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Preface

The human body is made up of tens of trillions of cells. Inside each cell, DNA, which
carries genetic information, undergoes a process of transcription to produce the
proteins that characterize the cell, and each cell acquires a variety of properties that
are unique to each cell type. Cells also come together to form aggregates, acquire
characteristic patterns and functions, and further form organs to carry out various
biological activities. In processes that link DNA to organs, biodynamics, such as
transcription by polymerases or formation of vascular networks by endothelial cells,
play essential roles.

The main subject of the present volume is such biodynamics and its mathematical
modeling. The topics are dynamics of RNA polymerases in transcription, construc-
tion of vascular networks in angiogenesis, and synchronization of cardiomyocytes.
Statistical analysis of single-cell dynamics and classification of proteins by math-
ematical modeling are also presented. We show the experimental results and the
mathematical models that can be used for the analysis of them. As we also give
elementary introductions for the topics and mathematical approaches, the contents
will be useful for both researchers in this field and interested beginners.

Recently, the importance of the collaboration between mathematics and biolog-
ical sciences has been acknowledged, and new and fruitful outcomes have been
appearing. We hope that the present volume gives good examples of the fruitful
collaboration between mathematics and biological sciences.

On behalf of all the authors, I would like to express my sincere thanks to
Professor Yoh Iwasa for giving us the opportunity to contribute to the Theoretical
Biology series and for the helpful comments. Thanks are also due to our colleagues
and friends, in particular the members of iBMath (Institute for Biology and
Mathematics of Dynamic Cellular Processes), for various help and support. I also
wish to thank Ms. Reshmi Rema and Ms. Fumiko Yamaguchi at the Springer Nature
for their support and cooperation.

Tokyo, Japan Tetsuji Tokihiro
August 2021
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Chapter 1
Transcription Dynamics: Cellular
Automaton Model of Polymerase
Dynamics for Eukaryotes

Yoichi Nakata, Yoshihiro Ohta, and Youichiro Wada

1.1 Brief Review of Transcription

The cells of living organisms make proteins to reproduce themselves and express
various functions in their activities. The making process of proteins is divided into
two stages. First, a molecular motor called RNA polymerase (in eukaryotes, three
types of RNA polymerases and RNAPII are in charge) recognizes an amino acid
code described by deoxyribonucleic acid (DNA) and duplicates it using ribonucleic
acid (RNA), resulting in the generation of messenger RNA (mRNA). This process
is called transcription. Next, newly synthesized mRNA is decoded by ribosome, and
a sequence of amino acid, namely protein, will be generated (Fig. 1.1).

To respond to both outer and inner stimuli, transcription of required protein
coding gene will get started, terminates once the necessary amount of the proteins
has been created, and the target protein depends on the cell type and situation. In
the previous notion, genomic DNA was considered to move very flexibly during
transcription process. This is because DNA is a linear polymer of alternating
phosphates and sugars, each of which is bound to one of the four types of bases—
20 adenine, cytosine, guanine, and thymine (Figs. 1.2 and 1.3). Triad of nucleic acid
corresponds to a single amino acid, and this is called as codon. In humans, DNA
consists of about 6 billion deoxyribose (i.e., it has 212∗109

bits of data). But only a
tiny percentage of them are used [5].
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Fig. 1.1 Picture of central
dogma. This picture is from
https://www.genome.gov/
about-genomics/fact-sheets/
Transcriptome-Fact-Sheet

If we focus only on the base information, we do not determine which terminal
should be selected as the start point, so it is necessary to determine the order. In
the sugar, each carbon atom is labeled as in Fig. 1.2, and the 5’ and 3’ carbons
are involved in polymerization. The terminal deoxyriboses have 5’ or 3’ carbon
unused for polymerization, which is called 5’-terminal and 3’-terminal, respectively.
The direction of the sequence is determined by the order from 5’- to 3’-terminal.
This is also the orientation of the electrical polarity of DNA. However, it is
noted that this orientation does not always coincide with the actual direction of
RNAP reading DNA during transcription. In a single spice, genomic DNA has
an identical sequence among all the cells and individuals (only immune response-
related cells are exceptions). For chemical stability, the DNA forms a double helix
structure by hydrogen bonding with the complementary strand determined by the
complementary relationship of A-T and G-C. Therefore, DNA sites are counted by

https://www.genome.gov/about-genomics/fact-sheets/Transcriptome-Fact-Sheet
https://www.genome.gov/about-genomics/fact-sheets/Transcriptome-Fact-Sheet
https://www.genome.gov/about-genomics/fact-sheets/Transcriptome-Fact-Sheet
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base pairs. The DNA double helix is stored in a form that wraps around protein
octamers called histone. A set of this histone and the wrapping DNA is called a
nucleosome, and a structure of compacted nucleosomes is called chromatin. Among
chromatins, that of tightly bonded by nucleosomes are called heterochromatin
regions, and conversely, that of loose bonds are called euchromatin regions. In
transcription, euchromatin regions are prone to accept active RNAPIIs.

During cell division, chromatin gathers to form a pair of rods called chromo-
somes. The number of chromosomes varies depending on the organism, but in
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Fig. 1.4 A hierarchy of DNA. (This picture is a modified version of the one from https://www.
genome.gov/about-genomics/fact-sheets/A-Brief-Guide-to-Genomics)

humans, it is known that there are typically 23 pairs of chromosomes. The position
of a base pair in the sequence of DNA is expressed by using chromosomes (Fig. 1.4).

Only a few parts of DNA carry protein sequence code, and it is only 1.5%
in humans. DNA regions involved in the production of specific proteins are
called genes. Approximately, 26,000 genes are known in humans. Furthermore, in
eukaryotes, there are also DNA regions within genes that are independent of the
sequences of the proteins produced along the way. This region is called intron, and
conversely, the region coding protein sequence is called exon. The location of genes,
exon, and intron and the location of chromosomes are specified and databased.

https://www.genome.gov/about-genomics/fact-sheets/A-Brief-Guide-to-Genomics
https://www.genome.gov/about-genomics/fact-sheets/A-Brief-Guide-to-Genomics
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RNAP generates RNA based on all the information in the gene region regardless
of introns or exons, and this preliminary product is called pre-messenger RNA.1

From this product, the parts derived from the intron regions are spliced out at some
timing (in many cases, it is thought that RNAP reaches the exon region from the
intron region). Eventually, the RNA part originated from the exon regions will be
composed, and this is called messenger RNA (mRNA). This editing procedure is
called splicing. Next, the mRNA is chemically treated at both ends so that it can exist
outside the nucleus in order to generate proteins. This is where a straightforward
question emerges. Why is there an inefficient part like intron? It seems to be good
that genes hold only the minimum information necessary to make proteins, and
RNAPII reads the only such codes to create mRNA. One hypothesis is that, when
splicing, the intron-corresponding part and the exon part sandwiched between them
are decomposed together to increase the final product variation. This phenomenon
is called alternatively splicing, and the mRNA in which a part of the generated
exon disappears is called a splice variant. Besides, there are research reports that the
length of introns affects the rhythm of transcription, and as a result, the morphology
of organisms is determined by regulating expression [16].

The information described using four types of sequences A, T, G, and C is
generically called a genome. By 2003, the Human Genome Project revealed all
human genome information. Therefore, anyone can access genome information
from the database. At first, it was thought that all life phenomena could be known
entirely if the genome was known, but it gradually recognized that there were
phenomena that could not be explained by genome information alone.

For example, a queen bee breeds both a worker one and the next generation
queen one, but there is no genomic difference between them. It is known that
only those who have been given a special meal (royal jelly) in childhood can
become queen bees. In addition, for humans born to mothers who became hungry
during pregnancy, there was a statistically significant difference in the prevalence
of lifestyle diseases when children grew up, depending on when hunger occurred
during pregnancy. What is happening to their bodies? Several experiments reveal
that transcription (and function expression) is affected by the replacement of a
specific hydrogen group with a methyl group or an acetyl one in the base moiety
part of the DNA site or histone tails (protein chains growing from each histone).
For example, transcription is suppressed by cytosine methylation of DNA. When a
specific one of the hydrogen group in the 27th amino acid residue in histone tail
of H3 histone (which is known to be lysine) is replaced with a trimethyl group,
DNA is firmly wrapped around a histone, making DNA hard to be involved in
transcription. Conversely, methylation on the 27th amino acid of H3 histone is
replaced with an acetyl group, DNA wrap is weakened, and transcription enhanced.
Note that these modifications happen not in the genome itself because these
modifications do not change DNA sequences. However, DNA modification pattern

1 mRNA is that finally produces proteins. Other RNAs exist and are thought to play an important
role in controlling transcriptional dynamics. However, that is not covered in this book.
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is thought to be as crucial as genomic information because it significantly impacts
transcription. Such a factor affecting transcription other than the genome sequence
itself is called an epigenetic information, namely epigenome. All of the previous
examples are regarded as epigenomic effects. It is known that the epigenome
retains its information during cell division, and the fertilized egg inherits the parent
epigenome, but most of the egg is reset just before the egg begins to differentiate into
various cells. However, it has been found that some of the epigenome information
is not reset by differentiation and is inherited to offspring as a result [23].

From here, let us consider the rough behavior of RNAP during transcription
(RNAPII in the case of eukaryotes). This is a complex composed of 12 subunits
in the nucleus and binds to a promoter region called TATA box motif (literally
including a repeated TATA sequence), locating about 5 kbp upstream of the gene,
and RNAP drifting in the nucleus binds to TATA box binding protein. Both proteins
attract each other, and RNAP finally attaches to the DNA site and begins to move
toward the transcription starting site. After arriving, it starts transcription and moves
on the DNA track while generating pre-mRNA by reading the base information of
DNA. This transcription direction depends on the gene and does not necessarily
match the DNA direction. Sometimes RNAP may move in the opposite direction
with DNA. RNAP terminates transcription when it arrives at the end of the gene
region and desorbs. RNAP again drifts in the nucleus after it leaves the DNA and
until it binds to the protein again. In this model, the movement of single RNAP
is affected by the position of other RNAPs that run in front in addition to the
genome sequence. This is very similar to the movement of a car on the road as
described below. RNAP overtakes, slows down, and sometimes collides. This model
works reasonably well for organisms with simple structures such as prokaryotes. For
example, it has been confirmed that RNAP collides or slows down in prokaryotes
[34, 35]. However, such a model can be applied to lives with simple structures like
prokaryotes. It is known that the dynamics of RNAPII in eukaryotes, including
humans, behave more complicated due to the reasons as follows. First, the genes
of eukaryotes include not only protein-encoding regions (exon) but also introns.
The pre-mRNA regions synthesized from intronic regions degrade rapidly and do
not leave in the mRNA, which is the final product of transcription. Second, several
proteins control the dynamics of RNAPII. Such proteins combine specific sites
on DNA tracks and prevent RNAPII movement physically or help RNAPII attach
to the transcription start site or attach RNAPII for starting transcription [14, 19].
There is a relation between a specific epigenome modification for some DNA sites
and attachment of corresponding transcription factors [12, 17, 20, 21]. Finally, it is
speculated that RNAPII does not exist alone, but a huge protein complex includes
several RNAPII. The interactions that mediate this complex can also occur over long
distances in the genome coordinates [5, 8–10, 29].

In order to create a model that describes the dynamics of RNAPII, we must take
these into account. In the following sections, we will explain what experimental
results have been reported on transcriptional dynamics and what dynamics we make
up based on that.
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1.2 Experimental Result

In this section, we will briefly explain what RNAPII behavior during transcription
has been known by several experimental results before modeling [19, 33, 40]. To
develop an RNAPII transcriptional dynamics model, we need to know the location
of RNAPII. As one method, Wada and Ohta et al. investigated where and how
much RNAPII was currently at some time by measuring the copy number of RNA
fragments, which were recollected from living cells, labeled by fluorescent dyes,
and quantified by 25mer nucleotide probes. This method is called a tiling array.

Formerly, we delivered Tumor Necrosis Factor-alpha (TNF-α), one of the
inflammatory cytokines, to human umbilical vein endothelial cells (HUVECs)
and observed the movement of the generation of nascent RNA by inflammation
stimulation. Based on the previous experiment, we focused on long five genes,
like the SAMD4A gene region for observation because it has good inflammation
responses and sufficient length for observing RNAPII dynamics.

Visualization of nascent RNA generation was done in the specific genes at
intervals of 7.5 min from 0 to 180 min after stimulation (Fig. 1.5). By analyzing
the data, the following was obtained:

Transcription is not constantly performed after stimulation, and there are periods
during which transcription is actively performed, such as waves. It takes about
15 min from stimulation to the first transcription.

At the transcription start point, constitutive active transcription happens, but
many will be terminated before reaching to the end of genes. There is something
like a checkpoint that shuts down RNAP transcription until a stimulus is activated
to activate it.

Fig. 1.5 Time evolution of the distribution of RNAPII on SAMD4A gene
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When there is RNAPII performing transcription in the front, other RNAPIIs near
the rear do not perform transcription.

By examining five representative genes, the transcriptional wave appears to be
traveling at an average speed of approximately 3.1 kb per minute. It does not move
at a uniform speed everywhere but depending on the region. For example, it seems
to go faster in introns and slower in exons. This result has also been reported by
Kolasinska-Zwierz et al. [19] and Schwartz et al. [33].

At the DNA site where a protein called CTCF is bound, the movement speed
of RNAPII becomes slow. This is because CTCF might physically hinder RNAPII,
this is why CTCF localizes the RNAPII migration range. When CTCF was knocked
down, the movement of RNAPII was spread, and it is observed to happen at a place
where transcription should not be expected. It is already known that the presence of
CTCF is confirmed at the boundary of the active transcription region.

Looking at the RNA density profile, the density does not increase or decrease
continuously from the beginning, but an isolated peak at a specific DNA site (around
0) appears over time. Most of those places are in exons, so it seems that it can be
explained by the intron–exon speed ratio, but for that, you have to set a very high-
speed ratio. The fact that the first intron does not have such a speed ratio cannot be
ignored.

Recently, it should be noted that next generation sequencer allows us to detect
the position efficiently by identifying the sequences of nucleotide fragments bound
and recollected from specific proteins, including RNAP. The detected localization
of RNAPII was consistent to that of transcription wave.

Further, the authors have reported that the observed “wave of transcription”
was well explained by the presence of a complex called a transcription complex
composed of RNAPII, which had been predicted to exist. The transcription wave
was considered to be generated by the rapid change of the chromatin structure,
which might be caused by transcription complex, the so-called transcription factory.
Here, a mathematical model is constructed based on some of these facts in the
following sections. First, we will explain a mathematical concept called cellular
automaton as a tool.

1.3 Cellular Automaton and Traffic Flow Model

1.3.1 What Is Cellular Automaton?

A cellular automaton (CA) is one of the discrete dynamical systems. It has
discretized states in lattices called cells and updates states of the cells for each
discretized time. In other words, it is the dynamical system in which all dependent
and independent variables (space, time, and states) are discrete. Ulam and von
Neumann first propose the cellular automata concept to solve the self-reproduction
problem of lives. The cellular automata represent complex nonlinear phenomena
even if their update rules are simple.
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The elementary cellular automaton (ECA) is a class of cellular automata with
one-dimensionally configured cells with only two states (0 or 1), and the update of
a cell is determined by itself, one before and after. That is, by denoting t ∈ Z≥0,
j ∈ I (I ⊂ Z is a discrete interval), and ut

j ∈ {0, 1} as the time, the site number
and the state of site number j at time t , respectively, under the assumption of the
initial condition {u0

n}n∈I and the boundary condition, the time evolution of {ut
j } is

expressed as ut+1
j = f (ut

j−1, u
t
j , u

t+1
j ) with a function f : {0, 1}3 → {0, 1}.

Since an ECA is regarded as a partial-difference equation, one needs to determine
a proper boundary condition. Most of the cases, one assumes the Dirichlet boundary
condition ut

j ′ = 0 (j ′ is a boundary of I ) or the periodic one ∃N , ut
j+N = ut

j ∀t ≥ 0.

The amount of functions f (the update rules of ECA) is 223 = 256. We identify
them by integers k := ∑

i,j,k=0,1 f (i, j, k)222i+2j+k . The ECA with integer index
M is called ECA Rule M or ECA M . The behavior of ECA was actively analyzed,
for example, by Wolfram [43]. There are several classifications for them, but the
most common one is as follows [42]:

Class I: Uniform
Class II: Periodical
Class III: Chaotic
Class IV: Complex

The ECAs in classes III and IV show interesting behavior and sometimes exhibit
characteristics of a real system.

An interesting pattern may be drawn when states of cellular automata are
properly arranged at each time and space. For example, the time evolution of ECA
Rule 90 with an initial state where only one point is 1 and the others are 0 is shown
in Fig. 1.6. The time-space pattern is similar to a fractal pattern called a Sierpinski
gasket.

Fig. 1.6 An example of time-space pattern of ECA Rule 90. Black boxes mean ut
j = 1 for these

sites and white ones mean ut
j = 0
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Fig. 1.7 An example of time-space pattern of ECA Rule 30. Triangle patterns seem to appear
randomly

Figure 1.7 shows the space-time pattern of ECA Rule 30 with the same initial
condition. It draws a similar fractal pattern but a more complex one. Interestingly,
this pattern is very similar to that of a shell of the conidae. The question of why
creatures create designs identical to ones in a simplified mathematical model is a
fascinating subject, but it is beyond the scope of this book, so we will stop explaining
here.

We can extend the elementary cellular automata by setting the cell configuration
from a one-dimensional lattice to a higher-dimensional one or expanding the range
of cells to be referenced on an update. We can express more complex natural
phenomena for such extended models, such as solitons (the solitary waves that
preserve their shapes after collision). One of the most famous examples is the
Conway’s life game, whose cells are configured on the two-dimensional lattice (with
a proper boundary condition) and take two states—alive or dead. The state of a cell
is updated using the following rules depending on the state of itself and those of its
eight neighboring cells (Fig. 1.8):

• If the cell is alive, the next state is alive only if there are just two or three cells
alive.

• If the cell is dead, the next state is alive only if there are just two cells alive.
• Otherwise, the next state of the cell is dead.

This rule indicates that life cannot survive alone but requires the cooperation of
others. However, it also cannot survive if there are too many others around because
they compete for limited resources. This exquisite balance of survival and death
conditions creates a variety of patterns (Fig. 1.9).

Conway’s life game (as well as most general cellular automata as a whole) is
a good target for programming practice. It is a good study to write a program
emulating the time evolution of the system by yourself. We will cite Golly (http://
golly.sourceforge.net) as a ready-made program for the life game (Golly itself can

http://golly.sourceforge.net
http://golly.sourceforge.net
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Fig. 1.8 The next state at the gray cell in the center is determined by eight surrounding neighbor
sites in the figure

Fig. 1.9 A state of Conway’s life game. The black cells mean alive and white cells mean dead

calculate time evolutions of more cellular automata). Anyway, when you have a
program that describes the development rules for life games in some form, you can
confirm that the system shows really fertile behavior when you start the simulation
with appropriate initial values.
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Due to this time evolution rule, the life game makes patterns that change
periodically, translate while changing their shapes periodically, or regularly generate
such parallel movement ones. By setting the initial state properly, one can express
logic gates. Therefore, the life game can be a universal Turing machine.

Unlike the models using differential equations, it is very suitable with computer
simulation because there is no discretization error or numerical error in simulation.
It is possible to calculate quickly for improving calculation accuracy is unnecessary.
Then, cellular automata models are often adopted to reproduce natural phenomena
by computer simulations. One of the typical examples is the traffic flow model
described in the next section.

Finally, the relationship between the phenomena by the CA and the similar ones
by the differential equations is an interesting problem. Actually, this is one of the
questions suggested by Wolfram. As one of the answers, it is known that we can
derive the time evolution equation of a CA from a well-discretized differential
equation by the limiting procedure called ultradiscretization [37].

1.3.2 Traffic Flow Cellular Automaton

Now, let us go back to ECA. We focus on ECA Rule 184. We note that there is no
dependency of ut

j−1 to determine ut+1
j when ut

j = 1 and ut+1
j = 0 when ut

j−1 =
ut

j = ut
j+1 = 0. By these facts, we can determine the update of the system even if it

has an infinite amount of sites by setting an initial condition as ut
j = 0 for |j | 
 1.

Then, by interpreting that the sites are sequential boxes and each box has a ball
if ut

j = 1 for time t and j -th box and no balls if ut
j = 0, we can rewrite the time

evolution rule of ECA 184 as follows (Fig. 1.10):

• All balls are moving to the orientation that increases j .
• If there are no other balls at the next box, the ball moves there.
• If there is another ball at the next box, the ball stays.
• The next state is that by applying these rules above once for all sites.

Generally, the order to apply this update rule is very important, as such models. We
apply this at the same time for all balls (remember the definition of the ECA update
rule). That is, a ball cannot enter the next site simultaneously even if it is going to be
empty by another ball leaving. This model is known as the simplest one to express
traffic jams. The rule that one box can contain at most one ball corresponds to the
exclusive volume effect. The traffic jam is finally solved when the number of balls
(cars) is less than half of that of sites and never solved if more.
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Fig. 1.10 Time evolution of ECA 184

There are several ways to express f explicitly, but the physically meaningful
expression is, for example,

ut+1
n = ut

n +min(1− ut
n, u

t
n−1)−min(1− ut

n+1, u
t
n). (1.1)

Transforming this equation, we have

ut+1
n − ut

n = min(1− ut
n, u

t
n−1)−min(1− ut

n+1, u
t
n). (1.2)

Note that max(1− ut
n, u

t
n−1) expresses the number of moving particles from n− 1

to n. The right-hand side means the total change of the number of balls at j . On the
other hand, the left-hand side means the time change of the number of balls. There-
fore, this expression is a CA analog of the equation of continuity in fluid dynamics.
ECA 184 is obtained by the limiting procedure called “ultradiscretization” from
a proper discretization of the Burgers’ equation, which is a differential equation
model expressing traffic jam (and originally proposed to represent shock waves in
the compressed fluid) [25].

Now, we introduce a stochastic factor. Let p be a given parameter satisfying
(0 < p < 1). Each particle moves to the next site at probability p if possible.
This model is called the Totally Asymmetric Simple Exclusion Process (TASEP).
Recently, the mathematical model based on TASEP is often employed to solve traffic
jam problems. By introducing stochastic i.i.d. variables {Ut

n}t≥0,n∈Z that take 1 at
probability p and 0 at 1 − p and modifying the update rule (1.1), the time update
rule of TASEP is expressed as

ut+1
n = ut

n +max(1− ut
n, u

t
n−1, U

t
n)−max(1− ut

n+1, u
t
n, U

t
n+1). (1.3)

There are several ways to extend TASEP. For example, a ball can go to the second
next site, or the moving probability depends on the distance of the next ball. By
these extensions, we can have nearer expressions of the dynamics of real cars. For
the extended CA models, a smooth traffic state becomes a metastable one when the
number of cars is larger, and with a little perturbation, this state suddenly breaks,
and the traffic jam finally occurs. This is considered as the mechanism of traffic jams
occurring.
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Fig. 1.11 Fundamental diagram of TASEP

Due to the observation above, the state of TASEP finally goes to a relaxed state.
We define the flux of finite site TASEP as the average of moving balls per site (that
is,
∑

max(ut
j , 1−ut

j+1)/N ) in the relaxed state. The graph of density of balls versus
flux is called the “fundamental diagram,” which is one of the most important pieces
of information to understand the behavior of a model. For example, TASEP under
the periodical boundary condition is expressed as Fig. 1.11. As referred before, if
the number of balls is small, the traffic jam is finally solved, and all balls must
move for each time evolution when sufficiently large time passed. Then, the flux
is increasing monotonically depending on the density of particles. However, if the
number of particles becomes larger, there are jams never solved. The number of jam
trapped balls becomes larger as the density increased. Then, the flux is decreasing
monotonically. In general, by denoting the number of sites and balls N and M ,
the density ρ = M/N and the moving probability p and taking limit M,N →
∞ to preserve M/N is constant, the flux is expressed as 1−√1−4pρ(1−ρ)

2 [30] and
especially max(ρ, 1− ρ) as the limit p→ 1[25].

We can also set another boundary condition in which j = 0 and L are boundaries,
and one injects a ball with probability α (0 ≤ α ≤ 1) at j = 0 if there are no balls,
and one removes a ball with probability β (0 ≤ β ≤ 1) at j = L if there is a
ball. Under this boundary condition, the system is known to have three phases of
the flow—low density (LD), high density (HD), and flux maximized flow (MC).

There are two ways to explain the dynamics of TASEP: the view of the balls
and the view of fields. Following the theory of fluid mechanics, we call the
dynamics expression of the former viewpoint “Lagrangian representation” and the
latter “Eulerian representation.” In the infinite ECA Rule 184, denoting the position
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of k-th ball at time t xt
k , one can obviously write down the time evolution rule

xt+1
k = xt

k + min(1, xt
k+1 − xt

k − 1). Here, it should be noted that the direction
of movement is unique, and no particles overtake others. Due to these properties
and the identity of the max calculation, we can directly relate these two dynamics
representations [18].

1.4 Cellular Automaton Model of Transcription Dynamics

In this section, we introduce an RNAPII dynamics model by virtue of the experi-
mental results described in section 1.2. Remember that RNAPII attaches DNA at
the transcription starting site and starts transcription. Then, we coarse-grain target
DNA track to a finite amount of sequential sites employ TASEP as a basic model
for RNAPII dynamics on coarse-grained sites[31, 32].

We also set the stay time of RNAPII at each site [27]. The ball that arrived at
a site has to stay during this time (of course, it still keeps staying after the time
if there is another ball at the next site). This stay time is introduced to consider the
difference of the velocity between introns and exons or due to the proteins that block
RNAPII movement, for example, CTCF/cohesin (Fig. 1.12) [36].

At the given time, the ball is injected at the start site if it is empty. This means
that the RNAPII free in the nucleus attaches to the start site and starts transcription.

We set a region including SAMD4A and its neighbor as the target region and the
size of cell 35 bp. This size corresponds to the size of one RNAPII.

Before the numerical simulations, let us first imagine what phenomena can occur.
Hereafter, for ease, we employ only the velocity difference between introns and
exons and consider the semi-infinite system with the left side boundary. For such
a system, we can explain the dynamics by introducing time τ k

j as the time when
k-th injected balls arrive at site j . (Note that let xt

k be the position of k-th ball at
time t , xt

k = j , while τ k
j ≤ t ≤ τ k

j+1 − 1.) Then, the dynamics is written in

τ k
j+1 = max(τ k

j + γj , τ
k−2
j+1 + γj+1 + 2), where γj is the minimum stay time at site

j . By using τ k
j , the time of k-th ball spent for staying site j is τ k

j+1 − τ k
j and the

time interval between when k − 1-th ball arrives at site j and k-th ball arrives there
is τ k

j − τ k−1
j . For the boundary condition, {τ k

0 }k∈N is given. For the ECA Rule 184,
γj is identically equal to 1, which generates the trivial dynamics with no collision.
To generate other states except for the free flow, one should employ the mechanism
to stop the balls. In this system, the jam can occur when the latter ball at the intron
site catches up with the former one at the first exon site due to the velocity gap.

Let us consider the dynamics only of k − 1-th and k-th balls and their interval
under the assumption that k−1-th ball never collides k−2-th ball since their interval
is sufficiently long.

If these two balls are both in an intron and they are adjacent, the k-th one has to
wait for one step until the next ball leaves. However, such a situation cannot happen
unless all forward sites are occupied due to an existing jam. Therefore, under the
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Fig. 1.12 Picture of the traffic flow model with staying time. Exon regions and intron regions
appear alternatively and the staying time in exon regions is longer than that in intron ones

assumption, the balls can form only the free flow, and by setting τ k
j − τ k−1

j = T at

site j , we have τ k
j+1 − τ k−1

j+1 = T .

If two adjacent balls are both in an exon region, one should hold τ k−1
j+1 < τk

j

because the latter ball can move to the next site after the former one leaves there.
Then, the k − 1-th ball first spends the stay time, and k-th one can be adjacent, but
the k − 1-th one moves and creates a vacant space, while k-th one waits for its own
waiting time. Then, it never happens that k-th ball cannot move because of k − 1-
th one. That means that there is only free flow in the exon regions. Especially, in
the case that k-th ball moves the site immediately after k − 1-th one leaves, that is,
τ k−1
j+1+1 = τ k

j holds, we have τ k
j −τ k−1

j = γe. In the case that k−1-th is in an intron
and k-th is in an exon, k − 1-th moves first, and the site becomes vacant. Then, it
forms a free flow. The jam can occur only in the case k− 1-th is in an exon and k-th
is in an intron. The time interval preserves if that in the first intron region τ k

0 − τ k−1
0

is more than γe. If not, two balls collide and final time interval becomes γe and the
k-th ball extra waiting time γe = (τ k

0 − τ k−1
0 ) reduces the time interval of k-th and

k + 1-th ball τ k+1
0 − τ k

0 to τ k+1
0 − τ k

0 − γe + (τ k
0 − τ k−1

0 ) = τ k+1
0 − τ k−1

0 − γe. For
such a case, we can determine that k-th and k+ 1-th balls collide with the signature
of τ k+1

0 − τ k
0 − (τ k

0 − τ k−1
0 − γe) instead of τ k+1

0 − τ k
0 . Generally, the condition that
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Fig. 1.13 Numerical simulation result of Ohta’s cellular automaton model [27]. Colors express
the density of RNAPII. Blue regions mean that they are not clouded, and red ones mean that they
are clouded

the latter m balls get involved with traffics jams because k-th one overstays at the
intron–exon boundary is written in τ k+m

0 − τ k
0 − (m− 1)γe.

Due to the discussion above, if the number of particles is sufficiently small for
the number of sites since the traffic jam can occur only in the boundary from the first
intron and first exon and the balls after passing this boundary form the free flow, the
traffic jam is finally solved.

We can apply similar discussion when there are three types of staying times. The
bottleneck appears in the site with the maximal staying sites, and there are no factors
that make jams after there.

In [27], the authors introduce periodic boundary condition because it is exper-
imentally known that the transcription start site and the end site are spatially
close at the active transcription regions and the RNAPII that finished transcription
immediately attaches to the start site and starts transcription again. Figure 1.13 is the
numerical simulation results, which match that discussed above because the target
gene is sufficiently long.

Finally, we explain a model including RNAPII distribution gaps at introns. As
described before, it cannot be explained only by the velocity difference between
exons and introns. We have considered the system on the one-dimensional DNA
track. However, since the real DNA is in the three-dimensional space and the track
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Fig. 1.14 Concept picture of the path-preference cellular automaton model. By being bound by
CTCF, some regions of DNA form a ring shape. In such regions, transcriptionally active parts of
the DNA, such as exons, are further bound to be spatially close to each other, and RNAPII is free
to move through them by spatial diffusion effects

can bend as necessary, it can be possible that two distant sites on the DNA track are
spatially close. Therefore, for such sites, one can consider that RNAPII shortcuts by
virtue of the diffusion effects or through protein complexes [1].

The authors also proposed a model that enables RNAPII to jump from the end
of an exon to the top of the next exon in each gene (Fig. 1.14) [28]. This effect can
explain the splicing effects well because transcription products in skipped regions
are not degraded but are ever not generated. Furthermore, by changing the target
of jumping to the top of other exon regions, one can naturally explain the splicing
variants.

The model is basically the same as that proposed before; that is, we consider
the traffic flow cellular automaton model with finite amounts of balls and sites and
the periodic boundary conditions. Each site is exon or intron. Due to the boundary
condition, the number of exonic and intronic regions is the same, and we define the
number K . We denote the top and the end of k-th exon as ιk−1 and εk , respectively
(we consider the index by modulo K). Without loss of generality, we can set ιK = 1.
We also assume that no more balls are injected after time evolution started in this
system.

The basic time evolution rule of the balls is the same as ECA Rule 184, and we
do not consider the velocity difference due to exon or intron regions and the proteins
binding DNA sites. That is, in all sites, a ball moves to the next site if it is vacant.
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Next, we also introduce the jump effect to this model. The ball at j = εk moves to
j = ιk with probability p and moves to the next site j = εk + 1 by the ECA Rule
184 if the jump fails (probability 1− p or there is another ball at j = ιk) and stays
if there is another ball at the next site in addition to the jump failure. In general,
we must first set the ordering to the destinations in the case that several balls are
moving to the same site. In this model, we employ the prior for the jumping.

The authors also numerically simulated this model and plot distributions of
RNAPII position after sufficient time passed and confirmed the distant peaks. They
conclude that there is a diffusion effect because of DNA spatial closeness. Such
closeness by RNAPII complexes is already proposed as the name of transcription
factory [1, 5, 6, 15, 22, 41, 44].

Let us consider the simplest model with 1-exon and intron and p = 1 (that is, the
ball at j = εk can jump to j = ιk if it is vacant). In this model, we can observe a
very interesting phenomenon. By calculating the fundamental diagram in the intron
region, one finds a non-continuous gap as the number of balls is increasing, and
this phenomenon is weakened by strengthening the stochastic effect. The path-
preference model is a special case of traffic flow models with bifurcation and
confluence. For such models, it is known that such gaps appear in the fundamental
diagram [2]. In the path-preference model, we can obtain the exact flow after
sufficient time passed by watching the trajectory [24].

In the exon region, only one pair of continuous vacant sites (we call this a notch)
exists, and balls and empty sites appear alternately in other sites. Several clusters of
balls and empty sites appear alternately exist in the intronic region, and other sites
are vacant. In the case that there are one cluster and one notch, the system behaves
time periodically and the flow is exactly obtained by

〈Js〉 = 1

T

t0+T−1∑

t=t0

1

Ns − 1

N−1∑

j=Nm+1

f (j, j + 1) = Q

T
= 2M −Nm + 1

2(2M + 1)
. (1.4)

However, if the length of the cluster M is less than Nm/2, the notch arrives at the end
of exon before the top of the cluster arrives at the end of the intron. And the notch
goes around in the exon again, which changes the periodic orbit pattern. Generally,
the condition where the notch goes around exon γ times before the top of the cluster
arrives at the end of the intron is written in

Ns − (γ − 1)Nm

2
≤ M <

Ns − (γ − 2)Nm

2
, (1.5)

and the flow is expressed as 〈J 〉 = (2M − Nm + 1)/2/(2M + (γ − 1)Nm + 1).
Surprisingly, under the condition that the number of balls satisfies, the flow takes
the same values even if the details of the dynamics behave different. For example,
if γ = 2, the time-space pattern of the system behaves like Fig. 1.15, in which
there are one notch and two clusters. Therefore, we can conclude that there exist
one notch and two clusters if the number of balls satisfies (1.5) because one of the
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t

j

Fig. 1.15 A space-time pattern of the path-preference cellular automaton model. Two clusters of
balls travel on the intronic region

clusters has no balls. Anyway, by observing a time-space pattern of periodic orbits,
we can calculate the exact value of the flow.

We confirmed that there could be more complicated states with several notches
with the same number of balls by setting initial states properly. Such states
are established on delicate balances. Then they easily break down with little
perturbation such as stochastic effects and reduce to the simpler states explained
above.

In this section, we have explained the dynamics of the RNAPII cellular automa-
ton model suggested by Ohta et al. Here, we note that there are other cellular
automaton models to explain the dynamics of RNAPII, for example, [3, 4, 13, 26,
38, 39].

Recently, it is believed that the chromatin structure plays an important role
in transcription and detecting chromatin structure to understand the transcription
mechanics is actively studied. However, it is very difficult to directly observe the
chromatin structure, which is the blob of the DNA chain and folding proteins.
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The original purpose of authors’ model is to explain to construct a model
that explains the spatial proximity of distant sites on DNA coordinates during
transcription through the movement of RNAPII with a cellular automaton method.
However, it has also been found that this model is insufficient to grasp the spatial
structure itself directly. One should adopt a more direct approach to capture a
dynamical chromatin structure.

One of the major technologies to capture the chromatin structure is to hybridize
a specific DNA site with fluorescence labeled probes (3D-FISH method). This
approach can observe the structure directly and apply to living cells but only obtain
spatial positions of some specific (hybridized) sites. Another method is to aggregate
proteins with DNA fragments that contribute to the spatial connection of distant
chromatin sites and to detect binding DNA sites from the sequences of the fragments
[11]. This method can obtain the connection data of the whole genome, but the data
indicate only the adjacency of two chromatin sites and the average of millions of
cells due to the experimental method requirement. Therefore, one has to propose a
physical or statistical model to guess the chromatin structure from the data [7] and
then evaluates whether the estimated structure is correct by the 3D-FISH method.
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Chapter 2
Angiogenesis: Dynamics of Endothelial
Cells in Sprouting and Bifurcation

Hiroki Kurihara, Jun Mada, Tetsuji Tokihiro, Kazuo Tonami,
Toshiyuki Ushijima, and Fumitaka Yura

2.1 Angiogenesis: A Biological Overview

2.1.1 Introduction

The establishment of systemic circulation is essential for the growth and mainte-
nance of many multicellular organisms by providing oxygen and nutrients through-
out the body. In vertebrates, systemic circulation is driven by the heart and blood
vessels, which constitute closed and continuous luminal networks containing blood.
While the heart acts as a pump with the systole–diastole cycle, blood vessels serve
as a resilient conduit for circulating blood. Arteries and veins are usually comprised
of three layers: tunica intima, tunica media, and tunica adventitia. Among them,
the innermost tunica intima is comprised of a single-cell layer of endothelial cells
(ECs). ECs also form capillaries between arteries and veins to serve as the site of
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Fig. 2.1 Vasculogenesis and angiogenesis: two distinct processes to build vascular network in
embryogenesis

gas and nutrient exchange. Thus, ECs are the only component of blood vessels that
directly interacts with blood components.

Blood vessels are first formed as a luminal network of ECs during embryonic
development via two distinct processes: vasculogenesis and angiogenesis[14, 45, 68]
(Fig. 2.1). Vasculogenesis is a process in which ECs differentiate from mesodermal
precursors in a previously avascular area to form a de novo vascular network. This
event first occurs in blood islands of the yolk sac in association with primitive
hematopoiesis, where mesoderm-derived hemangioblasts differentiate into ECs and
red blood cells in the outer and inner layers, respectively. The outer endothelial sacs
coalesce with each other to form the primitive vascular plexus. Vasculogenesis sub-
sequently occurs in the embryonic body to produce two trunk axial vessels: the aorta
and the posterior cardinal vein. Angiogenesis is the subsequent process to extend
blood vessel networks by sprouting and intussusception from preexisting vessels.
Following angiogenesis, newly formed vascular networks undergo remodeling, in
which mural cells including smooth muscle cells and pericytes are recruited around
a part of vessels to generate thick vessels and then arteriovenous connections are
established. Besides embryonic development, angiogenesis occurs in response to
tissue ischemia or increased oxygen demand during inflammation, wound healing,
menstrual cycle, and so on. Tumor-associated angiogenesis is referred to as “tumor
angiogenesis” and is a potential therapeutic target in many kinds of tumors [14, 30].

Hypoxia is among the major inducers of angiogenesis. When oxygen supply
is decreased or oxygen demand is increased, the intracellular hypoxia-sensing
mechanism is activated and hypoxia-inducible factor (HIF)-1α is accumulated in
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the cytoplasm, which is then translocated into the nucleus to induce transcriptional
upregulation of vascular endothelial growth factor (VEGF), the most important
angiogenic factor[27]. Several different members of the VEGF family bind three
receptors with tyrosine kinase activity: VEGF receptor 1, 2, and 3 (VEGFR1,
VEGFR2, and VEGFR3). The VEGF-A/VEGFR2 pathway plays a central role in
not only physiological but also pathological angiogenesis. Binding of VEGF-A to
VEGFR2 causes receptor homodimerization followed by autophosphorylation of
tyrosine residues in the tyrosine kinase domain, which triggers the activation of
mitogen-activated protein kinase (MAPK) and phosphoinositide-3-kinase (PI3K)-
Akt/protein kinase B (PKB) pathways, leading to EC proliferation, migration,
and survival[29, 66] (Fig. 2.2). Other factors that promote angiogenesis include
fibroblast growth factors and angiopoietins, the receptors of which also possess the
tyrosine kinase domain[47]. On the other hand, several factors such as angiostatin,
endostatin, and thrombospondins exert inhibitory effects on angiogenesis[14, 45,
68]. The balance between these angiogenic promoters and inhibitors regulates
EC migration toward avascular area and thereby the processes of angiogenesis in
various situations.

2.1.2 Mechanisms Involved in Cell Migration

It might be worthwhile here to describe how cell migration is driven for readers
unfamiliar to cell biology. In animals, many cells migrate by crawling on the sub-
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stratum (extracellular matrices) in response to various factors such as chemotactic
substances. For example, leukocytes and macrophages migrate toward infection
sites to attack pathogens as a part of the immune response. The process of migration
can be dissected into several steps (Fig. 2.3a, b). (i) At the leading edge, two actin
filament-dependent structures, filopodia and lamellipodia, are formed mainly by
the activation of the Rho-family small GTP-binding proteins (G-proteins) Cdc42
and Rac1, respectively, and extend forward (protrusion). (ii) Then, the protruding
actin filaments are anchored to the substratum through integrin-mediated focal
adhesions (attachment). (iii) In the trailing cytoplasm, activation of RhoA, another
member of the Rho-family small G-protein, leads to stress fiber formation and
contraction of actomyosin, thereby drawing cytoplasm forward (traction). (iv) Focal
adhesions at the trailing edge are then destabilized and detached from the substratum
(detachment). These steps are integrated into the migration cycle (Fig. 2.3b), which
takes place repeatedly to generate forward movement. For details, the readers are
referred to Refs.[9, 18, 44].

2.1.3 Endothelial Cell Behaviors During Angiogenesis

From the viewpoint of cellular behaviors, angiogenesis can be regarded as a
morphogenetic process driven by collective cell migration [17, 46]. When angio-
genic stimuli such as VEGF-A act on the endothelial layer of preexisting vessels,
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selected cells respond to them by degrading the basal lamina and forming filopodial
membrane protrusions to start chemotactic migration (Fig. 2.4). These cells act as tip
cells, which have been supposed to lead angiogenic sprouting at the tip of elongating
branches[23]. In addition to filopodial formation, VEGF-A activates the formation
of lamellipodia through the VEGFR2–Rac1 pathway to promote migration[21, 53].
Tip cells further express the Notch receptor ligand Delta-like 4 (Dll4) through
the VEGF-A/VEGFR2 signaling, which then acts on adjacent Notch-expressing
cells to suppress tip cell activity and adopt stalk cell behavior trailing the tip cell
in angiogenic sprouting[25, 37]. The dichotomous roles of tip and stalk cells are
reminiscent of those of leader and follower cells in various types of collective cell
migration, such as in the zebrafish lateral line primordium and Drosophila border
cells [17, 46].

However, the reality is that the cellular behavior during angiogenesis is much
more dynamic and complex. Two research groups including ours have reported
characteristic EC movement visualized using time-lapse microscopic imaging[5,
28]. In in vitro angiogenesis models of mouse aortic ring assay[5] and embryoid
body sprouts[28], ECs move with different speeds, forward and backward, and
change their relative positional relationships to each other throughout sprouting
and elongating branches (Fig. 2.5). Tip cells are constantly replaced by fast-moving
followers overtaking other ECs, resulting in a mixture of cell population constituting
the elongating branches. This cell-mixing phenomenon was also confirmed in
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developing murine retinal vessels in vivo, indicating that it is physiologically
relevant[5, 28].

In competition to occupy the tip cell position, ECs with high VEGFR2 and
low VEGFR1 levels have been shown to be preferentially selected and the newly
positioned tip cells express Dll4 in response to VEGF-A, which then re-establishes
tip–stalk specification involving neighbors through the VEGFR-Dll4-Notch signal-
ing circuit[28]. VEGF stimulates directed migration of tip cells without changing
the frequency of overtaking, which is counteracted by Dll4-Notch signaling [5]. The
directional elongation of EC sprouts is enhanced by the recruitment of mural cells,
including smooth muscle cells and pericytes, through a Notch or other γ -secretase-
dependent mechanism, which is likely coupled with decreased tip cell overtaking
and retrograde movement[5].

As we have described, time-lapse live imaging has shown heterogenous, seem-
ingly random EC movements during sprouting and branching morphogenesis. It
is an open question how such complex multicellular behaviors are integrated into
the formation of ordered architectures like blood vessels. One-dimensional agent-
based mathematical modeling demonstrated that cell-autonomous EC movements,
represented as a process driven by a simple stochastic transition among different
states in terms of cell velocity, could recapitulate branch elongation[57]. However,
tip cell behaviors could not be sufficiently explained by the cell-autonomous process
alone. Instead, a coordinated mode of tip–follower interaction might be required for
the forward tip motility. This prediction was biologically verified by different sets of
experiments in in vitro aortic ring assay and in vivo zebrafish angiogenesis[57]. In
addition, branching off from preexisting vessel-like structures is likely dependent
on the regional cell density (our unpublished observation). These observations
indicate that some deterministic processes based on intercellular interactions may be
operating behind the random-appearing movements in branching morphogenesis.
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2.1.4 Cell-to-Cell Junction Proteins as a Modulator
of Angiogenesis

Intercellular interactions are primarily mediated by direct cell-to-cell contact
through various junctions or the release of humoral factors. In epithelial tissues such
as the vascular endothelium, cadherins, Ca2+-dependent cell adhesion molecules,
form adherens junctions to stabilize the sheet structure and communicate with
each other [42, 59]. Vascular endothelial (VE)-cadherin was first identified and
characterized as an EC-specific member of the cadherin family, which is supposed
to contribute to the vascular barrier function by constituting the endothelial adherens
junction by homophilic interactions[33, 58, 61] (Fig. 2.6). The N-terminal region
of VE-cadherin is comprised of five tandem extracellular cadherin (EC) domains,
which mediate high-affinity homodimerization via trans-interaction and low-affinity
assembly via cis-interaction in the adherens junction[10, 32, 63]. In the C-terminal
intracellular region, VE-cadherin binds to p120- and α/β-catenins, which control
cadherin trafficking and mediate attachment to actin filaments, respectively[32, 63].

VE-cadherin has proved indispensable for vascular development and
morphogenesis, as revealed by experiments in which it was genetically inactivated
in mouse embryonic stem (ES) cells[13, 24, 64]. VE-cadherin-deficient ECs failed
to form vessel-like structures in ES cell-derived embryoid bodies[64]. VE-cadherin-
deficient mice exhibited embryonic lethality with disorganized vasculature due to
remodeling defects[13, 24]. Accompanying EC apoptosis indicates the role of
VE-cadherin in endothelial survival[13]. On the contrary, a moderate decrease
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Fig. 2.6 Structure of VE-cadherin (a) and its localization in the endothelial cell adherens junction
revealed by immunostaining (b)
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in VE-cadherin expression results in hypersprouting due to failure to suppress
VEGFR2/Rac1-dependent sprout formation[1, 19]. Thus, modulation of VE-
cadherin function is critical for appropriate angiogenesis.

Crosstalk between VE-cadherin and VEGFR2 is well-known to play an impor-
tant role in the regulation of angiogenesis. VE-cadherin associates with VEGFR2
to attenuate its downstream signaling through changes in the phosphorylation
state[34, 35]. Conversely, VEGFR2/Rac1 signaling stimulates the phosphorylation
of VE-cadherin by p21-activated kinase 1 (PAK1), which then recruits β-arrestin2
and promotes its clathrin-mediated internalization[22]. This β-arrestin2-dependent
VE-cadherin endocytosis leads to increased endothelial permeability. In the context
of angiogenesis, VEGFR2/Rac1 signaling causes a relative decrease in junc-
tional VE-cadherin due to cell shape change, thereby triggering the formation
of junction-associated intermittent lamellipodia (JAIL) under the guidance of the
actin-nucleating WASP/WAVE/ARP2/3 complex[11]. Polarized JAIL formation is
supposed to drive directed cell migration during sprouting angiogenesis. Such VE-
cadherin/VEGFR2 crosstalk, also involving Dll4-Notch signaling in the tip–stalk
interaction, is proposed to generate heterogeneity in EC dynamics, thereby driving
angiogenic morphogenesis[8].

2.1.5 Clinical Significance of Angiogenesis

As mentioned before, angiogenesis not only contributes to the development of
normal tissues but also plays significant roles in various (patho-)physiological
states. For example, uncontrolled angiogenesis is often associated with a number of
diseases such as malignant tumors, diabetic retinopathy, autoimmune diseases, and
endometriosis. Therefore, investigation into the mechanisms of angiogenesis and
therapeutic potential of agents targeting angiogenesis is of great clinical importance.
In particular, tumor angiogenesis, which contributes to tumor growth, invasion, and
metastasis, has attracted much attention[14, 30].

In many kinds of malignant tumors, VEGF expression is upregulated by HIF-
1α, which is accumulated in the cytoplasm and translocated into the nucleus in
response to hypoxia due to an imbalance between oxygen supply and consumption
by excessively growing tumors[12, 14, 40]. As research on angiogenesis progressed,
drug therapy aimed at inhibiting angiogenesis has appeared. In particular, molecular
targeted drugs such as monoclonal antibodies have been developed and widely
applied to clinical practice. Bevacizumab, an anti-VEGF humanized monoclonal
antibody, is the first agent that was used for inhibiting angiogenesis and thereby
suppressing proliferation and metastasis of malignant tumor[16]. Since the first
clinical trial was conducted in the late 1990s, Bevacizumab has been success-
fully applied for the treatment of different types of cancers such as metastatic
colorectal cancer[26], non-small-cell lung cancer[48], renal cancer[67], and breast
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cancer[41] in combination with standard chemotherapy. Thereafter, new drugs
targeting the HIF–VEGF pathway, including VEGFR2-tyrosine kinase inhibitors,
have been developed for antiangiogenic therapy and applied to various types
of cancers[30, 36, 65]. Furthermore, combination of antiangiogenic therapy with
immunotherapy with immune-checkpoint inhibitors, which has recently emerged as
a promising therapeutic approach for the treatment of many cancers, has now opened
a new possibility for cancer treatment[31]. Thus, researches on angiogenesis are of
physiological and pathological significance, contributing to clinical practice in the
treatment of various diseases.

2.2 Modeling by Differential and Difference Equations

In angiogenesis, networks of blood vessels are configured by elongation, bifurca-
tion, and anastomosis of neogenetic vessels. An essence of these behavior is the
collective motion of endothelial cells (ECs), and hence dynamics of the ECs in
angiogenesis is very important to clarify this phenomenon. For this purpose, we
often consider a simple model that represents significant features of the motion.
If we model an EC as a particle, the particles interact with one another and will
follow nonlinear equations of motion. The total system of ECs is expressed by
simultaneous equations of motion, although they would be very different from
those in Newtonian mechanics. In particular, the interactions between ECs are
not spontaneous unlike Newtonian mechanics and we have to take into account
the retardation effects. Then the equations of motion are expressed as difference
equations or differential-difference equations with time delay. If the equations
are linear, the qualitative features of solutions are not so different from the
corresponding differential equations, but if they are nonlinear, we find that the
solutions often exhibit quite different behavior.

Even if we can establish a plausible system of equations, it often becomes very
difficult to analyze them even in numerical methods when the number of particles in
the system becomes very large. Since we cannot treat incalculable number of ECs
that constitute actual blood vessels, we often perform coarse-graining and consider
dynamical equations for some macroscopic quantities such as density of ECs and
average velocity. Then the system is expressed by partial differential equations of
these quantities.

In this section, we briefly review several differential and difference equations
that model typical biological phenomena. We explain the similarity and difference
between continuous models and discrete models with simple biological phenomena.
We do not consider the stochastic equations, which are explained in the next chapter.
Some basic aspects of partial differential equation models are also presented.
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2.2.1 Continuous Model and Discrete Model

In theoretical biology, one of the most fundamental processes is the death–birth
process. The equation for this process is quite simple:

dy

dt
(t) = ay(t), (2.1)

where y(t) is the population of some biological object at time t , and a is a constant.
For example, y(t) is a number (or density) of a bacteria in a petri dish, and a denotes
its increasing rate. Solution to (2.1) is

y(t) = eaty0, (y(0) = y0). (2.2)

Hence the quantity y increases (decreases) exponentially for a > 0 (a < 0). The
discrete version of (2.1) should be given by the following recurrence relation:

yn+1 = (1+ α)yn. (2.3)

Here α = aΔt with the growth rate a and time interval Δt of one time step.
Equation (2.3) is rewritten as

yn+1 − yn

Δt
= ayn.

If we assume that there exists a smooth function y(t) that satisfies y(nΔt) = yn,
then, by Δt → 0, we obtain (2.1). Solution to (2.3) is

yn = (1+ α)ny0. (2.4)

Equation (2.4) shows the exponential growth for α > 0 and exponential decay for
−1 < α < 0. For α < −1, the sequence (yn) takes negative values and we need not
consider this case for the discussion of population. Hence both (2.1) and (2.3) show
essentially the same behavior and there is no qualitative difference.

Although exponential growth may take place in an early stage of population
dynamics, it cannot continue indefinitely. There must be some adjustment to it. A
plausible modification is to incorporate the population dependence in the growth
rate.

dy

dt
(t) = (a − by(t)) y(t) (a, b > 0). (2.5)

The solution to (2.5) is given as

y(t) = ay0

by0 + (a − by0)e−at
, (2.6)



2 Angiogenesis 35

Fig. 2.7 Graphs of solutions
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for y(0) = y0 (Fig. 2.7). A natural discretization of (2.5) is to use the forward
difference as

y(t +Δt)− y(t)

Δt
= (a − by(t)) y(t). (2.7)

By putting t = nΔt and yn := y(nΔt), we have a recurrence equation:

yn+1 = yn + aΔtyn − bΔty2
n

= {1+ aΔt − bΔtyn} yn

= (1+ aΔt)

{

1− bΔt

1+ aΔt
yn

}

yn.

When we rescale yn as xn := bΔt
1+aΔt

yn, we have

xn+1 = α(1− xn)xn. (2.8)

The recurrence equation (2.8) is called the logistic map. For 0 < α ≤ 4, it maps the
closed interval [0, 1] onto itself. For an initial data x1 (0 < x1 < 1), which denotes
initial population, the time evolution patterns strongly depend on the parameter α.

• 0 < α ≤ 1. The sequence (xn) monotonically decreases to 0.
• 1 < α ≤ 2. The sequence (xn) monotonically converges to 1− 1

α
.

• 2 < α ≤ 3. The sequence (xn) oscillates and converges to 1− 1
α

.
• 3 < α ≤ 1 + √6. The sequence (xn) approaches to a periodic oscillation with

period 2.
• 1 + √6 < α < 3.56994567 . . .. The sequence (xn) approaches to a periodic

oscillation with period 4, 8, 16, . . . with increase of the parameter alpha. This
behavior is an example of the so-called period-doubling.
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Fig. 2.8 Behaviors of the Logistic mapping (2.8) for α = 3.5 and 3.7. The values xn (n =
1, 2, . . . , 50) are plotted with initial value x0 = 0.2

Fig. 2.9 The values xn (n = 1, 2, . . . , 100) of the Logistic mapping (2.8) for α = 4 with the initial
value x0 = 0.2

• 3.56994567 . . . < α ≤ 4. The sequence (xn) shows chaos. For almost all
initial conditions, it no longer approaches to oscillations of finite period. Slight
variations in the initial data yield completely different results over time, which is
the basic characteristic of chaos (Fig. 2.8).

The chaotic behavior is explicitly seen in the case of α = 4. By putting x0 = sin2 θ0,
we find that (Fig. 2.9)

x1 = 4 sin2 θ0(1− sin2 θ0)

= sin2 2θ0

x2 = sin2 4θ0

x3 = sin2 8θ0

· · ·
xn = sin2 2nθ0.
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These behaviors are very different from those of the continuous case (2.5).
In general, discretization of nonlinear differential equations often changes the
characteristics of their solutions although that of linear differential equations inherit
their features. It should be noticed, however, that if we consider the following
discretization instead of (2.7):

y(t +Δt)− y(t)

Δt
= (a − by(t +Δt)) y(t), (2.9)

we have the recurrence relation:

xn+1 = αxn(1− xn+1) (2.10)

or equivalently

1

xn+1
= 1+ 1

αxn

. (2.11)

This recurrence relation is easily solved and we have

xn =
(

1− 1

α

){
x0

x0 + α−n(1− x0 − α−1)

}

. (2.12)

The sequence (xn) monotonically converges to 1− 1
α

for α > 1 and to 0 for 0 < α <

1, just as the solutions to (2.5). Thus we see that the behavior of a nonlinear discrete
dynamical system depends on how to discretize its original continuous equation.
Nonlinear dynamical equations we encounter in the investigation of theoretical
biology do not always have analytic solutions and we often employ numerical
simulations. We should give attention to the relation of continuous equations to the
discretized equations used in numerical simulations.

2.2.2 Newtonian Equation of Motion

One of the most well-known and important dynamical systems is that in Newtonian
mechanics. Dynamics of particles is given by second-order differential equations.
One particle dynamics is given as

m
d2x
dt2 (t) = F

(
dx
dt

(t), x(t), t
)

. (2.13)
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Here m is the mass of the particle, x(t) is the position vector of the particle, and
F
(

dx
dt

(t), x(t), t
)

is the force applied to the particle. A typical form of the external
force F is

F
(

dx
dt

(t), x(t), t
)

= −γ
dx
dt

(t)−∇V (x(t))+ Fo(t).

The parameter γ > 0 is the friction coefficient, and the first term on the right-
hand side denotes friction by which the particle reduces its velocity. The function
V (x(t)) is called a potential such as the gravitational and the electric potentials,
∇ := t ( ∂

∂x1
, ∂

∂y
, ∂

∂z
) denotes gradient, and the final term Fo(t) expresses the

other external forces. When the potential is an isotropic harmonic potential with
a coefficient κ > 0:

V (x) = κ

2
‖x‖2

and there is no other external force, the equation of motion is given as

m
d2x
dt2 (t) = −γ

dx
dt

(t)− κx(t).

Its general solution is given as

x(t) =
⎧
⎨

⎩

A1e
−λ1t + A2e

−λ2t (γ > 2m
√

κ)

B1e
−λ0t + B2te

−λ0t (γ = 2m
√

κ)

C1e
−λ0t cos ωt + C2e

−λ0t sin ωt (γ < 2m
√

κ)

,

where

λ0 = γ

2m
, λ1 = γ +√γ 2 − 4κm2

2m
, λ2 = γ −√γ 2 − 4κm2

2m
, ω =

√
4κm2 − γ 2

2m
,

and the constant vectors A1 ∼ C2 are determined by the initial conditions.
For N interacting particles, their motion is usually given by simultaneous

differential equations as

mi

d2xi

dt2 = −γi

dxi

dt
+ Fi +

∑

j �=i

Fij (i = 1, 2, . . . , N). (2.14)
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The first term on the right-hand side denotes the friction, the second term the
external force similar to that in (2.13), and the last term the two-body interactions
among the particles. For example, when the particles have electronic charge, Fij has
the following expression:

Fij = K
qiqj

‖xi − xj‖2 ,

where qi (qj ) is the electronic charge of the ith (j th) particle, and K is a constant
determined by the permittivity of the medium. In most practical settings, the number
of particles N is very large and Eq. (2.14) cannot be solved analytically or even
numerically. If the system is in equilibrium, we can use principles of statistical
mechanics; however, biological system is far from equilibrium and we need another
principle. To establish such a principle is one of the most important subjects
in theoretical biology, and substantial efforts are underway. We shall propose a
mathematical model for the dynamics of endothelial cells in angiogenesis, which
is a discrete analogue of the Newtonian equation with repulsive and attractive two-
body interactions.

2.2.3 Diffusion Equation

Instead of treating numerous particles, we often introduce macroscopic field
variables such as density or flux field. They mostly satisfy some partial differential
equations or partial difference equations. Let us consider particles that move on d-
dimensional square lattices.

A fundamental partial differential equation is the diffusion equation. For two
spatial dimensions, the diffusion equation is given as

∂u

∂t
= D

(
∂2u

∂x2 +
∂2u

∂y2

)

, (2.15)

where u = u(x, y, t) is a density of some particle at position (x, y) and time t , and
D is a positive constant called a diffusion constant. Equation (2.15) describes the
collective motion of random walk particles in a plane. Let us consider random walk
particles on a square lattice. The particle moves from a vertex to one of the four
nearest vertices with equal provability at one time step. When we denote a position
of a vertex by a pair of integers (l,m), a particle at the position (l,m) at time step n

will move to (l±1,m±1) at the next time step n+1. Let the number of particles at
vertex (l,m) at time step n be U(l,m, n). If the number of particles is large enough,
we have an approximate relation as

U(l, m, n+1) = 1

4
{U(l + 1, m, n)+ U(l − 1, m, n)+ U(l, m+ 1, n)+ U(l, m− 1, n)} .
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When the lattice spacing is d and one time step is Δt , then the density of particles at
the position (x, y) := (ld,md) at t = nΔt is given by u(x, y, t) = U(l,m, n)/d2;
hence, we have

u(x, y, t +Δt) = 1

4
{u(x + d, y, t)+ u(x − d, y, t)+ u(x, y + d, t)+ u(x, y − d, t)} .

(2.16)

If u(x, y, t) is smooth in time and space, we can expand in Taylor series as

u(x, y, t +Δt) = u(x, y, t)+ (Δt)
∂u

∂t
(x, y, t)+O((Δt)2)

u(x ± d, y, t) = u(x, y, t)± d
∂u

∂x
(x, y, t)+ d2

2!
∂2u

∂x2
(x, y, t)± d3

3!
∂3u

∂x3
(x, y, t)+O(d4)

u(x, y ± d, t) = u(x, y, t)± d
∂u

∂y
(x, y, t)+ d2

2!
∂2u

∂y2
(x, y, t)± d3

3!
∂3u

∂y3
(x, y, t)+O(d4).

Hence, from (2.16), we have

∂u

∂t
(x, y, t) = d2

Δt

(
∂2u

∂x2 +
∂2u

∂y2

)

+O(Δt)+O(d4/(Δt)).

By fixing d2

Δt
=: D and taking limits d, Δt → 0, we obtain the two-dimensional

diffusion equation (2.15). In the next section, we shall see that continuous limit of a
discrete model for angiogenesis is described by a nonlinear diffusion equation that
has a density-dependent diffusion coefficient.

2.3 Mathematical Model for the Dynamics of Endothelial
Cells in Angiogenesis

2.3.1 Introduction

A lot of models for angiogenesis have been and is being constructed with various
mathematical methods from different point of view [2, 6, 7, 51, 62]. For example,
a hybrid model of cell migration on an elastic matrix of fibers[55], a mesoscopic
lattice-based stochastic model in relation to deterministic continuous models[54],
and a phase-field continuous model of sprouting angiogenesis described by compact
partial differential equations[49] were proposed recently. Most models, single-
cell-based models[3] in particular, mainly concern the pattern formation of vessel
networks where chemoattractant gradient and chemotaxis of ECs play essential
roles [15, 20, 50]. As for the experimental results in the dynamics of ECs along
an elongating branch, which are shown in the previous sections, a stochastic
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four-state model and the corresponding differential equation model have been
discussed[56]. In this section, we consider a simple mathematical model to explain
the dynamics of ECs in the early stage of angiogenesis and show that it reproduces
the cell-mixing behavior, elongation, and bifurcation of vessels without chemotaxis
because no gradient of angiogenic factors such as vascular endothelial growth
factor (VEGF) is required for branching morphogenesis in the experimental settings
stated in the previous section. In the modeling angiogenesis, it is practically
impossible to take all the factors into account even for its early stage of sprouting
vessels, because it is quite a complex multicellular process; we have to consider
individual and heterogenous shapes of ECs, interactions with extracellular organic
materials, variety of chemical and biological reactions, time delay to the responses,
fluctuations due to the environment of ECs, and so on. Instead we focus on the
effects of the cell-to-cell interaction that we conjecture essential in the cell-mixing
phenomenon, elongation and bifurcation, and show that deterministic two-body
interaction between ECs plays an essential role in the cell-mixing effect. First,
based on the investigation reported in [39], we consider a simple discrete dynamical
system consisting of particles and paths that represent ECs and primary vessels,
respectively. The particles with two-body interaction are supposed to move along the
paths. Since interactions between particles are not instantaneous because they are
caused by biochemical reactions with retardation effects, the positions and velocities
of the particles are updated in discrete time steps in our mathematical model.
Elongation and bifurcation of paths are determined by certain rules determined by
the density and pressure of ECs at a tip. We do not incorporate stochastic fluctuation
into the EC dynamics here. Stochastic fluctuation in EC dynamics may have some
importance in quantitative analysis and it is straightforward to take it into our model.
A continuous mathematical model described by differential equations, which was
reported in [38], is also shown as an approximation of the discrete dynamical model.

2.3.2 Discrete Model for EC Dynamics

As described in the previous section (Sect. 2.1), we model the dynamics of ECs in
sprouting blood vessels from murine aortic rings embedded and cultured in collagen
gel placed in a shallow petri dish. The system is essentially two-dimensional, and
the neogenetic vessels (primary blood vessels) of a branch are supposed not to have
lumen yet and not to carry blood nor lymph. We neglect the effects of anastomosis
(reconstruction of vessels) and cell division of ECs in neogenetic vessels. Actually
cell division is rarely observed in the time span of the experiment (∼5% a day),
although it becomes nonnegligible as the vascular network develops considerably.
We estimate its effect on vascular networks in the next subsection with an analytic
continuous model. ECs are supplied from the basal sheet around the aortic explants,
where cells seem to be relatively active in proliferation. Hence the vascular network
may be treated as a tree graph on a plane that develops in time, and the ECs are
regarded as particles immigrating on the graph. The particles are supposed to be



42 H. Kurihara et al.

supplied from the origin of the tree graph. The actual vessels, however, have spatial
structures; they are wide near the root and thin at the tip. In the present model, we
consider that the density of particles positively correlates with width of a vessel,
that is, if the density of ECs in a branch is high, then the corresponding vessel is
considered to be thick.

Let us consider the formation of one of the newly generated blood vessel
networks that arise from the aortic ring and discuss the dynamics of ECs that also
describes elongation and bifurcation of the vessel. We suppose that there is no
neogenetic vessel around the aortic ring at the initial time t = 0 and a new blood
vessel sprouts in a certain direction according to the supply of ECs for t > 0. The
nth (n ∈ Z≥0) EC comes to the origin of this neogenetic vessel network at time step
t =∑n

i=1 ai with an initial velocity vini(n) ≥ 0, where ai ∈ Z+ is the time interval
between the incidence of ith EC and that of (i − 1)th EC. For the time being, we
consider the dynamics of ECs only in the first neogenetic vessel and concentrate
on the effects of two-body interactions between ECs in a branch. Elongation and
bifurcation of vessels will be discussed in the next subsection. Although interactions
among ECs are quite complicated and have not been well-elucidated, it is plausible
to consider that direct contact of their membranes gives rise to the activation of
chemical channels or mechanical driving force of ECs. For short distance, the
interaction force will turn out to be repulsive due to excluded volume effect, while it
will turn out to be attractive if the distance becomes larger because of the interaction
with pseudopodia. Thus the mathematical model we investigate here is given as

xt+1
n = xt

n + vt
n (2.17)

vt+1
n − vt

n = −γ vt
n +

∑

k �=n

F (xt
n − xt

k), (2.18)

where xt
n ≥ 0 is the position of the nth EC measured from the origin at time step

t ∈ Z≥0, the time unit (Δt ≡ 1) may correspond to the specific response time, the
parameter γ (0 < γ < 1) denotes the coefficient of conflict, and F denotes the
two-body interaction. For the function F , which denotes the two-body interaction
between ECs, we adopt the following simple form:

F(x) :=

⎧
⎪⎪⎨

⎪⎪⎩

sgn (x)fr (0 < |x| ≤ Rr)

−sgn (x)fe (Rr < |x| ≤ Re)

−sgn (x)fa (Re < |x| ≤ Ra)

0 (Ra < |x|)
, (2.19)

where sgn (x) := x
|x| and fr, fe, fa are the positive constants for interaction

strengths (Fig. 2.10).
Equation (2.17) means that vt

n is the velocity of the nth EC at time step t ,
while (2.18) is the discrete analogue of the Newtonian equation of motion. The
meanings of the parameters in the function F are as follows. The excluded volume
effect is supposed to be dominant if two ECs approach within the typical size of a
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Fig. 2.10 Schematic figure
of two-body interaction in the
present model

repulsive force

attractive force

no interaction

cell nucleus Rr (∼20 µm). Here excluded volume of an EC is the volume that is
inaccessible to other ECs in a vessel as a result of presence of the first EC. Because
of excluded volume, repulsive interaction arises between two ECs when they get
closer. We denote by fr the strength of the repulsive force. Since ECs frequently
change their shape with extending or shrinking their pseudopodia, we denote by Ra

(Re) the length that represents the maximum (minimum) size of ECs. We estimate
that Re is 2 ∼ 3 times Rr and that Ra is 3 ∼ 5 times Rr . If the distance between
two ECs is greater than Ra , no interaction takes place between them, while it is
less than Ra , attractive interaction can be induced by cell contact. Strength of the
attractive force between two ECs presumably depends on the distance between them
and becomes stronger as the two ECs get closer as long as excluded volume effect
does not have significant influence. Parameters fe, fa denote the strengths of the
attractive interactions. Effects of these interactions are not instantaneous contrary
to particle–particle interactions via physical fields such as electromagnetic fields or
gravitational field, and there exists some specific response time in this system, which
means that a simple Newtonian equation of motion defined by differential equations
would not be suitable for modeling the system. If we consider xt

n, vt
n as the values

of continuous functions xn(s), vn(s) at s := tΔt , noticing that we set Δt as a unit
time, Eqs. (2.17) and (2.18) are rewritten as

xn(s +Δt) = xn(s)+Δt · vn(s) (2.20)

vn(s +Δt)− vn(s) = Δt ·
⎛

⎝−γ vn(s)+
∑

k �=n

F (xn(s)− xk(s))

⎞

⎠ . (2.21)

Equations (2.20) and (2.21) elucidate that time delay of interaction is incorporated
into our model.

We do not consider the effect that ECs in the neogenetic vessels go back into the
existing aortic ring, and xt

n has to take nonnegative value. To avoid back flow of ECs
into the source, we reset xt+1

n = 0 and vt+1
n = 0 if xt+1

n ≤ 0 in (2.17). Since we
assume that the driving force of motility of ECs is sum of the two-body interactions,
the velocity of an EC eventually happens to be quite high when the EC is surrounded
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by a large number of ECs, which is unrealistic because an EC moves mainly with
its pseudopodia and the actual velocity of an EC is limited. Physically, it suggests
that we have to take not only two-body interactions but multibody interactions into
account. To incorporate this effect in a simple manner, we reset |vt

n| not to exceed
a maximum value vmax . As for the parameters fr, fe, and fa , we do not have any
reasonable estimates; however, as we see below, the dynamics of ECs in our model
does not qualitatively depend on the magnitude of interaction forces as far as we
include both repulsive and attractive forces.

2.3.3 Cell-Mixing and Scaling Behavior of EC Dynamics

In order to see the effects of repulsive and attractive interactions, we simulated
(2.17) and (2.18) for three types of two-body interactions: (a) only repulsive
(fe → −fe, fa → −fa in (2.19)), (b) only attractive (fr → −fr ), and (c) both
interactions given in (2.19). A typical result is shown in Figs. 2.11 and 2.12, where
we put ai = a(constant) and vini(i) = vini(constant) for all i.

When interaction is only repulsive, the distribution of ECs is fairly uniform as
shown in Fig. 2.12a, while if interaction is only attractive, ECs clump together as in
Fig. 2.12b. In case both repulsive and attractive interactions coexist as is supposed
in our model, ECs clearly show cell-mixing behavior and the distribution of ECs
is sufficiently uniform. Cell-mixing behavior is also seen in Fig. 2.11a, though it
is less frequent than Fig. 2.11c. The cell-mixing behavior depends on the time unit
(Δt) in Eqs. (2.17) and (2.18). Figure 2.13a–c shows the trajectory of ECs with only
repulsive interaction for Δt = 0.5, 0.1, 0.05. We find that cell-mixing behavior
is suppressed for smaller Δt . The simulations in the case of both repulsive and
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Fig. 2.11 Trajectories of EC movements during elongation with parameters Rr = 0.2, Re =
0.4, Ra = 0.7, γ = 0.6, a = 5, vini = 0.3, vmax = 1.0, and (a) repulsive force only: fr =
0.6, fe = 0, fa = 0, (b) attractive force only: fr = 0, fe = 0.15, fa = 0.05, and (c) both:
fr = 0.6, fe = 0.15, fa = 0.05
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Fig. 2.12 Distributions of ECs at time step t = 104. Parameters are the same as those in Fig. 2.11
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Fig. 2.13 Trajectories of EC movements during elongation for purely repulsive interactions with
different time difference Δt . (a) Δt = 0.5, (b) Δt = 0.1, and (c) Δt = 0.05. The other parameters
are the same as those in Fig. 2.11a

attractive interactions with the same parameters are shown in Fig. 2.14a–c. The
cell-mixing behavior is a little suppressed at the tip, but it is still remarkable for
small Δt . From these results, we conclude that repulsive interaction between ECs is
necessary for smoothing the distribution of ECs and attractive interaction enhances
cell-mixing behavior in the dynamics of ECs. The retardation of interaction also
contributes to cell-mixing behavior.

We also show several simulation results for different parameters in Figs. 2.15,
2.16, and 2.17. Qualitative behavior does not change by different choice of the
parameters. Figure 2.15a–c shows that the initial velocity of ECs has negligible
impact on the elongation. This suggests that elongation is caused not by initial
kinetic energy but by repulsive interactions among ECs. Figure 2.16b is the case
that the ECs are injected with probability 1/5 at every time step instead of the
periodic injection a = 5. By comparing Figs. 2.15b and 2.16b, we may find that the
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Fig. 2.14 Trajectories of EC movements during elongation for both repulsive and attractive
interactions with different time difference Δt . (a) Δt = 0.5, (b) Δt = 0.1, and (c) Δt = 0.05. The
other parameters are the same as those in Fig. 2.11c
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Fig. 2.15 Trajectories of ECs with the parameters that are the same as those in Fig. 2.11c except
for vini . (a) vini = 0.1. (b) vini = 0.3. (c) vini = 0.6
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Fig. 2.16 Trajectories of ECs with the parameters that are the same as those in Fig. 2.11c except
for the injection period a. In the center figure, “〈a〉 = 5” means that the injection period is random
with average period 5. (a) a = 2. (b) 〈a〉 = 5. (c) a = 10

way of injection of ECs scarcely affects the elongation as long as the mean interval
〈a〉 does not change. In fact, both periodic injection and random injection show the
same scaling behavior of elongation length. This scaling behavior shall be discussed
below (Figs. 2.18 and 2.19). Figures 2.16 and 2.17 show the robustness against the
magnitude of interaction strength and the injection rate. These results support that
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Fig. 2.17 Trajectories of ECs with the parameters that are the same as those in Fig. 2.11c except
for the interaction strength (fr , fe, fa). In the figures, “×m” means that each of (fr , fe, fa) is m

times larger than that of Fig. 2.11c. (a) ×0.5. (b) ×2. (c) ×4
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Fig. 2.18 Temporal change of position of the tip cell. The parameters are Rr = 0.2, Re =
0.4, Ra = 0.7, fr = 0.6, fa = 0, vini = 0, γ = 0.6, vmax = 1.0, 〈a〉 = 5, and (a) fe = 0,
(b) fe = 0.2, and (c) fe = 0.4. The curve (d) satisfies y = 0.5092t0.6601
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Fig. 2.19 Log–log plot of the curves (a)–(d) in Fig. 2.18. The straight line (d) satisfies ln(y) =
0.6601 ln(t)− 0.6749, which is fitted to the curve (a)
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our model has potential for application to the cases of a wide range. Estimation of
the parameters was recently performed with the experiments by Takubo et al.[60]

Figures 2.18 and 2.19 show the time dependence of the reaching position of
ECs, that is, the position of an EC at the tip. As is seen from Fig. 2.19, it almost
scales as t2/3 for different strengths of attractive interaction. In fact we can find that
this exponent 2/3 is observed almost irrespective of the parameters for interactions,
injection rate, and initial velocity. In particular, the data of numerical simulation
closely fit the curves ∝ t2/3 in case of no attractive interaction. For diffusive
motion or random walk, the reach distance scales as t1/2, while it scales as t1 for
ballistic motion or wave propagation. The exponent 2/3 suggests that the ECs in the
present model show the dynamics between diffusive motion and ballistic motion.
This universal value of the exponent could be understood as follows.

Let ρ(x, t) be the density of the ECs at time t and position x. In continuum limit,
it satisfies the equation of continuity:

∂ρ(x, t)

∂t
+ ∂

∂x
(ρ(x, t)v(x, t)) = 1

a(t)
δ(x), (2.22)

where v(x, t) is the field of velocity of ECs at (x, t), and a(t) is the injection rate of
ECs. From (2.18), in quasi-equilibrium, we may approximate v(x, t) as

v(x, t) ∼ 1

γ

∫

F(x − y)ρ(y, t) dy

If ρ(x, t) is a smooth function of x, we can expand

ρ(y, t) = ρ(x, t)+ ∂ρ(x, t)

∂x
(y − x)+ ∂2ρ(x, t)

∂x2

(y − x)2

2
+ . . . .

We further assume that higher delivatives of ρ(x, t) take smaller absolute values
than its first delivative ∂ρ(x,t)

∂x
. In fact, as shown in Fig. 2.3a and c, the density ρ(x, t)

is approximately a linear function, which implies that its higher order delivatives are
negligible. Since F(x) is an odd function, neglecting the 3rd-order terms and higher
than it, we have

v(x, t) ∼ 1

γ

∫

(y − x)F (x − y)
∂ρ

∂x
(x, t) dy

=: Aeff
∂ρ

∂x
(x, t),

where Aeff is a constant depending on the parameters γ, fr , fe, fa, Rr, Re, Ra .
Hence (2.22) gives

∂ρ(x, t)

∂t
+ Aeff

∂

∂x

(

ρ(x, t)
∂ρ

∂x
(x, t)

)

= 1

a(t)
δ(x). (2.23)
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Suppose that ρ(x, t) has a scaling form with exponents α, β as

ρ(x, t) = tαG(x/tβ). (2.24)

Then, from (2.23), we have

tα−1 {αG(X)− βXG′(X)
}+ t2(α−β)Aeff

[
G′(X)2 +G(X)G′′(X)

]

∼ 1

a(t)
δ(tβX) (X := x/tβ).

Since

δ(tβX) = |t−β |δ(X),

and, if a(t) is almost constant in average, we may replace a(t) with its average 〈a〉,
we have

tα−1 {αG(X)− βXG′(X)
}+ t2(α−β)Aeff

[
G′(X)2 +G(X)G′′(X)

]
∼ t−β

〈a〉 δ(X).

Hence, under the assumption of the scaling form (2.24), we find that

α − 1 = 2(α − β) = −β. (2.25)

Thus, we find

α = 1

3
, β = 2

3
. (2.26)

The length of the vessel, l(t), is given the first zero of the function G(X). If we
denote by X0 the position of this zero, we find l(t)t−β = X0 Therefore, l(t) ∝ t2/3,
and the reaching position of ECs scales as t2/3.

Next we consider the parameter dependence of cell-mixing behavior. Figure 2.20
shows the effect of attractive interaction fe on cell mixing. Here Nmix is the
number of cell mixing at the tip from t = 0 to t = 150. Its dependence on fe

is fairly complex, and so far we have not analyzed the details. However, numerical
simulations show that the qualitative behavior of Nmix as a function of fe is not
sensitive to the parameter γ . The cell-mixing takes place even in the case of
repulsive interactions (fe < 0). A reason why cell-mixing takes place is due to
the existence of oscillating bound states of two ECs that are observed in numerical
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Fig. 2.20 Parameter fe

dependence of Nmix at the tip
from t = 0 to t = 150, where
Nmix denotes the number of
times of change in leading
EC. Each point shows the
average number of 105 trials
and Rr = 0.2, Re = 0.4,
fr = 0.6, fa = 0, γ = 0.6,
vini = 0.3, and 〈a〉 = 5
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simulations. Let us consider two ECs whose positions at t0 are x
t0
1 = X0+ξ t0, x

t0
2 =

X0 − ξ t0 with velocity v
t0
1 = vt0 and v

t0
2 = −vt0 . If there is no interaction from the

other ECs, it holds that

ξ t := xt
1 −X0 = −(xt

2 −X0), vt := vt
1 = −vt

2

for t ≥ t0 because of the symmetry of interaction. Furthermore we assume the
repulsive interactions fr > 0, fe = fa = 0 for simplicity, then (2.17) and (2.18)
yield the following:

ξ t+1 = ξ t + vt (2.27)

vt+1 = (1− γ )vt +
⎧
⎨

⎩

fr 0 < ξt < 1
2Rr

−fr − 1
2Rr < ξt < 0

0 otherwise
. (2.28)

Suppose that

vt0 = − (1− γ )fr

γ 2 − 3γ + 3
, 0 < ξt0 <

Rr

2
,

−
(

ξ t0 + Rr

2

)

< vt0 < min

[

−ξ t0 , (1− γ )

(

ξ t0 − Rr

2

)]

.

Then, we have a periodic solution to (2.27) and (2.28)

(ξ t0, vt0) = (ξ t0+3, vt0+3).

For example, let γ = 3
5 , Rr = 1

5 , fr = 3
5 , ξ t0 = 1

13 , vt0 = − 2
13 , which satisfy

the above conditions. Then, we have a sequence (ξ t , vt ) as

(
1

13
,− 2

13

)

→
(

− 1

13
,

7

13

)

→
(

6

13
,− 5

13

)

→
(

1

13
,− 2

13

)

→ · · · ,
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which shows period 3. The oscillating bound states of this kind give rise to the cell-
mixing behavior of ECs even if interactions are merely repulsive. Note that there is
no such oscillating bound state in continuous limit of (2.27) and (2.28):

dξ

dt
(t) = v(t)

dv

dt
(t) = −γ v(t)+ F(2ξ(t)).

The only stationary state for two ECs is a bound state with velocity 0. An
oscillating bound state appears because of discretization, which intrinsically reflects
the retardation of reaction in ECs.

2.3.4 Pattern Formation of the Model with Elongation
and Bifurcation of Neogenetic Vessels

Now let us consider the process of elongation and bifurcation of vessels. Important
observations in the experiments are (a) a vessel divides into not more than two
branches at a junction, (b) bifurcation occurs mostly at the tip when the tip is
crowded by ECs, and (c) a vessel splits into two branches with an angle of
approximately 60 degrees[4]. As is explained in the previous section, the blood
vessel network we consider is the early stage of angiogenesis and is modeled by
a tree graph. The first neogenetic vessel is referred to the branch with index 1, and
the branches appeared by bifurcations are indexed by positive integers in order. The
index of the branch in which nth EC exists at t ∈ Z≥0 is denoted by μ(n, t) ∈ Z+,
and the position of the EC is denoted by the same notation xt

n (≥ 0) that, however, is
measured from the origin of the branch μ(n, t). The position of the tip of the branch
ν is denoted by bt

ν (> 0). In view of the observations (a) and (b), we introduce three
new parameters Xe, Xb (> 0), and Lb ∈ Z>0, which indicate the threshold impulse
for elongation, that for bifurcation, and threshold congestion number of ECs at the
tip, respectively. When we closely observe the process of bifurcation in experiments,
we notice that an EC remains at the tip and other two ECs pass through it and that
one slips through one side of the impassive EC and the other through the opposite
side. Hence we impose the condition Lb = 3. The time evolution of our model is
determined as follows.

While the first bifurcation has not taken place (i.e.,∀n, μ(n, t) = 1), we put

x̃t+1
n := xt

n + vt
n,

ṽt+1
n := vt

n − γ vt
n +

∑

k �=n

F (xt
n − xt

k),
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Xt :=
N(t)∑

k=1

max[0, x̃t+1
k − bt

1],

Lt :=
N(t)∑

k=1

θ(x̃t+1
k − bt

1).

Here x̃t
n (ṽt

n) denotes the provisional position (velocity) of nth EC at time step t , Xt

the impulse at the tip, Lt the congestion number at the tip, and θ the step function:

θ(x) :=
{

1 (x > 0)

0 (x ≤ 0)
.

Note that we set ṽt+1
n → ±vmax when

∣
∣ṽt+1

n

∣
∣ > vmax as in Sect. 2.3.2. Then the

updating rule is given as (Fig. 2.21):

(i) if Xt < Xe, xt+1
n = min[x̃t+1

n , bt
1], vt+1

n = ṽt+1
n for all n and bt+1

1 = bt
1.

(ii) Else if Xt < Xb or Lt < Lb, then bt+1
1 = bt

1 + Δb, and xt+1
n =

min[x̃t+1
n , bt+1

1 ], vt+1
n = ṽt+1

n for all n. Here Δb is the positive parameter
that denotes elongation velocity at the tip of a vessel.

(iii) Else, that is, Xb ≤ Xt and Lb ≤ Lt , then the vessel bifurcates into two
branches. We put bt+1

1 = bt
1, bt+1

2 = bt
1 + Δb, and bt+1

3 = bt
1 + Δb. Hence

bt+s
1 = bt

1 for s ≥ 1. Let K := {k1, k2, . . . , km} be the set of indices of
ECs that satisfy x̃t+1

ki
> bt

1. We assume x̃t+1
k1
≤ x̃t+1

k2
≤ . . . ≤ x̃t+1

km
. Then,

if n �∈ K , xt+1
n = x̃t+1

n , vt+1
n = ṽt+1

n , and μ(n, t + 1) = 1. For n ∈ K ,
xt+1
k1
= bt

1, vt+1
k1
= 0, μ(k1, t + 1) = 1, xt+1

k2i
= bt

1 + Δb, vt+1
k2i
= ṽt+1

k2i
/2,

μ(k2i , t + 1) = 2, xt+1
k2i+1
= bt

1+Δb, vt+1
k2i+1
= ṽt+1

k2i
/2, and μ(k2i+1, t + 1) = 3

(i = 1, 2, . . .).

After bifurcations took place, we apply the above updating rule to the ECs in
each branch. Two ECs in separate branches can interact with each other only if one
branch has bifurcated from the other branch. At a junction of bifurcation, we assume
that an EC moves into one branch from which attractive force is stronger than that
from the other branch. In case of the equal strength of attractive force, the EC selects
one of them with equal probability.

Apparently the condition Xe < Xb must be satisfied and the order of the
magnitude of Xe and Xb is supposed to be of the same order of that of the repulsive
force fr . The parameter Xe is also dependent on the stiffness of the collagen
gel in which ECs are cultivated or that of extracellular organic materials’ in vivo
experiments. The injection rate a depends on the size of the supply source (existing
blood vessels). It is also affected by substances to control cell proliferation such as
VEGF that also affects the parameters Xe, Xb by activation of pseudopodia. The
parameter Δb gives the scale of an overall vessel network and does not change
the pattern of its shape. Hence we set Δb = 1 in numerical simulations. The
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Fig. 2.21 Schematic representation of the updating rule for elongation and bifurcation. (i) If Xt <

Xe, neither elongation nor bifurcation takes place. (ii) Else if Xt ≤ Xb or Lt < Lb, the vessel
grows by Δb. (iii) Else, that is, Xb ≤ Xt and Lb ≤ Lt , the tip bifurcates into two branches.
According to the rule (iii) in the text, K = {�1, �2, �3}, k1 = �2, k2 = �1, k3 = �3, and xt+1

k1
=

bt+1
1 = bt

1, xt+1
k2
= bt+1

2 = bt
1 +Δb, xt+1

k3
= bt+1

3 = bt
1 +Δb

typical growth patterns of blood vessels in the present model are shown in Figs. 2.22
and 2.23, where small red discs denote the positions of nuclei of ECs, white tubes
denote the neogenetic vessels, and we take the observation (c) into account at the
junctions. Since we have not considered anastomosis, these figures represent the
projection of vessel networks onto a two-dimensional plane. Though some vessels
look like recombined, they are apart in the direction perpendicular to the plane. We
also show an example of retina-like vessel patterns in Fig. 2.24 in which neogenetic
vessels elongate in four directions from the origin.
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Fig. 2.22 A simulation of angiogenesis using our model with Xe = 1.4, Xb = 2.0, Lb = 3, fr =
0.6, fe = 0.15, fa = 0.05, Rr = 0.2, Re = 0.4, Ra = 0.7, γ = 0.6, a = 5, vini = 0.3, and
vmax = 1. Red dots denote the positions of nuclei of ECs. The first vessel is placed on the left edge
of the white tube as the initial condition. The patterns are snapshots at time steps 100, 500, 1000,
and 2000, respectively, from left to right

Fig. 2.23 A simulation with different parameters, where Xe = 1.4, Xb = 1.6, Lb = 3, fr =
0.6, fe = 0.15, fa = 0.05, Rr = 0.2, Re = 0.4, Ra = 0.7, γ = 0.6, a = 5, vini = 0.3, and
vmax = 1. Time steps are 200, 500, 1000, and 2000, respectively, from left

Fig. 2.24 A simulation of angiogenesis from the center with four initial vessels: Xe = 1.9, Xb =
2.2, Lb = 3, fr = 0.6, fe = 0.15, fa = 0.05, Rr = 0.2, Re = 0.4, Ra = 0.7, γ = 0.6, a =
5, vini = 0.3, and vmax = 1. The patterns are the snapshots at time step t = 10, 400, 1600, and
4000, respectively, from left

Finally we show the difference of sprouting patterns by changing Xe and keeping
all else fixed in Fig. 2.25. We suppose the difference of Xe corresponds to that of
stiffness of collagen. As Xe approaches Xb, the average length of branches becomes
shorter and fluctuation of lengths becomes larger.

For a given injection sequence {ai} (i ∈ Z+), the pattern of a simulated vessel
network is determined almost uniquely because the time evolution rules of the
present model are deterministic except when an EC near a junction receives the same
strength of attractive interaction from the two branches. However, a time evolution
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Fig. 2.25 The sprouting patterns at time step 2000 for Xe = 1.8, 1.9, 2.0, and 2.1, respectively,
from left. Xb = 2.3 and other parameters are the same as those in Fig. 2.24. Total number of ECs
in these patterns is the same (400)
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Fig. 2.26 The distributions of the lengths of the first branches. The threshold values are Xe = 2.0,
(a) Xb = 2.1, (b) Xb = 2.3, and (c) Xb = 2.5, and the other parameters are the same as those in
Fig. 2.22

pattern can easily change by slight modification of injection interval. If ECs are
injected randomly with an average rate 〈a〉−1, a pattern of neogenetic blood vessels
differs at each trial of simulations. The patterns appear to be qualitatively similar,
but there is little reproducibility in the patterns. Let b1 be the length of the first
branch, i.e., the length between the origin of the blood vessel and the first junction.
This length of first branch does not change any more after the first bifurcation due
to the above updating rule (iii) as bt+s

1 = bt
1 for all s ≥ 1. The distributions of the

length of first branch b1 are shown in Figs. 2.26 and 2.27.
We find that the distribution f (b1) (0 ≤ f (b1) < 1 and

∫∞
0 f (b1) db1 = 1 ) of

the length of first branch b1 clearly shows power-law behavior:

f (b1) ∝ 1

Kb1
,

where K (K > 1) is a constant determined by the parameters. From Figs. 2.26
and 2.27, we find that K is a decreasing function of Xb.

Although the length of branch has wide dispersion, the dependence of the average
values on the parameters Xe and Xb is fairly clear. It becomes shorter as the value
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Fig. 2.27 Log plot of the
curves (a)–(c) in Fig. 2.26.
The distributions show clear
power-law behavior
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Table 2.1 The average length of the first blood vessel is shown for various parameters Xe and
Xb. The other parameters are fixed as Lb = 3, fr = 0.6, fe = 0.15, fa = 0.05, Rr = 0.2, Re =
0.4, Ra = 0.7, γ = 0.6, 〈a〉 = 5, and vini = 0.3. Number of trials for each parameter is 105.
The N/A stands for the parameter Xb ≤ Xe that does not satisfy the requirement, and “-” for rare
bifurcation because of the severe condition on bifurcation Xb 
 Xe

Xb\Xe 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

1.2 4.66 N/A N/A N/A N/A N/A N/A N/A N/A N/A

1.3 6.03 3.71 N/A N/A N/A N/A N/A N/A N/A N/A

1.4 8.28 4.76 3.11 N/A N/A N/A N/A N/A N/A N/A

1.5 12.7 6.36 3.94 2.66 N/A N/A N/A N/A N/A N/A

1.6 – 9.12 5.19 3.37 2.33 N/A N/A N/A N/A N/A

1.7 – 14.6 7.15 4.38 2.91 2.04 N/A N/A N/A N/A

1.8 – – 10.9 6.01 3.80 2.58 1.85 N/A N/A N/A

1.9 – – 18.7 8.91 5.26 3.38 2.38 1.70 N/A N/A

2.0 – – – 14.6 7.69 4.64 3.10 2.17 1.56 N/A

2.1 – – – – 12.7 6.96 4.41 2.94 2.07 1.54

2.2 – – – – 25.8 11.6 6.57 4.14 2.84 2.05

2.3 – – – – – 21.7 10.4 6.08 3.99 2.81

2.4 – – – – – – 18.5 9.39 5.66 3.85

2.5 – – – – – – – 15.6 8.45 5.36

2.6 – – – – – – – – 13.6 7.92

2.7 – – – – – – – – – 12.8

2.8 – – – – – – – – – 23.5

Xe increases, while it becomes longer while the value Xb increases. In Table 2.1, we
show dependence of the length of first blood vessel on the parameters Xe and Xb.
These values are the mean values of 105 trials for each set of parameter values. The
larger the threshold for bifurcation Xb becomes, the longer the length of blood vessel
tends to be. For the elongation threshold Xe, the inverse dependence is observed.
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2.3.5 A Continuous Model for Angiogenesis

In this subsection, we give a mathematical model for elongation and bifurcation of
blood vessels described by simultaneous ordinary differential equations[38]. We pay
attention to one neogenetic blood vessel that will elongate and bifurcate to construct
a network of blood vessels. Let the initial length of the blood vessel be Lini at initial
time t0. Noticing the fact that a blood vessel bifurcates into only two and that the
number of branches arose after kth order bifurcation is 2k , we denote by the (k, i)

branch the ith branch (i = 1, 2, . . . , 2k) produced after kth order bifurcation of
the blood vessel. The simultaneous ordinary differential equations we treat here are
given as

d

dt
L

(i)
k+1(t) = F(n

(i)
k+1(t)) (0 ≤ n

(i)
k+1(t) < nb, k = 0, 1, 2, . . . , i = 1, 2, . . . , 2k),

(2.29)

where L
(i)
k+1(t) denotes the length of the (k, i) branch, and we assume that it

bifurcates when the number of ECs at the tip, n
(i)
k+1(t), exceeds the threshold value

nb. The function F(n), which will be defined afterward, describes the speed of
elongation, n

(i)
k+1(t), and the density of ECs, ρ(t), are determined by the total

number of ECs, N(t), as follows:

ρ(t) = N(t)

s1L1(t)+∑∞k=1
∑2k

i=1 s
(i)
k+1L

(i)
k+1(t)

, (2.30)

n
(i)
k+1(t) = λ

(i)
k+1(t)

(
ρ(t)s

(i)
k+1l

)
. (2.31)

Here s
(i)
k is the effective cross section of the (k, i) branch, l a parameter of the

tip length, and λ
(i)
k (t) that of the activation of ECs due to the VEGF concentration.

We summarize the variables and parameters in Table 2.2. Although the system looks
very complicated due to a lot of variables and parameters, once the parameters s

(i)
k , l

and a function F(n), which characterize the system, are determined and functions
N(t) and λ

(i)
k (t), which are estimated from experimental settings, are given, then

we can obtain a closed simultaneous equations of L
(i)
k (t) through Eqs. (2.30) and

(2.31). We will explain below the meaning of these parameters and equations step
by step.

We supposed that there is a neogenetic blood vessel with length Lini at t = t0.
Though it does not have lumen structure, we assume that we can define a cross
section s1 that denotes effective occupation area of ECs in the vessel. Since only
the ECs near the tip will contribute to elongation and bifurcation of the vessel, we
assume that the ECs that stay at a distance not more than l from the tip can affect
elongation and bifurcation. Let N(t) be the total number of ECs in the vessel, L1(t)
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Table 2.2 List of variables

Variable Definition

L
(i)
k+1(t) Length of ith neogenetic blood vessel of kth bifurcation at t (1 ≤ i ≤ 2k)

N(t) Total number of endothelial cells in neogenetic blood vessels at t

ρ(t) Average density of endothelial cells in neogenetic blood vessels at t

s
(i)
k+1 Effective cross section of ith neogenetic vessel of kth bifurcation

n
(i)
k+1(t) Effective number of endothelial cells at the tip of ith neogenetic

vessel of kth bifurcation

λ
(i)
k+1(t) VEGF activity at the tip of ith neogenetic blood vessel of kth bifurcation at t

l Effective length of a tip relating to elongation and bifurcation

ne Threshold value of number of endothelial cells for elongation

nb Threshold value of number of endothelial cells for bifurcation

Lini Length of the initial blood vessel at initial t = t0

Nini Number of endothelial cells at initial time t = t0

L1(t) Length of the first blood vessel at t

s1 Cross section of the first blood vessel at t

ñ1(t) Number of endothelial cells in the tip of the first blood vessel at t

n1(t) Effective number of endothelial cells in the tip of the first blood vessel at t

t
(i)
k Bifurcation time of ith neogenetic blood vessel of kth bifurcation

the length of the vessel, and ñ1(t) the number of ECs at the tip. If the density of the
ECs is almost constant in a vessel, we have

ñ1(t) = N(t)l

L1(t)
. (2.32)

The activation parameter at the tip due to VEGF, etc., is denoted by λ1(t), and
we define n1(t) := λ1(t)ñ1(t). We assume that elongation and bifurcation are
determined only by the variable n1(t); that is, there are two thresholds ne, nb

(ne < nb) such that elongation takes place when ne < n1(t) ≤ nb and bifurcation
takes place when nb < n1(t). Then there exists a monotonically increasing function
F(n) that satisfies

d

dt
L1(t) = F(n1(t)) (0 ≤ n1(t) < nb). (2.33)

The concrete form of F(n) will be discussed later.
When bifurcation takes place at t = t1, we have

n1(t1) = nb, (2.34)
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and two new branches sprout. Let the cross sections of these new branches be
s
(1)
2 , s

(2)
2 . Then, according to Murray’s law, we have

(s1)
m = (s

(1)
2 )m + (s

(2)
2 )m (1.4 � m � 1.6).

Since Murray’s law is deduced from hydrodynamical consideration and will hold
for complete blood vessels, it is not obvious that it is also true for neogenetic blood
vessels under consideration; however, we assume that this law also holds in the later
numerical simulations. Note that we use only the condition s1 > s

(1)
2 , s

(2)
2 , and

precise value m is not essential in the later discussions about exact solutions. We
denote the length of the new branches by L

(1)
2 (t), L

(2)
2 (t), and the average density

of ECs, ρ(t), is given as

ρ(t) = N(t)

s1L1(t)+∑2
i=1 s

(i)
2 L

(i)
2 (t)

. (2.35)

Here L1(t) = L1(t1) (t ≥ t1). Putting the activation parameter at each tips
λ

(1)
2 , λ

(2)
2 , the effective number of ECs at each tip, n

(1)
2 (t), n

(2)
2 (t), is given as

n
(i)
2 (t) = λ

(i)
2 (t)

(
ρ(t)s

(i)
2 l
)

, (2.36)

and similar equations to (2.33):

d

dt
L

(i)
2 (t) = F(n

(i)
2 (t)) (0 ≤ n

(i)
2 (t) < nb, i = 1, 2) (2.37)

will hold and bifurcation takes place if n
(i)
2 (t) ≥ nb. After bifurcation, the value of

L
(i)
2 (t) remains constant. Similarly kth order bifurcation occurs 2k−1 times, and 2k

new branches are produced. Let the times at which these bifurcations occur be

t
(1)
k ≤ t

(2)
k ≤ · · · ≤ t

(2k−1)
k ,

effective cross sections s
(i)
k+1, the length of these branches at time t , L

(i)
k+1(t),

activation parameter λ
(i)
k+1(t), and effective number of ECs at the tip n

(i)
k+1(t) (i =

1, 2, . . . , 2k). The density of ECs is given by the equation (2.30):

ρ(t) = N(t)

s1L1(t)+∑∞k=1
∑2k

i=1 s
(i)
k+1L

(i)
k+1(t)

,
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where L
(j)

k+1 = 0 (∀j ≥ 2i − 1) for t < t
(i)
k , and the length of a branch remains

constant after bifurcation. Thus we have Eq. (2.31):

n
(i)
k+1(t) = λ

(i)
k+1(t)

(
ρ(t)s

(i)
k+1l

)
,

and (2.29):

d

dt
L

(i)
k+1(t) = F(n

(i)
k+1(t)) (0 ≤ n

(i)
k+1(t) < nb, i = 1, 2, . . . , 2k).

In summary, the present continuous model describes time evolution of the elon-
gation and bifurcation of blood vessels by the time dependence of the branch
lengths L

(i)
k (t) calculated from differential equations (2.30), (2.31), and (2.29). The

parameters, which may be estimated from experimental results, are the total number
of ECs N(t), activity due to VEGF etc. λ

(i)
k (t), cross sections s

(i)
k , threshold values

of elongation and bifurcation ne, nb, elongation function F(n), initial length of the
blood vessel Lini , and the effective tip length l (Fig. 2.28).

Finally let us examine the function N(t). In the time span of the experiment, cell
division is rarely observed. Hence we may express N(t) with a positive constant a

as

N(t) = Nini + a(t − t0). (2.38)

Then, from (2.30) and (2.29),

∑

k

∑

i

s
(i)
k

d

dt
L

(i)
k (t) = d

dt

N(t)

ρ(t)
=
∑

k

′∑

i

′
s
(i)
k F (n

(i)
k (t)),

Fig. 2.28 Length of the
branch L

(i)
k and cross section

s
(i)
k in sprouting neogenetic

blood vessel
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where
∑

k
′∑

i
′ denotes the summation over the growing branches, and we find

N(t)
d

dt
ρ(t) =

{

a −
∑

k

′∑

i

′
s
(i)
k ρ(t)F

(
n

(i)
k (t)

)
}

ρ(t). (2.39)

Therefore, if time dependence of the activity λ
(i)
k (t) is negligible, i.e., λ

(i)
k (t) =

λ
(i)
k , the density of ECs asymptotically approaches to the equilibrium value ρ∞

determined by the following equation:

∑

k

′∑

i

′
s
(i)
k ρ∞F

(
lλ

(i)
k s

(i)
k ρ∞

)
= a. (2.40)

Equation (2.40) implies that the blood vessel bifurcates only finite times, but, from
(2.38), ECs are injected into the network at the same rate. Consequently the last
branches continue to extend unrealistically (Fig. 2.29). For a long span of time
evolution, the effects of cell division of ECs in the blood vessel network are not
negligible, but cell division will end after a certain period and accordingly supply of

Fig. 2.29 Bifurcation of the present model when N(t) satisfies (2.38). Here the parameters are
a = 50, ne = 1, nb = 3, s1 = 3, λ

(i)
k = 1, and we assume the Murray’s law (n = 1.5)
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Fig. 2.30 Bifurcation of the present model when N(t) is given by (2.41). The parameters are
ε = 1.05, b = 1.05× 10−4, Nini = 10−3, and we assume the Murray’s law (n = 1.5)

ECs from the origin will also stop. Hence N(t) may satisfy the following Logistic
equation (see Fig. 2.30):

d

dt
N(t) = (ε − bN(t))N(t) (N(t0) = Nini), (2.41)

where ε, b are positive constants and N∞ := ε
b

> Nini is the final number of ECs
in the network. Equation (2.38) is regarded as an approximation of (2.41) when t is
sufficiently small and a = εNini .

2.3.6 Exact Solutions of the Continuous Model in Case
of Constant VEGF Concentration

Now we assume λ
(i)
k (t) = 1 for all (k, i), and the form of the function F(n) as

F(n) =
{

v0(n− ne) (ne ≤ n < nb)

0 (0 ≤ n < ne)
, (2.42)
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where a positive constant v0 denotes the velocity of elongation. The density of ECs
at time t , ρ(t), satisfies

ρ(t0) = ρ0 := Nini

s1Lini

. (2.43)

Hence the effective number of ECs at the tip is given as

n1(t0) = n0 := s1lρ0 = Nini l

Lini

. (2.44)

Without loss of generality, we can assume ne ≤ n0 < nb. Because no elongation
occurs if n0 < ne and L1(t) = Lini , and it will start at a certain time t∗0 satisfying
n1(t

∗
0 ) = ne. We have only to replace t0 with this t∗0 . Let t1 be the time of first

bifurcation. Since n1(t) = lN(t)
L1(t)

, we have

d

dt

(
lN(t)

n1(t)

)

= v0(n1(t)− ne) (t0 < t < t1). (2.45)

By assuming that N(t) satisfies (2.38) and that at0 = Nini for simplicity, we have

N(t) = at. (2.46)

From (2.45), (2.46), we have

la

n1(t)
− lat

n1(t)2

d

dt
n1(t) = v0(n1(t)− ne),

and

t
d

dt
n1(t) = n1(t)− v0

la
(n1(t)− ne)n1(t)

2.

By using ξ, η given by

ξ − η = ne, ξη = al

v0
, (2.47)

we find

t
dn1

dt
= − 1

ξη
n1(n1 − ξ)(n1 + η).
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Integration over t gives

∫
dt

t
=
∫ {

1

n1
−
(

η

ξ + η

)
1

n1 − ξ
−
(

ξ

ξ + η

)
1

n1 + η

}

dn1.

Thus we obtain the following relation:

t

t0
=
(

n1(t)

n1(t0)

) ∣
∣
∣
∣
n1(t0)− ξ

n1(t)− ξ

∣
∣
∣
∣

η
ξ+η

(
n1(t0)+ η

n1(t)+ η

) ξ
ξ+η

. (2.48)

Note that ξ =
(
ne +

√
n2

e + 4al/v0

)
/2 > ne. From the above discussions, we

conclude that if and only if it holds that

ξ > nb, (2.49)

bifurcation takes place and t1 is given as

t1

t0
=
(

nb

n0

) ∣
∣
∣
∣
n0 − ξ

nb − ξ

∣
∣
∣
∣

η
ξ+η

(
n0 + η

nb + η

) ξ
ξ+η

, (2.50)

and

L1(t1) = at1l

nb

. (2.51)

In fact, if ξ ≤ nb, n1 decreases for n1(t0) > ξ and increases for n1(t0) < ξ . Hence,
in any case, it approaches to ξ and no bifurcation takes place. If ξ > nb, t1 is given
by (2.50) because of (2.48). Since N(t1) = at1, we conclude that L1(t1) is expressed
as (2.51).

In order to investigate the behavior of elongation of blood vessels after bifurca-
tion, it is useful to estimate the density of ECs ρ(t):

ρ(t) = at
∑

k

∑
i s

(i)
k L

(i)
k (t)

. (2.52)

Assume that no bifurcation takes place during ti < t < tf . From (2.29) and (2.52),

d

dt

t

ρ(t)
= Vm(ρ(t)− ρe). (2.53)

Equation (2.53) can be solved for ρ(t) in the same manners as those in (2.45). Then,
we find

tf

ti
=
(

ρ(tf )

ρ(ti)

)(
ρ(ti)+ α

ρ(tf )+ α

) α
α+β

∣
∣
∣
∣
ρ(ti)− β

ρ(tf )− β

∣
∣
∣
∣

β
α+β

. (2.54)
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The positive constants α, β are defined by

β − α = ρe, αβ = 1

Vm

, (2.55)

Vm := v0l
∑′

(s
(i)
k )2

a
, ρe := ne

l

∑′
s
(i)
k

∑′
(s

(i)
k )2

(2.56)

where
∑′ denotes the summation over the pairs (k, i) that satisfy n

(i)
k ≥ ne.

As before, the (k, i) branch means the ith branch sprouting at a kth order
bifurcation. If bifurcation takes place at the tip of (k∗, i∗) branch at time t∗, we
find that

s
(i∗)
k∗ = max

k

[

max
i

[
s
(i)
k

]]

, ρ(t∗)s(i∗)
k∗ l = nb.

Here maxk maxi is the maximum value of all the (k, i) branches that are extending.
The length of the branches can be calculated from (2.30), (2.54), and the

following relation for arbitrary pair of branches (k, i), (p, j):

d

dt

[
s
(j)
p L

(i)
k (t)− s

(j)
k L

(j)
p (t)

]
= v0ne(s

(j)
p − s

(i)
k ), (2.57)

which is deduced from (2.29). For example, in the 2nd-order bifurcation, let us
suppose that s

(1)
2 > s

(2)
2 , and both (2,1) and (2,2) branches are extending for t1 <

t < t
(1)
2 . At t = t

(1)
2 , the 2nd-order bifurcation takes place and ρ(t)s

(1)
2 l = nb. Since

ρ(t1)s1l = nb, (2.54) yields

t
(1)
2 =

(
t1s1

s
(1)
2

)(
nb + αs1l

nb + αs
(1)
2 l

) α
α+β

∣
∣
∣
∣
∣

nb − βs1l

nb − βs
(1)
2 l

∣
∣
∣
∣
∣

β
α+β

.

Here α, β are given by

β − α = ne(s
(1)
2 + s

(1)
2 )

l
{
(s

(1)
2 )2 + (s

(1)
2 )2

} , αβ = q

v0l
{
(s

(1)
2 )2 + (s

(1)
2 )2

} .

Putting L1 = L1(t1), L2 = L
(1)
2 (t

(1)
2 ), L′2 = L

(2)
2 (t

(1)
2 ), and noticing

ρ(t
(1)
2 ) = at

(1)
2

L1s1 + s
(1)
2 L2 + s

(2)
2 L′2

,
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we find

L1s1 + s
(1)
2 L2 + s

(2)
2 L′2 =

at
(1)
2 s

(1)
2 l

nb

.

On the contrary, from (2.57),

s
(2)
2 L2 − s

(1)
2 L′2 = (t

(1)
2 − t1)v0ne(s

(1)
2 − s

(2)
2 ).

Thus we have obtained simultaneous equations for unknown variables L1, L2. By
solving these equations, we have

L2 = 1

(s
(1)
2 )2 + (s

(1)
2 )2

{(
at

(1)
2 s

(1)
2 l

nb

− L1

)

s
(1)
2 + (t

(1)
2 − t1)v0ne(s

(1)
2 − s

(2)
2 )s

(2)
2

}

.

The value of L′2 can be calculated in the same way.

General bifurcation time t
(i)
k and branch length L

(i)
k (t) can be obtained succes-

sively by similar estimations. When s
(i)
k+1 = sk+1 for any (k, i) branch, that is, all

the cross sections of the branches arose at the same order bifurcation are the same,
the kth order bifurcations take place at the same time tk . The number of effective
ECs n

(i)
k+1(t) does not depend on i, and we put n

(i)
k+1(t) = nk+1(t). Then, we obtain

the following relations:

tk

tk−1
=
(

sk−1

sk

)(
nb + αklsk

nb + αklsk−1

) αk
αk+βk

∣
∣
∣
∣

βklsk − nb

βklsk−1 − nb

∣
∣
∣
∣

βk
αk+βk

, (2.58)

where s0 := nb

ρ(t0)l
, and we assume that nk(tk−1) = ρ(tk−1)skl ≥ ne for simplicity.

If nk(tk−1) < ne, denoting by Vk the total volume of the blood vessel network at tk ,
we have only to replace tk−1 with t∗k−1 := neVk

askl
in (2.58). The constants αk , βk are

given by

βk − αk = ne

lsk
, αkβk = al

2k−1v0s
2
k

. (2.59)

If we denote by Lk+1 the length of the branches generated at the kth order
bifurcations, we find

L1 = alt1

nb

, Lk+1 = al(tk+1 − tk)

2knb

(k = 1, 2, . . .). (2.60)
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In case N(t) = Nini + a(t − t0), the number of bifurcations are finite. We note
that sk+1 < sk (k = 1, 2, . . .). For t ≥ tk−1, (2.53) yields

t
d

dt
ρ(t) = −ρ(t)(ρ(t)− βk)(ρ(t)+ αk).

Hence ρ(t) monotonically approaches to the value βk , and no bifurcation takes place
if lskβk ≤ nb. Since

βk = ne +
√

n2
e + (4al/2k−1v0)

2lsk
,

a branch bifurcates when the inequality

ne +
√

n2
e + (4al/2k−1v0) > 2nb

is satisfied. Thus if the inequality

al

v0nb(nb − ne)
> 2k−1

is satisfied, the kth order bifurcation can occur. Therefore, if the kth order bifurcation
is the last bifurcation, an integer k satisfies the inequality

k − 1 < log2

(
al

v0nb(nb − ne)

)

≤ k.

This value is given as

⌈

log2

(
al

v0nb(nb − ne)

)⌉

, (2.61)

where �x� is the smallest integer that is equal to or greater than x.
When we take the cell division of ECs in the blood vessel network, we have

N(t) = eεtN0 (N0 > 0). (2.62)

In this case, a blood vessel continues to bifurcate up to infinity. Practically, the sup-
ply of ECs will stop within a finite time interval, and the elongation and bifurcation
of blood vessels also finish. The function N(t) could be expressed by (2.41) or some
nonlinear evolution equation. In these cases, analysis for angiogenesis becomes a
little complicated but can be done fairly easily with numerical estimations.
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2.3.7 Numerical Simulations in the Presence of VEGF
Concentration Gradient

In most experimental situations, the system for the observation of angiogenesis
is essentially two spatial dimensions. We performed numerical simulations of our
continuous model under the following conditions:

• Equation (2.29) gives the time evolution of blood vessels.
• Supply and cell division of ECs are given by (2.41).
• Elongation and bifurcation of blood vessels take place in two spatial dimensions.
• The cross sections of new branches are determined according to the Murray’s law

(m = 1.5).
• The effects of concentration gradient of VEGF are incorporated to λ

(i)
k (t), which

is as follows.

� The concentration of VEGF is constant in time and is denoted by f (x, y) at
the position (x, y). The concentration gradient is gentle, and f (x, y) is almost
constant in a branch.

� The first blood vessel extends from the origin toward the direction of x > 0
along x-axis.

� We determine a unit length Δt . For the initial blood vessel,

Λ1 :=
∫ Δt

0
f (x, 0) dx,

and we put λ1(t) = cΛ1, where c is a positive constant.
� The 1st bifurcation takes place at time t = t1, and the position (x, y) =

(L(t1), 0). We assume that the angle between the new branches is 60◦, and
those between the original vessel are both 150◦.

� By integrating f (x, y) along the new branch direction by the unit length
Δx, we determine the activity λ

(1)
2 (t), λ

(2)
2 (t) as earlier. Namely, we perform

the line integrals of f (x, y) from (L(t1), 0) to (L(t1) +
√

3
2 Δx, 1

2Δx) and to

(L(t1)+
√

3
2 Δx,− 1

2Δx) and denote the values by Λ
(1)
2 and Λ

(2)
2 , respectively.

Then, λ
(1)
2 (t) = cΛ

(1)
2 , λ

(2)
2 (t) = cΛ

(2)
2 .

� At the higher order bifurcations, we perform line integrals along the direction
of new branches and determine λ

(i)
k (t) in the same manner.

Typical numerical results are shown in Figs. 2.31 and 2.32. Both figures show the
final blood vessel networks after the supply of ECs finishes. We find that the density
of vessels is high, while average length of branches is small in the area where VEGF
concentration is high.

Figure 2.33 shows the dependence of the threshold value ne. As ne becomes
larger, the times of bifurcation increase and length of a branch becomes shorter.
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Fig. 2.31 Bifurcation of neogenetic blood vessels under the effect of VEGF. The function
f (x, y) = 1+ (tan−1 y)/π . The other parameters are the same as those in Fig. 2.30

Figure 2.34 shows the change of patterns according to the change of VEGF
concentration. Higher concentration results in the increase of bifurcation and
shortening of branch length.

Figure 2.35 shows the change of number of branches as the change of VEGF
concentration and that of the threshold value ne. Finally, we show the dependence
of branch length on the VEGF concentration in Fig. 2.36. The length of branches
becomes shorter as VEGF concentration becomes higher. While it reduces for the
first several bifurcations but turns to increase later.

2.3.8 Concluding Remarks

In conclusion, we have presented a discrete dynamical model for angiogenesis
that successfully reproduces the cell mixing behavior, elongation, and bifurcation.
The dynamics of ECs is supposed to be mainly ruled by deterministic two-body
interactions that consist of short-range repulsion due to excluded volume effect and
long-range attractive force through pseudopodia. If ECs are supplied to the origin at
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Fig. 2.32 Bifurcation of neogenetic blood vessels under the effect of VEGF. The function
f (x, y) = 0.8+ 0.5 exp[−(x− 1)2− y2]. The other parameters are the same as those in Fig. 2.30

Fig. 2.33 The parameter ne dependence of bifurcation patterns of neogenetic vessels. The values
are ne = 0.1nb, 0.5nb, and 0.9nb, respectively, from left. The other parameters are the same as
those in Fig. 2.30

a constant rate (a = const.), then the system is completely deterministic. However,
if we assume that ECs are supplied with a given probability (equivalently a given
mean value 〈a〉), then the injection interval becomes a stochastic variable, although
the qualitative behavior of the model is not affected by the way of injection. Under



2 Angiogenesis 71

Fig. 2.34 VEGF dependence of bifurcation patterns of neogenetic vessels. The concentration of
VEGF is spatially uniform and the values of f (x, y) = 0.4, 1.0, and 1.4, respectively, from left,
and ne = 0.1nb. The other parameters are the same as those in Fig. 2.30

Fig. 2.35 The number of bifurcations with respect to the ne/nb and f (x, y). (Here f (x, y) is a
constant function.) The other parameters are the same as those in Fig. 2.30

this interaction, the tip position of neogenetic vessel at time step t , �(t), develops
as �(t) ∝ t2/3. We have given an interpretation on this value of exponent, 2/3,
based on the equation of continuity and a hypothesis of the existence of a scaling
function. The oscillating bound states in case of mere repulsive interaction were
also presented, which would give a reasoning for the cell-mixing effects in purely
repulsive interactions. The behavior of ECs and evolution patterns of new vessels
in early stage are well-reproduced by the present model. Our main conclusion
in the present research is that deterministic two-body interaction between ECs
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Fig. 2.36 VEGF dependence of the lengths of the branches Lk generated by k − 1th bifurcation
(k = 1, 2, . . . , 7). The parameters are the same as those in Fig. 2.34

can give rise to cell-mixing effect, elongation and bifurcation, which suggests the
importance of further investigation for interactive behavior of ECs in angiogenesis.
However, since we do not incorporate recombination of vessels and cell division,
the time evolution patterns for long time span deviate from actual networks of
blood vessels. In particular, the length of vessels tends to be longer with increase
of bifurcations, which is not observed in actual systems. We conjecture that this
discrepancy is caused by the effect of cell division that was rarely observed in
the time-lapse imaging experiments but will be important for long time span. In
the models, we have not, however, included chemotaxis, a gradient distribution
of VEGF and remodeling of blood vessels that are important in construction of
in vivo blood vessel networks. Incorporating these factors and closely examining
forthcoming experimental results, we wish to develop the present models so that we
can quantitatively explain various types of angiogenetic phenomena and provide a
theoretical framework for clinical trials targeting angiogenesis.

2.4 Two-Dimensional Pattern Formation with Ellipses

As we have seen in the previous Sect. 2.3, the neogenetic vessels are configured
through collective cell migration such as cell mixing. Our one-dimensional models
also show the necessity of the attractive and repulsive forces for neogenetic
development of vessels. In [60], the range of distance-dependent intercellular forces
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are estimated under the assumption of two-body interactions; a repulsive force
in ∼ 8μm and attractive force in 8 ∼ 20μm in the sprouting branch from in
vitro mouse aortic sheet. The long-range attractive force mainly originates from
oncoming neighbor cells, which results from adhesion (cf. Sect. 2.1.4). On the
contrary, the short-range repulsive force is considered to be the results of excluded
volume effect. In this section, we consider a two-dimensional discrete model with
excluded volume effect, in which the cells are expressed not as points but as ellipses
that have finite volume. It has been suggested that angiogenic sprouting is a natural
emergent property of elongated, adhesive objects in a stochastic system[43]. We
investigate a discrete model in deterministic manner without optimization such as
simulated annealing.

2.4.1 Two-Dimensional Extension of the Model

Suppose each EC is approximated as ellipse. Let us define the shape of ith EC at
time step t by the length of semi-major (resp., semi-minor) axis at

i (resp., bt
i ) and the

rotation angle of major axis ϕt
i ∈ [0, π) (Fig. 2.37). For the center position t (xt

i , y
t
i )

of ith EC, we consider a two-dimensional extension of the (2.17) and (2.18) in
Sect. 2.3.2:

zt+1
i − zt

i = vt
i ,

vt+1
i − vt

i = −γ vt
i +

∑

j �=i

Ft
i,j ,

(2.63)

where zt
i = t (xt

i , y
t
i ) ∈ R

2 is the position of the ith EC at time step t ∈ Z≥0 and
vt
i =: t (vt

x,i , v
t
y,i ) ∈ R

2 the velocity, and left upper t stands for transpose.

Fig. 2.37 Sketch of ith EC at
time step t , whose coordinate
is xt

i , semi-major axis at
i ,

semi-minor axis bt
i , and

rotation angle ϕt
i
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Let us define the interaction between two ellipses. Parametric representation of
the solid ellipse of ith EC by 0 ≤ r ≤ 1 with

(
x

y

)

= zt
i + R(ϕt

i )

(
at
i 0

0 bt
i

)(
r cos θ

r sin θ

)

=: gi(r, θ),

where R is the rotating matrix, r ∈ [0, 1] the radius, and θ ∈ [0, 2π) the parameter
of the curve. Let Ei be the domain of the ith ellipse,

Ei := {gi(r, θ)}0≤r≤1,0≤θ<2π . (2.64)

On the boundary (r = 1) of Ei , we select the D sampling points by gi(1, θk), where
θk = 2πk/D, k ∈ {0, 1, . . . ,D − 1}, and D ∈ Z>0 is the common parameter for all
ECs. Let Bi the set of the D sampling points on the boundary of Ei , that is,

Bi := {gi(1, θk)}k∈{0,1,...,D−1} . (2.65)

The two-body interaction causes the force and rotation depending on positions
and directions of two ECs as follows (Figs. 2.38, 2.39, and 2.40):

Repulsive force: ECs are not solid objects but may not share the same space,
and the nucleus inside EC is also known to be rigid[52]. If two ECs are close
enough, they repel each other. For each point q that satisfies q ∈ Bi and q ∈ Ej ,
accumulate the repulsive force fret

i,j to ith EC. In other words, if a sampling
point q ∈ Bi of the ith EC lies inside j th EC, ith EC receives the repulsive force
along the centers.

Attractive force: Since ECs are apart from each other without attractive forces,
wider range of attractive force than repulsive one may be indispensable. We
assume isotropic attractive force −faet

i,j for ith EC along to j th EC if the

Fig. 2.38 Sketch of attractive
force to ith EC (red arrow). If
the center of ith EC locates in
the disk centered at j th EC
with radius Ra , the ith EC
(gray ellipse) receives
attractive force along to j th
EC
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Fig. 2.39 Sketch of repulsive force to ith EC (red arrow). We show the case of D = 8 as an
example. Eight sampling points (blue and red points) are depicted on the boundary of ith EC. In
this case, overlap is detected since a sampling point of ith EC (red circle) is inside the j th EC. The
ith EC (gray ellipse) suffers repulsive force away from j th EC (red arrow)

Fig. 2.40 Sketch of rotating force to ith EC (red arrow). A sampling point of ith EC (red circle)
located in the j th EC, so the ith EC (gray ellipse) rotates to avoid overlap. We show the case of
D = 8 as an example, in which the red point corresponds to k = 1 and θk = π/4 in the text.
Therefore, ϕt

i of the ith EC decrease fp by this overlap; that is, ith EC rotates clockwise

distance between two centers ‖zt
i− zt

j‖ is less than Ra . Since this attractive force
and the above repulsive one act on the same line, we also assume fa < fr so as
not to counteract the repulsive force.

Rotating force: Similar to the above repulsive force, the excluded volume effect
prevents the overlap of ECs. If the sampling point q of the EC i exists inside j th
EC, ith EC rotates for avoiding overlap.
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Thus, we obtain the two-body interaction as follows:

Ft
i,j = −faet

i,jΘ(Ra − ‖zt
i − zt

j‖)+
∑

q∈Bi

fret
i,j1Ej

(q),

ϕt+1
i − ϕt

i = −
∑

k∈{0,1,...,D−1}

∑

j �=i

fp sin(2θk)1Ej
(gi(1, θk)),

(2.66)

where et
i,j := (zt

i − zt
j )/‖zt

i − zt
j‖, that is, the unit vector along the relative center

positions of two ECs, and fa , fr and fp are the common parameters for all ECs,
and Θ the step function

Θ(x) :=
{

1 (x > 0)

0 (x ≤ 0)
,

and 1A the characteristic function on a set A

1A(x) :=
{

1 (x ∈ A)

0 (x �∈ A)
.

Note that we defined the rotation angle of ellipse as 0 ≤ ϕt
i < π ; therefore, we do

not distinguish the polarity of EC by its shape, that is, the direction of migration
(Fig. 2.3). The velocity vt

i plays a role for the direction of migration.
For simplicity, we limit ECs to the constant and common shapes at

i = a and
bt
i = b for all t and i (a ≥ b), and furthermore choose the area of ellipse as unit

ab = 1 for length scaling. Thus, the shapes of all ECs are characterized by only one
parameter; the flattening f := 1− b/a = 1− 1/a2.

2.4.2 Pattern Formation and Order Parameter

Let us suppose that the case ECs are regularly supplied to the system. Assume that
the ECs are periodically injected with the interval 10 and uniformly at random with
the angle [0, π) in the unit circle (radius one) at the fixed point. In Fig. 2.41, we show
the numerical results of (2.63) with various flattenings. The figures are snapshots at
t = 5000; therefore, 500(=5000/10) ECs exist on each plane as a result. For f = 0
case (leftmost), the ECs form a rounded compact mass. In this f = 0 case, all
forces are isotropic and independent of the direction ϕt

i because all ECs are circle.
On the contrary for larger flattening, the patterns appear to be sprouting to peripheral
area. In Fig. 2.42, we show the number of square boxes required to cover the set of
the center positions of all ECs on the plane with respect to the grid spacing. By
fitting the curve, the box-counting dimensions are estimated as ∼ 1.7, 1.6, 1.2 for
f = 0, 0.3, 0.7, respectively; the more ECs elongate, the more branches grow one
dimensionally. Thus, this change originates in only flattening of ellipses. Since the
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Fig. 2.41 Patterns formed by ECs on the plane at t = 5000. The flattening f is 0, 0.3, and 0.7,
respectively, from left to right. Common parameters are D = 16, Ra = 5, fa = 0.005, fr = 0.015,
fp = 0.005, and γ = 0.1. ECs are regularly injected at the center of each figure
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Fig. 2.42 Box-counting dimensions are estimated: dependencies of the number of occupied boxes
with respect to the size of boxes at the snapshot t = 5000. Each line is averaged by 100 trials (Blue:
f = 0, Green: f = 0.3, Red: f = 0.7). Other parameters are the same as Fig. 2.41. Estimated
box-counting dimensions are 1.7, 1.6, 1.2, respectively

elongated ellipse frequently collides at the front part compared to side part, the
major axes are aligned with each other. Note that our model is deterministic, and the
randomness has to do with the way of the injection at the fixed center. Though the
pattern radiating in all directions results from this injection, the slender branches in
Fig. 2.41 are intrinsic to our model. In Figs. 2.43, 2.44, and 2.45, we show the time
evolutions from initial state consisting of scattered ECs in a square region. The three
initial states (leftmost) are prepared from the pseudorandom number generator with
the same seed. Fig. 2.43 shows that the circles (f = 0) form a few rounded compact
mass due to isotropic attractive and repulsive forces. The larger the flattening f

becomes, the more the branches elongate (Figs. 2.44 and 2.45). The center figure
in Fig. 2.45 shows that the mesh structure, which is similar to retina pattern, is
temporarily formed; however, such structure disappears as time goes on. In our
model, we do not take extracellular matrix into account; that is, ECs are not binded
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Fig. 2.43 Time evolution of 500 ECs on the plane for the flattening f = 0 without injection. Each
figure is the snapshot at t = 1, 1500, and 5000, respectively, from left to right. Parameters are the
same as Fig. 2.41

Fig. 2.44 Time evolution of 500 ECs on the plane for the flattening f = 0.3 without injection.
Each figure is the snapshot at t = 1, 1500, and 5000, respectively, from left to right. Parameters
are the same as Fig. 2.41

Fig. 2.45 Time evolution of 500 ECs on the plane for the flattening f = 0.7 without injection.
Each figure is the snapshot at t = 1, 1500, and 5000, respectively, from left to right. Parameters
are the same as Fig. 2.41

to matrix through focal adhesion. Stabilizing these structures in our model will be a
future problem.

In one branch, ECs tend to be aligned along each other. To quantify the
alignment, let us define the local order parameter as follows. Suppose two ECs
with ϕi and ϕj , then the parallel (resp., perpendicular) ECs give cos 2(ϕi − ϕj ) =
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Fig. 2.46 Order parameters St (r) at t = 5000 for the patterns in Figs. 2.43, 2.44, and 2.45. Blue:
f = 0, Green: f = 0.3, and Red: f = 0.7

1(resp. − 1). Averaging cos 2(ϕi − ϕj ) over j th EC around ith EC, we may obtain
a locally defined order for each EC:

St
i (r) :=

1

Nt
i (r)

∑

j �=i,‖zti−ztj ‖≤r

cos 2(ϕt
i − ϕt

j ),

where Nt(r) is the number of ECs around ith EC at time t . In addition, averaging
St

i (r) over all ECs yields the local order parameter of the system St (r) := 〈St
i (r)〉i .

Note that this order parameter St (r) may be negative, though St (r) gives zero
for randomly oriented ECs. In Fig. 2.46, we show the distance dependency on the
order parameter for the patterns in Figs. 2.43, 2.44, and 2.45 at t = 5000. Since
the circle shape (f = 0) causes random rotating regardless of the ECs direction,
the order parameter is always almost zero, whereas for nonzero f , it may be seen
that the order parameter of smaller r is large. Rough estimation from the semi-log
figure gives the exponential decay; therefore, it is supposed that the direction of
EC has the typical correlation scale, which depends on the parameters fa , fr , fp,
and the flattening f . This correlation length is considered to be a possible factor
that determines the above mesh structure. Analysis of the bifurcation of neogenetic
blood vessels from the “dynamical systems” point of view could shed new light on
these issues.
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Chapter 3
Synchronization and Fluctuation
of Cardiac Muscle Cells

Tatsuya Hayashi, Kenji Yasuda, and Guanyu Zhou

3.1 Introduction

Following on from the dramatic progress in the life sciences in the twentieth
century, starting with determination of the way in which genetic information is
stored, encoded, and transmitted, another challenge has arisen regarding epige-
netic information. Epigenetic information is complementary to genetic information
and essential to understand the entire landscape of living systems, such as how
living cells can choose, reserve, share, and inherit acquired epigenetic informa-
tion among neighboring cells and between generations. As we move into the
post-genomic/proteomic era, such complementarity to genetic information should
become more apparent. The cells in a group are individual entities, and differences
arise even among cells with identical genetic information that have developed under
the same conditions. These cells respond differently to perturbations [42]. Why
and how do these differences arise? How are these differences of individual cells
ironed out when they become groups, clusters, or tissues? We call this behavior the
“community effect” of cells as induced uniformity. To understand the community
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effect, we need to understand the potential underlying differences of cells, and
why and how their characteristics change when they form networks as epigenetic
information.

If we are to obtain a comprehensive understanding of a living system, we need
to analyze its epigenetic information, such as adaptation processes and community
effect in a group of cells. As cells are minimal units in terms of both genetic and
epigenetic information, we must analyze their epigenetic information starting from
the twin complementary perspectives of cell regulation being an “algebraic” system
(with emphasis on temporal aspects; nongenetic adaptation) and a “geometric”
system (with emphasis on spatial aspects; spatial pattern-dependent community
effect) using identified single cells and their patterned groups. We thus commenced
a series of studies to analyze the epigenetic information of single cells and the spatial
structures of cell networks to expand our understanding of how the fates of living
systems are determined and how they can be changed.

The importance of understanding epigenetic information is expected to become
apparent in cell-based biological and medical fields such as cell-based drug
screening and the regeneration of organs from stem cells, fields in which phenomena
cannot be interpreted without taking epigenetic factors into account. We thus started
a series of studies focusing on developing a system that could be used to evaluate
the epigenetic information in cells by continuously observing specific examples
of cells and their interactions under fully controlled conditions as a constructive
experimental method. However, the issues of limitations regarding the quality of
cells and control of their conditions remained. Mathematical modeling is one of the
most powerful approaches to overcome these problems.

In this chapter, a mathematical approach for analyzing the synchronization
behavior of spontaneously beating cardiomyocytes was examined, starting from
modeling of the firing of cardiomyocytes and progressing to spatially arranged
cardiomyocyte networks, based on the twin complementary perspectives of cell
regulation, namely, as an “algebraic” system (emphasis on temporal aspects) and
as a “ geometric” system (emphasis on spatial aspects). Our experimental and
mathematical results on the community effect in the synchronization behavior of
beating in cardiomyocyte networks are introduced and discussed.

3.2 The Stochastic Phase Models for the Cardiomyocyte
Beating

Massive mathematical models have been proposed to investigate the mechanism
of cardiomyocyte beating. For example, the work [10] studies an elaborated
mathematical model composed of a large number of equations, which looks into the
complex electrophysiological processes causing cardiomyocyte synchronization.
On the other hand, using just a few ordinary equations, one can reproduce the key
phenomenon of the membrane currents and action potentials (see, for example,
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[22, 37]), such as the famous Hodgkin–Huxley model, the FitzHugh–Nagumo
model, and the Van der Pol model. In this section, we focus on investigating
the statistical behavior of beating/synchronization period of cardiomyocyte. To
explain the essence of synchronization period, we can regard the cardiac muscle
cells as oscillators, to which the phase model is well applicable [29, 32, 56]. It is
also regarded as the well-known integrate-and-fire model which has been widely
used as a spiking neuron model [2, 23, 40]. However, to capture the features of
cardiomyocyte beating, we have to incorporate the conventional stochastic phase
models with three important conceptions: irreversible at firing, a refractory period
after firing, and induced pulsation associated with firing of neighboring cells. In this
section, we introduce the stochastic phase models for the beating of the isolated
and coupled cardiac muscle cells. The theoretical analysis concerned with the
synchronization period is provided, which involves the stochastic equation, the Itô
formula, and the calculation of expected value, variance, and coefficient of variance
(CV) of the beating/synchronization period.

3.2.1 Some Preliminaries for the Stochastic Phase Model

Before describing the stochastic phase models for the cardiomyocyte beating,
we briefly introduce some mathematical preliminaries on the phase model and
stochastic differential equation.

3.2.1.1 The Phase Model

We start from a simple phase model. Let φ be the phase of an oscillator with intrinsic
frequency (or drift) μ > 0 and initial state φ(0) = 0. The phase model is given by

φ(t) = μt. (3.1)

Assuming that the phase returns to 0 when approaching 2π , we see that T = 2π
μ

is the period of the oscillator. We can also write (3.1) into an equivalent differential
form:

dφ(t) = μdt, (3.2a)

φ(0) = 0. (3.2b)

Think of the oscillator as a cardiomyocyte, which beats when the phase reaches
2π and then returns to 0 immediately to begin a new beating process (see Fig. 3.1a).
The phase equation (3.1) describes the rhythmic beating with period T .

In general, one can consider the phase model with time-dependent and state-
dependent drift, that is, μ(t, φ(t)) is a function depending on t and φ. Then, the
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Fig. 3.1 (a) The phase model
with constant drift μ = 1,
where the beating interval is
2π . (b) The phase model with
drift μ = 1 and “white noise”
ζ , where the beating interval
varies each time

(a)

t

(b)

t

phase model with initial value φ0 becomes

dφ = μ(t, φ)dt, φ(0) = φ0.

The above equation is equivalent to the following integration form:

φ(t) =
∫ t

0
μ(s, φ(s)) ds + φ0, (3.3)

which is also called the “integrate-and-fire” model.
However, for a cardiomyocyte, the beating process is often affected by the

internal/external noise. As a result, the beating interval varies each time (see
Fig. 3.1b for an example of beating process with noise).

3.2.1.2 The Brownian Motion and White Noise

Incorporating the phase model (3.2) with noise effect, we write the phase model in
a formal way:

dφ(t) = μdt + σζ(t), (3.4a)

φ(0) = 0, (3.4b)

where ζ(t) denotes the “white noise” (which has been widely applied in many
mathematical models), and σ is a constant representing the strength of the noise. In
general, one can take σ as a function of φ, i.e., σ(φ). Since the white noise can be
regarded as the time derivative of Brownian motion (or called the Winner process)
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denoted by W(t), (3.4a) becomes

dφ(t) = μdt + σdW(t), (3.5)

which is a stochastic differential equation. Figure 3.1b shows a sample path of φ

with μ = σ = 1.
Before we discuss the stochastic differential equation (3.5), let us explain the

conceptions of the Brownian motion and white noise, where we need the Gaussian
(or normal) distribution.

For μ ≥ 0 and σ > 0, N(μ, σ 2) represents the Gaussian (or normal) distribution
with mean μ and variance σ 2. The probability density function of N(μ, σ 2) is given
by

f (x) = 1√
2πσ 2

e
− |x−μ|2

2σ2 , −∞ < x <∞. (3.6)

For an N(μ, σ 2) random variable X (i.e., X ∼ N(μ, σ 2)), one can compute the
probability of the event a < X < b using the density function f :

P(a < X < b) =
∫ b

a

f (x) dx.

The expected value (or mean) of X is calculated as

E(X) =
∫ ∞

−∞
xdP (X ≤ x) =

∫ ∞

−∞
xf (x)dx

=
∫ ∞

−∞
x

1√
2πσ 2

e
− |x−μ|2

2σ2 dx = μ.

(3.7)

And we derive the variance of X:

Var(X) = E([X − E(X)]2)
= E(X2)− [E(X)]2

=
∫ ∞

−∞
x2 1√

2πσ 2
e
− |x−μ|2

2σ2 dx − μ2 = σ 2.

(3.8)

The two (Gaussian) random variables X1 and X2 are independent means the
probability of the events a1 < X1 < b1 and a2 < X2 < b2 equals the product
of P(a1 < X1 < b1) and P(a2 < X2 < b2), i.e.,

P(a1 < X1 < b1, a2 < X2 < b2) = P(a1 < X1 < b1)P (a2 < X2 < b2),

where {ai}2i=1 and {bi}2i=1 are any real numbers with ai < bi .
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Fig. 3.2 Four sample paths
of Brownian motion W(t)

t

Sample path 1

Sample path 2

Sample path 3

Sample path 4

W
(t
)

For two independent random variables X1 and X2, we have

E(X1X2) = E(X1)E(X2). (3.9)

With the help of Gaussian random variable, we introduce the one-dimensional
Brownian motion.

A collection of random variables {Xt | t ≥ 0} is called a stochastic process. The
Brownian motion {W(t) | t ≥ 0} is a stochastic process satisfying:

• W(0) = 0.
• For all 0 ≤ s < t , W(t)−W(s) ∼ N(0, t − s).
• For any 0 < t1 < t2 < · · · < tn, the random variables W(t1), W(t2) −

W(t1), · · · ,W(tn)−W(tn−1) are independent.

We plot four sample paths (or trajectories) of Brownian motion W(t) (see
Fig. 3.2). Noting that W(t) ∼ N(0, t), we have the mean and variance of W(t):

E[W(t)] = 0, Var[W(t)] = E[W 2(t)] − 02 = t. (3.10)

Moreover, for t > s ≥ 0,

E[W(t)W(s)] = E[(W(t)−W(s)+W(s))W(s)]
= E[(W(t)−W(s))W(s)] + E[W 2(s)]
= E[W(t)−W(s)]E[W(s)] + s (by (3.9))

= 0+ s,

(3.11)

where we have used the fact that W(t)−W(s) ∼ N(0, t − s), W(s) ∼ N(0, s), and
the random variables W(t)−W(s) and W(s) are independent.

We have described Brownian motion. As mentioned above, the “white noise”
ζ(t) is the formal time derivative of W(t), i.e., ζ(t) = dW(t)

dt
. However, in fact, the

sample path of W(t) is not differentiable for t ≥ 0; that is, dW(t)
dt

does not really
exist (in the classical sense).
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To get a better understanding of the “white noise” (or dW(t)), we introduce Itô’s
integral to interpret dW(t) in the integral form.

3.2.1.3 Itô’s Integral

Analogously to the integral form (3.3) of the phase model, we write the model (3.5)
into the integral equation

φ(t) =
∫ t

0
μdt +

∫ t

0
σdW(s)+ φ0. (3.12)

The task is to provide a proper definition of the integral that involves dW(s), i.e.,∫ t

0 σ dW(s), such that (3.12) makes sense. For the simple case that μ and σ are
constants, we immediately have (by

∫ t

0 dW(s) = W(t))

φ(t) = μt + σW(t)+ φ0.

See Fig. 3.1b for a sample path of φ(t) with μ = σ = 1 and φ0 = 0 and under
the setting that φ jumps to 0 when φ(t) reaching 2π . However, for a stochastic
process X(t), the definition of

∫ T

0 X(t) dW(t) is not straightforward. The famous
Itô’s integral addresses this issue.

The rigorous mathematical definition of Itô’s integral involves the filtration and
measurability theories of stochastic process, which is omitted in the following
argument and replaced by some intuitive description. One can refer to [6, 35] for
a detailed mathematical definition.

First, we consider a simple case that X(t) is a step process: for 0 = t0 < t1 <

· · · < tn = T ,

X(t) = Xk for tk ≤ t < tk+1, k = 0, 1, . . . , n− 1,

where {Xk}nk=0 are the random variables independent of t , satisfying:

(c1) Xk is independent of the information of W(t) for all t ≥ tk .
(c2) E(

∫ T

0 |X(t)|2 dt) <∞.

Then, the Itô stochastic integral of X(t) on (0, T ) is defined by

∫ T

0
X(t) dW(t) =

n−1∑

k=0

Xk(W(tk+1)−W(tk)). (3.13)
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It is apparent that, for any constants a and b and the step processes X1 and X2
satisfying (c1) and (c2), the following equality holds:

∫ T

0
aX1(t)+ bX2(t) dW(t) = a

∫ T

0
X1 dW(t)+ b

∫ T

0
X2 dW(t). (3.14)

In statistical analysis, the expected value (mean) and variance (fluctuation) are
important features of a random variable. Let us investigate the expected value
involving Itô’s integral.

The assumption that X(t) only depends on the past history of the Brownian
motion {W(s) | s < t} but is independent of the future behavior {W(s) | s ≥ t}
plays crucial role in the obtention of the following properties of Itô’s integral.

According to the definition (3.13),

E
(∫ T

0
X(t) dW(t)

)

=
n−1∑

k=0

E [Xk(W(tk+1)−W(tk))] .

The assumption (c1) implies that Xk is independent of W(tk+1) and W(tk)). As a
result,

E [Xk(W(tk+1)−W(tk))] = E(Xk)E(W(tk+1)−W(tk))

= 0 (by W(tk+1)−W(tk) ∼ N(0, tk+1 − tk)).

Hence, we conclude

E
(∫ T

0
X(t) dW(t)

)

= 0. (3.15)

Next, we consider the expected value of
(∫ T

0 X(t) dW(t)
)2

. By the definition

(3.13),

E

[(∫ T

0
X(t) dW(t)

)2]

=
n−1∑

k=0

n−1∑

j=0

E
[
Xk(W(tk+1)

−W(tk))Xj (W(tj+1)−W(tj ))
]
.

For k �= j , without loss of generality, we assume k > j . Since (W(tk+1) −W(tk))

and (W(tj+1) − W(tj )) are independent, and Xj is only dependent upon the past
information {W(t) | t < tj } and independent of the future behavior {W(t) | t ≥ tj },
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we find that (W(tk+1)−W(tk)) is independent of XkXj (W(tj+1)−W(tj )), which
implies

E
[
Xk(W(tk+1)−W(tk))Xj (W(tj+1)−W(tj ))

]

= E(W(tk+1)−W(tk))E[XjXk(W(tj+1)−W(tj ))]
= 0 (because W(tk+1)−W(tk) ∼ N(0, tk+1 − tk)).

Therefore,

E

[(∫ T

0
X(t) dW(t)

)2]

=
n−1∑

k=0

E
[
X2

k(W(tk+1)−W(tk))
2
]
.

Again, the assumption (c1) yields the independence between X2
k and (W(tk+1) −

W(tk))
2, which gives

E
[
X2

k(W(tk+1)−W(tk))
2
]
= E(X2

k)E
[
(W(tk+1)−W(tk))

2
]

= E(X2
k)E

[
W 2(tk+1)− 2W(tk+1)W(tk)+W 2(tk)

]

= E(X2
k)(tk+1 − 2tk + tk) (by (3.10) and (3.11))

= E(X2
k)(tk+1 − tk) = E

[∫ tk+1

tk

X2(t) dt

]

,

where we have used the fact that X(t) = Xk for tk ≤ t < ttk+1 . Summing up the
above equation from k = 0 to k = n− 1 yields

E

[(∫ T

0
X(t) dW(t)

)2]

= E
(∫ T

0
X2(t) dt

)

. (3.16)

We have introduced Itô’s integral for the step process X(t) and derived the
properties (3.14), (3.15), and (3.16). For arbitrary progressive measurable process
X(t) (generally speaking, X is a progressive measurable process means that X(t) is
independent of the future behavior of the Brownian motion {W(s) | s ≥ t} and
is well defined and measurable providing the past information of the Brownian
motion {W(s) | s < t}) satisfying the boundedness

∫ T

0 |X(t)|2 dt < ∞, we can
approximate X(t) by a sequence of step processes {X(m)(t)}∞m=1 and define Itô’s

integral as the limitation of
∫ T

0 X(m)(t) dW(t), i.e.,

∫ T

0
X(t) dW(t) = lim

m→∞

∫ T

0
X(m)(t) dW(t).
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The readers can refer to [6, 35] for the detailed approximation technique and conver-
gence analysis. In fact, one can verify that the properties (3.14), (3.15), and (3.16)
are also satisfied. Therefore, we have extended Itô’s integral to arbitrary progressive
measurable process X(t) with bounded L2-norm (i.e.,

∫ T

0 |X(t)|2 dt < ∞).
Itô’s integral ensures the meaning of the integral equation (3.12). Usually, it is

more convenient to write (3.12) into the differential form (3.5), where the white
noise ζ = dW(t) should be understood in the sense of Itô’s integral.

3.2.1.4 Itô’s Formula

Given a smooth function g(x) and a stochastic process X(t) satisfying the following
stochastic differential equation:

dX(t) = μ(X(t))dt + σ(X(t))dW(t), (3.17a)

X(0) = X0, (3.17b)

where μ(X(t)) and σ(X(t)) are two functions depending on X(t), we aim to
investigate the random variable g(X(t)).

We give an explicit statement of Itô’s formula. Assume that g(x) is a twice
continuously differentiable function and X satisfies (3.17). Then, we have

g(X(t))− g(X(0)) =
∫ t

0
g′μ+ 1

2
g′′σ 2 ds +

∫ t

0
g′σ dW(s), (3.18)

where g′, g′′, σ , and μ are all functions of X(s). One can write the above formula
in a more compact form:

dg(X) = g′(X)dX + 1

2
g′′(X)σ 2dt

=
(

g′(X)μ+ 1

2
g′′(X)σ 2

)

dt + g′(X)σdW.

(3.19)

The readers can refer to [6, 35] for the proof of (3.18).
We introduce another expression of (3.19) by the following expansion of dg(X):

dg(X) = g′(X)dX + 1

2
g′′(X)(dX)2, (3.20)

where (dX)2 is decomposed by

(dX)2 = μ2(dt)2 + μσ(dtdW + dWdt)+ σ 2(dW)2.
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Roughly speaking, we have

(dW)2 = dt
(
or equivalently, dW = (dt)

1
2
)
,

according to which dWdt = dtdW = (dt)
3
2 . And we omit the terms of (dt)2,

dWdt , and dtdW since they are of a higher order than dt . Then, the expansion
(3.20) reduces to (3.19). But rigorously speaking, dX and dW have no meaning
alone.

If we apply the ordinary differential chain rule, then we get

dg(X) = g′(X)dX = g′(X)μdt + g′(X)σdW,

which is not correct.
For g(x, t) with continuous differential ∂g

∂t
,

∂g
∂x

, and ∂2g

∂x2 , Itô’s formula becomes

g(X(t), t)− g(X(0), 0) =
∫ t

0

∂g

∂s
+ ∂g

∂x
μ+ 1

2

∂2g

∂x2
σ 2 ds +

∫ t

0

∂g

∂x
σ dW(s),

(3.21)

or equivalently,

dg(X, t) = ∂g

∂t
dt + ∂g

∂x
dX + 1

2

∂2g

∂x2 σ 2dt

=
(

∂g

∂t
dt + ∂g

∂x
μ+ 1

2

∂2g

∂x2
σ 2
)

dt + ∂g

∂x
σdW.

(3.22)

We end up this section with an application of Itô’s formula. Consider a particle
moves with a constant drift μ in one-dimensional space starting from the position
x = 0. Moreover, the particle is affected by a white noise with strength σ . There are
two barriers at x = ±1, and we assume that the particle is absorbed when touching
the barriers. We denote by φ(t) the position of the particle at time t . Suppose that
the particle touches the barriers at time τ , i.e., φ(τ) = ±1. τ is a random variable.
What is the expected value (mean) of τ?

To compute the expected value of τ , we first notice that φ satisfies the stochastic
differential equation

dφ(t) = μdt + σdW(t), φ(0) = 0.

See Fig. 3.3 for two examples. Noting that

φ(t) = μt + σW(t),
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(a)
= 1

= −1

t

(b)
= 1

ϕ= −1

t

Fig. 3.3 (a) A sample path of φ(t) with μ = 0 and σ = 1. (b) A sample path of φ(t) with μ = 1
and σ = 1. The movement is stopped when reaching the boundary ±1

φ is the stochastic process with mean

E(φ(t)) = μt

and variance

Var(φ(t)) = E(φ2(t))− [E(φ(t))]2 = σ 2t.

In fact, φ(t) is called the (μ, σ ) Brownian motion, and W(t) is the standard
Brownian motion. And we see that φ(t) ∼ N(μt, σ 2t) and W(t) ∼ N(0, t).

By Itô’s formula (3.18), for a function g with continuous g′ and g′′,

g(φ(τ))− g(0) =
∫ τ

0
g′μ+ 1

2
g′′σ 2 dt +

∫ τ

0
g′σ dW(t).

Since τ is regarded as the first time that the particle reaches x = ±1, we see that
g(φ(τ)) = g(±1). Assume that g is the solution of the following boundary value
problem:

g′μ+ 1

2
g′′σ 2 = −1 for − 1 < x < 1, (3.23a)

g(±1) = 0. (3.23b)

Then, we find that

0− g(0) = −
∫ τ

0
1 dt +

∫ τ

0
g′σ dW(t) = −τ +

∫ τ

0
g′σ dW(t).
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Applying (3.15),

0− g(0) = −E(τ )+ E
(∫ τ

0
g′σ dW(t)

)

= −E(τ )+ 0.

Therefore, the expected value of the absorbed time is given by

E(τ ) = g(0).

The problem reduces to solving the boundary value problem (3.23). For the case
that μ = 0, it is obvious that

g(x) = σ−2(1− x2),

which yields E(τ ) = σ−2.
We have introduced some preliminaries of stochastic differential equation.

Next, we turn attention to our stochastic phase models for the beating process of
cardiomyocyte, where we apply the properties of Itô’s integral and Itô’s formula for
analysis.

3.2.2 The Phase Model for an Isolated Cardiomyocyte

The beating process for an isolated cardiomyocyte is regarded as the increase of a
stochastic phase function from 0 to 2π , where the phase starts from 0, increases
with an intrinsic frequency μ, and is effected by a white noise with strength σ .
When the phase approaches 2π , we say the cell beats and the phase then returns
to 0. Hence, from 0 to 2π , the cell completes an oscillation cycle (see Fig. 3.4). To
incorporate the irreversibility of beating, we impose a reflective boundary at 0 state
(see Figs. 3.4b and 3.5a).

Let φ(t) denote the phase of an isolated cardiomyocyte at time t . The model is
stated as follows:

dφ(t) = μdt + σdW(t)+ dL(t), (3.24)

where μ denotes the intrinsic frequency, σ represents the noise strength, and W(t)

stands for the standard Brownian motion. dW(t) is the generalized derivative of
W(t), which is known as the Gaussian white noise. We impose the conception of
irreversibility after beating. When the cell beats, we have φ(t−) = 2π and φ(t) =
0. Since the phase is affected by noise σdW , when φ(t−) = 0 and σdW(t−) < 0,
the phase may become negative, i.e., φ(t) goes back to 2π (see Fig. 3.4b). The
irreversibility says that when φ(t−) = 0, φ cannot be driven back to 2π by negative
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refractory
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0reflective
boundary beating

Fig. 3.4 (a) The cardiac action potential. (b) The beating process is modeled by the increase of
the phase function φ(t) from 0 to 2π . The cell beats when the phase φ approaches 2π and then
returns to 0 to start a new oscillation circle. The reflective boundary is imposed at φ(t) = 0, which
ensures that φ ≥ 0 always holds even when φ(t) = 0 and the noise σdW(t) is negative

(a)

t

(t
)

beating

reflective boundary

(b)

K(θ)

C
V
(T

)

θ = 2 /σ2

Fig. 3.5 (a) A trajectory of φ(t) with (μ, σ ) = (1, 2), 0 ≤ t ≤ 6. When φ approaches 2π , it
returns to 0 immediately. (b) The CV of beating interval

noise. To prevent the reversibility of beating, we add the process L(t) to cancel the
negative part of noise such that φ(t) ≥ 0 always holds (see Fig. 3.5a). Hence, the
reflective boundary is described by L(t), which satisfies [9, 41]:

1. L(t) increases only when φ(t) = 0 such that φ(t) ≥ 0.
2. L(t) = 0 when the cell beats.

Every time φ approaches 2π , φ returns to 0, which means that φ is a renewal
process. The beating interval T is a random variable owing to the noise dW(t). Next,
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we investigate the expected value and variance of T , i.e., the mean and fluctuation
of beating interval of cardiomyocyte.

For any function g with continuous differential dg
dx

and d2g

dx2 , Itô formula gives

g(φ(T ))− g(φ(0)) =
∫ T

0

[

μ
dg

dx
(φ(t))+ σ 2

2

d2g

dx2
(φ(t))

]

dt

+
∫ T

0

dg

dx
(φ(t))[σdW(t)+ dL(t)].

(3.25)

By the properties of Itô’s integral [6, 35], we have, for any G(t) and H(t) satisfying
∫ T

0 |G|2 dt <∞ and
∫ T

0 |H |2 dt <∞,

E
(∫ T

0
G(t) dW(t)

)

= 0, (3.26a)

E
(∫ T

0
G(t) dW(t)

∫ T

0
H(t) dW(t)

)

= E
(∫ T

0
GH dt

)

. (3.26b)

Equation (3.26a) means that the expected value of Itô’s integral with respect to
dW equals 0.

Now, in view of φ(0) = 0 and φ(T ) = 2π , if g satisfies

g(2π) = 0, μ
dg

dx
+ σ 2

2

d2g

dx2
= −1, (3.27)

then it follows from (3.25) that

0− g(0) = −T +
∫ T

0

dg

dx
(φ(t))σ dW(t)+

∫ T

0

dg

dx
(φ(t)) dL(t).

Since L(t) is a process that increases only when φ(t) = 0, dL(t) is nonzero only
when φ(t) = 0. Thus, we have

∫ T

0

dg

dx
(φ(t)) dL(t) =

∫

{t |0<t<T, φ(t)=0}
dg

dx
(0) dL(t).

Therefore, if g satisfies additionally

dg

dx
(0) = 0, (3.28)

then we get

0− g(0) = −T +
∫ T

0

dg

dx
(φ(t))σ dW(t)+ 0. (3.29)
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Taking the expected value of the above equation and according to (3.26a),

E[T ] = g(0).

Now, what is left is to find the function g satisfying (3.27) and (3.28). In fact, one
can validate that

g(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

4π2 − x2

σ 2 for μ = 0,

2π − x

μ
−

σ 2
(
e
− 2μx

σ2 − e
− 4πμ

σ2
)

2μ2 for μ > 0.

As a result, we obtain the mean value of the beating interval T :

E(T ) = g(0) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

4π2

σ 2 for μ = 0,

2π

μ
−

σ 2
(

1− e−4πμ/σ 2
)

2μ2 for μ > 0.

(3.30)

Next, we consider the fluctuation of beating interval T , i.e., the variance
Var(T ) = E(T 2)− [E(T )]2. By virtue of (3.29),

T 2 = g2(0)+ 2g(0)

∫ T

0

dg

dx
(φ(t)) dt +

[∫ T

0

dg

dx
(φ(t)) dt

]2

.

Taking the expectation of the above equation and with the help of (3.26), we derive

E[T 2] = g2(0)+ σ 2E

[∫ T

0

∣
∣
∣
∣
dg

dx
(φ(t))

∣
∣
∣
∣

2

dt

]

.

Recalling that g(0) = E(T ),

Var(T ) =E
[∫ T

0
σ 2
∣
∣
∣
∣
dg

dx
(φ(t))

∣
∣
∣
∣

2

dt

]

=
∫ 2π

0
σ 2
∣
∣
∣
∣
dg

dx
(x)

∣
∣
∣
∣

2

E
[∫ T

0
1dx(φ(t)) dt

]

=E(T )

∫ 2π

0
σ 2
∣
∣
∣
∣
dg

dx

∣
∣
∣
∣

2

p(x) dx,
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where p(x)dx represents that the probability of φ(t) exists in [x, x+dx) for t →∞
(see [4, Chapter 9 (1.22) (2.25)]). Via a similar calculation to [9], one can obtain the
probability density p:

p(x) =

⎧
⎪⎪⎨

⎪⎪⎩

2π − x

2π2 for μ = 0,

θ(e2πθ − eθx)

1+ 2πθe2πθ − e2πθ
for μ > 0,

where θ = 2μ/σ 2. With the help of g and p, we calculate the variance of beating
interval:

Var(T ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

32π4

3σ 4
for μ = 0,

−5+ e−4πθ + 4e−2πθ + 8πθe−2πθ + 4πθ

μ2θ2
for μ > 0.

(3.31)

The coefficient of variance (CV) of beating interval T is given by

CV(T ) =
√
Var(T )

E(T )
=
{√

2/3 for μ = 0,

K(θ) for μ > 0,
(3.32)

where K(θ) = e2πθ
√
−5+e−4πθ+4e−2πθ+8πθe−2πθ+4πθ

1+2πθe2πθ−e2πθ . We find that CV only depends

on θ = 2μ/σ 2. Moreover, one can validate that the CV decreases as θ increases,
and it has an upper bound

√
2/3 ≈ 0.8165 (see Fig. 3.5b), i.e.,

CV(T ) ↑ √3/2 θ ↓ 0.

Hence, the phase model (3.24) is only suitable for the cardiomyocyte with CV less
than
√

2/3.
In experiment, the distribution of the beating interval T of each isolated

cardiomyocyte has been recorded [28, Figure 3. a, Table 1 and Table 2]). Using
the above formulas (3.30) and (3.32), we can determine the parameters (μ, σ ) of
the phase model (3.24) for each cardiomyocyte from the mean and CV of beating
interval obtained from experiments. To validate the efficiency of our model, we
compare the numerical simulation results with the experimental data (see Sect. 3.3).

3.2.3 The Phase Model for Two Coupled Cardiomyocytes

For two coupled cardiomyocytes, denoting by φi the phase function of cell i (i =
1, 2), we introduce the reaction term Ai,j f (φj−φi) between cell i and cell j , where
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{Ai,j }i,j are constants and f is a 2π -periodic function with f (x) = −f (−x) (for
example, f (x) = sin(x)). We denote by (μi, σi) the intrinsic frequency and noise
strength of cell i. Then, (φ1, φ2) satisfies, for i, j = 1, 2, i �= j ,

dφi(t) = μidt + Ai,j f (φj − φi)dt + σidWi(t)+ dLi(t), (3.33a)

φi(0) = 0, (3.33b)

where dWi represents the white noise of cell i (W1 and W2 are independent
Brownian motion), and Li(t) is the process to cancel the negative noise when
φi(t) = 0 such that φi(t) ≥ 0, which ensures the irreversibility of beating (see
(i) and (ii) of Sect. 3.2.2).

For two coupled cardiomyocytes, we also incorporate the conception of induced
beating and refractory:

(R1) When cardiac muscle cell i beats, if cell j is out of refractory, then both the
cells beat.

(R2) When cardiac muscle cell i beats, if cell j is in refractory, then only cell i

beats.

In phase model, the beating of cell i is described by the phase φi approaching 2π .
For cell j , we set a refractory threshold 0 ≤ Bj < 2π . Then, the above (R1) and
(R2) are equivalent to the following statements:

(R1) If φi(t−) = 2π and φj (t−) > Bj , then both the cells beat and return to 0
phase, that is, φi(t) = φj (t) = 0 (see Fig. 3.6a).

(R2) If φi(t−) = 2π and φj (t−) ≤ Bj , then only cell i beats and returns to 0
phase, that is, φi(t) = 0, φj (t) = φj (t−) (see Fig. 3.6b).

(a)

1

0 2

1(t−) = 2

B1

0 2
1(t) = 0

B1
=⇒

2

0 2

→2(t−)> B2

B2

0 2
2(t) = 0

B2

(b)

1

0 2

1(t−) = 2

B1

0 2
1(t) = 0

B1
=⇒

2

0 2

2(t−)< B2

B2

0 2

2(t) = (t−)

B2

Fig. 3.6 (a) (R1) Cell 1 beats and cell 2 is out of refractory, and then cell 2 is induced to beat.
φ(t−) = 2π and φ2(t−) > B2, then φ1(t) = φ2(t) = 0. (b) (R2) Cell 1 beats, but cell 2 is in
refractory, and then only cell 1 returns to 0 phase. φ(t−) = 2π and φ2(t−) <= B2, then φ1(t) = 0
and φ2(t) = φ2(t−)
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(a)

t

refractory threshold

induced beating

(b)

1

2

refractory threshold

t

1

2

Fig. 3.7 The trajectories of (φ1(t), φ2(t)) with parameters (μ1, μ2) = (2, 1), A1,2 = A2,1 = 2,
and B1 = B2 = 0.6π . (a) The strong noise strength (σ1, σ2) = (1, 1). (b) The weak noise strength
(σ1, σ2) = (0.3, 0.3)

In fact, (R1) represents the synchronization of beating, and (R2) is the independent
beating of cell i. In Fig. 3.7, we show two examples of (φ1, φ2) with different noise
strengths.

In the numerical simulation of Sect. 3.3, we also impose a tiny delay τ for the
induced beating, which means that the induced beating of cell j happens at time t+τ

when its neighborhood cell i beats at time t (i.e., if φi(t−) = 2π and φj (t) > Bj ,
then φ(t) = 0 and φj (t + τ) = 0).

3.2.4 The CV of Synchronization

For sufficiently small noise, we introduce the synchronization phase function φs
i for

two coupled cardiomyocytes, i = 1, 2,

φs
i = μst + ψs

i , (3.34)

where μs is the synchronization frequency for the two cardiomyocytes, and
{ψs

i }i=1,2 are two constants. When the noise strengths {σi}i=1,2 are small, one can
take the synchronization phase function {φs

i }i=1,2 as the linear approximation of the
expected value of {φi}i=1,2 (see Fig. 3.8).

Without loss of generality, we assume ψs
1 ≥ ψs

2 . Then, the expected value of
synchronization period is given by T s = (2π − ψs

1)/μs .
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Fig. 3.8 (a) A trajectory of (φ1(t), φ2(t)) with parameters (μ1, μ2, σ1, σ2) = (1, 2, 0.3, 0.5),
A1,2 = A2,1 = 2, and B1 = B2 = 0.6π . The synchronization solution (φs

1, φ
s
2) is a linear

approximation of (E(φ1(t)),E(φ2(t))). (b) (E(φ1(t)),E(φ2(t)))

For simplicity of analysis, the effect of reflective boundary at φi(t) = 0 is
approximated by adding a small positive constant ψ

app
i to the initial state:

dφ
app
i = [μi + Ai,j f

(
φ

app
j − φ

app
i

)]
dt + σidWi(t), (3.35a)

φ
app
i (0) = ψ

app
i . (3.35b)

The phase function φ
app
i is regarded as the approximation of φi .

Instead of considering the CV of the synchronization period, we investigate the
variance of the difference between the phase φ

app
i (T s) and the synchronization

phase φs
i (T

s) (cf. [29]):

CVi ≈
√
Var[φapp

i (T s)− φs
i (T

s)].

Putting ξi = φ
app
i − φs

i ,

f (φ
app
j − φ

app
i ) = f (ξj − ξi + φs

j − φs
i )

= f (φs
j − φs

i )+ f ′(φs
j − φs

i )(ξj − ξi)+O(|ξj − ξi |2).

Since ξi is a small variable when the noise strength is small (see Fig. 3.8a), ignoring
the tiny quadratic term O(|ξj − ξi |2), and noting that φ

app
j − φ

app
i = ψs

j − ψs
i , the

above equation becomes

f (φ
app
j − φ

app
i ) = f (ψs

j − ψs
i )+ f ′(ψs

j − ψs
i )(ξj − ξi).
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The equations of ξi are stated as follows: for 0 < t < T s and i, j = 1, 2, i �= j ,

dξi = νidt + Ai,j f
′(ψs

j − ψs
i )(ξj − ξi)dt + σidWi, (3.36a)

ξi(0) = ξ0
i , (3.36b)

where νi = μi − μs + Ai,j f (ψs
j − ψs

i ) and ξ0
i = ψ

app
i − ψs

i .
In view of

ξi(T
s)− ξi(0) = φ

app
i (T s)− φ

app
i (0)− (φs

i (T
s)− φs

i (0)),

CVi ≈
√
Var[φapp

i (T s)− φs
i (T

s)] is equivalent to

CVi ≈
√
Var[ξi(T s)− ξ0

i ] =
√
Var[ξi(T s)].

Setting the notations

ξ =
[

ξ1

ξ2

]

, ν =
[

ν1

ν2

]

, ξ0 =
[

ξ0
1

ξ0
2

]

, W =
[

W1

W2

]

,

B =
[

b12 −b12

−b21 b21

]

, σ =
[

σ1 0
0 σ2

]

,

where bij = Ai,j f
′(ψs

j − ψs
i ), we rewrite (3.36) into

dξ = νdt − Bξdt + σdW (t).

Next, we compute the solution ξ . Multiplying the above equation by e−Bt , we get

d
(
eBtξ

)
= eBt [νdt + σdW ],

which yields

ξ(t) = e−Btξ0 +
∫ t

0
e−B(t−s)ν ds +

∫ t

0
e−B(t−s)σ dW (s). (3.37)

By Itô’s integral (3.26a), we calculate

E(ξ(t)) = [E(ξ1(t)),E(ξ2(t))]� = e−Btξ0 +
∫ t

0
e−B(t−s)ν ds,

E((ξi(t))
2) = [E(ξi(t))]2 + E

[∫ t

0

[
e−(t−s)BσdW (s)

]
i

]2

,
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where [u]i denotes the ith component of vector u. Together with Var[ξi(t)] =
E[(ξi(t))

2] − (E[ξi(t)])2, we have

Var[ξi(t)] = E
[∫ t

0

[
e−(t−s)BσdW

]
i

]2

.

Noting that B has two eigenvalues

λ1 = 0, λ2 = b := b12 + b21,

with the corresponding eigenvectors

u1 = [1, 1]�, u2 = [b12,−b21]�,

we introduce the decomposition

σdW = b−1(b21σ1dW1 + b12σ2dW2)u1 + b−1(σ1dW1 − σ2dW2)u2.

Putting together with

e−tBu1 = e−t0u1 = u1, e−tBu2 = e−tbu2,

one can compute [e−(t−s)BσdW ]i . Then, applying Itô’s integral (3.26b), it is not
difficult to validate that

CV2
i ≈ Var[ξi(T

s)]

= 1

b2

[
(
b2

12σ
2
2 + b2

21σ
2
1

)
T s + 1− e−2bT s

2b
b2
ij

(
σ 2

1 + σ 2
2

)

+ 1− e−bT s

b
2bij

(
bjiσ

2
i − bij σ

2
j

)
]

.

(3.38)

As stated above (cf. [29]), one can approximate the CV of synchronization period
by Var[ξi(T

s)].
To reduce the difference between CV1 and CV2, we take b21σ

2
1 = b12σ

2
2 = D

such that

CV2
i ≈

1

b2

[

2DT s + 1− e−2bT s

2b

D2

σ 4
j

(
σ 2

1 + σ 2
2

)
]

.
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Furthermore, for σ1 = σ2 = σ and b21 = b12 = b/2, we have

CV2
1 = CV2

2 ≈
σ 2

2

[

T s + 1− e−2bT s

2b

]

,

which is regarded as the CV of the synchronization period.
In numerical simulation, we set f (x) = sin(x). Noting that ψs

i ≈ 0 for small
noise, we have f ′(ψs

j − ψs
i ) ≈ cos(0) = 1 such that bij ≈ −Ai,j . Therefore,

choosing Ai,j σ
2
j = Aj,iσ

2
i , one can reduce the difference between CV1 and CV2,

which yields a more stable synchronization solution in simulation. This has been
applied to our numerical simulation in Sect. 3.3.

3.2.5 The Phase Model for N-cardiomyocytes Network

For N -cardiomyocytes network, we need to consider the neighborhood cells of each
cell. For simplicity, we consider the full connected network, where the cells are
connected with each other. The equations of {φi}Ni=1 are stated as follows:

dφi(t) = μidt +
N∑

j=1, j �=i

Ai,j f (φj − φi)dt + σidWi(t)+ dLi(t), (3.39a)

φi(0) = 0. (3.39b)

In (3.39a), the reaction term Ai,j f (φj−φi) between cells i and j is imposed for j =
1, 2, . . . , N , j �= i, which corresponds to the full connection of the cell network.
The process Li(t) is added to (3.39a) to guarantee that φi(t) ≥ 0 always holds even
when the noise dWi is negative and φi(t) = 0, which represents the irreversibility
of beating (see (i) and (ii) of Sect. 3.2.2).

Moreover, we also incorporate the conception of the induced beating and
refractory to the mathematical model: for i, j = 1, . . . , N and i �= j ,

(R1) when the cardiac muscle cell i beats (i.e., φi(t−) = 2π ) and the cell j is out
of refractory (i.e., φj (t−) > Bj ), then both the cells beat and the phase of cells i

and j returns to 0 (i.e., φi(t) = 0 and φj (t) = 0).
(R2) when the cardiac muscle cell i beats (i.e., φi(t−) = 2π ) and the cell j is in

refractory (i.e., φj (t−) ≤ Bj ), then only the cell i is beating and the phase of
cell i returns to 0 (i.e., φi(t) = 0 and φj (t) = φj (t−)).

In Fig. 3.9, we show two examples of (φ1, φ2, φ3, φ4) with different noise
strengths.
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(a)

t

refractory threshold

induced beating

(b)

refractory threshold
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1
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Fig. 3.9 The trajectories of (φ1(t), φ2(t), φ3(t), φ4(t)) with parameters (μ1, μ2, μ3, μ4) =
(2, 2, 1, 1) and Ai,j = 2, Bi = 0.6π for i, j = 1, . . . , 4, i �= j . (a) The strong noise strength
σi = 1. (b) The weak noise strength σi = 0.3

As with the case of two coupled cells, we investigate the CV of the synchroniza-
tion period using the approximated calculation. For sufficiently small noise, let φ

app
i

denote the approximation of the phase function φi , satisfying: 1 ≤ i ≤ N ,

dφ
app
i =

⎡

⎣μi +
N∑

j=1,j �=i

Ai,j f
(
φ

app
j − φ

app
i

)
⎤

⎦ dt + σidWi(t), (3.40a)

φ
app
i (0) = ψ

app
i . (3.40b)

If the noise is sufficiently small, then we can approximate the synchronization by
linear equations:

φs
i = μst + ψs

i , 1 ≤ i ≤ N. (3.41)

Without loss of generality, we assume ψs
1 = max1≤i≤N ψs

i . Then, the synchro-
nization period is given by T s = (2π − ψs

1)/μs . Introducing the difference
ξi = φ

app
i −φs

i , we introduce the approximated CV of the synchronization (cf. [29]):
CVi ≈ √Var[ξi(T s)− ξi(0)] = √Var[ξi(T s)]. In the following, we calculate
Var[ξi(T

s)].
First, we see that {ξi}Ni=1 satisfy the following equations: i = 1, . . . , N ,

dξi =
⎡

⎣νi +
N∑

j=1,j �=i

Ai,j f
′(ψs

j − ψs
i )(ξj − ξi)

⎤

⎦ dt + σidWi, (3.42a)

ξi(0) = ξ0 (3.42b)
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where νi = μi −μs +∑N
j=1,j �=i Ai,j f (ψs

j −ψs
i ) and ξ0

i = ψ
app
i −ψs

i . Setting the
notations

ξ = [ξ1, . . . , ξN ]�, W = [W1, . . . ,WN ]�, (3.43a)

ν = [ν1, . . . , νN ]�, ξ0 = [ξ0
1 , . . . , ξ0

N ]�, (3.43b)

σ = diag(σ1, . . . , σN), B = [bij ]1≤i,j≤N, (3.43c)

where bii =∑N
j=1,j �=i Ai,j f

′(ψs
j − ψs

i ) and bij = −Ai,j f
′(ψs

j − ψs
i ), we rewrite

(3.42) into

dξ = νdt − Bξdt + σdW ,

ξ(0) = ξ0.

The solution ξ is given by

ξ(t) = e−Btξ0 +
∫ t

0
e−B(t−s)ν ds +

∫ t

0
e−B(t−s)σ dW (s).

Putting |ξ |2 =∑N
i=1 |ξi |2, we see that

|ξ(t)|2 = |ξ0|2 + 2ξ0 ·
∫ t

0
e−(t−s)BσdW +

∣
∣
∣
∣

∫ t

0
e−(t−s)BσdW

∣
∣
∣
∣

2

.

To obtain Var(ξ(T s)), we introduce the properties of Itô’s formula for the N -
dimensional version [6, 35]: for any G = [Gij ]i,j satisfying

∫ t

0 |G|2 ds < ∞
(|G|2 =∑N

i,j=1 |Gij |2 ), the following equalities hold:

E
(∫ t

0
G(s) dW (s)

)

= 0, (3.44a)

E

[∣
∣
∣
∣

∫ t

0
G(s) dW (s)

∣
∣
∣
∣

2
]

= E
(∫ t

0
|G|2 ds

)

. (3.44b)

Applying (3.44),

E[ξ(t)] = e−Btξ0 +
∫ t

0
e−B(t−s)ν ds, (3.45a)

E[|ξ(t)|2] = (E[ξ(t)])2 + E
[∫ t

0

∣
∣
∣e−(t−s)Bσ

∣
∣
∣
2
ds

]

. (3.45b)
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For the case σi = σ , Ai,j = Aj,i , and ψs
i = ψs , we have

∣
∣
∣e−(t−s)Bσ

∣
∣
∣
2 = σ 2

N∑

i,j=1

∣
∣
∣
(
e−(t−s)B

)
ij

∣
∣
∣
2

= tr
((

e−(t−s)B
)�

e−(t−s)B
) = tr

(
e−2(t−s)B

)
(by B� = B)

=
N∑

i=1

e−2(t−s)λi ,

(3.46)

where tr(B) and {λi}Ni=1 denote the trace and the eigenvalues of B, respectively.
Following from Ai,j = Aj,i and f ′(x) = f ′(−x) (by f (x) = −f (−x)), the

symmetry B� = B holds. Without loss of generality, let λN ≥ λN−1 ≥ · · · ≥ λ2 >

λ1 = 0 (0 is an eigenvalue of B because of
∑N

j=1 bij = 0). We obtain from (3.45),

(3.46), and
∑N

i=1 Var[ξi(t)] = E[|ξ(t)|2] − |E[ξ(t)]|2 that

N∑

i=1

Var[ξi(T
s)] = σ 2

∫ T s

0

N∑

i=1

e−2(T s−s)λi ds.

= σ 2T s + σ 2
N∑

i=2

1− e−2T sλi

2λi

.

(3.47)

For the case of the identical parameter (μi, σi, Ai,j ) = (μ, σ,A), ξi has identical
distribution for each i, as well as

√
Var[ξi(T s)]. As a result, we have, for all i =

1, 2, . . . , N ,

CVi ≈
√
Var[ξi(T s)] =

√
√
√
√

N∑

i=1

Var[ξi(T s)/N ]

= σ√
N

√
√
√
√T s +

N∑

i=2

1− e−2T sλi

2λi

.

Noting that there exists a constant c∞ such that

1

N

N∑

i=2

(
1− e−2T sλi

2λi

)

→ c∞ as N →∞, (3.48)

we have CVi → σc
1/2∞ as N →∞.
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In Sect. 3.4, the numerical simulations are carried out for several N -cell models
with various network, where we observe that the CV decreases by O(1/

√
N) when

N is small and converges to some constant when N → ∞. The simulations
correspond to the theoretical result (3.48). Moreover, the comparison between the
numerical simulation and biological experimental result (cf. [18, Figure 3]) indicates
the well consistency between the model and biological experiment.

3.3 Experimental Approach

3.3.1 On-Chip Cellomics Technology: Reconstructive
Understanding of the Community Effect in
Cardiomyocytes

We have developed a constructive experimental approach for understanding epi-
genetic information. As shown in Fig. 3.10, the strategy behind our on-chip
microfabrication methods, which we call “on-chip cellomics technologies” [58],
is constructed through three steps. First, we purify target cells from tissue indi-
vidually in a nondestructive manner using several technologies, such as digestible
DNA-aptamer labeling and cell collection, ultrahigh-speed camera-based real-time
imaging cell sorting, or noninvasive handling of cells using an acoustic radiation
force [1, 12, 57, 59–61]. We then cultivate and observe the cells under fully
controlled conditions (e.g., cell population, network patterns, or nutrient conditions)
using an on-chip single-cell cultivation chip [14, 15, 21, 34, 50–54] or an on-chip
agarose microchamber system exploiting photothermal etching technology, which
can control the microstructure of microchambers even during cell cultivation [11,
24, 24–28, 36, 43–49]. Finally, we undertake single-cell-based genome/proteome
analysis through a set of nanoprobes and adaptive electron microscopy, single-cell-
based DNA/RNA release technology, or a 3-min ultrahigh-speed polymerase chain
reaction (PCR) measurement technology [62].

The advantage of the experimental on-chip cellomics approach is that, as it is a
reconstructive approach of the simplified artificial minimum cell network model on
a chip, it removes the complexity of the underlying physicochemical reactions that
are not always completely understood and for which most of the necessary variables
cannot be measured. Moreover, this approach shifts the view of cell regulatory
processes from basic chemical grounds to a paradigm of the cell as an information
processing unit working as an intelligent machine capable of adapting to changing
environmental and internal conditions. This is an alternative representation of the
cell and can provide new insights into cellular processes. Thus, models derived from
such a viewpoint can directly help in more conventional biochemical and molecular
biological analyses that assist in our understanding of control in cells.

From the geometric perspective, two more detailed viewpoints of analysis should
also be taken: one is on the population/community size dependence and the other
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Fig. 3.10 On-chip cellomics analysis. The aim of single-cell-based analysis of multicellular
systems: temporal (algebraic) aspect and spatial (geometric) aspect

is on the spatial (network) pattern dependence of groups of cells. In conventional
cell-based studies, cell lines are usually used for acquiring the same type of
cells and are then cultivated in a cultivation dish without any control of their
population or any formation of a community with other cell types. Finally, they
are analyzed as a group regardless of any differences in their cell cycle regardless
of their possible differences. In contrast, on-chip cellomics technology involves
a new strategy with three steps: First, the cells are taken from a community
using a nondestructive cell sorting procedure. Then, the cells are cultivated in
a microchamber, in which cell network formation and medium environment are
controlled. Finally, the genome/proteome measurement in each cell is measured
(Fig. 3.10).
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3.3.2 Photothermal Etching on Agarose Layer for Cell
Network Formation Control

Flexible change of microstructures of cell-to-cell interactions or cell network shapes
on a chip during cultivation is necessary for the “temporal” and “geometric”
reconstructive approach of cell network studies. To accomplish this requirement,
we have developed a photothermal etching method [11, 24, 26, 36, 46] with an
agarose microchamber cell cultivation system (Fig. 3.11). This involves the area-
specific melting of a portion of agarose of a whole light pathway by spot heating
using a focused infrared laser beam of 1480 nm, which absorbs water, and of a
portion of agarose close to a thin layer made of a light-absorbing material, such
as chromium, with a laser beam of 1064 nm, which is permeable to water. When
we combine infrared lasers with these two different wavelengths, we can fabricate
microchambers and microtunnels flexibly for the noncontact three-dimensional
photothermal etching of agarose. In other words, as the 1480-nm infrared beam
is associated with the absorption of water and agarose gel, the agarose gel in the
1480-nm infrared light pathway was heated and completely melted. Moreover, as
the 1064-nm infrared beam was not associated with this absorbance, the agarose
melted just near the thin chromium layer, which absorbed the beam.

For phase-contrast microscopy and this µm-scale photothermal etching, light of
three different wavelengths (visible light for observation and 1480-nm/1064-nm
infrared lasers for spot heating to construct microchambers/microtunnels, respec-
tively) was used simultaneously to observe the positions of the agarose chip surface
and to melt a portion of the agarose in the area being heated. As described above,
the advantage of this method is that we can apply this stepwise network formation
(addition) approach even during cultivation, so we can change the network size and
pattern of cardiomyocyte cells during cultivation by adding microchannels between
two adjacent microchambers in a step-by-step fashion; moreover, this approach is
also applicable for neuronal networks [27, 28, 43, 45–49].

3.3.3 Community Effect of Cells for Their Synchronization (1):
Two-Cell Model

As described in the previous subsection, the ability of photothermal etching of
agarose microstructures to control the cell arrangement is beneficial for cardiomy-
ocyte network studies. In this subsection, we introduce the application of this
technology to reveal the involvement of the community effect in cardiomyocyte
beating synchronization[17, 17–20, 24–28].

First, we investigated the roles of the beat rates (interbeat intervals) and beat rate
fluctuation of isolated single cardiomyocytes in the reestablishment of synchronous
beating by analyzing the changes of beating rates and their fluctuations before
and after the synchronization of two cardiomyocytes through narrow channels with
initially different rhythms (e.g., Fig. 3.12A and B)[27, 28]. The results showed three
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Fig. 3.11 Photothermal etching method. Using focused infrared (IR) lasers of two different
wavelengths, the thin layer of low-melting point agarose on the chip was selectively melted in
different manners. (a) As the 1064-nm IR laser is not associated with the absorption of water, only
a portion of the agarose near the thin absorption layer is heated and melted, changing its state from
a gel to a sol. In contrast, (b) as the 1480-nm IR laser is associated with the absorption of water,
all of the agarose in the light pathway is heated and melted. (c) The agarose changed to a sol state
is dispersed into the agarose gel, holes or tunnels are formed in the agarose layer, and (d) cells are
inserted in agarose microchambers with a micropipette
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Fig. 3.12 Synchronization of two cardiomyocytes. (A) Micrographs of two cardiomyocytes under
isolated conditions (a), just after they were connected together (b), and just after synchronization
started (c). (B) Beating waveforms at (a) and (c) in (A). (C)–(E) (left graph and center graph)
Beating frequency spectrum before and after synchronization, respectively; distribution of interbeat
intervals of two cardiomyocytes, and the change of the mean value of beating rhythm fluctuation
at intervals of 1 min measured for 5 min before and after synchronization. Blue and red triangles
show the mean values before synchronization, and black triangles show the mean value for the
two cells after synchronization. (right graph) The change of the mean value of beating rhythm
fluctuation [CV%: coefficient of variation (100 × standard deviation/mean beat rate)] at intervals
of 1 min measured for 5 min before and after synchronization. Blue circles and red squares show the
corresponding mean values of beating rhythm fluctuation for 1 min. Three types of synchronization
tendencies were described: (C) synchronization to a faster beating cell, (D) synchronization to a
slower beating cell, and (E) synchronization with a new beating frequency
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types of synchronization of two cardiomyocyte networks: (1) the beating of the two
cardiomyocytes synchronized at the faster of the two initial rates, but there was
beating fluctuation at the lower of the two initial rates (Fig. 3.12C), (2) the beating
of the two cells synchronized at the lower of the two initial rates but fluctuated at
the lower of the two initial rates (Fig. 3.12D), and (3) the synchronization occurred
at neither of the initial rates of single cardiomyocytes, with fluctuation of smaller of
the initial fluctuations (Fig. 3.12E).

The interbeat intervals of 14 two-cell pairs before and after synchronization are
listed in Table a of Fig 3.13. Five of the two-cell pairs synchronized at the initial
rate of the faster cell, two of the pairs synchronized at the initial rate of the slower
cell, and the other seven pairs synchronized at a rate other than one of the initial
rates. In Table b of Fig. 3.13, the fluctuation data for the 14 cell pairs whose rate
data are listed in Table A are grouped according to the change of the fluctuation
before and after synchronization. Thirteen pairs synchronized with a fluctuation
equal to or less than the initial fluctuation of the slower member of the pair, and
one pair synchronized with a fluctuation larger than that of either of the two initial
fluctuations.

These results suggest that the fluctuation of reestablished synchronous beating
by isolated cardiomyocytes is influenced more strongly by the fluctuation of the
initial fluctuation of the beat rates of the isolated cardiomyocytes than the rate of
the reestablished synchronous beating is influenced by the initial beat rates of the
isolated cardiomyocytes. It is therefore possible that a cardiomyocyte whose beat
rate fluctuates less than that of another cardiomyocyte entrains the beating rhythm of
that cardiomyocyte, but we observed one pair of cells in which this did not happen.
This indicates that the influence of a single cell is still not sufficiently strong to
account for the process of entrainment in heart tissue.

3.3.4 Community Effect of Cells for Their Synchronization (2):
Cell Number Dependence

Figure 3.14 also describes the community size effect of a cardiomyocyte network on
its beating stability. In this work, we explore the relationship between entrainment
and community size by examining the synchronization process of a cardiomyocyte
network formed by the interaction of single cardiomyocytes cultured in a 3× 3 grid
of agarose microchambers with connecting microchannels[28]. After nine isolated
cells had been cultured in the nine-chamber agarose microcultivation chip for 24 h,
we started to measure the synchronization process continuously and found that,
when an isolated single cell came into contact with another cell and formed a two-
cell network (Fig. 3.14 top and middle), these two cells synchronized at the initial
rate of the first cell and the fluctuation decreased from the initial fluctuation of the
first cell. When all nine cells came into contact and formed a nine-cell network
(Fig. 3.14 bottom), it synchronized at a rate equal to the initial rate of the first cell,
with a decrease of fluctuation.



3 Synchronization and Fluctuation of Cardiac Muscle Cells 117

Fig. 3.13 Tendency of synchronization of two cardiomyocytes. (a) Three types of synchronization
of two cardiomyocytes from the perspective of beating intervals. (b) Two types of synchronization
from the perspective of beating stability (fluctuation of beating)
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Fig. 3.14 Effect of increase in connected cell number on increase in beating stability. (a) Isolated
single cell, (b) two-cell network, and (c) nine-cell network. (d) Dependence of beating interval
fluctuation on cell number
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These results suggest that the beating rhythm of a single cardiomyocyte tends to
entrain the rhythm of the cell network, and the strength of this tendency increases
with the size of the network. Therefore, it is thought that the fluctuation of the rate
at which a network of cardiomyocytes beats decreases as the size of the network
increases. The tendency of the synchronization above was simply explained by
asserting that the synchronization of two cardiomyocytes was caused by the more
unstable cell (the one with the more variable beating intervals) following the more
stable cell. Such tendency for reduced fluctuation was more pronounced when the
number of cardiomyocytes in the network increased; we call this phenomenon the
“community effect” of synchronization.

Using the agarose microchambers, we can examine the dependence on the spatial
arrangement of the synchronization stability of cardiomyocyte networks [18]. As
shown in Fig. 3.15, we can arrange the cardiomyocytes in three different shapes, a
linear shape, a radial shape, and a lattice shape and compare their tendencies for
beating stabilization relative to cell numbers. The results indicated that there was no
apparent relationship between the number of cells and their shape and that the most
important index for the stabilization of cell beating is not the geometry of cells but
their number.

3.3.5 Community Effect of Cells on Their Synchronization (3):
Mixture of Different Types of Cells

We also examined the contribution of fibroblasts to the synchronization of
cardiomyocytes[19]. We connected two cardiomyocytes through a single fibroblast
and synchronized them, as shown in Fig. 3.16A and B, and then used this
heterogeneous cardiomyocyte–fibroblast coupling to examine the tendency of the
stability of interbeat intervals and beating rhythm fluctuation of two cardiomyocytes
through a fibroblast before and after their synchronization.

The first type of synchronization involved the tendency for the fluctuation
to decrease due to synchronization, which is the same tendency as seen in a
network formed by the direct connection of two cardiomyocytes. As shown in
Fig. 3.16C and D, in this type, the two cells having different interbeat intervals
before synchronization synchronized to achieve an interbeat interval of less than a
second after synchronization (e.g., Fig. 3.16B). The fluctuation of the synchronized
network became almost equal to or smaller than either of the two initial fluctuations.

In contrast, the second type involved the tendency for the fluctuation to increase
due to synchronization, which did not occur in the cardiomyocyte network
(Fig. 3.16E). In this case, two cardiomyocytes having two different interbeat
intervals before synchronization exhibit a higher mean interbeat interval after
synchronization, and the fluctuation of the synchronized network is greater than
that of the cell that had the lower fluctuation before the synchronization.
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Fig. 3.15 Dependence of spatial arrangement of cardiomyocyte networks on cell number for
beating stability. Three types of spatial arrangements: (a) linear shape, (b) radial shape, and lattice
shape (see Fig. 3.14). (c) Fluctuation of beating interval versus network size in linear (green
triangles), radial (red squares), and lattice (blue circles) cardiomyocyte networks. These plots show
mean ± standard deviation
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Fig. 3.16 Synchronization of two cardiomyocytes through a fibroblast. (A) Micrographs of
two cardiomyocytes under isolated conditions (a), when a fibroblast was added between two
cardiomyocytes (b), and when two cardiomyocytes were connected through a fibroblast and
synchronization started (c). (B) Beating waveforms at (a) and (c) in (A). (C)–(E) Three types
of synchronization tendencies. Beating frequency spectrum before (left graphs) and after (center
graphs) synchronization and their beating fluctuation (right graphs). (C) Synchronization to a
cell beating faster and more stably. (D) Synchronization and creation of new beating intervals
contributing to beating stability. (E) Synchronization with new beating frequency, but beating
fluctuation increased
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Our photothermal etching method with agarose microchambers allows us to
regulate the cell type and community size of cultured cells at the single-cell level.
This could not be done when using the conventional cell cultivation method, so the
prolific growth of cardiac fibroblasts made it difficult to culture only cardiomyocytes
and investigate the properties of a single cell within a group of cells. By using single-
cell-based cultivation, we were able to investigate how the fluctuation of the rates at
which cardiomyocytes beat affects the reestablishment of synchronized beating.

3.3.6 Summary of Experimental Results

The results of the on-chip constructive experiments are summarized as follows:

1. When two isolated independently beating cardiomyocytes come into contact,
they tend to beat synchronously at a rate that fluctuates no more than that of
the cell whose beat rate fluctuated less than did that of the other cell.

2. When initially isolated cardiomyocytes form a network, its rhythm tends to
entrain the beating rhythm of single cells whose beating rhythm fluctuated more
than that of the network.

3. The entrainment activity of cell networks increases with their size, i.e., the
fluctuation decreases.

4. Spatial arrangement does not affect the manner of synchronization of cardiomy-
ocytes, and only the cell number of the network determines their tendency for
synchronization.

5. The interbeat interval after the synchronization of two cardiomyocytes con-
nected by a fibroblast is not the same as that after the synchronization of
two cardiomyocytes directly connected to each other, and the tendency for the
community effect to occur appears to be suppressed when the cardiomyocytes
are heterogeneously coupled through a fibroblast.

They might indicate that unstable isolated cardiomyocytes reestablish a cell
network that beats stably and synchronously. A novel finding of this study is that
a cardiomyocyte network containing only a few cells acquires a stable rhythm.
Moreover, once the cell or cell network achieves stable beating, an additionally
attached unstable cell can synchronize to the stable cell or cell network and follow its
stable beating intervals. This phenomenon also suggests that the factor of stability is
very important in determining the fate of the beating frequency of the network after
the connection of unstable cells.
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3.3.7 Ability and Limitation of Constructed Experimental
Approach

As described above, the constructed experimental approach is one of the potential
solutions to solve the issue of quality control of cells. However, cells inherently
display a variety of dynamic characteristics, even when cultivating cells in com-
pletely the same conditions and also when using those from the same single stem
cells[33]. Figure 3.17 shows an example of this diversity of their expression.
Although isolated single human iPS (hiPS) cardiomyocytes and human ES (hES)
cardiomyocytes were derived from the same stem cells, their interbeat intervals
(IBIs) and fluctuations [in this graph, we use the coefficient of variation (CV) as the
index of fluctuation] were larger than those of the primary mouse cardiomyocytes. In
contrast, two clusters made of the same dispersed cardiomyocytes showed similar

Fig. 3.17 Distribution of the interbeat intervals (IBIs) and fluctuations of isolated single cardiomy-
ocytes and their clusters of primary, human iPS (hiPS), and human ES (hES) cells. (A) Method
of cardiomyocyte cluster formation. (a) In the regular untreated culture dish, cardiomyocytes
were dispersed and isolated. (b) In the agarose concave-coated culture dish, cardiomyocytes were
gathered and clustered during incubation. (B) Micrographs of single cardiomyocytes and their
clusters. (a) Isolated mouse primary cardiomyocyte, (b) clustered mouse primary cardiomyocytes,
(c) single isolated hiPS cardiomyocyte, (d) clustered hiPS cardiomyocytes, (e) isolated hES
cardiomyocyte, and (f) clustered hES cardiomyocytes. (C) Fluctuation–IBI relationship of mouse
primary cardiomyocytes (a), hiPS cardiomyocytes (b), and hES cardiomyocytes (c). Green open
circles are the 60-s mean IBIs and CVs of isolated single cardiomyocytes, and red filled triangles
are those of clusters. The error bar indicates standard deviation. The coefficient of variation (CV)
value of IBI was used as the fluctuation of beating
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characteristics and appeared to represent their species (two red triangles in each
graph of Fig. 3.17C). These results clearly indicate the ability and limitation of the
experimental approach of single-cell-based assays. Each isolated single cell does
not inherently show the same dynamics; however, once they formed a network,
their diversity disappeared and stable shared characteristics appeared. We call this
phenomenon the “community effect.” To understand the meaning of the community
effect, we need to have a set of completely controlled single cells. However, this is
beyond the scope of the experimental approach. Even using the on-chip cellomics
technologies, this experimental approach has a limitation of not allowing full control
of the condition of all of the cells, especially in a dynamic context such as beating
of the heart.

3.4 Numerical Approach to Synchronization
of Cardiomyocytes

3.4.1 Comparison of the Mathematical Modeling with
Experimental Results and Numerical Simulations

The mathematical model by modifying the integrate-and-fire model was shown
in Sect. 3.2.1.1. This model is constructed on the basis of the simple Peskin’s
model [39], including refractory periods, stochastic process, and weak cell-to-cell
interactions, which modulate phase variables [32, 56].

When cardiomyocytes are isolated, they only beat independently. However,
if cardiomyocytes come into contact and interact with each other, their beating
rhythms become synchronized. The experiments shown in Sect. 3.3 revealed that
other cardiomyocytes are synchronized not to the fastest cardiomyocyte, but to the
cardiomyocyte with the least fluctuation in beating rhythm [28].

In this section, we discuss the comparison of the numerical simulations to the
experimental results and aim to theoretically understand the phenomenon that the
synchronized beating of cardiomyocytes is tuned to the cardiomyocyte with a
stable rhythm [13]. Using our model, we also aim to investigate the community
effect of cardiomyocytes in different configurations of networks constituted by
cardiomyocytes with specified characteristics of beating rhythms and to clarify
how an assembly of cardiomyocytes acquires stability, one of the most important
universal features in biological systems.

3.4.1.1 Mathematical Modeling for Synchronization of Cardiomyocytes

We consider a network of N cardiomyocytes and call ith cardiomyocyte cell
i. The model was described by the phase variables φi(t) (0 ≤ φi(t) ≤ 2π ,
i = 1, 2, . . . , N ), which denote the state of cell i at a time t . We assumed that
the cell i fires (beats) when φi(t) = 0(≡ 2π). This firing occurs either at φi(t),
reaches 2π , or the following conditions are satisfied: φi(t − 0) ≥ θi (φi(t − 0) :=
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limε→+0 φi(t − ε)). Additionally, one of the cardiomyocytes connected to cell i

(e.g., cell j ) fired at a retardation time τ ago (i.e., φj (t − τ) = 0). Otherwise, we
assumed that φi(t) is governed by the following interacting stochastic differential
equation. Our mathematical modeling for cell i is as follows:

⎧
⎪⎨

⎪⎩

dφi(t) = ωidt + dW(σi)+ σ 2
i

∑

j

V (φi, φj )dt (φi(t − 0) < θi or φj (t − τ) �= 0),

φi(t) = 0 (θi ≤ φi(t − 0) and φj (t − τ) = 0),

(3.49)

where ωi is the average phase velocity of cell i, dW(σ) is a stochastic process with
standard deviation σ , and θi is a phase corresponding to the refractory period of cell
i(0 < θi < 2π). V (φi, φj ) shows the weak interaction between cardiomyocytes
through the membrane potential, which we assumed as the following form:

V (φi, φj ) := μ sin(φj − φi), (3.50)

where μ is a positive constant. An important point is that the stochastic process
and the cell-to-cell interaction are correlated through the fluctuation–dissipation
theorem that gives the relation between fluctuations and linear response to external
force [31]. This will be discussed again in Sect. 3.4.3. The positive constant μ

is the only free parameter in our model that cannot be directly determined by
experiments, while ωi, θi, and σi can be determined by single-cell experiments for
each cardiomyocyte. In addition, we assumed that the boundary at φi(t) = 0 is the
reflective boundary condition, which ensures that the phase fluctuation is irreversible
after firing. The schematic diagram of the dynamics of the phase variable φi(t) is
shown in Fig. 3.18.

Fig. 3.18 Schematic diagram of the trajectory of the state variables φi(t)(i = 1, 2). The circle
represents the trajectory of a state variable in the phase space of cardiomyocytes from one firing to
the next firing. If cell 2 fires at a time t (φ2(t)=0) and cell 1 is not in the refractory period, then cell
1 fires at the retardation time τ after cell 2 fires
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3.4.1.2 Numerical Simulation Method

The stochastic process in our simulation is described by an extended random
walk. We used the following difference equations as a numerical approximation
of Eq. (3.49). For almost all cardiomyocytes with a standard beating rhythm, we
considered an ordinary random walk as follows:

⎧
⎪⎨

⎪⎩

φi(t +Δt) = φi(t)+ ωiΔt +Δφi + σ 2
i

∑

j

V (φi, φj )Δt (φi(t) < θi or φj (t − τ) �= 0),

φi(t +Δt) = 0 (θi ≤ φi(t) and φj (t − τ) = 0),

(3.51)

Δφi =
{
+Δxi (with probability 0.5),

−Δxi (with probability 0.5),
(3.52)

where the standard deviation is defined by σ := Δx/
√

2Δt , Δt is the time

difference interval, Δxi =
√

2Δt σ 2
i is the spatial difference determined by σi ,

and the delay time τ is set as Δt × k (k is a nonnegative integer). However, we
could not reproduce the same beating fluctuation by using an ordinary random walk
for cardiomyocytes with a large fluctuation. This is because the coefficient variation
(CV%), which is defined by 100× standard deviation/mean beating rate, could be
proved less than 100

√
2/3 � 81.65 in Sect. 3.2.2. As shown in Fig. 3.13, some

cardiomyocytes with the CV% which exceed this value are observed. Therefore,
we adopted the following extended random walk, which is a history-dependent
stochastic process, when beating fluctuation was larger than 81.65 (CV%):

⎧
⎪⎨

⎪⎩

φi(t +Δt) = φi(t)+ ωiΔt +Δφ̃i(t)+ σ 2
i

∑

j

V (φi, φj )Δt (φi(t) < θi or φj (t − τ) �= 0),

φi(t +Δt) = 0 (θi ≤ φi(t) and φj (t − τ) = 0).

(3.53)

The noise term Δφ̃i(t) is defined as

Δφ̃i(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

+Δxi (if Δφ̃i(t −Δt) = Δxi , then with probability q),

0 (if Δφ̃i(t −Δt) = Δxi, then with probability 1− q),

0 (if Δφ̃i(t −Δt) = 0, then with probability r),

+Δxi (if Δφ̃i(t −Δt) = 0, then with probability 1− r).

(3.54)
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However,

Δφ̃i(0) =
⎧
⎨

⎩

+Δxi (with probability 0.5),

0 (with probability 0.5).
(3.55)

The model could reproduce the large fluctuation observed in the experiments by
setting appropriate values of q and r .

3.4.1.3 Comparison of the Model with Experimental Results of Two
Cardiomyocytes

In the experiments shown in Sect. 3.3.3, the mean beating rate and its fluctuation
before and after synchronization were observed for 14 pairs of cardiomyocytes
(Fig. 3.13). We investigated whether our model could reproduce the results of these
pairs of cardiomyocytes. We numbered these 14 pairs from Nos. 1 to 14 and
distinguished the two cardiomyocytes in a pair by denoting “cell 1” and “cell 2.”
For each pair, we defined ωi, σi, and θi in Eq. (3.49) for cell i (i = 1, 2), so
that the model reproduced the same mean beating rate and fluctuation in beating
rhythm. Since refractory periods of cardiomyocytes are almost the same as those
for normal cardiomyocytes, we assumed that each cell had the common refractory
period tref = 0.3 s. Therefore, θi is given by θi = tref ωi . Figure 3.19 shows the
mean beating rates and the beating fluctuation after synchronization for the 14 pairs
obtained by the experiments and numerical results by our model. We could regard
the retardation time τ as almost 0 because it was estimated as 10−3 ∼ 10−4 of
the mean beating rate. Therefore, we put τ = 0. We used μ = 6.5 in numerical

Fig. 3.19 The mean beating rate and beating fluctuation after synchronization. Numerical sim-
ulations for the 14 pairs of cardiomyocytes (28 cardiomyocytes) before synchronization in the
experiments shown in Sect. 3.3.3 were performed using our integrate-and-fire model. Experimental
values (circles) and theoretical values (filled circles) are plotted for (a) the mean beating rate and
(b) beating fluctuation (CV%). For all numerical simulations, we used the same parameter values
τ = 0 and μ = 6.5. The fluctuation in beating rhythm is expressed by the CV
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simulations. The dependence of theoretical calculation on μ is shown later. We
found that the simulated values accurately agree with the experimental values except
for pair No. 14. The experimental result of pair No. 14 is exceptional because it is the
only pair in which fluctuation increased after synchronization. Beating fluctuation
of a pair of synchronized cardiomyocytes was equal to or less than that of less
fluctuating cardiomyocytes, while the mean beating rate was widely distributed.
Some pairs synchronized at faster rates of the two initial rates, some at slower rates
of the two initial rates, and others at intermediate rates of the initial rates of the pair.
We demonstrate how to determine the free parameter μ. Let us define an index ε, to
evaluate the deviation of the theoretical values from the experimental values.

ε :=
13∑

k=1

2∑

i=1

{
(T i

k − T ex
k )2 + (F i

k − F ex
k )2

}
, (3.56)

where T ex
k denotes the experimental value of the mean beating rate of the cell i

in the pair k after synchronization, and T i
k (i = 1, 2) denotes the corresponding

theoretical value obtained by our model. Similarly, F ex
k denotes the experimental

value of fluctuation (CV) of the cell i in the pair k after synchronization, and F i
k (i =

1, 2) denotes its theoretical value. Figure 3.20 shows the dependence of ε on μ.
For 6 � μ � 12, ε keeps to take the lowest value. The results of the numerical
simulations were almost constants for a relatively wide range of μ. This finding
indicated that our model was robust against the free parameter μ.

3.4.1.4 Comparison with the Kuramoto Model

The two-oscillator phase model (the Kuramoto model [32]) with noise is as follows:
for i, j = 1, 2, i �= j ,

dψi(t) = ω̄idt + Ai,j sin(ψj − ψi)dt + σ̄idWi(t), ψi(0) = 0, (3.57)

Fig. 3.20 Parameter μ

dependence of deviation of
numerical values from
experimental data. The
deviation between numerical
simulation and experimental
data is measured with the
quantity ε by changing
parameter μ
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where ω̄i and σ̄i denote the drift and noise strength constants, respectively, Ai,j are
nonnegative constants, and {Wi}i=1,2 is independent standard Brownian motion (see
Sect. 3.2.3). For two cases (Case (i) and Case (ii)), we applied the Kuramoto model
(3.57) and our model (3.49) to synchronization of two coupled cardiomyocytes.
The numerical simulation results were compared with biological experiment data
(Fig. 3.12).

Case (i) A Case of Synchronization to a Cardiomyocyte with a Fast and Stable
Beating Rhythm Two cardiomyocytes that we used in the Case (i) were cell
1 and cell 2 of pair No. 1, which have a mean beating rhythm of 0.64 s and
fluctuation of 12.3 [CV%] and cell 2 with 1.23 s and 25.1 [CV%], respectively.
When the two cardiomyocytes were coupled, we found that the bating rhythm
after synchronization was tuned to cell 1 with a fast and stable beating rhythm
(Fig. 3.21a). We investigated whether our model and the Kuramoto model could
reproduce the experimental results. Figure 3.21b and c shows the theoretical
predictions from our model and the Kuramoto model, respectively. The mean
beating rate and beating fluctuation for the experimental result, our model, and the
Kuramoto model are shown in Table 3.1.

Fig. 3.21 Comparison of experimental data and the two models. The change in beating fluctuation
before and after synchronization is shown. The blue circles and brown squares represent the
corresponding mean values for 1 min of beating fluctuation of cell 1 and cell 2, respectively. Panels
a–c show the results for Case (i), which was a case of synchronization to a cardiomyocyte with a
fast and stable beating rhythm. (a) The experimental result, (b) the numerical result of our model,
and (c) the numerical result of the Kuramoto model with (ω̄1, σ̄1) = (9.80, 0.94)and(ω̄2, σ̄2) =
(5.09, 1.45)

Table 3.1 Comparison between the experimental result and the numerical results. The symbols Ti

and Fi denote the mean beating rate and the beating fluctuation of the cell i(i = 1, 2), respectively.
The symbol T denotes the mean beating rate and F the beating fluctuation after synchronization

Before synchronization After synchronization

T1(s) F1(CV%) T2(s) F2(CV%) T (s) F (CV%)

Experiments 0.64 12.3 1.23 25.1 0.76 12.3

Our model 0.64 12.3 1.23 25.1 0.74 11.4

Kuramoto model 0.64 12.3 1.23 25.1 0.85 12.7
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Fig. 3.22 Comparison of experimental data and the two models. The change in beating fluctuation
before and after synchronization is shown. The blue circles and brown squares represent the
corresponding mean values for 1 min of beating fluctuation of cell 1 and cell 2, respectively. Panels
(a)–(c) show the results for Case (ii), which was a case of synchronization to a cardiomyocyte
with a slow and stable beating rhythm. (a) The experimental result, (b) the numerical result of our
model, and (c) the numerical result of the Kuramoto model with (ω̄1, σ̄1)= (5.03, 6.28)and(ω̄2, σ̄2)
= (4.46, 1.57)

Table 3.2 Comparison between the experimental result and the numerical results. The symbols Ti

and Fi denote the mean beating rate and the beating fluctuation of the cell i(i = 1, 2), respectively.
The symbol T denotes the mean beating rate and F the beating fluctuation after synchronization

Before synchronization After synchronization

T1(s) F1(CV%) T2(s) F2(CV%) T (s) F (CV%)

Experiments 1.1 149 1.4 41.2 1.4 41.7

Our model 1.1 149 1.4 41.2 1.3 46.3

Kuramoto model 1.1 149 1.4 41.2 1.3 86.8

Case (ii) A Case of Synchronization to a Cardiomyocyte with a Slow and
Stable Beating Rhythm Two cardiomyocytes that we used in the Case (ii) were
cell 1 and cell 2 of pair No. 6, which have a mean beating rhythm of 1.10 s and
fluctuation of 149 [CV%] and cell 2 with 1.40 s and 41.2 [CV%], respectively.
When the two cardiomyocytes were coupled, we found that the bating rhythm
after synchronization was tuned to cell 2 with a slow and stable beating rhythm
(Fig. 3.22a). When we compared the numerical result of our model with that of
the Kuramoto model, we found that our model was closer to the experimental
data than the Kuramoto model. Our model showed that the beating rhythm after
synchronization was tuned to the rhythm of the slow and stable cardiomyocyte
(Fig. 3.22b). However, the Kuramoto model showed that beating fluctuation of the
slow and stable cardiomyocyte was increased after synchronization, which differed
from the experimental results (Fig. 3.22c). The mean beating rate and beating
fluctuation of the experimental result, those of our model, and those of the Kuramoto
model are shown in Table 3.2.

Therefore, our model showed that even though the mean beating rate of a
cardiomyocyte was slow, a cardiomyocyte with more stable beating fluctuation
dominated the beating rhythm after synchronization. In previous numerical sim-
ulations, we did not consider the effect of retardation time (τ = 0). When we
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incorporated this effect, the behavior of our model barely changed because of the
existence of a refractory period much longer than τ . However, if the refractory
period is not taken into account, then a couple of cardiomyocytes continuously fire
with the period of the retardation time, which is biologically unacceptable. In a
system of two cardiomyocytes, we can use a retardation time τ = 0, but we should
consider the effect of retardation time as the size of the system increases. In this case,
the existence of the refractory period will have significant effects on the system.

3.4.2 Numerical Experiments

As an application of our mathematical modeling, we then performed two numerical
experiments on networks of cardiomyocytes and investigated the community effect
of cardiomyocytes.

3.4.2.1 Size and Configuration Dependence on Fluctuation of the System

First, we investigated the dependence of fluctuation in beating rhythm of car-
diomyocytes on the size and configuration of the system. Network patterns in
cardiomyocyte groups that we considered were star, 2D lattice, and 1D lattice
networks (Fig. 3.23).

We assumed that all the elements in cell networks have the same beating
properties. Figure 3.24a–c shows the size dependence of fluctuation of networks
with three types of configurations. The model cardiomyocyte that was used in
Fig. 3.24a was cell 1 of pair No. 1, which had a mean beating rhythm of 0.64 s
and fluctuation of 12.4 [CV%], that in Fig. 3.24b was cell 2 of pair No. 1 with

Fig. 3.23 Configurations and the order of placing cells. Three types of networks of configuration
are shown. (a) Star network, (b) 2D lattice network, and (c) 1D lattice network. A cardiomyocyte is
represented as a circle and it interacts with another cardiomyocyte if they are connected by a line.
Cardiomyocytes are connected in ascending order according to the numbers in the circles from 1
to 20



132 T. Hayashi et al.

a b c

Fig. 3.24 Size dependence of fluctuation for three types of configuration. Size dependence
of fluctuation is shown in double logarithmic graphs. The components of the network are
model cardiomyocytes with the same characteristics. Panels( a)–(c) show the size dependence
of fluctuation for three types of configurations: (a) ω = 9.80, σ = 0.69, θ = 2.94, (b)
ω = 5.00, σ = 1.01, θ = 1.50, and (c) ω = 2.10, σ = 1.18, θ = 0.63. Circles indicate beating
fluctuation (CV%) of cardiomyocytes in the star network, triangles indicate beating fluctuation in
the 2D lattice network, and crosses indicate beating fluctuation in the 1D lattice network. The black
straight line denotes ∝ N−1/2, where N is the number of cardiomyocytes in the network

a b c

Fig. 3.25 Size dependence of fluctuation for a large network. Size dependence of fluctuation is
shown in double logarithmic graphs. The components of the network are model cardiomyocytes
with the same characteristics. Panels a–c show the size dependence of fluctuation for a larger 2D
lattice network. (a) ω = 9.80, σ = 0.69, θ = 2.94, (b) ω = 5.00, σ = 1.01, θ = 1.50, and (c)
ω = 2.10, σ = 1.18, θ = 0.63. The black straight line denotes ∝ N−1/2, where N is the number
of cardiomyocytes in the network

1.23 s and 25.1 [CV%], and that in Fig. 3.24c was cell 2 of pair No. 8 with 2.71 s
and 43.0 [CV%]. We found that the beating fluctuation decreased as the size of the
system increased irrespective of network pattern. Among the three configurations,
a reduction in fluctuation tended to be most rapid in the 2D lattice network, and
fluctuation in the 1D lattice network tended to be always larger than that in the other
two configurations. In addition, we considered the larger size (about 1000 cells) of
the network in the 2D lattice network. Figure 3.25a–c shows the size dependence of
fluctuation of the 2D lattice network where all the elements had the same beating
properties. The numerical results suggested that the beating fluctuation decreased as
the community size increased, but the CV value of the system approached a constant



3 Synchronization and Fluctuation of Cardiac Muscle Cells 133

value for large system size N . For an ordinary stochastic ensemble, such as an
independently identical distributed ensemble, the dependence of standard deviation
of fluctuation on system size N was proportional to N−1/2. However, we found that
the data of fluctuation plotted on the graph (Fig. 3.25) considerably diverged from
the line of N−1/2 and the features of beating fluctuation behave differently from that
of ordinary stochastic ensembles.

3.4.2.2 Dependence of Cell Properties and Numbers on Fluctuation
of the System

We then investigated the change in beating rhythms after connecting two subsystems
of cardiomyocytes. First, we prepared referential subsystems of four model cells
and nine model cells. We assumed that these subsystems had the property of a
standard beating rhythm (mean beating rate 1.20–1.30 s and fluctuation 15.0–20.0
[CV%]). As for the subsystems that are connected to referential subsystems, we
considered subsystems comprising four types of cardiomyocytes: (1) first and stable
cell, (2) first and unstable cell, (3) slow and stable cell, and (4) slow and unstable
cell. We considered the three types of cell network patterns shown in Fig. 3.23. A
single cardiomyocyte was connected to a center cardiomyocyte of the referential
star network, to a cardiomyocyte on a link of the referential 2D lattice network,
and to a cardiomyocyte on an edge of the 1D lattice network (Fig. 3.26a and b).
When subsystems were the same size, we connected them by a single link between
two cardiomyocytes at the same positions in the cell network. We used the two
center cardiomyocytes for the star networks, cardiomyocytes on the links for the 2D
lattice network, and the two cardiomyocytes at the edges for the 1D lattice network
(Fig. 3.26c and d).

We showed three typical results of the numerical simulation. First, we con-
sidered the referential 2D lattice network with nine cardiomyocytes and a single
cardiomyocyte with a fast and unstable beating rhythm (Fig. 3.27a). When the
nine-cell network came into contact with the single cardiomyocyte, the single
cardiomyocyte synchronized at the beating rhythm of the nine-cell network and with

Fig. 3.26 Configurations of a combination between a referential network and a single cell or an
assembly of cells. In panels (a) and (b), the filled circles denote a single cell, which adds to the
referential network, of which cells are denoted by open circles. (a) Referential network of four cells
+ a single cell and (b) that of nine cells + a single cell. Panels (c) and (d) show the configurations
of combined subsystems of four cells and those of nine cells. The cells in referential networks
are denoted by open circles and those in counterparts are denoted by filled circles. (c) Referential
network of four cells + four cells and (d) that of nine cells + nine cells
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Fig. 3.27 Change in the beating fluctuation before and after synchronization. (a) The referential
subsystem is the 2D lattice network and the counterpart is the single cell with a fast and

(continued)
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a beating fluctuation equal to that of the nine-cell network (Fig. 3.27b). Second,
the rhythm of a single cardiomyocyte was fast and stable (Fig. 3.27c). We then
found that even a single cardiomyocyte could lower fluctuation of the referential
network and the beating rhythm of the referential network synchronized to a stable
single cardiomyocyte (Fig. 3.27d). Finally, we considered a referential 2D lattice
network with four cardiomyocytes and four cardiomyocytes grouped with a fast
and stable beating rhythm (Fig. 3.27e). When the two subsystems were coupled,
the synchronized beating rhythm was also tuned to the rhythm of the more stable
group (Fig. 3.27f). In the above three cases (Fig. 3.27a–f), every cardiomyocyte
started synchronizing when two subsystems were connected and formed a cell
network. However, synchronization did not occur when the referential network
was connected to a fast and stable 1D lattice network with nine cardiomyocytes.
The cardiomyocytes near the edge of 1D lattice network with nine cardiomyocytes
showed an exceptionally large fluctuation compared with the other cardiomyocytes.
Furthermore, fluctuations of combined systems reduced their intensity, except for
when there was a single cardiomyocyte or cardiomyocyte group with a slow and
stable beating rhythm. However, the increment in fluctuation was small, even in
these cases (e.g., Fig. 3.27g and h). When a referential subsystem came into contact
with a counterpart consisting of one of the other three types of cardiomyocytes,
the constituent cardiomyocytes acquired a common intensity of fluctuation. The
intensity was intermediate between that of the prior two subsystems but was similar
to that of the less fluctuating subsystem.

3.4.3 Discussion

To investigate the community effect of networks of cardiomyocytes, we used an
interacting integrate-and-fire model with a refractory period. The reliability of
the present mathematical model was verified by accurately reproducing recent
experiments on pairs of cultured cardiomyocytes by Kojima et al.[28], despite
the fact that the mathematical model has only one free parameter. One of the
interesting points is that the fluctuation observed in their experiments cannot be
accounted for simple Brownian motion or equivalently random walks. This is
because some of the beating rhythm fluctuations (CV%) exceeded the theoretical
limit evaluated for Brownian motion. An important observation in their experiments
is the finding that when two isolated independently beating cardiomyocytes came

�

Fig. 3.27 (continued) unstable beating rhythm. (b) The change in mean value of beating fluctua-
tion. The data for the referential networks and the counterparts are shown by circles and squares,
respectively. The circles and squares show the corresponding mean values for 1 min of beating
fluctuation. The results for the other combined systems (c), (e), and (g) are shown similarly in (d),
(f), and (h), respectively
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into contact, they tended to beat synchronously at a rate of the cardiomyocyte with
a stable beating rhythm, but not the cardiomyocyte with a faster beating rhythm.
This community effect of cardiomyocytes toward stability was confirmed with the
present mathematical model by investigating cell networks of various configurations
and constituent cardiomyocytes with various beating rhythms. Even a single stable
cardiomyocyte could lower beating fluctuation of a cell network comprising some
cardiomyocytes. The reason why a cardiomyocyte with an unstable beating rhythm
tends to follow a cardiomyocyte with a stable beating rhythm may be explained as
follows. A cardiomyocyte with a stable beating rhythm has the property where its
dynamics are only slightly affected by external or internal disturbance. Therefore,
there is little effect of interactions from neighboring cardiomyocytes. While, a
cardiomyocyte with an unstable beating rhythm has the opposite property and is
strongly affected by its neighbors. A cardiomyocyte with a stable beating rhythm
corresponds to a pendulum with a heavy mass in contrast to a cardiomyocyte with
an unstable beating rhythm that corresponds to that with a light mass (Fig. 3.28).
When these pendulums are connected, the pendulum with a light mass tends to
follow that with a heavy mass. This feature is a consequence of the fluctuation–
dissipation theorem, which provides a universal relation between fluctuation and
a linear response[3, 31]. In our model, the coefficient σ 2

i of the interaction term∑
j V (φj , φi) in Eq. (3.49) was because of this theorem. This factor plays an

essential role in stabilizing the beating rhythm after synchronization. Stability is
one of the most significant and universal features of biological systems. It is an
interesting finding that one of the origins of biological stability is a universal
principle in statistical physics, that is, the fluctuation–dissipation theorem.

Fig. 3.28 Schematic explanation of why the beating rhythm tend to be synchronized to that of
more stable cardiomyocytes after connection of two cardiomyocytes. A stable cardiomyocyte can
be compared with a heavy pendulum and an unstable cardiomyocyte with a light pendulum. (a)
External fluctuation has little effect on a pendulum’s period of swing if its weight is heavy, but has
strong effects if its weight is light. (b) When two pendulums are coupled and synchronized, their
period of swing is close to that of the heavier pendulum, and fluctuation will be reduced because
the total mass of weight increases
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3.5 Summary

As described in this chapter, we examined the community effect with a mathematical
model of cardiomyocyte synchronization behavior using the following three steps:
first, to initiate the mathematical approach, we modeled the firing of cardiomyocytes
as an oscillating stochastic phase model, involving the concepts of refractory period
and induced beating, and also discussed its characteristics of single cardiomyocyte
beating, two coupled cardiomyocytes, and the network of plurality of cardiomy-
ocytes (Sect. 3.2). Next, we introduced the experimental results of the synchronous
behavior of cardiomyocyte networks after a brief explanation of the experimental
setup of microfabrication techniques regarding how the constructed approach of
stepwise synchronization of cardiomyocytes was accomplished (Sect. 3.3). Finally,
we proposed the oscillating stochastic phase model with the fluctuation–dissipation
theorem and revealed that the model of cardiomyocyte networks with various cell
numbers and spatial arrangements showed the same tendencies as the experimental
results of synchronization behavior. Specifically, it revealed that the stability-
oriented synchronization phenomenon and the fluctuation of beating intervals
determine the cell network synchronous behavior (Sect. 3.4).

We here speculate about the macroscopic behavior behind the synchronization
of beating cardiomyocytes. Such a synchronized network of living organisms
appears to be a macroscopic system in which part of its behavior is not just purely
mechanical, but it also exhibits statistical features that all systems tend to present.
Hence, the community effect of cells should also be based on the statistical tendency
of matter to become disordered as a part of the ordinary laws of physics.

At present, however, it is not clear whether and how this synchronization rule or
community effect is regulated at the molecular ion channel level. In other words,
no detailed information about the functioning of the community effect can emerge
from a description of the genetic mechanism and its expression as general as that
given above. In this regard, the next step for a mathematical approach to studying the
community effect is to connect the macroscopic interpretation with the microscopic
interpretation. For this, the in silico membrane potential model should become more
precise [5, 7, 8, 16, 30, 38, 55], and it can also be applied in practical applications
for drug discovery or predictive toxicity screening.

Finally, with regard to the community effect, living systems appear to maintain
and perhaps encourage orderly and regulated behaviors, acting against the tendency
for natural systems to progress from order to disorder, but based partly on some
hidden existing order that is retained.
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Chapter 4
Statistical Analysis of Cellular
Directional Movement: Application
for Research of Single Cell Movement

Masahiro Kanai, Kazuo Tonami, and Hideto Tozawa

4.1 Single Cell Movement

Cell movement plays a fundamental role in physiological collective phenomena,
especially in self-organization. In earlier studies, it has been mainly discussed
whether cell movement may be considered as random walk or not. We note that by
random walk or Brownian motion, we denote the random motion of small particles
driven by external force although these two terms have a different mathematical
definition.

Due to Einstein’s theory of Brownian motion, the mean squared displacement
(MSD), which we can estimate from experimental data, is endorsed as a criterion
for the motility to be random walk. The MSD of a cell trajectory x(t), the position
of a single cell at time t , is defined as the following equation:

MSD(t) = 〈|x(t)− x(0)|2〉,

where |x| and 〈· · · 〉 denote, respectively, the norm of vector x and the expectation.
The MSD of a Brownian motion is proportional to time: MSD(t) ∝ t , whereas that
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of linear movement with a constant velocity is proportional to the square of time:
MSD(t) ∝ t2. These two cases are called diffusive and ballistic, respectively, and
the others are anomalous.

Recent studies [1, 2, 4, 6–9], based on experimental data of high accuracy, have
tended to claim that cells move with a directional trend and a persistent random
walk is suitable for modeling cell movement. The persistence parameter included in
those models appears in the MSD and reveals a crossover from persistent movement
to random. We will cover the persistent movement in the next section.

On the other hand, we consider another 2-dimensional model in which a cell
moves with a constant speed prescribed and decides his direction entirely randomly
at each time step. This model requires another method for analysis, namely circular
statistics. In the latter section, as well as the MSD, circular statistics will be applied
for the sample of cell movement.

4.1.1 Persistent Random Walk

One of the simplest ways to introduce the persistent random walk is to adopt, as
equation of motion for cells, a Langevin-type equation in 2 dimension:

τ
dv

dt
= −v +√2Dξ, (4.1)

where v = v(t) denotes the velocity vector of a cell at time t , and a vector ξ =
ξ(t) =

(
ξ1

ξ2

)

represents the white noise, i.e., a random force which obeys the

following properties:

〈ξ 〉 = 0, 〈ξi(s)ξj (t)〉 =
{

δ(s − t) (i = j)

0 (i �= j)
,

where 〈· · · 〉 denotes the expectation. Here, δ(t) denotes Dirac’s delta function which
takes the value of 0 unless t = 0. The two components of the random force vector
ξ are independent, and each has no auto-correlation. Note that one can arrange the
coefficient of the friction term −v to be 1 without loss of generality.

The parameter τ , taking positive values, does no longer represent the inertial
mass because a cell can move by itself without any external force, and hence the
relationship between the acceleration and the force is not retained in general. It is,
however, still true that if τ is large the acceleration remains small. This means that
the velocity will not change rapidly. Hence, τ should be regarded as a criterion for
persistent movement and is called the persistence time since it has dimension of
time.

The parameter D controls the strength of the random force and hence shows the
motility of cells. From a macroscopic point of view, it corresponds exactly to the
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so-called diffusion coefficient originally introduced from Fick’s law. Actually, in
Fick’s second law, the diffusion coefficient manifests itself in a diffusion equation.

4.1.2 Mean Squared Displacement (MSD) and the Fürth
Formula

We calculate the MSD for the persistent random walk introduced in (4.1).
The velocity auto-correlation function (VACF) is obtained by integrating (4.1) as

〈v(t) · v(0)〉 = 2D

τ
e−|t |/τ , (4.2)

where v1 · v2 denotes the inner product of vectors v1 and v2, and 〈· · · 〉 denotes the

expectation. The coefficient
2D

τ
is determined from the Green–Kubo formula:

D = 1

2

∫ ∞

0
〈v(t) · v(0)〉dt.

In general, one can obtain the MSD from the VACF as follows.
Since

v = dx

dt

by definition, we have

〈x(t)2〉 =
〈(∫ t

0
v(s)ds

)2
〉

=
〈∫ t

0
v(s)ds

∫ t

0
v(s′)ds′

〉

=
∫ t

0

∫ t

0

〈
v(s) · v(s′)

〉
dsds′

=
∫ t

0

∫ t

0

〈
v(s − s′) · v(0)

〉
dsds′. (4.3)

Note that we can let x(0) = (0, 0) without loss of generality. From (4.2), we
calculate the integral and thus obtain the MSD referred to as the Fürth formula [3]:

〈x(t)2〉 = 4D(t − τ(1− e−t/τ )). (4.4)
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We remark that, as already noted in [1, 8], the Fürth formula can be derived from
other models than the Langevin equation.

In the short time region, i.e. for t � τ , (4.4) is approximated as

〈x(t)2〉 � 2D

τ
t2.

We note that from (4.2), the coefficient
2D

τ
coincides with 〈v(0) · v(0)〉. This leads

to
√〈x(t)2〉 � √〈v(0) · v(0)〉t , and hence this time region is called ballistic.
In the large time region, i.e. for t 
 τ , (4.4) is approximated as

〈x(t)2〉 � 4Dt.

This time region is called diffusive. In this region, the persistence time τ approx-
imately vanishes in the MSD. This suggests that the mobility of cells may be
considered as random walk in the long run.

4.2 Circular Statistics

In this section, we introduce statistical methods for analysis of circular data:
numeric data measured in the form of angles or two-dimensional orientations.

Now, we have a wide variety of circular data as a set of vectors/axes, e.g., wind
directions, circadian rhythms, cell division axis, directional movement of animals,
and so on. In contrast, most scientists may not be familiar with the methods to deal
with those data. The latter part of this section will be hence devoted to cell migration
data measured as planar vectors; however, we do not refer to the general ways how
these data should be recorded.

This section is concerned with basic methods for statistical analysis of a single
sample of circular data {θ1, θ2, . . . , θn} including methods for displaying and
summarizing the sample. You may consider that the sample should present angles.

4.2.1 Raw Data Plot

First we consider the advantage of descriptive methods for statistical data. These
enable us to gain an initial idea of the important characteristics of the sample:
whether the sample does appear from a uniform distribution, from a unimodal
distribution, or from a multimodal distribution. Moreover the distribution may be
regarded as one of the fundamental distributions.

Here we refer to the distribution for a sample as the counts of sample points
distributed over all possible values. Raw data plot is the first important step to
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analyzing the data because it implies that we will have the next measurement in
the range in which the major part of the data concentrate.

Example: Wind Direction
Table 4.1 gives the sample of wind directions at Kurume City, Fukuoka, Japan
observed on March 8th, 2018. The angles, figured in degree, are measured clockwise
from the north direction. Figure 4.1 shows an angular plot for the raw data given in
Table 4.1. This diagram enables one to recognize the whole aspect of the data.

4.2.2 Histograms

The next step is to exploit histograms. Histograms are constructed as a type of bar
plot for numeric data that group the data into bins, i.e. a series of intervals dividing
the entire range of values. First, there are two types of histograms/diagrams: linear
and angular, and then some variations in the angular diagram. A table of unprocessed
numerics is often referred to as raw data, compared to processed data (Fig. 4.2).

1. A simple angular histogram is obtained by plotting bars each of which is centered
at the midpoint of its grouping interval, with the length of the bar proportional to
the relative frequency in the group.

2. The rose diagram is more commonly used for angular data than the angular
histogram above is, in which each group is displayed as a sector. The radius
of each sector is taken so as to be proportional to the square root of the relative
frequency of the group; the area of the sector is thus proportional to the group
frequency (Fig. 4.3).

Example: Wind Direction Statistics (Rose Diagram)
Figure 4.4 shows a rose diagram for the data in Table 4.1. As immediately seen,
the rose diagram is named for its shape.

3. The stem-and-leaf diagram is a histogram retaining the raw data values; in
particular, their mode is immediately found from the sample. Each stem, as a
column sequence of integers, consists of the data falling in a 10◦ interval with
the leaves being the data values in that interval, sorted in an increasing order.
The stem-and-leaf diagram is superior in displaying data without detracting the
individual measurements.

Example: Wind Direction Statistics (Stem–Leaf Diagram)
Figure 4.3 gives a stem–leaf diagram for the data in Table 4.1. In order to make
this diagram, we process the raw data in Table 4.1 by dividing all the numerics
by 30◦. Accordingly, the stem consists of 12 items, and stems 0, 1, 2, 3, . . .

present actual angles 0◦, 30◦, 60◦, 90◦, . . ., respectively. Then, for example,
leaf 2 | 3 present actual angle 67.5◦. We remark that this processing of the raw
data changes numerics superficially but does not detract intrinsic statistics at all.
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Table 4.1 Wind directions at
Kurume City, Fukuoka, Japan
on March 8, 2018 [5]

Time Direction Time Direction Time Direction

0:10 45◦ 8:10 0◦ 16:10 22.5◦

0:20 45◦ 8:20 337.5◦ 16:20 22.5◦

0:30 45◦ 8:30 0◦ 16:30 0◦

0:40 45◦ 8:40 337.5◦ 16:40 45◦

0:50 45◦ 8:50 22.5◦ 16:50 22.5◦

1:00 45◦ 9:00 0◦ 17:00 22.5◦

1:10 22.5◦ 9:10 22.5◦ 17:10 22.5◦

1:20 22.5◦ 9:20 0◦ 17:20 0◦

1:30 45◦ 9:30 292.5◦ 17:30 22.5◦

1:40 22.5◦ 9:40 45◦ 17:40 22.5◦

1:50 22.5◦ 9:50 180◦ 17:50 22.5◦

2:00 45◦ 10:00 225◦ 18:00 45◦

2:10 45◦ 10:10 225◦ 18:10 22.5◦

2:20 22.5◦ 10:20 157.5◦ 18:20 22.5◦

2:30 22.5◦ 10:30 157.5◦ 18:30 0◦

2:40 22.5◦ 10:40 157.5◦ 18:40 0◦

2:50 22.5◦ 10:50 180◦ 18:50 45◦

3:00 45◦ 11:00 135◦ 19:00 0◦

3:10 45◦ 11:10 180◦ 19:10 0◦

3:20 45◦ 11:20 180◦ 19:20 22.5◦

3:30 45◦ 11:30 225◦ 19:30 22.5◦

3:40 45◦ 11:40 202.5◦ 19:40 0◦

3:50 45◦ 11:50 225◦ 19:50 0◦

4:00 45◦ 12:00 247.5◦ 20:00 0◦

4:10 45◦ 12:10 247.5◦ 20:10 22.5◦

4:20 45◦ 12:20 247.5◦ 20:20 22.5◦

4:30 45◦ 12:30 292.5◦ 20:30 22.5◦

4:40 67.5◦ 12:40 270◦ 20:40 22.5◦

4:50 22.5◦ 12:50 247.5◦ 20:50 0◦

5:00 45◦ 13:00 247.5◦ 21:00 0◦

5:10 22.5◦ 13:10 247.5◦ 21:10 22.5◦

5:20 45◦ 13:20 247.5◦ 21:20 0◦

5:30 45◦ 13:30 225◦ 21:30 0◦

5:40 45◦ 13:40 225◦ 21:40 0◦

5:50 0◦ 13:50 225◦ 21:50 22.5◦

6:00 45◦ 14:00 225◦ 22:00 45◦

6:10 22.5◦ 14:10 225◦ 22:10 22.5◦

6:20 45◦ 14:20 225◦ 22:20 22.5◦

6:30 45◦ 14:30 247.5◦ 22:30 22.5◦

6:40 45◦ 14:40 225◦ 22:40 22.5◦

6:50 45◦ 14:50 292.5◦ 22:50 22.5◦

(continued)
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Table 4.1 (continued) Time Direction Time Direction Time Direction

7:00 67.5◦ 15:00 337.5◦ 23:00 22.5◦

7:10 45◦ 15:10 0◦ 23:10 22.5◦

7:20 67.5◦ 15:20 90◦ 23:20 337.5◦

7:30 45◦ 15:30 22.5◦ 23:30 0◦

7:40 22.5◦ 15:40 0◦ 23:40 0◦

7:50 0◦ 15:50 0◦ 23:50 0◦

8:00 22.5◦ 16:00 22.5◦ 0:00 0◦

0 °

90 °

180 °

270 °

Fig. 4.1 An angular plot for the data on the raw data is given in Table 4.1. The angles are measured
clockwise from the north direction

4. We introduce a kernel density estimation, which is one of nonparametric methods
to estimate the distribution for a sample. This method is different from the
histograms described above in that the contribution of each data point θk is
defined as

1

nh
w
(θ − θk

h

)
dθ,

where w(θ) presents a smooth function of θ taking the form of a bump, dθ

denotes an infinitely small interval, and h controls the amount of smoothing
effect. Then, the kernel density estimation f̂ (θ) is given by the sum of all the
contributions:

f̂ (θ)dθ = 1

nh

n∑

k=1

w
(θ − θk

h

)
dθ.
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Fig. 4.2 A linear histogram for the data on the wind directions at Kurume City, Fukuoka, Japan.
The binwidth is 50◦. The raw data is given in Table 4.1

0 0 8 8 8
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9 0 0 0 0 8 8 8

10 5
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Fig. 4.3 A stem–leaf diagram for the wind directions at Kurume City, Fukuoka, Japan on March
8, 2018 [5]

Function w(θ) called the kernel function should be chosen so that its support D,
a region where the function takes nonzero values, is small enough for w(θ) to
ensure the condition

∫

D

w(θ)dθ = 1.

However, the choice is not crucial to the density estimation but the magnitude of
h is because it determines the amount of smoothing effect, namely, the larger h

is, the more the density function gets blurred. It is, however, another issue how
you determine the value of h.
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Fig. 4.4 A rose diagram for the data on the wind directions at Kurume City, Fukuoka, Japan. The
raw data is given in Table 4.1

We note some important points in plotting histograms: Some choice of group
boundaries can give rise to a serious distortion of the information about the modal
groups observed in the sample; as well, the choice of the bin width should be
carefully made so that we can anticipate the shape of the underlying distribution
of the sample. It is, however, another issue whether your choice is correct or not.

4.2.3 Summary Statistics

The diagrams described above suggest the existence of the population from which
the sample was drawn. Here we introduce basic quantities which describe important
features of the sample distribution.
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(A) Sample Circular Mean and Sample Circular Standard Deviation
The most popular as well as important statistic is the sample mean, which is
ordinarily given by the arithmetic mean:

1

n

n∑

j=1

θj .

Is it correct even for a sample of circular data? No, and it will be obvious if one
considers, for example, the sample {10◦, 350◦}. We have the arithmetic mean 180◦,
but this cannot be acceptable.

The natural way is to consider that each circular data corresponds to a point
located on the unit circle, and thereby the sample of circular data directly transforms
into a sample of unit vectors and the sample mean for circular data is to be figured
out from the mean vector. The mean vector in terms of vector addition is carried out
as

C = 1

n

n∑

j=1

cos θj , S = 1

n

n∑

j=1

sin θj , R =
√

C2 + S2,

where R should be chosen to be positive. Then, the mean direction θ̄ of the sample
of unit vectors is obtained from

cos θ̄ = C

R
, sin θ̄ = S

R
.

This mean direction θ̄ corresponds to the mean of the sample of circular data θis.

On the other hand, R defined above presents the length of the resultant vector and
is no longer a unit vector. R takes the value in the range [0, 1]; if R = 1, it means
that all the vectors are in the same direction and hence all data θis are coincident. By
contrast, R = 0 does not always mean that all the unit vectors distribute in uniformly
random directions. A simple counterexample is the sample data {10◦, 180◦, 350◦}.
This point will become more clear when we consider statistics for axial data. We
hence note that R cannot be a useful measure of deviation.

However, R may present the variance as

V = 1− R

in the case that the sample shows a single modal distribution. We note that circular
data is restricted to a finite range and so is the variance. Again, V = 1 does not
immediately imply that the sample has a dispersed distribution.

The sample circular standard deviation is also defined as

v = √−2 log(1− V ).
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(We may have other definitions for the standard deviation.) If V is nearly equal to
1, v can be well approximated by

√
2V .

(B) Advanced Circular Summary Statistics
In order to define advanced statistics, we need some mathematics in complex
numbers. From the mean direction θ̄ and the resultant vector length R, we define
the first trigonometric moment

m1 = R(cos θ̄ + i sin θ̄ ),

where i = √−1. In an analogous manner as the mean direction, the pth
trigonometric moment is then defined as

mp = Rp(Cp + iSp),

where

Cp = 1

n

n∑

i=1

cos pθi, Sp = 1

n

n∑

i=1

sin pθi, Rp =
√

C2
p + S2

p.

Note that R1 = R.

Using Euler’s formula in complex analysis, eiθ = cos θ + i sin θ , we have a
simple expression:

Cp + iSp = 1

n

n∑

j=1

eipθj .

Then, we introduce argument μp as

Rpeiμp = 1

n

n∑

j=1

eipθj .

In particular, μ1 = θ̄ , but however μp �= pθ̄ for p ≥ 2 in general.
The centered sample trigonometric moments are also defined as

m′p = R′p(C′p + iS′p),

where

C′p =
1

n

n∑

j=1

cos p(θj − θ̄ ), S′p =
1

n

n∑

j=1

sin p(θj − θ̄ ),
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and

R′p =
√

(C′p)2 + (S′p)2.

Since a little calculation leads to C′1 = R and S′1 = 0, we have m′1 = R.
Using Euler’s formula, we have

R′peiμ′p = 1

n

n∑

j=1

eip(θj−θ̄ ) = e−ipθ̄

n

n∑

j=1

eipθj = Rpei(μp−pθ̄),

and therefore μ′p = μp − pθ̄ , and R′p = Rp.
As for a unimodal distribution of the sample, we exploit the first and second

centered trigonometric moments, defining advanced statistics: the sample circular
dispersion

δ = 1− R′2
2(R′1)2

,

the sample circular skewness

s = R′2 sin(μ′2 − 2μ′1)
3
√

1− R′1
,

and the sample circular kurtosis

k = R′2 cos(μ′2 − 2μ′1)− (R′1)4

(1− R′1)2 .

The circular dispersion δ is concerned with confidence interval for the sample mean
direction. The skewness s presents the asymmetry of the sample distribution. The
kurtosis k presents the peakedness of the sample distribution, and so it is also called
peakedness.

Example: Wind Direction Statistics
We have summary quantities for the wind directions given in Table 4.1 as follows:
the mean direction θ̄ = 71.7◦, the sample circular variance V = 0.43, and the
circular standard deviation v = 1.1. See Figs. 4.2 and 4.4, and verify these results.
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4.2.4 Probability Models

Statistical analysis, especially statistical inference, of a sample data is based on the
probability of it being obtained. Probability in statistics takes a role in formulating
uncertainty of the data, i.e., the data we obtain is drawn from an underlying
population. Each sample of the population contains the probability that one will
draw it, and we call the set of the probability the probability distribution or
distribution simply.

Probability models provide with a distribution for the data a priori. Some
probability models have parameters to be inferred from the sample, and other
models called nonparametric do not. One usually applies the normal distribution
for linear data, then obtaining acceptable results. For circular data, some models
appear as a counterpart of the normal distribution for linear data, and the von Mises
distribution described below is one of them.

Example: von Mises Distribution
Figure 4.5 shows a von Mises distribution. This distribution is a continuous
probability distribution on the circle and was introduced as a circular analogue of
the normal distribution. The probability density function is defined by

f (θ) = eκ cos(θ−μ)

2πI0(κ)
(0 ≤ θ < 2π, 0 ≤ κ <∞),

where the parameters μ and 1/κ correspond, respectively, to the mean value and
the variance. We note that the normalization is given by a modified Bessel function
I0(κ). We have some analytic expressions for the function as

I0(κ) = 1

2π

∫ 2π

0
eκ cos(θ−μ)dθ,

and

I0(κ) =
∞∑

r=0

(r!)−2
(κ

2

)2r

.

However, these may not be useful for numerical calculation. The use of a software
on computer is practical.
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Fig. 4.5 The von Mises distribution. We illustrate a von Mises distribution in polar plot; the outer
curve presents the value of probability increasing upon the unit circle (the inner curve)

For example, we apply the von Mises distribution to the wind direction data given
in Table 4.1. As already calculated above, the circular mean μ = 71.7◦ and the
circular variance 1/κ = 0.43. Figure 4.6 shows the probability density function in
polar plot.

4.3 Application for Single Cell Movement

In this final section, we apply the circular statistical analysis introduced above for
single cell movement. We obtain the sample of a single 3T3 cell in vitro. The 3T3
cell line is a spontaneously immortalized mouse fibroblast cell line established from
mouse embryonic tissue.
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Fig. 4.6 The von Mises distribution applied for the wind direction data given in Table 4.1.
Parameters are chosen so that the mean μ = 71.7◦ and the variance 1/κ = 0.43. We find that
this fits with the rose diagram given in Fig. 4.4. To be precise, we illustrate the graph of polar
equation ρ = f (θ)+ 1 with μ = 1.25 and the variance κ = 2.33

Figure 4.7 shows the sample trajectory of a single 3T3 cell moving on a dish
freely. We plot the data points by time lapse imaging of the cell movement and then
connect them with line segments in time sequence.

Figure 4.8 shows the directions of motion obtained from the sample trajectory in
both circular histogram and rose diagram. From the data, we have the mean circular
mean direction 121◦ and the circular variance 0.93. Since the circular variance takes
a value in between 0 and 1 and the greater it is the more random (irregular) the
movement is, we consider from the present result that the 3T3 cell chooses the
direction of movement with almost equal probability (Fig. 4.9).

Furthermore, we calculate the mean squared displacement from the sample
trajectory data, so we test that the movement observed is a random walk or not.
We use a log–log plot for the figure, and hence the line of the linear minimum mean
squared error estimator gives the exponent λ for the MSD with respect to time: MSD
∝ tλ. The slope of the line is read as 1.0, i.e. λ = 1.0, and accordingly the result
suggests that the present cell movement should be considered as diffusive. Hence
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Fig. 4.7 The sample of a single 3T3 cell moving freely on a dish

we conclude from the sample data given in Fig. 4.7 that the 3T3 cell moves as a
random walk.

We finally make a remark on the calculation of the MSD from the sample data
before closing the chapter. From a sample trajectory containing N + 1 points of
position (x(t), y(t)) at time t , we actually compute the MSD as

MSD(τ ) = 〈(x(t + τ)− x(t))2 + (y(t + τ)− y(t))2〉

= 1

N − n+ 1

N−n∑

i=0

[
(x((i + n)Δt)− x(iΔt))2

+(y((i + n)Δt)− y(iΔt))2
]
, (4.5)

where τ = nΔt (n = 0, 1, 2, . . . , N).
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Fig. 4.8 The directions of
motion obtained from the
sample trajectory

0 °

90 °

180 °

270 °

0 ° 15 °

30 °

60 °

75 °

90 °

105 °

120 °

150 °

165 °180 °195 °
210 °

240 °

255 °

270 °

285 °

300 °

330 °

345 °
50.

45 °315 °

225 ° 135 °



160 M. Kanai et al.

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

Fig. 4.9 The mean squared displacement for the sample trajectory
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Chapter 5
Protein Structures

Hiroki Kodama and Yoichi Nakata

5.1 Introduction

Proteins mean polypeptides or complexes of polypeptides. Each polypeptide forms
a single chain of 20 types of amino acids (see Figs. 5.1 and 5.2) through peptide
bond polymerization and plays very important roles in all the functions of life. For
example, cells are composed of proteins. Histone that wraps DNA and makes up
chromatin and enzymes used in chemical reactions in living organisms such as
RNA polymerase and ribosomes are also proteins. The reason why proteins have
such a variety of functions is that it is possible to form various spatial structures by
hydrogen bonding between places that are separated from each other on the chain.

The sequence of the 20 amino acids that make up a polypeptide chain is called
the primary structure of a protein (corresponding to the genome sequence in DNA).
The order of the sequence is determined by the direction of the carboxyl group from
the side of the amide group that is not used for peptide binding. A partial spatial
structure such as a helix or sheet structure produced by a polypeptide chain is still
called a secondary structure. The structure of a polypeptide chain determined by the
spatial arrangement of multiple secondary structures is called the tertiary structure,
and the structure formed by a protein multimer consisting of multiple polypeptide
chains with a tertiary structure is called the quaternary structure. The function of a
protein is said to be directly determined by its tertiary or quaternary structure. In
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Name Formula Hydrophobicity

Alanine Hydrophobic

Valine Hydrophobic

Leucine Hydrophobic

Isoleucine Hydrophobic

Proline Hydropphobic

Name Formula Hydrophobicity

Phenylalanine Hydrophobic

Methionine Hydrophobic

Tryptophan Hydrophobic

Glycine Hydrophobic

Cysteine Hydrophobic

Fig. 5.1 List of the hydrophobic amino acids. The structural formulae are generated by OpenBabel
[20] from data on ChemSpider [1]

this chapter, we mainly focus on the structure formed by a single polypeptide chain,
as well as the secondary and tertiary structures.

It is possible to directly measure spatial structures of proteins by using X-ray,
nuclear magnetic resonance, and cryo-electron microscopy, and the result of such
measurements is databased as PDB [25]. CATH [4] and SCoP [26] are databases
that classify the spatial structures of proteins based on PDB.

The potential of a protein is determined by the forces such as hydrogen bonding,
electrostatic interactions, and van der Waals forces in the environment in which
it is placed (temperature, surrounding environment, etc.). The spatial structure is
considered to achieve the minimum potential. The most free energy stable structure
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Name Formula Hydrophobicity

Lysine Polar

Arginine Polar

Histidine Polar

Aspartic acid Polar

Glutamic acid Polar

Name Formula Hydrophobicity

Asparagine Polar

Glutamine Polar

Serine Polar

Threonine Polar

Tyrosine Polar

Fig. 5.2 List of the polar amino acids. The structural formulae are generated by OpenBabel [20]
from data on ChemSpider [1]

that a protein takes in a cell is called a natural structure. Natural proteins have a
unique natural structure.

The structure that a protein forms under the natural environment is called the
natural state and that under the changed environment, for example, by changing
temperature, adding acid or alkali, etc., is called the denatured state. When the
causative factor is removed from the protein in the denatured state, it takes on the
natural state again.

The side chains of amino acids that make up the polypeptide chain are classified
into two types of affinity with water: polor (hydrophilic) and hydrophobic. Because
there are many water molecules around proteins in the cell, proteins in their natural
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Fig. 5.3 Image of polypeptide. R, R′, . . ., R(n) are side chains

state are folded so that the hydrophobic side chains come to the inside and the polar
side chains come to the outside.

The amino acids that make up a protein are known to take the form of the
chemical structure shown in Fig. 5.3. Here, R is a radical, namely a different
functional group for each amino acid, and referred to as a side chain. By calling
the central carbon atom in amino acid Cα , there are four atoms bound to Cα , each
of which is known to be located at the vertex of a tetrahedron centered on Cα . In
addition, since the nitrogen and carbon atoms are double bonded in the peptide bond,
all four atoms that are directly bonded to them exist in the same plane.

In this chapter, we will confirm that we can reproduce these phenomena in
proteins using several models.

5.2 Lattice Polymer Models

5.2.1 Self-avoiding Walk

Although real polypeptide chains exist in a three-dimensional space, and there
are some physical constraints such as exclusion volume effects and inter-atomic
distances due to binding, there are sufficient spatial degrees of freedom for each
monomeric linkage. When such a system is modeled naively, it is difficult to
simulate it because the degrees of freedom are too large, and it is also very difficult
to analyze the phenomena caused by the system. Therefore, we prepare a model that
is easy to simulate and analyze, which is away from reality but has fewer degrees of
freedom. If a toy model reflects the phenomena expected in reality, then it is natural
to consider that the elements employed in constructing the model are necessary to
reproduce its behavior in real systems.

As an example, let us consider the lattice polymer model called self-avoiding
walk (SAW) [17], which is the simplest model to describe the structure of polymeric
polymers considering the exclusion volume effect. This is the point sequence
(vi)

N
i=1, in which monomers are arranged on a two- or three-dimensional lattice
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Fig. 5.4 An example of
SAW

in such a way that they do not overlap (see Fig. 5.4) and mathematically satisfy the
following conditions:

(i) vi ∈ Z
d

(ii) ||vi+1 − vi || = 1
(iii) vi �= vj for i �= j

where d ∈ Z>0 is the dimension of the considered lattice (a planar lattice if d = 2
and a spatial lattice if d = 3), N is the length of SAW (the number of monomers
that make up the molecule), and ||x|| is the Euclid norm of the vector x ∈ Zd . The
fact that condition (5.2.1) is a non-local condition for the monomer number i is an
inherent difficulty in constructing a SAW.

Therefore, the problem of counting the number of possible SAWs under a fixed
length or range of lattices is very interesting not only in polymer physics but also in
mathematical physics, combinatorics [13], and algorithms [12]. A contact is defined
as a pair of monomers that is not adjacent to SAW as a chain but is adjacent to
it in the lattice space. That is, a contact is a set of indexes C = {(i, j) | j >

i + 1, ||vi − vj || = 1}.

5.2.2 HP Model

The HP model [6] introduces the information of polarity or hydrophobicity for each
vertex (monomer) of the SAW lattice under the assumption that the other empty
lattices around the polymer lattice are packed with solvent. We express simply “H”
or “P” for hydrophobicity or polarity of each site, respectively. The potential of
lattice protein in the HP model is calculated by −1 times the number of contacts
between H sites in SAW. That is, let a path of SAW be P , and for the contact
C = C(P) of that path, E(C) = ∑

(i,j)∈C W(σi, σj ), where σi ∈ {H,P } (i =
1, . . . , N ) expresses hydrophobicity or polarity of i-th site and W is W(H,H) =
−1 and W(H,P ) = W(P,H) = W(P,P ) = 0. In other words, as CHH = {(i, j) ∈
C | σi = σj = H } ⊂ C, E(C) = −#CHH.

As mentioned before, the structure of a protein is that minimizes the potential,
and the same principle can be applied to lattice proteins. One of the main problems
of the HP model is to determine the most stable structure and another is to calculate
the energy expectation value.
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Fig. 5.5 All configuration for sequence “HHPH” under rotation and mirror symmetry in the HP
model

The HP model becomes a basement of the protein folding problem from the
mutations [7, 14, 15, 27, 28] to other various biological problems [16, 21, 24, 30]
because it reduces the difficulty of complexity of amino acid sequences. It is also
interesting for computational physics: the computation of the most stable structure
of HP models in a three-dimensional lattice space is known to be NP-complete [3].

For example, in the case d = 2 and N = 4, there are four possible structures as
SAWs, except for rotation and mirror images. However, by setting H or P character
for each site, we can distinguish five possible structures for the HP model (see
Fig. 5.5). Here, under this definition, there can be a case that two lattice proteins
can be identified by inverting a sequence, e.g., “HPHH” and “HHPH” on a line. But
we distinguish them as different structures because the real proteins have different
terminals for each side. There are four sequences with only one natural structure:
HPPH, HHHH, HHPH, and HPHH.

For a larger monomer number N , the number of possible SAWs increases
explosively, so it is unrealistic to argue by enumeration. Known algorithms to
compute the most stable structure for such cases include the CHCC method by
Yue and Dill [31] and a method using restricted programming [18] if limited to
three dimensions. If it is sufficient to obtain not the exact minimal energy, there is
the approximation algorithm that can compute the structure with at least 1/4 of the
minimal energy in polynomial time by Hart and Istrail [10] and 1/3 of the minimal
energy by Newmann [19] for the two-dimensional model. For a three-dimensional
model, a polynomial time algorithm that can compute the structure with at least 3/8
of the minimal energy by Hart and Istrail [10] is known.

5.2.3 An Extension of HP Model: Including Coulomb Force

Hidaka et al. are interested in how an extension of the HP model could explain
the structural denaturation of proteins by pH changes from a statistical mechanistic
perspective [11]. Then, they requested the HP model to be extended to suffer an
energy loss when polar side chains are adjacent to each other. This is due to the fact
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that the polar side chains are ionized by the release of protons due to the change
in pH, and the side chains have Coulomb repulsive force. That is, instead of W,
we introduce a potential with W ′(H,H) = εHH > 0, W ′(P, P ) = εPP < 0,
W ′(H, P ) = W ′(P,H) = 0 as W ′ and calculate the expected value of the energy
E(C) =∑(i,j)∈C W ′(σi, σj ) = εHH#CHH+εPP#CPP by counting. Note that CPP :=
{(i, j) ∈ C | σi = σj = P } ⊂ C.

Here, for a given length of SAW, we define tMAX as the maximum contact for all
considerable configurations, that is, tMAX := maxP #C. For each SAW path P , we
define compactness as ρ := #C(P)/tMAX, which indicates degree of spread for a
path. In the case ρ = 1, the path is most compact, and when ρ becomes smaller, it
becomes broader. Here, we note that one has tMAX = N + 1− �2√N�.

Assuming a Boltzmann distribution, the expectation of contact-dependent phys-
ical quantity X = X(C) is denoted by 〈X〉 = ∑

P X(C(P))e−βE(C(P))/Z,
where

∑
P is the sum of all possible configurations for a fixed sequence, except

for parallelism, rotation, and mirror symmetry, and Z = ∑
P e−βE(C(P)) is the

partition function.
Hidaka et al. constructed a lattice model with this potential in a two-dimensional

lattice and obtained the following results.
A change of the stable state is confirmed as μ = −εPP/εHH grows. This means

that the most stable structure is altered by pH denaturation. It was also confirmed
that several new most stable structures may appear. This means that even a protein
in its natural state can have multiple most stable structures after pH denaturation.

For the small length case, such a change of the stable state occurs at most once.
However, it occurs twice as the length N exceeds 16. This also corresponds to
multiple occurrences of pH denaturation in real proteins (see Figs. 5.6 and 5.9).

The compactness of the structure when μ is large is smaller than the structure
that appears when μ is small. It is known that proteins in the denatured state take
a partially folded structure (molten globule), and this phenomenon may correspond
to this (Figs. 5.7, 5.8, 5.10, 5.11, and 5.12).

These results show that the planar lattice protein model is able to reproduce the
properties of real proteins in spite of its simplicity.

Monte Carlo simulations are used to discuss energy expectations (it is also
possible to use Monte Carlo methods to search for energy minima). In other words,
the most stable structure and statistical and physical expectations are calculated
by mutating the chains created by the SAWs and having them search for possible
SAW configurations. However, there are several problems to execute Monte Carlo
simulations. First of all, the potential of the HP model has several local minima.
Then, the mutation keeps being trapped around a local minimum and cannot reach
the true minimum by a naive simulation. There are two main methods to avoid this
problem: one is to simulate multiple systems with different temperature parameters
in parallel and sometimes to interchange the state of the systems (in fact, the
temperature parameters are changed), so that multiple energy minima can be moved
through the high-temperature part where the energy minima are easily overcome.
This approach is called “replica exchange method” [29]. The other method is to
replace the energy-based Boltzmann distribution-based displacement used in the
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Fig. 5.6 Change of the expectation of compactness for sequence “HHPHHPPPPPHPHPPHPH.”
As μ grows, the stable state is changed. Here, kT = 1/β

Fig. 5.7 The stable state for μ = 0, which is the natural state of the lattice protein. H residues are
expressed as filled circles and P as empty circles

Fig. 5.8 A configuration of stable states around μ ∼ 1

metropolis method with another probability distribution that tends to exceed the
energy minimum. When calculating the expected energy value, one resamples using
Boltzmann distribution from obtained data distribution. This approach is called as
“multicanonical method” [2]. For Monte Carlo simulations of general multimodality
potentials, the method described above is sufficient, but for SAWs, it is very difficult
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Fig. 5.9 Change of the expectation of compactness for sequence “HHPHHPPPPPHPHPPHPH”

Fig. 5.10 The stable state for μ = 0

Fig. 5.11 A configuration of stable states around μ ∼ 0.3

Fig. 5.12 A configuration of stable states around μ ∼ 0.7
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to mutate preserving SAW, and it is virtually impossible to obtain a sufficient
number of samples to run at least a Monte Carlo simulation. One way to avoid this
is once to break the SAW rule and allow overlaps, but to select only those without
overlap when resampling energy expectations [5].

5.3 Fatgraph Model

In the previous section, we discussed the structure determined by the properties
of the side chains. Here, we briefly describe an abstraction model of the three-
dimensional structure focusing on the hydrogen bonds formed by peptide bonds
as another example of the mathematical modeling of proteins.

A peptide bond between the i-th Cα atom and the i + 1-th one is called the i-th
peptide unit (remember that the atoms that make up the unit are all on the same
plane, see Fig. 5.13). Note that there are two types of structures that a peptide unit
can take, cis and trans, and that the position of the hydrogen molecules used for
hydrogen bonding is different. It should also be noted that for proline, the hydrogen
molecule is on the side of the side chain, i.e., on the opposite side of the chain from
the other amino acids. Unless otherwise noted, the term “C atom” refers to the C
atom involved in the peptide bond in a unit.

The i-th and i + 1-th peptide units are apparently adjacent and the hydrogen-
bonded peptide units are also closely related. Note that the single bond between the
i-th Cα atom and the C atom of the i-th peptide unit has a degree of freedom of axial

Fig. 5.13 Peptide chain and peptide unit. Arranged from [23]
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rotation. The nitrogen atom and the i + 1-th Cα atom also has a degree of freedom
of axial rotation. It is immediately apparent that the rotation of the two axes creates
an angle between the planes in which the two neighboring peptide units are placed.
Penner et al. introduced a model that replaced the connection relationship with an
extended graphical structure called FATGRAPH by a simplification that makes it
binary about the angles made by this peptide unit [23]. A normal (undirected) graph
is defined as an edge E ⊂ {{i, j} | i, j ∈ V } connecting a vertex set V to a vertex,
whereas a fatgraph is given two attributes, twisted or untwisted, for each edge e ∈ E.
Here, we note that one can introduce a cyclic order for the edges starting from a
vertex. A fatgraph is a displacement retract of a surface that uniquely defines a
surface with a fatgraph as its boundary. We denote πi as the plane on which i-th
peptide unit is on. Now, let us construct an orthonormal system (ui, vi, wi) on R

3

from i-th peptide unit by following rules:

• ui is a normalized vector from the C atom to the N atom on πi .
• vi is a unit vector on πi which is orthogonal to ui and close to the O atom in view

of the Cα atom.
• wi = ui × vi .

By regarding orthonormal system Fi = (ui, vi, wi) as an element of special
orthogonal group SO(3), Fi ∈ SO(3) is called a frame. Next, let us consider
the connection relation between hydrogen bonding units. Given a fixed coordinate
system, one can define the transformation matrix R̂ij from Fi to Fj by R̂ijFi = Fj ,
thus R̂ij = FjF

−1
i . Then, the same transformation considering on the basis Fi is

expressed as Rij := F−1
i R̂ijFi = F−1

i Fj . This is the transformation matrix from
the frame of i-th peptide unit to that of j -th one when viewing from the coordinate
system of the i-th peptide unit, which represents the torsion between the two peptide

units. Here, we introduce two matrices I =
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ and J =
⎡

⎣
1 0 0
0 −1 0
0 0 −1

⎤

⎦,

which are elements of SO(3) and expressing two frames are untwisted or twisted,
respectively (however, if the unit is trans type or i + 1-th amino acid is proline,
the relation is inverted, and if both are satisfied, the relation becomes normal).
We binarize the peptide unit connections according to whether the transformation

matrix Rij is close to I or J . SO(3) defines d(A,B) = arccos( tr(AB−1)−1
2 ) as

the natural distance. Using this, let d(Rij , I ) < d(Rij , J ), then the conjunctive
relation between i and j is untwisted, and let d(Rij , I ) > d(Rij , J ), then the
conjunctive relation between i and j is twisted. Note that if R = (rk,l)1≤k,l≤3,
then d(R, I) < d(R, J )⇔ r2,2 + r3,3 > 0.

It is known that the fatgraphs of polypeptides by this definition from the two
polypeptides are consistent, and then the spatial structure of the original protein is
also roughly the same [23].

Therefore, despite the extreme simplicity of the polypeptide connection, fatgraph
reproduces the structure of the polypeptide to some extent, and in this sense, it is
a good model. For example, the famous α-Helix and β-sheet structures, which are
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Fig. 5.14 Simple representation of peptide unit to fatgraph model. Each unit is expressed as a
ribbon with branches. Ribbon itself has a symmetry under 180◦ rotation. However, by considering
the structure of amino acids and peptide bonds, the structure is determined uniquely under setting
initial configuration for a site

Fig. 5.15 α-Helix structure with ribbons. Reverse side of ribbons is expressed as dark

the secondary structures of proteins, are realized in the fatgraph. By expressing a
peptide unit as a ribbon, these second structures are shown in Figs. 5.15 and 5.16.

Fatgraph represents the broad three-dimensional structure of the protein well but
loses too much information to recapture local properties such as how strongly it
binds to the ligand. We defined a transformation matrix Rij belonging to SO(3), but
we dropped the information by binarizing it to drop it into a fatgraph. Therefore,
one approach is to adopt a model that considers the transformation matrix as it is in
SO(3) [22]. Penner, Andersen et al. computed the distribution of the transformation
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Fig. 5.16 β-Sheet structure with ribbons

matrix in SO(3) for each protein and predicted the structure of the protein based on
the distribution and got good results.

We can approximate the spatial structure of a protein by the union of balls K

whose centers are on the three-dimensional positions of atoms, respectively, and
discuss its structure as a subset in the three-dimensional spaces, for example, the
number of holes or that of cavity, which is an element of the homology basis.
Furthermore, by increasing the radii of balls as time evolves, if each radius is
sufficiently small, K is just a disjoint union of balls (the number of connected
components is equal to that of atoms). As the radii become larger, some of the
balls overlap (the number of connected components becomes smaller), and holes
(1-cycle) and cavities (2-cycle) appear. When the radii become larger, some of such
cycles disappear, and the set K finally becomes that which homeomorphic to one
ball. The persistent homology is suggested to express the survive time of cycles in
this growth [9]. An application of the persistent homology to discussion for protein
structures is presented in [8]. The homology itself expresses the character of a set
without quantitative discussion. However, via the time growth of radii, the persistent
homology can discuss the size of cycles quantitatively in a way.

Note that none of the models directly addresses protein changes. An important
question is how a protein, which is linear as an initial nutrient, can obtain a stable
structure as described above when the protein is synthesized from amino acids.
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