))]2 + E

[∫ t

0

[
e−(t−s)BσdW (s)

]
i

]2

,
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where [u]i denotes the ith component of vector u. Together with Var[ξi(t)] =
E[(ξi(t))

2] − (E[ξi(t)])2, we have

Var[ξi(t)] = E
[∫ t

0

[
e−(t−s)BσdW

]
i

]2

.

Noting that B has two eigenvalues

λ1 = 0, λ2 = b := b12 + b21,

with the corresponding eigenvectors

u1 = [1, 1], u2 = [b12,−b21],

we introduce the decomposition

σdW = b−1(b21σ1dW1 + b12σ2dW2)u1 + b−1(σ1dW1 − σ2dW2)u2.

Putting together with

e−tBu1 = e−t0u1 = u1, e−tBu2 = e−tbu2,

one can compute [e−(t−s)BσdW ]i . Then, applying Itô’s integral (3.26b), it is not
difficult to validate that

CV2
i ≈ Var[ξi(T

s)]

= 1

b2

[(
b2

12σ
2
2 + b2

21σ
2
1

)
T s + 1 − e−2bT s

2b
b2
ij

(
σ 2

1 + σ 2
2

)

+ 1 − e−bT s

b
2bij

(
bjiσ

2
i − bij σ

2
j

)]
.

(3.38)

As stated above (cf. [29]), one can approximate the CV of synchronization period
by Var[ξi(T

s)].
To reduce the difference between CV1 and CV2, we take b21σ

2
1 = b12σ

2
2 = D

such that

CV2
i ≈ 1

b2

[
2DT s + 1 − e−2bT s

2b

D2

σ 4
j

(
σ 2

1 + σ 2
2

)]
.
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Furthermore, for σ1 = σ2 = σ and b21 = b12 = b/2, we have

CV2
1 = CV2

2 ≈σ 2

2

[
T s + 1 − e−2bT s

2b

]
,

which is regarded as the CV of the synchronization period.
In numerical simulation, we set f (x) = sin(x). Noting that ψs

i ≈ 0 for small
noise, we have f ′(ψs

j − ψs
i ) ≈ cos(0) = 1 such that bij ≈ −Ai,j . Therefore,

choosing Ai,j σ
2
j = Aj,iσ

2
i , one can reduce the difference between CV1 and CV2,

which yields a more stable synchronization solution in simulation. This has been
applied to our numerical simulation in Sect. 3.3.

3.2.5 The Phase Model for N-cardiomyocytes Network

For N -cardiomyocytes network, we need to consider the neighborhood cells of each
cell. For simplicity, we consider the full connected network, where the cells are
connected with each other. The equations of {φi}Ni=1 are stated as follows:

dφi(t) = μidt +
N∑

j=1, j �=i

Ai,j f (φj − φi)dt + σidWi(t) + dLi(t), (3.39a)

φi(0) = 0. (3.39b)

In (3.39a), the reaction term Ai,j f (φj −φi) between cells i and j is imposed for j =
1, 2, . . . , N , j �= i, which corresponds to the full connection of the cell network.
The process Li(t) is added to (3.39a) to guarantee that φi(t) ≥ 0 always holds even
when the noise dWi is negative and φi(t) = 0, which represents the irreversibility
of beating (see (i) and (ii) of Sect. 3.2.2).

Moreover, we also incorporate the conception of the induced beating and
refractory to the mathematical model: for i, j = 1, . . . , N and i �= j ,

(R1) when the cardiac muscle cell i beats (i.e., φi(t−) = 2π ) and the cell j is out
of refractory (i.e., φj (t−) > Bj ), then both the cells beat and the phase of cells i

and j returns to 0 (i.e., φi(t) = 0 and φj (t) = 0).
(R2) when the cardiac muscle cell i beats (i.e., φi(t−) = 2π ) and the cell j is in

refractory (i.e., φj (t−) ≤ Bj ), then only the cell i is beating and the phase of
cell i returns to 0 (i.e., φi(t) = 0 and φj (t) = φj (t−)).

In Fig. 3.9, we show two examples of (φ1, φ2, φ3, φ4) with different noise
strengths.
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(a)

t

refractory threshold

induced beating

(b)

refractory threshold

t

1
2
3
4

1
2
3
4

Fig. 3.9 The trajectories of (φ1(t), φ2(t), φ3(t), φ4(t)) with parameters (μ1, μ2, μ3, μ4) =
(2, 2, 1, 1) and Ai,j = 2, Bi = 0.6π for i, j = 1, . . . , 4, i �= j . (a) The strong noise strength
σi = 1. (b) The weak noise strength σi = 0.3

As with the case of two coupled cells, we investigate the CV of the synchroniza-
tion period using the approximated calculation. For sufficiently small noise, let φ

app
i

denote the approximation of the phase function φi , satisfying: 1 ≤ i ≤ N ,

dφ
app
i =

⎡
⎣μi +

N∑
j=1,j �=i

Ai,j f
(
φ

app
j − φ

app
i

)
⎤
⎦ dt + σidWi(t), (3.40a)

φ
app
i (0) = ψ

app
i . (3.40b)

If the noise is sufficiently small, then we can approximate the synchronization by
linear equations:

φs
i = μst + ψs

i , 1 ≤ i ≤ N. (3.41)

Without loss of generality, we assume ψs
1 = max1≤i≤N ψs

i . Then, the synchro-
nization period is given by T s = (2π − ψs

1)/μs . Introducing the difference
ξi = φ

app
i −φs

i , we introduce the approximated CV of the synchronization (cf. [29]):
CVi ≈ √

Var[ξi(T s) − ξi(0)] = √
Var[ξi(T s)]. In the following, we calculate

Var[ξi(T
s)].

First, we see that {ξi}Ni=1 satisfy the following equations: i = 1, . . . , N ,

dξi =
⎡
⎣νi +

N∑
j=1,j �=i

Ai,j f
′(ψs

j − ψs
i )(ξj − ξi)

⎤
⎦ dt + σidWi, (3.42a)

ξi(0) = ξ0 (3.42b)
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where νi = μi − μs +∑N
j=1,j �=i Ai,j f (ψs

j − ψs
i ) and ξ0

i = ψ
app
i − ψs

i . Setting the
notations

ξ = [ξ1, . . . , ξN ], W = [W1, . . . ,WN ], (3.43a)

ν = [ν1, . . . , νN ], ξ0 = [ξ0
1 , . . . , ξ0

N ], (3.43b)

σ = diag(σ1, . . . , σN), B = [bij ]1≤i,j≤N, (3.43c)

where bii =∑N
j=1,j �=i Ai,j f

′(ψs
j − ψs

i ) and bij = −Ai,j f
′(ψs

j − ψs
i ), we rewrite

(3.42) into

dξ = νdt − Bξdt + σdW ,

ξ(0) = ξ0.

The solution ξ is given by

ξ(t) = e−Btξ0 +
∫ t

0
e−B(t−s)ν ds +

∫ t

0
e−B(t−s)σ dW (s).

Putting |ξ |2 =∑N
i=1 |ξi |2, we see that

|ξ(t)|2 = |ξ0|2 + 2ξ0 ·
∫ t

0
e−(t−s)BσdW +

∣∣∣∣
∫ t

0
e−(t−s)BσdW

∣∣∣∣
2

.

To obtain Var(ξ(T s)), we introduce the properties of Itô’s formula for the N -
dimensional version [6, 35]: for any G = [Gij ]i,j satisfying

∫ t

0 |G|2 ds < ∞
(|G|2 =∑N

i,j=1 |Gij |2 ), the following equalities hold:

E
(∫ t

0
G(s) dW (s)

)
= 0, (3.44a)

E

[∣∣∣∣
∫ t

0
G(s) dW (s)

∣∣∣∣
2
]

= E
(∫ t

0
|G|2 ds

)
. (3.44b)

Applying (3.44),

E[ξ(t)] = e−Btξ0 +
∫ t

0
e−B(t−s)ν ds, (3.45a)

E[|ξ(t)|2] = (E[ξ(t)])2 + E
[∫ t

0

∣∣∣e−(t−s)Bσ

∣∣∣2 ds

]
. (3.45b)
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For the case σi = σ , Ai,j = Aj,i , and ψs
i = ψs , we have

∣∣∣e−(t−s)Bσ

∣∣∣2 = σ 2
N∑

i,j=1

∣∣∣(e−(t−s)B
)
ij

∣∣∣2

= tr
((

e−(t−s)B
)

e−(t−s)B
) = tr

(
e−2(t−s)B

)
(by B = B)

=
N∑

i=1

e−2(t−s)λi ,

(3.46)

where tr(B) and {λi}Ni=1 denote the trace and the eigenvalues of B, respectively.
Following from Ai,j = Aj,i and f ′(x) = f ′(−x) (by f (x) = −f (−x)), the

symmetry B = B holds. Without loss of generality, let λN ≥ λN−1 ≥ · · · ≥ λ2 >

λ1 = 0 (0 is an eigenvalue of B because of
∑N

j=1 bij = 0). We obtain from (3.45),

(3.46), and
∑N

i=1 Var[ξi(t)] = E[|ξ(t)|2] − |E[ξ(t)]|2 that

N∑
i=1

Var[ξi(T
s)] = σ 2

∫ T s

0

N∑
i=1

e−2(T s−s)λi ds.

= σ 2T s + σ 2
N∑

i=2

1 − e−2T sλi

2λi

.

(3.47)

For the case of the identical parameter (μi, σi, Ai,j ) = (μ, σ,A), ξi has identical
distribution for each i, as well as

√
Var[ξi(T s)]. As a result, we have, for all i =

1, 2, . . . , N ,

CVi ≈ √Var[ξi(T s)] =
√√√√ N∑

i=1

Var[ξi(T s)/N ]

= σ√
N

√√√√T s +
N∑

i=2

1 − e−2T sλi

2λi

.

Noting that there exists a constant c∞ such that

1

N

N∑
i=2

(
1 − e−2T sλi

2λi

)
→ c∞ as N → ∞, (3.48)

we have CVi → σc
1/2∞ as N → ∞.
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In Sect. 3.4, the numerical simulations are carried out for several N -cell models
with various network, where we observe that the CV decreases by O(1/

√
N) when

N is small and converges to some constant when N → ∞. The simulations
correspond to the theoretical result (3.48). Moreover, the comparison between the
numerical simulation and biological experimental result (cf. [18, Figure 3]) indicates
the well consistency between the model and biological experiment.

3.3 Experimental Approach

3.3.1 On-Chip Cellomics Technology: Reconstructive
Understanding of the Community Effect in
Cardiomyocytes

We have developed a constructive experimental approach for understanding epi-
genetic information. As shown in Fig. 3.10, the strategy behind our on-chip
microfabrication methods, which we call “on-chip cellomics technologies” [58],
is constructed through three steps. First, we purify target cells from tissue indi-
vidually in a nondestructive manner using several technologies, such as digestible
DNA-aptamer labeling and cell collection, ultrahigh-speed camera-based real-time
imaging cell sorting, or noninvasive handling of cells using an acoustic radiation
force [1, 12, 57, 59–61]. We then cultivate and observe the cells under fully
controlled conditions (e.g., cell population, network patterns, or nutrient conditions)
using an on-chip single-cell cultivation chip [14, 15, 21, 34, 50–54] or an on-chip
agarose microchamber system exploiting photothermal etching technology, which
can control the microstructure of microchambers even during cell cultivation [11,
24, 24–28, 36, 43–49]. Finally, we undertake single-cell-based genome/proteome
analysis through a set of nanoprobes and adaptive electron microscopy, single-cell-
based DNA/RNA release technology, or a 3-min ultrahigh-speed polymerase chain
reaction (PCR) measurement technology [62].

The advantage of the experimental on-chip cellomics approach is that, as it is a
reconstructive approach of the simplified artificial minimum cell network model on
a chip, it removes the complexity of the underlying physicochemical reactions that
are not always completely understood and for which most of the necessary variables
cannot be measured. Moreover, this approach shifts the view of cell regulatory
processes from basic chemical grounds to a paradigm of the cell as an information
processing unit working as an intelligent machine capable of adapting to changing
environmental and internal conditions. This is an alternative representation of the
cell and can provide new insights into cellular processes. Thus, models derived from
such a viewpoint can directly help in more conventional biochemical and molecular
biological analyses that assist in our understanding of control in cells.

From the geometric perspective, two more detailed viewpoints of analysis should
also be taken: one is on the population/community size dependence and the other
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Fig. 3.10 On-chip cellomics analysis. The aim of single-cell-based analysis of multicellular
systems: temporal (algebraic) aspect and spatial (geometric) aspect

is on the spatial (network) pattern dependence of groups of cells. In conventional
cell-based studies, cell lines are usually used for acquiring the same type of
cells and are then cultivated in a cultivation dish without any control of their
population or any formation of a community with other cell types. Finally, they
are analyzed as a group regardless of any differences in their cell cycle regardless
of their possible differences. In contrast, on-chip cellomics technology involves
a new strategy with three steps: First, the cells are taken from a community
using a nondestructive cell sorting procedure. Then, the cells are cultivated in
a microchamber, in which cell network formation and medium environment are
controlled. Finally, the genome/proteome measurement in each cell is measured
(Fig. 3.10).
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3.3.2 Photothermal Etching on Agarose Layer for Cell
Network Formation Control

Flexible change of microstructures of cell-to-cell interactions or cell network shapes
on a chip during cultivation is necessary for the “temporal” and “geometric”
reconstructive approach of cell network studies. To accomplish this requirement,
we have developed a photothermal etching method [11, 24, 26, 36, 46] with an
agarose microchamber cell cultivation system (Fig. 3.11). This involves the area-
specific melting of a portion of agarose of a whole light pathway by spot heating
using a focused infrared laser beam of 1480 nm, which absorbs water, and of a
portion of agarose close to a thin layer made of a light-absorbing material, such
as chromium, with a laser beam of 1064 nm, which is permeable to water. When
we combine infrared lasers with these two different wavelengths, we can fabricate
microchambers and microtunnels flexibly for the noncontact three-dimensional
photothermal etching of agarose. In other words, as the 1480-nm infrared beam
is associated with the absorption of water and agarose gel, the agarose gel in the
1480-nm infrared light pathway was heated and completely melted. Moreover, as
the 1064-nm infrared beam was not associated with this absorbance, the agarose
melted just near the thin chromium layer, which absorbed the beam.

For phase-contrast microscopy and this µm-scale photothermal etching, light of
three different wavelengths (visible light for observation and 1480-nm/1064-nm
infrared lasers for spot heating to construct microchambers/microtunnels, respec-
tively) was used simultaneously to observe the positions of the agarose chip surface
and to melt a portion of the agarose in the area being heated. As described above,
the advantage of this method is that we can apply this stepwise network formation
(addition) approach even during cultivation, so we can change the network size and
pattern of cardiomyocyte cells during cultivation by adding microchannels between
two adjacent microchambers in a step-by-step fashion; moreover, this approach is
also applicable for neuronal networks [27, 28, 43, 45–49].

3.3.3 Community Effect of Cells for Their Synchronization (1):
Two-Cell Model

As described in the previous subsection, the ability of photothermal etching of
agarose microstructures to control the cell arrangement is beneficial for cardiomy-
ocyte network studies. In this subsection, we introduce the application of this
technology to reveal the involvement of the community effect in cardiomyocyte
beating synchronization[17, 17–20, 24–28].

First, we investigated the roles of the beat rates (interbeat intervals) and beat rate
fluctuation of isolated single cardiomyocytes in the reestablishment of synchronous
beating by analyzing the changes of beating rates and their fluctuations before
and after the synchronization of two cardiomyocytes through narrow channels with
initially different rhythms (e.g., Fig. 3.12A and B)[27, 28]. The results showed three
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Fig. 3.11 Photothermal etching method. Using focused infrared (IR) lasers of two different
wavelengths, the thin layer of low-melting point agarose on the chip was selectively melted in
different manners. (a) As the 1064-nm IR laser is not associated with the absorption of water, only
a portion of the agarose near the thin absorption layer is heated and melted, changing its state from
a gel to a sol. In contrast, (b) as the 1480-nm IR laser is associated with the absorption of water,
all of the agarose in the light pathway is heated and melted. (c) The agarose changed to a sol state
is dispersed into the agarose gel, holes or tunnels are formed in the agarose layer, and (d) cells are
inserted in agarose microchambers with a micropipette
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Fig. 3.12 Synchronization of two cardiomyocytes. (A) Micrographs of two cardiomyocytes under
isolated conditions (a), just after they were connected together (b), and just after synchronization
started (c). (B) Beating waveforms at (a) and (c) in (A). (C)–(E) (left graph and center graph)
Beating frequency spectrum before and after synchronization, respectively; distribution of interbeat
intervals of two cardiomyocytes, and the change of the mean value of beating rhythm fluctuation
at intervals of 1 min measured for 5 min before and after synchronization. Blue and red triangles
show the mean values before synchronization, and black triangles show the mean value for the
two cells after synchronization. (right graph) The change of the mean value of beating rhythm
fluctuation [CV%: coefficient of variation (100 × standard deviation/mean beat rate)] at intervals
of 1 min measured for 5 min before and after synchronization. Blue circles and red squares show the
corresponding mean values of beating rhythm fluctuation for 1 min. Three types of synchronization
tendencies were described: (C) synchronization to a faster beating cell, (D) synchronization to a
slower beating cell, and (E) synchronization with a new beating frequency
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types of synchronization of two cardiomyocyte networks: (1) the beating of the two
cardiomyocytes synchronized at the faster of the two initial rates, but there was
beating fluctuation at the lower of the two initial rates (Fig. 3.12C), (2) the beating
of the two cells synchronized at the lower of the two initial rates but fluctuated at
the lower of the two initial rates (Fig. 3.12D), and (3) the synchronization occurred
at neither of the initial rates of single cardiomyocytes, with fluctuation of smaller of
the initial fluctuations (Fig. 3.12E).

The interbeat intervals of 14 two-cell pairs before and after synchronization are
listed in Table a of Fig 3.13. Five of the two-cell pairs synchronized at the initial
rate of the faster cell, two of the pairs synchronized at the initial rate of the slower
cell, and the other seven pairs synchronized at a rate other than one of the initial
rates. In Table b of Fig. 3.13, the fluctuation data for the 14 cell pairs whose rate
data are listed in Table A are grouped according to the change of the fluctuation
before and after synchronization. Thirteen pairs synchronized with a fluctuation
equal to or less than the initial fluctuation of the slower member of the pair, and
one pair synchronized with a fluctuation larger than that of either of the two initial
fluctuations.

These results suggest that the fluctuation of reestablished synchronous beating
by isolated cardiomyocytes is influenced more strongly by the fluctuation of the
initial fluctuation of the beat rates of the isolated cardiomyocytes than the rate of
the reestablished synchronous beating is influenced by the initial beat rates of the
isolated cardiomyocytes. It is therefore possible that a cardiomyocyte whose beat
rate fluctuates less than that of another cardiomyocyte entrains the beating rhythm of
that cardiomyocyte, but we observed one pair of cells in which this did not happen.
This indicates that the influence of a single cell is still not sufficiently strong to
account for the process of entrainment in heart tissue.

3.3.4 Community Effect of Cells for Their Synchronization (2):
Cell Number Dependence

Figure 3.14 also describes the community size effect of a cardiomyocyte network on
its beating stability. In this work, we explore the relationship between entrainment
and community size by examining the synchronization process of a cardiomyocyte
network formed by the interaction of single cardiomyocytes cultured in a 3 × 3 grid
of agarose microchambers with connecting microchannels[28]. After nine isolated
cells had been cultured in the nine-chamber agarose microcultivation chip for 24 h,
we started to measure the synchronization process continuously and found that,
when an isolated single cell came into contact with another cell and formed a two-
cell network (Fig. 3.14 top and middle), these two cells synchronized at the initial
rate of the first cell and the fluctuation decreased from the initial fluctuation of the
first cell. When all nine cells came into contact and formed a nine-cell network
(Fig. 3.14 bottom), it synchronized at a rate equal to the initial rate of the first cell,
with a decrease of fluctuation.
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Fig. 3.13 Tendency of synchronization of two cardiomyocytes. (a) Three types of synchronization
of two cardiomyocytes from the perspective of beating intervals. (b) Two types of synchronization
from the perspective of beating stability (fluctuation of beating)
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Fig. 3.14 Effect of increase in connected cell number on increase in beating stability. (a) Isolated
single cell, (b) two-cell network, and (c) nine-cell network. (d) Dependence of beating interval
fluctuation on cell number
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These results suggest that the beating rhythm of a single cardiomyocyte tends to
entrain the rhythm of the cell network, and the strength of this tendency increases
with the size of the network. Therefore, it is thought that the fluctuation of the rate
at which a network of cardiomyocytes beats decreases as the size of the network
increases. The tendency of the synchronization above was simply explained by
asserting that the synchronization of two cardiomyocytes was caused by the more
unstable cell (the one with the more variable beating intervals) following the more
stable cell. Such tendency for reduced fluctuation was more pronounced when the
number of cardiomyocytes in the network increased; we call this phenomenon the
“community effect” of synchronization.

Using the agarose microchambers, we can examine the dependence on the spatial
arrangement of the synchronization stability of cardiomyocyte networks [18]. As
shown in Fig. 3.15, we can arrange the cardiomyocytes in three different shapes, a
linear shape, a radial shape, and a lattice shape and compare their tendencies for
beating stabilization relative to cell numbers. The results indicated that there was no
apparent relationship between the number of cells and their shape and that the most
important index for the stabilization of cell beating is not the geometry of cells but
their number.

3.3.5 Community Effect of Cells on Their Synchronization (3):
Mixture of Different Types of Cells

We also examined the contribution of fibroblasts to the synchronization of
cardiomyocytes[19]. We connected two cardiomyocytes through a single fibroblast
and synchronized them, as shown in Fig. 3.16A and B, and then used this
heterogeneous cardiomyocyte–fibroblast coupling to examine the tendency of the
stability of interbeat intervals and beating rhythm fluctuation of two cardiomyocytes
through a fibroblast before and after their synchronization.

The first type of synchronization involved the tendency for the fluctuation
to decrease due to synchronization, which is the same tendency as seen in a
network formed by the direct connection of two cardiomyocytes. As shown in
Fig. 3.16C and D, in this type, the two cells having different interbeat intervals
before synchronization synchronized to achieve an interbeat interval of less than a
second after synchronization (e.g., Fig. 3.16B). The fluctuation of the synchronized
network became almost equal to or smaller than either of the two initial fluctuations.

In contrast, the second type involved the tendency for the fluctuation to increase
due to synchronization, which did not occur in the cardiomyocyte network
(Fig. 3.16E). In this case, two cardiomyocytes having two different interbeat
intervals before synchronization exhibit a higher mean interbeat interval after
synchronization, and the fluctuation of the synchronized network is greater than
that of the cell that had the lower fluctuation before the synchronization.
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Fig. 3.15 Dependence of spatial arrangement of cardiomyocyte networks on cell number for
beating stability. Three types of spatial arrangements: (a) linear shape, (b) radial shape, and lattice
shape (see Fig. 3.14). (c) Fluctuation of beating interval versus network size in linear (green
triangles), radial (red squares), and lattice (blue circles) cardiomyocyte networks. These plots show
mean ± standard deviation
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Fig. 3.16 Synchronization of two cardiomyocytes through a fibroblast. (A) Micrographs of
two cardiomyocytes under isolated conditions (a), when a fibroblast was added between two
cardiomyocytes (b), and when two cardiomyocytes were connected through a fibroblast and
synchronization started (c). (B) Beating waveforms at (a) and (c) in (A). (C)–(E) Three types
of synchronization tendencies. Beating frequency spectrum before (left graphs) and after (center
graphs) synchronization and their beating fluctuation (right graphs). (C) Synchronization to a
cell beating faster and more stably. (D) Synchronization and creation of new beating intervals
contributing to beating stability. (E) Synchronization with new beating frequency, but beating
fluctuation increased
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Our photothermal etching method with agarose microchambers allows us to
regulate the cell type and community size of cultured cells at the single-cell level.
This could not be done when using the conventional cell cultivation method, so the
prolific growth of cardiac fibroblasts made it difficult to culture only cardiomyocytes
and investigate the properties of a single cell within a group of cells. By using single-
cell-based cultivation, we were able to investigate how the fluctuation of the rates at
which cardiomyocytes beat affects the reestablishment of synchronized beating.

3.3.6 Summary of Experimental Results

The results of the on-chip constructive experiments are summarized as follows:

1. When two isolated independently beating cardiomyocytes come into contact,
they tend to beat synchronously at a rate that fluctuates no more than that of
the cell whose beat rate fluctuated less than did that of the other cell.

2. When initially isolated cardiomyocytes form a network, its rhythm tends to
entrain the beating rhythm of single cells whose beating rhythm fluctuated more
than that of the network.

3. The entrainment activity of cell networks increases with their size, i.e., the
fluctuation decreases.

4. Spatial arrangement does not affect the manner of synchronization of cardiomy-
ocytes, and only the cell number of the network determines their tendency for
synchronization.

5. The interbeat interval after the synchronization of two cardiomyocytes con-
nected by a fibroblast is not the same as that after the synchronization of
two cardiomyocytes directly connected to each other, and the tendency for the
community effect to occur appears to be suppressed when the cardiomyocytes
are heterogeneously coupled through a fibroblast.

They might indicate that unstable isolated cardiomyocytes reestablish a cell
network that beats stably and synchronously. A novel finding of this study is that
a cardiomyocyte network containing only a few cells acquires a stable rhythm.
Moreover, once the cell or cell network achieves stable beating, an additionally
attached unstable cell can synchronize to the stable cell or cell network and follow its
stable beating intervals. This phenomenon also suggests that the factor of stability is
very important in determining the fate of the beating frequency of the network after
the connection of unstable cells.
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3.3.7 Ability and Limitation of Constructed Experimental
Approach

As described above, the constructed experimental approach is one of the potential
solutions to solve the issue of quality control of cells. However, cells inherently
display a variety of dynamic characteristics, even when cultivating cells in com-
pletely the same conditions and also when using those from the same single stem
cells[33]. Figure 3.17 shows an example of this diversity of their expression.
Although isolated single human iPS (hiPS) cardiomyocytes and human ES (hES)
cardiomyocytes were derived from the same stem cells, their interbeat intervals
(IBIs) and fluctuations [in this graph, we use the coefficient of variation (CV) as the
index of fluctuation] were larger than those of the primary mouse cardiomyocytes. In
contrast, two clusters made of the same dispersed cardiomyocytes showed similar

Fig. 3.17 Distribution of the interbeat intervals (IBIs) and fluctuations of isolated single cardiomy-
ocytes and their clusters of primary, human iPS (hiPS), and human ES (hES) cells. (A) Method
of cardiomyocyte cluster formation. (a) In the regular untreated culture dish, cardiomyocytes
were dispersed and isolated. (b) In the agarose concave-coated culture dish, cardiomyocytes were
gathered and clustered during incubation. (B) Micrographs of single cardiomyocytes and their
clusters. (a) Isolated mouse primary cardiomyocyte, (b) clustered mouse primary cardiomyocytes,
(c) single isolated hiPS cardiomyocyte, (d) clustered hiPS cardiomyocytes, (e) isolated hES
cardiomyocyte, and (f) clustered hES cardiomyocytes. (C) Fluctuation–IBI relationship of mouse
primary cardiomyocytes (a), hiPS cardiomyocytes (b), and hES cardiomyocytes (c). Green open
circles are the 60-s mean IBIs and CVs of isolated single cardiomyocytes, and red filled triangles
are those of clusters. The error bar indicates standard deviation. The coefficient of variation (CV)
value of IBI was used as the fluctuation of beating
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characteristics and appeared to represent their species (two red triangles in each
graph of Fig. 3.17C). These results clearly indicate the ability and limitation of the
experimental approach of single-cell-based assays. Each isolated single cell does
not inherently show the same dynamics; however, once they formed a network,
their diversity disappeared and stable shared characteristics appeared. We call this
phenomenon the “community effect.” To understand the meaning of the community
effect, we need to have a set of completely controlled single cells. However, this is
beyond the scope of the experimental approach. Even using the on-chip cellomics
technologies, this experimental approach has a limitation of not allowing full control
of the condition of all of the cells, especially in a dynamic context such as beating
of the heart.

3.4 Numerical Approach to Synchronization
of Cardiomyocytes

3.4.1 Comparison of the Mathematical Modeling with
Experimental Results and Numerical Simulations

The mathematical model by modifying the integrate-and-fire model was shown
in Sect. 3.2.1.1. This model is constructed on the basis of the simple Peskin’s
model [39], including refractory periods, stochastic process, and weak cell-to-cell
interactions, which modulate phase variables [32, 56].

When cardiomyocytes are isolated, they only beat independently. However,
if cardiomyocytes come into contact and interact with each other, their beating
rhythms become synchronized. The experiments shown in Sect. 3.3 revealed that
other cardiomyocytes are synchronized not to the fastest cardiomyocyte, but to the
cardiomyocyte with the least fluctuation in beating rhythm [28].

In this section, we discuss the comparison of the numerical simulations to the
experimental results and aim to theoretically understand the phenomenon that the
synchronized beating of cardiomyocytes is tuned to the cardiomyocyte with a
stable rhythm [13]. Using our model, we also aim to investigate the community
effect of cardiomyocytes in different configurations of networks constituted by
cardiomyocytes with specified characteristics of beating rhythms and to clarify
how an assembly of cardiomyocytes acquires stability, one of the most important
universal features in biological systems.

3.4.1.1 Mathematical Modeling for Synchronization of Cardiomyocytes

We consider a network of N cardiomyocytes and call ith cardiomyocyte cell
i. The model was described by the phase variables φi(t) (0 ≤ φi(t) ≤ 2π ,
i = 1, 2, . . . , N ), which denote the state of cell i at a time t . We assumed that
the cell i fires (beats) when φi(t) = 0(≡ 2π). This firing occurs either at φi(t),
reaches 2π , or the following conditions are satisfied: φi(t − 0) ≥ θi (φi(t − 0) :=
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limε→+0 φi(t − ε)). Additionally, one of the cardiomyocytes connected to cell i

(e.g., cell j ) fired at a retardation time τ ago (i.e., φj (t − τ) = 0). Otherwise, we
assumed that φi(t) is governed by the following interacting stochastic differential
equation. Our mathematical modeling for cell i is as follows:

⎧⎪⎨
⎪⎩

dφi(t) = ωidt + dW(σi) + σ 2
i

∑
j

V (φi, φj )dt (φi(t − 0) < θi or φj (t − τ) �= 0),

φi(t) = 0 (θi ≤ φi(t − 0) and φj (t − τ) = 0),

(3.49)

where ωi is the average phase velocity of cell i, dW(σ) is a stochastic process with
standard deviation σ , and θi is a phase corresponding to the refractory period of cell
i(0 < θi < 2π). V (φi, φj ) shows the weak interaction between cardiomyocytes
through the membrane potential, which we assumed as the following form:

V (φi, φj ) := μ sin(φj − φi), (3.50)

where μ is a positive constant. An important point is that the stochastic process
and the cell-to-cell interaction are correlated through the fluctuation–dissipation
theorem that gives the relation between fluctuations and linear response to external
force [31]. This will be discussed again in Sect. 3.4.3. The positive constant μ

is the only free parameter in our model that cannot be directly determined by
experiments, while ωi, θi, and σi can be determined by single-cell experiments for
each cardiomyocyte. In addition, we assumed that the boundary at φi(t) = 0 is the
reflective boundary condition, which ensures that the phase fluctuation is irreversible
after firing. The schematic diagram of the dynamics of the phase variable φi(t) is
shown in Fig. 3.18.

Fig. 3.18 Schematic diagram of the trajectory of the state variables φi(t)(i = 1, 2). The circle
represents the trajectory of a state variable in the phase space of cardiomyocytes from one firing to
the next firing. If cell 2 fires at a time t (φ2(t)=0) and cell 1 is not in the refractory period, then cell
1 fires at the retardation time τ after cell 2 fires
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3.4.1.2 Numerical Simulation Method

The stochastic process in our simulation is described by an extended random
walk. We used the following difference equations as a numerical approximation
of Eq. (3.49). For almost all cardiomyocytes with a standard beating rhythm, we
considered an ordinary random walk as follows:

⎧⎪⎨
⎪⎩

φi(t + Δt) = φi(t) + ωiΔt + Δφi + σ 2
i

∑
j

V (φi, φj )Δt (φi(t) < θi or φj (t − τ) �= 0),

φi(t + Δt) = 0 (θi ≤ φi(t) and φj (t − τ) = 0),

(3.51)

Δφi =
{

+Δxi (with probability 0.5),

−Δxi (with probability 0.5),
(3.52)

where the standard deviation is defined by σ := Δx/
√

2Δt , Δt is the time

difference interval, Δxi =
√

2Δt σ 2
i is the spatial difference determined by σi ,

and the delay time τ is set as Δt × k (k is a nonnegative integer). However, we
could not reproduce the same beating fluctuation by using an ordinary random walk
for cardiomyocytes with a large fluctuation. This is because the coefficient variation
(CV%), which is defined by 100× standard deviation/mean beating rate, could be
proved less than 100

√
2/3 � 81.65 in Sect. 3.2.2. As shown in Fig. 3.13, some

cardiomyocytes with the CV% which exceed this value are observed. Therefore,
we adopted the following extended random walk, which is a history-dependent
stochastic process, when beating fluctuation was larger than 81.65 (CV%):

⎧⎪⎨
⎪⎩

φi(t + Δt) = φi(t) + ωiΔt + Δφ̃i(t) + σ 2
i

∑
j

V (φi, φj )Δt (φi(t) < θi or φj (t − τ) �= 0),

φi(t + Δt) = 0 (θi ≤ φi(t) and φj (t − τ) = 0).

(3.53)

The noise term Δφ̃i(t) is defined as

Δφ̃i(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

+Δxi (if Δφ̃i(t − Δt) = Δxi , then with probability q),

0 (if Δφ̃i(t − Δt) = Δxi, then with probability 1 − q),

0 (if Δφ̃i(t − Δt) = 0, then with probability r),

+Δxi (if Δφ̃i(t − Δt) = 0, then with probability 1 − r).

(3.54)



3 Synchronization and Fluctuation of Cardiac Muscle Cells 127

However,

Δφ̃i(0) =
⎧⎨
⎩

+Δxi (with probability 0.5),

0 (with probability 0.5).
(3.55)

The model could reproduce the large fluctuation observed in the experiments by
setting appropriate values of q and r .

3.4.1.3 Comparison of the Model with Experimental Results of Two
Cardiomyocytes

In the experiments shown in Sect. 3.3.3, the mean beating rate and its fluctuation
before and after synchronization were observed for 14 pairs of cardiomyocytes
(Fig. 3.13). We investigated whether our model could reproduce the results of these
pairs of cardiomyocytes. We numbered these 14 pairs from Nos. 1 to 14 and
distinguished the two cardiomyocytes in a pair by denoting “cell 1” and “cell 2.”
For each pair, we defined ωi, σi, and θi in Eq. (3.49) for cell i (i = 1, 2), so
that the model reproduced the same mean beating rate and fluctuation in beating
rhythm. Since refractory periods of cardiomyocytes are almost the same as those
for normal cardiomyocytes, we assumed that each cell had the common refractory
period tref = 0.3 s. Therefore, θi is given by θi = tref ωi . Figure 3.19 shows the
mean beating rates and the beating fluctuation after synchronization for the 14 pairs
obtained by the experiments and numerical results by our model. We could regard
the retardation time τ as almost 0 because it was estimated as 10−3 ∼ 10−4 of
the mean beating rate. Therefore, we put τ = 0. We used μ = 6.5 in numerical

Fig. 3.19 The mean beating rate and beating fluctuation after synchronization. Numerical sim-
ulations for the 14 pairs of cardiomyocytes (28 cardiomyocytes) before synchronization in the
experiments shown in Sect. 3.3.3 were performed using our integrate-and-fire model. Experimental
values (circles) and theoretical values (filled circles) are plotted for (a) the mean beating rate and
(b) beating fluctuation (CV%). For all numerical simulations, we used the same parameter values
τ = 0 and μ = 6.5. The fluctuation in beating rhythm is expressed by the CV
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simulations. The dependence of theoretical calculation on μ is shown later. We
found that the simulated values accurately agree with the experimental values except
for pair No. 14. The experimental result of pair No. 14 is exceptional because it is the
only pair in which fluctuation increased after synchronization. Beating fluctuation
of a pair of synchronized cardiomyocytes was equal to or less than that of less
fluctuating cardiomyocytes, while the mean beating rate was widely distributed.
Some pairs synchronized at faster rates of the two initial rates, some at slower rates
of the two initial rates, and others at intermediate rates of the initial rates of the pair.
We demonstrate how to determine the free parameter μ. Let us define an index ε, to
evaluate the deviation of the theoretical values from the experimental values.

ε :=
13∑

k=1

2∑
i=1

{
(T i

k − T ex
k )2 + (F i

k − F ex
k )2
}
, (3.56)

where T ex
k denotes the experimental value of the mean beating rate of the cell i

in the pair k after synchronization, and T i
k (i = 1, 2) denotes the corresponding

theoretical value obtained by our model. Similarly, F ex
k denotes the experimental

value of fluctuation (CV) of the cell i in the pair k after synchronization, and F i
k (i =

1, 2) denotes its theoretical value. Figure 3.20 shows the dependence of ε on μ.
For 6 � μ � 12, ε keeps to take the lowest value. The results of the numerical
simulations were almost constants for a relatively wide range of μ. This finding
indicated that our model was robust against the free parameter μ.

3.4.1.4 Comparison with the Kuramoto Model

The two-oscillator phase model (the Kuramoto model [32]) with noise is as follows:
for i, j = 1, 2, i �= j ,

dψi(t) = ω̄idt + Ai,j sin(ψj − ψi)dt + σ̄idWi(t), ψi(0) = 0, (3.57)

Fig. 3.20 Parameter μ

dependence of deviation of
numerical values from
experimental data. The
deviation between numerical
simulation and experimental
data is measured with the
quantity ε by changing
parameter μ
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where ω̄i and σ̄i denote the drift and noise strength constants, respectively, Ai,j are
nonnegative constants, and {Wi}i=1,2 is independent standard Brownian motion (see
Sect. 3.2.3). For two cases (Case (i) and Case (ii)), we applied the Kuramoto model
(3.57) and our model (3.49) to synchronization of two coupled cardiomyocytes.
The numerical simulation results were compared with biological experiment data
(Fig. 3.12).

Case (i) A Case of Synchronization to a Cardiomyocyte with a Fast and Stable
Beating Rhythm Two cardiomyocytes that we used in the Case (i) were cell
1 and cell 2 of pair No. 1, which have a mean beating rhythm of 0.64 s and
fluctuation of 12.3 [CV%] and cell 2 with 1.23 s and 25.1 [CV%], respectively.
When the two cardiomyocytes were coupled, we found that the bating rhythm
after synchronization was tuned to cell 1 with a fast and stable beating rhythm
(Fig. 3.21a). We investigated whether our model and the Kuramoto model could
reproduce the experimental results. Figure 3.21b and c shows the theoretical
predictions from our model and the Kuramoto model, respectively. The mean
beating rate and beating fluctuation for the experimental result, our model, and the
Kuramoto model are shown in Table 3.1.

Fig. 3.21 Comparison of experimental data and the two models. The change in beating fluctuation
before and after synchronization is shown. The blue circles and brown squares represent the
corresponding mean values for 1 min of beating fluctuation of cell 1 and cell 2, respectively. Panels
a–c show the results for Case (i), which was a case of synchronization to a cardiomyocyte with a
fast and stable beating rhythm. (a) The experimental result, (b) the numerical result of our model,
and (c) the numerical result of the Kuramoto model with (ω̄1, σ̄1) = (9.80, 0.94)and(ω̄2, σ̄2) =
(5.09, 1.45)

Table 3.1 Comparison between the experimental result and the numerical results. The symbols Ti

and Fi denote the mean beating rate and the beating fluctuation of the cell i(i = 1, 2), respectively.
The symbol T denotes the mean beating rate and F the beating fluctuation after synchronization

Before synchronization After synchronization

T1(s) F1(CV%) T2(s) F2(CV%) T (s) F (CV%)

Experiments 0.64 12.3 1.23 25.1 0.76 12.3

Our model 0.64 12.3 1.23 25.1 0.74 11.4

Kuramoto model 0.64 12.3 1.23 25.1 0.85 12.7
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Fig. 3.22 Comparison of experimental data and the two models. The change in beating fluctuation
before and after synchronization is shown. The blue circles and brown squares represent the
corresponding mean values for 1 min of beating fluctuation of cell 1 and cell 2, respectively. Panels
(a)–(c) show the results for Case (ii), which was a case of synchronization to a cardiomyocyte
with a slow and stable beating rhythm. (a) The experimental result, (b) the numerical result of our
model, and (c) the numerical result of the Kuramoto model with (ω̄1, σ̄1) = (5.03, 6.28)and(ω̄2, σ̄2)
= (4.46, 1.57)

Table 3.2 Comparison between the experimental result and the numerical results. The symbols Ti

and Fi denote the mean beating rate and the beating fluctuation of the cell i(i = 1, 2), respectively.
The symbol T denotes the mean beating rate and F the beating fluctuation after synchronization

Before synchronization After synchronization

T1(s) F1(CV%) T2(s) F2(CV%) T (s) F (CV%)

Experiments 1.1 149 1.4 41.2 1.4 41.7

Our model 1.1 149 1.4 41.2 1.3 46.3

Kuramoto model 1.1 149 1.4 41.2 1.3 86.8

Case (ii) A Case of Synchronization to a Cardiomyocyte with a Slow and
Stable Beating Rhythm Two cardiomyocytes that we used in the Case (ii) were
cell 1 and cell 2 of pair No. 6, which have a mean beating rhythm of 1.10 s and
fluctuation of 149 [CV%] and cell 2 with 1.40 s and 41.2 [CV%], respectively.
When the two cardiomyocytes were coupled, we found that the bating rhythm
after synchronization was tuned to cell 2 with a slow and stable beating rhythm
(Fig. 3.22a). When we compared the numerical result of our model with that of
the Kuramoto model, we found that our model was closer to the experimental
data than the Kuramoto model. Our model showed that the beating rhythm after
synchronization was tuned to the rhythm of the slow and stable cardiomyocyte
(Fig. 3.22b). However, the Kuramoto model showed that beating fluctuation of the
slow and stable cardiomyocyte was increased after synchronization, which differed
from the experimental results (Fig. 3.22c). The mean beating rate and beating
fluctuation of the experimental result, those of our model, and those of the Kuramoto
model are shown in Table 3.2.

Therefore, our model showed that even though the mean beating rate of a
cardiomyocyte was slow, a cardiomyocyte with more stable beating fluctuation
dominated the beating rhythm after synchronization. In previous numerical sim-
ulations, we did not consider the effect of retardation time (τ = 0). When we
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incorporated this effect, the behavior of our model barely changed because of the
existence of a refractory period much longer than τ . However, if the refractory
period is not taken into account, then a couple of cardiomyocytes continuously fire
with the period of the retardation time, which is biologically unacceptable. In a
system of two cardiomyocytes, we can use a retardation time τ = 0, but we should
consider the effect of retardation time as the size of the system increases. In this case,
the existence of the refractory period will have significant effects on the system.

3.4.2 Numerical Experiments

As an application of our mathematical modeling, we then performed two numerical
experiments on networks of cardiomyocytes and investigated the community effect
of cardiomyocytes.

3.4.2.1 Size and Configuration Dependence on Fluctuation of the System

First, we investigated the dependence of fluctuation in beating rhythm of car-
diomyocytes on the size and configuration of the system. Network patterns in
cardiomyocyte groups that we considered were star, 2D lattice, and 1D lattice
networks (Fig. 3.23).

We assumed that all the elements in cell networks have the same beating
properties. Figure 3.24a–c shows the size dependence of fluctuation of networks
with three types of configurations. The model cardiomyocyte that was used in
Fig. 3.24a was cell 1 of pair No. 1, which had a mean beating rhythm of 0.64 s
and fluctuation of 12.4 [CV%], that in Fig. 3.24b was cell 2 of pair No. 1 with

Fig. 3.23 Configurations and the order of placing cells. Three types of networks of configuration
are shown. (a) Star network, (b) 2D lattice network, and (c) 1D lattice network. A cardiomyocyte is
represented as a circle and it interacts with another cardiomyocyte if they are connected by a line.
Cardiomyocytes are connected in ascending order according to the numbers in the circles from 1
to 20
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a b c

Fig. 3.24 Size dependence of fluctuation for three types of configuration. Size dependence
of fluctuation is shown in double logarithmic graphs. The components of the network are
model cardiomyocytes with the same characteristics. Panels( a)–(c) show the size dependence
of fluctuation for three types of configurations: (a) ω = 9.80, σ = 0.69, θ = 2.94, (b)
ω = 5.00, σ = 1.01, θ = 1.50, and (c) ω = 2.10, σ = 1.18, θ = 0.63. Circles indicate beating
fluctuation (CV%) of cardiomyocytes in the star network, triangles indicate beating fluctuation in
the 2D lattice network, and crosses indicate beating fluctuation in the 1D lattice network. The black
straight line denotes ∝ N−1/2, where N is the number of cardiomyocytes in the network

a b c

Fig. 3.25 Size dependence of fluctuation for a large network. Size dependence of fluctuation is
shown in double logarithmic graphs. The components of the network are model cardiomyocytes
with the same characteristics. Panels a–c show the size dependence of fluctuation for a larger 2D
lattice network. (a) ω = 9.80, σ = 0.69, θ = 2.94, (b) ω = 5.00, σ = 1.01, θ = 1.50, and (c)
ω = 2.10, σ = 1.18, θ = 0.63. The black straight line denotes ∝ N−1/2, where N is the number
of cardiomyocytes in the network

1.23 s and 25.1 [CV%], and that in Fig. 3.24c was cell 2 of pair No. 8 with 2.71 s
and 43.0 [CV%]. We found that the beating fluctuation decreased as the size of the
system increased irrespective of network pattern. Among the three configurations,
a reduction in fluctuation tended to be most rapid in the 2D lattice network, and
fluctuation in the 1D lattice network tended to be always larger than that in the other
two configurations. In addition, we considered the larger size (about 1000 cells) of
the network in the 2D lattice network. Figure 3.25a–c shows the size dependence of
fluctuation of the 2D lattice network where all the elements had the same beating
properties. The numerical results suggested that the beating fluctuation decreased as
the community size increased, but the CV value of the system approached a constant
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value for large system size N . For an ordinary stochastic ensemble, such as an
independently identical distributed ensemble, the dependence of standard deviation
of fluctuation on system size N was proportional to N−1/2. However, we found that
the data of fluctuation plotted on the graph (Fig. 3.25) considerably diverged from
the line of N−1/2 and the features of beating fluctuation behave differently from that
of ordinary stochastic ensembles.

3.4.2.2 Dependence of Cell Properties and Numbers on Fluctuation
of the System

We then investigated the change in beating rhythms after connecting two subsystems
of cardiomyocytes. First, we prepared referential subsystems of four model cells
and nine model cells. We assumed that these subsystems had the property of a
standard beating rhythm (mean beating rate 1.20–1.30 s and fluctuation 15.0–20.0
[CV%]). As for the subsystems that are connected to referential subsystems, we
considered subsystems comprising four types of cardiomyocytes: (1) first and stable
cell, (2) first and unstable cell, (3) slow and stable cell, and (4) slow and unstable
cell. We considered the three types of cell network patterns shown in Fig. 3.23. A
single cardiomyocyte was connected to a center cardiomyocyte of the referential
star network, to a cardiomyocyte on a link of the referential 2D lattice network,
and to a cardiomyocyte on an edge of the 1D lattice network (Fig. 3.26a and b).
When subsystems were the same size, we connected them by a single link between
two cardiomyocytes at the same positions in the cell network. We used the two
center cardiomyocytes for the star networks, cardiomyocytes on the links for the 2D
lattice network, and the two cardiomyocytes at the edges for the 1D lattice network
(Fig. 3.26c and d).

We showed three typical results of the numerical simulation. First, we con-
sidered the referential 2D lattice network with nine cardiomyocytes and a single
cardiomyocyte with a fast and unstable beating rhythm (Fig. 3.27a). When the
nine-cell network came into contact with the single cardiomyocyte, the single
cardiomyocyte synchronized at the beating rhythm of the nine-cell network and with

Fig. 3.26 Configurations of a combination between a referential network and a single cell or an
assembly of cells. In panels (a) and (b), the filled circles denote a single cell, which adds to the
referential network, of which cells are denoted by open circles. (a) Referential network of four cells
+ a single cell and (b) that of nine cells + a single cell. Panels (c) and (d) show the configurations
of combined subsystems of four cells and those of nine cells. The cells in referential networks
are denoted by open circles and those in counterparts are denoted by filled circles. (c) Referential
network of four cells + four cells and (d) that of nine cells + nine cells
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Fig. 3.27 Change in the beating fluctuation before and after synchronization. (a) The referential
subsystem is the 2D lattice network and the counterpart is the single cell with a fast and

(continued)
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a beating fluctuation equal to that of the nine-cell network (Fig. 3.27b). Second,
the rhythm of a single cardiomyocyte was fast and stable (Fig. 3.27c). We then
found that even a single cardiomyocyte could lower fluctuation of the referential
network and the beating rhythm of the referential network synchronized to a stable
single cardiomyocyte (Fig. 3.27d). Finally, we considered a referential 2D lattice
network with four cardiomyocytes and four cardiomyocytes grouped with a fast
and stable beating rhythm (Fig. 3.27e). When the two subsystems were coupled,
the synchronized beating rhythm was also tuned to the rhythm of the more stable
group (Fig. 3.27f). In the above three cases (Fig. 3.27a–f), every cardiomyocyte
started synchronizing when two subsystems were connected and formed a cell
network. However, synchronization did not occur when the referential network
was connected to a fast and stable 1D lattice network with nine cardiomyocytes.
The cardiomyocytes near the edge of 1D lattice network with nine cardiomyocytes
showed an exceptionally large fluctuation compared with the other cardiomyocytes.
Furthermore, fluctuations of combined systems reduced their intensity, except for
when there was a single cardiomyocyte or cardiomyocyte group with a slow and
stable beating rhythm. However, the increment in fluctuation was small, even in
these cases (e.g., Fig. 3.27g and h). When a referential subsystem came into contact
with a counterpart consisting of one of the other three types of cardiomyocytes,
the constituent cardiomyocytes acquired a common intensity of fluctuation. The
intensity was intermediate between that of the prior two subsystems but was similar
to that of the less fluctuating subsystem.

3.4.3 Discussion

To investigate the community effect of networks of cardiomyocytes, we used an
interacting integrate-and-fire model with a refractory period. The reliability of
the present mathematical model was verified by accurately reproducing recent
experiments on pairs of cultured cardiomyocytes by Kojima et al.[28], despite
the fact that the mathematical model has only one free parameter. One of the
interesting points is that the fluctuation observed in their experiments cannot be
accounted for simple Brownian motion or equivalently random walks. This is
because some of the beating rhythm fluctuations (CV%) exceeded the theoretical
limit evaluated for Brownian motion. An important observation in their experiments
is the finding that when two isolated independently beating cardiomyocytes came

�

Fig. 3.27 (continued) unstable beating rhythm. (b) The change in mean value of beating fluctua-
tion. The data for the referential networks and the counterparts are shown by circles and squares,
respectively. The circles and squares show the corresponding mean values for 1 min of beating
fluctuation. The results for the other combined systems (c), (e), and (g) are shown similarly in (d),
(f), and (h), respectively
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into contact, they tended to beat synchronously at a rate of the cardiomyocyte with
a stable beating rhythm, but not the cardiomyocyte with a faster beating rhythm.
This community effect of cardiomyocytes toward stability was confirmed with the
present mathematical model by investigating cell networks of various configurations
and constituent cardiomyocytes with various beating rhythms. Even a single stable
cardiomyocyte could lower beating fluctuation of a cell network comprising some
cardiomyocytes. The reason why a cardiomyocyte with an unstable beating rhythm
tends to follow a cardiomyocyte with a stable beating rhythm may be explained as
follows. A cardiomyocyte with a stable beating rhythm has the property where its
dynamics are only slightly affected by external or internal disturbance. Therefore,
there is little effect of interactions from neighboring cardiomyocytes. While, a
cardiomyocyte with an unstable beating rhythm has the opposite property and is
strongly affected by its neighbors. A cardiomyocyte with a stable beating rhythm
corresponds to a pendulum with a heavy mass in contrast to a cardiomyocyte with
an unstable beating rhythm that corresponds to that with a light mass (Fig. 3.28).
When these pendulums are connected, the pendulum with a light mass tends to
follow that with a heavy mass. This feature is a consequence of the fluctuation–
dissipation theorem, which provides a universal relation between fluctuation and
a linear response[3, 31]. In our model, the coefficient σ 2

i of the interaction term∑
j V (φj , φi) in Eq. (3.49) was because of this theorem. This factor plays an

essential role in stabilizing the beating rhythm after synchronization. Stability is
one of the most significant and universal features of biological systems. It is an
interesting finding that one of the origins of biological stability is a universal
principle in statistical physics, that is, the fluctuation–dissipation theorem.

Fig. 3.28 Schematic explanation of why the beating rhythm tend to be synchronized to that of
more stable cardiomyocytes after connection of two cardiomyocytes. A stable cardiomyocyte can
be compared with a heavy pendulum and an unstable cardiomyocyte with a light pendulum. (a)
External fluctuation has little effect on a pendulum’s period of swing if its weight is heavy, but has
strong effects if its weight is light. (b) When two pendulums are coupled and synchronized, their
period of swing is close to that of the heavier pendulum, and fluctuation will be reduced because
the total mass of weight increases
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3.5 Summary

As described in this chapter, we examined the community effect with a mathematical
model of cardiomyocyte synchronization behavior using the following three steps:
first, to initiate the mathematical approach, we modeled the firing of cardiomyocytes
as an oscillating stochastic phase model, involving the concepts of refractory period
and induced beating, and also discussed its characteristics of single cardiomyocyte
beating, two coupled cardiomyocytes, and the network of plurality of cardiomy-
ocytes (Sect. 3.2). Next, we introduced the experimental results of the synchronous
behavior of cardiomyocyte networks after a brief explanation of the experimental
setup of microfabrication techniques regarding how the constructed approach of
stepwise synchronization of cardiomyocytes was accomplished (Sect. 3.3). Finally,
we proposed the oscillating stochastic phase model with the fluctuation–dissipation
theorem and revealed that the model of cardiomyocyte networks with various cell
numbers and spatial arrangements showed the same tendencies as the experimental
results of synchronization behavior. Specifically, it revealed that the stability-
oriented synchronization phenomenon and the fluctuation of beating intervals
determine the cell network synchronous behavior (Sect. 3.4).

We here speculate about the macroscopic behavior behind the synchronization
of beating cardiomyocytes. Such a synchronized network of living organisms
appears to be a macroscopic system in which part of its behavior is not just purely
mechanical, but it also exhibits statistical features that all systems tend to present.
Hence, the community effect of cells should also be based on the statistical tendency
of matter to become disordered as a part of the ordinary laws of physics.

At present, however, it is not clear whether and how this synchronization rule or
community effect is regulated at the molecular ion channel level. In other words,
no detailed information about the functioning of the community effect can emerge
from a description of the genetic mechanism and its expression as general as that
given above. In this regard, the next step for a mathematical approach to studying the
community effect is to connect the macroscopic interpretation with the microscopic
interpretation. For this, the in silico membrane potential model should become more
precise [5, 7, 8, 16, 30, 38, 55], and it can also be applied in practical applications
for drug discovery or predictive toxicity screening.

Finally, with regard to the community effect, living systems appear to maintain
and perhaps encourage orderly and regulated behaviors, acting against the tendency
for natural systems to progress from order to disorder, but based partly on some
hidden existing order that is retained.
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