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1 Introduction

The categories of (derived, abelian) motives arise naturally by imposing homotopy-
invariance onto the (infinity) category of sheaves of �-vector spaces on the category
of smooth spaces over a base S. Depending on the choice of the topology (typically:
the Nisnevich topology or the étale topology), the choice of S (a scheme, a rigid
analytic variety [1]...) the choice of the interval over which homotopies are defined
(typically the affine line, but there are log-variants [2]) and the choice of the coefficient
ring � (which may even be omitted [3] or replaced with a ring spectrum [4]) such
categories may enjoy different properties and may be useful for the inspection of
the various invariants and constructions related to Weil cohomology theories such as
periods, Chow groups, the six functor formalism, nearby cycles or even automorphic
forms, etc.

The aim of this paper is to make a quick survey on some particular applications of
the formalism of motives in the realm of p-adic Hodge theory. More specifically, we
consider perfectoid PerfDAét(S) = PerfDAét(S,Q) and rigid analytic étale motives
RigDAét(S) = RigDAét(S,Q). That is, we consider the homotopy invariant infinity-
étale sheaves of Q-vector spaces on smooth perfectoid resp. rigid analytic varieties
over an adic space S, where homotopies are defined over the perfectoid (closed) ball
resp. the rigid analytic (closed) ball.
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In particular, we focus on the equivalence between the two categories introduced
above:

RigDAét(S) ∼= PerfDAét(S) (♣)

that is shown in [5]. Such an equivalence can be considered as a method to
“(de-)perfectoidify” functorially and canonically an adic space over a base, up to
homotopy. We remark that whenever S is perfectoid, there is a canonical equiva-
lencePerfDAét(S) ∼= PerfDAét(S�) induced by the classic tilting functor of perfectoid
spaces, which preserves homotopies and the étale sites. This leads to an equivalence

RigDAét(S) ∼= RigDAét(S
�) (♠)

that can be interpreted as a way to “(un-)tilt” canonically and functorially even
rigid analytic spaces, up to homotopy. It is expected (see [5]) to give the following
generalization of (♠) which should hold for an arbitrary adic space S overQp, using
the language of diamonds:

RigDAét(S) ∼= RigDAét(S
�). (♦)

In this paper, we give a full proof of (♣) in the case of a perfectoid base S in
characteristic p, generalizing the statement of [6] that only deals with the case of a
perfectoid field S = Spa(K , K ◦).

Moreover, wemake a survey on how the language of motives can be used to define
and prove some fundamental properties of de Rham-like p-adic cohomologies on
adic spaces and algebraic variety in characteristic p (that is, Große-Klönne’s over-
convergent de Rham cohomology, and Berthelot’s rigid cohomology).We then recall
how to merge such constructions with the (un-)tilting and (de-)perfection procedures
of (♣)-(♠)-(♦) and obtain new de Rham like cohomology theories for perfectoid
varieties and rigid spaces in positive characteristic. Finally, we cite further cohomol-
ogy theories that have been introduced using rigid motives by other authors (such as
Ayoub and Le Bras) and a Betti-like cohomology in the spirit of Berkovich.We insist
on the fact that, in all these procedures, the role of homotopies is crucial, and that
consequently, motivic categories provide a natural framework where such definitions
and proofs can be made.

2 Definitions and Main Properties of Adic Motives

Once and for all, we fix a cardinal κ and we consider only adic spaces that have
a κ-small covering by affinoid subspaces. The categories of motives that we will
introduce are easily seen not to depend on κ , but this choice allows one to prove
that they are compactly generated, under suitable hypotheses (see [7, Proposition
2.4.20]).
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Definition 2.1 Let K be a non-archimedean field, and S be a stably uniform adic
space over it.

(1) We let B1
K be the rigid analytic variety Spa(K 〈T 〉,OK 〈T 〉) and B1

S be the fiber
product S ×K B1

K , for any adic space S over K .
(2) If K is perfectoid,we let̂B1

K be the perfectoid spaceSpa(K 〈T 1/p∞〉,OK 〈T 1/p∞〉)
and ̂B1

S be the fiber product S ×K ̂B1
K , for any perfectoid space S over K .

(3) We also let T1
S [resp. ̂T

1
S] be the rational open U (1/T ) of B1

K [resp. of ̂B1
K ].

(4) We let RigSm /S be the full subcategory of adic spaces over S whose objects
are locally étale over a poly-disc BN

S (in case S is a rigid analytic variety, this
recovers the usual notion of smooth rigid analytic varieties over S) and equip it
with the étale topology.

(5) In case K is a perfectoid field and S is perfectoid, we also consider the full
subcategory PerfSm /S of adic spaces over S whose objects are locally étale
over the perfectoid poly-disc ̂BN

S , and equip it with the étale topology.

Definition 2.2 Let K and S be as above, and� be a (commutative, unital)Q-algebra.

(1) We let Shét(RigSm /S,�) [resp. Shét(PerfSm /S,�)] be the monoidal DG-
category of complexes of étale sheaves of �-vector spaces on RigSm /S [resp.
PerfSm /S].

(2) We let RigDAeff
ét,B1(S,�) (or RigDAeff

ét (S) for short) be the monoidal DG-
subcategory of Shét(RigSm /S,�) spanned by those objects F that are B1-
local, meaning that the natural map F(B1

X ) → F(X) is an equivalence, for
all X ∈ RigSm /S. We recall that there is a left adjoint Shét(RigSm /S,�) →
RigDAeff

ét (S) to the natural inclusion.
(3) Similarly, we let PerfDAeff

ét,̂B1(S,�) (or PerfDAeff
ét (S) for short) be the DG-

subcategory of Shét(PerfSm /S,�) spanned by those objectsF that arêB1-local.
(4) We will use the same notation RigDAeff

ét (S), PerfDAeff
ét (S) for the associated

monoidal stable infinity-categories.

We remark that Yoneda defines a functor

h : RigSm /S → Psh(RigSm /S) → Psh(RigSm /S,�) → RigDAeff
ét (S)

and for any X wewill let�S(X) be the image of X under h. We use the same notation
for perfectoid spaces and PerfDAeff

ét (S).

Definition 2.3 We let K , S and � be as above.

(1) We let TS be the quotient of the split inclusion �S(S) → �S(T
1) given by the

unit.
(2) Similarly, if S is perfectoid,wedefine anobject̂TS in PerfDAeff

ét (S) as the quotient
of the split inclusion �S(S) → �S(̂T

1) given by the unit.
(3) We introduce RigDAét(S) and PerfDAét(S) as the targets of the universal left

adjoint DG-functors
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RigDAeff
ét (S) → RigDAét(S) PerfDAeff

ét (S) → PerfDAét(S)

to DG-categories in which the endofunctor − ⊗ TS [resp. − ⊗ ̂TS] becomes
invertible. They are endowed with a monoidal structure for which the functors
above are monoidal.

(4) We use the notation RigDAét(S) and PerfDAét(S) also for the associated
monoidal stable infinity-categories.

(5) When we write RigDA(eff)
ét (S)wemean that one can consider either the category

RigDAeff
ét (S) (eff standing for effective motives) or the category RigDAét(S),

and similarly for PerfDA(eff)
ét (S).

All in all, in the category RigDAeff
ét (S) one can find objects of the form �S(X)

where X is any smooth rigid analytic variety over S coming from the Yoneda functor,
as well as any complex of sheaves � that represents a Weil cohomology theory
(with �-coefficients, in our situation). The homology of the mapping complexes
Map(�S(X),�) coincide with the cohomology theory associated to �. Almost by
construction, we point out that the objects �S(X) are isomorphic to �S(B

1
X ) and

coincide with the homotopy colimit of any diagram of the form �S(U •) with U •
being an étale hypercover of X . This translates in terms of cohomology theories into
B1-invariance, and the existence of some exact sequences à la Mayer-Vietoris.

By means of the six-functor formalism (see [8]) it is possible to define motives
�S(X) attached to any rigid analytic variety X over S (not necessarily smooth). In
particular, the definition of a well-behaved cohomology theory on smooth varieties
extends automatically to all varieties.

It is also possible to consider (co-)homology theories which are equipped with
a richer structure than the one of a mere �-module: as soon as one has a functor
H : RigSm /S → CwithC being a�-linear DG-category such that H satisfies étale
descent and is homotopy invariant [and for which the Tate twist is invertible] then
by construction one can (Kan) extend it to motives

RigSm /S
H

h

C

RigDA[eff]
ét (S)

RH

obtaining a so-called realization functor RH . In Sect. 5 we will try to convince
the reader that it is sometimes easier to define a motivic realization RH and hence
deduce an interesting (co-)homology theory H on RigSm /S.

Remark 2.4 One is free to replace the sites, the interval objects, and the rings of coef-
ficients with any other choice and define corresponding categories of motives. Clas-
sically, the categories of étale motives over a scheme S are denoted by DA(eff)

ét (S,�)

(here, DA(eff)
ét (S) for short). One may also consider non-commutative variants where

the category of �-modules is replaced by the infinity-category of spectra, or the
category of modules of any commutative ring spectrum.
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Remark 2.5 For the categories of algebraic motives DAét(S) the realizations func-
tors induced by Betti, de Rham and �-adic cohomologies have been widely studied
in different articles: see [9–11].

Rather than making a full recollection of all the formal properties of motives and
their variants, for which there are already staple references such as [9, 10, 12, 13],
we focus on two peculiar properties of the categories of rigid motives which are
proved in [7].

The first property is the so-called (effective) semi-separatedness.

Theorem 2.6 ([7, Corollary 2.9.10]) Let S′ → S be a universal homeomorphism.
The base change functor induces an equivalence of categories

RigDA(eff)
ét (S) ∼= RigDA(eff)

ét (S′)

Remark 2.7 As noted in [7], the effective part of the statement is not known for the
usual algebraic motives DAeff

ét (S).

Corollary 2.8 Let X ′ → X be a universal homeomorphism between smooth rigid
analytic varieties over a base S. The induced map of motives �S(X ′) → �S(X) is
invertible in RigDA(eff)

ét (S).

Proof The motive �(X) is the image of �X (X) = � under the functor p� which is
the left adjoint to the functor RigDAeff

ét (S) → RigDAeff
ét (X) induced by the pullback

p∗ along the map p : X → S. By the previous theorem, we deduce p��X (X) ∼=
p′

��X ′(X ′) as wanted. �

The second property is referred to as “continuity” in [7].

Theorem 2.9 ([7, Theorem 2.8.14]) Let {Si } be a cofiltered system of stably uniform
adic spaces over a non-archimedean field K with qcqs transition maps and let S be
a uniform adic space such that S ∼ lim←− Si in the sense of Huber [14, (2.4.1)]. Then
the base change functors induce an equivalence of categories

RigDA(eff)
ét (S) ∼= lim−→RigDA(eff)

ét (Si )

where the homotopy colimit is computed in the category of presentable infinity-
categories, and colimit-preserving functors.

Remark 2.10 The analogous statement for algebraic motives also holds: in case S is
the limit of a diagram of schemes {Si } with affine transition maps, then DA(eff)

ét (S) ∼=
lim−→DA(eff)

ét (Si ). However, the proof of the analytic version is much more involved,
and uses homotopies in a crucial way: this is related to the fact that (in case all
spaces S, Si are affinoid) the ring lim−→O(Si ) does not coincide with O(S), but it is
only dense in it. In particular, the “continuity” statement for étale sheaves (on the
big sites), before performing the B1-localization, is false.
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A special case of continuity gives the following computation of “stalks” for
RigDAét(−).

Corollary 2.11 Let s = Spa(C,C+) → S be an étale point of a stably uniform adic
space S. Let U → S vary among étale neighborhoods of s in S. The base-change
functors induce an equivalence in the category of presentable infinity-categories and
colimit-preserving functors:

RigDAeff
ét (Spa(C,C+)) ∼= lim−→

s∈U→S

RigDA(eff)
ét (U ).

3 De-Perfectoidification

The aim of this section is to prove the following.

Theorem 3.1 Let S be a rigid space over a non-archimedean field K of character-
istic p. Then the base change along SPerf → S and the relative perfection functor
define equivalences:

RigDA(eff)
ét (S) ∼= RigDA(eff)

ét (SPerf) ∼= PerfDA(eff)
ét (SPerf).

The first half of the statement follows from the “separatedness” and the “continu-
ity” properties of RigDAét.

Proposition 3.2 Let S be a rigid space over a non-archimedean field K of charac-
teristic p. Then the base change along SPerf → S defines an equivalence:

RigDA(eff)
ét (S) ∼= RigDA(eff)

ét (SPerf).

Proof The space SPerf is a weak projective limit of the diagram · · · → S
ϕ→ S

ϕ→ S
with ϕ being the Frobenius. We note that by Theorem 2.6 the motivic functor ϕ∗ is
an equivalence, and the claim then follows from Theorem 2.9. �

We nowmove to the second part of the statement. From now on, we will therefore
assume that S = SPerf is a perfectoid space of characteristic p > 0. The second half
is a refinement of [6, Theorem 6.9] in two different directions: on the one hand
we get rid of the Frobét-localization (or, equivalently, of correspondences see [15])
proving an effective claim that holds for RigDAeff

ét ; on the other hand, we promote
the equivalence from the case of a base field of height one Spa(K �, K �◦) to a general
(perfectoid) base S.

It is worth noting that, because of the computation of stalks for RigDA(eff)
ét (−)

(which can be generalized easily to PerfDA(eff)
ét (−)) the missing crucial case is the

one of a base S = Spa(C,C+)which is a complete algebraically closed valued field,
with a valuation of height n ∈ N≥2. As this case is not essentially easier than the one
of a general base S we do not restrict to this case in what follows.
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In order to extend the result of [6], we follow the blueprint given by the proof
of loc. cit., and we simplify it at the same time. We try to highlight here the main
differences with respect to the original approach. We first introduce some notation.

Definition 3.3 Let F be in Psh(RigSm /S,�).

(1) We let LϕF be the presheaf X �→ lim−→n
F(X (p−n)) where we let X (p−n) be

X ×S,ϕ−n S and X (p−n−1) → X (p−n) be the map induced by Frobenius.
(2) We let LB1F be the normalized complex associated to the cubical presheaf

of complexes of abelian groups Hom(B•,F) where Hom(Br ,F)(−) = F((−)

〈u1, . . . , ur 〉).
Proposition 3.4 LetF be in Psh(RigSm /S,�). The natural mapF → LB1LϕF is
an equivalence in RigDAeff

ét (S,�).

Proof It is well known that the maps F → LB1F are B1-equivalences, see [16]. By
construction, the complex LϕF is local with respect to the relative Frobenius maps
�S(X (p−1)) → �S(X) (we will refer to this property as “being Frob-local”) and
doesn’t alter those which are already Frob-local. We deduce that the mapF → LϕF
is a Frob-local equivalence, that is an equivalence with respect to the localization
over relative Frobenius maps. In particular, the map of the statement is a (B1,Frob)-
local equivalence hence a (B1,Frob, ét)-local equivalence, but the latter are simply
(B1, ét)-local equivalences as shown in Corollary 2.8. �

Proposition 3.5 Locally with respect to the analytic topology, any space X ∈
RigSm /S [resp. PerfSm /S] is given by Spa(R, R+) with (R, R+) given by [the
completed perfection of] the following adic pair

(

O(U )〈x, y〉/(P1, . . . , Pm),O(U )〈x, y〉/(P1, . . . , Pm)+〉
)

(	)

where U ⊂ S is an affinoid subspace, x := (x1, . . . , xn) is a n-tuple of vari-
ables with n ∈ N, y := (y1, . . . , ym) is a m-tuple of variables with m ∈ N, and

P := (P1, . . . , Pm) is a m-tuple of polynomials in O(U )[x, y] such that det( ∂Pi
∂y j

)

is invertible in O(U )〈x, y〉/(P1, . . . , Pm).

Proof Any étale space over the perfectoid relative poly-discBn
S ∼ lim←−ϕ

Bn
S is locally

defined over Bn
S so the claim on RigSm /S, which follows from [14, Proposition

1.7.1(iii)] immediately implies the claim on PerfSm /S. �

Proposition 3.6 Let X = Spa(R, R+) and X ′ = Spa(R′, R′+) be spaces in
RigSm /S of the form (	) and let f : X ′ Perf → X be a morphism. There exists a
homotopy H : X ′ Perf × ̂B1 → X such that H0 = f and H1 has a (unique) model
X ′(p−n) → X for some n � 0.

Proof We let R′+
n be the image in ̂R′+ := O+(X ′Perf) of the injective map

O+(X ′(p−n)) → O+(X ′ Perf) (we recall that X ′ is reduced as it is smooth over the
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reduced space Swhich is perfectoid) andwe remark that ̂R′+ is theπ -adic completion
of R′+∞ := ⋃

R′+
n . The morphism f is determined by some mapping xi �→ si ∈ ̂R′+

and y j �→ t j ∈ ̂R′+. By means of [6, Corollary A.2] we may find a unique array of
power series F1, . . . , Fm ∈ ̂R′[[σ − s]] such that P(σ, F(σ )) = 0, F(s) = t . More-
over, they are in ̂R′+[[π−N (σ − s)]] for a sufficiently big N � 0. For any s̃ ∈ R′+∞
which is sufficiently close to s we may then define a homotopy H as the map deter-
mined by

(x, y) �→ (s + (s − s̃) · τ, F((s − s̃) · τ))

and remark that, by definition, we have H0 = f . In order to show that H1 factors
(uniquely, as the maps R′

n → ̂R′ are injective) over some X ′(p−n), we are left to show
that the elements t̃ := F(s − s̃) lie in R′∞.

Suppose without loss of generality that s̃ lie in R′ = R′
0. We consider

the R′-algebra E defined as E = R′〈y〉/(P(s̃, y)) which is étale over R′, and over

which the map R′ → ̂R′ factors. In particular, the étale morphism Spa(E, E+) ×X ′

X ′ Perf → X ′ Perf splits. In light of the equivalence between the étale topos of X ′ Perf
and X0 we conclude that Spa(E, E+) → X ′ splits proving that t̃ is a m-tuple in R′

0
as wanted. �
Proposition 3.7 Let X = Spa(R, R+) and X ′ = Spa(R′, R′+) be spaces in
RigSm /S of the form (	). The canonical map

(LB1Lϕ�(X))(X ′) → (LB1Lϕ Perf∗ Perf∗ �(X))(X ′)

is a quasi-isomorphism.

Proof By direct inspection, we may rewrite the two complexes above as follows:

lim−→
n

N�((X ′ × B•)(p
−n), X) → N�(X ′ Perf × ̂B•, X)

with N denoting the normalized complex associated to the cubical complex of abelian
groups. The claim then follows from (the proof of) Proposition 3.6 by arguing as in
[6, Proposition 4.2]. �
Proof of Theorem 3.1 The effective part of the theorem easily implies the stable ver-
sion, so we stick to it for simplicity. By means of Proposition 3.5 and the equivalence
fo the étale site of XPerf and of X we see that Perf∗ sends a class of compact genera-
tors to a class of compact generators, and that Perf∗ commutes with ét-sheafification,
preserving then the ét-local equivalences. The multiplication μ on̂B1 defines a mor-
phism

Perf∗(Perf∗ �S(̂B1
X ) ⊗ �S(B1

S)) ∼= Perf∗ Perf∗ �S(̂B1
X ) ⊗ �S(̂B1

S) → �S(̂B1
X ) ⊗ ̂B1

S
μ→ �S(̂B1

X )

which induces a homotopy between the identity and the zero-map on Perf∗(�(̂B1
X )),

showing that Perf∗ sends ̂B1-local equivalences to B1-local equivalences.
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We deduce that in order to prove the claim, it suffices to show that F →
Perf∗ Perf∗ F is a (B1, ét)-local equivalence for any F and we may actually restrict
to the case where F is �S(X) with X as in (	) as such motives are a class of com-
pact generators (by Proposition 3.5). Using Proposition 3.4 we may alternatively
prove that LB1Lϕ�S(X) → LB1Lϕ Perf∗ Perf∗ �S(X) is a weak-equivalence, and
this follows from Proposition 3.7. �

When trying to generalize the second half of Theorem 3.1 to the case of a per-
fectoid S in characteristic 0, one is immediately stopped by the lack of a canonical
map RigDAét(S) → PerfDAét(S) which is as “geometric” as the one given by the
perfection in positive characteristic. As in [6] we now give an alternative route to
constructing such a map, in a compatible way with the characteristic p case.

Definition 3.8 We let s PerfSm /S be the full subcategory of Rig /S whose objects
are spaces X that are locally étale overBN

S ×S ̂BM
S for someM, N ∈ N. This category

obviously contains Sm /S (by taking M = 0) and PerfSm /S (by taking N = 0). We
let sPerfDAeff

ét (S)be the category of̂B1-invariant étale (hyper)sheaves on s PerfSm /S
with values in�-modules. The continuous inclusions α : Sm /S → s PerfSm /S and
β : PerfSm /S → s PerfSm /S induce adjoint pairs

α∗ : RigDAeff
ét (S) � sPerfDAeff

ét (S) :α∗

and
β∗ : PerfDAeff

ét (S) � sPerfDAeff
ét (S) :β∗.

In particular, there is a functor β∗α∗ : RigDAeff
ét (S) → PerfDAeff

ét (S).

We remark that the functor above is the same as the one of Theorem 3.1 in case
char S = p. Indeed, under this hypothesis, we may consider the relative perfection
functor also at the level of semi-perfectoid spaces s PerfSm /S → PerfSm /S, X �→
XPerf . It induces an adjoint pair

Perf ′∗ : RigDAeff
ét (S) � sPerfDAeff

ét (S) :Perf ′∗
and we note that the functor Perf∗ is nothing more than the composition Perf ′∗ α∗.
Our claim then follows from the following:

Proposition 3.9 Suppose that S has characteristic p. The functor β∗ is a left adjoint
to Perf ′∗. In particular, β∗α∗ ∼= Perf∗.

Proof We remark that β : PerfSm /S → s PerfSm /S is a left adjoint to
Perf ′ : s PerfSm /S → PerfSm /S. By theYoneda lemma,wededuce that they extend
to an adjoint pair

β∗, : Psh(PerfSm /S,�) � Psh(s PerfSm /S,�) : Perf ′∗
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between the (infinity) categories of (complexes of) presheaves. Both functors
preserve étale (hyper)covers, fiber products and the object ̂B1

S so they both pre-
serve (ét,̂B1

S)-equivalences. As Perf
′∗ has a left adjoint that preserves these equiv-

alences, we deduce that it also preserves (ét,̂B1
S)-local objects. We then conclude

that the adjunction (β∗,Perf ′∗) extends to an adjunction on the motivic categories,
as wanted. �

It is a non-trivial endeavor to prove the following generalization of Theorem 3.1
whose proof we won’t comment here.

Theorem 3.10 ([5]) Let S be a perfectoid space over some field. The functor β∗α∗
defines an equivalence RigDA(eff)

ét (S) ∼= PerfDA(eff)
ét (S).

By putting together Theorem 3.1 and the previous result, we obtain the following:

Corollary 3.11 Let S be aperfectoid space. There is an equivalenceRigDA(eff)
ét (S) ∼=

PerfDA(eff)
ét (S) ∼= RigDA(eff)

ét (S�).

Proof The tilting equivalence translates motivically into an equivalence
PerfDA(eff)

ét (S) ∼= PerfDA(eff)
ét (S�). The equivalence of the statement is then obtained

by putting together Theorems 3.1 and 3.10. �

4 Classic De Rham-Like Cohomologies via Motives

In this section, wemake a survey on the “classic” de Rham-like cohomology theories
for rigid analytic varieties and perfectoid spaces, revisited in the language ofmotives,
based on [17] and [18] which is further expanded by [5].

Remark 4.1 Though we won’t comment on them in the present article, also �-adic
realizations for analytic motives have been defined in [19] and [7, Sect. 2.10].

We start by a recollection of standard facts on the rigid and the overconvergent
de Rham cohomologies, that will be necessarily imprecise and incomplete. All the
details can be found in [20–23].

Let’s fix a field k of characteristic p > 0 that we will assume to be perfect (for
simplicity). The approach of Berthelot [24] and Monsky-Washnitzer [25] for the
definition of a de Rham-like p-adic cohomology for varieties over k can be summa-
rized (somehow a posteriori, following Große-Klönne) as follows: a smooth variety
X̄ over k can be lifted locally as a smooth variety X over W (k) (the DVR given by
the Witt ring). The choice of such lifts is unique, étale-locally on the special fiber,
“up to homotopy”, and even canonical “up to automorphisms” if we consider smooth
formal liftsX overW (k). A precise statement can be found in [26, Théorèmes 2.2.2,
3.3.2]. It is therefore possible, “somehow canonically” to associate locally a smooth
rigid analytic variety (the generic fiber X of X) to the smooth variety X̄ .
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This way, we have changed the base field: from k (of positive characteristic) to
K = FracW (k)which has characteristic 0, but with a major drawback: we now have
to consider rigid analytic varieties rather than algebraic varieties. Without further
structure, a (non-proper) smooth rigid analytic variety doesn’t give rise to a well-
behaved deRham-like cohomology theory.One needs to do a choice of a “thickening”
(what we will call an overconvergent structure following [27]) X† := (X � X ′) of X
into a strictly larger (i.e., containing the absolute compactification over K ) smooth
rigid analytic variety X ′ and consider the subcomplex �X†/K of �X/K of those
differential forms that extend to a strict neighborhood of X inside X ′. Once again,
such local choices are sufficiently canonical, “up to homotopy” (see [22]). It is
therefore possible “somehow canonically” to associate locally to the smooth variety
X a smooth overconvergent variety X† and a de Rham-like complex �X†/K which is
used to define a cohomology theory for X , and a posteriori for X̄ by combining the
two procedures above. It is a non-trivial task to prove that these cohomology theories
are well-defined and functorial, and enjoy the expected properties of a de Rham-like
cohomology theory (for example, being finite dimensional on qcqs varieties): see
[23, 28–30] etc.

We now give an alternative way to describe the above phenomena. Since the
eventual aim is to define aWeil cohomology theory for varieties over k [resp. analytic
varieties over K ] it is quite natural to consider the motivic categories associated to
these objects. As expected, they form a convenient setting where to state and study
lifts and thickenings “up to homotopy”. We collect the principal motivic facts in the
following statement.

Theorem 4.2 Let K be a complete non-archimedean field of characteristic 0 with
valuation ringOK and a perfect residue field k, and let� be aQ-subalgebra of K .We
also let B1†

K be the overconvergent variety given by the strict embedding B1
K � P1 an

K

and RigDA†(eff)
ét (K ) be the (effective) DG-category of B1†-invariant étale sheaves of

�-vector spaces on smooth overconvergent varieties over K .

(1) The complex of presheaves �† : X† �→ �X†/K is a (B1†, ét)-local object of
RigDA† eff

ét (K ). In particular, for any overconvergent smooth rigid variety X†

one has
Map(�K (X†),�†) ∼= �

†
X†/K .

(2) The forgetful functor l : X† = (X � X ′) �→ X induces an equivalence of
monoidal compactly generated stable infinity categories RigDA†(eff)

ét (K )

∼= RigDA(eff)
ét (K ).

(3) The analytification functor X̃ �→ X̃ an induces a compact-preserving, colimit-
preserving map of monoidal compactly generated stable infinity categories
DA(eff)

ét (K ) → RigDA(eff)
ét (K ).

(4) The special fiber functor induces an equivalence of monoidal compactly gener-
ated stable infinity categories FDA(eff)

ét (OK ) ∼= DA(eff)
ét (k) where FDA(eff)

ét (OK )

is the category of (effective, étale, with�-coefficients) motives of formal schemes
over OK (see [7, Remark 3.1.5(2)]).
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(5) The generic fiber functor induces a compact-preserving, colimit-preserving map
of monoidal compactly generated stable infinity categories FDA(eff)

ét (OK ) →
RigDA(eff)

ét (K ).
(6) In particular, we obtain the following compact-preserving, colimit-preserving,

monoidal functor:

DAét(k) ∼= FDAét(OK ) → RigDAét(K ) ∼= RigDA†
ét(K )

and a monoidal contravariant realization functor on the last category, with
values in K -modules:

R†
dR : RigDA†

ét(K) → D(K)op

induced by M �→ Map(M,�†). The associated cohomology theory on DAét(k)
coincides with Berthelot’s rigid cohomology H∗

rig, the one on RigDAét(K ) coin-
cides with Große-Klönne’s overcovergent de Rham cohomology H∗

dR† and the
one onDAét(K ) (via analytification) coincides with the usual algebraic de Rham
cohomology H∗

dR.
(7) In case K is perfectoid, for any fixed embedding k → K � we can define, in light

of (♠) a functor

DAét(k) → DAét(K
�) → RigDAét(K

�) ∼= RigDAét(K ) ∼= RigDA†
ét(K ).

which is equivalent to the one in Point (6).
(8) Compact motives of RigDAét(K ) are fully dualizable. In particular, the over-

convergent de Rham cohomology is finite dimensional on any compact motive in
RigDAét(K ) such as motives of smooth quasi-compact rigid varieties over K , or
analytifications of quasi-projective (not necessarily smooth) varieties over K .

(9) Compactmotives ofDAét(k) are fully dualizable. In particular, rigid cohomology
is finite dimensional on any compact motive in DAét(k) such as motives of any
quasi-projective (not necessarily smooth) variety X̄ over k.

Proof Points (1) and (6) are shown in [17, Proposition5.12], point (2) is [17,Theorem
4.23] and point (4) is [1, Corollaire 1.4.29]. Point (7) is the content of [18]. The
functors of points (3) and (5) are left adjoint functors, hence colimit-preserving. As
they preserve direct products, they induce monoidal functors on motives. Moreover,
they send affine smooth varieties to affinoid smooth varieties. Motives of such spaces
are a class of compact generators (by [1, Proposition 1.2.34]) so the functors are also
compact-preserving. The fact that compact motives in DAét(k) and DAét(K ) are
dualizable follows from [31] and the same is true for RigDAét(K ) by [1, Théorème
2.5.35]. Points (8) and (9) then follows from the classic description of compact
objects (perfect complexes) in D(K ). �

Remark 4.3 The content of Theorem 4.2(4) is the most precise way to state the
following: it is possible to associate canonically a smooth rigid analytic motive over
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K to any variety X̄ over k. Similarly, the content of Theorem 4.2(2) can be rephrased
by saying that it is possible to associate canonically an overconvergent rigid analytic
motive over to any rigid analytic variety X over K .

Remark 4.4 Let X be an algebraic variety over OK . The special fiber of its π -adic
completion is just the special fiber Xk of X . In light of Theorem 4.2(4) we conclude
that cohomologically speaking, the act of π -adically completing X gives the same
information as the act of taking its special fiber.More precisely: the following triangle
commutes.

FDAét(OK )

(−)∗k∼DAét(OK )

̂(−)
∗

ι∗

DAét(k)

Remark 4.5 Following [32, Sects. 0.2–0.3] there are two possible ways to “anali-
tify” a smooth algebraic variety X over OK : on the one hand one can consider the
formal scheme given by its π -adic completion X and then the generic fiber Xη of it;
on the other hand one can first take the generic fiber XK (an algebraic variety over
K ) and then its analytification X an

K . It is well-known (see [32, Proposition 0.3.5])
that the first rigid analytic space is canonically embedded as an open subvariety of
the second, and that they coincide whenever X is smooth and proper (they differ in
general: for example whenever X is lives on the generic fiber Spec K of SpecOK ,
the first space is empty). It is easy to see that such functors preserve étale covers and
homotopies, therefore defining the following (non-commutative) square of monoidal
colimit-preserving maps:

DAét(OK ) DAét(K )

DAét(k)
∼ FDAét(OK )

α

RigDAét(K )
RdR

D(K )op

where the natural transformation α is induced by the functorial open immersion
Xη ⊂ X an

K and RdR is the (overconvergent) de Rham realization. We then obtain
two monoidal realizations DAét(OK ) D(K ) . When applied to some motive
�OK (X ), one gives the rigid cohomology of the special fiber Xk and the other gives
the de Rham cohomology of the generic fiber XK , respectively. Moreover, α defines
a canonical natural transformation between the two which is invertible on the full
monoidal subcategory with sums generated by (the motives of) smooth and proper
varieties.

Remark 4.6 Even though the motivic categories are defined as sheaves on smooth
varieties (or smooth formal schemes, or smooth rigid varieties etc.) it is possible to
define motives attached to an arbitrary quasi-projective variety (or arbitrary rigid
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varieties) using the 6 functor formalism: the (homological) motive �(X) attached
to such a variety X is given by f! f !� with f : X → Spa K being the structural
morphism. This formalism is fully developed in [8, 33] (in the algebraic case) and
in [7] (in the analytic case).

5 New De Rham-Like Cohomologies via Motives

In this section, we make a survey on the “new” de Rham-like cohomology theories
for rigid analytic varieties and perfectoid spaces whose construction is based on the
properties of motivic categories.

We start by a de Rham cohomology for perfectoid spaces introduced in [17, 18,
34], which is further expanded by [5]. Simply by combining Theorems 3.1 and 4.2
we deduce the following.

Theorem 5.1 Let K be a perfectoid field.

(1) Suppose that char K = 0. Let ̂X ∼ lim←− Xh be a smooth perfectoid space obtained

by relative perfection of an étale map X0 → BN
K . For any i , the system Hi

dR†(Xh)

is eventually constant, and the association ̂X �→ Hi
dR(Xh), h � 0 induces a

well-defined functorial cohomology theory H∗
dR(̂X , K ) on smooth perfectoid

motives over K . It has étale descent, a Künneth formula, and finite dimension
whenever X is quasi-compact.

(2) Suppose that char K = p > 0. For any fixedun-tilt K � of K the association ̂X �→
Hi

dR(̂X �, K �) is a well-defined functorial cohomology theory Hi
dR†(̂X , K �) on

smooth perfectoid motives over K . It has étale descent, a Künneth formula, and
finite dimension whenever X is quasi-compact.

(3) Suppose that char K = p > 0. For any fixed un-tilt K � of K the association
X �→ Hi

dR(XPerf , K �) is a well-defined functorial cohomology theory on smooth
rigid analytic varieties over K which extends to arbitrary rigid analytic varieties
and is compatible with rigid cohomology with coefficients is K � whenever X is
of good reduction. Moreover, it has étale descent, a Künneth formula, and finite
dimension whenever X is smooth and quasi-compact or the analytification of a
quasi-projective algebraic variety.

Remark 5.2 In [5] also a relative version of the (overconvergent) de Rham coho-
mology for rigid analytic spaces is introduced. It is also shown that it enjoys many
properties which are common to the archimedean/algebraic analogue, such as the
fact that H∗

dR(X/S) is a vector bundle on the base whenever X → S is smooth and
proper.

Suppose that K is a perfectoid field of characteristic p > 0. The need of choosing
an un-tilt of K in order to define a de Rham-like cohomology theory for (rigid
analytic) varieties over K can be considered unnatural and unsatisfactory for some
purposes. To remedy this, in [5] the various cohomology theories X �→ H∗

dR(X, K �)
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are “pasted together” into a vector bundle over the Fargues-Fontaine curve of K by
means of the following

Theorem 5.3 ([5]) Let K be a perfectoid field of characteristic p > 0. We letXK be
the analytic space given by the adic Fargues-Fontaine curve associated to it. There
is a monoidal realization functor

RdRFF : RigDAét(K ) → QCoh(XK )op

giving rise to a cohomology theory H∗
dR(−,XK ) with values in quasi-coherent XK -

modules (defined as in [35]). Moreover, whenever M is compact (eg. M is the motive
of a quasi-compact smooth rigid variety, or the analytification of a quasi-projective
algebraic variety) then the modules H∗

dR(M,XK ) are vector bundles, and equal to
zero if |i | � 0.

Remark 5.4 The previous result gives a canonical analytic de Rham cohomology
in positive characteristic, and answers positively to a conjecture of Fargues [36,
Conjecture 1.13] and Scholze [37, Conjecture 6.4].

Remark 5.5 In [5] also a relative version of the previous theorem is shown, building
on Remark 5.2.

The cohomology H∗
dR(−,XK ) above is not the only motivic cohomology theory

with values on vector bundles on a Fargues-Fontaine curve. Fix an algebraically
closed complete valued field C over Qp. In [34], Le Bras gives a motivic, over-
convergent and rational version of the Ainf -cohomology introduced for smooth and
proper formal schemes overOC defined as follows: consider the pro-étale sheafAinf,X

defined on affinoid perfectoid spaces over X := XC as Spa(P, P+) �→ W (P�+) and
its pull-back Rν∗Ainf to the Zariski site ofX. Take the complex obtained by décalage
LημRν∗Ainf (μ being [ε] − 1) and, finally, the complex R�Zar(X, LημRν∗Ainf). This
complex is known to be related to the various p-adic integral cohomologies defined
on X (see [38]).

Theorem 5.6 ([34]) Let C be an algebraically closed complete valued field over
Qp.

(1) Let X be a smooth rigid analytic variety over C endowed with a dugger structure
X† = (X � X ′). Consider the association

X �→ lim−→
X�Xh⊂X ′

R�ét(Xh, Lηt Rν∗B)

where Rν∗B is the pull-back to the étale topos of Xh of the pro-étale sheaf B
defined on affinoid perfectoid spaces over Xh asSpa(P, P+) �→ O(Y(P,P+)) and
Lηt is the décalage functor with respect to a generator t of ker(θ : W (P�+) →
P+). It gives rise to a well-defined functor

RFF : RigDA(eff)
ét (C) → QCoh(XC� )op



30 A. Vezzani

(2) If C = Cp and M ∈ RigDA(eff)
ét (C) is compact (for example, it is the motive of a

quasi-compact smooth rigid variety, or the analytification of a quasi-projective
algebraic variety) then the cohomology groups Hi (RFFM) are vector bundles
on the curve XC� and equal to 0 for |i | � 0.

Remark 5.7 It is not hard to see thatRFF is the rational, overconvergent analogue
of theAinf -cohomology, and it is also possible to relate it to the deRham cohomology,
see [34].

Finally, we sketch briefly the construction of Ayoub of a “new motivic Weil
cohomology” for varieties over a field k of positive characteristic. The aim of this
construction is somehow different from the previous ones: we have mentioned that
the Ainf -cohomology specializes to the various p-adic cohomology theories, and is
therefore intimately linked to p-adic Hodge theory and p-adic periods. The con-
structions above are aimed to generalizations and extensions of this idea.

On a different direction, one can try to build a realization which specializes to the
various �-adic realizations (including � = p): such an approach would be interesting,
for example, to inspect the independence on � for �-adic cohomologies. Choose a
(non necessarily complete!) valued field K of mixed characteristic, with k as residue
field and let ̂K be its completion. We already considered the following two adjoint
pairs

ξ : DAét(k) � RigDAét(
̂K ) : χ

Rig∗ : DAét(K ) � RigDAét(
̂K ) : Rig∗

The fact that ξ and Rig∗ are monoidal induces formally a decomposition of the
functors above:

DAét(k) DAét(k, χ1)
ξ ′

RigDAét(
̂K )

χ ′
(A)

DAét(K ) DAét(K ,Rig∗ 1)
Rig′∗

RigDAét(
̂K )

Rig′∗
(B)

where the category DAét(k, χ) [resp. DAét(K ,Rig∗ 1)] in the middle denotes the
category of modules over the motive χ1 [resp. Rig∗ 1]. This object inherits a natural
algebra structure deduced from the monoidality of ξ [resp. Rig∗]. The adjunction
on the left is simply given by the free module structure/forgetful pair, while the
adjunction on the right is built out of the natural χ1-module structure [resp. Rig∗ 1-
module structure] which can be given to the objects of the form χM [resp. Rig∗ M].

The main theorem of [39] is then the following.

Theorem 5.8 ([39]) Let K be a subfield of C equipped with a rank-1 valuation
with residue field k of characteristic p > 0 and completion ̂K.

(1) The functor Rig′∗ of (B) gives an equivalence of monoidal ∞-categories
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DAét(K ,Rig∗ 1) ∼= RigDAét(
̂K ).

(2) The (homological) algebraic de Rham realization

RdR : DAét(K ) → D(K )

induces a monoidal functor

R′
dR : RigDAét(

̂K ) ∼= DAét(K ,Rig∗ 1) → D(K ,AK )

where the category on the right denotes the category of modules over the object
AK := RdR Rig∗ 1 equipped with its natural DG-algebra structure.

(3) The complex AK is in D≥0(K ). In particular AK := H0(AK ) has a K -algebra
structure, there exists a map of DG-algebras AK → AK and one can define a
realization for DAét(k) as follows:

Rnew : DAét(k)
ξ→ RigDAét(

̂K ) ∼= DAét(K ,Rig∗ 1)
R′

dR−→ D(K ,AK ) → D(AK ).

(4) The algebra AK can be explicitly computed in terms of generators and relations.
(5) There are ring maps AK → ̂K and AK → Q� for any � �= p (depending on

a choice of isomorphism Q�
∼= C) such that the realizations obtained by base

change

DAét(k)
Rnew−→ D(AK ) → D(̂K ) DAét(k)

Rnew−→ D(AK ) → D(Q�)

are equivalent to the rigid realization, and the �-adic realization, respectively.

Remark 5.9 One of the main results of [39] is actually the explicit computation of
the algebra AK that we only vaguelymentioned in the theorem above. It turns out that
the description of the ring AK is the non-archimedean analogue of the construction of
the ring of complex periods considered in [40]. In spite of this explicit presentation,
a full understanding of the algebraic properties of AK (eg. being an integral domain)
seem to be out of reach, and any progress in this direction would be of much interest
as explained in [39].

The construction above is based on the equivalence RigDAét(
̂K ) ∼=

DAét(K ,Rig∗ 1) arising from the monoidal left adjoint functor Rig∗. In [7] the
other monoidal functor ξ is analyzed, obtaining the following analogue of Theo-
rem 5.8((1)).

Theorem 5.10 ([7, Theorem 3.3.3]) Suppose that ̂K is algebraically closed. The
functor ξ ′ of (A) defines an equivalence of monoidal ∞-categories

DAét(k, χ1) ∼= RigDAét(
̂K ).
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Remark 5.11 In [7] a more general statement is shown: one can extend the equiv-
alence above even in the case of a higher rank valuation, defined by some valuation
subring ̂K+ ⊂ ̂K , obtaining an equivalence

DAét(Spec(̂K+/π), χ1) ∼= RigDAét(Spa(̂K , ̂K+))

where π ∈ ̂K+ is a non-zero topologically nilpotent element.

6 A Betti-Like Cohomology via Motives

The aim of this section is to define another motivic cohomology theory for rigid
analytic varieties and perfectoid spaces. Contrarily to the deRhamversion considered
above, this won’t be a Weil cohomology and can’t be expected to compare to �-
adic cohomologies. Nonetheless, Berkovich showed ([41]) that it contains some
interesting information, and the motivic language can be used to extend his results.
The main theorems of this section are taken from [42].

We recall that the Berkovich topological space |X |Berk underlying a rigid analytic
variety X is the maximal Hausdorff quotient of the (locally spectral) topological
space |X | It coincides with the topological space defined by the partially proper
topology on X , or equivalently, to the topological space introduced by Berkovich.

Theorem 6.1 ([42]) Let K be a complete non-archimedean valued field, and let �

be a prime which is invertible in the residue field k. Let also C be a fixed complete
algebraic closure of K .

(1) Put � = Q. There is an �-adic realization functor

R� : RigDA(eff)
ét (K ) → Shproét (K ,Q�)

which is monoidal, and which sends compact objects to constructible complexes.
For any smooth variety X over K , the homology groups H∗(R��(X)) compute
the �-adic homology of X.

(2) The canonical functor

ι∗ : Shét(K ,�) → RigDAeff
ét (K )

induced by the inclusion of the small étale site into the big one, has a left adjoint

RB : RigDAeff
ét (K ) → Shét(K ,�)

that can be described explicitly as the functor induced by mapping a variety X to
the singular complex �[Sing(|XC |Berk)] of the topological space |XC |Berk with
coefficients in �.
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(3) Suppose that K is a finite extension of Qp and let F : Gal(k) → Gal(K ) be a
fixed lift of Frobenius. The following diagram

Shctét(K ,Q)

−⊗QQ�=R�

ι∗
RigDAeff,ct

ét (K ,Q)

R�

Shctét(K ,Q�)

F∗

Shctproet(K ,Q�)

F∗

Shctét(k,Q�)
ι∗

Shctproet(k,Q�)

is commutative and left adjointable, in the sense that there are left adjoint func-
torsRB to the functors ι∗ and the canonical natural transformationRB F∗R� ⇒
F∗R�RB is invertible.

Proof Only the last point does not appear as stated in [42], but it is easily seen to be
equivalent to [42, Corollary 5.5]. �
Remark 6.2 In [42]we showed that the theoremabove canbeused to have a concrete
generalization of a result of Berkovich [41] for which whenever K is a local field,
the Betti cohomology of the underlying Berkovich space with Q�-coefficients of a
variety X coincides with the smooth part of the Galois �-adic representation given
by the associated étale cohomology.

As we focus in this paper on the role of motivic tilting and de-perfectoidification,
we point out that the Berkovich realization given above can be equivalently defined
for perfectoid motives, in a compatible way with the equivalences of Theorem 3.1.

Proposition 6.3 ([42]) Let K be a perfectoid field and C be a complete algebraic
closure of it.

(1) The functor X �→ �[Sing(|XC |Berk)], where�[Sing(T )] is the singular complex
of a topological space T with coefficients in �, induces a colimit-preserving
monoidal functor

RB : PerfDAeff
ét (K ) → Shét(K ,�).

(2) The following diagram is commutative.

RigDAeff
ét (K )

RB∼

PerfDAeff
ét (K )

RB Shét(K ,�)

RigDAeff
ét (K �)

RB

∼

Shét(K
�,�)

∼
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Proof In light of [42, Sect. 4] only the formula for the perfectoid version of RB

needs to be justified. As the tilting equivalence gives rise to homeomorphisms on
the Berkovich spaces attached to perfectoid spaces, we may assume charC = p.
By the equivalence Perf∗ : RigDAeff

ét (C) ∼= PerfDAeff
ét (C) the formula then follows

from the analogous formula for rigid analytic varieties and the homeomorphism
|XPerf | ∼= |X |. �

As previously anticipated, this cohomology theory is not a Weil cohomology. It does
not even extend to the stable categories of motives as indeed it “kills” Tate twists
(this is compatible with Remark 6.2).

Remark 6.4 If X is a geometrically connected rigid variety of good reduction over
K , then RB�(X) ∼= �[0]. In particular, we have RB(TK ) ∼= 0.

As a matter of fact, because of the functor ξ : DAét(k) → RigDAét(K ) that
we introduced above, it is impossible to define any Weil realization functor from
RigDAét(K ) with values in Q-vector spaces, whenever K is a local field of mixed
characteristic. Any such realization would otherwise violate Serre’s counterexample
to the existence of a rational Weil cohomology theory for varieties over a finite field
([43, Page 315]).
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