
Chapter 1
Transcription Dynamics: Cellular
Automaton Model of Polymerase
Dynamics for Eukaryotes

Yoichi Nakata, Yoshihiro Ohta, and Youichiro Wada

1.1 Brief Review of Transcription

The cells of living organisms make proteins to reproduce themselves and express
various functions in their activities. The making process of proteins is divided into
two stages. First, a molecular motor called RNA polymerase (in eukaryotes, three
types of RNA polymerases and RNAPII are in charge) recognizes an amino acid
code described by deoxyribonucleic acid (DNA) and duplicates it using ribonucleic
acid (RNA), resulting in the generation of messenger RNA (mRNA). This process
is called transcription. Next, newly synthesized mRNA is decoded by ribosome, and
a sequence of amino acid, namely protein, will be generated (Fig. 1.1).

To respond to both outer and inner stimuli, transcription of required protein
coding gene will get started, terminates once the necessary amount of the proteins
has been created, and the target protein depends on the cell type and situation. In
the previous notion, genomic DNA was considered to move very flexibly during
transcription process. This is because DNA is a linear polymer of alternating
phosphates and sugars, each of which is bound to one of the four types of bases—
20 adenine, cytosine, guanine, and thymine (Figs. 1.2 and 1.3). Triad of nucleic acid
corresponds to a single amino acid, and this is called as codon. In humans, DNA
consists of about 6 billion deoxyribose (i.e., it has 212∗109 bits of data). But only a
tiny percentage of them are used [5].

Y. Nakata (�) · Y. Wada
Isotope Science Center, The University of Tokyo, Tokyo, Japan
e-mail: ynakata@ric.u-tokyo.ac.jp; wada-y@lsbm.org

Y. Ohta
Arithmer Inc., Tokyo, Japan
e-mail: ohta@arithmer.co.jp

© Springer Nature Singapore Pte Ltd. 2021
T. Tokihiro (ed.), Mathematical Modeling for Genes to Collective Cell Dynamics,
Theoretical Biology, https://doi.org/10.1007/978-981-16-7132-6_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-7132-6_1&domain=pdf
mailto:ynakata@ric.u-tokyo.ac.jp
mailto:wada-y@lsbm.org
mailto:ohta@arithmer.co.jp
https://doi.org/10.1007/978-981-16-7132-6_1


2 Y. Nakata et al.

Fig. 1.1 Picture of central
dogma. This picture is from
https://www.genome.gov/
about-genomics/fact-sheets/
Transcriptome-Fact-Sheet

If we focus only on the base information, we do not determine which terminal
should be selected as the start point, so it is necessary to determine the order. In
the sugar, each carbon atom is labeled as in Fig. 1.2, and the 5’ and 3’ carbons
are involved in polymerization. The terminal deoxyriboses have 5’ or 3’ carbon
unused for polymerization, which is called 5’-terminal and 3’-terminal, respectively.
The direction of the sequence is determined by the order from 5’- to 3’-terminal.
This is also the orientation of the electrical polarity of DNA. However, it is
noted that this orientation does not always coincide with the actual direction of
RNAP reading DNA during transcription. In a single spice, genomic DNA has
an identical sequence among all the cells and individuals (only immune response-
related cells are exceptions). For chemical stability, the DNA forms a double helix
structure by hydrogen bonding with the complementary strand determined by the
complementary relationship of A-T and G-C. Therefore, DNA sites are counted by

https://www.genome.gov/about-genomics/fact-sheets/Transcriptome-Fact-Sheet
https://www.genome.gov/about-genomics/fact-sheets/Transcriptome-Fact-Sheet
https://www.genome.gov/about-genomics/fact-sheets/Transcriptome-Fact-Sheet
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Fig. 1.2 Chemical structural formula of DNA
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Fig. 1.3 Structures of four nucleotides

base pairs. The DNA double helix is stored in a form that wraps around protein
octamers called histone. A set of this histone and the wrapping DNA is called a
nucleosome, and a structure of compacted nucleosomes is called chromatin. Among
chromatins, that of tightly bonded by nucleosomes are called heterochromatin
regions, and conversely, that of loose bonds are called euchromatin regions. In
transcription, euchromatin regions are prone to accept active RNAPIIs.

During cell division, chromatin gathers to form a pair of rods called chromo-
somes. The number of chromosomes varies depending on the organism, but in
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Fig. 1.4 A hierarchy of DNA. (This picture is a modified version of the one from https://www.
genome.gov/about-genomics/fact-sheets/A-Brief-Guide-to-Genomics)

humans, it is known that there are typically 23 pairs of chromosomes. The position
of a base pair in the sequence of DNA is expressed by using chromosomes (Fig. 1.4).

Only a few parts of DNA carry protein sequence code, and it is only 1.5%
in humans. DNA regions involved in the production of specific proteins are
called genes. Approximately, 26,000 genes are known in humans. Furthermore, in
eukaryotes, there are also DNA regions within genes that are independent of the
sequences of the proteins produced along the way. This region is called intron, and
conversely, the region coding protein sequence is called exon. The location of genes,
exon, and intron and the location of chromosomes are specified and databased.

https://www.genome.gov/about-genomics/fact-sheets/A-Brief-Guide-to-Genomics
https://www.genome.gov/about-genomics/fact-sheets/A-Brief-Guide-to-Genomics
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RNAP generates RNA based on all the information in the gene region regardless
of introns or exons, and this preliminary product is called pre-messenger RNA.1

From this product, the parts derived from the intron regions are spliced out at some
timing (in many cases, it is thought that RNAP reaches the exon region from the
intron region). Eventually, the RNA part originated from the exon regions will be
composed, and this is called messenger RNA (mRNA). This editing procedure is
called splicing. Next, the mRNA is chemically treated at both ends so that it can exist
outside the nucleus in order to generate proteins. This is where a straightforward
question emerges. Why is there an inefficient part like intron? It seems to be good
that genes hold only the minimum information necessary to make proteins, and
RNAPII reads the only such codes to create mRNA. One hypothesis is that, when
splicing, the intron-corresponding part and the exon part sandwiched between them
are decomposed together to increase the final product variation. This phenomenon
is called alternatively splicing, and the mRNA in which a part of the generated
exon disappears is called a splice variant. Besides, there are research reports that the
length of introns affects the rhythm of transcription, and as a result, the morphology
of organisms is determined by regulating expression [16].

The information described using four types of sequences A, T, G, and C is
generically called a genome. By 2003, the Human Genome Project revealed all
human genome information. Therefore, anyone can access genome information
from the database. At first, it was thought that all life phenomena could be known
entirely if the genome was known, but it gradually recognized that there were
phenomena that could not be explained by genome information alone.

For example, a queen bee breeds both a worker one and the next generation
queen one, but there is no genomic difference between them. It is known that
only those who have been given a special meal (royal jelly) in childhood can
become queen bees. In addition, for humans born to mothers who became hungry
during pregnancy, there was a statistically significant difference in the prevalence
of lifestyle diseases when children grew up, depending on when hunger occurred
during pregnancy. What is happening to their bodies? Several experiments reveal
that transcription (and function expression) is affected by the replacement of a
specific hydrogen group with a methyl group or an acetyl one in the base moiety
part of the DNA site or histone tails (protein chains growing from each histone).
For example, transcription is suppressed by cytosine methylation of DNA. When a
specific one of the hydrogen group in the 27th amino acid residue in histone tail
of H3 histone (which is known to be lysine) is replaced with a trimethyl group,
DNA is firmly wrapped around a histone, making DNA hard to be involved in
transcription. Conversely, methylation on the 27th amino acid of H3 histone is
replaced with an acetyl group, DNA wrap is weakened, and transcription enhanced.
Note that these modifications happen not in the genome itself because these
modifications do not change DNA sequences. However, DNA modification pattern

1 mRNA is that finally produces proteins. Other RNAs exist and are thought to play an important
role in controlling transcriptional dynamics. However, that is not covered in this book.
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is thought to be as crucial as genomic information because it significantly impacts
transcription. Such a factor affecting transcription other than the genome sequence
itself is called an epigenetic information, namely epigenome. All of the previous
examples are regarded as epigenomic effects. It is known that the epigenome
retains its information during cell division, and the fertilized egg inherits the parent
epigenome, but most of the egg is reset just before the egg begins to differentiate into
various cells. However, it has been found that some of the epigenome information
is not reset by differentiation and is inherited to offspring as a result [23].

From here, let us consider the rough behavior of RNAP during transcription
(RNAPII in the case of eukaryotes). This is a complex composed of 12 subunits
in the nucleus and binds to a promoter region called TATA box motif (literally
including a repeated TATA sequence), locating about 5 kbp upstream of the gene,
and RNAP drifting in the nucleus binds to TATA box binding protein. Both proteins
attract each other, and RNAP finally attaches to the DNA site and begins to move
toward the transcription starting site. After arriving, it starts transcription and moves
on the DNA track while generating pre-mRNA by reading the base information of
DNA. This transcription direction depends on the gene and does not necessarily
match the DNA direction. Sometimes RNAP may move in the opposite direction
with DNA. RNAP terminates transcription when it arrives at the end of the gene
region and desorbs. RNAP again drifts in the nucleus after it leaves the DNA and
until it binds to the protein again. In this model, the movement of single RNAP
is affected by the position of other RNAPs that run in front in addition to the
genome sequence. This is very similar to the movement of a car on the road as
described below. RNAP overtakes, slows down, and sometimes collides. This model
works reasonably well for organisms with simple structures such as prokaryotes. For
example, it has been confirmed that RNAP collides or slows down in prokaryotes
[34, 35]. However, such a model can be applied to lives with simple structures like
prokaryotes. It is known that the dynamics of RNAPII in eukaryotes, including
humans, behave more complicated due to the reasons as follows. First, the genes
of eukaryotes include not only protein-encoding regions (exon) but also introns.
The pre-mRNA regions synthesized from intronic regions degrade rapidly and do
not leave in the mRNA, which is the final product of transcription. Second, several
proteins control the dynamics of RNAPII. Such proteins combine specific sites
on DNA tracks and prevent RNAPII movement physically or help RNAPII attach
to the transcription start site or attach RNAPII for starting transcription [14, 19].
There is a relation between a specific epigenome modification for some DNA sites
and attachment of corresponding transcription factors [12, 17, 20, 21]. Finally, it is
speculated that RNAPII does not exist alone, but a huge protein complex includes
several RNAPII. The interactions that mediate this complex can also occur over long
distances in the genome coordinates [5, 8–10, 29].

In order to create a model that describes the dynamics of RNAPII, we must take
these into account. In the following sections, we will explain what experimental
results have been reported on transcriptional dynamics and what dynamics we make
up based on that.
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1.2 Experimental Result

In this section, we will briefly explain what RNAPII behavior during transcription
has been known by several experimental results before modeling [19, 33, 40]. To
develop an RNAPII transcriptional dynamics model, we need to know the location
of RNAPII. As one method, Wada and Ohta et al. investigated where and how
much RNAPII was currently at some time by measuring the copy number of RNA
fragments, which were recollected from living cells, labeled by fluorescent dyes,
and quantified by 25mer nucleotide probes. This method is called a tiling array.

Formerly, we delivered Tumor Necrosis Factor-alpha (TNF-α), one of the
inflammatory cytokines, to human umbilical vein endothelial cells (HUVECs)
and observed the movement of the generation of nascent RNA by inflammation
stimulation. Based on the previous experiment, we focused on long five genes,
like the SAMD4A gene region for observation because it has good inflammation
responses and sufficient length for observing RNAPII dynamics.

Visualization of nascent RNA generation was done in the specific genes at
intervals of 7.5min from 0 to 180min after stimulation (Fig. 1.5). By analyzing
the data, the following was obtained:

Transcription is not constantly performed after stimulation, and there are periods
during which transcription is actively performed, such as waves. It takes about
15min from stimulation to the first transcription.

At the transcription start point, constitutive active transcription happens, but
many will be terminated before reaching to the end of genes. There is something
like a checkpoint that shuts down RNAP transcription until a stimulus is activated
to activate it.

Fig. 1.5 Time evolution of the distribution of RNAPII on SAMD4A gene
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When there is RNAPII performing transcription in the front, other RNAPIIs near
the rear do not perform transcription.

By examining five representative genes, the transcriptional wave appears to be
traveling at an average speed of approximately 3.1 kb per minute. It does not move
at a uniform speed everywhere but depending on the region. For example, it seems
to go faster in introns and slower in exons. This result has also been reported by
Kolasinska-Zwierz et al. [19] and Schwartz et al. [33].

At the DNA site where a protein called CTCF is bound, the movement speed
of RNAPII becomes slow. This is because CTCF might physically hinder RNAPII,
this is why CTCF localizes the RNAPII migration range. When CTCF was knocked
down, the movement of RNAPII was spread, and it is observed to happen at a place
where transcription should not be expected. It is already known that the presence of
CTCF is confirmed at the boundary of the active transcription region.

Looking at the RNA density profile, the density does not increase or decrease
continuously from the beginning, but an isolated peak at a specific DNA site (around
0) appears over time. Most of those places are in exons, so it seems that it can be
explained by the intron–exon speed ratio, but for that, you have to set a very high-
speed ratio. The fact that the first intron does not have such a speed ratio cannot be
ignored.

Recently, it should be noted that next generation sequencer allows us to detect
the position efficiently by identifying the sequences of nucleotide fragments bound
and recollected from specific proteins, including RNAP. The detected localization
of RNAPII was consistent to that of transcription wave.

Further, the authors have reported that the observed “wave of transcription”
was well explained by the presence of a complex called a transcription complex
composed of RNAPII, which had been predicted to exist. The transcription wave
was considered to be generated by the rapid change of the chromatin structure,
which might be caused by transcription complex, the so-called transcription factory.
Here, a mathematical model is constructed based on some of these facts in the
following sections. First, we will explain a mathematical concept called cellular
automaton as a tool.

1.3 Cellular Automaton and Traffic Flow Model

1.3.1 What Is Cellular Automaton?

A cellular automaton (CA) is one of the discrete dynamical systems. It has
discretized states in lattices called cells and updates states of the cells for each
discretized time. In other words, it is the dynamical system in which all dependent
and independent variables (space, time, and states) are discrete. Ulam and von
Neumann first propose the cellular automata concept to solve the self-reproduction
problem of lives. The cellular automata represent complex nonlinear phenomena
even if their update rules are simple.
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The elementary cellular automaton (ECA) is a class of cellular automata with
one-dimensionally configured cells with only two states (0 or 1), and the update of
a cell is determined by itself, one before and after. That is, by denoting t ∈ Z≥0,
j ∈ I (I ⊂ Z is a discrete interval), and ut

j ∈ {0, 1} as the time, the site number
and the state of site number j at time t , respectively, under the assumption of the
initial condition {u0n}n∈I and the boundary condition, the time evolution of {ut

j } is
expressed as ut+1

j = f (ut
j−1, u

t
j , u

t+1
j ) with a function f : {0, 1}3 → {0, 1}.

Since an ECA is regarded as a partial-difference equation, one needs to determine
a proper boundary condition. Most of the cases, one assumes the Dirichlet boundary
condition ut

j ′ = 0 (j ′ is a boundary of I ) or the periodic one ∃N , ut
j+N = ut

j ∀t ≥ 0.

The amount of functions f (the update rules of ECA) is 22
3 = 256. We identify

them by integers k := ∑
i,j,k=0,1 f (i, j, k)22

2i+2j+k . The ECA with integer index
M is called ECA Rule M or ECA M . The behavior of ECA was actively analyzed,
for example, by Wolfram [43]. There are several classifications for them, but the
most common one is as follows [42]:

Class I: Uniform
Class II: Periodical
Class III: Chaotic
Class IV: Complex

The ECAs in classes III and IV show interesting behavior and sometimes exhibit
characteristics of a real system.

An interesting pattern may be drawn when states of cellular automata are
properly arranged at each time and space. For example, the time evolution of ECA
Rule 90 with an initial state where only one point is 1 and the others are 0 is shown
in Fig. 1.6. The time-space pattern is similar to a fractal pattern called a Sierpinski
gasket.

Fig. 1.6 An example of time-space pattern of ECA Rule 90. Black boxes mean ut
j = 1 for these

sites and white ones mean ut
j = 0



10 Y. Nakata et al.

Fig. 1.7 An example of time-space pattern of ECA Rule 30. Triangle patterns seem to appear
randomly

Figure 1.7 shows the space-time pattern of ECA Rule 30 with the same initial
condition. It draws a similar fractal pattern but a more complex one. Interestingly,
this pattern is very similar to that of a shell of the conidae. The question of why
creatures create designs identical to ones in a simplified mathematical model is a
fascinating subject, but it is beyond the scope of this book, so we will stop explaining
here.

We can extend the elementary cellular automata by setting the cell configuration
from a one-dimensional lattice to a higher-dimensional one or expanding the range
of cells to be referenced on an update. We can express more complex natural
phenomena for such extended models, such as solitons (the solitary waves that
preserve their shapes after collision). One of the most famous examples is the
Conway’s life game, whose cells are configured on the two-dimensional lattice (with
a proper boundary condition) and take two states—alive or dead. The state of a cell
is updated using the following rules depending on the state of itself and those of its
eight neighboring cells (Fig. 1.8):

• If the cell is alive, the next state is alive only if there are just two or three cells
alive.

• If the cell is dead, the next state is alive only if there are just two cells alive.
• Otherwise, the next state of the cell is dead.

This rule indicates that life cannot survive alone but requires the cooperation of
others. However, it also cannot survive if there are too many others around because
they compete for limited resources. This exquisite balance of survival and death
conditions creates a variety of patterns (Fig. 1.9).

Conway’s life game (as well as most general cellular automata as a whole) is
a good target for programming practice. It is a good study to write a program
emulating the time evolution of the system by yourself. We will cite Golly (http://
golly.sourceforge.net) as a ready-made program for the life game (Golly itself can

http://golly.sourceforge.net
http://golly.sourceforge.net
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Fig. 1.8 The next state at the gray cell in the center is determined by eight surrounding neighbor
sites in the figure

Fig. 1.9 A state of Conway’s life game. The black cells mean alive and white cells mean dead

calculate time evolutions of more cellular automata). Anyway, when you have a
program that describes the development rules for life games in some form, you can
confirm that the system shows really fertile behavior when you start the simulation
with appropriate initial values.
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Due to this time evolution rule, the life game makes patterns that change
periodically, translate while changing their shapes periodically, or regularly generate
such parallel movement ones. By setting the initial state properly, one can express
logic gates. Therefore, the life game can be a universal Turing machine.

Unlike the models using differential equations, it is very suitable with computer
simulation because there is no discretization error or numerical error in simulation.
It is possible to calculate quickly for improving calculation accuracy is unnecessary.
Then, cellular automata models are often adopted to reproduce natural phenomena
by computer simulations. One of the typical examples is the traffic flow model
described in the next section.

Finally, the relationship between the phenomena by the CA and the similar ones
by the differential equations is an interesting problem. Actually, this is one of the
questions suggested by Wolfram. As one of the answers, it is known that we can
derive the time evolution equation of a CA from a well-discretized differential
equation by the limiting procedure called ultradiscretization [37].

1.3.2 Traffic Flow Cellular Automaton

Now, let us go back to ECA. We focus on ECA Rule 184. We note that there is no
dependency of ut

j−1 to determine ut+1
j when ut

j = 1 and ut+1
j = 0 when ut

j−1 =
ut

j = ut
j+1 = 0. By these facts, we can determine the update of the system even if it

has an infinite amount of sites by setting an initial condition as ut
j = 0 for |j | 
 1.

Then, by interpreting that the sites are sequential boxes and each box has a ball
if ut

j = 1 for time t and j -th box and no balls if ut
j = 0, we can rewrite the time

evolution rule of ECA 184 as follows (Fig. 1.10):

• All balls are moving to the orientation that increases j .
• If there are no other balls at the next box, the ball moves there.
• If there is another ball at the next box, the ball stays.
• The next state is that by applying these rules above once for all sites.

Generally, the order to apply this update rule is very important, as such models. We
apply this at the same time for all balls (remember the definition of the ECA update
rule). That is, a ball cannot enter the next site simultaneously even if it is going to be
empty by another ball leaving. This model is known as the simplest one to express
traffic jams. The rule that one box can contain at most one ball corresponds to the
exclusive volume effect. The traffic jam is finally solved when the number of balls
(cars) is less than half of that of sites and never solved if more.
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Fig. 1.10 Time evolution of ECA 184

There are several ways to express f explicitly, but the physically meaningful
expression is, for example,

ut+1
n = ut

n + min(1 − ut
n, u

t
n−1) − min(1 − ut

n+1, u
t
n). (1.1)

Transforming this equation, we have

ut+1
n − ut

n = min(1 − ut
n, u

t
n−1) − min(1 − ut

n+1, u
t
n). (1.2)

Note that max(1 − ut
n, u

t
n−1) expresses the number of moving particles from n − 1

to n. The right-hand side means the total change of the number of balls at j . On the
other hand, the left-hand side means the time change of the number of balls. There-
fore, this expression is a CA analog of the equation of continuity in fluid dynamics.
ECA 184 is obtained by the limiting procedure called “ultradiscretization” from
a proper discretization of the Burgers’ equation, which is a differential equation
model expressing traffic jam (and originally proposed to represent shock waves in
the compressed fluid) [25].

Now, we introduce a stochastic factor. Let p be a given parameter satisfying
(0 < p < 1). Each particle moves to the next site at probability p if possible.
This model is called the Totally Asymmetric Simple Exclusion Process (TASEP).
Recently, the mathematical model based on TASEP is often employed to solve traffic
jam problems. By introducing stochastic i.i.d. variables {Ut

n}t≥0,n∈Z that take 1 at
probability p and 0 at 1 − p and modifying the update rule (1.1), the time update
rule of TASEP is expressed as

ut+1
n = ut

n + max(1 − ut
n, u

t
n−1, U

t
n) − max(1 − ut

n+1, u
t
n, U

t
n+1). (1.3)

There are several ways to extend TASEP. For example, a ball can go to the second
next site, or the moving probability depends on the distance of the next ball. By
these extensions, we can have nearer expressions of the dynamics of real cars. For
the extended CA models, a smooth traffic state becomes a metastable one when the
number of cars is larger, and with a little perturbation, this state suddenly breaks,
and the traffic jam finally occurs. This is considered as the mechanism of traffic jams
occurring.
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Fig. 1.11 Fundamental diagram of TASEP

Due to the observation above, the state of TASEP finally goes to a relaxed state.
We define the flux of finite site TASEP as the average of moving balls per site (that
is,

∑
max(ut

j , 1−ut
j+1)/N ) in the relaxed state. The graph of density of balls versus

flux is called the “fundamental diagram,” which is one of the most important pieces
of information to understand the behavior of a model. For example, TASEP under
the periodical boundary condition is expressed as Fig. 1.11. As referred before, if
the number of balls is small, the traffic jam is finally solved, and all balls must
move for each time evolution when sufficiently large time passed. Then, the flux
is increasing monotonically depending on the density of particles. However, if the
number of particles becomes larger, there are jams never solved. The number of jam
trapped balls becomes larger as the density increased. Then, the flux is decreasing
monotonically. In general, by denoting the number of sites and balls N and M ,
the density ρ = M/N and the moving probability p and taking limit M,N →
∞ to preserve M/N is constant, the flux is expressed as 1−√

1−4pρ(1−ρ)
2 [30] and

especially max(ρ, 1 − ρ) as the limit p → 1[25].
We can also set another boundary condition in which j = 0 andL are boundaries,

and one injects a ball with probability α (0 ≤ α ≤ 1) at j = 0 if there are no balls,
and one removes a ball with probability β (0 ≤ β ≤ 1) at j = L if there is a
ball. Under this boundary condition, the system is known to have three phases of
the flow—low density (LD), high density (HD), and flux maximized flow (MC).

There are two ways to explain the dynamics of TASEP: the view of the balls
and the view of fields. Following the theory of fluid mechanics, we call the
dynamics expression of the former viewpoint “Lagrangian representation” and the
latter “Eulerian representation.” In the infinite ECA Rule 184, denoting the position
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of k-th ball at time t xt
k , one can obviously write down the time evolution rule

xt+1
k = xt

k + min(1, xt
k+1 − xt

k − 1). Here, it should be noted that the direction
of movement is unique, and no particles overtake others. Due to these properties
and the identity of the max calculation, we can directly relate these two dynamics
representations [18].

1.4 Cellular Automaton Model of Transcription Dynamics

In this section, we introduce an RNAPII dynamics model by virtue of the experi-
mental results described in section 1.2. Remember that RNAPII attaches DNA at
the transcription starting site and starts transcription. Then, we coarse-grain target
DNA track to a finite amount of sequential sites employ TASEP as a basic model
for RNAPII dynamics on coarse-grained sites[31, 32].

We also set the stay time of RNAPII at each site [27]. The ball that arrived at
a site has to stay during this time (of course, it still keeps staying after the time
if there is another ball at the next site). This stay time is introduced to consider the
difference of the velocity between introns and exons or due to the proteins that block
RNAPII movement, for example, CTCF/cohesin (Fig. 1.12) [36].

At the given time, the ball is injected at the start site if it is empty. This means
that the RNAPII free in the nucleus attaches to the start site and starts transcription.

We set a region including SAMD4A and its neighbor as the target region and the
size of cell 35 bp. This size corresponds to the size of one RNAPII.

Before the numerical simulations, let us first imagine what phenomena can occur.
Hereafter, for ease, we employ only the velocity difference between introns and
exons and consider the semi-infinite system with the left side boundary. For such
a system, we can explain the dynamics by introducing time τ k

j as the time when
k-th injected balls arrive at site j . (Note that let xt

k be the position of k-th ball at
time t , xt

k = j , while τ k
j ≤ t ≤ τ k

j+1 − 1.) Then, the dynamics is written in

τ k
j+1 = max(τ k

j + γj , τ
k−2
j+1 + γj+1 + 2), where γj is the minimum stay time at site

j . By using τ k
j , the time of k-th ball spent for staying site j is τ k

j+1 − τ k
j and the

time interval between when k − 1-th ball arrives at site j and k-th ball arrives there
is τ k

j − τ k−1
j . For the boundary condition, {τ k

0 }k∈N is given. For the ECA Rule 184,
γj is identically equal to 1, which generates the trivial dynamics with no collision.
To generate other states except for the free flow, one should employ the mechanism
to stop the balls. In this system, the jam can occur when the latter ball at the intron
site catches up with the former one at the first exon site due to the velocity gap.

Let us consider the dynamics only of k − 1-th and k-th balls and their interval
under the assumption that k−1-th ball never collides k−2-th ball since their interval
is sufficiently long.

If these two balls are both in an intron and they are adjacent, the k-th one has to
wait for one step until the next ball leaves. However, such a situation cannot happen
unless all forward sites are occupied due to an existing jam. Therefore, under the
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Fig. 1.12 Picture of the traffic flow model with staying time. Exon regions and intron regions
appear alternatively and the staying time in exon regions is longer than that in intron ones

assumption, the balls can form only the free flow, and by setting τ k
j − τ k−1

j = T at

site j , we have τ k
j+1 − τ k−1

j+1 = T .

If two adjacent balls are both in an exon region, one should hold τ k−1
j+1 < τk

j

because the latter ball can move to the next site after the former one leaves there.
Then, the k − 1-th ball first spends the stay time, and k-th one can be adjacent, but
the k − 1-th one moves and creates a vacant space, while k-th one waits for its own
waiting time. Then, it never happens that k-th ball cannot move because of k − 1-
th one. That means that there is only free flow in the exon regions. Especially, in
the case that k-th ball moves the site immediately after k − 1-th one leaves, that is,
τ k−1
j+1 +1 = τ k

j holds, we have τ k
j −τ k−1

j = γe. In the case that k−1-th is in an intron
and k-th is in an exon, k − 1-th moves first, and the site becomes vacant. Then, it
forms a free flow. The jam can occur only in the case k − 1-th is in an exon and k-th
is in an intron. The time interval preserves if that in the first intron region τ k

0 − τ k−1
0

is more than γe. If not, two balls collide and final time interval becomes γe and the
k-th ball extra waiting time γe = (τ k

0 − τ k−1
0 ) reduces the time interval of k-th and

k + 1-th ball τ k+1
0 − τ k

0 to τ k+1
0 − τ k

0 − γe + (τ k
0 − τ k−1

0 ) = τ k+1
0 − τ k−1

0 − γe. For
such a case, we can determine that k-th and k + 1-th balls collide with the signature
of τ k+1

0 − τ k
0 − (τ k

0 − τ k−1
0 − γe) instead of τ k+1

0 − τ k
0 . Generally, the condition that
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Fig. 1.13 Numerical simulation result of Ohta’s cellular automaton model [27]. Colors express
the density of RNAPII. Blue regions mean that they are not clouded, and red ones mean that they
are clouded

the latter m balls get involved with traffics jams because k-th one overstays at the
intron–exon boundary is written in τ k+m

0 − τ k
0 − (m − 1)γe.

Due to the discussion above, if the number of particles is sufficiently small for
the number of sites since the traffic jam can occur only in the boundary from the first
intron and first exon and the balls after passing this boundary form the free flow, the
traffic jam is finally solved.

We can apply similar discussion when there are three types of staying times. The
bottleneck appears in the site with the maximal staying sites, and there are no factors
that make jams after there.

In [27], the authors introduce periodic boundary condition because it is exper-
imentally known that the transcription start site and the end site are spatially
close at the active transcription regions and the RNAPII that finished transcription
immediately attaches to the start site and starts transcription again. Figure 1.13 is the
numerical simulation results, which match that discussed above because the target
gene is sufficiently long.

Finally, we explain a model including RNAPII distribution gaps at introns. As
described before, it cannot be explained only by the velocity difference between
exons and introns. We have considered the system on the one-dimensional DNA
track. However, since the real DNA is in the three-dimensional space and the track
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Fig. 1.14 Concept picture of the path-preference cellular automaton model. By being bound by
CTCF, some regions of DNA form a ring shape. In such regions, transcriptionally active parts of
the DNA, such as exons, are further bound to be spatially close to each other, and RNAPII is free
to move through them by spatial diffusion effects

can bend as necessary, it can be possible that two distant sites on the DNA track are
spatially close. Therefore, for such sites, one can consider that RNAPII shortcuts by
virtue of the diffusion effects or through protein complexes [1].

The authors also proposed a model that enables RNAPII to jump from the end
of an exon to the top of the next exon in each gene (Fig. 1.14) [28]. This effect can
explain the splicing effects well because transcription products in skipped regions
are not degraded but are ever not generated. Furthermore, by changing the target
of jumping to the top of other exon regions, one can naturally explain the splicing
variants.

The model is basically the same as that proposed before; that is, we consider
the traffic flow cellular automaton model with finite amounts of balls and sites and
the periodic boundary conditions. Each site is exon or intron. Due to the boundary
condition, the number of exonic and intronic regions is the same, and we define the
number K . We denote the top and the end of k-th exon as ιk−1 and εk , respectively
(we consider the index by modulo K). Without loss of generality, we can set ιK = 1.
We also assume that no more balls are injected after time evolution started in this
system.

The basic time evolution rule of the balls is the same as ECA Rule 184, and we
do not consider the velocity difference due to exon or intron regions and the proteins
binding DNA sites. That is, in all sites, a ball moves to the next site if it is vacant.
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Next, we also introduce the jump effect to this model. The ball at j = εk moves to
j = ιk with probability p and moves to the next site j = εk + 1 by the ECA Rule
184 if the jump fails (probability 1 − p or there is another ball at j = ιk) and stays
if there is another ball at the next site in addition to the jump failure. In general,
we must first set the ordering to the destinations in the case that several balls are
moving to the same site. In this model, we employ the prior for the jumping.

The authors also numerically simulated this model and plot distributions of
RNAPII position after sufficient time passed and confirmed the distant peaks. They
conclude that there is a diffusion effect because of DNA spatial closeness. Such
closeness by RNAPII complexes is already proposed as the name of transcription
factory [1, 5, 6, 15, 22, 41, 44].

Let us consider the simplest model with 1-exon and intron and p = 1 (that is, the
ball at j = εk can jump to j = ιk if it is vacant). In this model, we can observe a
very interesting phenomenon. By calculating the fundamental diagram in the intron
region, one finds a non-continuous gap as the number of balls is increasing, and
this phenomenon is weakened by strengthening the stochastic effect. The path-
preference model is a special case of traffic flow models with bifurcation and
confluence. For such models, it is known that such gaps appear in the fundamental
diagram [2]. In the path-preference model, we can obtain the exact flow after
sufficient time passed by watching the trajectory [24].

In the exon region, only one pair of continuous vacant sites (we call this a notch)
exists, and balls and empty sites appear alternately in other sites. Several clusters of
balls and empty sites appear alternately exist in the intronic region, and other sites
are vacant. In the case that there are one cluster and one notch, the system behaves
time periodically and the flow is exactly obtained by

〈Js〉 = 1

T

t0+T −1∑

t=t0

1

Ns − 1

N−1∑

j=Nm+1

f (j, j + 1) = Q

T
= 2M − Nm + 1

2(2M + 1)
. (1.4)

However, if the length of the clusterM is less thanNm/2, the notch arrives at the end
of exon before the top of the cluster arrives at the end of the intron. And the notch
goes around in the exon again, which changes the periodic orbit pattern. Generally,
the condition where the notch goes around exon γ times before the top of the cluster
arrives at the end of the intron is written in

Ns − (γ − 1)Nm

2
≤ M <

Ns − (γ − 2)Nm

2
, (1.5)

and the flow is expressed as 〈J 〉 = (2M − Nm + 1)/2/(2M + (γ − 1)Nm + 1).
Surprisingly, under the condition that the number of balls satisfies, the flow takes
the same values even if the details of the dynamics behave different. For example,
if γ = 2, the time-space pattern of the system behaves like Fig. 1.15, in which
there are one notch and two clusters. Therefore, we can conclude that there exist
one notch and two clusters if the number of balls satisfies (1.5) because one of the
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t

j

Fig. 1.15 A space-time pattern of the path-preference cellular automaton model. Two clusters of
balls travel on the intronic region

clusters has no balls. Anyway, by observing a time-space pattern of periodic orbits,
we can calculate the exact value of the flow.

We confirmed that there could be more complicated states with several notches
with the same number of balls by setting initial states properly. Such states
are established on delicate balances. Then they easily break down with little
perturbation such as stochastic effects and reduce to the simpler states explained
above.

In this section, we have explained the dynamics of the RNAPII cellular automa-
ton model suggested by Ohta et al. Here, we note that there are other cellular
automaton models to explain the dynamics of RNAPII, for example, [3, 4, 13, 26,
38, 39].

Recently, it is believed that the chromatin structure plays an important role
in transcription and detecting chromatin structure to understand the transcription
mechanics is actively studied. However, it is very difficult to directly observe the
chromatin structure, which is the blob of the DNA chain and folding proteins.
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The original purpose of authors’ model is to explain to construct a model
that explains the spatial proximity of distant sites on DNA coordinates during
transcription through the movement of RNAPII with a cellular automaton method.
However, it has also been found that this model is insufficient to grasp the spatial
structure itself directly. One should adopt a more direct approach to capture a
dynamical chromatin structure.

One of the major technologies to capture the chromatin structure is to hybridize
a specific DNA site with fluorescence labeled probes (3D-FISH method). This
approach can observe the structure directly and apply to living cells but only obtain
spatial positions of some specific (hybridized) sites. Another method is to aggregate
proteins with DNA fragments that contribute to the spatial connection of distant
chromatin sites and to detect binding DNA sites from the sequences of the fragments
[11]. This method can obtain the connection data of the whole genome, but the data
indicate only the adjacency of two chromatin sites and the average of millions of
cells due to the experimental method requirement. Therefore, one has to propose a
physical or statistical model to guess the chromatin structure from the data [7] and
then evaluates whether the estimated structure is correct by the 3D-FISH method.
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