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1 Introduction

The theory of p-adic Galois representations is concerned with the continuous repre-
sentations

ρ : Gal(Lalg/L) −→ GLr (Qp) (1.1)

of the absolute Galois group Gal(Lalg/L) of a finite field extension L of Qp. It
started with Tate’s introduction of p-divisible groups in [33]. These are also called
Barsotti-Tate groups. The Tate module TpX of a p-divisible group X of height
r over L induces Galois representations VpX := TpX ⊗Zp Qp and H1

ét (X, Qp) :=
HomZp (TpX, Qp) as in (1.1). If X extends to a p-divisible group over OL , one
says that X has good reduction. In this case, the special fiber X0 := X ⊗OL κ of
X over the residue field κ of OL can be described by its crystalline cohomology
H 1

cris

(
X0/W (κ)

)
, where W (κ) is the ring of p-typical Witt vectors with coefficients

in κ. The p-divisible group X , which can be viewed as a lift of X0 toOL , is described
by the F-crystal H 1

cris

(
X0/W (κ)

)
together with its Hodge filtration. All this was

proved byMessing [27]. Grothendieck [15] reformulated this as a functor relating the
p-adic étale cohomology H1

ét(X, Qp) to the crystalline cohomology H1
cris(X0/L0)

with its Hodge filtration, where L0 := W (κ)[ 1p ] and H1
cris(X0/L0) is a filtered
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isocrystal; see Remark 6.6 below. Grothendieck then posed the problem to extend
this functor, which he called the mysterious functor, to general proper smooth
schemes X over L with good reduction. For those X , the problem was solved by
Fontaine [10–13], who defined the notion of crystalline p-adic Galois represen-
tations and constructed a functor from crystalline p-adic Galois representations to
filtered isocrystals. Fontaine conjectured that Hi

ét (X ×L Lalg, Qp) is crystallinewhen
X is a proper smooth scheme over OL . After contributions by Grothendieck, Tate,
Fontaine, Lafaille, Messing, Hyodo, Kato, and many others, Fontaine’s conjecture
was proved independently by Faltings [8], Niziol [28], and Tsuji [34].

Our goal in this survey is to describe the function field analog of the above. In
this analog, p-divisible groups are replaced by divisible local Anderson modules
which we discuss in Sect. 4. The analog of Messing’s [27] theory of crystalline
Dieudonné-modules for p-divisible groups is Theorem4.2. In it,Messings F-crystals
are replaced by local shtukas, which we treat first in Sect. 2. The anti-equivalence
between divisible local Anderson modules and local shtukas passes through finite
flat group schemes and finite shtukas. We review it in Sect. 3. Analogous to the étale
and crystalline cohomology we mentioned for p-divisible groups in the previous
paragraph, local shtukas possess cohomology realizations as described in Sect. 5. In
the final Sect. 6, we explain how the theory of local shtukas provides the function
field analog of Fontaine’s theory of p-adic Galois representations (1.1).

2 Local Shtukas

The theory of local shtukas is the function field analog of Fontaine’s theory of p-
adic Galois representations. Let Aε be a complete discrete valuation ring with finite
residue field Fε of characteristic p such that the fraction field Qε of Aε also has
characteristic p. The rings Aε and Qε are the function field analogs of Zp and Qp.
We choose a uniformizing parameter z ∈ Aε. Then Aε is canonically isomorphic to
Fε[[z]]. Let q̂ = #Fε be the cardinality of Fε. As base rings R over which our objects
are defined, we are interested in this article in two kinds of Aε-algebras:

(a) The first kind are Aε-algebras in which the image ζ of the uniformizer z of Aε

is nilpotent. We denote the category of these Aε-algebras by NilpAε
.

(b) Let K be a fieldwhich is completewith respect to a non-trivial, non-Archimedean
absolute value | . | : K → R≥0 and let OK = {x ∈ K : |x | ≤ 1} be the valuation
ring of K . We makeOK into an Aε-algebra via an injective ring homomorphism
γ : Aε ↪→ OK such that ζ := γ(z) �= 0 lies in the maximal ideal mK ⊂ OK .

The relation between the two kinds of base rings is that OK /(ζn) ∈ NilpAε
for all

positive integers n.
Let R be a base ring as in (a) or (b). To define local shtukas over R, we

consider modules M̂ over the power series ring R[[z]], which Zariski locally on
Spec R are free over R[[z]]. We call such a module a locally free R[[z]]-module of
rank r .We set M̂[ 1

z−ζ
] := M̂ ⊗R[[z]] R[[z]][ 1

z−ζ
], and M̂[ 1z ] := M̂ ⊗R[[z]] R((z))where
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R((z)) := R[[z]][ 1z ], and σ̂∗M̂ := M̂ ⊗R[[z]], σ̂ R[[z]] where σ̂ is the endomorphism of

R[[z]] with σ̂(z) = z and σ̂(b) = bq̂ for b ∈ R. Note that R[[z]][ 1
z−ζ

] = R((z)) if

R ∈ NilpAε
as in (a), but R[[z]][ 1

z−ζ
] �= R((z)) if R is a valuation ring as in (b). There

is a natural σ̂-semilinear map M̂ → σ̂∗M̂, m 
→ σ̂∗
M̂
m := m ⊗ 1. For a morphism

of R[[z]]-modules f : M̂ → M̂ ′, we set σ̂∗ f := f ⊗ id : σ̂∗M̂ → σ̂∗M̂ ′.

Definition 2.1 A local σ̂-shtuka (or local shtuka) of rank r over R is a pair M̂ =
(M̂, τM̂) consisting of a locally free R[[z]]-module M̂ of rank r , and an isomorphism

τM̂ : σ̂∗M̂[ 1
z−ζ

] ∼−→ M̂[ 1
z−ζ

]. If τM̂(σ̂∗M̂) ⊂ M̂ then M̂ is called effective, and if

τM̂(σ̂∗M̂) = M̂ then M̂ is called étale. We say that τM̂ is topologically nilpotent,
if M̂ is effective and there is an integer n such that im(τ n

M̂
) ⊂ zM̂ , where τ n

M̂
:=

τM̂ ◦ σ̂∗τM̂ ◦ . . . ◦ σ̂(n−1)∗τM̂ : σ̂n∗M̂ → M̂ .
A morphism of local shtukas f : (M̂, τM̂) → (M̂ ′, τM̂ ′) over R is a morphism of

R[[z]]-modules f : M̂ → M̂ ′ which satisfies τM̂ ′ ◦ σ̂∗ f = f ◦ τM̂ . We denote the set

of morphisms from M̂ to M̂
′
by HomR(M̂, M̂

′
).

A quasi-morphism between local shtukas f : (M̂, τM̂) → (M̂ ′, τM̂ ′) over R is
a morphism of R((z))-modules f : M̂[ 1z ] → M̂ ′[ 1z ] with τM̂ ′ ◦ σ̂∗ f = f ◦ τM̂ . It is
called a quasi-isogeny if it is an isomorphism of R((z))-modules. We denote the set
of quasi-morphisms from M̂ to M̂

′
by QHomR(M̂, M̂

′
).

For any local shtuka (M̂, τM̂) over R ∈ NilpAε
, the homomorphism M̂ → M̂[ 1

z−ζ
]

is injective by the flatness of M̂ and the following.

Lemma 2.2 ([21, Lemma 2.2]) Let R be an Aε-algebra as in (a) or (b). Then the
sequence of R[[z]]-modules

0 R[[z]] R[[z]] R 0

1 z − ζ , z ζ

is exact. In particular, R[[z]] ⊂ R[[z]][ 1
z−ζ

].
Of fundamental importance is the following.

Example 2.3 Let Fq be a finite field with q elements, let C be a smooth projective
geometrically irreducible curve over Fq , and let Q := Fq(C) be the function field of
C . Fix a closed point ∞ of C , and let A := �(C � {∞},OC) be the ring of regular
functions on C outside ∞. The rings A and Q are the function field analogs of Z

and Q.
Let ε ⊂ A be a maximal ideal and let Aε be the completion of A at ε. Then Fε

is a field extension of Fq with q̂ := #Fε = q [Fε:Fq ]. Let R be a base Aε-algebra
as in (a) or (b) and denote its structure morphism by γ : Aε → R. Set AR :=
A ⊗Fq R and let σ := idA ⊗Frobq,R be the endomorphism of AR with σ(a ⊗ b) =
a ⊗ bq for a ∈ A and b ∈ R. An effective A-motive of rank r over R is a pair
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M = (M, τM) consisting of a locally free AR-module M of rank r and an injec-
tive AR-homomorphism τM : σ∗M ↪→ M whose cokernel is a finite free R-module
and is annihilated by a power of the ideal J := (a ⊗ 1 − 1 ⊗ γ(a) : a ∈ A) =
ker(γ ⊗ idR : AR � R) ⊂ AR .

More generally, an A-motive of rank r over R is a pairM = (M, τM) consisting of
a locally free AR-moduleM of rank r and an isomorphism τM : σ∗M |Spec AR�V(J )

∼−→
M |Spec AR�V(J ) of the associated sheaves outside V(J ) ⊂ Spec AR . Note that if
A = Fq [t], then J = (t − γ(t)) and Spec AR � V(J ) = Spec R[t][ 1

t−γ(t) ].
Let M be an (effective) A-motive over R. We consider the ε-adic completions

Aε,R = lim←− AR/εn AR of AR and M ⊗AR Aε,R := (M ⊗AR Aε,R , τM ⊗ id) of M . If

Fε = Fq , and hence q̂ = q and σ̂ = σ, we have Aε,R = R[[z]] andJ · Aε,R = (z − ζ)

because R ⊗AR Aε,R = R. SoM ⊗AR Aε,R is an (effective) local shtuka over Rwhich
we denote by M̂ε(M) and call the local σ̂-shtuka at ε associatedwith M . If f := [Fε :
Fq ] > 1, the construction is slightly more complicated; compare the discussion in [4,

after Proposition 8.4]. Namely, we consider the canonical isomorphism Fε[[z]] ∼−→
Aε and the ideals ai = (a ⊗ 1 − 1 ⊗ γ(a)q

i : a ∈ Fε) ⊂ Aε,R for i ∈ Z/ f Z, which
satisfy

∏
i∈Z/ f Z ai = (0), because

∏
i∈Z/ f Z(X − aq

i
) ∈ Fq [X ] is a multiple of the

minimal polynomial of a over Fq and even equal to it when Fε = Fq(a). By the
Chinese remainder theorem, Aε,R decomposes

Aε,R =
∏

i∈Z/ f Z

Aε,R/ai . (2.1)

Each factor is canonically isomorphic to R[[z]]. The factors are cyclically per-
muted by σ because σ(ai ) = ai+1. In particular, σ f stabilizes each factor. The
ideal J decomposes as follows: J ·Aε,R/a0 = (z − ζ) and J ·Aε,R/ai = (1) for
i �= 0. We define the local σ̂-shtuka at ε associated with M as M̂ε(M) := (M̂, τM̂) :
= (

M ⊗AR Aε,R/a0 , (τM ⊗ 1) f
)
, where τ

f
M := τM ◦ σ∗τM ◦ . . . ◦ σ( f −1)∗τM .

Of course, if f = 1 we get back the definition of M̂ε(M) given above. Also note if
M is effective, then M/τM(σ∗M) = M̂/τM̂(σ̂∗M̂).

The local shtuka M̂ε(M) allows to recover M ⊗AR Aε,R via the isomorphism

f−1⊕

i=0

(τM ⊗ 1)i mod ai :
( f−1⊕

i=0

σi∗(M ⊗AR Aε,R/a0), (τM ⊗ 1) f ⊕
⊕

i �=0

id
) ∼−→ M ⊗AR Aε,R ,

because for i �= 0 the equality J ·Aε,R/ai = (1) implies that τM ⊗ 1 is an isomor-
phism modulo ai ; see [4, Propositions 8.8 and 8.5] for more details. Note that
M 
→ M̂ε(M) is a functor.

We quote the next lemma from [21, Lemma 2.3].

Lemma 2.4 Let (M̂, τM̂) be a local shtuka over R. Then there are e, e′ ∈ Z

such that (z − ζ)e
′
M̂ ⊂ τM̂(σ̂∗M̂) ⊂ (z − ζ)−e M̂. For any such e, the map τM̂ :
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σ̂∗M̂ → (z − ζ)−e M̂ is injective, and the quotient (z − ζ)−e M̂/τM(σ̂∗M̂) is a locally
free R-module of finite rank.

Example 2.5 We discuss the case of the Carlitz module [5]. We keep the notation
from Example 2.3 and set A = Fq [t]. Let Fq(θ) be the rational function field in
the variable θ and let γ : A → Fq(θ) be given by γ(t) = θ. The Carlitz motive over
Fq(θ) is the A-motive M = (

Fq(θ)[t], t − θ
)
.

Now let ε = (z) ⊂ A be a maximal ideal generated by a monic prime element
z = z(t) ∈ Fq [t]. Then Fε = A/(z) and Aε is canonically isomorphic to Fε[[z]]. Let
OK ⊃ Fε[[ζ]] be a valuation ring as in (b) and let θ = γ(t) ∈ OK . The Carlitz motive
has good reduction in the sense that it has a model over OK given by the A-motive
M = (OK [t], t − θ) over OK .

If degt z(t) = 1, that is, z(t) = t − a for a ∈ Fq , then Fε = Fq , ζ = θ − a, and
z − ζ = t − θ. So M̂ε(M) = (OK [[z]], z − ζ).

If degt z(t) = f > 1, then M̂ε(M) = (OK [[z]], (t − θ)(t − θq) · · · (t − θq
f−1

)
)
.

Here, the product (t − θ)(t − θq) · · · (t − θq
f −1

) = (z − ζ)u for a unit u ∈
Fε[[ζ]][[z]]×, because τM(σ∗M) = (t − θ)M implies that M̂ε(M) is effective and
M̂/τM̂(σ̂∗M̂) = M/τM(σ∗M) is free over OK of rank 1. In order to get rid of u,
we denote the image of t in Fε by λ. Then Fε = Fq(λ) and z(t) equals the mini-
mal polynomial (t − λ) · · · (t − λq f −1

) of λ over Fq . Moreover, t ≡ λ mod zAε and
θ ≡ λ mod ζFε[[ζ]]. We compute in Fε[[ζ]][[z]]/(ζ)

z(t) = (t − λ) · · · (t − λq
f −1

) ≡ (t − θ) · · · (t − θq
f −1

) ≡ (z − ζ)u ≡ zu mod ζ .

Since z is a non-zero-divisor in Fε[[ζ]][[z]]/(ζ), it follows that u ≡
1 mod ζ Fε[[ζ]][[z]]. We write u = 1 + ζu′ and observe that the product

w :=
∞∏

n=0

σ̂n(u) =
∞∏

n=0

σ̂n(1 + ζu′) =
∞∏

n=0

(
1 + ζ q̂

n
σ̂n(u′)

)

converges in Fε[[ζ]][[z]]× because Fε[[ζ]][[z]] is ζ-adically complete. It satisfies
w = u · σ̂(w) and somultiplicationwithw defines a canonical isomorphism (OK [[z]],
z − ζ) ∼−→ M̂ε(M).

We conclude that M̂ε(M) = (OK [[z]], z − ζ), regardless of degt z(t).

3 Finite Shtukas

In this section, let R be an arbitrary Fε-algebra. For an R-module M̂ we set σ̂∗M̂ :=
M̂ ⊗R,Frobq̂ R where Frobq̂ is the q̂-Frobenius endomorphism of R with Frobq̂(b) =
bq̂ for b ∈ R.
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Definition 3.1 A finite Fε-shtuka over R is a pair M̂ = (M̂, τM̂) consisting of a
locally free R-module M̂ of finite rank denoted by rk M̂ , and an R-module homo-
morphism τM̂ : σ̂∗M̂ → M̂ satisfying f ◦ τM̂ = τM̂ ′ ◦ σ̂∗ f . That is, the following
diagram is commutative

σ̂∗M̂
σ̂∗ f

τM̂

σ̂∗M̂ ′

τM̂ ′

M̂
f

M̂ ′ .

A finite Fε-shtuka over R is called étale if τM̂ is an isomorphism. We say that τM̂ is
nilpotent if there is an integer n such that τ n

M̂
:= τM̂ ◦ σ̂∗τM̂ ◦ . . . ◦ σ∗

qn−1τM̂ = 0.

Finite Fε-shtukas were studied at various places in the literature. They were called
“(finite) ϕ-sheaves” by Drinfeld [7, §2], Taguchi andWan [31, 32], and “Dieudonné
Fq -modules” by Laumon [25]. Finite Fε-shtukas over a field admit a canonical
decomposition.

Proposition 3.2 ([25, Lemma B.3.10]) If R = L is a field, every finite Fε-shtuka
M̂ = (M̂, τM̂) is canonically an extension of finite Fε-shtukas

0 −→ (M̂ét, τét) −→ (M̂, τM̂) −→ (M̂nil, τnil) −→ 0

where τét is an isomorphism and τnil is nilpotent. M̂ ét = (M̂ét, τét) is the largest étale

finite Fq -sub-shtuka of M̂ and equals im(τ
rk M̂

M̂
). If L is perfect, this extension splits

canonically.

Example 3.3 Every effective local shtuka (M̂, τM̂) of rank r over R yields for every
n ∈ N a finite Fε-shtuka

(
M̂/zn M̂, τM̂ mod zn

)
of rank rn, and (M̂, τM̂) equals the

projective limit of these finite Fε-shtukas.

Thus, from Proposition 3.2 we obtain the following.

Proposition 3.4 If R = L is a field inNilpAε
, that is, ζ = 0 in L, then every effective

local shtuka (M̂, τM̂) is canonically an extension of effective local shtukas

0 −→ (M̂ét, τét) −→ (M̂, τM̂) −→ (M̂nil, τnil) −→ 0

where τét is an isomorphism and τnil is topologically nilpotent. (M̂ét , τét ) is the
largest étale effective local sub-shtuka of (M̂, τM̂). If L is perfect, this extension
splits canonically. �

Finite Fε-shtukas and local shtukas are related to group schemes in the following
way. Let M̂ = (M̂, τM̂) be a finite Fε-shtuka over R. Let

E = Spec
⊕

n≥0

Symn
R M̂
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be the geometric vector bundle corresponding to M̂ over Spec R, and let Fq̂,E : E →
σ̂∗E be its relative q̂-Frobenius morphism over R. On the other hand, the map τM̂
induces another R-morphism Spec(Sym• τM̂) : E → σ̂∗E . Drinfeld defines

Drq̂(M̂) := ker
(
Spec(Sym• τM̂) − Fq̂,E : E→σ̂∗E

) = Spec
(⊕

n≥0

Symn
R M̂

)
/I

where the ideal I is generated by the elements m⊗q − τM̂(σ̂∗m) for all elements m
of M̂ . (Here, m⊗q lives in Symq

R M̂ and τM̂(σ̂∗m) in Sym1
R M̂ .) Note that locally

on Spec R, we have M̂ = ⊕d
i=1 R · mi and E ∼= Spec R[m1, . . . ,md ] = Gd

a,R . The

subgroup scheme Drq̂(M̂) is finite locally free over R of order q̂ rk M̂ , that is, the

R-algebra ODrq̂ (M̂) is a finite locally free R-module of rank q̂ rk M̂ . It is also an Fε-
module scheme over R via the comultiplication � : m 
→ m ⊗ 1 + 1 ⊗ m and the
Fε-action [a] : m 
→ amwhich it inherits from E . It is even a strict Fε-module scheme
in the sense of Faltings [9] and Abrashkin [2]. For a proof, see [2, Theorem 2] or [21,
§5]. Thismeans thatFε acts on the co-Lie complex of Drq̂(M̂) over R, see Illusie [26,
§VII.3.1], via the scalar multiplication through Fε ⊂ R. A detailed explanation of
strict Fε-module schemes is given in [21, §4].

Conversely, let G = Spec A be a finite locally free strict Fε-module scheme over
R. Note that on the additive group schemeGa,R = Spec R[x], the elements b ∈ R act
via endomorphisms ψb : Ga,R → Ga,R given by ψ∗

b : R[x] → R[x], x 
→ bx . This
makes Ga,R into an R-module scheme, and in particular, into an Fε-module scheme
via Fε ⊂ R. We associate with G the R-module of Fε-equivariant homomorphisms
on R

M̂q̂ (G) := HomR-groups,Fε-lin(G, Ga,R) = {
x ∈ A : �(x) = x ⊗ 1 + 1 ⊗ x, [a](x) = ax, ∀a ∈ Fε

}
,

with its action of R via R → EndR-groups,Fε-lin(Ga,R). It is a finite locally free R-
module by [30, Proposition 3.6 and Remark 5.5]; see also [1, VIIA, 7.4.3] in the
reedited version of SGA 3 by P. Gille and P. Polo. The composition on the left
with the relative q̂-Frobenius endomorphism Fq̂,Ga,R of Ga,R = Spec R[x] given by
x 
→ xq̂ defines a map M̂q̂(G) → M̂q̂(G),m 
→ Fq̂,Ga,R ◦ m which is not R-linear,
but σ̂-linear, because Fq̂,Ga,R ◦ ψb = ψbq̂ ◦ Fq̂,Ga,R . Therefore, Fq̂,Ga,R induces an R-
homomorphism τM̂q̂ (G) : σ̂∗M̂q̂(G) → M̂q̂(G). Then M̂q̂(G) := (

M̂q̂(G), τM̂q̂ (G)

)
is

a finite Fε-shtuka over R. If f : G → H is a morphism of finite locally free strict
Fε-module schemes over R, then M̂q̂( f ) : M̂q̂(H) → M̂q̂(G), m 
→ m ◦ f . This

defines the functor M̂q̂ from the category of finite locally free strict Fε-module
schemes over R to finite Fε-shtukas over R. It has the following properties.

Theorem 3.5 ([21, Theorem 5.2])

(a) The contravariant functors Drq̂ and M̂q̂ are mutually quasi-inverse anti-equi-
valences between the category of finite Fε-shtukas over R and the category of
finite locally free strict Fε-module schemes over R.



58 U. Hartl and R. K. Singh

(b) Both functors are Fq -linear and map short exact sequences to short exact
sequences. They preserve étale objects and map the canonical decompositions
from Propositions 3.2 and 3.6 below to each other.

Let M̂ = (M̂, τM̂) be a finite Fε-shtuka over R and let G = Drq̂(M̂). Then

(c) The Fε-module scheme Drq̂(M̂) is radical over R if and only if τM̂ is nilpotent.

(d) The order of the R-group scheme Drq̂(M̂) is q̂ rk M̂ .
(e) There is a canonical isomorphism between coker τM̂ = M̂/τM̂(σ̂∗M̂) and the

co-Lie module ωDrq̂ (M̂) := e∗�1
Drq̂ (M̂)/R

where e : Spec R → Drq̂(M̂) is the zero

section.

Proposition 3.6 ([21, Proposition 4.2]) If R = L is a field, everyFε-module scheme
G over L is canonically an extension 0 → G◦ → G → G ét → 0 of an étale
Fε-module scheme G ét by a connected Fε-module scheme
G◦. The Fε-module scheme G ét is the largest étale quotient of G. If L is perfect,
G ét is canonically isomorphic to the reduced closed Fε-module subscheme Gred of
G and the extension splits canonically, G = G◦ ×L Gred.

4 Divisible Local Anderson Modules

Let R ∈ NilpAε
and let M̂ = (M̂, τM̂) be an effective local shtuka over R. Set

M̂n := (M̂n, τM̂n
) := (M̂/zn M̂, τM̂ mod zn) and consider the finite locally free strict

Fε-module scheme Drq̂(M̂n) over R from the previous section. Drq̂(M̂n) inherits
from M̂n an action of Aε/(zn) = Fε[z]/(zn). The canonical epimorphisms M̂n+1 �
M̂n induce closed immersions in : Drq̂(M̂n) ↪→ Drq̂(M̂n+1). The inductive limit
Drq̂(M̂) := lim−→ Drq̂(M̂n) in the category of sheaves on the big fppf -site of Spec R

is a sheaf of Aε-modules that satisfies the following.

Definition 4.1 A z-divisible local Andersonmodule over R is a sheaf of Aε-modules
G on the big fppf -site of Spec R such that

(a) G is z-torsion, that is, G = lim−→ G[zn], where G[zn] := ker(zn : G → G);

(b) G is z-divisible, that is, z : G → G is an epimorphism;
(c) For every n, the Fε-module G[zn] is representable by a finite locally free strict

Fε-module scheme over R in the sense of Faltings [9] and Abrashkin [2];
(d) Locally on R, there exists an integer d ∈ Z≥0, such that (z − ζ)d = 0 on ωG

where ωG := lim←− ωG[zn ] and ωG[zn ] = e∗�1
G[zn ]/R is the pullback under the zero

section e : Spec R → G[zn].Here, the actionof z onωG comes from the structure
of Aε-module on G, while the action of ζ on ωG comes from the structure of
R-module on ωG .
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A morphism of z-divisible local Anderson modules over R is a morphism of fppf -
sheaves of Fε[[z]]-modules. It is shown in [21, Lemma 8.2 and Theorem 10.8] that
ωG is a finite locally free R-module, and we define the dimension of G as rk ωG .
Moreover, it follows from [21, Proposition 7.5] that there is a locally constant function
h : Spec R → N0, s 
→ h(s) such that the order of G[zn] equals q̂nh . We call h the
height of the z-divisible local Anderson module G.

The category of z-divisible local Anderson modules over R and the category of
local shtukas over R are both Aε-linear. The construction and the equivalence from
Sect. 3 extend to an equivalence between the category of effective local shtukas over
R and the category of z-divisible local Anderson modules over R.

Thequasi-inverse functor to M̂ 
→ Drq̂(M̂) is given as follows.LetG = lim−→ G[zn]
be a z-divisible local Anderson module over R. We set

M̂q̂(G) = (
M̂q̂(G), τM̂q̂ (G)

) := lim←−
n

(
M̂q̂(G[zn]), τM̂q̂ (G[zn ])

)
.

Multiplication with z on G gives M̂q̂(G), the structure of an R[[z]]-module. The
following theorem was proved in [21, Theorem 8.3].

Theorem 4.2 Let R ∈ NilpAε
.

(a) The two contravariant functors Drq̂ and M̂q̂ are mutually quasi-inverse anti-
equivalences between the category of effective local shtukas over R and the
category of z-divisible local Anderson modules over R.

(b) Both functors are Aε-linear, map short exact sequences to short exact sequences,
and preserve (ind-) étale objects.

Let M̂ = (M̂, τM̂) be an effective local shtuka over R, and let G = Drq̂(M̂) be its
associated z-divisible local Anderson module. Then

(c) G is a formal Aε-module, i.e. a formal Lie group equipped with an action of Aε,
if and only if τM̂ is topologically nilpotent.

(d) The height and dimension of G are equal to the rank and dimension of M̂.
(e) The R[[z]]-modules ωDrq̂ (M̂) and coker τM̂ are canonically isomorphic.

Example 4.3 In the notation of Example 2.3, let R ∈ NilpAε
and let r be a positive

integer. A Drinfeld A-module of rank r over R is a pair E = (E,ϕ) consisting of a
smooth affine group scheme E over Spec R of relative dimension 1 and a ring homo-
morphism ϕ : A → EndR-groups(E), a 
→ ϕa satisfying the following conditions:

(a) Zariski-locally on Spec R there is an isomorphismα : E ∼−→ Ga,R ofFq -module
schemes such that

(b) the coefficients of �a := α ◦ ϕa ◦ α−1= ∑

i≥0
bi (a)τ i∈EndR-groups,Fq -lin(Ga,R) =

R{τ } satisfy b0(a) = γ(a), br(a)(a) ∈ R× and bi (a) is nilpotent for all i >

r(a) := −r [F∞ : Fq ] ord∞(a).
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Here, R{τ } := { n∑

i=0
biτ i : n ∈ N0, bi ∈ R

}
is the non-commutative polynomial ring

with τb = bqτ , and the isomorphism of rings R{τ } ∼−→ EndR-groups,Fq -lin(Ga,R) is
given by sending τ to the relative q̂-Frobenius endomorphism Fq̂,Ga,R of Ga,R =
Spec R[x] given by x 
→ xq̂ and b ∈ R to the endomorphism ψb given by ψ∗

b : x 
→
bx .

For a Drinfeld A-module E = (E,ϕ), we consider the set M := M(E) :=
HomR-groups,Fq -lin(E, Ga,R) of Fq -equivariant homomorphisms of R-group schemes.
It is a locally free module over AR := A ⊗Fq R of rank r under the action given on
m ∈ M by

A � a : M −→ M, m 
→ m ◦ ϕa =: am
R � b : M −→ M, m 
→ ψb ◦ m =: bm

In addition, we consider the map τ : m 
→ Fq,Ga,R ◦ m on m ∈ M , where Fq,Ga,R

is the relative q-Frobenius of Ga,R over R. Since Fq,Ga,R ◦ ψb = ψbq ◦ Fq,Ga,R , and
hence τ (bm) = bqτ (m), the map τ is σ-semilinear and induces an AR-linear map
τM : σ∗M → M , which makes M(E) := (

M(E), τM) into an effective A-motive
over R in the sense of Example 2.3. The functor E 
→ M(E) is fully faithful and its
essential image is described in [18, Theorems 3.5 and 3.9] generalizing Anderson’s
description [3, Theorem 1].

Now let M̂ := M̂ε(M(E)) be the effective local σ̂-shtuka at ε associated with
M(E); see Example 2.3. Let n ∈ N and let εn = (a1, . . . , as) ⊂ A. Then

E[εn] := ker
(
ϕa1,...,as := (ϕa1 , . . . ,ϕas ) : E −→ Es

)

is called the εn-torsion submodule of E . It is an A/εn-module via A/εn →
EndR(E[εn]), ā 
→ ϕa and independent of the set of generators of εn; see [18,
Lemma 6.2]. Moreover, by [18, Theorem 7.6] it is a finite locally free R-group
scheme and a strict Fε-module scheme and there are canonical A/εn-equivariant
isomorphisms of finite locally free R-group schemes

Drq̂(M̂/εn M̂) ∼−→ E[εn] and

M̂/εn M̂ ∼−→ HomR-groups,Fε-lin
(
E[εn] , Ga,R

)

of finite Fε-shtukas. In particular, E[ε∞] := lim−→ E[εn] = Drq̂(M̂) is a z-divisible

local Anderson module over R.

5 Cohomology Realizations of Local Shtukas

In this section, we work over a valuation ring OK as in (b). With local shtukas over
OK , one can associate various cohomology realizations, which are related to each
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other under period isomorphisms. We describe the ε-adic, the de Rham, and the
crystalline realizations. These period isomorphisms are used in [20, 22] to study the
periods of A-motives with complex multiplication.

Definition 5.1 Let M̂ = (M̂, τM̂) be a local shtuka over a valuation ringOK as in (b).

Then τM̂ induces an isomorphism τM̂ : σ̂∗M̂ ⊗OK [[z]] K [[z]] ∼−→ M̂ ⊗OK [[z]] K [[z]],
because z − ζ ∈ K [[z]]×. We define the (dual) Tate module

H1
ε(M̂, Aε) := Ťε M̂ := (M̂ ⊗OK [[z]] K

sep[[z]])τ̂ := {
m ∈ M̂ ⊗OK [[z]] K

sep[[z]] : τM̂ (σ̂∗
M̂
m) = m

}

and the rational (dual) Tate module

H1
ε(M̂, Qε) := V̌εM̂ := {

m ∈ M̂ ⊗OK [[z]] K
sep((z)) : τM̂ (σ̂∗

M̂
m) = m

} = Ťε M̂ ⊗Aε Qε .

By [19, Proposition 4.2], the Tate modules are free over Aε, resp. Qε of rank equal to
rk M̂ and carry a continuous action of Gal(K sep/K ). They are also called the ε-adic
realizations of M̂ .

Theorem 5.2 ([19, Theorem 4.20]) Assume that OK is discretely valued. Then the
functor Ťε : M̂ 
→ ŤεM̂ from the category of local shtukas over OK to the cate-
goryRepAε

Gal(K sep/K ) of continuous representations ofGal(K sep/K ) on finite free

Aε-modules and the functor V̌ε : M̂ 
→ V̌εM̂ from the category of local shtukas over
OK with quasi-morphisms to the category RepQε

Gal(K sep/K ) of continuous repre-
sentations ofGal(K sep/K ) on finite-dimensional Qε-vector spaces are fully faithful.

Definition 5.3 Let OK be discretely valued. The full subcategory of
RepQε

Gal(K sep/K )which is the essential image of the functor V̌ε from Theorem 5.2
is called the category of equal characteristic crystalline representations.

We will explain the motivation for this definition in Sect. 6.

Example 5.4 We describe the ε-adic (dual) Tate module ŤεM = ŤεM̂ε(M) of the
Carlitz motive M = (OK [t], t − θ) from Example 2.5 by using the local shtuka
M̂ := M̂ε(M) = (OK [[z]], z − ζ) computed there. For all i ∈ N0, let �i ∈ K sep be

solutions of the equations �
q̂−1
0 = −ζ and �

q̂
i + ζ�i = �i−1. This implies |�i | =

|ζ|q̂−i/(q̂−1) < 1. Define the power series �+ = ∑∞
i=0 �i zi ∈ OK sep [[z]]. It satisfies

σ̂(�+) = (z − ζ)·�+, but depends on the choice of the �i . A different choice yields a
different power series �̃+ which satisfies �̃+ = u�+ for a unit u ∈ (K sep[[z]]×)σ̂= id =
A

×
ε , because σ̂(u) = σ̂(�̃+)

σ̂(�+)
= �̃+

�+ = u. The field extension Fε((ζ))(�i : i ∈ N0) of

Fε((ζ)) is the function field analog of the cyclotomic tower Qp(
pi
√
1 : i ∈ N0); see

[16, §1.3 and §3.4]. There is an isomorphism of topological groups called the ε-adic
cyclotomic character

χε : Gal
(
Fε((ζ))(�i : i ∈ N0)

/
Fε((ζ))

) ∼−→ A
×
ε ,
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which satisfies g(�+) := ∑∞
i=0 g(�i )z

i = χε(g) · �+ in K sep[[z]] for g in the Galois
group. It is independent of the choice of the �i . The ε-adic (dual) Tate module ŤεM̂
of M̂ and M is generated by �−1

+ on which the Galois group acts by the inverse of
the cyclotomic character.

Definition 5.5 Let M̂ be a local shtuka over a valuation ringOK as in (b).We denote
by K [[z − ζ]] the power series ring over K in the “variable” z − ζ and by K ((z − ζ))
its fraction field. We consider the ring homomorphismOK [[z]] ↪→ K [[z − ζ]], z 
→
z = ζ + (z − ζ) and define the de Rham realization of M̂ as

H1
dR

(
M̂, K [[z − ζ]]

) := σ̂∗M̂ ⊗OK [[z]] K [[z − ζ]] ,

H1
dR

(
M̂, K ((z − ζ))

) := σ̂∗M̂ ⊗OK [[z]] K ((z − ζ)) and

H1
dR(M̂, K ) := σ̂∗M̂ ⊗OK [[z]], z 
→ζ K

= H1
dR

(
M̂, K [[z − ζ]]

) ⊗K [[z−ζ]] K [[z − ζ]]/(z − ζ) .

The de Rham realization H1
dR

(
M̂, K ((z − ζ))

)
contains a full K [[z − ζ]]-lattice

qM̂ := τ−1
M̂

(M̂ ⊗OK [[z]] K [[z − ζ]]), (5.1)

which is called the Hodge-Pink lattice of M̂ . The de Rham realization H1
dR(M̂, K )

carries a descending separated and exhausting filtration F• by K -subspaces called
the Hodge-Pink filtration of M̂ . It is defined via p := H1

dR(M̂, K [[z − ζ]]) and (for
i ∈ Z)

Fi H1
dR(M̂, K ) := (

p ∩ (z − ζ)iqM̂
)/(

(z − ζ)p ∩ (z − ζ)iqM̂
) ⊂ H1

dR(M̂, K ) .

(5.2)
If we equip H1

dR

(
M̂, K ((z − ζ))

)
with the descending filtration Fi H1

dR

(
M̂, K ((z −

ζ))
) := (z − ζ)iqM̂ by K [[z − ζ]]-submodules, then Fi H1

dR(M̂, K ) is the image of

H1
dR

(
M̂, K [[z − ζ]]

) ∩ Fi H1
dR

(
M̂, K ((z − ζ))

)
in H1

dR(M̂, K ). Since z = ζ + (z −
ζ) is invertible in K [[z − ζ]], the de Rham realization with Hodge-Pink lattice and
filtration is a functor on the category of local shtukas overOK with quasi-morphisms.

Note, however, that the Hodge-Pink filtration onH1
dR(M̂, K ) does not behave well

under tensor products, as opposed to the Hodge-Pink lattice; see Remark 6.3 below.
Therefore, the more important concept is the Hodge-Pink lattice qM̂ .

Theorem 5.6 ([19, Theorem 4.15]) Let K be the completion of an algebraic closure
K alg of K . There is a canonical functorial comparison isomorphism

hε,dR : H1
ε(M̂, Qε) ⊗Qε K ((z − ζ)) ∼−→ H1

dR
(
M̂, K ((z − ζ))

) ⊗K ((z−ζ)) K ((z − ζ)) ,

which satisfies hε,dR
(
H1

ε(M̂, Qε) ⊗Qε
K [[z − ζ]]

) = qM̂ ⊗K [[z−ζ]] K [[z − ζ]] and
which is equivariant for the action of Gal(K sep/K ), where on the source of hε,dR
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this group acts on both factors of the tensor product and on the target of hε,dR it acts
only on K .

Definition 5.7 Let k = OK /mK be the residue field ofOK . A z-isocrystal over k is
a pair (D, τD) consisting of a finite-dimensional k((z))-vector space together with a
k((z))-isomorphism τD : σ̂∗D ∼−→ D. A morphism (D, τD) → (D′, τD′) is a k((z))-
homomorphism f : D → D′ satisfying τD′ ◦ σ̂∗ f = f ◦ τD .

Definition 5.8 Let M̂ = (M̂, τM̂) be local shtuka over a valuation ringOK as in (b).
Then the crystalline realization of M̂ is defined as the z-isocrystal over k = OK /mK

H1
cris

(
M̂, k((z))

) := σ̂∗(M̂, τM̂) ⊗OK [[z]] k((z)) . (5.3)

It only depends on the special fiber M̂ ⊗OK k of M̂ and defines a functor M̂ 
→
H1

cris

(
M̂, k((z))

)
from the category of local shtukas over OK with quasi-morphism

to the category of z-isocrystals. This functor is faithful by [19, Lemma 4.24] if⋂
n σ̂n(mK ) = (0).

To formulate the comparison between the de Rham and the crystalline realization,
we assume that there exists a fixed section k ↪→ OK . Then there is a ring homomor-
phism

k((z)) ↪−→ K [[z − ζ]] , z 
−→ ζ + (z − ζ) ,
∑

i
bi z

i 
−→
∞∑
j=0

(z − ζ) j · ∑

i

(i
j
)
bi ζ

i− j .

(5.4)
We always consider K [[z − ζ]] and its fraction field K ((z − ζ)) as k((z))-vector spaces
via (5.4).

Theorem 5.9 ([19, Theorem 5.18]) Let M̂ be a local shtuka over OK . Assume
thatOK is discretely valued or that M̂ = M̂ε(M) for an A-motive M overOK as in
Example 2.3. Then there are canonical functorial comparison isomorphisms between
the de Rham and crystalline realizations

hdR,cris : H1
dR(M̂, K [[z − ζ]]) ∼−→ H1

cris

(
M̂, k((z))

) ⊗k((z)) K [[z − ζ]] and

hdR,cris : H1
dR(M̂, K ) ∼−→ H1

cris

(
M̂, k((z))

) ⊗k((z)), z 
→ζ K .

To formulate the comparison between the crystalline and the ε-adic realizations,
we introduce the OK -algebra

OK [[z, z
−1} := { ∞∑

i=−∞
bi z

i : bi ∈ OK , |bi | |ζ|ri → 0 (i → −∞) for all r > 0
}
.

(5.5)
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It is a subring of K [[z − ζ]] via the expansion
∞∑

i=−∞
bi zi =

∞∑

j=0
ζ− j

( ∞∑

i=−∞

(i
j

)
biζ i

)
(z − ζ) j . Thehomomorphism (5.4) factors throughOK [[z, z−1}.

We view the elements of OK [[z, z−1} as functions that converge on the punctured
open unit disk {0 < |z| < 1}. An example of such a function is

�− :=
∏

i∈N0

(1 − ζ q̂
i

z ) ∈ Fε[[ζ]][[z, z
−1} ⊂ OK [[z, z

−1} , (5.6)

which satisfies �− = (1 − ζ
z ) · σ̂(�−). In addition, we let K be the completion of an

algebraic closure K alg of K and recall the element �+ ∈ OK [[z]] from Example 5.4,
which satisfies σ̂(�+) = (z − ζ) · �+. We set

� := �+�− ∈ OK [[z, z
−1} . (5.7)

Then σ̂(�) = z ·� and g(�) = χε(g)·� for g ∈ Gal(K sep/K ) where χε is the cyclo-
tomic character from Example 5.4.

Theorem 5.10 ([19, Theorem 5.20]) Let M̂ be a local shtuka overOK . Assume that
OK is discretely valued or that M̂ = M̂ε(M) for an A-motive M over OK as in
Example 2.3. Then there is a canonical functorial comparison isomorphism between
the ε-adic and crystalline realizations

hε,cris : H1
ε(M̂, Qε) ⊗Qε OK [[z, z−1}[�−1] ∼−→ H1

cris
(
M̂, k((z))

) ⊗k((z)) OK [[z, z−1}[�−1] .

The isomorphism hε,cris is Gal(K sep/K )- and τ̂ -equivariant, where on the left
module Gal(K sep/K ) acts on both factors and τ̂ is id⊗σ̂, and on the right
module Gal(K sep/K ) acts only on OK [[z, z

−1}[�−1] and τ̂ is (τD ◦ σ̂∗
D) ⊗ σ̂. In

other words, hε,cris = τD ◦ σ̂∗hε,cris. Moreover, hε,cris satisfies hε,dR = (h−1
dR,cris ⊗

idK ((z−ζ))) ◦ (hε,cris ⊗ idK ((z−ζ))). It allows to recover H1
ε(M̂, Qε) from

H1
cris

(
M̂, k((z))

)
as the intersection inside H1

cris

(
M̂, k((z))

) ⊗k((z)) K ((z − ζ))

hε,cris
(
H1

ε(M̂, Qε)
) = (

H1
cris

(
M̂, k((z))

) ⊗k((z)) OK [[z, z−1}[�−1])τ̂= id ∩ qD ⊗K [[z−ζ]] K [[z − ζ]] ,

where qD ⊂ H1
cris

(
M̂, k((z))

) ⊗k((z)) K ((z − ζ)) is the Hodge-Pink lattice of M̂.

6 Crystalline Representations over Function Fields

We explain the motivation for Definition 5.3; compare [19, Remarks 5.13 and 6.17].
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Let OK be discretely valued and let M̂ be a local shtuka over OK . Theo-
rem 5.9 allows to define a Hodge-Pink lattice and a Hodge-Pink filtration on
H1

cris

(
M̂, k((z))

)
. More precisely, we equip the finite-dimensional k((z))-vector space

D := H1
cris

(
M̂, k((z))

)
with the Hodge-Pink lattice

qD := (hdR,cris ⊗ idK ((z−ζ)))(q
M̂) ⊂ D ⊗k((z)) K ((z − ζ)) ,

where qM̂ ⊂ H1
dR

(
M̂, K ((z − ζ))

)
is the Hodge-Pink lattice from (5.1). Together with

the Frobenius τD := σ̂∗τM̂ ⊗ idk((z)) on D = H1
cris

(
M̂, k((z))

)
from (5.3), the triple

D(M̂) := D = (D, τD, qD) forms a z-isocrystal with a Hodge-Pink structure as in
the following.

Definition 6.1 A z-isocrystal with Hodge-Pink structure over OK is a triple D =
(D, τD, qD) consisting of a z-isocrystal (D, τD) over k and a K [[z − ζ]]-lattice qD
in D ⊗k((z)) K ((z − ζ)) of full rank, which is called the Hodge-Pink lattice of D. The
dimension of D is called the rank of D and is denoted by rk D.

A morphism (D, τD, qD) → (D′, τD′ , qD′) is a k((z))-homomorphism f : D →
D′ satisfying τD′ ◦ σ̂∗ f = f ◦ τD and ( f ⊗ id)(qD) ⊂ qD′ .

A strict subobject D′ ⊂ D is a z-isocrystal with Hodge-Pink structure of the form
D′ = (

D′, τD|σ̂∗D′ , qD ∩ D′ ⊗k((z)) K ((z − ζ))
)
where D′ ⊂ D is a k((z))-subspace

with τD(σ̂∗D′) = D′.
On a z-isocrystal with Hodge-Pink structure D, there always is the tautolog-

ical K [[z − ζ]]-lattice pD := D ⊗k((z)) K [[z − ζ]]. Since K [[z − ζ]] is a principal
ideal domain, the elementary divisor theorem provides basis vectors vi ∈ pD such
that pD = ⊕r

i=1 K [[z − ζ]] · vi and qD = ⊕r
i=1 K [[z − ζ]] · (z − ζ)μi · vi for inte-

gers μ1 ≥ . . . ≥ μr . We call (μ1, . . . ,μr ) the Hodge-Pink weights of D. Alterna-
tively, if e is large enough such that qD ⊂ (z − ζ)−epD or (z − ζ)epD ⊂ qD , then the
Hodge-Pink weights are characterized by

(z − ζ)−epD/qD ∼=
n⊕

i=1

K [[z − ζ]]/(z − ζ)e+μi ,

or qD/(z − ζ)epD ∼=
n⊕

i=1

K [[z − ζ]]/(z − ζ)e−μi .

Like in (5.2), the Hodge-Pink lattice qD induces a descending filtration of DK :=
D ⊗k((z)), z 
→ζ K by K -subspaces as follows. Consider the natural projection

pD � pD/(z − ζ)pD = DK .

The Hodge-Pink filtration F•DK = (Fi DK )i∈Z is defined by letting Fi DK be the
image in DK of pD ∩ (z − ζ)iqD for all i ∈ Z. This means, Fi DK = (

pD ∩ (z −
ζ)iqD

)/(
(z − ζ)pD ∩ (z − ζ)iqD

)
.
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Definition 6.2 Let D = (D, τD, qD) be a z-isocrystal with Hodge-Pink structure
over OK and set r = dimk((z)) D.

(a) Choose a k((z))-basis of D and let det τD be the determinant of the matrix rep-
resenting τD with respect to this basis. The number tN (D) := ordz(det τD) is
independent of this basis and is called the Newton slope of D.

(b) The integer tH (D) := −μ1 − . . . − μr , where μ1, . . . ,μr are the Hodge-Pink
weights of D from Definition 6.1, satisfies ∧rqD = (z − ζ)−tH (D) ∧r pD and is
called the Hodge slope of D.

(c) D is called weakly admissible if

tH (D) = tN (D) and tH (D′) ≤ tN (D′) for every strict subobject D′ ⊂ D.

Remark 6.3 One can show that the tensor product

D ⊗ D′ = (
D ⊗k((z)) D

′, τD ⊗ τD′ , qD ⊗K [[z−ζ]] qD′
)

of twoweakly admissible z-isocrystalswithHodge-Pink structures D and D′ overOK

is again weakly admissible. It was Pink’s insight that for this result the Hodge-Pink
filtration does not suffice, but one needs the finer information present in the Hodge-
Pink lattice. The problem arises if the field extension K/Fq ((ζ)) is inseparable; see
[29, Example 5.16]. This is Pink’s ingenious discovery.

Proposition 6.4 ([19, Corollary 6.11]) Let M̂ be a local shtuka over OK . Assume
that OK is discretely valued or that M̂ = M̂ε(M) for an A-motive M over OK as
in Example 2.3. Then the z-isocrystal with Hodge-Pink structure D(M̂) constructed
at the beginning of this section is weakly admissible. The functor M̂ 
−→ D(M̂)

from the category of local shtukas overOK with quasi-morphisms to the category of
weakly admissible z-isocrystals with Hodge-Pink structure is fully faithful.

There is a converse to this proposition.

Theorem 6.5 ([14, Théorème 7.3], [17, Theorem 2.5.3]) IfOK is discretely valued,
then every weakly admissible z-isocrystal with Hodge-Pink structure D over OK is
of the form D(M̂) for a local shtuka M̂ over OK .

Remark 6.6 The theory presented here has as analog, the theory of p-adic Galois
representations. There L is a discretely valued extension of Qp with perfect residue
field κ and L0 := W (κ)[ 1p ] is the maximal, absolutely unramified subfield of L .
Let σ̂ := W (Frobp) be the lift to L0 of the p-Frobenius on κ which fixes the uni-
formizer p of L0. Crystalline p-adic Galois representations are described by filtered
isocrystals D = (D, τD, F•DL) over L , where D is a finite-dimensional L0-vector
space, τD : σ̂∗D ∼−→ D is an L0-isomorphism, and F•DL is a descending filtration
on DL := D ⊗L0 L by L-subspaces. More precisely, the Theorem of Colmez and
Fontaine [6, Théorème A] says that a continuous representation of Gal(Lsep/L) in
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a finite-dimensional Qp-vector space is crystalline if and only if it isomorphic to
F0(D ⊗L0 B̃rig)

τ = id for a weakly admissible filtered isocrystal D = (D, τD, F•DL)

over L . Here, B̃rig is a certain period ring from Fontaine’s theory of p-adic Galois
representations, which carries a filtration and a Frobenius endomorphism Frobp. The
function field analog of B̃rig is the Qε-algebra OK [[z, z

−1}[�−1]; see [16, §§2.5 and
2.7]. In the function field case, when K is discretely valued, we could therefore define
the category of equal characteristic crystalline representations of Gal(K sep/K ) as
the essential image of the functor

D = (D, τD, qD) 
−→ (
D ⊗k((z)) OK [[z, z−1}[�−1])τ= id ∩ qD ⊗K [[z−ζ]] K [[z − ζ]] (6.1)

from weakly admissible z-isocrystals with Hodge-Pink structure D to continuous
representations of Gal(K sep/K ) in finite-dimensional Qε-vector spaces. By Theo-
rems 6.5, 5.10, and 5.2 and Proposition 6.4, this functor is fully faithful and this
definition coincides with our Definition 5.3 above.
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