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Preface

This book contains selected chapters and the introduction as well as several applica-
tions of perfectoid spaces, as invented by Peter Scholze in his Fields medal winning
work. These papers are presented at the conference on “Perfectoid Spaces” held at
the International Centre for Theoretical Sciences, Bengaluru, India, from 9 to 20
September 2019.

p-adic methods play a key role in the study of arithmetic properties of modular
forms. This theme takes its origins in Ramanujan congruences between the Fourier
coefficients of the unique eigenform of weight 12 and the Eisenstein series of the
same weight modulo the numerator of the Bernoulli number B12. After the work
of Deligne on Ramanujan’s conjecture, it became clear that congruences between
modular forms reflect deep properties of corresponding p-adic representations. The
general framework for the study of congruences between modular forms is provided
by the theory of p-adic modular forms developed in fundamental papers of Serre,
Katz, Hida, and Coleman (1970’s—-1990’s).

p-adic Hodge theory was developed in pioneering papers of Fontaine in 1980s as
a theory classifying p-adic representations arising from algebraic varieties over local
fields. It culminated with the proofs of Fontaine’s de Rham, crystalline and semistable
conjectures (Faltings, Fontaine—Messing, Kato, Tsuji, Niziol, ...). In order to classify
all p-adic representations of Galois groups of local fields, Fontaine (1990) initiated
the theory of (¢, I')-modules. This gave an alternative approach to classical construc-
tions of the p-adic Hodge theory (Cherbonnier, Colmez, Berger). The theory of (¢,
I')-modules plays a fundamental role in Colmez’s construction of the p-adic local
Langlands correspondence for GL2. On the other hand, in their famous paper on
L-functions and Tamagawa numbers, Bloch and Kato (1990) discovered a conjec-
tural relation between p-adic Hodge theory and special values of L-functions. Later
Kato discovered that p-adic Hodge theory is a bridge relating Beilinson—Kato Euler
systems to special values of L-functions of modular forms and used it in his work on
Iwasawa—Greenberg main conjecture. One expects that Kato’s result is a particular
case of a very general phenomenon.

The above work of Scholze represents the main conceptual progress in p-adic
Hodge theory after Fontaine and Faltings. Roughly speaking, it can be seen as a
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wide generalization, in the geometrical context, of the relationship between p-adic
representations in characteristic 0 and characteristic p provided by the theory of (¢,
I')-modules. As an application of his theory, Scholze proved the monodromy weight
conjecture for toric varieties in the mixed characteristic case. On the other hand, in
a series of papers, Scholze applied his theory to the study of the cohomology of
Shimura varieties. In particular, the construction of mod p Galois representations is
predicted by the conjectures of Ash (see, P. Scholze. “On torsion in the cohomology
of locally symmetric space”. Ann. of Math. 182: 2015). Another striking application
of this theory is the geometrization of the local Langlands correspondence in the
mixed characteristic case. Here, the theory of Fontaine—Fargues plays a fundamental
role.

Pune, India Debargha Banerjee
La Jolla, USA Kiran S. Kedlaya
Jerusalem, Israel Ehud de Shalit

Jatni, India Chitrabhanu Chaudhuri
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Elmar Grosse-Klonne

Introduction

Let F/Q, be a finite field extension. It was a fundamental insight of Fontaine [1]
that (p-adically continuous) representations of the absolute Galois group Gal(F /F)
of F on finite free modules over Q, or Z, or F,—for short: p-adic Galois
representations—can equivalently be described by linear algebra objects which he
called étale (¢, I')-modules. These are modules over certain Laurent series rings, in
one variable, endowed with commuting semilinear actions by a Frobenius operator ¢
and the groupI" = Oj.! Approaching Galois representations through their associated
étale (¢, I')-modules has proven to be an extremely powerful method in numerous
contexts. We mention here only the important role which it plays in Colmez’ work
[2] on the p-adic local Langlands program. Also, the theory of (¢, I')-modules has
been vastly generalized since into numerous directions. Among these generalizations
is the work by Zabradi [3] who showed that (for F = Q,,), the representations of the
d-fold self product Gal(F/F) x --- x Gal(F/F) are in category equivalence with
étale (¢, I')-modules over certain Laurent series rings in d variables (multivariable
étale (¢, I')-modules).

In this note we restrict attention to p-modular coefficients only, i.e., our Galois
representations (which however remain entirely in the background) and étale (¢, I')-
modules are (in particular) IF ,-vector spaces. In this context, an étale (¢, I")-module is
a finite dimensional k((¢))-vector space D, for a finite extension k of the residue field
of F, endowed with said actions by ¢ and I". A critical ingredient in the aforemen-
tioned work of Colmez was the detection and study of finite k[[#]]-lattices spanning
D, stable under I" and a certain operator i left inverse to ¢, on which v in fact acts

E. Grosse-Klonne (<)
Humboldt University, Berlin 12489, Germany
e-mail: gkloenne @math.hu-berlin.de

!In fact, I was taken to be a slightly different group in [1], but there is no substantial difference to
the point of view taken here.
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2 E. Grosse-Klonne

surjectively. Among these lattices he identified a minimal one, denoted by D", and a
maximal one, denoted by DF.

The purposes of this note are the following. Firstly, we want to explain that the
study of D and D* makes sense similarly in the context of (p-modular) multivari-
able étale (¢, I')-modules. Secondly, we want to advocate an approach toward these
lattices D* and D? in which we rather construct and study their k-linear duals. This
approach goes hand in hand with a method for constructing étale (¢, I')-modules. In
this latter function, i.e., as a tool for the explicit construction and description of étale
(¢, I')-modules (which typically is quite delicate, since, e.g., testing if candidates
for ¢- and I"-actions, given by explicit power series, really commute with each other
can be quite challenging), the method was introduced by Colmez in [2] and then
used later in [4], both in the one-variable case. We intend to use the constructions
presented here (the construction and analysis of D and D) to generalize the work
[4] to a multivariable setting in the future. Thirdly, by discussing several examples
we try to shed some more light on the behavior of D? and D*. Actually, most of these
examples pertain to the one-variable case, yet we think that they demonstrate some
features of D* and D* which at least have not yet been documented in the literature
(although undoubtedly known to the experts).

1 Multivariable Modular étale (¢,, I'y)-Modules

Notations: Let F//Q, be afinite field extension. Denote by g the number of elements
of the residue field IF,, of F. Let  be a uniformizer in the ring of integers O of F.
Let k be a finite extension field of F,. PutI" = Oj.

There is a unique (up to isomorphism) Lubin-Tate group for F with respect
to w. Fixing a coordinate ¢t we write ®(¢) for the corresponding Lubin-Tate for-
mal power series describing multiplication by w. Equivalently, to any power series
& (1) € Op[[t]] with @ (¢) = 7t modulo r2OF[[¢]] and ®(¢) = 17 modulo 7 Ox[[1]]
is associated a Lubin-Tate formal group law, with ®(¢) representing multiplication
by 7, and the resulting formal group (with multiplication by OF) is independent (up
to isomorphism) on the specific ®(¢). For y € I' let [y]e(¢) € OFp[[t]] denote the
power series describing the action of y in the Lubin-Tate group. Let D be a finite
set, and for each d € D let t; be a free variable. Put

k[[t1] = kl[tallaeps k((t)) = kl[t.11[t,'1 with1p = [ ] 1.

deD

For each d € D let I'; be a copy of I". For y € I" let y; denote the element in
Iy = [[,cp Ta whose d-component is  and whose other components are trivial.
The formulae

va(ta) = [y]o(ta), Ya, (ta,) = 1g,
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with y € I" and d, d;, d» € D such that d; # d, define an action of I', on k((%,)).
Consider the k[[#,]]-algebra

kl[t11l@s, T'sl = klltallaenl@a, Talaep

with commutation rules given by
-xdl ° de - ydz : -xdla
Ya Pa =@ Var  Va-ta=ata)) - Ya»  Qa-ta=Pta) 0a =13 - ¢a

fory elandx,y e ' U{p,t}andd, d|, d, € D withd, # d,. Similarly we define
the k((z,))-algebra k((¢,))[¢., I's] and its subalgebra k((z,))[I"]-

Definition An étale ¢,-module over k((z,)) is a k((t,))[¢.]-module D which is
finitely generated over k((z,)) such that for each d € D the linearized structure map

id ® @q : k((t)) ®p, k(y D — D

is bijective. An étale (¢,, I'y)-module over k((z,)) is a k((t,))[¢s, [« ]-module whose
underlying ¢,-module is étale. In the case | D| = 1 we drop the indices (.); resp. (.)e
and simply talk about étale (¢, I")-modules over k((z)).

Remark The action of I'y on an étale (¢,, [',)-module is automatically continuous
for the weak topology.

Lemma 1.1 (/5] Lemma 4, Proposition 6)
The category of étale (¢, I'y)-modules over k((t,)) is abelian.
Regard k((t)) as a k((t,))-module by means of t; - x =tx ford € D and x €
k((t)). The functor
D — k((?)) ®rry D

is an exact and faithful functor from the category of étale (¢, I's)-modules over
k((t.)) to the category of étale (¢, T')-modules over k((t)).?

Theorem 1.2 (a) (Fontaine [1], Kisin-Ren [6], Schneider [7]) There is an equiv-
alence between the category of étale (¢, I')-modules over k((t)) and the cate-
gory of continuous representations of Gal(F / F) on finite dimensional k-vector
spaces.

(b) (Zdbrddi[3]) Assume F = Q,. There is an equivalence between the category of
étale (@o, I's)-modules over k((t,)) and the category of continuous representa-
tions of Gal(@/@,,) X --e X Gal((QTp/Q,,) (with | D| many factors indexed by
D) on finite dimensional k-vector spaces.

2 We will not make use of the second statement of Lemma 1.1 in the following.
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(c) Statements (a) and (b) merge into a common generalization (Pupazan [8]): For
any F, there is an equivalence between the category of étale (¢,, I's)-modules
over k((t,)) and the category of continuous representations of Gal(F/F) x
.-+ x Gal(F/F) on finite dimensional k-vector spaces.

Definition A r-operator on k[[¢,]] is a system ¥, = (¥4)qcp Of additive maps
Ya : kllt]] — k[[t.]]

ford € D such that ¥4, (Ya,(t4,)) = Va,(Ya, (t4,)) forally € I' and d;, d, € D, such
that ¥4, (t4,) = t4, for di # d, and such that the following holds true: If we view the
@q as acting on k[[#.]], then ¥, o @4, = @a, © Vg, for d, # ds, but

Ya(pa(a)x) = apa(x)
fora, x € k[[t.]].2

Lemma 1.3 (/5] Lemma 3) There is a yr-operator v, on k[[t,]] such that each V4
is surjective.

To be explicit, in the case where |D| = 1 (the general case is handled factor by
factor) and @ (t) = 't 4 t9, we may choose V() on k((¢)) such that form € Z and
05i§q—1wehave4

q.m
=t
Vi) ") =

o
-~ =
A
o~ O
I IA
—
I
V]
—_
=
N

tm
In the following, we fix ¥, as in Lemma 1.3.
Let D be an étale (¢,, I'y)-module over k((z,)). Ford € D we define the composed
map

Iﬂd D — k((t-)) ®(ﬂd,k((lo)) D—D

where the first arrow is the inverse of the structure isomorphism id ® ¢,, and where
the second arrow is given by a @ x — Yy(a)x.

Lemma 14 Forallx €D,y €T, a € k((t,)) and d € D we have
Valapa(x)) = Ya(a)x,  Yalpa(@)x) =aya(x),  va(Ya(x)) = Ya(ya(x)).
Forall x € Dand dy # d, € D we have

Va,(Wa, (X)) = Vo, Wa, (X)), Y, (0, (X)) = @a, (Ya, (x)).

3 Notice that we do not require ¥4(1) = 1.
* Notice that £ = 0 (in k) if F # Q.



On y-Lattices in Modular (¢, I')-Modules 5

Proof The formula y;(ap,(x)) = Ys(a)x is immediate from the construction. To
see the formula v, (g, (a)x) = ay(x), writex = Y, a;p,(e;) withe; e Danda; €
k((t,)) (this is possible as D is étale). We then compute

Va(pa(@)x) =Y Ya(pa(@aipa(e)) = Y Valga(@ae;
=a) Yala)ei=a)_ Valapa(e)) = apy(x).

To see the formula y; (1, (x)) = ¥4(ya(x)) observe that, since the actions of y; and
@q on k[[t,]] commute, and since I', acts semilinear on D, the additive map

k((16)) ®pyk(t)y D = k(1)) ®gy k(1)) Ds
a®b— yi(a) ® ya(b)

is the map corresponding to the action of y,; on D under the isomorphism id ® ¢,
and under a ® x — ¥, (a)x it commutes with y,; acting on D since the actions of y,
and ¥4 on k((f,)) commute. The remaining commutation formulae are clear. O

Definition For a k-vector space A we write A* = Homy (A, k). We say thatak[[z,]]-
module A is admissible if it is a torsion module® over k[[z,]] for each d € D and
if

Alt,] = {x € A|ty;x =0foreachd € D}

is a finite dimensional k-vector space.

Proposition 1.5 (/5] Proposition 5) Let A be a finitely generated k[[t,]11[@e, ['e]-
module which is admissible as a k[[t,]]-module and satisfies A = k[[t,]]pa(A) for
each d € D. Then A* Q.11 k((t.)) is in a natural way an étale (¢., I's)-module
over k((t.)). The functor A — A* Q. k((t.)) is exact.

We remark that the k[[z,]][["s]-action on A* ®.q k((%.)) results from the
k[[#.]][T.]-action on A* given by the formulae

(a-£)() = £(asd),
(v - 08 = L(y™'5)

fora € k[[t.]], £ € A*, 5 € A and y € I',. The g,-action on A* Q.. k((t.)) is a
certain right inverse to the dual of the ¢,-action on A; its construction involves the
Yr-operator ¥, on k[[z,]].

5 In [5] we had not included this torsion condition into the definition of admissibility; however, for
staying consistent with established terminology we should have done so. (Yet, the omission of this
condition in the paper [5] does not invalidate its results.)
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Lemma 1.6 Let A andD = A* Q.11 k((t.)) be as in Proposition 1.5 and suppose
that each t; acts surjectively on A.

(a) The natural map A* — D = A* Qi k((%.)) is injective. Each 4 respects
A* and acts on it by the rule

L:A—kl — [A— kx> Lpi(x))].

(b) If each @4 acts injectively on A then each vy acts surjectively on A*.

Proof This follows immediately from the construction (given in [5] Proposition 5)
referred to in Proposition 1.5. ([

2 The lattices D" and D* inside D

We write ¥p = [[,cp Va and ¢p = [[,cp ¢a (as k-linear operators on k((t,))).
Let D be an étale (¢,, I',)-module over k((¢,)). We call a finitely generated
k[[#,]]-submodule of D a lattice in D if it generates D (as a k((z,))-module).

Lemma 2.1 Let E be a lattice in D, let d € D.

(a) Yq(E) is a k[[t,]]-module.

(b) If pa(E) C E then E C Y4(E).

(c) If E Ckllte]] - 9a(E) then y4(E) C E.

(d) If yq(E) C E then 1//d(td_1E) C td_lE. For each x € D there is some n(x) € N
such that for all n > n(x) we have ¥}, (x) € tBlE.

Proof (a) Use Y (pq(a)x) = ayy(x) fora € k((¢,)) and x € D.

(b) Choose a € k[[t,]] with ¥,(a) = 1. For e € E we have e = {/;(agp,(e)) which
belongs to ¥, (E) since ¢, (E) C E.

(c) Lete € E.Byassumptiontherearee; € E anda; € k[[t.]]withe = ), a;pa(e;),
hence wd(e) = Zi wd(a,-)ei e E.

(d) Fori > 1 we have

Valeyt7VE) C oy (17 Wa(E) C oy (17 HE
where the second inclusion uses the assumption. Taking the product over all d this
implies ' ‘ A
Un(pp(tp)E) C ¢y (15 )Wn(E) C ¢y (15)E. @)
From ¢, (t; ") =1, we get

Va(t;'E) C gty E) Ct;'E

and taking the product over all d we thus get
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Yp(ty ' E) C ¥ (pp(tyVE) C 15 E.

Moreover, if n(x) € N is such that x € go”D(tBI)E for n > n(x), then iterated
application of formula (2) shows

Yh(x) € Y@l (tpYE) C v el tpHE) € ... C 1y 'E
forn > n(x). [l

Lemma 2.2 (a) There are lattices Ey, E; in D with
¢p(Eo) CtpEg C Eg C E1 C k[[t.]lop(EY).

(b) Foranyn > 0 we have ¥} (Eo) C wZH(EO) C E;.

Proof (a) Let e, ..., e, be a generating system of D as a k((z,))-module. Then
also gg(ey), ..., pi(e,) is such a generating system of D, for each d € D. We
therefore find elements f;;, g;; ink((z,)) suchthatgp(e;) = Zle fijeiande; =
> i1 &ijeple) foralll < j <r.Choosen € N with t;')(q_l)ﬁj € tpk[[t.]] and

l‘;l)(q_l)g,‘j € tzk[[t,]] for all i, j. Then

Eo = rpkllt.]le;. Ey =)ty kl[t]lei
i=1

i=I

work as desired.

(b) Choose a € k[[t,]] with ¥p(a) =1. For x € Ey we have ¥} (x) = g“
(app(x)) € wg“(Eo) since ¢p(Ey) C tp(Ep) implies ¢p(x) € Ey and hence
agp(x) € Eo. This shows ¥ (Eg) C ¥ (Eo). As Eo C E1 C kl[t1l9a(E)),
an induction using Lemma 2.1 shows 1&2’;’1 (Ep) C E;. O

Proposition 2.3 (a) There exists a unique lattice D* in D with 1, (D*) = D* and
such that for each x € D there is some n € N with Y}, (x) € D~

(b) For any lattice E in D we have yr},(E) C D? foralln >> 0.

(c) For any lattice E in D with yp(E) = E we have

tpD* C E C D*.

Proof Let Eg, E; be asin Lemma 2.2. For n € N put F,, = yr},(Eyp). For x € Ey we
have ¥}, (x) = g*l(wD(lpr(x));since Yp(Dep(x) € Egthis shows that (F},), is
anincreasing sequence of latticesinD. As E| C k[[#.]]¢p(E1), Lemma?2.1 (c) shows
F, C E. As k[[t.]] and hence E is noetherian, there is some ng with F,, = F,,, for
all n > no, and hence with ¢p (F,,) = F,,. Form € N put

m,—1
G = Y15 Fp.
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Lemma 2.1 (d) shows that (G,,),, is adescending sequence of lattices in D, containing
F,, since ¥p (Fy,,) = Fp,. As tl;l F,,/ Fy, is artinian we therefore find some m( with
G, = Gy, for allm > my, and hence with ¥'p(G,,) = G,,. Moreover, Lemma 2.1
(d) shows that for each x € G, there is some i (x) € N with WD x) € tglF,m for all
i > i(x). We then have ¢g°+i (x) € G, foralli > i(x). Thus, D = G,,, works as
desired.

To see the uniqueness of D¥, assume that there is another candidate D satisfying
the same properties. Then so does D? + D?, hence we may assume D? C D?. But
Y4 for any d € D acts both surjectively and nilpotently on the finite dimensional
k-vector space D?/D*, hence Df = D, O

Proposition 2.4 (a) For any lattice E in D contained in D* and stable under 4
ford € D we have y4(E) = E.

(b) The intersection D* of all lattices in D contained in D* and stable under v, for
all d € D is itself a lattice, and it satisfies Y4(D*) = D" for all d € D.

Proof (a) Since D* as well as E and v, (E) are lattices in D?, both D*/E and
D?/+r4(E) are finite dimensional k-vector spaces. ¥y induces an isomorphism
D*/E =D*/y4(E) (as ¥4(E) C E), hence ¥,(E) = E.

(b) For any lattice E in D contained in D* and stable under ¥, for all d € D we
have tpD? C E by what we saw in (a) together with proposition 2.3. This shows
tpD? C DY, hence D is indeed a lattice, and v, (D") = D follows by applying
(a) once more. ([l

Lemma 2.5 Let A be as in Lemma 1.6, with each ¢  acting injectively on A. If A[t,]
generates A as a k[[t.11[@.]-module then A* = DF.

Proof Fori = (ig)aep € Z2, let

FIA* ={t e A* |€((l_[ tgdwsl)(x)) =0foralln,; > 0,x € Alt,1}.
deD

This is a k[[f,]]-submodule of A*. Let E be a lattice in D contained in D with
Y4(E) C E for all d € D. We have N; F'A* =0 since Alt,] generates A as a
k[[t.]1[¢.]-module. As E generates D we therefore find F' A* C E for some i. But

(vinra = eHoee ay =a®

deD deD

where the second equality follows from the injectivity of the ¢;. We thus obtain
A* C E as the ¥, respect E. ([
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Proposition 2.6 (Colmez) Suppose |D|=1. If D is an irreducible étale
(¢, T)-module with dimy ), (D) > 2, then D* = D?. If dimy (D) = 1 then dimy
(D*/DY) = 1.

Proof See [9] Corollaire I1.5.21 for the first statement. The second one follows, e.g.,
from 1.3.2. Exemple in [2], but also from the discussion of example (a) below. [

Remark It is easy to see that both D — D? and D — D* are functors from the cat-
egory of étale (¢,, I'y)-modules to the category of y,-modules (obvious definition).
Moreover, if

0O—D —D—D,—0 3)

is an exact sequence of étale (¢,, ['y)-modules, then the sequences

0 — D! — D° — D} — 0, “4)
O—>D§—>Du—>Dg—>0 @)
are both exact on the left and on the right (see [9] Proposition II 4.6 and Proposition II

5.19 for the case | D| = 1). However, in general they need not be exact in the middle.
We are going to exemplify this below.

3 Examples

(a) By Proposition 2.6, if |[D| = 1 then a rank one étale (¢, I')-module contains
precisely two (¥, I')-stable lattices with surjective y-operator. If |D| > 1 we find
more.

Fix some ¢; € k™ and some my € Z/(q — 1)Z for each d € D. Put

B = @ k.ec,

ccDh

the k-vector space with basis {ec}ccp indexed by the subsets C of D. Let k[[#,]][.]
act on B by requiring

a0 : deC
d-fc= ecufdy deD-C"
mg+1
o _Jviec + deC
va-ec {yf"ec : deD-C’

(On the right-hand side of the defining formula for y,; - ec we refer to multiplication
with the scalar in k> to which y € I' = OF is mapped.)

Let D be a set of subsets of D such that for any C € D andd € D — C we also
have C U {d} € D. It is clear that ) ._p k.ec is a k-sub vector space of B stable



10 E. Grosse-Klonne

under k[[#,]][T".], hence k[[f.]][T.] acts on

B

Bp = ———.
ZCED k.ec

Define
kl[t]ll@e] xiir) Bp

(117" 04 ® ey — 1 ® caep)acn

A'D = AD(C.’ mo) =

where (?) indicates the k((#,))[¢.]-sub module generated by all expressions within
the brackets (and ey actually means the class of ey € B in Bp). One checks that
this submodule (tjflgod ® ey — 1 ® cyep)acp is in fact also stable under the action
of I',; indeed, the tjfltpd ® ey — 1 ® cyey are eigenvectors under the action of T,.
It follows that Ap becomes a k[[#,]][¢., ['s]-module. It is finitely generated over
k[[t.11[@.], admissible over k[[#,]] and each v/, acts surjectively on A}, = (Ap)*.
Thus A7, is a lattice inside

D = D(c,, ms) = A ®pqprep k((20)).

The natural projections Bp — Bp for D C D’ induce k[[z,]]-linear inclusions
A%, — A%, which, when tensored with k((z,)), become isomorphisms. In partic-
ular, the rank one étale (¢,, I'y)-module D is in a natural way independent of D, and
(inside D) we have

AL#AY, whenever D # 7D

Taking D; to be set empty set, so that B = Bp,, we find A}‘)] = D" Taking Dy =
{D C C| D # 0}, so that Bp, is of k-dimension 1 (generated by the class of ey), we
find A}, = D7, cf. Lemma 2.5.

In the following examples we choose (as we may) the coordinate ¢ such that
®(t) = mt 4+ t7. We assume |D| =1 and drop subscripts (.)4. We describe var-
ious A’s as quotients A = (k[[t]][¢] ® M)/V with finite dimensional k-vector
spaces M, and where always V is generated as a k[[¢]][¢]-submodule by elements
in k[[t]]e @ M + k[[t]] ®x M only (i.e., no higher powers of ¢ occur in these gen-
erators).

In all these examples, ¢ acts injectively in A (hence ¥ acts surjectively on A*)
and ¢ acts surjectively on A (hence A* is ¢-torsion free).

(b) We describe a A defining an extension between two rank one étale (¢, I')-
modules.

Fix o € k. Let (e}, e2, f)r denote the k-vector space with basis {e], e, f}. In
kl[t1[¢] ®k (e1, €2, f )i consider the subset®

6 In writing the elements of R we suppress the symbol ®.
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R = {tel —ep, tey, lf,
17 of — f, 117 ey — e — at!pf}

and let A denote the quotient of k[[#]][¢] ®x (e1, e2, f )i by the k[[#]][¢]-submodule
generated by the elements in R. Let { ), denote the k-sub vector space of (ey, ez, f)x
spanned by f and define the k-vector space (e, e2); by the exact sequence

0 — (fix — (e1, €2, [l —> (e1, e2)r —> 0.

We identify {e], e} with a k-basis of (e}, e;)r. We obtain an exact sequence

0 kl[111[e] @k (f )k kl111lp] ®x (e1, €2)k
_— - 5> A — — 0
V] v2

where V| (resp. V,) is the respective k[[f]][¢]-submodule generated by ¢f and
ti7 o f — f (resp. by te; — ey, te, and t9  pe; — ey).
Next, fixa € Z and let y € I act on (e}, €3, f)r by means of

y-f=y*f and y-¢=y"e.

(Here, in the expression y274 f resp. y'*%e; the y refers to the scalar in [F; to which
y € I' = Oy is projected.) Then

kil 11le] @k (er, €2, i = kllt1lle, T'l Qxry (e, €2, [k

so that k[[#]][¢] ®x (e1, e2, f )i receives a k[[t]][¢, [']-action. One checks that all
elements in R are eigenvectors for the action of I'. (For the elements 1~ !¢ f — f and
t97pey — e — (xtq’zgof this computation uses that [y ](t) = y ¢ modulo t7k[[¢]], as
is implied by our assumption ®(¢) = ¢ + t7, see Lemma 0.1 in [4].) It follows that
A, as well as the above exact sequence are in fact k[[¢]][¢, [']-equivariant.

In view of Proposition 1.5 we get an induced exact sequence (3) of étale (¢, I')-
modules, with dimg ), (D) = dimg),(D,) = 1. If F = Q, then the Galois char-
acter attached (by Theorem 1.2) to D; is obtained from the one attached to D, by
multiplying with the cyclotomic character. We have A = D". Neither the sequence
(4) nor the sequence (5) is exact.

(c) In contrast to what one might be tempted to think in view of Proposition 2.6,
the possible failure of exactness of the sequences (4) or (5) can not exclusively be
reduced to the non-uniqueness of (Y, I')-stable lattices with surjective r-operator
inside étale (¢, I')-module of rank one.

Let (e}, ez, €, f1, f2)x denote the k-vector space with basis {e}, e, €, f1, f2}. Let
0<s=<qg-—1Ink[[t]lle] R« (€1, €2, €, f1, f2)r consider the subset

R={t"""ge; —er — t'0fs, @er—er, t97750fi — fr, t'Fofs — fi,
tey — &, &, tes, tfi, tfr)
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and let A denote the quotient of k[[7]][¢] Qx (e1, €2, €, fi, f2)x by the k[[t]1[¢]-
submodule generated by the elements in R. The exact sequence 0 — (fi, fo)x —
(e1, ez, ¢, f1, fo)k = (e1, ez, €)r — 0 gives rise to an exact sequence

k[t 1le] ®k (f1, f2)k kl[t11le] ®« (e1, ez, €)
— — A —> — 0,

Vl VZ

0

where V| (resp. V) is the respective k[[¢]][¢]-submodule generated by 1425 ofi —
frand t'"Fof, — fi and tf1, tfr (resp. by 197 'pe; — e, and e, — e and te; — ¢,
te, tey).

Next, fixa € Zandlet y € T" acton (ey, e3, €, f1, f2)x by means of

y-et=v%, y-ea=yl y-é=y"e y.fi=yA v h=y" 1
Then

k[[t1]l@] ®« (e1, e2, e, fi, fo)x = kllt]lle, T'l @kry (e1, e, €, fi, fa)k

so that k[[t]][¢] ® (e1, €2, €, f1, f2)x receives a k[[t]][¢, [']-action. One checks
that all elements in R are eigenvectors for the action of I'. It follows that A, as
well as the above exact sequence are in fact k[[¢]][¢, [']-equivariant. In view of
Proposition 1.5 we get an induced exact sequence (3) of étale (¢, I')-modules, with
dimy () (D) = dimy() (D,) = 2. We have D} = D’ and D} = D}, with both D,
and D, being irreducible, but the sequence (5) is not exact.

(d) Let (e, e2, f1, f2)x denote the k-vector space with basis {ej, ez, fi1, f2}.
We view it as a k[[¢]]-module with trivial action by 7. Fix 0 <s <k <g —1.In
k[t 11[e] ke (€1, €2, f1. f2)x consider the subset

R = {t'pe; —er +t°0fs, 117 ey — ey, *Tofi — fr, 17770 — £1)

and let A denote the quotient of k[[¢]][¢] ®«i1y (€1, €2, fi, f2)r by the k[[¢]][¢]-
submodule generated by the elements in R. One first checks that there is a natural
exact sequence

. k[ 11le] @y (f1, f2he A k[[1]le] ®xr (ers e2)x

— 0,
Vl VZ

where V| (resp. V,) is the respective k[[#]][¢]-submodule generated by t*=Sefi — f
and 197 17K f, — £ (resp. by tfpe; — e, and 177 Fpe, — e)).
Next, let I" act on (ey, >, fi, f>)r by means of

y-ea=ye, v-Hh=y"f, v - i=fi, v-ea=e

(understanding y¥e, and y*=* f, similarly as before). Then
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k[[t1)le] ®xiim (ers ez, f1, f2)x = k], T'] kg {ers e, f1, f2)k

so that k[[t]]1[¢] @y (€1, ez, fi, f2)x receives a k[[t]][g, [']-action. Now one
checks that all elements in R are eigenvectors for the action of I'. It follows that
A, as well as the above exact sequence are in fact k[[¢]][¢, [']-equivariant. In view
of Proposition 1.5 we get an induced exact sequence (3) of étale (¢, I')-modules,
with dimy )y (D) = dimg),(D2) = 2. It does not split. The étale (¢, I')-module D
lies in the essential image of the functor from supersingular modules over the pro-p
Iwahori Hecke algebra of GL,(F) to étale (¢, I')-modules constructed in [4] if and
only if s = 0.
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The Relative (de-)Perfectoidification )
Functor and Motivic p-Adic i
Cohomologies

Alberto Vezzani

1 Introduction

The categories of (derived, abelian) motives arise naturally by imposing homotopy-
invariance onto the (infinity) category of sheaves of A-vector spaces on the category
of smooth spaces over a base S. Depending on the choice of the topology (typically:
the Nisnevich topology or the étale topology), the choice of S (a scheme, a rigid
analytic variety [1]...) the choice of the interval over which homotopies are defined
(typically the affine line, but there are log-variants [2]) and the choice of the coefficient
ring A (which may even be omitted [3] or replaced with a ring spectrum [4]) such
categories may enjoy different properties and may be useful for the inspection of
the various invariants and constructions related to Weil cohomology theories such as
periods, Chow groups, the six functor formalism, nearby cycles or even automorphic
forms, etc.

The aim of this paper is to make a quick survey on some particular applications of
the formalism of motives in the realm of p-adic Hodge theory. More specifically, we
consider perfectoid PerfDAg (S) = PerfDA¢ (S, Q) and rigid analytic étale motives
RigDA, (S) = RigDA, (S, Q). That is, we consider the homotopy invariant infinity-
étale sheaves of Q-vector spaces on smooth perfectoid resp. rigid analytic varieties
over an adic space S, where homotopies are defined over the perfectoid (closed) ball
resp. the rigid analytic (closed) ball.
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In particular, we focus on the equivalence between the two categories introduced
above:
RigDA,(S) = PerfDA¢(S) ()

that is shown in [5]. Such an equivalence can be considered as a method to
“(de-)perfectoidify” functorially and canonically an adic space over a base, up to
homotopy. We remark that whenever § is perfectoid, there is a canonical equiva-
lence PerfDA¢ (S) = PerfDA¢(S?) induced by the classic tilting functor of perfectoid
spaces, which preserves homotopies and the étale sites. This leads to an equivalence

RigDA (S) = RigDA (") (»)

that can be interpreted as a way to “(un-)tilt” canonically and functorially even
rigid analytic spaces, up to homotopy. It is expected (see [5]) to give the following
generalization of (#) which should hold for an arbitrary adic space S over Q,,, using
the language of diamonds:

RigDA,(S) = RigDA,(S°). (<)

In this paper, we give a full proof of (&) in the case of a perfectoid base S in
characteristic p, generalizing the statement of [6] that only deals with the case of a
perfectoid field S = Spa(K, K°).

Moreover, we make a survey on how the language of motives can be used to define
and prove some fundamental properties of de Rham-like p-adic cohomologies on
adic spaces and algebraic variety in characteristic p (that is, Groe-Klonne’s over-
convergent de Rham cohomology, and Berthelot’s rigid cohomology). We then recall
how to merge such constructions with the (un-)tilting and (de-)perfection procedures
of (&)-(®)-(<>) and obtain new de Rham like cohomology theories for perfectoid
varieties and rigid spaces in positive characteristic. Finally, we cite further cohomol-
ogy theories that have been introduced using rigid motives by other authors (such as
Ayoub and Le Bras) and a Betti-like cohomology in the spirit of Berkovich. We insist
on the fact that, in all these procedures, the role of homotopies is crucial, and that
consequently, motivic categories provide a natural framework where such definitions
and proofs can be made.

2 Definitions and Main Properties of Adic Motives

Once and for all, we fix a cardinal x and we consider only adic spaces that have
a x-small covering by affinoid subspaces. The categories of motives that we will
introduce are easily seen not to depend on «, but this choice allows one to prove
that they are compactly generated, under suitable hypotheses (see [7, Proposition
2.4.20)).
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Definition 2.1 Let K be a non-archimedean field, and S be a stably uniform adic
space over it.

(1) We let IB%l be the rigid analytic variety Spa(K(T), Ok (T)) and IB%; be the fiber
product S x g B, for any adic space S over K.

(2) IfK isperfectoid, we letIB% be the perfect01d space Spa(K (T'/P™), O (T/P™Y)
and IB%1 be the fiber product S Xk B! k- for any perfectoid space S over K.

3) We also let T} [resp. ’IFI] be the rational open U (1/T) of Bk [resp. of B! &l

(4) We let ngSm /S be the full subcategory of adic spaces over S whose objects
are locally étale over a poly-disc BY (in case S is a rigid analytic variety, this
recovers the usual notion of smooth rigid analytic varieties over ) and equip it
with the étale topology.

(5) In case K is a perfectoid field and S is perfectoid, we also consider the full
subcategory PerfSm /S of adic spaces over S whose objects are locally étale
over the perfectoid poly-disc BY, and equip it with the étale topology.

Definition 2.2 Let K and S be as above, and A be a (commutative, unital) (Q-algebra.

(1) We let Shg(RigSm /S, A) [resp. Shg(PerfSm /S, A)] be the monoidal DG-
category of complexes of étale sheaves of A-vector spaces on RigSm /S [resp.
PerfSm /S].

(2) We let RigDAg; (S, A) (or RigDAg'(S) for short) be the monoidal DG-
subcategory of Shg (RigSm /S, A) spanned by those objects F that are B'-
local, meaning that the natural map F (IB%&) — F(X) is an equivalence, for
all X € RigSm /S. We recall that there is a left adjoint Shg (RigSm /S, A) —
RigDAgff(S) to the natural inclusion.

(3) Similarly, we let PerfDAf’f'f ,(S A) (or PerfDAeff(S) for short) be the DG-

subcategory of Shg, (Perme /S, A) spanned by those objects F thatare B'-local.
(4) We will use the same notation RigDAeff(S) PerfDA . (8) for the associated
monoidal stable infinity-categories.

‘We remark that Yoneda defines a functor
h: RigSm /S — Psh(RigSm /S) — Psh(RigSm /S, A) — RIgDAeff(S)

and for any X we will let A g(X) be the image of X under /. We use the same notation
for perfectoid spaces and PerfDAS (S).

Definition 2.3 We let K, S and A be as above.

(1) We let Ts be the quotient of the split inclusion Ag(S) — Ag(T') given by the
unit.

(2) Similarly, if S is perfectoid, we define an object TS in PerfDAeff(S ) as the quotient
of the split inclusion A5(S) — Ag(T!) given by the unit.

(3) We introduce RigDA (S) and PerfDA«(S) as the targets of the universal left
adjoint DG-functors
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RigDAS"(S) — RigDA(S) PerfDAS"(S) — PerfDA«(S)

to DG-categories in which the endofunctor — ® T [resp. — ® Ts] becomes
invertible. They are endowed with a monoidal structure for which the functors
above are monoidal.

(4) We use the notation RigDA (S) and PerfDA(S) also for the associated
monoidal stable infinity-categories.

(5) When we write RigDAgm (S) we mean that one can consider either the category
RigDAgtﬁv(S) (eff standing for effective motives) or the category RigDA.(S),
and similarly for PerfDASH)(S ).

All in all, in the category RigDAgff(S) one can find objects of the form Ag(X)
where X is any smooth rigid analytic variety over S coming from the Yoneda functor,
as well as any complex of sheaves 2 that represents a Weil cohomology theory
(with A-coefficients, in our situation). The homology of the mapping complexes
Map(As(X), €2) coincide with the cohomology theory associated to 2. Almost by
construction, we point out that the objects Ag(X) are isomorphic to AS(IB%}() and
coincide with the homotopy colimit of any diagram of the form Ag(U®) with U*
being an étale hypercover of X. This translates in terms of cohomology theories into
B!-invariance, and the existence of some exact sequences 2 la Mayer-Vietoris.

By means of the six-functor formalism (see [8]) it is possible to define motives
As(X) attached to any rigid analytic variety X over S (not necessarily smooth). In
particular, the definition of a well-behaved cohomology theory on smooth varieties
extends automatically to all varieties.

It is also possible to consider (co-)homology theories which are equipped with
a richer structure than the one of a mere A-module: as soon as one has a functor
H: RigSm /S — C with Cbeing a A-linear DG-category such that H satisfies étale
descent and is homotopy invariant [and for which the Tate twist is invertible] then
by construction one can (Kan) extend it to motives

Rig$m /§ —— C

hl v"RH

RigDA™ (s

obtaining a so-called realization functor Ry. In Sect. 5 we will try to convince
the reader that it is sometimes easier to define a motivic realization Rz and hence
deduce an interesting (co-)homology theory H on RigSm /S.

Remark 2.4 Oneis free to replace the sites, the interval objects, and the rings of coef-
ficients with any other choice and define corresponding categories of motives. Clas-
sically, the categories of étale motives over a scheme S are denoted by DASH) (S, A)
(here, DAéfff) (S) for short). One may also consider non-commutative variants where
the category of A-modules is replaced by the infinity-category of spectra, or the
category of modules of any commutative ring spectrum.
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Remark 2.5 For the categories of algebraic motives DA (S) the realizations func-
tors induced by Betti, de Rham and ¢-adic cohomologies have been widely studied
in different articles: see [9—-11].

Rather than making a full recollection of all the formal properties of motives and
their variants, for which there are already staple references such as [9, 10, 12, 13],
we focus on two peculiar properties of the categories of rigid motives which are
proved in [7].

The first property is the so-called (effective) semi-separatedness.

Theorem 2.6 ([7, Corollary 2.9.10]) Let S’ — S be a universal homeomorphism.
The base change functor induces an equivalence of categories

RigDAS™ (S) = RigDAS™ (8"

Remark 2.7 As noted in [7], the effective part of the statement is not known for the
usual algebraic motives DAgff(S).

Corollary 2.8 Let X' — X be a universal homeomorphism between smooth rigid
analytic varieties over a base S. The induced map of motives As(X') — Ag(X) is
invertible in RigDASff) (S).

Proof The motive A(X) is the image of Ax(X) = A under the functor p; which is
the left adjoint to the functor RigDAZ (S) — RigDA4' (X) induced by the pullback

p* along the map p: X — S. By the previous theorem, we deduce pyAx(X) =
P:Ax (X') as wanted. |

The second property is referred to as “continuity” in [7].

Theorem 2.9 ([7, Theorem 2.8.14]) Let {S;} be a cofiltered system of stably uniform
adic spaces over a non-archimedean field K with qcqs transition maps and let S be
a uniform adic space such that S ~ 1(&1 S; in the sense of Huber [14, (2.4.1)]. Then
the base change functors induce an equivalence of categories

RigDAG™ ($) = lim RigDA™ (S;)

where the homotopy colimit is computed in the category of presentable infinity-
categories, and colimit-preserving functors.

Remark 2.10 The analogous statement for algebraic motives also holds: in case S is
the limit of a diagram of schemes {S;} with affine transition maps, then DASH) S =
li_r)n DAg’ff) (S;). However, the proof of the analytic version is much more involved,
and uses homotopies in a crucial way: this is related to the fact that (in case all
spaces S, S; are affinoid) the ring ll_I’I)l O(S;) does not coincide with O(S), but it is
only dense in it. In particular, the “continuity” statement for étale sheaves (on the
big sites), before performing the B!-localization, is false.
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A special case of continuity gives the following computation of “stalks” for
RigDA (-).

Corollary 2.11 Lets = Spa(C, CT) — S be an étale point of a stably uniform adic
space S. Let U — S vary among étale neighborhoods of s in S. The base-change
functors induce an equivalence in the category of presentable infinity-categories and
colimit-preserving functors:

RigDAS™ (Spa(C, C*)) = lim RigDAS™ (V).
seU—S

3 De-Perfectoidification

The aim of this section is to prove the following.

Theorem 3.1 Let S be a rigid space over a non-archimedean field K of character-
istic p. Then the base change along S* — S and the relative perfection functor
define equivalences:

ngDA(eff) (S) ngDA(e“) (Sperf >~ pe rfDA(eﬁ) (Sperf

The first half of the statement follows from the “separatedness” and the “continu-
ity” properties of RigDA,.

Proposition 3.2 Let S be a rigid space over a non-archimedean field K of charac-
teristic p. Then the base change along S*" — S defines an equivalence:

RigDAS™ () = RigDAS™ (sPT).

Proof The space S* is a weak projective limit of the diagram - - - — § Ls55 s
with ¢ being the Frobenius. We note that by Theorem 2.6 the motivic functor ¢* is
an equivalence, and the claim then follows from Theorem 2.9. ]

‘We now move to the second part of the statement. From now on, we will therefore
assume that § = S is a perfectoid space of characteristic p > 0. The second half
is a refinement of [6, Theorem 6.9] in two different directions: on the one hand
we get rid of the Frobét-localization (or, equivalently, of correspondences see [15])
proving an effective claim that holds for RigDAgff; on the other hand, we promote
the equivalence from the case of a base field of height one Spa(K”, K"°) to a general
(perfectoid) base S.

It is worth noting that, because of the computation of stalks for RigDAéfff)(—)

(which can be generalized easily to PerfDAg’“) (—)) the missing crucial case is the
one of abase S = Spa(C, CT) which is a complete algebraically closed valued field,
with a valuation of height n € Nx,. As this case is not essentially easier than the one
of a general base S we do not restrict to this case in what follows.
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In order to extend the result of [6], we follow the blueprint given by the proof
of loc. cit., and we simplify it at the same time. We try to highlight here the main
differences with respect to the original approach. We first introduce some notation.

Definition 3.3 Let F be in Psh(RigSm /S, A).

(1) We let L, be the presheaf X > lim F(XP™Y) where we let X¥ ™ be

X X540 Sand XP"D — X@™) be the map induced by Frobenius.

(2) We let Ly F be the normalized complex associated to the cubical presheaf
of complexes of abelian groups Hom(BB®, ) where Hom(B", F)(—) = F((—)
(up, ..o up)).

Proposition 3.4 Let F be in Psh(RigSm /S, A). The natural map F — Lpi L, F is
an equivalence in RigDAsz(S, A).

Proof Tt is well known that the maps F — Ly F are B!-equivalences, see [16]. By
construction, the complex L, F is local with respect to the relative Frobenius maps
As(XP ) > Ag(X) (we will refer to this property as “being Frob-local”) and
doesn’t alter those which are already Frob-local. We deduce that the map F — L,F
is a Frob-local equivalence, that is an equivalence with respect to the localization
over relative Frobenius maps. In particular, the map of the statement is a (B', Frob)-
local equivalence hence a (B!, Frob, ét)-local equivalence, but the latter are simply
(B!, ét)-local equivalences as shown in Corollary 2.8. ([l

Proposition 3.5 Locally with respect to the analytic topology, any space X €
RigSm /S [resp. PerfSm /S] is given by Spa(R, R™) with (R, R") given by [the
completed perfection of] the following adic pair

(OWI . )/PL, .. ), OW 1)/ (1, Pa)h)) *)
where U C S is an affinoid subspace, x := (xy,...,X,) is a n-tuple of vari-
ables with n € N, y := (y1,..., ym) is a m-tuple of variables with m € N, and

P :=(Py,..., Py) is a m-tuple of polynomials in O(U)[x, y1 such that det(%)
is invertible in O(U)(x, y)/ (P, ..., Py).

Proof Any étale space over the perfectoid relative poly-disc B ~ Lian B’ is locally

defined over B’ so the claim on RigSm /S, which follows from [14, Proposition
1.7.1(ii1)] immediately implies the claim on PerfSm /S. (I

Proposition 3.6 Ler X = Spa(R, R™) and X' = Spa(R’, R'") be spaces in
RigSm /S of the form () and let f: X'* — X be a morphism. There exists a
homotopy H: X'P x B! — X such that Hy = f and Hy has a (unique) model
X'?™ — X for some n > 0.

Proof We let R/t be the image in Rt := OF(X'PT) of the injective map
OH(X'?P™)y —» O (X'Perty (we recall that X' is reduced as it is smooth over the
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reduced space S which is perfectoid) and we remark that R'* is the r-adic completion
of Rt := |J R/*. The morphism f is determined by some mapping x; > s; € R'*
and y; — t; € R”r By means of [6, Corollary A.2] we may find a unique array of
power series F, ..., F, € R/[[a — s such that P(o, F(o)) =0, F(s) = t. More-
over, they are in R/+ [x =N (c — $)] for a sufficiently big N > 0. For any § € R}
which is sufficiently close to s we may then define a homotopy H as the map deter-
mined by
x> E+E—3 7, F((s—3- 1))

and remark that, by definition, we have Hy = f. In order to show that H; factors
(uniquely, as the maps R, — R’ are injective) over some X', we are left to show
that the elements 7 := F (s — §) lie in R/

Suppose without loss of generality that s lie in R’ = R;. We consider
the R’-algebra E defined as E = R'(y)/(P(s, y)) which is étale over R’, and over
which the map R" — R’ factors. In particular, the étale morphism Spa(E, E1) x x
X'Perf . x'Pert gplits. In light of the equivalence between the étale topos of X’Perf
and X, we conclude that Spa(E, E*) — X’ splits proving that 7 is a m-tuple in R},
as wanted. (]

Proposition 3.7 Ler X = Spa(R, R") and X' = Spa(R’, R'") be spaces in
RigSm /S of the form (x). The canonical map

(Lpi Ly, A (X)) (X') = (Lgi L, Perf, Perf* A(X))(X')

is a quasi-isomorphism.

Proof By direct inspection, we may rewrite the two complexes above as follows:

lim NA((X x B)?, X) - NAXP" x B, X)

n

with N denoting the normalized complex associated to the cubical complex of abelian
groups. The claim then follows from (the proof of) Proposition 3.6 by arguing as in
[6, Proposition 4.2]. U

Proof of Theorem 3.1 The effective part of the theorem easily implies the stable ver-
sion, so we stick to it for simplicity. By means of Proposition 3.5 and the equivalence
fo the étale site of X" and of X we see that Perf* sends a class of compact genera-
tors to a class of compact generators, and that Perf,, commutes with ét-sheafification,
preserving then the ét-local equivalences. The multiplication w on B! defines a mor-
phism

Perf* (Perf, As(BY) ® As(BY)) = Perf* Perf, As(BY) ® AsBY) — AsBy) @ By £ AsBY)

which induces a homotopy between the identity and the zero-map on Perf, (A(IB% ),
showing that Perf, sends B!-local equivalences to B'-local equivalences.
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We deduce that in order to prove the claim, it suffices to show that F —
Perf, Perf* F is a (B!, ét)-local equivalence for any F and we may actually restrict
to the case where F is Ag(X) with X as in (x) as such motives are a class of com-
pact generators (by Proposition 3.5). Using Proposition 3.4 we may alternatively
prove that LyiIL,Ag(X) — L L, Perf, Perf* Ag(X) is a weak-equivalence, and
this follows from Proposition 3.7. (I

When trying to generalize the second half of Theorem 3.1 to the case of a per-
fectoid S in characteristic 0, one is immediately stopped by the lack of a canonical
map RigDA (S) — PerfDA¢ (S) which is as “geometric” as the one given by the
perfection in positive characteristic. As in [6] we now give an alternative route to
constructing such a map, in a compatible way with the characteristic p case.

Definition 3.8 We let s PerfSm /S be the full subcategory of Rig /S whose objects
are spaces X thatare locally étale over BY xg @g” forsome M, N € N. This category
obviously contains Sm /S (by taking M = 0) and PerfSm /S (by taking N = 0). We
let sPerfDAf,:’ff (S) be the category of B! -invariant étale (hyper)sheaves on s PerfSm /.S
with values in A-modules. The continuous inclusions«: Sm /S — s PerfSm /S and
B: PerfSm /S — sPerfSm /S induce adjoint pairs

a*: RigDAS! (S) = sPerfDAST(S) e

and
B*: PerfDAS (S) = sPerfDAL(S) : .

In particular, there is a functor B.a*: RigDAST (S) — PerfDAST(S).

We remark that the functor above is the same as the one of Theorem 3.1 in case
char § = p. Indeed, under this hypothesis, we may consider the relative perfection
functor also at the level of semi-perfectoid spaces s PerfSm /S — PerfSm /S, X
XPef It induces an adjoint pair

Perf™: RigDAST (S) = sPerfDAS (S) :Perf’,

and we note that the functor Perf* is nothing more than the composition Perf’* o*.
Our claim then follows from the following:

Proposition 3.9 Suppose that S has characteristic p. The functor 5* is a left adjoint
to Perf’™. In particular, B.o* = Perf™*.

Proof We remark that S: PerfSm /S — sPerfSm /S is a left adjoint to
Perf’: s PerfSm /S — PerfSm /S. By the Yonedalemma, we deduce that they extend
to an adjoint pair

B*, : Psh(PerfSm /S, A) = Psh(s PerfSm /S, A): Perf™
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between the (infinity) categories of (complexes of) presheaves. Both functors
preserve étale (hyper)covers, fiber products and the object ]BS1 so they both pre-
serve (ét, B! g)-equivalences. As Perf™ has a left adJ01nt that preserves these equiv-
alences, we deduce that it also preserves (ét, BY)-local objects. We then conclude
that the adjunction (8*, Perf™*) extends to an adjunction on the motivic categories,
as wanted. (]

It is a non-trivial endeavor to prove the following generalization of Theorem 3.1
whose proof we won’t comment here.

Theorem 3.10 (/5]) Let S be a perfectoid space over some field. The functor B,o*
defines an equivalence ngDA(e )(S) = Pe fDA(eff) (S).

By putting together Theorem 3.1 and the previous result, we obtain the following:

Corollary 3.11 Let S be aperfectoid space. There is an equivalence RigDASﬁ) MHE
PerfDAS™ (S) = RigDAS™ (S").

Proof The tilting equivalence translates motivically into an equivalence
PerfDAgff) (S) = PerfDAg’ff) (S”). The equivalence of the statement is then obtained
by putting together Theorems 3.1 and 3.10. O

4 Classic De Rham-Like Cohomologies via Motives

In this section, we make a survey on the “classic” de Rham-like cohomology theories
for rigid analytic varieties and perfectoid spaces, revisited in the language of motives,
based on [17] and [18] which is further expanded by [5].

Remark 4.1 Though we won’t comment on them in the present article, also £-adic
realizations for analytic motives have been defined in [19] and [7, Sect. 2.10].

We start by a recollection of standard facts on the rigid and the overconvergent
de Rham cohomologies, that will be necessarily imprecise and incomplete. All the
details can be found in [20-23].

Let’s fix a field k of characteristic p > O that we will assume to be perfect (for
simplicity). The approach of Berthelot [24] and Monsky-Washnitzer [25] for the
definition of a de Rham-like p-adic cohomology for varieties over k can be summa-
rized (somehow a posteriori, following Grofe-Klonne) as follows: a smooth variety
X over k can be lifted locally as a smooth variety X over W (k) (the DVR given by
the Witt ring). The choice of such lifts is unique, étale-locally on the special fiber,
“up to homotopy”, and even canonical “up to automorphisms” if we consider smooth
formal lifts X over W (k). A precise statement can be found in [26, Théorémes 2.2.2,
3.3.2]. It is therefore possible, “somehow canonically” to associate locally a smooth
rigid analytic variety (the generic fiber X of X) to the smooth variety X.
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This way, we have changed the base field: from & (of positive characteristic) to
K = Frac W (k) which has characteristic 0, but with a major drawback: we now have
to consider rigid analytic varieties rather than algebraic varieties. Without further
structure, a (non-proper) smooth rigid analytic variety doesn’t give rise to a well-
behaved de Rham-like cohomology theory. One needs to do a choice of a “thickening”
(what we will call an overconvergent structure following [27]) XT := (X € X") of X
into a strictly larger (i.e., containing the absolute compactification over K) smooth
rigid analytic variety X’ and consider the subcomplex Qyi/x of Qx/kx of those
differential forms that extend to a strict neighborhood of X inside X'. Once again,
such local choices are sufficiently canonical, “up to homotopy” (see [22]). It is
therefore possible “somehow canonically” to associate locally to the smooth variety
X a smooth overconvergent variety X" and a de Rham-like complex Qy+ sk Which is
used to define a cohomology theory for X, and a posteriori for X by combining the
two procedures above. It is a non-trivial task to prove that these cohomology theories
are well-defined and functorial, and enjoy the expected properties of a de Rham-like
cohomology theory (for example, being finite dimensional on qcqs varieties): see
[23, 28-30] etc.

We now give an alternative way to describe the above phenomena. Since the
eventual aim is to define a Weil cohomology theory for varieties over k [resp. analytic
varieties over K] it is quite natural to consider the motivic categories associated to
these objects. As expected, they form a convenient setting where to state and study
lifts and thickenings “up to homotopy”’. We collect the principal motivic facts in the
following statement.

Theorem 4.2 Let K be a complete non-archimedean field of characteristic 0 with
valuation ring O and a perfect residue field k, and let A be a Q-subalgebra of K. We
also let IB?}; be the overconvergent variety given by the strict embedding IB%% S P}(a“
and RigDA;(eff) (K) be the (effective) DG-category of B' -invariant étale sheaves of
A-vector spaces on smooth overconvergent varieties over K.

(1) The complex of presheaves Q' : XT > Qxi/x is a (BT, ét)-local object of
RigDA;ff’ff(K ). In particular, for any overconvergent smooth rigid variety X'
one has

Map(Ax (X)), Q1) = Q) ;.

(2) The forgetful functor 1: X' = (X € X') + X induces an equivalence of
monoidal compactly generated stable infinity categories ngDAT(eff) (K)
= RigDAS™ (K).

(3) The analytification functor X > X™ induces a compact-preserving, colimit-
preserving map of monoidal compactly generated stable infinity categories

DAY (K) — RigDAY™ (K).

(4) The special fiber functor induces an equivalence of monoidal compactly gener-
ated stable infinity categories FDASH)((’)K) ~ DAg’ff) (k) where FDASff) (Ok)
is the category of (effective, étale, with A-coefficients) motives of formal schemes
over Ok (see [7, Remark 3.1.5(2)]).
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(5) The generic fiber functor induces a compact-preserving, colimit-preserving map
of monoidal compactly generated stable infinity categories FDASH)(OK) —
RigDAS™ (K).

(6) In particular, we obtain the following compact-preserving, colimit-preserving,
monoidal functor:

DA (k) = FDA4(Ok) — RigDA;(K) = RigDA] (K)

and a monoidal contravariant realization functor on the last category, with
values in K -modules:

Rig: RigDA} (K) — D(K)

induced by M + Map(M, Q7). The associated cohomology theory on DA (k)
coincides with Berthelot’s rigid cohomology Hr’{g, the one on RigDA,,(K) coin-
cides with Grofie-Klonne’s overcovergent de Rham cohomology HjR.l. and the
one on DA (K) (via analytification) coincides with the usual algebraic de Rham
cohomology Hy.

(7) In case K is perfectoid, for any fixed embedding k — K’ we can define, in light
of (®) a functor

DA (k) — DA4(K”) — RigDA;(K") = RigDA,(K) = RigDA’ (K).

which is equivalent to the one in Point (6).

(8) Compact motives of RigDA;,(K) are fully dualizable. In particular, the over-
convergent de Rham cohomology is finite dimensional on any compact motive in
RigDA,,(K) such as motives of smooth quasi-compact rigid varieties over K, or
analytifications of quasi-projective (not necessarily smooth) varieties over K.

(9) Compact motives of DAy (k) are fully dualizable. In particular, rigid cohomology
is finite dimensional on any compact motive in DA (k) such as motives of any
quasi-projective (not necessarily smooth) variety X over k.

Proof Points (1) and (6) are shown in [17, Proposition 5.12], point (2) is [17, Theorem
4.23] and point (4) is [1, Corollaire 1.4.29]. Point (7) is the content of [18]. The
functors of points (3) and (5) are left adjoint functors, hence colimit-preserving. As
they preserve direct products, they induce monoidal functors on motives. Moreover,
they send affine smooth varieties to affinoid smooth varieties. Motives of such spaces
are a class of compact generators (by [1, Proposition 1.2.34]) so the functors are also
compact-preserving. The fact that compact motives in DAg (k) and DA (K) are
dualizable follows from [31] and the same is true for RigDA, (K) by [1, Théoréme
2.5.35]. Points (8) and (9) then follows from the classic description of compact
objects (perfect complexes) in D(K). O

Remark 4.3 The content of Theorem 4.2(4) is the most precise way to state the
following: it is possible to associate canonically a smooth rigid analytic motive over



The Relative (de-)Perfectoidification Functor ... 27

K to any variety X over k. Similarly, the content of Theorem 4.2(2) can be rephrased
by saying that it is possible to associate canonically an overconvergent rigid analytic
motive over to any rigid analytic variety X over K.

Remark 4.4 Let X be an algebraic variety over Ok . The special fiber of its w-adic
completion is just the special fiber &} of X. In light of Theorem 4.2(4) we conclude
that cohomologically speaking, the act of w-adically completing X gives the same
information as the act of taking its special fiber. More precisely: the following triangle
commutes.

o FDA«(Ok)

DA (Ok) - ~ i

DA (k)

Remark 4.5 Following [32, Sects. 0.2—0.3] there are two possible ways to “anali-
tify”” a smooth algebraic variety X’ over Ok on the one hand one can consider the
formal scheme given by its ;r-adic completion X and then the generic fiber X, of it;
on the other hand one can first take the generic fiber Xk (an algebraic variety over
K') and then its analytification X'Z". It is well-known (see [32, Proposition 0.3.5])
that the first rigid analytic space is canonically embedded as an open subvariety of
the second, and that they coincide whenever A" is smooth and proper (they differ in
general: for example whenever X is lives on the generic fiber Spec K of Spec Ok,
the first space is empty). It is easy to see that such functors preserve étale covers and
homotopies, therefore defining the following (non-commutative) square of monoidal
colimit-preserving maps:

DA4(Ok) — DA« (K)

| = |

FDA&(Ox) — RigDA, (K) —* D(K)*

DA (k)

where the natural transformation « is induced by the functorial open immersion
X, C X" and R,y is the (overconvergent) de Rham realization. We then obtain
two monoidal realizations DA (Og) ——= D(K) . When applied to some motive
Ao, (X), one gives the rigid cohomology of the special fiber X; and the other gives
the de Rham cohomology of the generic fiber X, respectively. Moreover, « defines
a canonical natural transformation between the two which is invertible on the full
monoidal subcategory with sums generated by (the motives of) smooth and proper
varieties.

Remark 4.6 Even though the motivic categories are defined as sheaves on smooth
varieties (or smooth formal schemes, or smooth rigid varieties etc.) it is possible to
define motives attached to an arbitrary quasi-projective variety (or arbitrary rigid
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varieties) using the 6 functor formalism: the (homological) motive A(X) attached
to such a variety X is given by fif'A with f: X — Spa K being the structural
morphism. This formalism is fully developed in [8, 33] (in the algebraic case) and
in [7] (in the analytic case).

5 New De Rham-Like Cohomologies via Motives

In this section, we make a survey on the “new” de Rham-like cohomology theories
for rigid analytic varieties and perfectoid spaces whose construction is based on the
properties of motivic categories.

We start by a de Rham cohomology for perfectoid spaces introduced in [17, 18,
34], which is further expanded by [5]. Simply by combining Theorems 3.1 and 4.2
we deduce the following.

Theorem 5.1 Let K be a perfectoid field.

(1) Suppose thatchar K = 0. LetX ~ l(in X, be a smooth perfectoid space obtained
by relative perfection of an étale map Xy — IBS%. Foranyi, the system H é o)
is eventually constant, and the association X > H[’} r(Xn), h > 0 induces a
well-defined functorial cohomology theory H;R()? , K) on smooth perfectoid
motives over K. It has étale descent, a Kiinneth formula, and finite dimension
whenever X is quasi-compact.

(2) Supposethatchar K = p > 0. Forany fixed un-tilt K* of K the association X
HjR (5(717 K% is a well-defined functorial cohomology theory Hém(f: K% on
smooth perfectoid motives over K. It has étale descent, a Kiinneth formula, and
finite dimension whenever X is quasi-compact.

(3) Suppose that char K = p > 0. For any fixed un-tilt K* of K the association
X+— H Zz r(X Perf K'Y is a well-defined functorial cohomology theory on smooth
rigid analytic varieties over K which extends to arbitrary rigid analytic varieties
and is compatible with rigid cohomology with coefficients is K* whenever X is
of good reduction. Moreover; it has étale descent, a Kiinneth formula, and finite
dimension whenever X is smooth and quasi-compact or the analytification of a
quasi-projective algebraic variety.

Remark 5.2 In [5] also a relative version of the (overconvergent) de Rham coho-
mology for rigid analytic spaces is introduced. It is also shown that it enjoys many
properties which are common to the archimedean/algebraic analogue, such as the
fact that HJ, (X/S) is a vector bundle on the base whenever X — § is smooth and
proper.

Suppose that K is a perfectoid field of characteristic p > 0. The need of choosing
an un-tilt of K in order to define a de Rham-like cohomology theory for (rigid
analytic) varieties over K can be considered unnatural and unsatisfactory for some
purposes. To remedy this, in [5] the various cohomology theories X +— H, (X, K*)
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are “pasted together” into a vector bundle over the Fargues-Fontaine curve of K by
means of the following

Theorem 5.3 ([5]) Let K be a perfectoid field of characteristic p > 0. We let Xx be
the analytic space given by the adic Fargues-Fontaine curve associated to it. There
is a monoidal realization functor

RdRFF: ngDAet(K) —> QCOh(XK)Op

giving rise to a cohomology theory Hjp(—, Xx) with values in quasi-coherent Xk -
modules (defined as in [35]). Moreover, whenever M is compact (eg. M is the motive
of a quasi-compact smooth rigid variety, or the analytification of a quasi-projective
algebraic variety) then the modules Hj, (M, Xi) are vector bundles, and equal to
zero if |i| > 0.

Remark 5.4 The previous result gives a canonical analytic de Rham cohomology
in positive characteristic, and answers positively to a conjecture of Fargues [36,
Conjecture 1.13] and Scholze [37, Conjecture 6.4].

Remark 5.5 In [5] also arelative version of the previous theorem is shown, building
on Remark 5.2.

The cohomology Hj,(—, Xk) above is not the only motivic cohomology theory
with values on vector bundles on a Fargues-Fontaine curve. Fix an algebraically
closed complete valued field C over Q,. In [34], Le Bras gives a motivic, over-
convergent and rational version of the A;;s-cohomology introduced for smooth and
proper formal schemes over O¢ defined as follows: consider the pro-étale sheaf Ayt x
defined on affinoid perfectoid spaces over X := X¢ as Spa(P, P*) — W(P"*) and
its pull-back Rv, Ay to the Zariski site of X. Take the complex obtained by décalage
Ln, Rv,Ajr (nbeing [e] — 1) and, finally, the complex RT'z, (X, L1, Rv4Ajnr). This
complex is known to be related to the various p-adic integral cohomologies defined
on X (see [38]).

Theorem 5.6 ([34]) Let C be an algebraically closed complete valued field over

Qp.

(1) Let X be a smooth rigid analytic variety over C endowed with a dugger structure
X" = (X € X'). Consider the association

X+ lim RI4(X;, Ln;Rv.B)
XEX,CX'

where Rv,B is the pull-back to the étale topos of X, of the pro-étale sheaf B
defined on affinoid perfectoid spaces over Xy, as Spa(P, PT) > O(Yp.p+)) and
L, is the décalage functor with respect to a generator t of ker(6: W(P**) —
P™). It gives rise to a well-defined functor

Rrr: RigDAS™ (C) — QCoh(X¢:)P
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(2) fC=C,and M € RigDA(é:’ff)(C) is compact (for example, it is the motive of a
quasi-compact smooth rigid variety, or the analytification of a quasi-projective
algebraic variety) then the cohomology groups H' (R 77 M) are vector bundles
on the curve X¢» and equal to O for |i| > 0.

Remark 5.7 It is not hard to see that R £ £ is the rational, overconvergent analogue
of the A;,r-cohomology, and it is also possible to relate it to the de Rham cohomology,
see [34].

Finally, we sketch briefly the construction of Ayoub of a “new motivic Weil
cohomology” for varieties over a field k of positive characteristic. The aim of this
construction is somehow different from the previous ones: we have mentioned that
the Ajpr-cohomology specializes to the various p-adic cohomology theories, and is
therefore intimately linked to p-adic Hodge theory and p-adic periods. The con-
structions above are aimed to generalizations and extensions of this idea.

On a different direction, one can try to build a realization which specializes to the
various £-adic realizations (including £ = p): such an approach would be interesting,
for example, to inspect the independence on ¢ for £-adic cohomologies. Choose a
(non necessarily complete!) valued field K of mixed characteristic, with k as residue
field and let K be its completion. We already considered the following two adjoint
pairs R

&: DAa(k) = RigDAL(K): x

Rig*: DA&(K) = RigDA,(K): Rig,

The fact that £ and Rig* are monoidal induces formally a decomposition of the
functors above:

DA« (k) = DAg(k, x1) = RigDA,(K) (A)

Rig™*

DA (K) m—— DA« (K, Rig, 1) —= ngDAet(K) (B)
Rig,

where the category DA (k, x) [resp. DA« (K, Rig, 1)] in the middle denotes the

category of modules over the motive x 1 [resp. Rig, 1]. This object inherits a natural

algebra structure deduced from the monoidality of & [resp. Rig*]. The adjunction

on the left is simply given by the free module structure/forgetful pair, while the

adjunction on the right is built out of the natural x 1-module structure [resp. Rig, 1-

module structure] which can be given to the objects of the form x M [resp. Rig, M].
The main theorem of [39] is then the following.

Theorem 5.8 (/39]) Let K be a subfield of C equipped with a rank-1 valuation
with residue field k of characteristic p > 0 and completion K.

(1) The functor Rig™ of (B) gives an equivalence of monoidal co-categories
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DA (K, Rig, 1) = RigDA,,(K).
(2) The (homological) algebraic de Rham realization
Rar: DAy(K) — D(K)
induces a monoidal functor
R, RigDA,(K) = DA4 (K, Rig, 1) - D(K, Ax)

where the category on the right denotes the category of modules over the object
Ak = Ryg Rig, 1 equipped with its natural DG-algebra structure.

(3) The complex Ak is in D>o(K). In particular Agx := Hy(Ak) has a K -algebra
structure, there exists a map of DG-algebras Ax — Ak and one can define a
realization for DA (k) as follows:

~ R,
Ruew: DA (k) 5 RigDA;(K) = DAy (K, Rig, 1) — D(K, Ax) — D(Ag).

(4) The algebra Ak can be explicitly computed in terms of generators and relations.

(5) There are ring maps Agx — K and Ag — Qe for any £ # p (depending on
a choice of isomorphism Q, = C) such that the realizations obtained by base
change

DA (k) 2% D(Ax) > D(K)  DAx(k) 2% D(Ax) — D(@y)

are equivalent to the rigid realization, and the £-adic realization, respectively.

Remark 5.9 One of the main results of [39] is actually the explicit computation of
the algebra A g that we only vaguely mentioned in the theorem above. It turns out that
the description of the ring A is the non-archimedean analogue of the construction of
the ring of complex periods considered in [40]. In spite of this explicit presentation,
a full understanding of the algebraic properties of Ag (eg. being an integral domain)
seem to be out of reach, and any progress in this direction would be of much interest
as explained in [39].

The construction above is based on the equivalence RigDAg(K) =
DA (K, Rig, 1) arising from the monoidal left adjoint functor Rig*. In [7] the
other monoidal functor £ is analyzed, obtaining the following analogue of Theo-
rem 5.8((1)).

Theorem 5.10 ([7, Theorem 3.3.3]) Suppose that K is algebraically closed. The
functor &' of (A) defines an equivalence of monoidal co-categories

DAu(k, x1) = RigDA,(K).
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Remark 5.11 In [7] a more general statement is shown: one can extend the equiv-
alence above even in the case of a higher rank valuation, defined by some valuation
subring Kt C K, obtaining an equivalence

DA (Spec(K*/m), x1) = RigDA, (Spa(K, K1)

where 7 € KT is a non-zero topologically nilpotent element.

6 A Betti-Like Cohomology via Motives

The aim of this section is to define another motivic cohomology theory for rigid
analytic varieties and perfectoid spaces. Contrarily to the de Rham version considered
above, this won’t be a Weil cohomology and can’t be expected to compare to £-
adic cohomologies. Nonetheless, Berkovich showed ([41]) that it contains some
interesting information, and the motivic language can be used to extend his results.
The main theorems of this section are taken from [42].

We recall that the Berkovich topological space | X |gerx underlying a rigid analytic
variety X is the maximal Hausdorff quotient of the (locally spectral) topological
space |X| It coincides with the topological space defined by the partially proper
topology on X, or equivalently, to the topological space introduced by Berkovich.

Theorem 6.1 ([42]) Let K be a complete non-archimedean valued field, and let ¢
be a prime which is invertible in the residue field k. Let also C be a fixed complete
algebraic closure of K.

(1) Put A = Q. There is an -adic realization functor
Re: RigDAL™ (K) — Shpros (K, Q)

which is monoidal, and which sends compact objects to constructible complexes.
For any smooth variety X over K, the homology groups H,(R;A(X)) compute
the L-adic homology of X.

(2) The canonical functor

t*: Shu(K, A) — RigDAS(K)
induced by the inclusion of the small étale site into the big one, has a left adjoint

Rp: RigDAS" (K) — Shy(K, A)
that can be described explicitly as the functor induced by mapping a variety X to
the singular complex A[Sing(|X ¢ |gerk)] of the topological space | X ¢ |gerk With
coefficients in A.
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(3) Suppose that K is a finite extension of Q, and let F: Gal(k) — Gal(K) be a
fixed lift of Frobenius. The following diagram

SE(K, Q) —— RigDAY (K, Q)

t

—®Q@2—R5J JRK

Shg:(K’ QZ) Sh]c;):‘oet(Kv QZ)

F{ JF*

S (k, Q) —— Shet_, (k, Qp)

t

is commutative and left adjointable, in the sense that there are left adjoint func-
tors Rp to the functors * and the canonical natural transformation Rg F*R, =
F*R,Rp is invertible.

Proof Only the last point does not appear as stated in [42], but it is easily seen to be
equivalent to [42, Corollary 5.5]. ]

Remark 6.2 In[42] we showed that the theorem above can be used to have a concrete
generalization of a result of Berkovich [41] for which whenever K is a local field,
the Betti cohomology of the underlying Berkovich space with Q;-coefficients of a
variety X coincides with the smooth part of the Galois £-adic representation given
by the associated étale cohomology.

As we focus in this paper on the role of motivic tilting and de-perfectoidification,
we point out that the Berkovich realization given above can be equivalently defined
for perfectoid motives, in a compatible way with the equivalences of Theorem 3.1.

Proposition 6.3 (/42]) Let K be a perfectoid field and C be a complete algebraic
closure of it.

(1) The functor X — A[Sing(|Xc|gerk)], where A[Sing(T)] is the singular complex
of a topological space T with coefficients in A, induces a colimit-preserving
monoidal functor

Rp: PerfDAS" (K) — Shu(K, A).

(2) The following diagram is commutative.

RigDAST (K )

R

PerfDAST(K) ——% Shy (K. A)

e

RigDAS (K") — =" Sho (K", A)
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Proof In light of [42, Sect. 4] only the formula for the perfectoid version of Rp
needs to be justified. As the tilting equivalence gives rise to homeomorphisms on
the Berkovich spaces attached to perfectoid spaces, we may assume char C = p.
By the equivalence Perf*: RigDAS"(C) = PerfDAST(C) the formula then follows
from the analogous formula for rigid analytic varieties and the homeomorphism
| XPerf| = | X]. O

As previously anticipated, this cohomology theory is not a Weil cohomology. It does
not even extend to the stable categories of motives as indeed it “kills” Tate twists
(this is compatible with Remark 6.2).

Remark 6.4 If X is a geometrically connected rigid variety of good reduction over
K, then Rp A(X) = A[O]. In particular, we have Rp(Tx) = 0.

As a matter of fact, because of the functor §: DA (k) — RigDA(K) that
we introduced above, it is impossible to define any Weil realization functor from
RigDA (K) with values in Q-vector spaces, whenever K is a local field of mixed
characteristic. Any such realization would otherwise violate Serre’s counterexample
to the existence of a rational Weil cohomology theory for varieties over a finite field
([43, Page 315]).
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1 Introduction

Smooth complex representations of reductive p-adic groups play a pivotal role in
the global Langlands program as they appear as local factors of automorphic repre-
sentations. These local representations are admissible. Recall that a representation
is smooth if every vector has an open subgroup fixing that vector, and it is admis-
sible if the subspace fixed by any open subgroup is finite-dimensional. The mod p
analogue of the local Langlands correspondence makes it necessary to understand
smooth mod p representations of reductive p-adic groups. Unlike complex represen-
tations, one does not have analytic methods at one’s disposal to study smooth mod
p representations of p-adic groups because they do not admit a non-zero E—valued
Haar measure. Diagrams give a powerful tool to construct interesting smooth mod
p representations of reductive p-adic groups.

Breuil and Paskunas used diagrams attached to certain Galois representations to
construct irreducible admissible supercuspidal mod p representations of GL,(Q,/)
where Qs is the degree f unramified extension of Q, ([1]). The universal supercus-
pidal representations, i.e., the compact inductions of weights modulo the image of
the Hecke operator, classify all irreducible admissible supercuspidal mod p represen-
tations of GL,(Q,), while in general, their irreducible admissible quotients exhaust
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all admissible supercuspidal representations of GL,(Q,) for f > 1 ([2], Proposi-
tion 4.6). The theory of diagrams can be used to show that, for f > 1, the universal
supercuspidal representation is not of finite length and is also not admissible ([3],
Theorem 3.3). This also follows from [4], Corollary 2.21 and [5], Corollary 4.5. This
indicates that the mod p representation theory of GL,(Q,/) is more involved than
that of GL,(Q,) ([6], [1]). For some work on the mod p representation theory of
GL, over a totally ramified extension of Q,, see, for example, [7], and for a general
finite extension of Q,, see [8].!

By the work of many mathematicians such as Harish-Chandra, Jacquet, and
Vignéras, it is known that all smooth irreducible representations of connected reduc-
tive? p-adic groups over algebraically closed fields of characteristic not equal to p are
admissible ([11], IT §2.8). The main point is to show that all irreducible supercuspidal
representations are admissible, since a general smooth irreducible representation is
a subrepresentation of the parabolic induction of an irreducible supercuspidal rep-
resentation and parabolic induction preserves admissibility. However, it is no longer
true that irreducible supercuspidal representations over characteristic p fields are
admissible. Recently, Daniel Le constructed non-admissible irreducible (supercus-
pidal) I&Tp—linear representations of GL,(Q),s) using infinite-dimensional diagrams
for all f > 2, although only the case f = 3 is presented in his paper for simplicity
([12]). Applying Le’s method to a diagram attached to a split reducible Galois rep-
resentation, the authors have constructed non-admissible irreducible representations
of GLy(Q,2) ([13]).

This article gives an expository treatment of the theory of diagrams of Breuil and
Paskunas, and provides a proof of Le’s construction of non-admissible irreducible
mod p representations of GL,(Q,s) for all f > 2. It is organized as follows. In
Sect. 2, we introduce (finite-dimensional) diagrams and describe how they give rise
to smooth admissible representations of GL, over p-adic fields. Section 3 focuses
on diagrams attached to Galois representations and on the irreducible admissible
supercuspidal representations of GL,(Q,) that they give rise to. Finally, we prove
Le’s theorem for all f > 2 in Sect. 4.

1.1 Notation

Let p > 2 be a prime number and Q,, be the field of p-adic numbers. Let Qs denote
the unramified extension of Q, of degree f with ring of integers Z,,. The residue
field of Q,,/ is the finite field IF,,; with p/ elements. Fix an algebraic closure IE‘_,, of
[F, and an embedding F),; — IE‘_,,

For an arbitrary but fixed f, let G = GL2(Q,s), K =GLy(Z,s), and T' =
GLy(F,s). Let B and U be the subgroups of I' consisting of the upper triangular

! The words supersingular and supercuspidal are used interchangeably in the literature for mod p
representations. These two a priori different notions are now known to be equivalent ([9]).

2 The reductive hypothesis is necessary; see [10].
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matrices and the upper triangular unipotent matrices, respectively. Let I and I; be
the preimages of B and U, respectively, under the natural surjection K — I'. The
subgroups [ and I; of K are called the Iwahori and the pro-p Iwahori subgroup of
K, respectively. Let K,, denote the nth principal congruence subgroup of K, i.e., the
kernel of the reduction map K —> GLy(Z,s/p"Z,s) modulo p" for n > 1. Write
N for the normalizer of I (and of ;) in G. Then N is generated by I, the center Z
of G and by the element IT = (! §).

Unless stated otherwise, all representations considered in this paper are on E—
vector spaces and are sometimes referred to as mod p representations. A weight
is a smooth irreducible representation of K. The K-action on such a representation
factors through I" and thus a weight is an irreducible representation of I" ([2], Lemma
2.14). For a character x of 1, x* denotes its IT-conjugate sending g in I to x(ITgIT~1).
Given a weight o, the subspace ot of its I, -invariants has dimension 1. We denote the
corresponding smooth character of I afforded by the space o/t by x,. If x, # X,
then there exists a unique weight o° such that x, = x; ([14], Theorem 3.1.1).
For an [-representation V and an [-character y, we write VX for the y-isotypic
part of V.

2 Diagrams and the Existence Theorem

Diagrams were introduced by Paskunas in [14] to construct smooth admissible rep-
resentations of G.

Definition 2.1 A diagramisatriple (Dy, Di, r) where Dy is a smooth representation
of KZ, D, is a smooth representation of N,and r : Dy —> D is an I Z-equivariant
map. A diagram (Dy, Dy, r) is called a basic diagram if p acts trivially on Dy and
Dy, and r induces an isomorphism D; = Dé‘ of I Z-representations.

The idea is to use the data of a basic diagram to construct a space 2 admitting
actions of both K Z and N which agree on /Z = KZ N N. Let G° be the subgroup
of G consisting of matrices whose determinant is a p-adic unit. Since G is an
amalgamated product of K and TIKTT~!, and G = G° x I1%, the actions of K Z and
N on 2 glue together to give a G-action on 2. This G-action is unique because K Z
and N generate the group G ([2], Theorem 3.3 and Corollary 3.4).

A way to construct 2 is to use injective envelopes of finite-dimensional repre-
sentations of finite groups. An injective envelope of a representation is the “small-
est” injective object containing the representation ([2], Definition 5.12). If the sub-
space Dé( ! of K;-invariants of Dy is finite-dimensional, then the K-socle socg Dy of
D, i.e., the maximal semi-simple K -subrepresentation of Dy, is finite-dimensional,
and therefore the direct limit li_I)n” injg g, (sock Do) of finite-dimensional injective
envelopes exist in the category of smooth K-representations. By [2], Proposition
5.17, this direct limit is the smooth injective envelope inj (socg D) of Dy.

Let Q2 := injg (sock Dy) be equipped with the K Z-action such that p acts trivially.
The smooth injective /-envelope inj; D of D, appears as an /-direct summand of
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2 via the I Z-equivariant map r. There is a unique N-action on inj; D; compatible
with that of I and compatible with the action of N on D; ([2], Corollary 6.7). Let e
denote the projection of 2 onto inj; D;. By [1], Lemma 9.6, there is a non-canonical
N-action on (1 — ¢)(2) extending the given [-action. This gives an N-action on
2 whose restriction to I Z is compatible with the action coming from K Z on .
Consequently, there is a G-action on 2 as discussed two paragraphs above.

Let 7 be the G-representation generated by Dy inside 2. Then, we see that

sock Dy C socgm C sock (injg (sock Dp)) = socg Dy

so that equality holds throughout.
We summarize the above discussion in the following theorem ([2], Theorem 5.10).

Theorem 2.2 (The existence theorem) Let (Dy, D1, r) be a basic diagram such
that Dy is finite-dimensional and K acts trivially on Dy. Then there exists a smooth
admissible representation w of G such that

(1) (7%, 7l can) contains (Dy, Dy, r), where can is the canonical inclusion,
(2) mis generated by Dy as a G-representation,
(3) socgm = socg Dy.

Note that the representation 7 in the theorem above is admissible because kK C
(inj g (sock Dy)) Kn = injg /K, (socg D) which is finite-dimensional (cf. [14], Lemma
6.2.4).

We remark that the discussion in this section, i.e., the notion of a basic diagram
and the existence theorem, works for G = GL, (F) for any finite extension F' of Q,.

Example 2.3 Let G = GL,(Q,) and o be a weight. Take Dy = 0 @ ¢* and D; =
Dél = X, ® X Let IT map a basis vector of the underlying vector space of ., to that
of 3. By letting p act trivially on Dy and D, we get a basic diagram (Dy, D, can)
where can is the canonical injection. The existence theorem applied to this diagram
givesrise to a G-representation 7 thatis irreducible and supercuspidal, and is uniquely
determined by the diagram (Dy, Dy, can) ([2], Lemma 5.2). In fact, one obtains all
irreducible admissible supercuspidal representations of G up to a smooth twist in
this way as ¢ varies. Under the mod p local Langlands correspondence for GL,
over Q,, 7 is mapped to a continuous 2-dimensional irreducible representation of
Gal(@/(@p) whose restriction to the inertia subgroup contains the information of
socgkm = socxk Dy = o @ o’.

3 Diagrams Attached to Galois Representations

Let f > 2 for the rest of the article.
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3.1 Diamond Diagrams

Let p : Gal(Q,/Q,r) —> GL,(F,) be a continuous irreducible generic Galois rep-
resentation ([1], Definition 11.7). In [15], Buzzard, Diamond, and Jarvis associate
with p a finite set D(p) of distinct weights anticipating that it would describe the
K -socle of the supercuspidal representation of G corresponding to p under the con-
jectural mod p local Langlands correspondence for GL; over Q,,/ 2 As we shall see,
the set D(p) can indeed be used to construct irreducible supercuspidal representations
with K -socle described by D(p). However, it turns out that there are infinitely many
such representations up to isomorphism. The mod p local Langlands correspondence
for GL, over finite extensions of Q, thus still remains puzzling.

The set D(p) has cardinality 2/. By elementary representation theoretic argu-
ments, there exists a unique finite-dimensional IET,-linear representation Dy(p) of I"
whose I'-socle equals EB(,eD( » 0> and is maximal with respect to the property that
each o € D(p) occurs exactly once in Dy(p) as a Jordan—Holder factor. Further, there
is an isomorphism of I'-representations

Do(p) = P Dos(p)

a€D(p)

with socr Dy ,(p) = o ([1], Proposition 13.1). Viewing Dy(p) as a K -representation,
let us denote by D;(p) the I-representation Dy(p)’* and by D, ,(p) the
[-representation Dy ,(p)”'. If an I-character y appears in D;(p) then so does x°.

While for any finite set of weights, there exists a finite-dimensional
I-representation Dy satisfying the same properties listed above, the properties of
Dy (p) and D, (p) specific to the set of weights D(p) are summarized below.

Proposition 3.1

(1) The Jordan—Holder factors of Dy(p) are multiplicity free.
(2) D (p) is a multiplicity-free semi-simple I-representation of dimension 3/ — 1
and thus
Dip= P xex.

I —character y

Proof See [1], Corollary 13.5, Corollary 13.6, Lemma 14.1, and Proposition 14.7.
O

Proposition 3.1 allows us to define an action of IT on D;(p) by mapping
I-characters to their IT-conjugates, thereby giving a family of basic diagrams
D(p,r) := (Dy(p), D1(p), r) parameterized by I Z-equivariantinjectionsr : D;(p) <>
Dy(p). The diagrams D(p, r) attached to Galois representations p in this way are
called Diamond diagrams in [1].

3 They associate a finite set of weights with any continuous semi-simple generic Galois represen-
tation p. We stick to irreducible p in this exposition. However, see Remark 4.5.
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3.2 The Map 6

We now introduce the map J : D(p) —> D(p) which governs the dynamics of the
[T-action on D(p, r) and plays an important role in proving the irreducibility of
representations of G coming from D(p, r). There is a natural identification of the
set D(p) of weights with the set of subsets of Z/fZ = {0, 1, ..., f — 1} ([1], §11).
Under this identification, the map ¢ is defined as follows:

Definition 3.2 For J C Z/fZ,

(j—1]jeJyu{o} ifl ¢J

§(J)y={" . :
{(j—11jeJy\{0} ifleJ

with the convention —1 = f — 1.

Note that ¢ is a bijection and partitions the set D(p) into §-orbits.

Example 3.3 We list the four §-orbits for f = 5.

Ar={¢p {0} > {0,4} > {0,3,4} > {0,2,3,4} > {0,1,2,3,4} >
{1,2,3,4} — {1,2,3} > {1, 2} > {1},

Ay ={{2} > {0, 1} > {4} > {0,3} > {0,2,4} > {0, 1,3,4} > {2,3,4} >
{0,1,2,3} > {1,2,4} — {1,3}},

A;={{3}—~{0,2} > {0, 1,4} > (3,4} > {0,2,3}{0,1,2,4}—~{1,3,4} —
2,3}~ {0,1,2} > {1,4}},

Ay =1{{2,4} — {0, 1,3}}.

The map § has a nice reinterpretation. Identify the set of subsets of Z/fZ as the
set of binary numbers (sequences of Os and 1s) of length f. The subset J C Z/f7Z
corresponds to the binary number aja; ...ay; under the rule a; = 1 if and only if
J € J, where we make the identification f = 0. Under this identification, J is the
map that moves the first digit of a binary number to the end and changes its parity:

daias...ap) = axas...ayz(a; + 1) with the convention 2 = 0.

Example 3.4 Let f = 5. The subset {0, 1, 3} corresponds to the binary number
10101 and 6(10101) = 01010 which corresponds to {2, 4}.

It follows from the definition that

S (aay...ap) = (@ +2)(ar+2)...(af +2) =aja; .. .as.
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Hence, the order of ¢ is at most 2 f. In fact, the order of § equals 2 f as one easily
sees by considering the J-orbit of the empty set (= f zeros). It follows that the size
of any §-orbit divides 2 f. Observe that § changes the size of a subset J by 1. So
any §-orbit contains an even number of subsets. Therefore, the size of a §-orbit is 2 f’
for some f’ dividing f. Using the reinterpretation of ¢, we can prove the following
result which is of independent interest.

Lemma 3.5 The set D(p) has a d-orbit of size 2 ' if and only lf% is odd.

Proof (=) Supposed := % iseven. Leta = aja, ... ay belongs to a §-orbit of size
2 1. We write

a=aay...apdf1Af42 ... A2f" « . . Ad—-1)f/+1Ad-1)f'4+2 - --Af.

Then

(5f’(a) =Apq1Af4n.. QA2 41A2f42 .. A3 ... (a+Da+1)... (afr +1).

Since a; and ) ; must have opposite parity for all 1 < j < f and d is even by
assumption, we get a; = d(y—2)s+1. Comparing the parity of the last block of f’
digits in a and 5 (a), we also have a1y 41 = a;. This implies that the first digit
a(—2) p+1 of the second last block of f” digits in a is equal to the first digit aa—1) 41
of the second last block of f digits in 6/ (a), a contradiction.

(<) Let a be the f-digit binary number starting with f” Os, followed by f’ 1s,
followed by f” Os, and so on. The number a ends with f’ Os as % is odd. Clearly,
87" (a) flips the parity of the digits of a, showing that the §-orbit of a has size 2 f'.

If o € D(p) corresponds to a subset J, let 6(¢) denote the weight corresponding
to the subset 6(J). The map 0 is characterized by the following property.

Lemma 3.6 For o € D(p), 6(c) € D(p) is the unique weight such that o° is a
Jordan—Holder factor of Do 54 (p).

Proof See [1], Lemma 15.2.

Using the combinatorics of the IT-action dynamics on D(p, r) described by 9,
one obtains the following theorem.

Theorem 3.7 The basic diagram D(p,r) is indecomposable, i.e., the KZ-
representation Dy(p) does not have a proper non-zero K Z-direct summand X such
that X" is stable under the action of T1.

Proof See [1], Theorem 15.4.
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3.3 Irreducible Admissible Supercuspidal Representations

Let 7(p, r) be a smooth admissible representation of G given by the existence the-
orem applied to a Diamond diagram D(p, ). We briefly sketch the argument of the
irreducibility of 7(p, r) using Theorem 3.7. Let 7/ € 7(p, r) be a non-zero subrep-
resentation. Since 0 # socg 7 C socgT(p, r) = socg Do(p), we have o € socg7’
for some o € D(p). Thus, Di(p)X* C 7'. As 7’ is stable under the IT-action, we
have D;(p)Xs C 7'. By Lemma 3.6, we see that Dj 5, (p)¥> C 7'. As 7' is clearly
a K-representation, it follows that 7' contains the unique K -subrepresentation
1(6(0), %) of Dy 50 (p) with quotient o°. It is a non-trivial fact that the embed-
ding 1(6(0), 0*) < 7’ extends uniquely to an embedding Dy s5()(p) < 7'. This
requires delicate analysis of non-split extensions between weights (cf. [1], §17 and
18). Repeating the argument for (o), we get Dy 52(,)(p) € 7' and so on. Since the
map 9§ has finite order, we get Dy ,(p) C 7'. It then follows that

P Dosp) =70 Do(p).

ogesock T

Since the space of I,-invariants of the right-hand side in the above is stable under
the action of I, the same is true for the left-hand side which is a non-zero direct
summand of Dy(p). This contradicts Theorem 3.7 unless 7" = 7(p, r). Hence, 7(p, r)
is irreducible.

As socg T(p, r) = sock Dy(p), the number of weights in the K-socle of 7(p, r)
is equal to the size of D(p) which is 2/ > 2. Any subquotient of a principal series
representation of G has at most two weights in its K-socle ([2], Remark 4.9). It
follows that 7(p, r) is supercuspidal.

Finally, we remark that if D(p, r) and D(p,r’) are two non-isomorphic basic
diagrams, then any two smooth admissible G-representations 7(p, ) and 7(p, r’)
are non-isomorphic ([1], Theorem 19.8 (ii)). In fact, even the representation 7(p, )
is not uniquely determined by D(p, r) ([6]).

3.4 Extra Characters

Let us now fix a diagram D = (Dy, Dy, r) in the family {D(p, r)}, for the rest of the
article. We have Dy = @”ED(M Dy ,. Write Dy , = (D ,)"". For any 6-orbit A, we
write

Do.a := @ Dy, and Dy 5 := (Do)

geA

We call an I-character xy C Dy extra if x # X, and x # x; for any o € D(p).
There are a total of 3/ — 1 characters in D, (Proposition 3.1). Of these, at most 2/+1
characters correspond to the socle weights and their [T-conjugates. Therefore, the
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set of extra characters is non-empty because 3/ — 1 > 2/*! as f > 2. We remark
that Lemma 3.6 together with Theorem 3.7 implies that for a given J-orbit A, there
is an extra character x such that (D; A)X # 0.

Let n be the number of §-orbits of D(p). As the set D(p) has cardinality 2/ and
f > 2, we have n > 1. The existence of the set of extra characters established in
the following lemma is used crucially by Le in his construction of non-admissible
irreducible G-representations.

Lemma 3.8 There exists a set S of 2(n — 1) extra characters closed under
[1-conjugation such that given a §-orbit A, there is a x € S satisfying (D1 a)* # 0.

Proof Choose any d-orbit, call it A, and pick an extra character, say x, such that

(D1 a)" #Oand( &P Dl,g>xl‘ £0.

o€D(P\Ay

The existence of such a x; is guaranteed by Theorem 3.7. Call the orbit A; for which
(D, AZ)X‘? # 0. Using Theorem 3.7 again, there is an extra character y; such that

(DI,A1 @ D1,A2)X2 # 0 and ( @ Dl.(,)xE # 0.

a€D(p)\(A1UAL)

Note that xa ¢ {x1,X}}. Call the orbit A; for which (D; s,)X* # 0. Proceed-
ing in this way, we find n J-orbits Ay, Ay, ..., A, of D(p) and (n — 1) extra
characters x1, x2, ..., Xan—1 such that (DLAM)XA)' #0forall 1 <j<n-—1.Take
S ={X1, X1> X2 X35 - +» Xn—15 Xp—1}- U

4 Infinite-dimensional Diagrams and Non-admissible
Representations

We now explain Le’s method of constructing infinite-dimensional diagrams from Dia-
mond diagrams to produce non-admissible irreducible representations. Let D (0c0) :=
D,z Do(i) be the smooth K Z-representation with componentwise K Z-action,
where there is a fixed isomorphism Dy(i) = Dy of K Z-representations for every
i € Z. Denote the natural inclusion Dy — Dy(i) < Dy(0c0) by ¢;, and write
v; :=1;(v) for v € Dy forevery i € Z. Let D;(00) := Dg(c0)".

We make use of the J-orbits and the set S of extra characters from the proof
of Lemma 3.8 to define a IT-action on D;(co) which is different from the com-
ponentwise IT-action. Pick a pair of extra characters {1/, 1)°} not belonging to the
set S. To justify the existence of such a pair, note that it is enough to show the
inequality 2(n — 1) < 3/ — 1 —2/*! for all f > 2. Since the size of any dJ-orbit
is even, we have n < 2/~!. Thus 2(n — 1) < 2/ — 2. It is now easy to check that
2/ —2 <3/ —1-2/*"forall f > 2.
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Let us choose a weight o3 € Ag forall 1 <k <mnandlet A\ = (\) € [[,5 IETPX.
For all integers i € Z, define

(Mv);  ifv e DY for X & {Xoys X3yv -+ Xaws X, - 2 0%},
(Mv);41 ifv e DY for x € {Xoys s Xow s

(Mv);—; ifv e D™,

A\i(Tv); ifv e Dy.

I"[vi =

This uniquely determines a smooth N-action on D;(c0) such that p = TT? acts triv-
ially on it. Thus, we get a basic diagram D(\) := (Dy(00), D;(00), can) with the
above actions where can is the canonical inclusion D;(00) <> Dg(00).

Theorem 4.1 (Le) There exists a smooth representation 7 of G such that

(1) (m|kz, m|n,1d) contains D(N),
(2) m is generated by Dy(00) as a G-representation, and
(3) socxm™ = socg Dy(00).

Proof The idea is to consider the infinite direct sum P, _, Q (i) where each (i) is
isomorphic to the smooth injective K -envelope 2 of Dy, and equip this direct sum
with an N-action extending the N-action on D;(0c0) defined above. The proof is the
same as that of [12], Theorem 3.2, presented for f = 3.

Theorem 4.2 (Le) If \; # A\ for all i # 0, then any smooth representation 7 of
G satisfying the properties (1), (2), and (3) of Theorem 4.1 is irreducible and non-
admissible.

Proof Let 7’ C 7 be a non-zero subrepresentation of G. By property (3), we have
Homg (o, 7’) # 0 for some o € socg Dy. Considerilﬁ that o could be embedded
diagonally in 7', there exists a non-zero (c;) € €, ., I, such that

(ZC,’L,‘)(J) C 7T/,

or equivalently

(Y i) (Do) N7 #0,

because the K -socle of (", ¢it;)(Do.o) is ( X_; ¢it;) (o), which is irreducible.
‘We claim that
(D citir;) (Do) C 7' forall j € Z. 4.3)

l

We prove the claim (4.3) assuming o € A,. The cases where ¢ is in an orbit other
than A, are proved similarly. If o € A, then o is in the same §-orbit A, as g, is.
So it follows from the discussion in Sect. 3.3 that
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(Zc,w,-)(a) cn = (Z CiLi)(Un) cn.
i i

Note that the indices i are unchanged since the action of IT on ¢; (D) fixes the index
i of the embedding ¢; for all o € A, except o,,. Since the [T-action takes Li(Di‘”") to

s
L,-,l(Di(””), we have

( Z ¢iti—1)(Do.s(a,) C 7
Therefore, again from the discussion in Sect. 3.3, we get that
( Z citi-1)(Do,a,) C 7.

Continuing in this fashion, we obtain

(ZciLi+j)(D0,A,,) C «' forall j <O.

1

Making use of the extra character x;_, in the proof of Lemma 3.8, we have in
particular,

(Zc,-a,-ﬂ)(Df:") C r' forall j <O.

i

Therefore,
(Zc,-L,-H)(Df("") C 7 forall j < 0.

We know from the proof of Lemma 3.8 that (D A, )X"-' # 0 for some 1 < k < n.

. . Xop Xo, .
Since the IT-action takes L,»(Df *) to ;41 (D), we obtain

(ZCiLH-j)(DO,Ak) C n'forall j € Zforsome 1 <k < n.

2

Making use of the extra character x; _,, by the same arguments as above, we obtain

(Zcibiﬂ)(Do,Ak,) Cc 7’ forall j € Z forsome 1 < k' < k.

L

Continuing in this fashion, we finally get that

(Zc,»LHj)(DO,AI) c 7 forall j € Z.

i

Recall from the proof of Lemma 3.8 that



48 E. Ghate and M. Sheth

1
(B Di.a,)" #0and (Dy o, ) #Oforall Il <l <n-—1. (4.4)

m=1

Using (4.4) with [ = 1, we get

(ZC,’L,'_;,_]-)((DLAI)X]) c 7’ and (ZciLi+j)((Dl.A2)X?) c 7' forall j € Z.

i i

This implies
(Zcibi+j)(D0,A2) C wforall j € Z.

l

Similarly, using (4.4) successively for/ =2, ...,n — 1, we obtain

(Zc,-Liﬂ»)(Do,Ar) C 7' forall j € Zandforall1 <r < n.

i

Hence, (Z, CiLi+j)(D0) C «' forall j € Z as desired.

For (d;) € D;; E, let #(d;) denote the number of non-zero d;’s. Among all
the non-zero elements (c;) of P, ]F_p for which ( >oici L,')(D()) C 7', we pick one
with #(c¢;) minimal. We may also assume that ¢y # 0 using (4.3). We now show that
#(c;) = 1. Assume to the contrary that #(c;) > 1. Since (Zl ci Li)(Df) C 7’ and 7’
is stable under the IT-action, we have

(Z)\icibi)(D;ﬁ) C 7.

Since ( D Aoc L,-) (D?Dv) is also clearly in 7/, subtracting it from the above, we get

(Y = M) (DY) c 7'

Let v € D(p) be the weight for which D;Jy # 0. Writing (c}) := ((\; — Ao)ci), we
see that

(ch{Li)(Doqy) N’ #£0.

Following the same arguments as in the previous paragraph proving the claim (4.3),
we get that (Y ¢ju;) (Do) C 7. However, the hypothesis \; # Ao forall i 3 0, and
the assumption #(c;) > 1 imply that (c}) is non-zero and #(c;) = #(c;) — 1 contra-
dicting the minimality of #(c;). Therefore, we have cyto(Dg) C 7. So 1o(Dg) C 7'.
Using (4.3) again, we get that @jEZ tj(Dg) = Dy(c0) C 7'. By property (2) of The-
orem 4.1, we have 7’ = 7.
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The non-admissibility of 7 is clear because 7K1 D sock m and sock 7 is not finite-
dimensional by property (3) of Theorem 4.1. O

Remark 4.5 The strategy to construct non-admissible irreducible representations
explained above fails for the group GL,(Q,2) because of the absence of extra char-
acters in D (p) when f = 2. However, it turns out that a Diamond diagram attached
to a reducible split mod p Galois representation of Gal (@/ Q,2) does have enough
extra characters to employ Le’s strategy to produce non-admissible irreducible rep-
resentations of GL,(Q,2) (cf. [13]).

Remark 4.6 Note that the smooth irreducible non-admissible representations 7 in
Theorem 4.2 and in [13], Theorem 3.2, have a central character because the action
of p on 7 is trivial. By [16], Theorem 33 (1), 7 is a quotient of c-Innga/(T —
) (C-Il’ld]G(ZO') for some o € sockgm and \ € ]F_p If A # 0, by [16], Corollary 31,
7 is the unique irreducible quotient and by [16], Lemma 28 (1) and Theorem
33, all such quotients are admissible. It follows that A = 0 and = is a quotient of
c-Ind$ ,0/ T (c-Ind$ ,0), i.e., 7 is supercuspidal. Since quotients of admissible rep-
resentations are admissible, by [17], Theorem 1, we deduce that the universal super-
cuspidal representation c-Ind% ,o/ T (c-Ind% , o) is not admissible. This was already
known, as mentioned in the introduction.
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1 Introduction

The theory of p-adic Galois representations is concerned with the continuous repre-
sentations
p: Gal(L™¢/L) — GL,(Q,) (1.1)

of the absolute Galois group Gal(L¥2/L) of a finite field extension L of Q p- It
started with Tate’s introduction of p-divisible groups in [33]. These are also called
Barsotti-Tate groups. The Tate module 7,X of a p-divisible group X of height
r over L induces Galois representations V,X := T,X ®;, Q, and H}, (X, Q,) :=
Homgy, (T, X, Q) as in (1.1). If X extends to a p-divisible group over Oy, one
says that X has good reduction. In this case, the special fiber Xy := X ®0, ~ of
X over the residue field x of O can be described by its crystalline cohomology
Hli (Xo/ W(k)), where W (k) is the ring of p-typical Witt vectors with coefficients
in k. The p-divisible group X, which can be viewed as a lift of X to O, , is described
by the F-crystal Hclris(XO / W(m)) together with its Hodge filtration. All this was
proved by Messing [27]. Grothendieck [15] reformulated this as a functor relating the
p-adic étale cohomology Hél(X , Q) to the crystalline cohomology H!. (Xo/Lo)

cris
with its Hodge filtration, where L := W(H)[%] and Héris(Xo/Lo) is a filtered
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isocrystal; see Remark 6.6 below. Grothendieck then posed the problem to extend
this functor, which he called the mysterious functor, to general proper smooth
schemes X over L with good reduction. For those X, the problem was solved by
Fontaine [10-13], who defined the notion of crystalline p-adic Galois represen-
tations and constructed a functor from crystalline p-adic Galois representations to
filtered isocrystals. Fontaine conjectured that H’e (X xp L% Q p) is crystalline when
X is a proper smooth scheme over Oy . After contributions by Grothendieck, Tate,
Fontaine, Lafaille, Messing, Hyodo, Kato, and many others, Fontaine’s conjecture
was proved independently by Faltings [8], Niziol [28], and Tsuji [34].

Our goal in this survey is to describe the function field analog of the above. In
this analog, p-divisible groups are replaced by divisible local Anderson modules
which we discuss in Sect. 4. The analog of Messing’s [27] theory of crystalline
Dieudonné-modules for p-divisible groups is Theorem 4.2. In it, Messings F -crystals
are replaced by local shtukas, which we treat first in Sect. 2. The anti-equivalence
between divisible local Anderson modules and local shtukas passes through finite
flat group schemes and finite shtukas. We review it in Sect. 3. Analogous to the étale
and crystalline cohomology we mentioned for p-divisible groups in the previous
paragraph, local shtukas possess cohomology realizations as described in Sect. 5. In
the final Sect. 6, we explain how the theory of local shtukas provides the function
field analog of Fontaine’s theory of p-adic Galois representations (1.1).

2 Local Shtukas

The theory of local shtukas is the function field analog of Fontaine’s theory of p-
adic Galois representations. Let A. be a complete discrete valuation ring with finite
residue field [F. of characteristic p such that the fraction field Q. of A. also has
characteristic p. The rings A. and Q. are the function field analogs of Z, and Q,.
We choose a uniformizing parameter z € A.. Then A. is canonically isomorphic to
F.[[z]l. Let § = #IF. be the cardinality of .. As base rings R over which our objects
are defined, we are interested in this article in two kinds of A.-algebras:

(a) The first kind are A.-algebras in which the image ( of the uniformizer z of A.
is nilpotent. We denote the category of these A.-algebras by Nilp,, .

(b) Let K be afield which is complete with respect to a non-trivial, non-Archimedean
absolute value |.|: K — Rspand let Ox = {x € K: |x| < 1} be the valuation
ring of K. We make Ok into an A.-algebra via an injective ring homomorphism
~v: Ae = Ok such that ¢ := v(z) # 0 lies in the maximal ideal mg C Ok.

The relation between the two kinds of base rings is that Ok /(") € Nilp,_ for all
positive integers n. ;

Let R be a base ring as in (a) or (b). To define local shtukas over R, we
consider modules M over the power series ring R[[z]], which Zariski locally on
Spec R are freeA over R[[z]]A. We call such a module a locally Jiree R[[z]]-module of

rankr.WesetM[ﬁ] = M ®grp R[[z]][ﬁ],and M[g] := M Qg R(2) where
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R(z2) := R[[z]][%], and 6*M := M ®r(z]. 5 RIzIl where & is the endomorphism of
RI[z]l with §(z) =z and (b) = b7 for b € R. Note that Rl[zll[:2;] = R(2)) if
R e ./\/'ilpA{ asin (a), but RIIz]][#] # R((z)) if R is a valuation ring as in (b). There
is a natural g-semilinear map M — 6*M, m +— &A’gm :=m @ 1. For a morphism
of R[[z]]-modules f: M — M’',weseto*f := f ® id: 6*M — ¢*M’.

Definition 2.1 A local o-shtuka (or local shtuka) of rank r over R is a pair M =
(M, 7y;) consisting of a locally free R[[z]]-module M of rank r, and an isomorphism

Tip: 0" MIZ1=> M) If 73(6*M) C M then M is called effective, and if
Thr (6*M) = M then ]\_;I is called érale. We say that 7, is topologically nilpotent,
if M is effective and there is an integer n such that im(T;’) C ZM , where T:;I =
Ty o0 Ty 0. 060 Drr "M — M.

A morphism of local shtukas f: (M, ) = (M’, Ty;) over R is a morphism of
R[[z]]-modules f: M — M’ which satisfies Typ © 0% f = f o Ty We denote the set
of morphisms from M to 1\_;[/ by HomR(M, A_;I/). . .

A quasi-morphism between local shtukas f: (M, 1) — (M', Ty;,) over R is
a morphism of R(z)-modules f: M[1] — M'[}] with 75, 0 6* f = f o7y Itis
called a quasi-isogeny if it is an isomorphism of R((z))-modules. We denote the set
of quasi-morphisms from A_Ad to A_;I ' by QHomy (A_;I , M /).

For any local shtuka (M , Tyy)Over R € Nilp 4. the homomorphism M—>M [ﬁ]

is injective by the flatness of M and the following.

Lemma 2.2 (/21, Lemma 2.2]) Let R be an A.-algebra as in (a) or (b). Then the
sequence of R[[z]]-modules

0 R[[z]] Rz —— R——=>0

I——z—-(, z——¢(C

is exact. In particular, R[[z]] C RIIz]][ﬁ].
Of fundamental importance is the following.

Example 2.3 Let [F, be a finite field with g elements, let C be a smooth projective
geometrically irreducible curve over Fy, and let Q := I, (C) be the function field of
C. Fix a closed point co of C, and let A := I'(C \ {oo}, Oc¢) be the ring of regular
functions on C outside co. The rings A and Q are the function field analogs of Z
and Q.

Let ¢ C A be a maximal ideal and let A, be the completion of A at . Then F,
is a field extension of F, with ¢ := #F. = glF=4). Let R be a base A.-algebra
as in (a) or (b) and denote its structure morphism by v: A. — R. Set Ay :=
A ®p, R and let o := id4 ® Frob, r be the endomorphism of Ag with o(a ® b) =
a®b? for a € A and b € R. An effective A-motive of rank r over R is a pair
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M = (M, 1)) consisting of a locally free Ag-module M of rank r and an injec-
tive A g-homomorphism 7y, : 0*M < M whose cokernel is a finite free R-module
and is annihilated by a power of the ideal 7 :=(@®1—-1®y(a): a € A) =
ker(7® idg: Agp —» R) C Ap.

More generally, an A-motive of rank r over R is apair M = (M, 7)) consisting of
alocally free A g-module M of rank 7 and anisomorphism 7y : 0% M |spec A~ v(T) —>
M |spec ax~v(g) Of the associated sheaves outside V(J) C Spec Ag. Note that if
A =F,[r], then J = (r — (7)) and Spec Ag \ V(J) = Spec R[][; (t)]

Let M be an (effective) A-motive over R. We consider the e- adlc completions
Ae,R = l(iLl’lAR/&‘nAR OfAR and]\_l ®AR AE,R = (M ®AR AE,R , T Q ld) OfM If
F. =F,,andhenceg = gandé = o,wehave A, p = R[[z]land J - A r = (z — ()
because R ®4, Ac g = R.SoM ®4, A: gisan (effective) local shtuka over R which
we denote by 1\_2 . (M) and call the local &5-shtuka at € associated with M . If f := [F,
F,] > 1, the construction is slightly more complicated; compare the discussion in [4,
after Proposition 8.4]. Namely, we consider the canonical isomorphism FF.[[z]] —
A. and the ideals 0; = (a ® 1 — 1 ®@ y(a)? : a € F.) C A,y fori € Z/f7Z, which
satisfy ]_[l.ez/fZ a; = (0), because ]_[iez/fZ(X —a?) e F,[X] is a multiple of the
minimal polynomial of a over F, and even equal to it when F, = IF,(a). By the
Chinese remainder theorem, A, g decomposes

1_[ Ac /0. (2.1)

i€Z/fT.

Each factor is canonically isomorphic to R[[z]]. The factors are cyclically per-
muted by o because o(a;) = a;4;. In particular, ol stabilizes each factor. The
ideal 7 decomposes as follows: J-A. r/ap = (z — () and J Ac r/a; = (1) for
i # 0. We define the local &-shtuka at € associated with M as M (M) = (M TM)
= (M ®a, Acr/00. (Ty ® 1)7),  where T,{; =Ty od*myo...oc D
Of course, if f = 1 we get back the definition of M .(M) given above. Also note if
M is effective, then M /7y (c* M) = M /7, (5*M).

The local shtuka ]l_;l (M) allows to recover M ®4, A, r via the isomorphism

f-1 f-1
P m @ 1) mod a;: (@ o (M @4y Acr/00). (@ DT & P id) = M®ap AcR .
i=0 i=0 i#0

because for i # 0 the equality J-A. g/a; = (1) implies that 7)y ® 1 is an isomor-
phism rpodulo a;; see [4, Propositions 8.8 and 8.5] for more details. Note that
M +— M_(M) is a functor.

We quote the next lemma from [21, Lemma 2.3].

Lemma 2.4 Let (M ,Ty) be a local shtuka over R. Then there are e, e € Z
such that (z — Qe’]l;I C Ty (&*M) C(z— C)’e]l;l. For any such e, the map Ty :
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M — (7 — Q) ~¢M is injective, and the quotient (z — () _EM/TM (6*M)isa locally
free R-module of finite rank.

Example 2.5 We discuss the case of the Carlitz module [5]. We keep the notation
from Example 2.3 and set A = TF,[¢]. Let F,(0) be the rational function field in
the variable 6 and let v: A — I, (6) be given by () = 0. The Carlitz motive over
F,(0) is the A-motive M = (F,(O)[t], 1 — ).

Now let € = (z) C A be a maximal ideal generated by a monic prime element
z=12z(t) € Fy[t]. ThenF. = A/(z) and A. is canonically isomorphic to F.[[z]]. Let
Ok D F.[[(]] be a valuation ring as in (b) and let § = v(¢) € Og. The Carlitz motive
has good reduction in the sense that it has a model over Ok given by the A-motive
M = (Oklt],t — ) over Og.

If deg, z(¢) = 1, thatis, z(t) =t —a fora e Fy, then F. =F,, ( =0 — a, and
2= (=1—0.S0 M.(M) = (Okllz]l, z = ©).

If deg, z(t) = f > 1, then M.(M) = (OxllzIl, (t — O)(t — 09)--- (t — 67" ).
Here, the product (t—60)(r —69)---(t — 0‘1H) =(z—CQu for a unit u €
F.[[¢Tz1*, because Ty (c*M) = (t — O)M implies that ME(M) is effective and
M/TM(&*M) = M /7y (c*M) is free over Ok of rank 1. In order to get rid of u,
we denote the image of ¢ in F, by A. Then F. =F,()\) and z(¢) equals the mini-
mal polynomial ( — \)--- (r — \? ‘H) of A over IF,. Moreover, t = A mod zA. and
0 = XA mod (F.[[(]]. We compute in F.[[(TI[z]l/ ()

g

0 = =N =T = =0 t—07" = = Ou = 2 mod C.

Since z is a non-zero-divisor in F.[[CI[z]l/({), it follows that u =
1 mod ¢ F.[[¢TI[z]]. We write u = 1 + (u’ and observe that the product

W o= Ha_n(u) — 1_[5'"(14‘(1/) — H(1+Ct}n&n(u/))
n=0 n=0 n=0

converges in F.[[(TI[[z]]* because F.[[(]I[[z]] is (-adically complete. It satisfies
w = u - 6(w) and so multiplication with w defines a canonical isomorphism (O [[z]],

72— )= M(M).
We conclude that M_(M) = (Okllz]l, z — ¢), regardless of deg, z(¢).

3 Finite Shtukas

In this section, let R be an arbitrary F.-algebra. For an R-module M we set 6*M =
M ®R. Frob; R where Froby; is the §-Frobenius endomorphism of R with Frob; (b) =

bl forb € R.
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Definition 3.1 A finite F.-shtuka over R is a pair M= M, Ty;) consisting of a
locally free R-module M of finite rank denoted by rk M , and an R-module homo-
morphism 7 6*M — M satisfying f o Ty = Typ o 6* f. That is, the following
diagram is commutative

g f ak
oM ——— oM’

L |

Mm—

A finite F.-shtuka over R is called étale if T, is an isomorphism. We say that 7, is
nilpotent if there is an integer n such that 7'1’\14 =Tpo0*T o0...0 aq*,,,ITM =0.

Finite F.-shtukas were studied at various places in the literature. They were called
“(finite) -sheaves” by Drinfeld [7, § 2], Taguchi and Wan [31, 32], and “Dieudonné
F,-modules” by Laumon [25]. Finite [F.-shtukas over a field admit a canonical
decomposition.

Proposition 3.2 (/25, Lemma B.3.10]) If R = L is a field, every finite F.-shtuka
M = (M, 1) is canonically an extension of finite F.-shtukas

0 — (Mg, 7e) —> (M,TM) —  (Muit, Twit) —> O

where T¢ is an isomorphism and Ty is nilpotent. M & = (Mét, T¢y) IS the largest étale
finite ¥ ;-sub-shtuka of M and equals im(T;;M ). If L is perfect, this extension splits
canonically.

Example 3.3 Every effective local shtuka (M, 7y;) of rank 7 over R yields for every
n € N a finite F.-shtuka (M/z"M, Ty; mod z") of rank rn, and (M, T;y) equals the
projective limit of these finite FF.-shtukas.

Thus, from Proposition 3.2 we obtain the following.

Proposition 3.4 IfR = L is afieldin Nilp A thatis, ¢ = 0in L, then every effective
local shtuka (M , Tyy) is canonically an extension of effective local shtukas

0 — (Mg, 70) —> (M,75) —> (Myit, Tt) —> O

where T¢ is an isomorphism and Ty is topologically nilpotent. (Mé,, Te) IS the
largest étale effective local sub-shtuka of (M, Ty,). If L is perfect, this extension
splits canonically. (I

Finite F.-shtukas and local shtukas are related to group schemes in the following
way. Let M = (M, 1) be a finite IF.-shtuka over R. Let

E = Spec @ Sym', M

n>0
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be the geometric vector bundle corresponding to M over Spec R,and let F3 p: E —
G*E be its relative ¢-Frobenius morphism over R. On the other hand, the map 7,
induces another R-morphism Spec(Sym*® 7,): E — &*E. Drinfeld defines

Dré(ﬂ) := ker(Spec(Sym"® 7;;) — F; p: E—>6*E) = Spec (@ Sym’, M)/I

n>0

where the ideal / is generated by the elements m®? — 7, (6*m) for all elements m
of M. (Here, m®4 lives in Sym% M and T (6*m) in Sym}e M.) Note that locally
on Spec R, we have M = @idzl R -m; and E = Spec R[my, ..., my] = GZI,R- The
subgroup scheme Dry (M ) is finite locally free over R of order érkM , that is, the

R-algebra Op,_ ;) is a finite locally free R-module of rank g™ Tt is also an F.-
module scheme over R via the comultiplication A: m +— m ® 1 + 1 ® m and the
[F.-action [a]: m — am whichitinherits from E. Itis even a strict F.-module scheme
in the sense of Faltings [9] and Abrashkin [2]. For a proof, see [2, Theorem 2] or [21,
§ 5]. This means that IF; acts on the co-Lie complex of Dr; (A_A4 ) over R, see Illusie [26,
§ VIL.3.1], via the scalar multiplication through F. C R. A detailed explanation of
strict F.-module schemes is given in [21, §4].

Conversely, let G = Spec A be a finite locally free strict F.-module scheme over
R. Note that on the additive group scheme G, g = Spec R[x], the elements b € R act
via endomorphisms ¥, : G, g = G, g given by ¥ : R[x] — R[x], x — bx. This
makes G, g into an R-module scheme, and in particular, into an F.-module scheme
via F. C R. We associate with G the R-module of F.-equivariant homomorphisms
on R

M;(G) = HOomp.groupsF.-in(G, Gag) = {x € A A@) =x®1+1®x, [a](x) = ax, Ya € F.},

with its action of R via R — Endg_groups F.-lin(Ga,r). It is a finite locally free R-
module by [30, Proposition 3.6 and Remark 5.5]; see also [1, VII4, 7.4.3] in the
reedited version of SGA 3 by P. Gille and P. Polo. The composition on the left
with the relative g-Frobenius endomorphism Fj ¢, , of G, g = Spec R[x] given by
x > x4 defines a map A;Iq(G) — M,;(G), m +> Fj g, . om which is not R-linear,
but 5-linear, because Fj g, , © ¥ = Vpi o F4g, .- Therefore, F; ¢, , induces an R-
homomorphism 7 : 6*Mz(G) — My(G). Then M ,(G) := (My(G), Titycy) 18
a finite IF.-shtuka over R. If f: G — H is a morphism of finite locally free strict
F.-module schemes over R, then A_Zé(f): A_;I(}(H) — A_Alé(G), m+— mo f. This
defines the functor M ; from the category of finite locally free strict F.-module
schemes over R to finite [F.-shtukas over R. It has the following properties.

Theorem 3.5 ([21, Theorem 5.2])

(a) The contravariant functors Dr; and M 4 are mutually quasi-inverse anti-equi-
valences between the category of finite F.-shtukas over R and the category of
finite locally free strict F.-module schemes over R.



58 U. Hartl and R. K. Singh

(b) Both functors are F-linear and map short exact sequences to short exact
sequences. They preserve étale objects and map the canonical decompositions
from Propositions 3.2 and 3.6 below to each other.

Letﬂ = (M, Ty) be a finite F.-shtuka over R and let G = Dry (M). Then

(c) The F.-module scheme Dr; @) is radical over R if and only if T, is nilpotent.
(d) The order of the R-group scheme Dry (M) is %M,
(e) There is a canonical isomorphism between coker Ty, = M/TM (&*M) and the

co-Lie module w, ;) = €*2 where e: Spec R — Dry (M) is the zero

1
Dr;(M)/R
section.

Proposition 3.6 (/21, Proposition4.2]) If R = L is afield, every F.-module scheme
G over L is canonically an extension 0 — G° — G — G — 0 of an étale
F.-module scheme G by a connected F.-module scheme
G°. The F.-module scheme G is the largest étale quotient of G. If L is perfect,
G* is canonically isomorphic to the reduced closed F.-module subscheme G™ of
G and the extension splits canonically, G = G° x; G™.

4 Divisible Local Anderson Modules

Let R € Nilp 4. and let A_;I = (M , Tyy) be an effective local shtuka over R. Set
Mn = (Mn, Th,) = (M /Z"M , Ty mod z") and consider the finite locally free strict
F.-module scheme Dry (A_;I ») over R from the previous section. Dry (A_;I ) inherits
from M , anaction of A./(z") = F.[z]/(z"). The canonical epimorphisms A_;In 1
Mn induce closed immersions i,: Dry (Mn) — Dry (I\_;In +1)- The inductive limit

Dr; (A_;I ) :=lim Dr, (M ,») 1n the category of sheaves on the big fppf-site of Spec R
is a sheaf of A.-modules that satisfies the following.

Definition 4.1 A z-divisible local Anderson module over R is a sheaf of A.-modules
G on the big fppf-site of Spec R such that

(a) G is z-torsion, that is, G = lim G[z"], where G[z"] := ker(z": G — G);

(b) G is z-divisible, that is, z: G — G is an epimorphism;

(c) For every n, the F.-module G[z"] is representable by a finite locally free strict
F.-module scheme over R in the sense of Faltings [9] and Abrashkin [2];

(d) Locally on R, there exists an integer d € Z=g, such that (z — ¢)? = 0 on wg
where wg 1= lim wg7) and wgpr = e*Qg[Z,,] s 18 the pullback under the zero
sectione: Spec R — G[z"]. Here, the action of z on wg comes from the structure
of A.-module on G, while the action of ¢ on wg comes from the structure of
R-module on wg.
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A morphism of z-divisible local Anderson modules over R is a morphism of fppf-
sheaves of [F.[[z]]-modules. It is shown in [21, Lemma 8.2 and Theorem 10.8] that
wg 1s a finite locally free R-module, and we define the dimension of G as rk wg .
Moreover, it follows from [21, Proposition 7.5] that there is a locally constant function
h: Spec R — Ny, s — h(s) such that the order of G[z"] equals G"". We call h the
height of the z-divisible local Anderson module G.

The category of z-divisible local Anderson modules over R and the category of
local shtukas over R are both A_-linear. The construction and the equivalence from
Sect. 3 extend to an equivalence between the category of effective local shtukas over
R and the category of z-divisible local Anderson modules over R.

The quasi-inverse functor to M > Drj (A_;I )is givenas follows.Let G = 11_113 GlZ"]

be a z-divisible local Anderson module over R. We set

Mq(G) = (MQ(G)’TJ%(G)) = 12“(1‘;1&((?[1"])’%;(0[#]))-

n

Multiplication with z on G gives A;Iq(G), the structure of an R[[z]]-module. The
following theorem was proved in [21, Theorem 8.3].

Theorem 4.2 Let R € Nilp,, .

(a) The two contravariant functors Dr; and I\_Al ; are mutually quasi-inverse anti-
equivalences between the category of effective local shtukas over R and the
category of z-divisible local Anderson modules over R.

(b) Bothfunctors are A.-linear, map short exact sequences to short exact sequences,
and preserve (ind-) étale objects.

Let M = (M, Ty) be an effective local shtuka over R, and let G = Dr, (M) be its
associated z-divisible local Anderson module. Then

(c) G isaformal A.-module, i.e. a formal Lie group equipped with an action of A,
if and only if Ty, is topologically nilpotent.

(d) The height and dimension of G are equal to the rank and dimension of A_;I .

(e) The R[[z]]-modules W, (81) and coker Ty, are canonically isomorphic.

Example 4.3 In the notation of Example 2.3, let R € Nilp . and let r be a positive
integer. A Drinfeld A-module of rank r over R is a pair E = (E, ) consisting of a
smooth affine group scheme E over Spec R of relative dimension 1 and a ring homo-
morphism ¢: A — Endg_groups(E), a = ¢, satisfying the following conditions:

(a) Zariski-locally on Spec R there is anisomorphism o: £~ G,  of F,-module
schemes such that
(b) the coefficients of ®, := a0 ¢, 0oa~'=>" b;(a)T' € End R-groups.F,1in(Ga,r) =
i>0
R{7} satisfy bo(a) = y(a), by (a) € R* and b;(a) is nilpotent for all i >
r(a) := —r[Fy : Fylords (a).
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n
Here, R{7} := { Y. bi7": n € Ny, b; € R } is the non-commutative polynomial ring
i=0
with 7b = b?7, and the isomorphism of rings R{r} — EndR_gmupS,Fq_nn(Ga, R) 18
given by sending 7 to the relative §-Frobenius endomorphism Fj g, , of Gg r =
Spec R[x] given by x — x% and b € R to the endomorphism 1), given by Y x >
bx.

For a Drinfeld A-module E = (E, ), we consider the set M := M(E) :=
Hom g_groups.F, -tin (E, Gq,r) of IF;-equivariant homomorphisms of R-group schemes.
It is a locally free module over Ag := A ®p, R of rank r under the action given on
m € M by

Asa:M — M, m— mop, =: am
Rob:M— M, mt ypom =: bm

In addition, we consider the map 7: m +— F, g, .o m on m € M, where F, g, ,
is the relative g-Frobenius of G, z over R. Since F, g, , © ¥ = ¥ 0 Fy g, ,» and
hence 7(bm) = b%7(m), the map 7 is o-semilinear and induces an Ag-linear map
Tm: 0*M — M, which makes M(E) := (M (E), Ty) into an effective A-motive
over R in the sense of Example 2.3. The functor E — M (E) is fully faithful and its
essential image is described in [18, Theorems 3.5 and 3.9] generalizing Anderson’s
description [3, Theorem 1].

Now let ]l_;I = 1\_;1 .(M(E)) be the effective local 5-shtuka at ¢ associated with
M(E); see Example 2.3. Letn € N and let" = (a;,...,a;) C A. Then

E["] = ker((,a(,1 _____ a = Ways -, 0a) E—> ES)

is called the e"-torsion submodule of E. It is an A/e"-module via A/e" —
Endg(E[e"]), a — ¢, and independent of the set of generators of £"; see [18,
Lemma 6.2]. Moreover, by [18, Theorem 7.6] it is a finite locally free R-group
scheme and a strict F.-module scheme and there are canonical A/e"-equivariant
isomorphisms of finite locally free R-group schemes

Dr;(M/e"M) => E[¢"] and
_M/En_M - HomR—groups,Ff-lin (E[En] s Ga,R)

of finite F.-shtukas. In particular, E[¢*°] := lim E[¢"] = Dr; (]l_;l ) is a z-divisible
local Anderson module over R.

S Cohomology Realizations of Local Shtukas

In this section, we work over a valuation ring Ok as in (b). With local shtukas over
Ok, one can associate various cohomology realizations, which are related to each
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other under period isomorphisms. We describe the ¢-adic, the de Rham, and the
crystalline realizations. These period isomorphisms are used in [20, 22] to study the
periods of A-motives with complex multiplication.

Definition 5.1 Let M = (M , ;) be alocal shtuka over a valuationring O asin (b).

Then 7, induces an isomorphism 7y, : &*M Qogizn Kllzll — M Qoxizn Kzl
because z — ¢ € K[[z]]*. We define the (dual) Tate module

HIM, A2) = TeM = (M@0, . KU = {m e M@0, .1 K*Plzl): 7y (67 m) = m)

and the rational (dual) Tate module

HIWM, Qo) = VoM = {m e M oy K*P(): Ty (65,m) =m} = T.M @4, Q..

By L19, Proposition 4.2], the Tate modules are free over A., resp. Q. of rank equal to
rk M and carry a continuous action of Gal(K**/K). They are also called the e-adic
realizations of M.

Theorem 5.2 ([19, Theorem 4.20]) Assume that Ok is discretely valued. Then the
functor T M — T M from the category of local shtukas over Ok to the cate-
goryRep,_Gal(K**?/K) of continuous representations of Gal(K*®? / K) on finite free

A.-modules and the functor V. M — V. M from the category of local shtukas over
Ok with quasi-morphisms to the category Rep, Gal(K*®/K) of continuous repre-
sentations of Gal(K*? / K) on finite-dimensional Q.-vector spaces are fully faithful.

Definition 5.3 Let Ok be discretely valued. The full subcategory of
Rep,_ Gal(K**/K) which is the essential image of the functor V. from Theorem 5.2
is called the category of equal characteristic crystalline representations.

We will explain the motivation for this definition in Sect. 6.

Example 5.4 We describe the c-adic (dual) Tate module ZV}]\_/I = TEA_;I (M) of the
Carlitz motive M = (Ok[t],t — 0) from Example 2.5 by using the local shtuka
M = A_;IE(]\_/I) = (Okllz]l, z — ¢) computed there. For all i € Ny, let £; € K*P be
solutions of the equations Zg_l = —( and ¢ + ¢¢; = ¢;_;. This implies |¢;] =
|C|97/@=D < 1. Define the power series £, = Y oy £iz' € Ogse[[Z]]. Tt satisfies
o(£.) = (z — ¢)-£., but depends on the choice of the ¢;. A different choice ylelds a
dlfferent power series £+ which satisfies £+ = ul, for a unit u € (K*P[[z]]*)?=d =

A_, because 6(u) = %3 Z+ = u. The field extension F.(()(¢;: i € Ny) of

F.((¢)) is the function field analog of the cyclotomic tower Q,( ’\/_ 1:i € Np); see
[16, § 1.3 and § 3.4]. There is an isomorphism of topological groups called the e-adic
cyclotomic character

Xe: Gal(F-(O)(i: i € No)/F(C) = AL,
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which satisfies g(£.) := Y oy (7" = x:(g) - £, in K*P[[]] for g in the Galois
group. It is independent of the choice of the ¢;. The e-adic (dual) Tate module .M
of M and M is generated by £ ! on which the Galois group acts by the inverse of
the cyclotomic character.

Definition 5.5 Let A_Ad be a local shtuka over a valuation ring Ok as in (b). We denote
by K[[z — (]] the power series ring over K in the “variable” z — ( and by K((z — ()
its fraction field. We consider the ring homomorphism Ok [[z]] — K[[z — (1l, z —
z = ( + (z — ¢) and define the de Rham realization of M as

Hir (M, K[z = C1l) == 6" M ®0,qn Kllz = (T,
Hix(M, K(z — {) i= 6"M @0,y K(z — ¢)  and
Hig(M, K) := 6"M @021, ¢ K
= Hix (M, K[z — CTl) @ke—cy K1z — CTl/(z = ©).

The de Rham realization Hy (M , K((z — ))) contains a full K[[z — (]]-lattice
g = 7, (M @0 Kllz — D, (5.1)

which is called the Hodge-Pink lattice of M . The de Rham realization H}m (A_Al , K)
carries a descending separated and exhausting filtration F'* by K -subspaces called
the Hodge-Pink filtration of M. It is defined via p := H(llR(A_4 , K[[z — (]]) and (for
ie?Z)

FIHR (M, K) = (pNz—0'a%) /(= Opn G —0'q%) ¢ Hix(, K).

(5.2)
If we equlp Hlg (M K ((z — ¢))) with the descending filtration F' Hy (M, K (z —
¢ ))) —C )’qM by K[[z — (]]-submodules, then F’ H}m (M K) is the image of

H}iR(A_/I, K[Iz —Cl) N F HdR(A_/I, K(z—¢))in H!x (M, K). Since z = ( + (z —
) is invertible in K[[z — (]|, the de Rham realization with Hodge-Pink lattice and
filtration is a functor on the category of local shtukas over Ok with quasi-morphisms.

Note, however, that the Hodge-Pink filtration on HéR (M , K') does not behave well
under tensor products, as opposed to the Hodge-Pink lattice; see Remark 6.3 below.

Therefore, the more important concept is the Hodge-Pink lattice g

Theorem 5.6 ([19, Theorem 4.15]) Let K be the completion of an algebraic closure
K™ of K. There is a canonical functorial comparison isomorphism

hegr: HIM, Q2) ®g. K(z — () = Hig(M, K(z - Q) ®k(c—c) Kz =0,

which satisfies heqr (H(M, Q.) ®¢. Kllz — (1) = ¢ @ky.—cy Kllz — ¢l and
which is equivariant for the action of Gal(K*?/K), where on the source of h. 4r
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this group acts on both factors of the tensor product and on the target of h. 4r it acts
only on K.

Definition 5.7 Let k = O /mg be the residue field of Ok. A z-isocrystal over k is
a pair (D, Tp) consisting of a finite-dimensional k((z))-vector space together with a
k((z))-isomorphism 7p: 6*D = D. A morphism (D, 7p) — (D', 7p') is a k((z))-
homomorphism f: D — D’ satisfying 7p 0 6* f = f o 7p.

Definition 5.8 Let M = (M , Ty;) be local shtuka over a valuation ring Ok as in (b).
Then the crystalline realization of M is defined as the z-isocrystal over k = Ok /mg

Hiio (M, k(@) = 8*(M, 7) ®0zn k() - (5.3)
It only depends on the special fiber M ®oy k of ]l_;I and defines a functor ]l_;l >
H! (I\_/I , k((z))) from the category of local shtukas over Ok with quasi-morphism

cris

to the category of z-isocrystals. This functor is faithful by [19, Lemma 4.24] if
(), 6" (mg) = (0).

To formulate the comparison between the de Rham and the crystalline realization,
we assume that there exists a fixed section k < Og. Then there is a ring homomor-
phism

. o) , . .
K@) = Kllz = (Il 2/ (+G@=0. Lbiz' > Y =0/ -2 (b

j=0 i
5.4
We always consider K [[z — (]] and its fraction field K (z — () as k((z))-vector spaces
via (5.4).

Theorem 5.9 ([19, Theorem 5.18]) Let M be a local shtuka over Og. Assume
that O is discretely valued or that M = A_;IE (M) for an A-motive M over Ok as in
Example 2.3. Then there are canonical functorial comparison isomorphisms between
the de Rham and crystalline realizations

ar s : Hig (M, K[z — CT) = H.; (M, k(2)) ®xy Kllz = ¢1 and
hareis:  Hip(M,K) =5 HL (M, k(2) ®k(z), ac K -

To formulate the comparison between the crystalline and the e-adic realizations,
we introduce the O -algebra

o0
Okllz, 27"} == | Z biz': b€ O, Ibi]|¢I"" — 0 (i —> —oo) forallr > 0}.
i=—o00

(5.5)
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o
It is a subring of K[z—(]] via the expansion > b7 =

i=—o00
00 ) ) ) )
> C‘f( > (;)b,- C)(z — ¢)/. The homomorphism (5.4) factors through Ok [z, z7'}.
i=0 i= o0

We view the elements of Ok[[z, z~!} as functions that converge on the punctured
open unit disk {0 < |z| < 1}. An example of such a function is

—[T0-9 e Fchiz. =™y € Okliz. 7). (5.6)

iENU

which satisfies £_ = (1 — g) . &(£_). In addition, we let K be the completion of an

algebraic closure K¢ of K and recall the element £, € Ogllz]l from Example 5.4,
which satisfies 6(£,) = (z — () - £,.. We set

€= 0.0 € Ollz.z7'}. (5.7)

Then 6(£) = z-£ and g(£) = x-(g)-£ for g € Gal(K*P/K) where x. is the cyclo-
tomic character from Example 5.4.

Theorem 5.10 (/19, Theorem 5. 20 /) Let M be a local shtuka over Ok . Assume that
Ok is discretely valued or that M M (M) for an A-motive M over Ok as in
Example 2.3. Then there is a canonical functorial comparison isomorphism between
the e-adic and crystalline realizations

heeis: HYM, Qo) @, Ogliz. 2 e~ = HL (M, k(@) ®k(ey Ollz. 2 e .
The isomorphism h. s is Gal(K*P/K)- and T-equivariant, where on the left
module Gal(K*?/K) acts on both factors and 7T is id ®5, and on the right
module Gal(KP/K) acts only on Ogllz,z7"}[€7 '] and 7 is (1p 0 6};) ® 6. In
other words, he s = Tp 0 0*h. cis. Moreover, h. s satisfies h.gr = (hdR eris ®

Mdg.—c)) © (heeis ® Wdg,_¢))- It allows ‘1o recover H! (M Q.) from
H.. (M k((z))) as the intersection inside Hcm(M k((z))) Qi) K(z — )

cris

hecris(HY L, 02)) = (Hlo (M. k(2) @1y Ofllz 2 e 1 ap @ kg Kllz — €I,

where qp C Hcm (M k((z))) ®u(zy Kz — Q) is the Hodge-Pink lattice ofM

6 Crystalline Representations over Function Fields

We explain the motivation for Definition 5.3; compare [19, Remarks 5.13 and 6.17].
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Let Ok be discretely valued and let ]l_;[ be a local shtuka over Og. Theo-
rem 5.9 allows to define a Hodge-Pink lattice and a Hodge-Pink filtration on
H! (A_/I , k((z))). More precisely, we equip the finite-dimensional k((z))-vector space

D :=H! (M , k((2))) with the Hodge-Pink lattice

cris
dp = (Mar.eris ® idg-c)) (@) C D Ry K(z — Q).

where g™ ¢ Hlg (A_;I . K(z — ¢))) is the Hodge-Pink lattice from (5.1). Together with
the Frobenius 7p := 6*7); ® idy() on D = Héris(ll_;[ , k((z))) from (5.3), the triple
Q(A_;I ) := D = (D, 1p, qp) forms a z-isocrystal with a Hodge-Pink structure as in

the following.

Definition 6.1 A z-isocrystal with Hodge-Pink structure over Ok is a triple D =
(D, Tp, qp) consisting of a z-isocrystal (D, 7p) over k and a K[[z — (]]-lattice qp
in D @) K(z — Q) of full rank, which is called the Hodge-Pink lattice of D. The
dimension of D is called the rank of D and is denoted by rk D.

A morphism (D, 1p, qp) — (D', p/, qp’) is a k((z))-homomorphism f: D —
D' satistying 7p o 6* f = fo7p and (f ® id)(qp) C qp-

A strict subobject D' C D is a z-isocrystal with Hodge-Pink structure of the form
D' = (D', mplyp, dp N D' ®zy K(z — ¢)) where D' C D is a k((z))-subspace
with 7p(6*D’) = D'.

On a z-isocrystal with Hodge-Pink structure D, there always is the tautolog-
ical K[[z — (]l-lattice pp := D Q) Kllz — ClI. Since K[[z — (]| is a principal
ideal domain, the elementary divisor theorem provides basis vectors v; € pp such
that pp = @'_, K[z — ¢l - v; and qp = P_, K[z — ¢TI - (z — )" - v; for inte-
gers (i > ... > .. Wecall (i, ..., u,) the Hodge-Pink weights of D. Alterna-
tively, if e is large enough such that qp C (z — () “pp or (z — {)°pp C qp, then the
Hodge-Pink weights are characterized by

(Z - C)*epD/qD = @K[[Z _ C]]/(Z _ C)eJr,LL; ,

i=1

or qD/(Z - C)epD = @ K[[Z _ C]]/(Z _ C)e_ﬂ[~

i=1

Like in (5.2), the Hodge-Pink lattice qp induces a descending filtration of Dg :=
D ®y(z), 2—~¢ K by K-subspaces as follows. Consider the natural projection

pp — pp/(z—Qpp = Dg.

The Hodge-Pink filtration F*Dy = (F' D)z is defined by letting F' Dy be the
image in Dy of pp N (z — C)iqD for all i € Z. This means, F'Dg = (pp N (z —
Olap) /(@ = Opp N (z — O'ap).
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Definition 6.2 Let D = (D, 7p, qp) be a z-isocrystal with Hodge-Pink structure
over Ok and set r = dimy,) D.

(a) Choose a k((z))-basis of D and let det 7, be the determinant of the matrix rep-
resenting 7p with respect to this basis. The number #y (D) := ord,(det 7p) is
independent of this basis and is called the Newton slope of D.

(b) The integer ty (D) := —py — ... — iy, Where puy, ..., u, are the Hodge-Pink
weights of D from Definition 6.1, satisfies A"qp = (z — ()~ A" pp and is
called the Hodge slope of D.

(¢c) D is called weakly admissible if

tg(D) =ty(D) and ty(D') <ty(D’) for every strict subobject D' C D.
Remark 6.3 One can show that the tensor product
DD = (D Qi) D', ™o ® T, dp Qk(1z—c1 CID/)

of two weakly admissible z-isocrystals with Hodge-Pink structures D and D" over Og
is again weakly admissible. It was Pink’s insight that for this result the Hodge-Pink
filtration does not suffice, but one needs the finer information present in the Hodge-
Pink lattice. The problem arises if the field extension K /F,((¢)) is inseparable; see
[29, Example 5.16]. This is Pink’s ingenious discovery.

Proposition 6.4 ([19, Corollary 6. I]]) Let M be a local shtuka over Og. Assume
that Ok is discretely valued or that M M (M) for an A-motive M over Ok as
in Example 2.3. Then the z-isocrystal with Hodge-Pink structure Q(A_d ) constructed
at the beginning of this section is weakly admissible. The functor M — Q(M )
from the category of local shtukas over Ok with quasi-morphisms to the category of
weakly admissible z-isocrystals with Hodge-Pink structure is fully faithful.

There is a converse to this proposition.

Theorem 6.5 ([14, Théoreme 7.3], [17, Theorem 2.5.3]) If Ok is discretely valued,
then every weakly admissible z-isocrystal with Hodge-Pink structure D over Ok is
of the form D(M) for a local shtuka M over Ok.

Remark 6.6 The theory presented here has as analog, the theory of p-adic Galois
representations. There L is a discretely valued extension of Q,, with perfect residue
field x and Ly := W(n)[%] is the maximal, absolutely unramified subfield of L.
Let 6 := W (Frob,) be the lift to L, of the p-Frobenius on x which fixes the uni-
formizer p of L. Crystalline p-adic Galois representations are described by filtered
isocrystals D = (D, tp, F*Dy) over L, where D is a finite-dimensional Lq-vector
space, Tp: 0*D ——> D is an Ly-isomorphism, and F*D; is a descending filtration
on Dy := D ®;, L by L-subspaces. More precisely, the Theorem of Colmez and
Fontaine [6, Théoreme A] says that a continuous representation of Gal(L*P/L) in
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a finite-dimensional @Q,-vector space is crystalline if and only if it isomorphic to
FO(D QrL, ng)T—ld for a weakly admissible filtered isocrystal D = (D, Tp, F*Dy)
over L. Here, By, is a certain period ring from Fontaine’s theory of p-adic Galois
representations, which carries a filtration and a Frobenius endomorphism Frob,,. The
function field analog of Brlg is the Q.-algebra Oxllz, z7'}[€7']; see [16, §§ 2. 5 and
2.7]. In the function field case, when K is dlscretely valued, we could therefore define
the category of equal characteristic crystalline representations of Gal(K*?/K) as
the essential image of the functor

= (D, 7p.ap) — (D @) Olizz W)™ 1 ap @kpe_cy Kllz =< (6.1)

from weakly admissible z-isocrystals with Hodge-Pink structure D to continuous
representations of Gal(K*P/K) in finite-dimensional Q.-vector spaces. By Theo-
rems 6.5, 5.10, and 5.2 and Proposition 6.4, this functor is fully faithful and this
definition coincides with our Definition 5.3 above.
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Introduction

0.1 These notes grew out of author’s lectures at the International Center of Theo-
retical Sciences of Tata Institute in Bangalore in September 2019. Their aim is to
provide a self-contained introduction to p-adic Hodge theory with minimal prerequi-
sties. The reader should be familiar with valuations, complete fields and basic results
in the theory of local fields, including ramification theory as, for example, the first
four chapters of Serre’s book [142]. In Sects. 3 and 4, we use the language of con-
tinuous cohomology. Sects. 15 and 16 require the knowledge of Galois cohomology
and local class field theory, as in [142] or [140].

0.2 Section 1 is utilitarian. For the convenience of the reader, it assembles basic
definitions and results from the theory of local fields repeatedly used in the text.
In Sect. 2, we discuss the structure of the absolute Galois group of a local field.
Although only a portion of this material is used in the remainder of the text, we think
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Krasner [100] was probably the first to remark that local fields of characteristic p
appear as “limits" of totally ramified local fields of characteristic 0.! In Sects. 4-6, we
study three important manifestations of this phenomenon. In Sect. 4, we introduce
Tate’s method of almost étale extensions. We consider deeply ramified extensions
of local fields and prove that finite extensions of a deeply ramified field are almost
étale. The main reference here is the paper of Coates and Greenberg [37]. The book
of Gabber and Ramero [78] provides a new conceptual approach to this theory in a
very general setting, but uses the tools which are beyond the scope of these notes. As
an application, we compute continuous Galois cohomology of the absolute Galois
group of a local field.

In Sect. 5, we study perfectoid fields following Scholze [130] and Fargues—
Fontaine [60]. The connection of this notion with the theory of deeply ramified
extensions is given by a theorem of Gabber—Ramero. Again, we limit our study to
the arithmetic case and refer the interested reader to [130] for the general treatment.
In Sect. 6, we review the theory of field of norms of Fontaine—Wintenberger and
discuss its relation with perfectoid fields.

Sections 7—13 are devoted to the general theory of p-adic representations. In
Sect. 7, we introduce basic notions and examples and discuss Grothendieck’s £-
adic monodromy theorem. Next, we turn to the case £ = p. Section 8 gives an
introduction to Fontaine’s theory of (¢, I')-modules [69]. Here, we classify p-adic
representations of local fields using the link between the fields of characteristic 0
and p studied in Sects. 5-6. In Sects. 9-13, we introduce and study special classes
of p-adic representations. The general formalism of admissible representations is
reviewed in Sect. 9. In Sect. 10, we discuss the notion of a Hodge—Tate representation
and put it in the frame of Sen’s theory of Cg-representations. Here, the computation
of the continuous Galois cohomology from Sect. 4 plays a fundamental role. In
Sects. 11-13, we define the rings of p-adic periods Bgr, Beris, and By and introduce
Fontaine’s hierarchy of p-adic representations. Its relation with p-adic comparison
isomorphisms is quickly discussed at the end of Sect. 13.

In the remainder of the text, we study p-adic representations arising from formal
groups. In this case, the main constructions of the theory have an explicit description,
and p-adic representations can be studied without an extensive use of algebraic
geometry. In Sect. 14, we review the p-adic integration on formal groups following
Colmez [38]. A completely satisfactory exposition of this material should cover the
general case of p-divisible groups, which we decided not to include in these notes.
For this material, we refer the reader to [30, 39, 64, 66]. In Sects. 15 and 16, we
illustrate the p-adic Hodge theory of formal groups by two applications: complex
multiplication of abelian varieties and Hilbert pairings on formal groups. In Sect. 17,
we prove the theorem “weakly admissible = admissible" in the case of dimension
one by the method of Laffaille [102]. This implies the surjectivity of the Gross—

I'See [52] for a modern exposition of Krasner’s results.
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Hopkins period map. Finally, we apply the theory of formal groups to the study

of the spaces (B:rris)"h=”, which play an important role in the theory of Fargues—

Fontaine. For further detail and applications of these results, we refer the reader
to [60].

0.3 These notes should not be viewed as a survey paper. Several important aspects
of p-adic Hodge theory are not even mentioned. As a partial substitute, we propose
some references for further reading in the body of the text.

1 Local Fields: Preliminaries

1.1 Non-Archimedean Fields

1.1.1 We recall basic definitions and facts about non-Archimedean fields.

Definition A non-Archimedean field is a field K equipped with a non-Archimedean
absolute value that is, an absolute value | - |x satisfying the ultrametric triangle
inequality:

lx + ylk <max{|x|g, [ylk}, Vx,yeK.

We will say that K is complete if it is complete for the topology induced by | - |k .

To any non-Archimedean field K, one associates its ring of integers
Ok ={x e K ||xlx <1}.
The ring Ok is local, with the maximal ideal
mg ={x e K ||xlx <1}.
The group of units of O is
Ug ={x e K | x|k = 1}.
The residue field of K is defined as

k]( = 0[(/1‘(1](.
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Theorem 1.1.2 Let K be a complete non-Archimedean field and let L/ K be a finite
extension of degree n = [L : K. Then the absolute value | - |k has a unique contin-
uation | - |p to L, which is given by

Xl = [Nex )]

where Nk is the norm map.

Proof See, for example, [10, Chap. 2, Theorem 7]. |

1.1.3 We fix an algebraic closure K of K and denote by K*P the separable closure
of K in K.If char(K) = p > 0, we denote by K™ := K/7” the purely inseparable
closure of K. Thus K = K*P if char(K) = 0, and K = (K™9)*P if char(K) = p >
0. Theorem 1.1.2 allows to extend | - |x to K. To simplify notation, we denote again
by | - | the extension of | - g to K.

Proposition 1.1.4 (Krasner’s Lemma) Let K be a complete non-Archimedean field.
Leta € K5P and let o) = «, a3, . . ., o, denote the conjugates of a over K. Set

d, =min{|(x —ailg | 2<i < n}

If B € K% is such that |@ — B| < d, then K(a) C K(B).

Proof We recall the proof (see, for example, [119, Proposition 8.1.6]). Assume
that o ¢ K(B). Then K (o, B)/K (B) is a non-trivial extension, and there exists an
embedding o : K (o, B)/K(B) — K/K(B) such that ¢; := o () # «. Hence,

B —ailk =lo(B—a)lk =B —alk <da,
and
lo —ailx = (@ — B) + (B — a)|x < max{la — Blk, |B —ailx} < da.

This gives a contradiction. (]

Proposition 1.1.5 (Hensel’s Lemma) Let K be a complete non-Archimedean field.
Let f(X) € Ok[X] be a monic polynomial such that

(a) tf_te reduction f(X) € kx[X] of f(X) modulo mg has a root & € kg;
(b) f'(@) #0.

Then there exists a unique o € Ok such that f(¢) =0and @ = o (mod mg).

Proof See, for example, [106, Chap. 2, §2]. |

1.1.6 Recall that a valuation on K is a function vy : K — R U {+o00} satisfying
the following properties:



An Introduction to p-Adic Hodge Theory 73

(1) vg(xy) = vg(x) +vk(y), Vx,ye K%
(2) vk (x +y) = min{vg (x), vk ()},  Vx,y € K¥;
(3) vg(x) =00 & x =0.

For any p €]0, 1[, the function |x|, = '™ defines an ultrametric absolute value
on K. Conversely, if | - |g is an ultrametric absolute value, then for any p €]0, 1[
the function v, (x) = log, |x|k is a valuation on K. This establishes a one to one
correspondence between equivalence classes of non-Archimedean absolute values
and equivalence classes of valuations on K.

Definition A discrete valuation field is a field K equipped with a valuation vk such
that vg (K*) is a discrete subgroup of R. Equivalently, K is a discrete valuation field
if it is equipped with an absolute value | - | such that |K*|x C Ry is discrete.

Let K be a discrete valuation field. In the equivalence class of discrete valuations
on K, we can choose the unique valuation vg such that vg (K*) = Z. An element
g € K such that vg (mg) = 1 is called a uniformizer of K. Every x € K* can be

written in the form x = 7 * @y with u € Ug, and one has

K* >~ (ng) x Ux, mg = (7k).

1.1.7 Let K be a complete non-Archimedean field. We finish this section by dis-
cussing the Galois action on the completion Cg of K.

Theorem 1.1.8 (Ax—Sen—Tate) Let K be a complete non-Archimedean field. The
following statements hold true:

(i) The completion Cg of K is an algebraically closed field, and K*% is dense in
Ck.
(ii) The absolute Galois group Gk = Gal(K*?/K) acts continuously on Cg, and
this action identifies G x with the group of all continuous automorphisms of Cx
that act trivially on K.
(iii) For any closed subgroup H C G, the field C¥ coincides with the completion
of the purely inseparable closure of (K*P)" in K .

Proof The statement (i) follows easily from Krasner’s Lemma, and (ii) is an imme-
diate consequence of continuity of the Galois action. The last statement was first
proved by Tate [151] for local fields of characteristic 0. In full generality, the the-
orem was proved by Ax [11]. Tate’s proof is based on the ramification theory and
leads to the notion of an almost étale extension, which is fundamental for p-adic
Hodge theory. We review it in Sect. 4. (I
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1.2 Local Fields

1.2.1 In these notes, we adopt the following convention.

Definition 1.2.2 A local field is a complete discrete valuation field K whose residue
field kg is finite.

Note that many (but not all) results and constructions of the theory are valid under
the weaker assumption that the residue field kx is perfect.
We will always assume that the discrete valuation

vk 1 K = Z U {+o0}

is surjective. Let p = char(kg). The following well-known classification of local
fields can be easily proved using Ostrowski’s theorem:

e Ifchar(K) = p, then K is isomorphic to the field kg ((x)) of Laurent power series,
where kg is the residue field of K and x is transcendental over k. The discrete
valuation on K is given by

vk (f(x)) = ord, f(x).

Note that x is a uniformizer of K and Og >~ ki [[x]].
e If char(K) = 0, then K is isomorphic to a finite extension of the field of p-adic
numbers Q. The absolute value on X is the extension of the p-adic absolute value

a i

P = p*. plab.

‘ P

In all cases, set fx = [kx : F,] and denote by gx = pr the cardinality of kg . The
group of units Uk is equipped with the exhaustive descending filtration:

Ul =14nt0gx, n>0.
For the factors of this filtration, one has
Ug/UY ~ Kk, Ul just ~mi mit ifn > 1. (1)

1.2.3 If L/K is afinite extension of local fields, the ramification index e(L/K) and
the inertia degree f(L/K) of L/K are defined as follows:

e(L/K) =vr(wg),  f(L/K)=Tlkr :kkl.
Recall the fundamental formula:

F(L/K)e(L/K) =L : K]



An Introduction to p-Adic Hodge Theory 75

(see, for example, [10, Chap. 3, Theorem 6] ).

Definition 1.2.4 One says that L/K is
(i) unramified if e(L/K) = 1 (and therefore f(L/K) =[L : K]);
(ii) totally ramified if e(L/K) = [L : K] (and therefore f(L/K) = 1).

The following useful proposition follows easily from Krasner’s lemma.

Proposition 1.2.5 Let K be a local field of characteristic 0. For any n > 1, there
exists only a finite number of extensions of K of degree < n.

Proof See [106, Chap. 2, Proposition 14]. O

We remark that, looking at Artin—Schreier extensions, it’s easy to see that a local
field of characteristic p has infinitely many separable extensions of degree p.

1.2.6 The unramified extensions can be described entirely in terms of the residue
field kg . Namely, there exists a one-to-one correspondence

{finite extensions of kg } «— {finite unramified extensions of K},

which can be explicitly described as follows. Let k/kx be a finite extension of
ki . Write k = kg (o) and denote by f(X) € kg[X] the minimal polynomial of «.
Let f(X ) € Ok[X] denote any lift of f(X). Then we associate to k the extension
L = K (@), where @ is the unique root of f(X ) whose reduction modulo m; is .
An easy argument using Hensel’s lemma shows that L doesn’t depend on the choice
of the lift £(X).

Unramified extensions form a distinguished class of extensions in the sense of
[104]. In particular, for any finite extension L /K, one can define its maximal unram-
ified subextension L, as the compositum of all its unramified subextensions. Then

fWL/K) =[Ly: K], e(L/K) =[L: Ly].

The extension L/L,, is totally ramified.

1.2.7 Assume that L /K is totally ramified of degree n. Let 7, be any uniformizer
of L, and let

FX) =X"+a, 1 X"+ +arX +ag € Og[X]
be the minimal polynomial of ;. Then f(X) is an Eisenstein polynomial, namely
v (a) > 1 forO0 <i <n—1,and vg(ag) = 1.

Conversely, if o is a root of an Eisenstein polynomial of degree n over K, then
K (a)/K is totally ramified of degree n, and « is an uniformizer of K («).
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Definition 1.2.8 One says that an extension L/K is
(i) tamely ramified if e(L/K) is coprime to p.
(ii) totally tamely ramified if it is totally ramified and e(L/K) is coprime to p.

Using Krasner’s lemma, it is easy to give an explicit description of totally tamely
ramified extensions.

Proposition 1.2.9 If L/K is totally tamely ramified of degree n, then there exists a
uniformizer g € K such that

L=K(m), 7] =nmg.

Proof Assume that L/K is totally tamely ramified of degree n. Let IT be a uni-
formizerof L and f(X) = X" + - - - + a1 X + ao its minimal polynomial. Then f (X)
is Eisenstein, and 7 := —ag is a uniformizer of K. Let o;; € K (1 < i < n) denote
the roots of g(X) := X" + ag. Then

Mk = |g(M) = f(M]x < max |a;T|x < lrxlx

I
n

Since |g(I)|x = [J(IT — ), and IT = (—1)" [] ;, we have

i=1 i=1

n n
[Tim—ailx <] leilx.
i=1 i=1
Therefore, there exists iy such that
T — oyl < loylk- (2)

Set m;, = «,. Then

H(ﬁL —o) =g (mp) = nap L.
istio

Since (n, p) = 1l and |7, — o;|x < |7L|k, the previous equality implies that
d :=min|r;, —o;|lg = |7L|k-
i#ig
Together with (2), this gives
|H — aiolK <d.

Applying Krasner’s lemma, we find that K (7;) C L. Since [L : K] = [K () :
K] = n, we obtain that L = K (;r), and the proposition is proved. (I

1.2.10 Let L/K be a finite separable extension of local fields. Consider the bilinear
non-degenerate form
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tryg - LxL— K, tyx(x,y) =Trx(xy), 3)
where Try /x is the trace map. The set
O, ={xeL |t k(x,y) € Ok, Yye O}
is a fractional ideal, and
Dk = OL_1 = {x eL|x0; C OL}

is an ideal of Oy .
Definition The ideal D, /k is called the different of L/K.

If K C L C M is atower of separable extensions, then
Dk = DOm/yLDr/k- 4)

(see, for example, [106, Chap. 3, Proposition 5]).
Set

vy (D k) =inf{vp(x) | x € Dk}

Proposition 1.2.11 Ler L/K be a finite separable extension of local fields and e =
e(L/K) the ramification index. The following assertions hold true:

(i) If Op = Oklal, and f(X) € Ogl[X] is the minimal polynomial of o, then
Dk = (f'(@).

(ii) 1 /x = Oy if and only if L/K is unramified.

(iii) v (Dpjx) = e — 1.

(iv) vy (D k) = e — lifand only if L/K is tamely ramified.

Proof The first statement holds in the more general setting of Dedekind rings (see,
for example, [106, Chap. 3, Proposition 2]). We prove ii-iv) for reader’s convenience
(see also [106, Chap. 3, Proposition 8]).

(a) Let L/K be an unramified extension of degree n. Write k;, = kg () for some
a € kp. Let f(X) € kx[X] denote the minimal polynomial of &. Then deg(f) =n.
Take any lift £(X) € Ox[X] of f(X) of degree n. By Proposition 1.1.5 (Hensel’s
lemma), there exists a unique root o« € Oy, of f(X) suchthata = o (mod mg). It’s
easy to see that O, = Okl«]. Since f (X) is separable, f (@) # 0, and therefore
f'(x) € Ur. Applying (i), we obtain

Dk = (f'(@) = 0y.

Therefore, ®;,x = Oy if L/K is unramified.

(b) Assume that L/K is totally ramified. Then O; = Og[m.], where 7, is any
uniformizer of O . Let f(X) = X¢ 4+ a,_1 X' +--- + a; X + ap be the minimal
polynomial of 7. Then
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fla) =ent™ +(e—Dag 1 m2 4 +a.

Since f(X) is Eisenstein, v;(a;) > e, and an easy estimation shows that
v (f'(mwy)) > e — 1. Thus,

v (D) = v (f(@) > e— 1.
This proves (iii). Moreover, vy (f'(a)) = e — 1 if and only if (e, p) = 1, i.e. if and
only if L/K is tamely ramified. This proves iv).

(c) Assume that D,k = Op. Then vy (D) = 0. Let Ly, denote the maximal
unramified subextension of L/K. By (4), a) and b) we have

v(Drx) =v.®Dpyr,) = e—1.

Thus, e =1, and we showed that each extension L/K such that D,k = O is
unramified. Together with a), this proves (i). O

1.3 Ramification Filtration

1.3.1 Let L/K be a finite Galois extension of local fields. Set G = Gal(L/K). For
any integer i > —1, define

Gi={geGlv(glx)—x)=i+1, VxeO.}.

Then G; are normal subgroups of G, called ramification subgroups. We have a
descending chain

G=G6G_1D2GyDG;D---DG,={1}
called the ramification filtration on G (in low numbering). From definition, it easily
follows that

Go = Gal(L/Ly), G/Gy ~ Gal(kr/kk).

Below, we summarize some basic results about the factors of the ramification filtra-
tion. First remark that for each i > 0, one has

Gi:{geG0|vL<1—g(nL)>>i}.
Ty

Proposition 1.3.2 (i) Foralli > 0, the map

si: Gi/Gip — UV Uiy, (5)
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which sends g = g mod Gy to s;(g) = M (mod USH)), is a well-defined
T

i3
monomorphism which doesn’t depend on the choice of the uniformizer my of L.
(ii) The composition of s; with the maps (1) gives monomorphisms:

8 : Go/Gy — k¥, 8 1 Gi/Giy1 — mig/mitt foralli > 1. (6)

Proof The proof is straightforward. See [142, Chapitre IV, Propositions 5-7]. O

An important corollary of this proposition is that the Galois group G is solvable
for any Galois extension. Also, since char(kx) = p, the order of Gy/ G| is coprime
to p, and the order of G is a power of p. Therefore, L, = L is the maximal tamely
ramified subextension of L. From this, one can easily deduce that the class of tamely
ramified extensions is distinguished. To sup up, we have the tower of extensions:

L (7
Gy
Go Llr

Go/Gi

G/Gy

K

Definition 1.3.3 The groups /1, := Go and Prx := G are called the inertia sub-
group and the wild inertia subgroup, respectively.

1.3.4 The different D,k of a finite Galois extension can be computed in terms of
the ramification subgroups.

Proposition 1.3.5 Let L/K be a finite Galois extension of local fields. Then
oo
v (@) = Y _(1Gi| = 1. ®)
i=0

Proof Let Op = O[], and let f(X) be the minimal polynomial of «. For any
g € G,setip/x(g) = vr(g(a) — o). From the definition of ramification subgroups,
it follows that g € G; if and only if i; ;x (g) > i + 1. Since

f@ =] - g@).
g#1

we have
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v @rk) = vi(f (@) =) el —g@) =Y ik (@) = Y G+ D(Gil = Git1])
g#1 g#1 i=0

=Y (i +D(UGiI = D= (Git1] = D) =Y (Gil = D).
i=0

i=0
O

1.3.6 We review Hasse—Herbrand’s theory of upper ramification. It is convenient to
define G, for all real u > —1 setting

G, = G;, where iis the smallest integer > u.

For any finite Galois extension, the Hasse—Herbrand functions are defined as follows:

@ / dt
u) = —_—,

P = J) Go G ©)
YLk () =@p ) (0)  (the inverse of ¢ /k).

Proposition 1.3.7 Let K C F C L be a tower of finite Galois extensions. Set G =
Gal(L/K) and H = Gal(L/F). Then the following holds true:
(i) or/x = @r/x © @r)r and Yk = Yr/r o Yr/k.

ii) (Herbrand’s theorem) For any u > 0,
G,,,H/H ~ (G/H)qoM/L(u)-

Proof See [142, Chap. IV, §3]. O

Definition The ramification subgroups in upper numbering G’ are defined by
G(U) = GV/L/K(U)’

or, equivalently, by G¥vx@) = G,

Therefore, Herbrand’s theorem can be stated as follows:
(G/H)Y =GY/GYNH, VYv=0. (10)

The Hasse—Herbrand function v/, /x can be written as

Yk () = / (GO G,
0

1.3.8 Hebrand’s theorem allows to define the ramification filtration for infinite Galois
extensions. Namely, for any (finite or infinite) Galois extension of local fields L/K
define
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Gal(L/K)V = l(ir_nGal(F/K)(”),
F

where F runs through finite Galois subextensions of L/K. In particular, we can
consider the ramification filtration on the absolute Galois group Gk of K. This
filtration contains fundamental information about the field K. We discuss it in more
detail in Sect. 2.3.

Definition A real number v > 0 is a ramification jump of a Galois extension
L/K if
Gal(L/K)"*® £ Gal(L/K)®  forany & > 0.

1.3.9 Formula (8) can be written in terms of upper ramification subgroups:

*° 1
UK(DL/K) = /;1 (1 - W) dv.

In this form, it can be generalized to arbitrary finite extensions as follows. For any

v > 0, define
K =K%

Then for any finite extension L/K, one has

*© 1
U[((@L/]() = / (1 — —_(U)) dv (11)
-1 [L:LNK ]

(see [37, Lemma 2.1]).

1.3.10 The description of the ramification filtration for general Galois extensions is a
difficult problem (see Sect. 2.3 below). It is completely solved for abelian extensions
(see Sect. 2.2). In particular, the ramification jumps of an abelian extension are
rational integers (theorem of Hasse—Arf). For non-abelian extensions, we have the
following result.

Theorem 1.3.11 (Sen) Let K../K be an infinite totally ramified Galois extension
whose Galois group G = Gal(K/K) is a p-adic Lie group. Fix a Lie filtration
(G(n))nx0 on G. Then there exists a constant ¢ = 0 such that

Gt C G(n) C GO, Vn > 0.

In particular, (G : GY) < 400 forallv > 0.

Proof This is the main result of [134]. O
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1.4 Norms and Traces

1.4.1 The results proved in this section are technical by the nature, but they play a
crucial role in our discussion of deeply ramified extensions and the field of norms
functor. Assume that L /K is a finite extension of local fields of characteristic 0.

Lemma 1.4.2 One has
Trp x(m}) = m,

UL(®L/K)+H:|

where r = [ (LK)

Proof From the definition of the different, it follows immediately that
Tr k(D)) = Ok

Setd = v (Dr/k) and e = e(L/K). Then:
m} = TI‘L/K (m}@;},& = TI‘L/K (mrLefzS) C TI‘L/K (m(L‘H”)_B) = TI‘L/K (m'i) .

Conversely, one has

—er

Tryx (i my") = Trp g (mhm;*) C Trp g (m)*™) = Tryx (D)) = Ok,

Therefore, Try /x (m}) C m%, and the lemma is proved. |

1.4.3 Assume that L/K is a totally ramified Galois extension of degree p. Set
G = Gal(L/K) and denote by ¢ the maximal natural number such that G, = G (and
therefore G, = {1}). Formula (8) reads:

v(®@rk) =(p— D@+ 1. (12)
Lemma 1.4.4 Forany x € m},
Npjgk(1+x) =1+ Npjg(x) +Trpx(x)  (mod mi),

(p—l)(z+1)+zn]

where s = [
p

Proof Set G = Gal(L/K), and for each 1 < n < p denote by C, the set of all
n-subsets {g1, ..., g,} of G (note that g; # g; if i # j). Then:

Npk(l+x) = 1_[ (1+g(x)) =1+ Np/g(x)+Trp g (x)
geG

+ ) W@+ Y s gpo1(x).

{g1,82}eC2 {g1,--gp—1}€Cp1
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It’s clear that the rule

gx{g1,..., &} =1{g81,-.., 88}

defines an action of G on C,,. Moreover, from the fact that |G| = p is a prime number,
it follows that all stabilizers are trivial, and therefore each orbit has p elements. This
implies that each sum

Y s g, 2<n<p—1
{g1,...8n}€Cy

can be written as the trace Tr; /x (x,,) of some x,, € mi”. From (12) and Lemma 1.4.2,
it follows that Tr /k (x,) € m% . The lemma is proved. ([l

Corollary 1.4.5 Let L/K is a totally ramified Galois extension of degree p. Then

vk (Npyx(14+x) — 1 = Npjg(x)) > M

Proof From Lemmas 1.4.2 and 1.4.4, it follows that

[(P— D@+ 1)}
p

k]

vg(Npyxk(1+x) —1—=Npx(x)) >

Since | | | . |
- t — 1)t t(p —
[<p )(+>}:[<p >+1__}> (=1
p p p p
the corollary is proved. O

1.5 Witt Vectors

1.5.1 In this subsection, we review the theory of Witt vectors. Consider the sequence
of polynomials wg(xg), wi(xg, X1), ... defined by

wo(x0) = Xo,

wi(xg, x1) = x§ + pxi,

_ p 2
wa(xo, X1, X2) = X5 + px; + p xa,
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Proposition 1.5.2 Let F(x, y) € Z[x, y] be a polynomial with coefficients in Z such
that F(0,0) = 0. Then there exists a unique sequence of polynomials

Do (x0, Yo) € Z[x0, yol,
@1 (x0, Yo, X1, Y1) € Z[x0, Yo, X1, ¥11,

q>l1(x05 y07x17y17"'5~xn7 yn) € Z[x07 }’O,xl,)’l, "‘7xn7 )’n],

such that

wp (g, P, ..., Pp) = F(wu(x, X1, .- .» Xn), Wn (Y05 Y15 -+ Yn))s foralln > 0.

13)
To prove this proposition, we need the following elementary lemma.
Lemma 1.5.3 Let f € Z[xo, ..., x,]. Then
7 Xor o xa) = f7 (el xP) (mod p™),  forallm > 1.
Proof The proof is left to the reader. (]

1.5.4 Proof of Proposition 1.5.2 We prove the proposition by inductionon n. Forn =
0, we have ®q(xg, yo) = F(xg, yo). Assume that &y, ®q, ..., P,_; are constructed.
From (13), it follows that

1 n _
o= (F a0, 51 s x) wn G, v1s o)) = (@ o p"~ 10l ).

(14)
This proves the uniqueness. It remains to prove that ®, has coefficients in Z. Since

wn(-x()a sy Xn—1, xil) = wn—l(-xg9 MR} x,{lyfl) (mOd pn)ﬂ

we have

F(wn(xOv sy Xp—1, -xn)’ wn(yOv cees Yn—1, yn))

= F(Wao1 (x5, oo X2 wu 1 08, ..o ¥P_)  (mod p™).
(15)

On the other hand, applying Lemma 1.5.3 and the induction hypothesis, we have

DY 4 p" O = w (Po(efL ¥ Puat (L XD YD)

EF(wn—l(-x(I))’ MR x,f,l)a wn—l(yé)’ ce y;ff[)) (mOd pn)'
(16)
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From (15) and (16), we obtain that

F(wn(x0, -+, Xp—1, Xn), Wn (Y0, - -+ » Yn—1, Yn)) = (Dg +-+ Pn_ch,[,)_] (mod p").

Together with (14), this whows that ®,, has coeffiients in Z. The proposition is proved.

1.5.5 Let(S,).>0 denote the polynomials (®,),>o for F(x, y) = x 4+ yand (Pn)n>0
denote the polynomials (®,),>o for F(x, y) = xy. In particular,

P
Xy + Yo — (xo + yo)?
So(x0, ¥0) = %o + Yo, S1(x0, Yo, X1, y1) = x1 + y1 + = 0 . ,

Py(x0, Y0) = X0Y0s Py (x0, Yo, X1, Y1) = X y1 + X155 + pxiyi.

1.5.6 For any commutative ring A, we denote by W(A) the set of infinite vectors
a = (ay, ai, ...) € AN equipped with the addition and multiplication defined by the
formulas:

a+ b = (S()(a(), b0)7 Sl (aOa bOﬂ a, bl)v .- ')a

a-b = (Pyao, bo), Pi(ao, bo, ar, by), ...).

Theorem 1.5.7 (Witt) With addition and multiplication defined as above, W (A) is
a commutative unitary ring with the identity element

1=(1,0,0,...).
Proof (a) We show the associativity of addition. From construction, it is clear that
there exist polynomials (#,),>0, and (v,),>0 with integer coefficients such that

Un, Uy € Llxo, Y0, 205 - - - » Xn» Yu, 2] and for any a, b, c € W(A)

(a+b) +c = (uo(ao, bo, o), - .., un(ao, bo, co, - - ., an, by, cn), . .),
a—+ (b + C) = (Uo(ao’ bOs CO)? D) Un(a07 b07 €Oy -+, Ap, bn’ cn)» .. )

Moreover,

wy (U, ..., un) = wu(folxo, yo), f1(x0, Y0, X1, y1)s - - -) + wn (20, .-, Zn)

and

Wy VY, - .., Un) = Wp (X, - .., Xp) + wu (fo(o, 20)» f1(Y0, 205 ¥1,21)5 -+ .)

Therefore,
wn("{O’---»un):wn(UOs'--’Un)v Vl’l}O,
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and an easy induction shows that u, = v, for all n. This proves the associativity of
addition.
(b) We will show the formula:

(X0, X1, X2, . ..) - (30, 0,0, ...) = (Xoy0, X190, X155 + .. .)- (17)

In particular, it implies that 1 = (1,0, 0, ...) is the identity element of W (A). We
have
(x0, X1, X2, ...) - (30, 0,0,...) = (ho, hy, ...),

where hg, hy, ... are some polynomials in yg, Xo, X; . . .. We prove by induction that
hy, = x,¥;. Forn = 0, we have hy = go(xo, yo) = XoYo. Assume that the formula is
proved for all i < n — 1. We have

wn(hO» hl’ ey hn) - wn(XO» Xiyeuns Xn)wn()’o, 07 ey O)

Hence:

n n—1 n n n
W+ phl 4 "y Py = 0+ pal e Py )yl

By induction hypothesis, #; = x,-yé’i for0 <i<n-—1.Thenh, = x,lygn, and the
statement is proved.
Other properties can be proved by the same method. ]
1.5.8 Below, we assemble some properties of the ring W (A):
(1) For any homomorphism ¢ : A — B, the map
W(A) —» W(B), ¥l(ao,ai,...) = (¥(a), ¥(a),...)

is an homomorphism.
(2) If pis invertible in A, then there exists an isomorphism of rings W (A) =~ AN.

Proof The map
w: WA — AN, wlag, ai, ...) = (wolao), wilag, ar), wa(do, ai, az), . . .)

is an homomorphism by the definition of the addition and multiplication in W (A).
If p is invertible, then for any (b, by, b, . . .), the system of equations

wo(xo) = by, wi(xp, x1) = b1, wa(xg, x1,x2) =by, ...

has a unique solution in A. Therefore, w is an isomorphism. ]

(3) Forany a € A, define its Teichmiiller lift [a] € W(A) by
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[a] = (a,0,0,...).

Then [ab] = [a][b] for all a, b € A. This follows from (17).
(4) The shift map (Verschiebung)

Vi WA »> W), (ag,ai,0,..)— (0,a9,ay,...)
is additive, i.e. V(a +b) = V(a) + V(b). This can be proved by the same
method as for Theorem 1.5.7.
(5) For any n > 0, define:
I,(A) = {(ao,al, .)€ W(A) |a; =0forall0 <i < n}

Then (1,(A)),>0 is a descending chain of ideals, which defines a separable
filtration on W (A). Set:

W,(A) := W(A)/I,(A).

Then
W(A) =1im W(A)/I,(A).

We equip W(A)/I,(A) with the discrete topology and define the standard topol-

ogy on W(A) as the topology of the projective limit. It is clearly Hausdorff. This

topology coincides with the topology of the direct product on W (A):
WA)=AXAXAX---,

where each copy of A is equipped with the discrete topology. The ideals 1,,(A)

form a base of neighborhoods of 0 (each open neighborhood of 0 contains ,,(A)

for some n).
(6) Forany a = (ag, ay, ...) € W(A), one has

[e.¢]
(ag, ar, az, ...) =Y _V"[a,].
n=0

This can be proved by the same method as for Theorem 1.5.7.
(7) If A is aring of characteristic p, then the map

¢ WA - W(A), (ap,ay,...) — (ag,af,...),
is a ring endomomorphism. In addition,

oV =V =p.
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Proof The map ¢ is induced by the absolute Frobenius
o A—> A, o(x) = xP.

‘We should show that
p(a()sals . ') = (Oya(‘;vaf)v . ')'

By definition of Witt vectors, the multiplication by p is given by

plag, ai, ...) = (ho(ao), hi(ag, ay), . . .),

where &, (xg, X1, - . ., X,) is the reduction mod p of the polynomials defined by the
relations:
wy(ho, by, ...y hy) = pw,(Xo, X1, ...y Xn), n>0.

An easy induction shows that 4,, = x,{’_l (mod p) and the formula is proved. U

Definition Let A be a ring of charactersitic p. We say that A is perfect if ¢ is an
isomorphism. We will say that A is semiperfect if ¢ is surjective.

Proposition 1.5.9 Assume that A is an integral perfect ring of characteristic p. The
following holds true:

(i) "' W(A) = Li(A).

(ii) The standard topology on W (A) coincides with the p-adic topology.

(iii) Each a = (ay, ay, ...) € W(A) can be written as

[ee]

(ag.ar,ay,..) =Y [al " 1p".

n=0
Proof (i) Since ¢ is bijective on A (and therefore on W(A)), we can write:
PIW(A) = Vil w(A) = v HIw(A) = 1,(A).

(i1) This follows directly from (i).
(iii) One has

(ag,ar,ar,...) =Y V'Ia)) =Y _p'o"(la,)) = Y laf "1p".
n=0 n=0

n=0
(Il

Theorem 1.5.10 (i) Let A be an integral perfect ring of characteristic p. Then there
exists a unique, up to an isomorphism, ring R such that:

(a) R is integral of characteristic 0;

(b) R/pR = A;
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(c) R is complete for the p-adic topology, namely

~ 1; np.
R ~1im R/p"R;

n
(ii) The ring W (A) satisfies properties a—c).

Proof (i) See [142, Chapitre II, Théoreme 3].
(i) This follows from Proposition 1.5.9. ]

Example 1.5.11 (1) W(F,) ~Z,,. B
(2) Let F, be the algebraic ClOSllI'(E\ of F,. Then W(F ) is isomorphic to the ring
of integers of the p-adic completion Q' of Q.

1.6 Non-abelian Cohomology

1.6.1 In this section, we review basic results about non-abelian cohomology. We
refer the reader to [119, Chap. 2, §2 and Theorem 6.2.1] for further detail.

Let G be a topological group. One says that a (not necessarily abelian) topological
group M is a G-group if itis equipped with a continuous action of G, i.e. a continuous
map

GxM-—> M, (g, m)— gm

such that

g(mymsy) = g(my) g(my), if geG, m,meM,
(8182)(m) = g1(g2(m)), if g1,82€G, meM.

Let M be a G-group. A 1-cocycle with values in M is acontinuousmap ' : G — M
which satisfies the cocycle condition

flgigd) = fg) (&1 f(g2), g8 €G.

Two cocycles fi and f, are said to be homologous if there exists m € M such that

Hg) =mfi(g)gm)™!, geG.

This defines an equivalence relation ~ on the set Z'(G, M) of 1-cocycles. The first
cohomology H'(G, M) of G with coefficients in M is defined to be the quotient set
ZY (G, M) / ~ . Itis easy to see that if M is abelian, this construction coincides with
the usual definition of the first continuous cohomology. In general, H'(G, M) is not
a group but it has a distinguished element which is the class of the trivial cocycle.
This allows to consider H'(G, M) as a pointed set. The following properties of the
non-abelian H' are sufficient for our purposes:
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(1) Inflation—restriction exact sequence. Let H be a closed normal subgroup of
G. Then there exists an exact sequence of pointed sets:

0— H'(G/H, M"Y ™ H'(G, M) 5 H'(H, M)S/H.

(2) Hilbert’s Theorem 90. Let E be a field, and F/E be a finite Galois extension.
Then GL,, (F) is a discrete Gal(F/ E)-group, and

H'(Gal(F/E),GL,(F)) =0, n> 1.

1.6.2 A direct consequence of the non-abelian Hilbert’s Theorem 90 is the following
fact. Let V be a finite-dimensional F-vector space equipped with a semi-linear action
of Gal(F/E):

gx+y)=gx)+g(y), Vx,yeV,
glax) = gla)g(x), Vae F,VxeV.

Let {ey, ..., e,} be a basis of V. For any g € Gal(F/E), let A, € GL,(F) denote
the unique matrix such that

gler,...,eq) =(e1,...,ey)Aq.

Then the map
f i Gal(F/E) — GL,(F),  f(g) = A,

is a 1-cocyle. Hilbert’s Theorem 90 shows that there exists a matrix B such that the
(e1, ..., e,)BisGal(F/E)-invariant. Tosumup, V always has a Gal(F/ E)-invariant
basis.

Passing to the direct limit, we obtain the following result.

Proposition 1.6.3 (i) H'(Gg, GL,(E*?)) = 0 foralln > 1.
(ii) Each finite-dimensional E*P-vector space V equipped with a semi-linear
discrete action of Gg has a G g-invariant basis.

1.6.4 Let E be a field of characteristic p, and let & be a complete unramified field
with residue field E. Let & denote the maximal unramified extension of &. The
residue field of & is isomorphic to E*P, and we have an isomorphism of Galois
groups:

Gal(&" /&) ~ Gg.

Let &' denote the p-adic completion of &£ and 5{‘5 itsring of integers. The following
version of Hilbert’s Theorem 90 can be deduced from Proposition 1.6.3 by devissage.

Proposition 1.6.5 (i) H'(Gal(&" /&), GLn(Z)\;g)) =O0foralln > 1.
(ii) Each free O -module equipped with a semi-linear continuous action of Gg
has a G g-invariant basis.
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2 Galois Groups of Local Fields

2.1 Unramified and Tamely Ramified Extensions

2.1.1 In this section, we review the structure of Galois groups of local fields. Let K
be a local field. Fix a separable closure K*? of K, and set Gx = Gal(K*®/K). Set
q = |kg|. Since the compositum of two unramified (respectively, tamely ramified)
extensions of K is unramified (respectively, tamely ramified) we have the well defined
notions of the maximal unramified (respectively, maximal tamely ramified) extension
of K. We denote these extensions by K" and K" respectively.

2.1.2 The maximal unramified extension K" of K is procyclic and its Galois group

is generated by the Frobenius automorphism Fr:

Gal(K"/K) — Z,
FI'K <> 1,

Frg(x) =x? (mod mg), Vx € Oguw.

2.1.3 Passing to the direct limit in the diagram (7), we have:

K (18)
Pg
Ix Klr
Kur
Z
K
Consider the exact sequence:
1 - Gal(K"/K") — Gal(K"/K) — Gal(K"/K) — 1. (19)

Here Gal(K"/K) ~ Z. From the explicit description of tamely ramified extensions,
it follows that K" is generated over K" by the roots n,l(/ ", (n, p) =1 of any uni-
formizer mg of K. This immediately implies that

Gal(K"/K") ~ [ | 2. (20)
L#£p
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Let 7 be a topological generator of Gal(K /K""). Fix a lift of the Frobenius auto-
morphism Frg to an element Frg € Gal(K"/K). Analyzing the action of these ele-
ments on the elements = 11</ ", one can easily determine the structure of Gal(K"/K).

Proposition 2.1.4 (Iwasawa) The group Gal(K" /K) is topologically generated by
the automorphisms Frg and tg with the only relation:

Frg x Fryg =12 1)

Proof See [89] or [119, Theorem 7.5.3]. From (19), it follows that Gal(K"/K) is
topologically generated by FrK and tg. The relation (21) follows from the explicit
action of ¢ and FrK on nK "for (n, p) = 1. O

2.2 Local Class Field Theory

2.2.1 Let K® denote the maximal abelian extension of K. Then Gal(K®®/K) is
canonically isomorphic to the abelianization G"}}’ = Gk /IGk, Gk] of Gg. Local
class field theory gives an explicit description of Gal(K®/K ) in terms of K. Namely,
there exists a canonical injective homomorphism (called the reciprocity map) with
dense image

Ok : K* - Gal(K™/K)

such that:

(i) For any finite abelian extension L/K, the homomorphism 6k induces an iso-
morphism
QL/K . K*/NL/K(L*)—)GEII(L/K),

where Ny /g is the norm map;
(i) If L/K is unramified, then for any uniformizer 7 € K* the automorphism
61,k (7r) coincides with the arithmetic Frobenius Fry /x;
(iii) For any x € K*, the automorphism 6 (x) acts on K" as
Ok (x) | gur = Frix ™,
The reciprocity map is compatible with the canonical filtrations of K* and

Gal(Kab/K)(”). Namely, for any real v > 0 set UI((U) = U,(("), where n is the smallest
integer > v. Then

Ok (U}?) = Gal(K™/K)®, Vv >0. (22)

For the classical proof of this result, see [142, Chap. XV].
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2.2.2 Thetheory of Lubin—Tate [111] (see also [140]) gives an explicit construction of
K in terms of torsion points of formal groups with a “big” endomorphism ring, and
describes the action of the Galois group Gal(K®/K) on these points. In particular,
it gives a simple and natural proof of (22). This theory can be seen as a local analog
of the theory of complex multiplication, providing the solution of Hilbert’s twelfth
problem for local fields. We review it in Sect. 15 below.

2.2.3 Local class field theory was generalized to the infinite residue field case by
Serre, Hazewinkel and Suzuki—Yoshida [53, 138, 149]. In another direction, Parshin
and Kato developed the class field theory of higher-dimensional local fields [91, 122,
123]. We refer the reader to [63] for survey articles and further references.

2.3 The Absolute Galois Group of a Local Field

2.3.1 First, we review the structure of the Galois group of the maximal p-extension
of alocal field. A finite Galois extension of K is a p-extension if its degree is a power
of p = char(kg). It is easy to see that p-extensions form a distinguished class, and
we can define the maximal pro-p-extension K (p) of K as the compositum of all
finite p-extensions. Set G (p) = Gal(K (p)/K).

First assume that char(K) = p. We have the Artin—Schreier exact sequence

0—F,— K(p) > K(p)— 0,

where e (x) = x? — x. Taking the associated long exact cohomology sequence and
using the fact that H (G (p), K(p)) = 0 fori > 1, we obtain:

H'(Gk(p).Fy) = K(p)/9(K(p),  H*(Gk(p).F),) =0.
General results about pro-p-groups (see, for example, [99, Chap. 6]) say that

dime H! (Gk(p), Fp) = cardinality of a minimal system of generators of Gk (p); 23)

dimp, HZ(GK(p), F)) = cardinality of a minimal relation system of G (p).

This leads to the following theorem:

Theorem 2.3.2 [f char(K) = p, then Gk (p) is a free pro-p-group of countable
infinite rank.

The situation is more complicated in the inequal characteristic case. Let K be a
finite extension of Q,, of degree N. For any n, let 1, denote the group of nth roots
of unity.

Theorem 2.3.3 (Shafarevich, Demushkin) Assume that char(K) = 0.



94 D. Benois

(i) If K doesn’t contain the group (i, then Gk (p) is a free pro-p-group of rank
N+ 1.

(ii) If K contains w,, then Gk (p) is a pro-p-group of rank N + 2, and there
exists a system of generators g1, g2, - - ., gn+2 of G g (p) with the only relation:

gt g1, 821183, 841+ - [gn+1. gvaal = 1, (24)
where p® denotes the highest p-power such that K contains i s

Comments on the proof. The Poincaré duality in local class field theory gives
perfect pairings:

H'(Gk(p).Fy) x H* (G (p), mp) = H*(Gg(p),pp) ~F,,  0<i<2.
Therefore, we have:
H'(Gk(p),F,) =~ (K*/K*")Y,  H*(Gk(p),F,) =~ u,(K)",

where  denotes the duality of F ,-vector spaces. Assume that K doesn’t contain the
group /4. Then these isomorphisms give:

dimg, H'(Gk(p),F,) = N + 1,
H*(Gk(p).F,) =0.

Now from (23) we obtain that Gk (p) is free of rank N + 1. Note that this was first
proved by Shafarevich [145] by another method.
Assume now that K contains 1, In this case, we have:

dimg, H'(Gk(p).F,) = N +2,
H*(Gk(p),F,) = 1.

Therefore, Gk (p) can be generated by N + 2 elements gy, ..., gn+2 With only one
relation. In [54], Demushkin proved that g, ..., gy+2 can be chosed in such a way
that (24) holds. See also [101] and [139].

2.3.4 The structure of the absolute Galois group in the characteristic p case can be
determined using the above arguments. One easily sees that the wild inertia subgroup
Py is pro- p-free with a countable number of generators. This allows to describe G ¢
as an explicit semi-direct product of the tame Galois group Gal(K"/K) and Pk (see
[98] or [119, Theorem 7.5.13]). The characteristic O case is much more difficult. If
K is a finite extension of Q,,, the structure of the Gx in terms of generators and
relations was first described by Yakovlev [163] under additional assumption p # 2.
A simpler description was found by Jannsen and Wingberg in [90]. For the case
p =2, see [164, 165].
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2.3.5. The ramification filtration (G(K”)) on Gk has a highly non-trivial structure. We
refer the reader to [1, 2, 4, 7, 79] for known results in this direction. Abrashkin [5]
and Mochizuki [113] proved that a local field can be completely determined by its
absolute Galois group together with the ramification filtration. In another direction,
Weinstein [157] interpreted Gq, as the fundamental group of some “perfectoid"
object.

3 Z,-Extensions

3.1 The Different in Z ,-Extensions

3.1.1 Theresults of this section were proved by Tate [151]. We start with illustrating
the ramification theory with the example of Z ,-extensions. Let K be a local field of
characteristic 0. Sete = e(K/Q,). Let vk : K — QU {400} denote the extension
of the discrete valuation on K to K.

Definition A Z,-extensionis a Galois extension whose Galois group is topologically
isomorphic to Z,,.

Let Ko/K be a Z,-extension. Set I' = Gal(K,/K). For any n, p"Z, is the
unique open subgroup of Z,, of index p", and we denote by I"(n) the corresponding

subgroup of I'. Set K,, = Koro("). Then K, is the unique subextension of K,,/K of
degree p" over K, and

Koo := UK, Gal(K,/K)=Z/p"Z.
nz

Assume that K, /K is totally ramified. Let (v,),>0 denote the increasing sequence
of ramification jumps of K /K. Since I' >~ Z,, and all quotients I" / T"®+1) are
p-elementary, we obtain that

F(Un) — anP’ Vn 2 0

Proposition 3.1.2 Let K,/ K be a totally ramified Z ,-extension.
(i) There exists ny such that

Upp1 =0, +e, Vn 2= ng.
(ii) There exists a constant ¢ such that
UK(QK,,/K) =en+c+ p_nam

where the sequence (a,),>0 is bounded.
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This is [151, Proposition 5]. Below, we reproduce Tate’s proof, which uses local
class field theory. See also [73, Proposition 1.11].
The following lemma is a classical and well known statement.

Lemma 3.1.3 (i) The series

oo m
X
log(1 +x) = E (—l)mﬂz

m=1

converges for all x € mg.
(ii) The series

X m

X
exp(r) = Y
mzom.

e
converges for all x such that vg (x) > =g

(iii) For any integer n > —*= we have isomorphisms:
p—1

log : UI(;Z) —mk, exp:mi — U,?),

which are inverse to each other.

Corollary 3.1.4 For any integer n > ﬁ, one has

P
Proof (U,g”) and U have the same image under log . O

3.1.5 Proof of Proposition 3.1.2
(a) Let T’ = Gal(K«/K). By Galois theory, I' = G%/H, where H C G% is a
closed subgroup. Consider the exact sequence

{1} - Gal(K®/K") — G%® > Gal(K""/K) — {1}.

Since K /K is totally ramified, (K®)” N K" = K, and s(H) = Gal(K""/K).
Therefore
I' ~ Gal(K®/K"™)/(H N Gal(K®/K")).

By local class field theory, Gal(K®/K"") ~ U, and there exists a closed subgroup
N C Uk such that
I' >~ UK/N.

The order of UK/UI((I) >~ k% is coprime with p. Hence, the index of UI(;)/(N N
UI((I)) in Uk /N is coprime with p. On the other hand, Ux /N ~ T is a pro- p-group.
Therefore,
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UY /(NN UY) = Uk/N,

and we have an isomorphism:
p:T~UL/NNUY).

(b) To simplify notation, set:
w0 =UL/NOUY), Vo=l

By (22) and (10), we have:

p(TYy @ p>1.

Let y be a topological generator of I'. Then y, = y?" is a topological generator of
I'(n). Let ng be an integer such that

P (Yny) € U™,
with some integer mg > ﬁ. Fix such ng and assume that, for this fixed ng, mg is
the biggest integer satisfying this condition. Since y,,, is a generator of I'(n), this
means that
p(T(ne) = %™,  but  p(I'(ng)) # %™,
Hence, my is the ny-th ramification jump for K,/ K, i.e.

moy = Up,.

We can write p(y,,) =X, where X =x (mod (N N U,(('""))) and x € U,(;”“) \
UYoth By Corollary 3.1.4,

)Cp” c UI((mo-&-en) \ U[((mg-&-en-ﬁ-l)’ Vi 2 0.
Since p (Vngn) = ", and Yno+n 18 @ generator of I'(m + n), this implies that
p(T(ng+n) =", and p(T(ng +n)) # % "D,
This shows that for each integer n > 0, the ramification filtration has a jump at
mg + ne, and
[motne) — T'(ny + n).

In other terms, for any real v > v,, = mg, we have:

' =Tmo+n+1) if Uny +1e < v < v,y + (n+ 1e.
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This shows that vy, = v,, + en for all n > 0, and assertion i) is proved.
(c) We prove (ii) applying formula (11). Forany n > 0, set G(n) = I'/I'(n). We

have
@) /wl L N\
= —— | dv
s G ()]

By Herbrand’s theorem, G(n)® = I'® /(I'(n) N T'®). Since I'®) = I'(n), the ram-

ification jumps of G(n) are vy, vy, . .., U,—1, and we have:
=i < v <y,
GV =P o AR (25)
1, ifv > v,
(fori = 0, we set v;_; := 0 to uniformize notation). Assume that n > ny. Then

Ut 1
) =A ] — —— ) dv,
vk Dk, /x) +/v,- < |G(n)(”)|> v

0

Up 1
where A = / ’ <1 — —) dv. We evaluate the second integral using i) and
) -1 |G (m)@|

Up—1 1 n—1 1 n—1
[ (- temm)ar= X @=uo (1= ) = X (1

] i=np+1 i=nop+1

).

1
pn—i

Now an easy computation gives:

n—1
1 e 1
E ell— - | =e(n—no—1)+ 1- .
pnft p_l pnfnofl

i=nop+1

Settingc = A —e(ng+ 1) + ﬁ, we see that for n > ng,

1

vk Dk, k) =c+en — ————.
! (p = Dpr=!
This implies the proposition. O

Remark 3.1.6 Proposition 3.1.2 shows that the ramified Z ,-extensions are arith-
metically profinite in the sense of Sect. 6.1.



An Introduction to p-Adic Hodge Theory 99

3.2 The Normalized Trace

3.2.1 In this section, K,/K is a totally ramified Z,-extension. Fix a topological
generator y of I'. For any x € K,,, set:

1
Tk /k(x) = FTI'K”/K (x).

It is clear that this definition does not depend on the choice of n. Therefore, we have
a well defined homomorphism

TK:X:/K : Koo — K.

Note that Tg_ ,x (x) = x forx € K. Our first goal is to prove that Tx_ / is continu-
ous. It is probably more natural to state the results of this section in terms of absolute
values rather that in terms of valuations. Let | - | denote the absolute value on K
associated to vg.

Proposition 3.2.2 (i) There exists a constant ¢ > 0 such that
Tk /k(x) — x|k <cly(x) — x|k, Vx € K.

(ii) The map Tg_ /k is continuous and extends by continuity to I?Oo.

Proof (a) By Proposition 3.1.2, vk (Dk, /k,_,) = ex + o, p~", where a,, is bounded.
Applying Lemma 1.4.2 to the extension K, /K,_;, we obtain that

o
ITrk, k., )|k < Iplg /" Ixlk,  Vx € K,, (26)

with some constant b > 0 which does not depend on 7.
(b) Set y,, = y?". For any x € K, we have:

p—1
Trg,/k, () = Y i (%),

i=0

Therefore
p—b p—1 )

Trg, Ko () = pX = D ) ) =x) = Y (L Yt + -+ VD 1 (0) — ),
i=0 i=1

and we obtain that

1 _
;Trk,l/m,,(x)—x <Iple' o1 () — x|k, Vx € K,.
K
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Since Y1 (x) —x =((1+y+---+ J/"H_l)(y(x) — x), we also have:

1
;TrKn/Kn—l(x) - X g |IJ|71 : |V(x) _'le’ V'x S KI’L‘ (27)
K

(c) By induction on n, we prove that

|TKOO/K(x)_x|K Sene |)/()C)—X|K, Vx GKn, (28)

where ¢; = |plx and ¢, = c,_1 - |plg”/"". For n = 1, this follows from formula
(27). Forn > 2 and x € K,,, we write:

1 1
T o/k(x) —x = (;TrKn/Kn,l(X) - X> + Tk —y), y= ;TTK,,/KH,I(X)~
The first term can be bounded using formula (27). For the second term, we have:
ITko/k ) = ¥lk < eamtly () = ¥lk = camlpli' - 1Trg, /o (v () = D)k
<eantlpl" ly @) = xl.

(Here the last inequality follows from (26)). This proves (28).
& u
) Setc=c [Ipl"" =cilpl”?™". Then ¢, < ¢ for all n > 1. From for-

n=1
mula (28), we obtain:
|TK3C/K(X)_X|K <c-ly(x) —xlg, Vx e Ky.

This proves the first assertion of the proposition. The second assertion is its immediate
consequence. (I

Definition The map Tg_/x : K, o« — K is called the normalized trace.
3.2.3 Since Tk, /k is an idempotent map, we have:

Ko=K®K2,
where K3, = ker(Tg_ k).

Theorem 3.2.4 (Tate) (i) The operator y — 1 is bijective, with a continuous inverse,
on KZ,. 1

(ii) For any A € U,(<) which is not a root of unity, the map y — A is bijective, with
a continuous inverse, on K.

Proof (a) Write K, = K ® K, where K =ker(Tg_sx) N K,. Since y —1 is

injective on K, and K, has finite dimension over K, y — 1 is bijective on K, and
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on K3 = nL>J0K,‘L’. Let p : K3, — KZ denote its inverse. From Proposition 3.2.2, it

follows that
lxlg <clly = D)k, Vx e KZ,

and therefore
o) g <clxlg, Vx e K.

Thus p is continuous and extends to K - This proves the theorem for A = 1.
(b) Assume that A € U1(<1) is such that

A —1lx <c!

Then p(y —A) =1+ (1 — A)p, and the series

0= (L—1p
i=0

converges to an operator ¢ such that p6(y —A) = 1. Thus y — A is invertible on
K3, . Since A # 1, itis also invertible on K.

(c) In the general case, we choose n such that |[A\?" — 1|x < ¢~'. By assumptions,
)ﬁ’" # 1. Applying part b) to the operator y”" — AP", we see that it is invertible on
KZ,. Since

p'—1
yU = =y =)y
i=0

the operator y — X is also invertible, and the theorem is proved. (]

3.3 Application to Continuous Cohomology

3.3.1. We apply the results of the previous section to the computation of some con-
tinuous cohomology of I'. For any continuous character n : I' — Uk, we denote
by K Oo(77) the group K equipped with the natural action of I" twisted by #:

(g, x) > 1(g)-gx), g€T, xé€Kn.

Let H*(I', —) denote the continuous cohomology of I' (see, for example, [119,
Chap. II, §7] for definition).

Theorem 3.3.2 (Tate) (i) H(T', Kso) = K and H(T, K~ (n)) = O for any contin-
uous character n : T' — Ug with infinite image.

(ii) H\(T, fw) is a one-dimensional vector space over K, and H' (T, I’(\oo(n)) =
0 for any character n : I' — Uk with infinite image.
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Proof (i) The first statement follows directly from Theorem 3.2.4.

(i) Since I' is procyclic, any cocycle f : I' — K. 00 (n) is completely determined
by f(y). This gives an isomorphism between H'(T, I?oo (n)) and the cokernel of
y — n(y). Applying again Theorem 3.2.4, we obtain ii). (]

4 Deeply Ramified Extensions

4.1 Deeply Ramified Extensions

4.1.1 Inthis section, we review the theory of deeply ramified extensions of Coates—
Greenberg [37]. This theory goes back to Tate’s paper [151], where the case of Z -
extensions was studied and applied to the proof of the Hodge—Tate decomposition
for p-divisible groups.

Let K /K be an infinite algebraic extension of a local field K of characteristic 0.
Recall that for each m, the number of algebraic extensions of K of degree m is finite.
Hence, we can always write K, in the form

o0
Ko= UKy Ko=K, KiCKuyi. [Ki:K]<co.
n=

Following [75], we define the different of K,/ K as the intersection of the differents
of its finite subextensions:

Definition The different of K,/K is defined as

o0
Dk /k = HQO Dk, k Ok..)-

4.1.2 Let L., be a finite extension of K.,. Then L., = K, (), where « is a root
of an irreducible polynomial f(X) € Ko [X]. The coefficients of f(X) belong to a
finite extension K ; of K. Set:

ny = min{n eN| f(X) e K,,[X]}.

Let L, = K,(a) for all n > ny. Then

In what follows, we will assume that ny = 0 without loss of generality. Note that the
degree [L, : K,,] = deg(f) does not depend on n > 0.

Proposition 4.1.3 i) I[f m > n, then

D1,/k,0L, CDL,/k,-
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it) One has
o0
Di/kn = Y ®r,/k,0L.,)-

Proof (i) We consider the trace pairing (3):
IL,/K, * L,xL,— K,.
Let {ex};_, be a basis of O, over Ok, , and let {¢f};_, denote the dual basis. Then

DL, /k, = Oref +---+ Op,¢f

n-s"*

Since {ey};_, is also a basis of L,, over K,,, any x € QZJ/K,,, can be written as

s
x = E agex.
k=1

Then
ax =t /k,(x,e) € Og,, VI <k<s,

and we have:

x € Og,ef +- -+ Ok, e C CDL /K, OL,,-

C DL,k

m*

Hence, @Z,i /K C ’Dznl /K, Oy, and therefore ©; k, Oy,
(i1) By the same argument as in the proof of (i), the following holds:

o0
nL_JO(@L,,/K,, Or.) COr k.-
o0
We need to prove that ®; x. C UO(Z) L./k, OL..) or, equivalently, that
n=»
ﬂ (92 1k, 0L COLL k.

o0
Letx € ﬂo(’i)znl/Kn Or.)and y € Or_ . Choosing n such that x € CDZ:/K” and y €
n=l
Or,, we have:
ILy/Ks Xy Y) = 11,/k,(x, ) € Ok, C Ok_,.

The proposition is proved. O

4.1.4 For any algebraic extension M /K of local fields (finite or infinite) we set:

vk D pyx) = inflvg (x) | x € Dk}
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Definition (i) We say that K, /K has finite conductor if there exists v > 0 such that
Ko C E(U). If that is the case, we call the conductor of K,/ K the number

—(@—1)

c(Kso) =inflv | Ks C K ).

(i1) We say that K, /K is deeply ramified if it does not have finite conductor.
Below, we give some examples of deeply ramified extensions.

Example 4.1.5 (1) The cyclotomic extension K (¢p~)/K is deeply ramified. This
follows from Proposition 3.1.2.
(2) Fix a uniformizer = of K and set w, = 7'/?". Then the infinite Kummer

{oe] oo . . . .
extension K (7 !/77) = UIK (7,) is deeply ramified. This can be proved by a direct
e

computation or alternatively computing the different of this extension and using
Theorem 4.1.7 below.

(3) Let Koo/ K be a totally ramified infinite Galois extension such that its Galois
group G = Gal(K,/K) is a Lie group. From Theorem 1.3.11, it follows that K,/ K
is deeply ramified. We will come back to this example in Sect. 6.

4.1.6 Now we state our main theorem about deeply ramified extensions.

Theorem 4.1.7 (Coates—Greenberg) Let K,/ K be an algebraic extension of local
fields. Then the following assertions are equivalent:

(i) vk Dk, /x) = +00;

(ii) Koo/ K is deeply ramified;

(iii) For any finite extension L, /Ko, one has

vk (D k) =05
(iv) For any finite extension Lo /K, one has
Trp k. (mp ) =mg,.
In sections 4.1.8—4.1.12 below, we prove the implications

(i) & (ii) = (@{ii) = (iv).
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Lemma 4.1.8 For any finite extension M /K, one has

c(M)
2

S vk (Du/k) < c(M).
Proof We have:

[M:Mﬂf(v)]zl, foranyv > c(M) — 1;
M:MNKY1>2, if —1<v<cM)—1.

Therefore

0 1 c(M)—1
UK(QM/K)=/ L —r dvé/ dv = c(M),
-1 M:MnK"] 1

and

* 1 1 et c(M)
vk Dmk) = l——————|dv> 3 dv = >
. M:MnK"] 1

The lemma is proved. ]

4.1.9 Weprovethat (i) < (ii). Firstassume thatvg (D_ k) = +oo.Foranyc > 0,
there exists K C M C K such that vg (D/x) = c. By Lemma 4.1.8, ¢(M) > c.
This shows that K,/ K doesn’t have finite conductor.

Conversely, assume that K,/K doesn’t have finite conductor. Then for each

¢ > 0, there exists a non-zero element 8 € Ko, ﬂf(c). Let M = K(B). Then
vg (D) > 5 by Lemma 4.1.8. Therefore, vk (D /x) = +o0.

Lemma 4.1.10 Assume that w is such that L C K. Then for any n > 0,
—(w) —(w)
[L,:L,NK "1=[K,:K,NK "]

Proof Since f(w)/ K is a Galois extension, K, and K" are linearly disjoint over

K, N F(w). Therefore K,, and f(w) N L, are linearly disjoint over K, N F(w). We

have: . . .
K,:K,NK"1=[K, - K" L): &Ll (29)

Clearly K, (E(w) NL,) CL,. Conversely, from L, =K, - L and L C f(w), it
follows that L,, C K,, - (?(w) N L,). Thus

L,=K,-K"”nL,.

Together with (29), this proves the lemma. O
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4.1.11 We prove that (ii) = (iii). By the multiplicativity of the different, for any
n > 0, we have:

vk (®r,/k,) = vk (®L,/k) — vk Dk, /k)-

Let w be such that L C f(w). Using formula (11) and Lemma 4.1.10, we obtain:

© 1 1
vk (DL, /k,) = [ ( —o —® ) dv =
-1 [Ky: (KnNK )] [Lp: (La N K )]

/W( 17 - 17 )dugfw dvi .
\[K, s Ky NE)] (L (LN K™ UK, (K, N K™)]

Since [K, : (K, ﬂf(v))] > [K, : (K, ﬂf(w))] if v < w, this gives the following
estimate for the different:
w—+ 1

vk (D, /k,) < —
[K,: (K, NK )]

Since K,/K doesn’t have finite conductor, for any ¢ > 0 there exists n > 0 such
that [K,, : (K, ﬂf(w))] > ¢, and therefore vg (D, /x,) < (w+ 1)/c. This proves
that vK(gLoc/Koo) =0.

4.1.12 We prove that (iii) = (iv). We consider two cases.

(a) First assume that the set {e(K,,/K) | n > 0} is bounded. Then there exists
no € I such that e(K,/K,,) = 1 for any n > ng. Therefore, e(L,/L,,) = 1 for any
n = ng, and by the mutiplicativity of the different

OL,/k, = DL, /K, OL,» Y1 = no.
From Proposition 4.1.3 and assumption iii), it follows that ©; x, = O, for all
n = ng. Therefore, the extensions L, /K, are unramified, and Lemma 1.4.2 (or just
the well known surjectivity of the trace map for unramified extensions) gives:

Try,/x,(mp,) = mg,,  foralln > no.

Thus TrLoo/K:x: (me) =Mg_.
(b) Now assume that the set {e(K,/K) | n > O} isunbounded. Letx € mg_. Then
there exists n such that x € mg,. By Lemma 1.4.2,

", [an ®r./k,) + 1}
Mg, In=|—— 2~ |

Trp,/k,(mg,) = e(L,/Ky)

From our assumptions and Proposition 4.1.3, it follows that we can choose n such
that in addition
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1
vk (Dr,/k,) + TES) < vg (x).

Then

< VL ®r,/k,) +1

n X e(Ln/K,,) e(K,/K) < UK,,(X)-

1
= <UK ®r,/k,) + m>

Since Try,/k, (mz,) is an ideal in Ok, , this implies that x € Tr; /k,(mz,), and the
inclusion mg  C Try sk, (mg_) is proved. Since the converse inclusion is trivial,
we have mg = Try_/x (mz,).

4.2 Almost étale Extensions

4.2.1 In this section, we introduce, in our very particular setting, the notion of an
almost étale extension.

Definition A finite extension E/F of non-Archimedean fields is almost étale if and
only if
Trg/p(mg) = mp.

It is clear that an unramified extension of local fields is almost étale. Below, we
give two other archetypical examples of almost étale extensions.

Example 4.2.2 (1) Assume that F is a perfect non-Archimedean field of character-
istic p. Then any finite extension of F is almost étale.

Proof Let E/F be a finite extension. It is clear that Trg,r(mg) C mp. Moreover,
Trg,r(mg) is an ideal of O, and for any o € mg, one has

nEToo ITre/re " (@)|F = 0.

This implies that my C Trg/r(mg), and the proposition is proved. |

(2) Assume that K, is a deeply ramified extension of a local field K of charac-
teristic 0. By Theorem 4.1.7, any finite extension of K, is almost étale.

4.2.3. Following Tate [151], we apply the theory of almost étale extensions to the
proof of the theorem of Ax—Sen-Tate. Let K be a perfect complete non-Archimedean
field, and let C ¢ denote the completion of K . For any topological group G, we denote
by H"(G, —) the continuous cohomology of G.
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Theorem 4.2.4 Assume that F is an algebraic extension of K such that any finite
extension of F is almost étale. Then

H°(Gp,Cx)=F.

We first prove the following lemma. Fix an absolute value | - |x on K.

Lemma 4.2.5 Let E/F be an almost étale Galois extension with Galois group G.
Then for any a € E and any c > 1, there exists a € F such that

|a—a|K <c-1§1€acx|g(a)—a|K.

Proof Letc > 1. By Theorem 4.1.7 iv), there exists x € O suchthaty = Trg,r(x)
satisfies
/e <|ylx < 1.

1
Set: a = —Zg(ocx). Then

geCG
o 1 1
oo —alg ==Y gx) ==Y glax)| =|=> gx)(a - g@))
ygeG ygeG K ygeG K
1
< — -max|g(ow) —of .
oy Hele@ el
The lemma is proved. ]

4.2.6 Proof of Theorem 4.2.4 Let o € C%. Choose a sequence ()N Of elements
o, € K such that |o, — a|x < p~". Then

lg(an) —anlx = [glaty — @) = (y —a)|x < p™", Vg€ Gr.
By Lemma 4.2.5, for each n, there exists 8, € F such that |8, — a,|x < p~". Then

o= lim B, €F.
n——+4o00o

The theorem is proved. O
4.2.7 Now we compute the first cohomology group H'(Gr, Ck).

Theorem 4.2.8 Under the assumptions and notation of Theorem 4.2.4,
mpH'(GF, Oc,) = {0} and H'(GF, Cx) = {0}.

The proof will be given in Sects. 4.2.9-4.2.10 below. Foranymap f : X — Oc,,
where X is an arbitrary set, we define | f| := sup,.x | f(x)|k-
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Lemma 4.2.9 Let E/F be a finite Galois extension with Galois group G. Then for
anymap f : G — Ox and any y € mg, there exists o € Og such that

Iyf = hal < [0()k,

where hy, : G — O is the 1-coboundary hy(g) = g(a) — o and 9(f) : G x
G — Og is the 2-coboundary 3(f)(g1, &2) = &1.f (g2) — f(g182) + f(g1).

Proof Since E/F is almost étale, there exists x € Og such that y = Trg,r(x). Set:

a=—Y g(x)f(g).

geG

An easy computation shows that for any T € G, one has

T(@) —a = yf(1) = ) _18(x) - (), 9).

geG
This proves the lemma. ]

4.2.10 Proof of Theorem4.2.8 Let f : Gr — Oc, be a 1-cocycle. Fix y € mp. By
contmulty of f, foranyn > Othereexistsamap f : Gp — Oz such that | f—fl<
p~", and f factors through a finite quotient of G z. Note that |3(f)| < p~" because
a(f) = 0. By Lemma 4.2.9, there exists @ € mg such that

Iyf —hel <18(H) < p™"

Using this argument together with successive approximation, it is easy to see

that y - cl(f) = 0. This proves that mz H' (G, Oc, ) = {0}. Now the vanishing of

H'(GF, Ck) is obvious. O
The following corollary should be compared with Theorem 1.1.8.

Corollary 4.2.11 Let F be a complete perfect non-Archimedean field of character-
istic p. Then the following holds true:

(i) H*(Gp,Cp) = F

(i) mp - H'(GF, Oc,) = 0;

(iii) H'(Gf, Cr) = 0.

4.3 Continuous Cohomology of G

4.3.1 Assume that K is a local field of characteristic 0.

Theorem 4.3.2 (Tate) (i) Let Koo/K be a deeply ramified extension. Then
HO(GK ,CK) K andH (GK CK) =0.
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(ii) H*(Gg, Cx) = K, and H' (G, Cx) is the one dimensional K -vector space
generated by any totally ramified additive charactern : Gg — Z,.
(iti) Let n : Gx — Z}, be a totally ramified character with infinite image. Then

H°(Gk, Cx () =0, and H'(Gg, Cx (1)) = 0.

Proof (i) The first assertion follows from Theorems 4.1.7 and 4.2.8.

.. —k . .
(i) Let Ko =K er(n). Then K. /K is a Z,-extension, and we set I' =

Gal(K»/K). By Proposition 3.1.2, K. /K 1is deeply ramified. Hence,
H°(Gk_,Ck) = Koo by Theorem 4.2.4. Applying Theorem 3.3.2, we obtain that
H°(Gg,Ck) = H(T, I?oo) = K. To compute the first cohomology, consider the
inflation-restriction exact sequence:

0— H'(I', Cy**) - H'(Gg,Cx) — H'(Gk, Cx).
By assertion i), Ci'(‘” = 1?00, and Hl(GKx, Ck) = 0. Hence,
H'(Gk,Ck) ~ H'(T, Kx).

Applying Theorem 3.3.2, we see that H'(G ¢, Cx) is the one-dimensional K -vector
space generated by n : Gx — Z,,.
(iii) The last assertion can be proved by the same arguments. (]

4.3.3 The group G acts on the groups p,» of p”-th roots of unity via the character
xk : Gx — Z; defined as

() =%® Vee Gk, L €up, n =1

Definition The character xx : Gx — Zj, is called the cyclotomic character.

It is clear that log xk is an additive character of Gg with values in Z .

Corollary 4.3.4 H'(Gg, Ck) is the one-dimensional K -vector space generated by
log xx-

4.3.5 Let E/K be a finite extension which contains all conjugates t K of K over
Q,. We say that two multiplicative characters v, ¥, : Gg — Uk are equivalent
and write Y, ~ v, if Cx (Y1) =~ Cg (2) as G g-modules. Theorem 4.3.2 implies the
following proposition, which will be used in Sect. 15.

Proposition 4.3.6 The conditions (a) and b) below are equivalent:
(a) T oYy ~ T oYy forallt € Hom(K, E).
(b) The characters Yy and yr, coincide on an open subgroup of Ig.

Proof See [143, Section A2]. O

4.3.7 Using Tate’s method, Sen proved the following important result.
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Theorem 4.3.8 (Sen) Assume that K~ /K is deeply ramified. Then
H'(G.,, GL.(Cx)) = {1}.

Proof For deeply ramified Z ,-extensions, it was proved in [136], and the proof is
similar in the general case. O

5 From Characteristic 0 to Characteristic p
and Vice Versa I: Perfectoid Fields

5.1 Perfectoid Fields

5.1.1 The notion of perfectoid field was introduced in Scholze’s fundamental paper
[130] as a far-reaching generalization of Fontaine’s constructions [66, 70]. Fix a
prime number p. Let E be a field equipped with a non-Archimedean absolute value
| - | : E — Ry such that |p|g < 1. Note that we don’t exclude the case of char-
acteristic p, where the last condition holds automatically. We denote by O the ring
of integers of E and by my the maximal ideal of Of.

Definition Let E be a field equipped with an absolute value | - | : E — Ry such
that |p|g < 1. One says that E is perfectoid if the following holds true:

(i) | - |g is non-discrete;

(ii) E is complete for | - |g;

(iii) The Frobenius map

¢ : Op/pOg — Op/pOg,  ¢(x) =x"
is surjective.

We give first examples of perfectoid fields, which can be treated directly.

Example 5.1.2 (1) A perfect field of characteristic p, complete for a non-Archi-
medean valuation, is a perfectoid field.

(2) Let K be a non-Archimedean field. The completion C of its algebraic closure
is a perfectoid field.

(3) Let K be a local field. Fix a uniformizer 7 of K and set 7r,, = 7 '/?". Then the

o 0 . .
completion of the Kummer extension K (Z/P7y = UlK (7,) is a perfectoid field.
n=

This follows from the congruence

m p m
(Z[ai]nz> = a7, , (mod p).
i=0

i=0
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5.1.3 The following important result is a particular case of [78, Proposition 6.6.6].

Theorem 5.1.4 (Gabber—Ramero) Let K be a local field of characteristic 0. A com-
plete subfield K C E C Cg is a perfectoid field if and only if it is the completion of
a deeply ramified extension of K.

5.2 Tilting

5.2.1 In this section, we describe the tilting construction, which functorially asso-
ciates to any perfectoid field of characteristic O a perfect field of characteristic p. This
construction first appeared in the pionnering papers of Fontaine [64, 66]. The tilting
of arithmetically profinite extensions is closely related to the field of norms functor
of Fontaine—Wintenberger [161]. We will come back to this question in Sect. 6. In the
full generality, the tilting was defined in the famous paper of Scholze [130] for per-
fectoid algebras. This generalization is crucial for geometric application. However,
in this introductory paper, we will consider only the arithmetic case.

5.2.2 Let E be a perfectoid field of characteristic 0. Consider the projective limit

Op :=1im 0g/pOr = im(0g/pOr < Op/pOp &), (30)
12

where ¢(x) = x?. It is clear that 0; is equipped with a natural ring structure. An
element x of OZ is an infinite sequence x = (x,),>0 of elements x, € Og/pOE
such that x/ +1 = X, for all n. Below, we summarize first properties of the ring 0;:

(1) Forall m € N, choose a lift X,, € Of of x,,. Then for any fixed n, the sequence
(X7 ,)m>0 converges to an element

x™ = limx,, € O,

m—00

which does not depend on the choice of the lifts X,,,. In addition, (x (”))p = x=D
folalln > 1.

o~

Proof Since x,ﬁ+n = Xm4n—1, W€ have xnp1+n = X,1n—1 (mod p), and an easy induc-
tion shows that £, , = 3@{;:}:71 (mod p™). Therefore, the sequence (X7, )m>0 con-
verges. Assume that X, € Of are another lifts of x,,,m € N.ThenX,, =X,, (mod p)
and therefore X7, = %”,,, (mod p™*1). This implies that the limit doesn’t depend
on the choice of the lifts. U

(2) For all x, y € Op» one has

(x + y)(n) — mgrfoo (x(n+m) + y(n+m))pln ’ (xy)(ﬂ) _ x(f’l)y(ﬂ). (31)
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Proof 1t is easy to see that x” € O is a lift of x,,. Therefore, x "+ 4 y(+m jg 4
lift of X4 + Yutm, and the first formula follows from the definition of (x 4 y)@™.
The same argument proves the second formula. (]

(3) The map x — (x(”))n>0 defines an isomorphism

0, ~ lim O, (32)

xP<«x

where the right hand side is equipped with the addition and the multiplication
defined by formula (31).

Proof This follows from from (2). [l
Set: ,
| - |lgr 1 Op — RU {400},

|x g = [x©g.

Proposition 5.2.3 (i) | - |g> is a non-Archimedean absolute value on Op».

(ii) OZ- is a perfect complete valuation ring of characteristic p, with maximal
ideal m), = {x € O}, | |x|p» < 1} and residue field k.

(iii) Let E" denote the field of fractions of 02. Then |E°|g» = |E|E.

Proof (i) Letx,y € ObE. It is clear that

0 0 0 0 0
xyle =160 Qe = IxXPyO1e = X1 1yQle = Ixlp |yl

One has

K4yl =1+ =] lim @™ 4y g = lim |x™ 4y 2"
m——+00 m— 400

< 1 (m) [COIPRY T (m)\p™ (m)yp™
< lim  max{|x™ |, 16 £) Jim max{ |2 [P )

= max{‘(x(o))|E, !(x(o))|E} = max{|x|Eb, |y|Ea}.

This proves that | - |g» is an non-Archimedean absolute value.
(i1) We prove the completeness of 0; (other properties follow easily from i) and

properties 1-3) above. First remark that if y = (yo, y1,...) € OE, then
Ww=0 & Iyl <Ipl}. (33)

Let (x,).en be a Cauchy sequence in 02. Then for any M > 0, there exist N such
that foralln,m > N

M
|xn _xm|E" < |P|Z .

Write x, = (X0, X515 - - -) and X, = (X0, X, 15 - - -). Using formula (33), we obtain
that foralln,m > N
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Xpi =Xm,; forall 0<i< M.

Hence, for each i > 0 the sequence (x, ;)qeN is stationary. Set a; = lim,,_, 400 X.;-
Then a = (ag, ay,...) € ObE, and it is easy to check that lim,, 1o X, = a. U

Definition The field E” will be called the tilt of E.
Proposition 5.2.4 A perfectoid field E is algebraically closed if and only if E” is.

Proof The proposition can be proved by successive approximation. We refer the
reader to [60, Proposition 2.1.11] for the proof that E” is algebraically closed if E
is and to [130, Proposition 3.8], and [60, Proposition 2.2.19, Corollary 3.1.10] for
two different proofs of the converse statement. See also [23]. (I

5.3 The Ring Ay (E)

5.3.1 Let F be aperfect field, complete for a non-Archimedean absolute value | - |r.

The ring of Witt vectors W (F) is equipped with the p-adic (standard) topology

defined in Sect. 1.5. Now we equip it with a coarser topology, which will be called

the canonical topology. It is defined as the topology of the infinite direct product
W(F) = FN,

where each F is equipped with the topology induced by the absolute value | - |f.
For any ideal a C OF and integer n > 0, the set

Ugn ={x = (x0,x1,...) e W(F) | x; €a forall0 <i < nj

is anideal in W (F). In the canonical topology, the family (U, ,) of these ideals form
a base of the fundamental system of neighborhoods of 0.

5.3.2 Let E be a perfectoid field of characteristic 0. Set:
Ait(E) := W(Op).
Each element of Aj,¢(E) is an infinite vector
a = (ag,a;,az,...), a, € O;,

which also can be written in the form
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Proposition 5.3.3 (Fontaine, Fargues—Fontaine) (i) The map
O : Aint(E) — O

given by
[e ] o0
O (Z[an]p") =Y alp"
n=0 n=0

is a surjective ring homomorphism.
o0
(ii) ker(0g) is a principal ideal. An element ) [a,]p" € ker(0g) is a generator
n=0
of ker(0g) if and only if lag|p» = |plE-

Proof (i) For any ring A, set W, (A) = W(A)/I,,(A). From the definition of Witt
vectors, it follows that for any n > 0, the map

wy, ! Wn+l(0E) — OE»
n n—1
wy(ag, ai, ..., a,) =al +pal +---+ p'a,
is a ring homomorphism. Consider the map:
Mn * W'1+1(0E/p05) - OE/pn-HOE9
P -1 A
nll(a()valv"'sall):ag +palp +"'+pnan’

where @; denotes any lift of ¢; in Og. It’s easy to see that the definition of 7, does
not depend on the choice of these lifts. Moreover, the diagram

Woi1(0g) — == Op

| |

Wi 1(0p/pOg) —=— 0/ p"H O

commutes by the functoriality of Witt vectors. This shows that 7, is a ring homo-
morphism. Let g, : Wn+1(02) — Opg/p" "' Of denote the reduction of 8z mod-
ulo p"*!. From the definitions of our maps, it follows that 6 , coincides with the
composition

W (03) > Wy (0}) = Wais(0s/pOs) % 0x/p"™ 0.

This proves that 6 ,, is a ring homomorphism for all n > 0. Therefore, 6 is a ring
homomorphism.
The surjectivity of 6 follows from the surjectivity of the map
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0o : Oy — Og/pOkg.

(i) We refer the reader to [66, Proposition 2.4] for the proof of the following
statement: an element Y _ [a,]p" € ker(0f) generates ker(0g) if and only if |ag|p» =
n=0
IplE.
Since |E"| = |E|, there exists ag € O such that |ag|g = |p|g. Then

0k ([aol)/p € Ug, and by the surjectivity of 0, there exists b € Aj,(E) such that
0 (b) = 0g([ag])/p. Thus x = [ap] — pb € ker(0g). Since |ag| > = |p|E, the above
criterion shows that x generates ker(6g). See [60, Proposition 3.1.9] for further detail.
O

5.4 The Tilting Equivalence

5.4.1 We continue to assume that E is a perfectoid field of characteristic 0. Fix an
algebraic closure E of E and denote by Cg its completion. By Proposition 5.2.4,
C?E is algebraically closed and we denote by E” the algebraic closure of E” in CbE.

Let Cp» := E’ denote the p-adic completion of E°. We have the following picture,
where the horizontal arrows denote the tilting:

b b
CE e CE

E ~1-E
Let ¥ be a complete intermediate field E> C § C CbE. Fix a generator £ of ker(0g).
Set:
0% = 0c(W(03)).

where we write O¢ instead O¢, to simplify notation. Consider the diagram:

0,
00— EAp(E) — At (E) —— Op 0

0 ——=EW(03) — W(O3) 0% 0

|

[
00— EAif(Cg) — Aips(Cg) — Oc, —= 0

Note that 0 = W(03)/E W (O5). Set:
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§ = 0i11/pl.

Proposition 5.4.2 3 is a perfectoid field, and (F*)" = §.

Proof (a)First prove that 0% iscomplete. Foreachn > 1, we have an exact sequence

0 — EW,(03) — W,(03) — 0%/p" 0% — 0,

where W, = W/p"W. Since the projection maps W,.;(Oz) — W,(Og) are surjec-
tive, the passage to inverse limits gives an exact sequence

0 — EW(05) > W(0g) — lim 0%/p" 0% — 0.

n

Hence, Oé = 1(i£1n 0§/p”0u, and Oé is complete.
(b) Fix a valuation vg on E. We prove that for any x € W(Og3),

ve(Oc(x)) = n-ve(p) = x € p"W(05) +EW(03).

It’s sufficient to prove this assertion for n = 1. Let x = Y_[x;]p* be such that
k=0
vE(Oc(x)) =2 vep(p).Ifxg = 0, theassertion s clearly true. Assume that xy 7 0. Then

o0
ve(xy”) > ve(p). By Proposition 5.3.3, £ = Y [a]p* with ve(al’) = ve(p).
k=0

Hence,
X0 = apy, for some y € Og,

and
x =&[y]l+ pz,  forsomez € W(Op).

This shows that x € pW(0z) + EW(O03).

(c) Assume that o € F* belongs to the valuation ring of §*. Write o = B/p"
with 8 = 6c(x), x € W(Ogz). Then vg(6c(x)) = n - vg(p). By part b), there exists
y € W(Og) such that 6c(x) = p"6c(y). Therefore, o = 6c(y) € 0%. This proves
that Oé is the valuation ring of F*.

(d) From (a) and (c), it follows that F* is a complete field with the valuation ring

Oé. In addition, the induced valuation on §* is clearly non-discrete. Writing & in the
o0

form & = Y [a;]p*, we see that
k=0

0%/p0% ~ 03/ay05.

This implies that §* is a perfectoid field. Moreover, it is easy to see that the map
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Oz — lim Og/ay03, 2+ (¢p7"(z) mod (0003))n>0
P

is an isomorphism. Therefore, (§*)” = §, and the proposition is proved. (]
Proposition 5.4.3 One has CZ; =Cp.

Proof Since E* C C;, and C; is complete and algebraically closed, we have
Cp C C;. Set ¥ := Cg>. By Proposition 5.4.2, (*)” = §. Since § is complete and
algebraically closed, ¥ is complete and algebraically closed by Proposition 5.2.4.
Now from §* C Cg, we deduce that F* = Cj. Therefore

F=G=C).

The proposition is proved. U

Now we can prove the main result of this section.

Theorem 5.4.4 (Scholze, Fargues—Fontaine) Let E be a perfectoid field of charac-
teristic 0. Then the following holds true:

(i) One has Gg >~ Gpo.

(ii) Each finite extension of E is a perfectoid field.

(iii) The tilt functor F + F° realizes the Galois correspondence between the
categories of finite extensions of E and E’ respectively.

(iv) The functor

Fr> 3§, F = (WOp/EW(O05)I[1/p]

is a quasi-inverse to the tilt functor.
Proof The proof below is due to Fargues and Fontaine [60, Theorem 3.2.1].

(a) We prove assertion (i). The Galois group Gg = Gal(E/E) acts on Cg and
C;. To simplify notation, set F = Cpg». By Proposition 5.4.3, CZ = F, and we have
a map

Gr — Aut(C),/E") = Aut(F/E") S Aut(E’/E") = Gp. (34)

Conversely, again by Proposition 5.4.3, we have an isomorphism

W(Op)/§W(Op) = Oc,, (35
which induces a map
Gp — Aut(F/E") — Aut(Cg/E) = Gpg.

It is easy to see that the maps (34) and (35) are inverse to each other. Therefore

GE ~ GEn,
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and by Galois theory we have a one-to-one correspondence
{ﬁnite extensions of E } <~ {ﬁnite extensions of E” } (36)

(b) Let F/E” be a finite extension. By Proposition 5.4.2, F* is a perfectoid field,
and

@) =3.
Consider the exact sequence:
0 — W(ORI[1/p] > W(Op)[1/p] - W(Op)/EW(O)[1/p] — 0.
By Corollary 4.2.11 (Ax—Sen—Tate in characteristic p), one has
H(Gz, W(Op)) = W(03).
By the same corollary, mz - H!(Gz, Op) = 0. Using successive approximation, one
verifies that [a] - Hl(Gg, W (Or)) = 0 for any a € mg. The generator & € ker(6g)

can be written in the form & = [a] 4+ pu, where a € mpg> and u is invertible in
A (E). If

fe ker(H'(Gg, W(ORI[1/p] 5> H'(Gj, W(OF»[l/p]),
then [a] f = 0, £f = 0, and therefore f = 0. Hence,

ker(H'(Gg. W(O)I1/p] = H'(Gg. W(Os)I1/p]) =0.

Therefore, the long exact sequence of cohomology associated to the above short
exact sequence gives an isomorphism:

(W(Or)/EW(OR)[1/p])°s ~ W(03)/EW(0)[1/p].

The isomorphism G =~ G > identifies Gz with an open subgroup of G . By The-

orem 4.3.2 (Ax—Sen-Tate in characteristic 0), CgS ~ (E)%5. Since

Ce = (W(0r)/EW(Or) [1/p].

one has —c
E’ ~W(03)/EW(0)I[1/p]l =: §".

We have proved that the Galois correspondence (36) associates to §/ E” the extension

¥/E.
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—\G
(c) Conversely, let F be a finite extension of E. Set § = (E b) ' . From part b),

it follows that F = §*. Applying Proposition 5.4.2, we obtain that F is a perfectoid
field and that F” = (§*)’ = §. This concludes the proof of the theorem. O

Remark 5.4.5 For the theory of almost étale extensions in the geometric setting and
Scholze’s theory of perfectoid algebras, we refer the reader to [59, 78] and [130]. See
also [95]. In another direction, further development of these ideas led to the theory
of diamonds [132], closely related to the theory of Fargues—Fontaine [60].

6 From Characteristic 0 to Characteristic p
and Vice Versa II: The Field of Norms

6.1 Arithmetically Profinite Extensions

6.1.1 In this section, we review the theory of the arithmetically profinite extensions
and the field of norms construction of Fontaine—Wintenberger [161]. Let K be a local
field of characteristic 0 with residue field of characteristic p.

Definition An algebraic extension L/K is called arithmetically profinite (APF) if
and only if
(Gk : GVGL) <400, Vo= —1.

If L/K is a Galois extension with G = Gal(L/K), then it is APF if and only if
(G:GY) < 400, Vo>=-—1.

Itis clear that any finite extension is APF. Below, we give some archetypical examples
of APF extensions.

Example 6.1.2 (1) Any totally ramified Z,-extension is APF (see Sect. 3.1).

(2) The p-cyclotomic extension K (¢,~)/K is APF. This easily follows from
the fact that K({,~)/K(¢,) is a totally ramified Z,-extension. See also Proposi-
tion 6.1.10 below.

(3) Let 7 be a fixed uniformizer of K, and let K, be the maximal abelian extension
of K such that r is a universal norm in K, namely that

JTENF/]((F*), forall K C F C K.
By local class field theory, K, /K is totally ramified and one has
Gal(K,/K)® ~UY,  Yu>0.

Therefore, K, /K is APF.
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(4) More generally, from Sen’s Theorem 1.3.11 it follows that any totally ramified
p-adic Lie extension is APF. The converse is false in general (see [61] for examples).

(5) Let 7 be a fixed uniformizer of K. The associated Kummer extension K ( *3/7)
is an APF extension, which is not Galois. This can be proved by showing first that
the Galois extension K (¢,~, "3/7) is APF. The last assertion can be either proved
by a direct computation or deduced from Sen’s theorem. The extension K ( *3/7)
plays a key role in Abrashkin’s approach to the ramification filtration [4, 5, 7] and
in integral p-adic Hodge theory [29, 33, 97].

6.1.3 We analyze the ramification jumps of APF extensions. First we extend the
definition of a ramification jump to general (not necessarily Galois) extensions.
Definition Let L/K be an algebraic extension. A real number v > —1 is a ramifi-
cation jump of L/K if and only if

GG, £G6YG, Ve >o.

If L/K is a Galois extension, this definition coincides with Definition in Sect. 1.3.

Proposition 6.1.4 Let L/ K be an infinite APF extension, and let B denote the set
of ramification jumps of K. Then B is a countably infinite unbounded set.

Proof (a) Let L/K be an APF extension. First we prove that B is discrete. Let
vy > vy = —1 be two ramification jumps. Then

(Gk : GWGL) < (Gk : GWGL) < 400,

and
(GR'GL: GP'Gy) < +o0.

Therefore, there exists only finitely many subgroups H such that
G¥G, CHcCGYWG
K L K YL-

This implies that there are only finitely many ramification jumps in the interval

(1, v2).
(b) Assume that B is bounded above by a. Then G G;?) = QOGLG(I?H). Let
1>

g e GLG(I?). Then for any n > 0, we can write g = x,,y, with x, € G, and y, €

G(I?H). Since G is compact, we can assume that (x,),> converges. Hence, (y,)n>0

converges to some y € N G%”"). From QOG(’?H) = {1}, we obtain that g € G.
nz

nz

This shows that G, G(,?) = G . Therefore
(Gk : GLGY) = (Gg : GL) = +00,

which is in contradiction with the definition of APF extensions. O
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6.1.5 Let L/K be an infinite APF extension. We denote by Bt = (bp)n>1 the set
of its strictly positive ramification jumps. For all n > 1, set:

(bn)
—G.GY

K,=K

Proposition 6.1.6 The following statements hold true:
o0
(i) L = UIK,,.
n=
(ii) K is the maximal tamely ramified subextension of L/ K.
(iii) For alln > 1, K,,+1/K,, is a non-trivial finite p-extension.
(iv) Assume that L/K is a Galois extension. Then for all n > 1, the group
Gal(K,+1/K,) has a unique ramification jump. In particular, Gal(K,+1/K,) is a
p-elementary abelian group.

Proof We prove assertion (ii). The maximal tamely ramified subextension of L/K

18 GLP
-G Pk
Ly, =K s

where Pk is the wild ramification subgroup. From the definition of the ramification
filtration, it follows that P is the topological closure of UOG(K”) in Gg. This implies
>

that G, Px = G, G, and ii) is proved.
The assertions (i), (iii) and (iv) are clear. [l

Corollary 6.1.7 An infinite APF extension is deeply ramified.

Proof Proposition 6.1.6 shows that such extension does not have finite
conductor. (]

Remark 6.1.8 The converse of this corollary is clearly wrong. However Fesenko
[61] proved that every deeply ramified extension L/K of finite residue degree and
with discrete set of ramification jumps is APF.

6.1.9 We record some general properties of APF extensions.

Proposition 6.1.10 Let K C F C L be a tower of extensions.

(i) If F/K is APF and L/ F is finite, then L /K is APF.

(ii) If F /K is finite and L/ F is APF, then L/K is APE.

(iii) If L/ K is APF, then F/K is APF.
Proof See [161, Proposition 1.2.3]. O
6.1.11 The definition of Hasse—Herbrand functions can be extended to APF exten-
sions. Namely, for an APF extension L/K, set:

v, ifv e [—1, 0],
V) = v
Vi) / GGV Wyar, ifv >0,
0

QLK) = Yy (u).
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It is not difficult to check that if K C F C L with [F : K] < +o00, then one has

Yk = VYL/F o Vr/k, PL/K = PF/K O QL/F-

6.2 The Field of Norms

6.2.1 In this section, we review the construction of the field of norms of an APF
extension. Let £(L/K) denote the directed set of finite subextensions of L/K.

Theorem 6.2.2 (Fontaine—Wintenberger) Let L/F be an infinite APF extension.
Set:
Z(L/K)= lim E*U0}.
E€E(L/K)

Then the following assertions hold true:
(i) Let ¢ = (@g)Ecer/k) and B = (Be)Eee(w/k)- Set:

(@B)e = agPE,

= i Ng/ / ).
(@ + Bk pom ee(@p + Ber)

Then af = ((aB)e)eecew k) and a + B := (@ + B)e)eesw k) are well-defined
elements of 2 (L/K).

(ii) The above defined addition and multiplication equip Z (L /K ) with a structure
of a local field of characteristic p with residue field k. .

(iii) The valuation on 2 (L/K) is given by

v(a) = ve(ag),

forany K1 C E C L. Here K| denotes the maximal unramified subextensionof L/ K .
(iv) For any & € ki, let [§] denote its Teichmiiller lift. For each K| C E C L set:

£ =[]0,

Then the map
kp > Z(L/K), & (Ep)pecw/ky

is a canonical embedding.
The proof occupies the remainder of this section. See [161, Sect. 2] for detail.

Definition The field 2 (L/K) is called the field of norms of the APF extension
L/K.
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6.2.3 We start by writing Theorem 6.2.2 in a slightly different form, which also
makes more clear its relation to the theory of perfectoid fields.
For any APF extension E/F (finite or infinite), set:

i(E/F) =sup{v | GpGY = G}

If E C E' C E” is a tower of finite extensions, then the relation Yg//p = Ygr /g o
YE g implies that
i(E"/E) < min{i(E'/E),i(E"/E")}. (37

. (bn)
Let B = (b,)n>0 denote the set of ramification jumps of L/K andlet K,, = KGLGK .

Since
Yok @) =Yk, k@), Yve[-1,b,],

from IﬂL/[( = wL/Kn o WK,,/Ka it follows that IﬂL/[(” (l)) =vforv e [—1, wL/K(bn)]v
and VY /k, (v) # v forv > 1k (b,). Therefore

i(L/Kw) =Yk (bn),  n=1 (38)

In particular, i (L/K,) — +0o when n — +00.

6.2.4 Forany E € £(L/K}), set:

— Di(L/E
r(E) := smallest integer > M,

p

and o
Or = Op/my".

Theorem 6.2.5 Let L/K be an infinite APF extension. Then:
(i) For all finite subextensions E C E' of L/K, the norm map induces a ring
homomorphism
NEf/E . OEr — OE

(ii) The projective limit .
A(L/K) = l(lr_n Ok
EcE(L/K))

is a discrete valuation ring of characteristic p with residue field ky .
(iii) The map

kp > A(L/K), &+ (EE mod mrE(E) £p = [£]V/1EK]

)EGE(L/KI) ’

is a canonical embedding.
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6.2.6 The proof of Theorem 6.2.5 relies on the following proposition:

Proposition 6.2.7 Let E'/E be a finite totally ramified p-extension. Then
(i) Forall a, B € O,

ve(Nge(e + B) — Npje(@) — Neye(B)) = w

(ii) For any a € Og, there exists o € Og such that

(p— Di(E'/E)

VE(Npp(a) —a) > »

Proof (a) Assume first that E'/E is a Galois extension of degree p. From
Corollary 1.4.5 it follows that for any x € Og, one has

— 1Di(E'/JE
UE(NE’/E(I +x)—1-— NE’/E(X)) > M

Assume that vy (o) = vg/(B). Setting x = o/, we obtain 1).
Let g be any uniformizer of E’. Set 7y = Ng/ /g (7). Write a € O in the
form:

p—1
a=7) [&lng, & €ke.
k=0

Then again by Lemma 1.4.5, we have:
—1
(p — Di(E'/E) L
eV pte) o) > =L fora = Y (6Pt
k=0

Therefore, the proposition is proved for Galois extensions of degree p.
(b) Assume that the proposition holds for finite extensions E”/E’ and E’/E. Then
for o, B € Op» we have:

Nevyp(a+ B) = Nevje(a) + Negvypr (B) + v,

and
Nevyg(a+ B) = Ngvyp(a) + Negryp(B) + Neye(y) + 6,

where vp:(y) > E=UELED and vp(8) > L=DUELE) Since E'/E is totally rami-

fied, one has vg (Ng/ /e (y)) = (”7“’;)& and from (37) it follows that

_1 o E// E
VE(Ngve(oe + B) — Nerje(a) — Nenye(B)) 2 w
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Therefore, the proposition holds for all finite p-extensions.
(c) The general case can be reduced to the case b) by passing to the Galois closure
of E’. See [161, Sect. 2.2.2.5] for detail. O

6.2.8 Sketch of Proof of Theorem 6.2.5. From Proposition 6.2.7, if follows that
A(L/K) is acommutative ring. Letx = (xg)g € A(L/K).If x # 0, the there exists
E € E(L/Ky)suchthatxg # 0.Forany E' € £(L/E), letXg € O bealiftof xg:.
Then v(x) := ve/(Xg') does not depend on the choice of E’ and defines a discrete
valuation of A(L/K). It is easy to see that the topology defined by this valuation
coincides with the topology of the projective limit of discrete sets on A(L/K). Hence,
A(L/K)is complete. Lemma 6.2.9 below shows that the elementx = (xg)geg(1/k)),
withxg = p mod m%(E) forall E,iszeroin A(L/E). Therefore, A(L/E)isaring of
characteristic p. Forall £, & € k., the congruence [§] + & ] = [£1] + [&2] (mod p)
together with Lemma 6.2.9 imply that the map

kp — A(L/K), &~ (&g mod 7N peewsky,  Er = [E]VIEK]

is an embedding of fields. Finally, from the definition of the valuation on A(L/K),
we see that its residue field is isomorphic to k; . Theorem 6.2.5 is proved. |

Lemma 6.2.9 Let L/E be a totally ramified APF pro- p-extension. Then

— Di(L/E
vp(p) > P DIE/E)

Proof First assume that F/E is a Galois extension of degree p. From elementary
properties of the ramification filtration, it follows that G; = {1} for all i > ;f T
where ey is the absolute ramification index of F (see [142, Exercise 3, p. 79]). This
implies that vg(p) > w for such extensions.

Now we consider the general case. Take the Galois closure M of L over E and
denote by M, /E its maximal tamely ramified subextension. It is clear that M,/ E is
linearly disjoint with L/ E. From Galois theory, it follows that L M, /M| has a Galois

subextension F of degree p over M;. Then the inequality (37) implies that

> (p — Di(F/M)) > (p— l)i(LMl/Ml).
p

ve(p)

Since the extensions M;/E and LM;/L are tamely ramified, from vy, m, ©
WMI/E = wLMl/L (e} wL/E it follows that l(LM]/Ml) = l(F/E) The lemma is
proved. ]

6.2.10 Sketch of Proof of Theorem 6.2.2. We will use repeatedly the following
inequality: if F/E is a totally ramified p-extension, then for all x, y € OF, one has

VE(Np/E(x) — Np/e(¥)) 2 @r/e(t),  if vp(x —y) > 1. (39)
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This estimation can be proved by induction using Corollary 1.4.5. See [142,
Chap. V,§6] for the Galois case. The general case can be treated by passing to
the Galois closure.

Leta = (aE)EES(L/K) and ,3 = (ﬂE)EeS(L/K) S l(iEIEEc‘:(L/K) OE From PI'OpOSi-
tion 6.2.7 and formula (39), it follows that for all intermediate finite subextensions

K C EC E' C E” C L one has

ve (Nerje(agr + Ber) — Neye(ap + Be)) 2 ¢pe(r(ED) = ok (r(ED).

Since r(E") — +o0o when E’ runs over £(L/E), this proves the existence of the
limit

(a@+ B = Nee(ag + Be).

lim
E'€E(L/E)
Therefore, the addition and the multiplication on 2 (L/E) are well defined.

Consider the map

lim  Op — A(L/K),  (@p)Ecew/k) = (@E)Ecew/ky) (40)
EcE(L/K)

where &g = o mod m%(E). Proposition 6.2.7 shows that this map is compatible
with the addition and the multiplication on the both sets.

Now letx = (xg)g € A(L/K).Forall E, choose alift Xz € O. Applying again
the inequality (39), we see that for all £, the sequence Ng/ /g (Xg’) converges to some
ap € Og. From our constructions, it follows that the map

A(L/K) = lim  Op, x> (@p)eeew/k)
EE(L/KY)

is the inverse of the map (40). Now the theorem follows from Theorem 6.2.5. ([l

6.3 Functorial Properties

6.3.1 In this section, L/K denotes an infinite APF extension. Any finite extension
M of L can be written as M = L(«), where « is a root of an irreducible polynomial
f(X) € L[X]. The coefficients of f(X) belong to some finite subextension F €
E(L/K).Forany E € E(L/F), one has

F@)NE=F,

and we set:
E' = E(a).
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The system (E’) geg(r/k) is cofinal in £(M/K). Consider the map
v w Z(L/K) - Z(M/K)

which sends any o = (ap)gee/x) € 2 (L/K) to the element 8 = (Bg/) presm/k)
€ 2 (M/K) defined by

Br =ar ifE = E(a)withE € E(L/F).

The previous remarks show that jj, is a well-defined embedding.
The following theorem should be compared with Theorem 5.4.4.

Theorem 6.3.2 (Fontaine—Wintenberger) (i) Let M /L be a finite extension. Then
Z(M/K)] Z (L/K) is a separable extension of degree [M : L]. If M /L is a Galois
extension, then the natural action of Gal(M /L) on % (M /L) induces an isomor-
phism

Gal(M/L) ~ Gal(Z (M/K)/ Z (L/K)).

(ii) The above construction establishes a one-to-one correspondence
{finite extensions of L} <> {finite separable extensions of Z (L/K)},

which is compatible with the Galois correspondence.

Proof We only explain how to associate to any finite separable extension .# of
Z(L/K) a canonical finite extension M of L of the same degree. Let .#Z =
Z(L/K)(x), where « is a root of an irreducible polynomial f(X) with coef-
ficients in the ring of integers of 2 (L/K). We can write f(X) as a sequence
f(X) = (fE(X))EES(L/K)’ where fE(X) (S E[X] Then M = L(&), where @ is a
root of fr(X), and E is of “sufficiently big" degree over K. See [161, Sect. 3] for a
detailed proof. O

6.3.3 From this theorem, it follows that the separable closure 2 (L/K) of 2" (L/K)
can de written as
Z(L/K)y= U Z(M/K).
[M:L]<oo

Corollary 6.3.4 The field of norms functor induces a canonical isomorphism of
absolute Galois groups:
G%(L/K) ~ GL.

6.3.5 Let L/K be an infinite totally ramified Galois APF extension. The Galois
group Gal(L/K) acts naturally on 2 (L/K). Fixing an uniformizer of 2" (L/K),
we idenfify 2" (L/K) with the local field kg ((x)) of Laurent power series. Let 7 be an
automorphism of kg ((x)). If T acts trivially on kg, then it is completely determined
by the power series 7(x) = a1x + arx? + -+ € kg [[x]] with a; # 0. Consider the
group of formal power series
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Aut (kK((x))) = {f(x) = aix' la # 0}
i=1

with respect to the substitution group law f o g(x) = f(g(x)). We have an injective
map

Gal(L/K) — Aut (kK((x))). 1)

This map encodes important information about the ramification filtration on
Gal(L/K). Recall that for any automorphism g of a local field E we defined:

ip(g) = vp(g(wg) — mE).
Now we define this function on the infinite level, setting:
ir(g) = ord;(g(x) —x), g e€Gal(L/K).

Then there exists F' € £(L/K) such that for any Galois extension E € £(L/F), one
has

ip(g) =i:(g)

(see [161, Proposition 3.3.2]).

6.3.6 The map (41) can be described explicitly for cyclotomic extensions of
unramified local fields. Assume that K is unramified, and set Ko, = K({p~). Let
'y = Gal(K/K). The action of 'y on K, is given by the cyclotomic character:

xk : Tk > Z,, ()= 5;{((”, T elk.

Set:
&= (CpInzo € Z (Kxo/K). (42)

Then x = ¢ — 1 is a uniformizer of 2 (K. /K), and 2 (Ko/K) = kg ((x)). The
action of 'y on 2 (K4 /K) is given by

t(x) = (1 +x)*D -1 (mod p), 7elk. (43)

This explicit formula can be generalized to the case of maximal abelian totally
ramified extensions using the Lubin—Tate theory.

We refer the reader to [62, 107, 108, 133, 159, 160] for further results about
the connection between Galois groups and automorphisms of local fields of positive
characteristic.

6.3.7 We discuss the compatibility of reciprocity maps in characteristics O and p
with the field of norms functor. Let L/K be an APF extension. Forany £ € £(L/K)
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we have the reciprocity map

0 : E* — G2,
Passing to projective limit, and identifying LLnEE EL/K) E* with 2 (L/K)*, we

obtain an injective homomorphism:
O : Z(L/K)* — G,
By Corollary 6.3.4, the Galois group G is canonically isomorphic to G*}l} LK) Let
02 wik) : Z(L/IK)* = G k)

denote the reciprocity map for the field of norms 2" (L/K).

Theorem 6.3.8 (Laubie) The diagram

2 (LK) — G
Gé.i”},)” (L/K)
commutes.
Proof See [107, Théoreme 3.2.2]. [l

6.4 Comparison with the Tilting Equivalence

6.4.1 Recall that an infinite APF extension if deeply ramified, and therefore its
completion Lisa perfectoid field. We finish this section with comparing the field
of norms with the tilting construction. A general result was proved by Fontaine and
Wintenberger for APF extensions satisfying some additional condition.

Definition A strictly APF extension is an APF extension satisfying the following
property:

.. Yk (0)

lim lan > V.

v—+00 (GK : GL Glg)

From Sen’s Theorem 1.3.11, it follows that if Gal(L/K) is a p-adic Lie group,
then L/K is strictly APF.

6.4.2 Let L/K be an infinite strict APF extension. Recall that we denote by K the
maximal tamely ramified subextension of L/K.For E € £(L/K,), setd(E) = [E :
K,]. Foreachn > 1, set:
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&, =1{E e E(L/K,) | p" divides d(E)}.

Let @ = (ap)Eesw/k) € £ (L/K). It can be proved (see [161, Proposition 4.2.1])
that for any n > 1, the family

QB peg,

p

converges to some x, € L. Once the convergence is proved, it’s clear that xt = Xy

for all n, and therefore x = (x,),>1 € L°. This defines an embedding
2 (L/K) < L.

Theorem 6.4.3 (Fontaine—Wintenberger) Let L/K be an infinite strict APF exten-
sion. Then

2 (L/K)™ =T".

Proof See [161, Théoreme 4.3.2 & Corollaire 4.3.4]. |

Remark 6.4.4 In[61], Fesenko gave examples of deeply ramified extensions which
do not contain infinite APF extensions.

7 {-Adic Representations

7.1 Preliminaries

7.1.1 Let E be a complete normed field, and let V be a finite-dimensional E-vector
space. Each choice of a basis of V fixes a topological isomorphism V ~ E" and
equips V with a product topology. Note that this topology does not depend on the
choice of the basis.

Definition A representation of a topological group G on V is a continuous homo-
morphism
p G — AutgV.

Fixing a basis of V, one can view a representation of G as a continuous homomor-
phism G — GL,(E).

Let K be a field and let f_be a separable closure of K. We denote by G the
absolute Galois group Gal(K /K) of K. Recall that G is equipped with the inverse
limit topology and therefore is a compact and totally disconnected topological group.

Definition Let ¢ be a prime number. An ¢-adic Galois representation is a repre-
sentation of Gk on a finite dimensional Q,-vector space equipped with the £-adic
topology.
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Sometimes it is convenient to consider representations with coefficients with a
finite extension E of Q. Below, we give some archetypical examples of £-adic
representations.

7.1.2 One-dimensional representations. Let V be a one-dimensional Galois rep-
resentation. Then the action of Ggx on V is given by a continuous character
n:Gg — Z;, and we will write Q,(n) instead V.

7.1.3 Roots of unity. The following one-dimensional representations are of particular
importance for us. Let £ # char(K). The group Gk acts on the groups (¢ of £”-th
roots of unity via the £-adic cyclotomic character xx, : Gx — Zj :

g(l) = ¢ 8 Vee Gk, ¢ € up.

SetZ,(1) = 1(1£1n e and Q(1) = Zy(1) ®z, Q¢. Then Q(1) is a one dimensional
Q-vector space equipped with a continuous action of Gg. The homomorphism
Gk — Autg,Q(1) >~ Qj concides with xx .

7.1.4 Abelianvarieties. Let A be an abelian variety over K, andlet£ # char(K). The
group A[£"] of £"-torsion points of A(K) is a Galois module, which is isomorphic
(not canonically) to (Z/£"Z)* as an abstract group. The £-adic Tate module of A is
defined as the projective limit

T,(A) = lim A[¢"].

n

T;(A) is a free Z,-module of rank 2d equipped with a continuous action of G g. The
associated vector space Vi (A) = T;(A) ®z, Q givesrise to an £-adic representation

PAL Gg — AthZVg(A).

Note that 7y (A) is a canonical G g-lattice of V;(A). The reduction of 7;(A) modulo
£ is isomorphic to A[£].

7.1.5 {-Adic Cohomology. Let X be a smooth projective variety over K. Fix £ #
char(K). The Galois group G g acts on the étale cohomology Hj (X xx K, Z/{"Z).
Set:

H{ (X) = lim Hy (X xx K, Z/0"Z) ®z, Q.

n

It is known that the Q-vector spaces H; (X) are finite dimensional and therefore
can be viewed as £-adic representations of G:

Gk — Autg, H] (X). (44)
These representations contain fundamental informations about the arithmetic of alge-

braic varieties. If X is a smooth proper scheme over a finite field F,, of characteristic p,
then the geometric Frobenius Fr, acts on H}'(X), and the zeta-function Z(X/F, t)
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has the following cohomological interpretation envisioned by Weil and proved by

Grothendieck:
2d

Z(X/Fy. 1) =] (1 = Frgt | H} (X))
i=0

(=1L

Katz’s survey [93] contains an interesting discussion of what is known and not known
about £-adic cohomology over finite fields.

Let now X be a smooth projective variety over a number field K. For any finite
place p of K, we can consider the restriction of the representation (44) on the
decomposition group at p. This gives a representation of the local Galois group
Gk, = Gal(K,/Ky):

Gk, — Autg, Hy (X).

If p ¢ and X has a good reduction X, at p, the base change theorem says that
H}'(X) is isomorphic to Hy (Xy). In particular, H;'(X) is unramified at p, i.e. Gg,
acts on H/ (X) through its maximal unramified quotient Gal(K ;‘ /Kp). The converse
holds for abelian varieties: if V;(A) is unramified, then A has good reduction at p 1 £
(criterion of Néron—Ogg—Shafarevich [144]).

If p t €, and X has bad reduction at p, an important information about the action
of G, is provided by Grothendieck’s ¢-adic monodromy theorem (Theorem 7.2.3
below). The case p | £ can be studied by the tools of p-adic Hodge theory. This is
the main subject of the remainder of these notes.

7.1.6 Wedenote by Repyy, (G k) the category of £-adic representations of the absolute
Galois group of a field K. Some of its first properties can be summarized in the
following proposition:

Proposition 7.1.7 Repg,(Gk) is a neutral Tannakian category.

We refer the reader to [51] for the tannakian formalism. In particular, RepQ . (Gk)
is an abelian tensor category. If V) and V, are £-adic representations, the Galois group
Gk actson V| ®q, V2 by

g1 @) = gv ® guy, Vg e Gk, vieVy, neV.
Repy, (Gk) is equipped with the internal Hom:
Hom(V, V») := Homyg, (Vi, V2).
The Galois group acts on Hom(Vy, V) by
g(H) =gf(g"'v), VgeGk, feHom(Vi, Vi), v €V

For any {-adic representation V, we denote by V* its dual representation

V*:= Hom(V, Q) := Homg, (V, Q),
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where Q, denotes the trivial representation of dimension one.
For any positive n, we set Q,(n) = Q;(1)®" and Q,(—n) = Q,(n)*.

7.1.8 We will also consider Z,-representations. Namely, a Z;-representation of G g
is afinitely generated free Z,-module equipped with a continuous linear action of G .
The category Repy, (G k) of Z,-representations is abelian. It contains the tannakian
subcategory Repg, (G k) of representations of G over the finite field F, = Z/¢Z.
We have the reduction-modulo-¢ functor

Repz, (Gk) — Repg, (Gk),

T— T Qz, F,.

The following proposition can be easily deduced from the compactness of Gg:

Proposition 7.1.9 For any C-adic representation V, there exists a Zy-lattice stable
under the action of Gg. In particular, the functor

Repy, (Gk) — Repgy, (Gk),
T—T ®z, Q.

is essentially surjective.

7.2 L-Adic Representations of Local Fields (£ # p)

7.2.1 From now on, we consider £-adic representations of local fields. Let K be a
local field with residue field kg of characteristic p. To distinguish between the cases
¢ # p and £ = p, we will use in the second case the term p-adic keeping £-adic
exclusively for the inequal characteristic case.

7.2.2 We consider the £-adic case. Recall that for the tame quotient of the inertia
subgroup we have the isomorphism (20):

Gal(K"/K") ~ ]‘[z,,.
q#p

Let v, denote the projection
I//( . ]K — Gal(K[r/Kur) — Zg.

The following general result reflects the Frobenius structure on the tame Galois
group.

Theorem 7.2.3 (Grothendieck’s £-adic monodromy theorem) Let

p: Gg —> GL(V)



An Introduction to p-Adic Hodge Theory 135

be an L-adic representation. Then the following holds true:

(i) There exists an open subgroup H of the inertia group Ik such that the auto-
morphism p(g) is unipotent for all g € H.

(ii) More precisely, there exists a nilpotent operator N : V. — V such that

p(g) =exp(Ny(g)), VgeH.

(iii) Let 15}1( € Gk be any lift of the arithmetic Frobenius Fri . Set F = p(l’:\rK).
Then
FN=gNF,

where q = |kg|.

Proof See [144] for details.
(a) By Proposition 7.1.9, p can be viewed as an homomorphism

o Gxg — GLy(Zy).

Let U = 1+ £*My(Z,). Then U has finite index in GL;(Z,), and there exists a
finite extension K’'/K such that p(Gg:) C U. Without loss of generality, we may
(and will) assume that K’ = K.

(b) The wild ramification subgroup P is a pro- p-group. Since U is a pro-£-group
with ¢ # p, wehave p(Px) = {1}, and p factors through the tame ramification group
Gal(K"/K). Since Gal(K"/K") ~ [[Z,, the same argument shows that p factors

q

through the Galois group of the extension K|/ K, where
K} = K" (e, mis a uniformizer of K.
Let 7, be the automorphism that maps to 1 under the isomorphism Gal(K '/ K"") ~

Z,. By Proposition 2.1.4, Gal(K}"/K) is the pro-£-group topologically generated by
7, and by any lift f; of the Frobenius automorphism, with the single relation:

foof7 =1 (45)
(c) Set X = p(1) € U. The £-adic logarithm map converges on U, and we set:

" e X =D
N :=log(X) = > (-1) —

n=1

Then for any g € I, we have:

p(g) = p(r)®) = exp(NY(2)).
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Moreover, applying the identity log(BAB™!) = Blog(A)B~! to (45) and setting
F = p(f¢), we obtain:
FNF~'=¢N.

(d) From the last formula, it follows that N and g N have the same eigenvalues.
Therefore, they are all zero, and N is nilpotent. The theorem is proved. (I

8 Classification of p-Adic Representations

8.1 The Case of Characteristic p

8.1.1 Inthis section, we turn to p-adic representations. It turns out, that it is possible
to give a full classification of p-adic representations of the Galois group of any field
K of characteristic p in terms of modules equipped with a semi-linear operator. This
can be explained by the existence of the Frobenius structure on K. To simplify the
exposition, we will work with the purely inseparable closure F := K™ of K. How-
ever, it is not absolutely necessary (see [69]). On the contrary, it is often preferable
to work with non-perfect fields. We will come back to this question in Sect. 8.2.

8.1.2 Consider the ring of Witt vectors
Oz = W(F).

Recall that O # is a complete discrete valuation ring of characteristic O with maximal
ideal (p) = pO4 and residue field F. Its field of fractions .% = O#[1/p] is an

unramified discrete valuati_on field. 'Ille field F = ?md is an algebraic closure of F,
and the Galois groups of K /K and F/F are canonically isomorphic. Set:

0% =Ww(F), 7" =0%[1/pl

Then 7" is a complete unramified discrete valuation field with residue field F and
therefore can be identified with the completion of the maximal unramified extension
of .Z. The field F is equipped with the following structures:

— The action of the absolute Galois group Gg;
— The absolute Frobenius automorphism ¢ : F — F, ¢(x) = x?.

The actions of G and ¢ commute to each other. One has

F°“=F, TF" =F,
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Definition Let A = F, Oz or #. A ¢-module over A is a finitely generated A-
module D equipped with a semi-linear injective operator ¢ : D — D. Namely, ¢
satisifies the following properties:

p(x+y) =9+, Vx,yeD,
p(ax) = p(a)p(x), Vae A, x € D.

A morphism of ¢-modules is an A-linear map f : D; — D, which commutes with
Q:
fpd) =¢(f(d), VdeD.

8.1.3 Consider A as an A-module via the Frobenius map ¢ : A — A. For a ¢-
module D, let D ®4,, A denote the tensor product of A-modules D and A. We
consider D ®4,, A as an A-module:

AMd®a)=dQ® \a, A€EA, d®acDQu,A.
Then the semi-linear map ¢ : D — D induces an A-linear map
®: DQsyA— D, d®ar ap(d).
Definition (i) Let A= F or O%. A gp-module D over A is étale if the map P :

D ®4,, A — D is an isomorphism.
(ii) A ¢-module over .Z is étale if it has an étale O 4 -lattice.

Let A = F or O4, and assume that D if free over A. Then D is étale if and only
if the matrix of ¢ : D — D is invertible over A. Note that this property does not
depend on the choice of the A-base of D.

8.1.4 We denote by Mﬁ‘él the category of étale p-modulesover A = F, Oz, .%. We
refer the reader to [69] for a detailed study of these categories. All these categories
are abelian. They are equipped with the tensor product:

D1 ®a Dy, @(di ®dy) = ¢(d1) ® p(da)
and the internal Hom :
Hom(Dy, Dy) := Homy (D, Dy).

The action of ¢ on Hom(D;, D) is defined as follows. Let f : Dy — D,. Then
@(f) is the composition of maps:

! feid @
(p(f) : Dy — Dy ®A,¢ A—> D, ®A,¢ A — D,.
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The categories M‘f}‘ét and Mf;;ét are neutral tannakian. If A = F or .%, then for any
D € M%®, we denote by D* the dual module:

D* = Hom, (D, A).

8.1.5 The term étale can be explained as follows. Let D be a ¢-module over F. Fix
a basis {ey, ..., e,} of D. Write:

n
<p(e,-) = Zaijej, aij € F, 1 <i < n.
i=1
Let I C F[Xy, ..., X,] denote the ideal generated by
n
Xip_zaijxj’ 1 <i<n.
i=1

Then the algebra A := F[X,, ..., X,]]/1 is étale over F if and only if D is an étale
¢-module. Consider the F,-vector space Homg (D, F)?=!'. Let f € Homy(D, F).
Then ¢(f) = f if and only if the vector (f(e;), ..., f(e,)) € F" is a solution of
the system

N

n
Xip—zal‘ijIO, 1<z n.
i=1

Therefore, we have isomorphisms:
Hom g (D, F)*=' = Homp_y4(A, F) = Spec(A)(F).
Note that if D is étale, then the cardinality of Spec(A)(F) is p",and Hom (D, F)¢=!

is a F,-vector space of dimension n.

8.1.6 For the dual module D*, we have a canonical isomorphisms:
D ®r F ~ Homg(D*, F) ® F ~ Homp(D*, F).

Then o o
(D ®r F)*=! ~ Homp(D*, F)*=,

and applying the previous remark to D*, we see that (D ®f F)*=!isaF p-vector
space of dimension 7.

8.1.7 Following Fontaine [69], we construct a canonical equivalence between the
category Repr (G k) of modular Galois representations of Gg and Mﬁ’et. For any
Ve Repr(GK), set:

Dy(V) = (V ®r, F)°*.
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Since G acts trivially on F, it is clear that Dr(V) is an F-module equipped with
the diagonal action of ¢ (here ¢ acts trivially on V). For any D € M“F”et, set:

Vr(D) = (D ®F F)*=".

Then V(D) is an F ,-vector space equipped with the diagonal action of Gk (here
Gk acts trivially on D).

Theorem 8.1.8 (i) Let V € RepFP(GK) be a modular Galois representation of
dimension n. Then D (V) is an étale p-module of rank n over F.

(ii) Let D € M‘;’Et be an étale p-module of rank n over F. Then Vi(D) is a
modular Galois representation of G of dimension n over F,.

(iii) The functors Dg and V g establish equivalences of tannakian categories

Dy : Repg (Gk) — Y VA R V | Repg (G).

which are quasi-inverse to each other. Moreover, for all T € Repy (Gk) and D €

M‘;’El, we have canonical and functorial isomorphisms compatible with the actions
of Gk and ¢ on the both sides:

DF(T) RF f ~T ®F,, f,

Vr(D) ®F, F~D®fF.
Proof (a) Let V € Repr(G k) be a modular representation of dimension n. The
Galois group G r acts semi-linearly on V ®p, F. From Hilbert’s Theorem 90 (Theo-

rem 1.6.3), it follows that D (V) = (V ®p, F)Cr has dimension n over F, and that
the multiplication in F induces an isomorphism

(V®r, ) @ F > V &, F.

Hence: o B
Dr(V)Qr F =V ®F, F.

This isomorphism shows that the matrix of ¢ is invertible in GL,, (7) and therefore

in GL,, (F). This proves that Dy (V) is étale.
Taking the ¢-invariants on the both sides, one has

VrDr(V) = Dp(V) ®r F)*~" > (V @, F)*=' = V. (46)

(b) Conversely, let D € M‘;’él. We already know (see Sect. 8.1) that Vi (D) is a
F ,-vector space of dimension n. Consider the map

a: (D®rF)*~' @, F > D®rF, (47)
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induced by the multiplication in F. We claim that this map is an isomorpism. Since the
both sides have the same dimension over F, it is sufficient to prove the injectivity. To
do that, we use the following argument, known as Artin’s trick. Assume that f is not
surjective, and take a non-zero element x € ker (o) which has a shortest presentation
in the form

x:Zd,-@a;, dl' GVF(D), a; GF.
i=1

Without loss of generality, we can assume that a,, = 1 (dividing by a,,). Note that
@(x) — x € ker(«r). On the other hand, it can be written as

m m—1
Px) —x =Y d ® (pla) —ar) = Y _di ® (p(a) — a).

i=1 i=1

By our choice of x, this implies that ¢(a;) = a;, and therefore a; € F, for all i. But
in this case x € Vg(D), and x = a(x) = 0. This proves the injectivity of (47).
(c) By part (b), we have an isomorphism:

Vi(D)®, F — D®y F.
Taking the Galois invariants on the both sides, we obtain:
Dy (Vp(D)) = (Vp(D) ®g, F)°" = (D ®p F)° = D. (48)

From (46) and (48), it follows that the functors Dy and Vg are quasi-inverse to
each other. In particular, they are equivalences of categories. Other assertions can be
checked easily. ([

8.1.9 Now we turn to Z,-representations. For all T € RepZP(G x)and D € M‘g’j,
set: .
Do, (T) = (T ®z, 0%)°*,

Vo, (D)= (D®o, 0%)"~".
The following theorem can be deduced from Theorem 8.1.8 by devissage.

Theorem 8.1.10 (Fontaine) (i) Let T € RepZP(G k) be a Z,-representation. Then
Do, (T) is an étale p-module over Oz .

(ii) Let D € M‘g’:it be an étale @-module over Ogz. Then Vo, (D) is a Z,-
representation of Gg.

(iii) The functors Do, and V¢, establish equivalences of categories

Do, : Rep; (Gx) > M5, Vo, : MG — Rep, (Gy),

7 7
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which are quasi-inverse to each other. Moreover, for all T € RepZ (Gk) and D €

M(p “ , we have canonical and functorial isomorphisms compatible with the actions
of G x and ¢ on the both sides:

Do, (T) ®o, Aur ~T ®g, 5“
Vo, (D) ®z, O 0% ~D®o, 0%.

For p-adic representations, we have the following:

Theorem 8.1.11 (i) Let V be a p-adic representation of Gk of dimension n. Then
Dz (V) =(V®q, ¥ d\“r)c’( is an étale p-module of dimension n over % .
(ii) Let D € Mf‘; be an étale p-module of dimension n over % . Then V & (D) =
(D ®q, ﬁ“r)‘/’:l is a p-adic Galois representation of G g of dimension n over Q,.
(iii) The functors
Dy : Repg, (Gx) > M%™,

Vs M%" — Repg (Gk).

are equivalences of tannakian categories, which are quasi-inverse to each other.
Moreover, forall V € Repr (Gk)and D € Mf,iet, we have canonical and functorial
isomorphisms compatible with the actions of Gk and ¢ on the both sides:

8.2 The Case of Characteristic 0

8.2.1 In this section, K is a local field of characteristic 0 with residual char-
acteristic p. Let Ko, = K({,~) denote the p-cyclotomic extension of K. Set
Hyx = Gal(K /K ) and 'y = Gal(K+/K). Then Ko, /K is a deeply ramified (even
an APF) extension, and we can consider the tilt of its completion:

F:=K..
The field F is perfect, of characteristic p, and we apply to F the contructions of
Sect. 8.1. Namely, set Oz = W(F) and % = Oz[1/p]. These rings are equipped
with the weak topology, defined in Sect. 5.3. By Proposition 5.4.3, the separable
closure F of F is dense in C" and we have a natural inclusion 6‘" C W(C'k) The
Galois group G acts naturally on the maximal unramified extension #"" of .7
in W(Cy)[1/p] and on its p-adic completion Fur . By Theorem 5.4.4, this action
induces a canonical isomorphism:
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Hg ~ Gal(F#"|.F). (49)

In particular, (ﬁ uyHx — 7. The cyclotomic Galois group 'k acts on F and there-
fore on O # and .%

Definition Let A = F, Oz, or %. A (¢, 'x)-module over A is a g-module over A
equipped with a continuous semi-linear action of I'x commuting with ¢. A (¢, ['k)-
module is étale if it is étale as a ¢-module.

We denote by Mﬁ’r’él the category of (¢, I'x)-modules over A. It can be easily

seen that M‘f\’r’ét is an abelian tensor category. Moreover, if A = F or .%, itis neutral
tannakian.

8.2.2 Now we are in position to introduce the main constructions of Fontaine’s
theory of (¢, I'x)-modules. Let T be a Z,-representation of G . Set:

Do, (T) = (T ®z, 0%)"x.

Thanks to the isomorphism (49) and the results of Sect. 8.1, Do, (T) is an étale
@-module. In addition, it is equipped with a natural action of I'x, and therefore we
have a functor )

Do, : Rep, (Gx) — M4

F

Conversely, let D be an étale (¢, 'k )-module over O 4. Set:
Vo, (D) = (D ®z, 0%)"".

By the results of Sect. 8.1, Vg, (D), is afree Z,-module of the same rank. Moreover,
it is equipped with a natural action of Gg, and we have a functor

Vo, : MG — Repy (G).

Theorem 8.2.3 (Fontaine) (i) The functors Do, and Vo, are equivalences of
categories, which are quasi-inverse to each other.

(ii) For all T € RepZ (Gg) and D e M% t, we have canonical and functorial
isomorphisms compatlble with the actions of G x and ¢ on the both sides:

Do, (T) ®0, O% ~T ®, O,

~ (50)
Vo, (D) ®z, 0% ~ D ®,, O.

Here G acts on (¢, I'x)-modules through Tk .

Proof Theorem 8.1.10 provide us with the canonial and functorial isomorphisms
(50), which are compatible with the action of ¢ and Hg. From construction, it
follows that they are compatible with the action of the whole Galois group G on
the both sides. This implies that the functors Dy, and V¢, are quasi-inverse to each
other, and the theorem is proved. O
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Remark 8.2.4 We invite the reader to formulate and prove the analogous statements
for the categories Repr (Gg) and Repr (Gg).

8.2.5 One can refine this theory working with the field of norms rather that with
the perfectoid field K2%. To simplify notation, let Ex denote the field of norms of
K /K. We recall that by Theorem 6.4.3, Er,?d is dense in K, go We want to lift Ex to
characteristic 0. First, we consider the maximal unramified subextension K of K . Let
Ko.00/ Ko denote its p-cyclotomic extension. Set 'k, = Gal(Kp oo/ Ko) and Hg, =
Gal(f/Koyoo). Let Eg, denote the field of norms of K¢ o/ Ko. Then Eg, = kg ((x)),
where x =& — 1 and & = ({pn)n>0 (see (43)). Take the Teichmiiller lift [¢] € O#
of ¢ and set X = [¢] — 1. The Galois group and the Frobenius automorphism act on
[¢] and X through I'k, as follows:

g([e]) = [e]®, g € Gg,, o(le]) = [e]”,
gX)=(1+X)0® —1, geGg, ¢X)=10+X)"—1,

where xo : Gk, — Z’; denotes the p-adic cyclotomic character for K. The ring
of integers Ok, = W (kk) is a subring of O 4. We define the following subrings of
Oz :

A}, = Og,[IX1L,

Ag, = A;ﬂ [1/X] = p-adic completion ofAI0 [1/X].

Note that A, is an unramified discrete valuation ring with residue field Eg,. It can
be described explicitely as the ring of power series of the form

E a, X", a, € Og,and lim a, =0.
n——0o0
nez

It is crucial that A, is stable under the actions of I'k, and ¢. Set Bx, = Ag,[1/p].
Then Bk, is an unramified discrete valuation field with the ring of integers A, .
8.2.6 By Hensel’s lemma, for each finite separable extension E/E, there exists
a unique complete subring A C AL; containing Ak, and such that its residue field
A/pA is isomorphic to E. We denote by A the compositum of all such extensions
in 5 7 and set By = A% [1/p]. Then By is the maximal unramified extension of
By, and A% is its ring of integers. Let B and A denote the p-adic completions of
By, and A% respectively. All these rings are stable under the natural action of G .
By the theory of fields of norms, this action induces canonical isomorphisms:

Hg, ~ Gal(Eg,/Eg,) ~ Gal(BY, /Bk,).
8.2.7 Recall that K is a totally ramified extension of Kj. Set:

Agx = A", Bg = Ak[l/pl.
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Then Bk is an unramified extension of Bg, with residue field Ex. One has
[Bx : Bg,] = [Ex : Ex,] = [Kxo @ Ko,00]-

These constructions can be summarized in the following diagram, where the hori-
zontal maps are reductions modulo p:

A——E

AK H—E[(

AK0 —_— EKD

8.2.8 The notion of an (€étale) (¢, I'x)-module extends verbatim to the case of
modules over Ag (respectively, Bx). We denote by M4 and M the resulting
categories. For any Z ,-representation T’ of G, set:

D(T) = (T ®z, A)"¥.
Conversely, for any étale (¢, 'y )-module D over A, set:
V(D) = (D ®z, A~
Theorem 8.2.9 (Fontaine) The functors D and V define equivalences of categories
D : Rep; (Gx) > MYY,  V : M{® — Rep, (G).

which are quasi-inverse to each other. )
(ii) For all T € RepZF(G k) and D € Mi’:t, we have canonical and functorial
isomorphisms compatible with the actions of Gk and ¢ on the both sides:

D(T) Rax A>T ®Zn A,
V(D) ®Z,, A>~D RAx A.

Proof The theorem can be proved by the same arguments as used in the proofs of
Theorems 8.1.8 and 8.2.3 above. For details, see [69, Théoreme 3.4.3]. O

Remark 8.2.10 We invite the reader to formulate and prove the analogous state-
ments for the categories Repr (Gg) and Repr (Gg).

8.2.11 We remark that for all T € Repr(GK), one has

Do, (T) = D(T) ®a, O
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Analogously, for all D e Mfﬁfl, one has
V(D) = Vg, (D Qa, Oz).

Contrary to Do, (T), the module D(T') is defined over a ring of formal power series.
This allows to use the tools of p-adic analysis and relate (¢, I'x )-modules to the the-
ory p-adic differential equations (Fontaine’s program). See also Sect. 13 for further
comments.

9 B-Admissible Representations

9.1 General Approach

9.1.1 The classification of all p-adic representations of local fields of characteristic
0 in terms of (¢, I'x)-modules is a powerful result. However, the representations
arising in algebraic geometry have very special properties and form some natural
subcategories of Repq (G k). Moreover, as was first observed by Grothendieck in
the good reduction case, it should be possible to classify them in terms of some
objects of semi-linear algebra, such as filtered Dieudonné modules (Grothendieck’s
mysterious functor). In this section, we consider Fontaine’s general approach to this
problem. See [71] for a detailed exposition.

9.1.2 Inthis section, K is alocal field. As usual, we denote by K its separable closure
and set G = Gal(K /K). To simplify notation, in the remainder of this paper we
will write C instead of C for the p-adic completion of K . Since the field of complex
numbers will appear only occasionally, this convention should not lead to confusion.

Let B be a commutative Q,-algebra without zero divisors, equipped with a Q -
linear action of Gg. Let C denote the field of fractions of B. Set E = BYx. We
adopt the definition of a regular algebra provided by Brinon and Conrad in [32],
which differs from the original definition in [71].

Definition The algebra B is G g-regular if it satisfies the following conditions:

(i) BOx = COx;

(ii) Each non-zero b € B such that the line Q,,b, is stable under the action of G,
is invertible in B.

If B is a field, these conditions are satisfied automatically.

9.1.3 In the remainder of this section, we assume that B is G g-regular. From the
condition (ii), it follows that FE is a field. For any p-adic representation V of G we
consider the E-module

Dp(V) = (V ®q, B)°~.

The multiplication in B induces a natural map
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ap - Dpg(V)QB —>V ®Qp B.

Proposition 9.1.4 (i) The map g is injective for all V € Repq (Gk).
(ii) dimg D(V) < dimgq, V.

Proof See [32, Theorem 5.2.1]. Set Dc(V) = (V ®q, C)%x . Since BCx = CY,
D¢ (V) is an E-vector space, and we have the following diagram with injective
vertical maps:

Dy(V) —">V ®q, B

L

Dc(V) —=V ®q, B.

Therefore, it is sufficient to prove that ¢ is injective. We prove it applying Artin’s
trick. Assume that ker(c¢) 7 0 and choose a non-zero element

x = Zd,- ® ¢; € ker(ac)

i=1

of the shortest length m. It is clear that in this formula, d; € D¢ (V) are linearly
independent. Moreover, since C is a field, one can assume that ¢,, = 1. Then for all
g €Gg

m—1

gx) —x =Y di ® (g(c;) — ci) € ker(ac).

i=1

This shows that g(x) = x for all g € G, and therefore that ¢; € C¢* = E for all
1 <i < m.Thus x € Dc(V). From the definition of a, it follows that a¢(x) = x,
hence x = 0. (I

Definition A p-adic representation V is called B-admissible if
dimg Dp(V) = dimg, V.

Proposition 9.1.5 If V is admissible, then the map o is an isomorphism.

Proof See[71,Proposition 1.4.2]. Letv = {v;}{_, andd = {d;}]_, be arbitrary bases
of V and Dy (V) respectively. Then v = Ad for some matrix A with coefficients in
B. The bases x = \!_;d; € \"Dg(V) and y = \/_, v; € \"V are related by
x = det(A)y. Since Gk actson y € \" V as multiplication by a character, the Q-
vector space generated by det(A) is stable under the action of G g. This shows that
A is invertible, and ' is an isomorphism. O

9.1.6 We denote by Rep;(Gg) the category of B-admissible representations. The
following proposition summarizes some properties of this category.
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Proposition 9.1.7 The category Repg (G ) is a tannakian subcategory of all p-adic
representations Repr (Gk). In particular, the following holds true:
(i) If in an exact sequence

0>V V-V =0
V is B-admissible, then V' and V" are B-admissible.
(ii) If V' and V" are B admissible, then V' ®q, V" is B admissible.
(iii) V is B-admissible if and only if the dual representation V* is B-admissible,
and in that case Dg(V*) = Dp(V)*.
(iv) The functor
Dg : Repp(Gg) — Vectg

to the category of finite dimensional E-vector spaces, is exact and faithful.
Proof The proof is formal. See [71, Proposition 1.5.2]. ]

9.1.8 We can also work with the contravariant version of the functor Dy :
D% (V) = Homg, (V, B).
From definitions, it is clear that
D} (V) = Dg(V*).
In particular, if V (and therefore V*) is admissible, then
D% (V) =Dg(V)* :=Homg(Dg(V), E).

The last isomorphism shows that the covariant and contravariant theories are equiv-
alent. For an admissible V, we have the canonical non-degenerate pairing

(.):VxD'(V)—> B, (v f)=f(),

which can be seen as an abstract p-adic version of the canonical duality between
singular homology and de Rham cohomology of a complex variety.

9.2 First Examples

9.2.1 B = K, where K is of characteristic 0. The K -admissible representations are
p-adic representations having finite image. Indeed, since the action of Gk is discrete,
each K -admissible representation has finite image. Conversely, if V has finite image,
it is K-admissible by Hilbert’s theorem 90.
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922 B=W(kg)[l /p]. The B-admissible representations are unramified p-adic
representations. This follows from Proposition 1.6.5.

923 B =.7". Let K be alocal field of characteristic p, and leiﬁ‘“ = W(K™d)
[1/p]. By Theorem 8.1.11, each p-adic representation of G g is .% ""-admissible.

9.2.4 B = C, where K is of characteristic 0. Sen proved ( see Corollary 10.2.12
below) that V is C-admissible if and only of Ix acts on V through a finite quo-
tient. The sufficiency of this condition can be proved as follows. Set n = dimg, V.
Assume that p(Ig) is finite. Let U C I be a subgroup of finite index such that
p(U) = {1}. By the theorem of Ax-Sen-Tate, (V ®q, OV=v ®q, Z, where
L=%". Applying Hilbert’s Theorem 90 to the extension Z/ K™, we obtain that
(V ®q, ©) Ik is a n-dimensional vector space over K equipped with a semi-linear
action of Gal(K"'/K). Now from Proposition 1.6.5 it follows that (V ®q, C) % has
a Gal(K""/K)-invariant basis, and therefore dimg D¢ (V) = n.

The necessity is the difficult part of Sen’s theorem, and we prove it only for
one-dimensional representations.

Proposition 9.2.5 If the one-dimensional representation Q,(n) is C-admissible,
then n(Ig) is finite.

Proof a) If n(Ix) is infinite, then from Theorem 4.3.2, it follows that C(1)°~ = 0.
Hence, Q, (1) is not C-admissible. O

9.2.6 Consider the multiplicative group G,, over the field of complex numbers C.
Then G,, (C) = C* is the punctured complex plane, and the Betti homology H,(G,,)
is the one-dimensional Q-vector space generated by the counter-clockwise circle
centered at 0. The de Rham cohomology Hjg (G,,) is generated over K by the class
of the differential form dTX. The integration yields a non-degenerate bilinear map:

(v >C : Hl(Gm) X Hle(Gm) - (C9
(51)
(yv w)C :/w
Y

The p-adic realization of G,, is its Tate module:

T)(Go) = lim jr,e = Z, (1),

The p-adic analog of the pairing (51) should be a non-degenerate bilinear map
() : T,(Gy) x Hi(Gy) — B,
with values in some ring B of “p-adic periods", compatible with the Galois action

on T,(G,,) and B. Proposition 9.2.5 shows that in the field C, there doesn’t exist a
non-zero element ¢ such that
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gt) = xx(®)t, geGg.

Therefore, the ring of p-adic periods should be in some sense “bigger" that C.

10 Tate—Sen Theory

10.1 Hodge-Tate Representations

10.1.1 We maintain notation and conventions of Sect. 9.1. The notion of a Hodge—
Tate representation was introduced in Tate’s paper [151]. We use the formalism of
admissible representations. Let K be a local field of characteristic 0. Let

Bur = Clt,t7']

denote the ring of polynomials in the variable ¢ with integer exponents and coefficients
in C. We equip Byr with the action of Gg given by

g (Zaiti) = g xk(@t, geGy,

where yx denotes the cyclotomic character. Therefore, G ¢ acts naturally on C, and
t can be viewed as the “p-adic 2mi"—the p-adic period of the multiplicative group
G, . For any p-adic representation V of Gk, we set:

DHT(V) = (V ®Qp BHT)GK.

Proposition 10.1.2 The ring Byr is G g -regular and Bg% =K.

Proof (a) The field of fractions Fr(Byt) of Byt is isomorphic to the field of rational
functions C(¢). Embedding it in C((¢)), we have:

BSX C Fr(Byr)®* c C((1))°%.

From Theorem 4.3.2, it follows that (Ct/)¢x = K ifi = 0, and (Ct')®* = 0 other-
wise. Hence, Bg% = C((t))°% = K. Therefore

Fr(Bur)%* =BGk = K
(b) Let b € Byt \ {0}. Assume that Q,b is stable under the action of Gg. This
means that

g(b) =n(g)b, Vge Gk (52)

for some character n : Ggx — Z7,. Write b in the form
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b= Zaiti.
i

We will prove by contradiction that all, except one monomials in this sum are zero.
From formula (52), if follows that for all i, one has

gla)xk(g) =ain(g), g e Gk.

Assume that a; and a; are both non-zero for some i # j. Then

8(axk(8) _ g(a.z‘)ﬂ?(g), Vg € Gg.

a; a;
Setc =a;/a; andm =i — j # 0. Then c is a non-zero element of C such that

glxg(@ =c, VgeGg.

This is in contradiction with the fact that C(m)°* = 0 if m # 0.
Therefore, b = a;t' for some i € Z and a; # 0. This implies that b is invertible
in Byr. The proposition is proved. (]

10.1.3 Let Gradg denote the category of finite-dimensional graded K -vector spaces.
The morphisms in this category are linear maps preserving the grading. We remark
that Dyr (V) has a natural structure of a graded K -vector space:

i i i\Ok
Dur(V) = ®er' Dur(V),  gr' Dur(V) = (V®q, Ct')"".
Therefore, we have a functor

Dyr RepQP(GK) — Gradg.

Note that this functor is clearly left exact but not right exact (see Example 10.2.13
below).

Definition A p-adic representation V is a Hodge—Tate representation if it is Byr-
admissible.

We denote by Repy (G k) the category of Hodge—Tate representations. From the
general formalism of B-admissible representations, it follows that the restriction of
Dyr on Repyr(Gg) is exact and faithful.

10.1.4 Set:

VO ={xeV®q, Clgl) =xk(8)'x, VgeGx), i€l
V{ii}=V® @ C.
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It is clear that V® ~ gr='Dy1(V). Moreover, the multiplication in C induces linear
maps of C-vector spaces V{i} — V ®q, C. Therefore, one has a C-linear map:

GBZ V{i} > V ®q, C. (53)
e

The following proposition shows that our definition of a Hodge—Tate representation
coincides with Tate’s original definition:

Proposition 10.1.5 (i) For any representation V, the map (53) is injective.
(ii) V is a Hodge-Tate if and only if (53) is an isomorphism.

Proof (i) By Proposition 9.1.4, for any p-adic representation V, the map
apr : Dur(V) ®k Bur = V ®q, Bur

is injective. The restriction of eyt on the homogeneous subspaces of degree 0 coin-
cides with the map (53). Therefore (53) is injective.

(ii) By Proposition 9.1.5, V is a Hodge-Tate if and only if oy is an isomorphism.
We remark that ayr is an isomorphism if and only if the map (53) is. This proves the
proposition. (]

Definition Let V be a Hodge—Tate representation. The isomorphism
V®q, C~ @ V{i}
i€Z

is called the Hodge—Tate decomposition of V. If V{i} # 0, one says that the integer
i is a Hodge—Tate weight of V, and that d; = dim¢ V{i} is the multiplicity of i.

We will use the standard notation C(i) = C(x ;() for the cyclotomic twists of C.
Then V{i} = C(i)% as a Galois module. The Hodge—Tate decomposition of V can
be written in the following form:

V ®q, C= @ C(i)*.
ieZ
Example 10.1.6 (I)Lety : Gx — Z;‘, be a continuous character. Then Q, () is
a Hodge—-Tate of weight i if and only if

Vi = xklr,

for some open subgroup I} of the inertia group Ix. This follows from Proposi-
tion 9.2.5.

(2) Assume that E is a subextension K such that T E C K for each conjugate of
E over Q,. Let  : Gg — Of be a continuous character. Then E () can be seen
as a p-adic representation of dimension [E : Q,] with coefficients in Q, and
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EW)®q,C= € Croy).

reHome(E,K)
Therefore, E () is of Hodge—Tate if and only if for each ©
C(roy) =C(xg), forsomen, €Z.

We come back to this example in Sect. 15.

10.2 Sen’s Theory

10.2.1 Let V be a Galois representation of Gg. Then V ®q, C can be viewed as
an object of the category Rep(G k) of finite-dimensional C-vector spaces equipped
with a semi-linear action of Gg. This category was first studied by Sen [136]. Let
Ko = K(¢p~) denote the cyclotomic extension of K. Set 'y = Gal(K/K) and
Hyg = Gal(E/Koo). Let W € Rep(Gk). Sen’s method decomposes into 3 steps:

10.2.2 Descent to 1?00. Set VT/OC = WHx_ By Theorem 4.3.8 and the inflation-
restriction exact sequence, one has

H'(Tk,GL,(Kwx)) ~ H'(Gg, GL,(C)).

Therefore, the natural map

is anisomorphism. Let Repg (I'x) be the category of finite-dimensional K oo-vector
spaces equipped with a semi-linear action of I'x. Then the functor

Repc(Gk) — Repp_ (Tx), Wi We

is an equivalence of categories. Its quasi-inverse is given by extension of scalars
X— X®z, C

10.2.3 Undoing the completion. For any K. ~o-representation X, let X r denote the
union of all finite-dimensional K -vector subspaces of X. Sen proves that the map

Xf ®Koo I/(\oo — X
is an isomorphism. The key tool here is the canonical isomorphism
H'(Tk, GL,(Kw)) = H' (T, GL,(Kw))

(/s\ee [136, Proposition 6]). This implies that the functors X + X andU — U Qk_
K o are mutually quasi-inverse equivalences between Repg_(I'x) and Repy_ (k).
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10.2.4 Infinitesimal action of T'k.Let U be a K-representation of I'x. If y € T'g
is close to 1, the formal power series

log(y) 1 — aa y ="
DT ——

log(xk(y))  log(xx(¥)) =

defines a Ko.-linear operator ® on U, which does not depend on the choice of y.

There exists an open subgroup I’ C 'k such that

y(x) = exp(log(xx () ©) (x) Vy eI, xeU.

Let Sk, denote the category of finite dimensional K .-vector spaces equipped with
a linear operator. The morphisms of Sk, are defined as K-linear maps which
commute with the action of underlying operators. Using Hilbert’s Theorem 90, it
can be checked that the functor

Rep,(oc(FK) — Sk.., U~ (U,0)

is exact and fully faithful.

10.2.5 Combining previous results, one can associate to any C-representation W
the K-vector space Wo, = (W) s equipped with the operator ®. The main result
of Sen’s theory states as follows:

Theorem 10.2.6 (Sen) The functor
ASen . RepC(GK) - SKOQ» W= (WOOa ®)

is exact and fully faithful.
Proof See [136]. O
Remark 10.2.7 Let ©¢ : W — W denote the linear operator obtained from ® by
extension of scalars. The map

WO @x C— W
is injective and identifies W% ® C with ker(®¢). In particular, W« is a finite-
dimensional K -vector space.

10.2.8 We discuss some applications of Sen’s theory to p-adic representations. To
any p-adic representation p : Gg — Autg,V, we associate the C-representation
W =V ®q, C and set:

DSen(V) = ASen(W)~

Hodge-Tate representations have the following characterization in terms of the oper-
ator © :
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Proposition 10.2.9 V is a Hodge-Tate representation if and only if the operator
O : Agen(V) = Asen(V) is semi-simple and its eigenvalues belong to Z.

Proof See [136, Section 2.3]. O

10.2.10 We come back to general p-adic representations. The operator ® allows to
recover the Lie algebra of the image p (/g ) of the inertia group:

Theorem 10.2.11 (Sen) The Lie algebra g of p(Ix) is the smallest of the Q-
subspaces S of Endq, (V) such that © € S ®q, C.

Proof See [136, Theorem 11]. [l

The following corollary of this theorem generalizes Proposition 9.2.5.
Corollary 10.2.12 p(Ik) is finite if and only if ® = 0.

Example 10.2.13 Let V be a two dimensional Q,-vector space with a fixed basis
{e1,ex}. Let p : Gg — GL(V) be the representation given by

p(g) = ((1) log()(l[( (g))) in the basis{e;, e>}.

Prove that V is not Hodge-Tate. Let e; = e, (mod Q,e;). Since V sits in the exact
sequence
0—Qper =V — Qpe; — 0,

we have an exact sequence:

0 — Du1(Qper) — Dur(V) — Dur(Qpez).
Here Qpe; and Q,e; are trivial p-adic representations, and

Dur(Qper) = Ker,  Duar(Qpe) = Kes.
Therefore, Dyt (V) has dimension 2 if and only if e; lifts to an element

x=e+A®e; €Dyr(V), A € Byr.
The condition x € Dygr(V) reads:
g) — A =logxk(g), VgeGk.

Therefore, log xx is a coboundary in C, but this contradicts to Theorem 4.3.2. Hence,
V is not Hodge-Tate. This example also shows that Repy1(Gg) is not stable under

extensions.
Note that in the same basis, the operator ® reads:
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01
0= (01).
In particular, it is not semi-simple, and the above arguments agree with Proposi-
tion 10.2.9.

11 Rings of p-Adic Periods

11.1 The Field Bgr

11.1.1 In this section, we define Fontaine’s rings of p-adic periods Bg4r, By and
B_;is. For proofs and more detail, we refer the reader to [66, 68] and [70].

Let K be a local field of characteristic 0. Recall that the ring of integers of the tilt
C’ of C was defined as the projective limit

O¢ =1limOc/p Oc.  ¢(x) =x"
¥

(see Sect. 5.2). By Propositions 5.2.3 and 5.2.4, OE is a complete perfect valuation
ring of characteristic p with residue field kg . The field C” is a complete algebraically
closed field of characteristic p.

11.1.2 We will denote by Aj,¢ the ring of Witt vectors
At (C) = W(0Q).

Recall that Ay;¢ is equipped with the surjective ring homomorphism 6 : Ajy — Oc¢

(see Proposition 5.3.3, where it is denoted by 6g). The kernel of € is the principal
o0

ideal generated by any element & = Y [a,]p" € ker(0) such that a; is a unitin Oc».

n=0
Useful canonical choices are:

- &=[pl— p, where p = (pl/pn)n>0;
p—1
- w= Y [e]"P, where & = ({pn)n>0-
i=0
Let Ky denote the maximal unramified subextension of K. Then Ok, = W (kg) C
Aine, and we set Ainr k. = Ainf ®o, K. Then 0 extends by linearity to a sujective

homomorphism
0 ®idgx : A (C) ®0K0 K — C.

Again, thekernel Jx := ker(f# ® idg) isaprincipal ideal. Itis generated, for example,
by [7] — 7, where 7 is any uniformizer of K and 7 = (r!/7"),>0. The action of
G g extends naturally to Ay x , and it’s easy to see that J is stable under this action.
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Let B:{R, x denote the completion of A;y¢ g for the Jx-adic topology:

+ — 1 . n
BdR,K = @Amf,K/JK-
n

The action of Gk extends to BXK k- The main properties of B(TR, x are summarized
in the following proposition:

Proposition 11.1.3 (i) Bé’R' x s a discrete valuation ring with maximal ideal
Myr,xk = ]KB(J;R,K .

The residue field B:{R’ x /MR k is isomorphic to C as a Galois module.
(ii) The series

t=log(le]) = ) (-1

n=1

o (el = 1"
) n

converges in the Jg-adic topology to a uniformizer of BJR’ k- and the Galois group
acts on t as follows:
g(t) = xx (), g€ Gg.

(iii) If L/K is a finite extension, then the natural map Bl , — By , is an
isomorphism. In particular, BIR, x depends only on the algebraic closure K of K.
(iv) There exists a natural G g-equivariant embedding of K in B(J{R. x> and

(BchrR,K)GK =K.

11.1.4 We refer the reader to [66] and [70] for detailed proofs of these properties.
Note that if L is a finite extension of K, then one checks first that Bj , C By ;.
From assertions i) and ii), it follows that this is an unramified extension of discrete
valuation rings with the same residue field. This implies that B(TR’ K= B('fR’ .- Since

L C B, forall L/K, this proves that K C B -

11.1.5 The above proposition shows that By , depends only on the residual char-
acteristic of the local field K. By this reason, we will omit K from notation and write
Bir =B -

Definition The field of p-adic periods Bgr is defined to be the field of fractions of
Bl

11.1.6 The field B4r is equipped with the canonical filtration induced by the discrete

valuation, namely
Fil'Bgr = IIBIR, iel.

In particular, Fil’Bgg = B:{R and Fil'Bgr = mgr. From Proposition 11.1.3, it follows
that
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Fil' Bgr /Fil "' Bgr ~ C(i).
Therefore, for the associated graded module we have
gr*(Bar) =~ Bur.

Note that from this isomorphism it follows that BgR" = K as claimed in Proposi-
tion 11.1.3, iii).

11.1.7 Recall that Ay is equipped with the canonical Frobenius operator ¢. Set
= [e] — 1. Then

p(w) =

p(X) (1+X)r—1 P -1
= = X 4+...4xP 1
% % p+ ) +---+
From this formula it follows that ker(0) is not stable under the action of ¢, and
therefore ¢ can not be naturally extended to Byg.

11.1.8 The field By is equipped with the topology induced by the discrete valuation.
Now we equip it with a coarser topology, which is better adapted to the study of Bgg.
Recall that the valuation topology on C” induces a topology on Aj,, which we call
the canonical topology (see Sect. 5.3). This topology induces a topology on Ajyf k-
The canonical topology on BdR = hm Aine x /Jg is defined as the topology of the
inverse limit, where Ainr x /J¢ are equlpped with the quotient topology. We refer the
reader to [32, Exercise 4.5. 3] for further detail.

11.2 The Rings Bis and Bpax

11.2.1 We define the ring Bs of crystalline p-adic periods, which is a subring
of Bgr equipped with a natural Frobenius structure. The map 6 : Ajy — Oc is the
universal formal thickening of Oc in the sense of [70], and we denote by AP the PD-
envelop of ker(9) in Ay (see, for example, [22] for definition and basic properties

of divided powers). Recall that
& =1[pl—p € Ain

is a generator of the ker(6). Then AF? can be seen as the submodule of Bjj; defined
as

AR = A-f|:€2 53 .. & i|

inf 2' ' n! ’

From the formula
i %-m _ <n+m) é-rH—m

n! m! n (n + m)!
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it follows that AP is a subring of Bgg. Let

inf

Al = AE}? = lim AR/ p"APD

cris inf
I‘l

denote its p-adic completion.

Proposition 11.2.2 Alnf is stable under the action of ¢. Moreover, the action of ¢

+
extends to a continuous injective map ¢ : Acrls - Al

Proof We have
p@&) =[pl —p=E+p"—p=E"+pz

for some z € A;,¢. Hence,

0 (") :p_'<]+(p_1),s">

n!
Since AFR is a ring, and % € Z,, this implies the proposition. ]
11.2.3 Itcan be shown that the inclusion AP? C B, extends to a continuous embed-
ding
+
Acns - BdR’

where A, and BJr are equipped with the p-adic and canonical topology respectively.

Cri1s
In more explicit terms, AT can be viewed as the subring

cris

o sn
+ : +
Al = E an— | ay € Ajnr, lim a, =0; C By
0 n! n——+oo
n=

The element ¢ = log[¢] belongs to A’ , and one has

cris?
@(t) = pt.

Definition Set BY.. = A’ [1/p] and B,is = B, [1/¢]. The ring By is called the

Cris Cris
ring of crystalline periods.

It is easy to see that the rings ch and B, are stable under the action of Gg.
The actions of G g and ¢ on B;;; commute to each other. The inclusion B C Bar
induces a filtration on Begis which we denote by Fil' B Note that B}, C Fil"Bes
but the latter space is much bigger. Also the action of ¢ on B is not compatible
with filtration i.e. (p(Fili B.is) & Fil'Bs. We summarize some properties of B in

the following proposition.

Proposition 11.2.4 The following holds true:
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(i) The map
K ®I(U Bcris - BdR» a®x — ax

is mjecnve
(ii) BSx = Kj.

cris

(iii) Fil°BYZ = Q,..

cris

(lV) Bcr]s is Gk-regular.
Proof See [70], especially Theorems 4.2.4 and 5.3.7. O

11.2.5 The main information about the relationship between the filtration on B
and the Frobenius map is contained in the fundamental exact sequence:

0> Q, — B’Z' - B /Fil’Bg — 0. (54)

cris

The exactness in the middle term is equlvalent to Proposition 11.2.4, iii) above. In
addition, (54) says that and the projection ch — Bgr/B; is surjective. We refer
to [70] and [28] for proofs and related results.

11.2.6 The importance of the ring B relies on its connection to the crystalline
cohomology [74]. On the other hand, the natural topology on B is quite ugly (see
[40]). Sometimes, it is more convenient to work with the rings

= E a a, € A; lim a, =0
max { n | n inf s Mgyt n

max Arquax ®Zp Qp’
B = B, [1/1],
which are equipped with a natural action of ¢ and have better topological properties.

One has
@(Bmax) C Bcris C Bmax-

In particular, Bmdx Bfml, and in the fundamental exact sequence B, can be

replaced by B,,x. Note that the periods of crystalline representations (see Sect. 13)
live in the ring

~ o o
Brig = iQO(p (Beris) = iQO(p (Bimax)-

We refer the reader to [40] for proofs and further results about these rings.

11.3 The Ring By

11.3.1 Morally By is the ring of p-adic periods of varieties having semi-stable
reduction modulo p. The simplest example of such a variety is provided by Tate
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elliptic curves E, /K. Tate’s original paper dated 1959 appeared only in [152], but
an exposition of his theory can be found in [127]. See also [147] and [142]. For each
g € K* with |g], < 1, Tate constructs an elliptic curve E, with modular invariant
given by the usual formula

1
j(q) = — + 744 4+ 196884q + . ..
q

and having multiplicative split reduction modulo p. If E is an elliptic curve with
modular invariant j (E) such that [j(E)|, > 1, then j(E) = j(q) for some g, and
E is isomorphic to E, over a quadratic extension of K. The group of points E,(K)

of E, is isomorphic to X" /q*, and the associated p-adic representation V,(E) is
reducible and sits in an exact sequence

0— Q[J(l) - Vp(E) — Q[, — 0.
There exists a basis {ey, e;} of V,(E) such that the action of G is given by
gler) = xx(g)el, gle) =ex+ v, (gler, g€ Gk,

where ¥, : Gx — Z, is the cocycle defined by

m (&) m
(/) = ¢y g

11.3.2 The ring By, is defined as the ring Bs[#] of polynomials with coefficients
in Bgis. The Frobenius map extends to By by ¢(u) = pu. One equips By by a

monodromy operator N defined by N = T The operators ¢ and N are related
u

by the formula:
No=p¢yN.

This formula should be compared with the formulation of the ¢-adic monodromy
theorem (Theorem 7.2.3). One extends the Galois action on By setting:

gw)=u+vy,(9)t, geik,

where ¥, : Gx — Z, is the cocycle defined by

g(pD) =[] ®[p], g e Gk.

There exists a G g-equivariant embedding of By in B4r which sends u onto the

element N
- (="' ([p] "
loglp] =log p+ ) —— % —1) .

n=1
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We remark that this embedding is not canonical and depends on the choice of log p.
In particular, there is no canonical filtration on Bg. Note that it is customary to choose
logp =0.

Finally we remark that sometimes it is more natural to work with the ring
B.st = Biax[#] instead By, which is equipped with the same structures but has
better topological properties.

12 Filtered (¢, N)-Modules

12.1 Filtered Vector Spaces

12.1.1 In this section, we review the theory of filtered Dieudonné modules. The
main reference is [71]. We also refer the reader to [8] for the general formalism of
slope filtrations. Let K be an arbitrary field.

Definition A filtered vector space over K is a finite dimensional K-vector space
A equipped with an exhaustive separated decreasing filtration by K-subspaces
(Fil' A);ez:

.OFITTAS FIAD FIIA S L, NFil'A = {0}, UFII'A = A.
ieZ ieZ
A morphism of filtered spaces is a linear map f : A’ — A” which is compatible
with filtrations: . '
fEFEI'A)Y CcFI'A”,  Viel.

If A" and A" are two filtered spaces, one defines the filtered space A’ ®x A” as the
tensor product of A" and A” equipped with the filtration

Fill (A’ @k A) = Z Fil' A’ @k Fil'' A”.

i+ =i

The one-dimensional vector space 1x = K with the filtration

; K, ifi <0,

Filll = n
0, ifi>0

is a unit object with respect to the tensor product defined above, namely

AQr 1l >~ A for any filtered module A.

One defines the internal Hom in the category of filtered vector spaces as the vector
space Hom (A’, A”) of K-linear maps f : A’ — A" equipped with the filtration
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Fil' (Homg (A", A”)) = {f € Homg (A', A”) | f(Fil/ A") C FiV T (A") V) eZ).

In particular, we consider the dual space A* = Hom, (A, 1) as a filtered vector
space.

We denote by MFg the category of filtered K -vector spaces. It is easy to check
that the category MF g is an additive tensor category with kernels and cokernels, but
it is not abelian.

Example 12.1.2 Let W be a non-zero K-vector space. Let A" and A” denote W
equipped with the following filtrations:

W, ifi
0, ifi

’ Fill A" = _
1, 0, ifi

Fil'A’ =

A\VA/AN

The identity map idy : W — W defines a morphism f : A" — A” in MFg. It is
easy to check that ker(f) = 0 and coker(f) = 0. Therefore, f is both a monomor-
phism and an epimorphism, but A" 22 A”.

12.1.3 We adopt the following general definition:

Definition Let € be an additive category with kernels and cokernels. A sequence
;S 8 "
0> X >X—->X" -0

of objects in % is exact if X" = ker(g) and X" = coker(f).
The following proposition describes short exact sequences in MF :

Proposition 12.1.4 (i) Let f : A’ — A" be a morphism of filtered vector spaces.
The canonical isomorphism

coim(f) = A’/ ker(f) — Im(f)
is an isomorphism if and only if
FEIIA) = fF(A)NFil'A”, Vi e Z. (55)
(ii) A short sequence of filtered spaces
0>AN—>A->AN =0 (56)
is exact if and only if for each i € 7 the sequence
0 — Fil' A" > Fil'A — Fil'A” — 0

is exact.
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Proof The proof is left as an exercise. See also [50, Sect. 1]. |

12.1.5 For each filtered space, set:

ta(A) = Zi dimg (gr'A),

icZ
where gr' A = Fil' A /Fil' 1A

Proposition 12.1.6 (i) The function ty is additive, i.e. for any exact sequence of
filtetred spaces (56) one has

t(A) = tu(A") + rg(A").

(ii) tu(A) = tg(A?A), where d = dimg A.

Proof (i) From the definition of an exact sequence it follows that the sequence
0— gr'A - g'A - gr'A” - 0
is exact for all i. Therefore,
dimg (gr' A) = dimg (gr' A') 4+ dimg (gr' A”).

This implies (i).
(i1) For each i, choose a base {e; j}‘j": , of gr' A and denote by {e; j}f;‘: | its arbitrary

lift in Fil' A. Then e = Ae;j is a basis of AYA. This description shows that 71 (A) is
ij
the unique filtration break of A4A. ]

12.2 @-Modules

12.2.1 In this section, we study in more detail the category of ¢-modules over the
field of fractions of Witt vectors, which was defined in Sect. 8.1. Here we change
notation slightly and denote by k a perfect field of characteristic p and by K the
field W (k)[1/ p]. This notation is consistent with the applications to the classification
of p-adic representations of local fields of characteristic 0 which will be discussed
in Sect. 13. As before, ¢ denotes the automorphism of Frobenius acting on Kj.
Recall that a ¢-module (or an ¢-isocrystal) over K|, is a finite dimensional K-vector
space D equipped with a ¢-semi-linear bijective map ¢ : D — D. The category of
@-modules M‘,’}U is a neutral tannakian category. In particular, it is abelian.

12.2.2 The structure of ¢-modules is described by the theory of Dieudonné—Manin.
Let v, denote the valuation on Kj. First assume that D is a ¢-module of dimension 1
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over K. If d is a basis of D, then ¢(d) = Ad for some non-zero A € Ky, and we set
tn(D) = v, (A). Note that v, (1) does not depend on the choice of d. Now, if D is a
@-module of arbitrary dimension n, its top exterior power A" D is a one-dimensional
vector space and we set

tin(D) = tn(A" D).

More explicitly, tn(D) = v, (A), where A is the matrix of ¢ with respect to any basis
of M. The function ty is additive on short exact sequences: if

0—-D —-D—->D"—-0

is exact, then 1ty (D) = tn(D’) + tn(D”).
Definition (i) The slope of a non-zero ¢-module D is the rational
iNn(D
s(D) = N2
dimg, D

(i1) A ¢-module D is pure (or isoclinic) of slope A if s(D’) = A for any non-zero
submodule D’ C D.

If D is isoclinic, we will write its slope A in the form:

A:%, @by =1, b>0.

Theorem 12.2.3 (Dieudonné-Manin) (i) D is isoclinic of slope . = a/b if and only
if there exists an Ok, -lattice L C D such that ¢"(L) = p°L.
(ii) For all a, b € Z such that b > 0 and (a, b) = 1, the p-module

D; = Kolpl/(¢” — p*)

is isoclinic of slope .. = a/b. Moreover, if k is algebraically closed, then each iso-
clinic -module is isomorphic to a direct sum of copies of D;,.
(iii) Each ¢-module D over K\ has a unique decomposition into a direct sum

D= & D),
reQ*

where D(\) is isoclinic of slope A.
Proof See [112, Section 2]. See also [56]. U

Corollary 12.2.4 Ifk is algebraically closed, the category of p-modules over Ky is
semi-simple. Its simple objects are Dieudonné modules which are isomorphic to D;,.

Remark 12.2.5 (1) A ¢-module is étale in the sense of Sect. 8.1 if and only if it is
isoclinic of slope 0.
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(2) The theorem of Dieudonné—Manin allows to write #x (D) in the form

(D) =Y idimg, D).
A

(3) Kedlaya [94] extended the theory of slopes to the category of ¢p-modules over
the Robba ring.

12.3 Slope Filtration

12.3.1 Slope functions appear in several theories. Important examples are provided
by the theory of vector bundles (Harder—Narasimhan theory [85]), differential mod-
ules [110, 155] and euclidian lattices [80, 148]. A unified axiomatic treatement of
the theory of slopes was proposed by Y. André [8]. In this section, we discuss this
formalism in relation with the examples seen in the previous sections. We work with
additive categories and refer to [8] for the general treatement.

Definition Let % be an additive category with kernels and cokernels.
(1) A monomorphism f : X — Y is strict if there exists g : ¥ — Z such that

0> XL v3 7z 0isexact.
(i) An epimorphism g : Y — Z is strict if there exists f : X — Y such that

0— Xi> Y £ Z - 0is exact.
(iii) ¥ is quasi-abelian if every pull-back of a strict epimorphism is a strict epi-
morphism and every push-out of a strict monomorphism is a strict monomorphism.

Note that in the category MFg, a monomorphism (respectively epimorphism) f :
X — Y is strict if and only if it satisfies the condition (55).

12.3.2 Let % be a quasi-abelian category. Assume that % is essentially small, i.e. that
it is equivalent to a small category. A rank function on % is a functionrtk : € — N
such that:

(1) rk(X) = 0if and only if X = 0;
(2) rk is additive, i.e. for any exact sequence

0>x L x5 x >0

one has
rk(X) = 1k(X") + rk(X").

We can now define the notion of a slope function.

Definition A slope function on % is a function u : % \ {0} — R such that:
(1) The associated degree function
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deg=1k-pu : 4 — N

(taking value O at the zero object) is additive on short exact sequences;
(2) For any morphism f : X — Y which is both a monomorphism and an epi-
morphism, one has
p(X) < p(Y).

An object Y € % is called semi-stable if for any subobject X of ¥, u(X) < u(Y).
We can now state the main theorem of this section.

Theorem 12.3.3 (Harder—Narasimhan, André) For any X € €, there exists a
unique filtration
X=XoDX;D...DX;=1{0}

such that:

(1) X;11 is a strict subobject of X; for all i;

(2) The quotients X;/X;y1 are semi-stable, and the sequence u(X;/X;y1) is
strictly increasing.

Proof The theorem was first proved for the category of vector bundles on a smooth
projective curve over C [85]. André [8] extended the proof to the case of general
quasi-abelian (and even proto-abelian) categories. ]

We call the canonical filtration provided by Theorem 12.3.3 the Harder—Narasimhan
filtration.

Example 12.3.4 (1) Let ¥ = MFg. Set tk(A) = dimg A and deg(A) = tg(A).
Then

is a slope function. Semi-stable objects are filtered vector spaces with a unique
filtration break. The Harder—Narasimhan filtration coincides (up to enumeration)
with the canonical filtration on A.

2)Let ¥ = M‘I’QO. Set rk(D) = dimg, D and deg(D) = —tn(D). Then

IN(D)
un(D) =s(D) = dimg, D
is a slope function. Semi-simple objects are isoclinic ¢-modules. On the other hand,
it’s easy to see that —s(D) is also a slope function, which provides the opposite
filtration on M and therefore its splitting in the direct sum of isoclinic components.
This gives an interpretation of the decomposition of Dieudonné—Manin in terms of
the slope filtration.

(3) Let ¥ = Bun(X) be the category of vector bundles on a smooth projective
curve X /C. To each object E of this category one associates its rank rk (E) and degree
deg(E) := deg(A*EE). Then



An Introduction to p-Adic Hodge Theory 167

deg(E)
rk(E)

naN(E) =

is a slope function. This is the classical setting of the Harder—Narasimhan theory [85].
The semi-stable objects of & are described in [118]. The analog of this filtration in
the setting of the curve of Fargues—Fontaine plays an important role in [60].

12.4 Filtered (¢, N)-Modules

12.4.1 Let K be a complete discrete valuation field of characteristic 0 with perfect
residue field k of characteristic p, and let K denote the maximal unramified subfield
of K.

Definition (i) A filtered p-module over K is a ¢-module D over K, together with a
structure of filtered K -vector space on Dx = D ®kg, K.

(I) A filtered (¢, N)-module over K is a filtered ¢-module D over K equipped
with a Ky-linear operator N : D — D such that

Ne=poN.

Note that the relation N ¢ = p ¢ N implies that N : D — D is nilpotent.

12.4.2 A morphism of filtered ¢-modules (respectively, (¢, N)-modules) is a K-
linearmap f : D’ — D” which is compatible with all additional structures. Filtered
@-modules (respectively (¢, N)-modules) form additive tensor categories which we
denote by MF% and MF‘,‘)(’N respectively. Note that these categories are not abelian.

12.4.3 We define some subcategories of MF% and MF%", which play an important

role in the classification of p-adic representations. Equip MF% and MF%" with the
functions
rk(D) := dimg, K, deg(D) := ty(D) — tn(D).

Proposition 12.4.4 (D) = deg(D)/rk(D) is a slope function.

Proof We only need to prove thatif f : D" — D” is both a monomorphism and an
epimorphism, then (D) < u(D"”). We remark that such f is an isomorphism of ¢-
modules; hence un(D’) = unx(D”). Setd := dimg, D’ = dimg, D”. Then we have
a monomorphism of one-dimensional filtered spaces A?D’ — A?D”, and therefore

m(D') =ty (A'D') <ty (N'D") = y(D").

Hence, u(D’) < n(D”), and the proposition is proved. O

Definition A filtered ¢-module (respectively, (¢, N)-module) is weakly admissible
if it is semi-stable of slope 0.
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More explicitly, D is weakly admissible if it satisfies the following conditions:

(1) m(Dk) = in(D);
(2) m(DYy) < t5(D’) for any submodule D’ of D.

This is the classical definition of the weak admissibility [65, 71]. We denote by
MF%/ and MF%""/ the resulting subcategories of MFY, and MF%" .

Proposition 12.4.5 (i) The categories MF‘f(’f and MF(IP(’N’f are abelian.
(ii) If D is weakly admissible, then its dual D* is weakly admissible.
(iii) If in a short exact sequence

0—-D —-D—-D"—-0

two of the three modules are weakly admissible, then so is the third.

Proof This is [65, Proposition 4.2.1]. See also [32, Proposition 8.2.10 &Theo-
rem 8.2.11] for a detailed proof. O

Remark 12.4.6 The tensor product of two weakly admissible modules is weakly
admissible. See [153] for a direct proof of this result. It also follows from the the-
orem “weakly admissible = admissible" of Colmez—Fontaine [48]. Therefore, the
categories MF(Ip(‘f and MF}?N’f are neutral tannakian.

13 The Hierarchy of p-Adic Representations

13.1 de Rham Representations

13.1.1 In this section, we come back to classification of p-adic representations. Let
K be alocal field. We apply the general formalism of Sect. 9.1 to the rings of p-adic
periods constructed in Sect. 11.

13.1.2 Recall that Bgg is a field with BffRK = K. In particular, it is Gg-regular. To
any p-adic representation V of Gk we associate the finite-dimensional K -vector
space
Der (V) = (V ®q, Bar)“*.
We equip it with the filtration induced from Bgg:
Fil'Dgr(V) = (V ®q, Fil'Bar)“*.

The mapping which assigns Dgg (V') to each V defines a functor of tensor categories

DdR . RepQP(GK) —> MFK
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Definition A p-adic representation V is called de Rham if it is Bgr-admissible, i.e.
if
dimg Dgr(V) = dimgq, (V).

We denote by Repyr (Gk) the category of de Rham representations. By Proposi-
tion 9.1.7, it is tannakian and the restriction of D4z on Repr (Gg) is exact and
faithful.

Proposition 13.1.3 Each de Rham representation is Hodge—Tate.

Proof Recall that we have exact sequences

0 — Fil'"'Bgr — Fil'Br — Ct' — 0.
Tensoring with V and taking Galois invariants we have

dimg (gr'Dar(V)) < dimg (V ®q, Ct').

From Byr = @ Ct' it follows that
ieZ

dim,( DdR(V) = Zdlmk (griDdR(V)) < dlm[( DHT(V) < dlme(V)
1€Z

The proposition is proved. (]

Remark 13.1.4 The functor Dy is not fully faithful. A p-adic representation cannot
be recovered from its filtered module.

13.1.5 Using the fundamental exact sequence, one can construct Hodge—Tate rep-
resentations which are not de Rham. Fix an integer » > 1 and consider an extension

Vof Q, by Q,(—r):

0—-Qy(=r)—=>V—=>Q,—0.
Such extensions are classified by the first Galois cohomology group H' (G, Q,(—r)),
which is a one-dimensional K -vector space. Assume that V is a non-trivial exten-

sion. Since the Hodge—Tate weights of Q, and Q,,(—r) are distinct, V is Hodge-Tate.
However it is not de Rham (see [28, Section 4] for the proof).

13.2 Crystalline and Semi-Stable Representations

13.2.1 Recall that B is G g-regular with BCGH’; = K. Therefore, for each p-adic
representation V, the Ky-vector space
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Deis(V) = (V ®q, Baris) 7*
is finite-dimensional with dimg, Dris(V) < dime(V). The action on ¢ on B
induces a semi-linear operator on D.s(V), which we denote again by ¢. Since ¢ is
injective on B, it is bijective on the finite-dimensional vector space D5 (V). The
embedding K ®k, Bris = Bgr induces an inclusion
K ®ky Deiis (V) = Dgr(V).
This equips Dgis(V)x = K ®k, Deris (V) with the induced filtration:
Fil'Deyis (V) k¢ = Deris(V) g NFil' Dgr (V).
Thereore D can be viewed as a functor
Deis : Repg, (Gg) — MF¥%.
Definition A p-adic representation V is crystalline if it is Bys-admissible, i.e. if
dimg, Deris (V) = dime V.
By Proposition 9.1.5, V is crystalline if and only if the map
Aeris * Deris(V) @k Beris > V ®q,, Beris (57)
is an isomorphism. We denote by Rep,;.(Gk) the category of crystalline represen-

tations. From the general formalism of B-admissible representations it follows that
Rep,,;(Gk) is tannakian.

13.2.2 Similar arguments show that for each p-adic representation V' the Ky-vector
space
Dy (V) = (V ®q, Bu) ¥

is finite-dimensional and equipped with a natural structure of filtered (¢, N)-module.
Since BY=" = By, we have:

Dcris(v) = Dst(V)N:O.

Definition 13.2.3 A p-adicrepresentation is called semi-stable if itis Bi;-admissible,
ie. if dimg, D (V) = dimg, V.

By Proposition 9.1.5, V is semi-stable if and only if

ag @ Dy (V) Rk, By —V ®Q,, By (58)
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is an isomorphism. We denote by Rep (G ¢ ) the tannakian category of semi-stable
representations. The inclusions

K ®K0 Bcris — K ®K0 Bst — BdR

show that
K ®I(U Dcris(v) — K ®K0 Dst(V) — DdR(V)-

Therefore, each crystalline representation is semi-stable, and each semi-stable rep-
resentation is de Rham.

Example 13.2.4 The representation V,(E) constructed in Section 11.3 gives an
example of semi-stable representation which is not crystalline.

Definition A filtered ¢-module (respectively, (¢, N)-module) D is called admissi-
ble if it belongs to the essential image of D5 (respectively, D). In other words,
D is admissible if D >~ D;5(V) (respectively D >~ D (V)) for some crystalline
(respectively, semi-stable) representation V.

We denote by MF%“ and MF%"“ the resulting subcategories. The following
proposition shows that semi-stable representations can be recovered from their
(¢, N)-modules.

Proposition 13.2.5 The functors
Deis : Rep,; (Gx) - MF%®, Dy : Rep,(Gg) — MF%"

are equivalences of categories. The mappings

Veis : D — Fil'(D ®k, Bo)?=', Vg : D — Fil’(D ®, Bo)"="*=!
define quasi-inverse functors of D¢ and Dg.
Proof This follows from the equalities

Fil'(By)"="¢=" = Fil’Bes)*~"' = Q).

Namely, assume that V is crystalline. Then using (58), we have

Veris Deris (V) = Fil’ Deris (V) @k, Berie)?=" = Fil’(V ®q, Berie)?=' = V.
The same argument applies in the semi-stable case. (I
13.2.6 Asin Sect. 9.1, one can also consider the contravariant functors

D*

cris

D} : Repy (Gx) —> MFY", D

cris

: Repg (Gx) — MF;, D}

cris

(V) - HOIIIGK (V, Bcris)7
(V) = Homg, (V. By).
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If V is crystalline (respectively, semi-stable), there is a canonical isomorphism

*
Dcris

(V) = ])<:ris(v)>‘<
(respectively, D} (V) ~ Dy (V)*). The tautological map
V ®q, Di(V) = B., € {cris, st}

can be viewed as an abstract p-adic integration pairing.
Proposition 13.2.7 Each admissible (¢, N)-module is weakly admissible.

Proof This is [65, Proposition 4.4.5]. We refer the reader to [32, Theorem 9.3.4] for
a detailed proof. a

13.2.8 The converse statement is a fundamental theorem of the p-adic Hodge theory,
which was first formulated as a conjecture in [65].

Theorem 13.2.9 (Colmez—Fontaine) Each filtered weakly admissible module is
admissible, i.e. we have equivalences of categories:

.a . N.,a ,N,
MF%“ ~ MF%/,  MFZY ~ MFSY/

This theorem was first proved in [48]. Further development of ideas of this proof
leads to the theory of p-adic Banach spaces [41] and almost C,-representations
[72], [17]. Another proof, based on the theory of (¢, I')-modules was found by
Berger [18]. A completely new insight on this theorem is provided by the theory of
Fargues—Fontaine [60]. See [55] and [114] for an introduction to the work of Fargues
and Fontaine.

Remark 13.2.10 The theorem of Colmez—Fontaine implies that the tensor product
of two weakly admissible modules is weakly admissible. Recall that there exists a
direct proof of this result [153].

13.3 The Hierarchy of p-Adic Representations

13.3.1 Let L be afinite extensionof K.If p : Gg — Autq, V is a p-adic represen-
tation, one can consider its restriction on G and ask for the behavior of the functors
Dgyr, Dy and D under restriction. Set:

D,L(V) =(V Qq, B)%, %€ {dR, st cris}.
Applying Hilbert’s theorem 90 (Theorem 1.6.3), we obtain that

Dur,; (V) = Dar(V) ®k L.
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In particular, V is a de Rham representation if and only if its restriction on G is a
de Rham.

13.3.2 One says that a p-adic representation p is potentially semi-stable (respec-
tively, potentially crystalline) if there exists a finite extension L/K such that the
restriction of p on G is semi-stable (respectively, crystalline). Applying Hilbert’s
theorem 90 (Theorem 1.6.3), we obtain that in the case L /K is unramified, p is crys-
talline (respectively semi-stable) if and only if it’s restriction on G, is. The following
proposition shows that ramified representations with finite image provide examples
of potentially semi-stable representations that are not semi-stable.

Proposition 13.3.3 A p-adic representation p : Gk — Autq,V with finite image
is semi-stable if and only if it is unramified.

Proof Let p be a representation with a finite image. Let L/K be a finite extension
such that V6: = V. Then

Dy (V) =V ®q, BS* =V ®q, Lo,
where L is the maximal unramified subfield of L. One has
Dy (V) = Dy (V) = (V ®q, Lo) /™.

Therefore, V is semi-stable if and only if it is Ly-admissible if and only if it is
unramified (see Example 9.2). O

13.3.4 Set:
Dpst(v) = h_r>nDst/L(V)a
L/K

where L runs all finite extensions of K. Then D, (V) is a finite dimensional
K" -vector space endowed with a natural structure of filtered (¢, N)-module. In
addition, it is equipped with a discrete action of the Galois group G such that
Dy (V) = DPST(V)G". This Galois action allows to define on Dpg (V) the stucture
of a Weil-Deligne representation. One can see Dy as a functor to the category of
filtered (¢, N, G g)-modules. One says that V is potentially semi-stable if and only
if dimgy Dy (V) = dimgq, (V). The functor Djis can be defined by the same way.
See [71] for more detail.

The hierarchy of p-adic representations can be represented by the following dia-
gram of full subcategories of Repr (Gk):
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RePQP (Gk)

Repr (Gk)

Rep pst(GK)

N

Rep pcris(GK) Repst(GK)

\/

Repcris (Gk)

Finally, the categories Rep ,(Gk) and Repyr (G ) coincide as the following
fundamental theorem shows:

Theorem 13.3.5 (p-adic monodromy conjecture) Each de Rham representation is
potentially semi-stable.

This theorem was formulated as a conjecture by Fontaine. It can be seen as a
highly non-trivial analog of Grothendieck’s ¢-adic monodromy theorem in the case
£ = p. The first proof, found by Berger [15], uses the theory of (¢, I'x)-modules
(see below). Colmez [43] gave a completely different proof, based on the theory of
p-adic Banach Spaces. See [60, Chap. 10] for the insight provided by the theory of
Fargues—Fontaine.

13.3.6 Recall that Theorem 8.2.9 classifies all p-adic representations in terms of
(¢, I'k)-modules. It is natural to ask how to recover D;s(V), Dy (V) and Dgr (V)
from the étale (¢, I'x)-module D(V'). This question is known as Fontaine’s program.
As a first step, Cherbonnier and Colmez [35] proved that each p-adic representation
is overconvergent. As a second step, Berger [15] showed how to construct Dis(V),
D (V) and Dgr (V) in terms of the overconvergent lattice D¥(V) of D(V) using the
Robba ring Zx . Moreover, the infinitesimal action of 'y on D (V) ®q, Ky gives
rise to a structure of a differential -module and associates to V a p-adic differential
equation. This reduces the p-adic monodromy conjecture to a conjecture of Crew on
p-adic differential equations. This last conjecture was proved by Kedlaya [94]. We
refer the reader to [42] for a survey of these results. In another direction, the theory
of (¢, Ik )-modules is closely related to the p-adic Langlands program for GL,(Q,)
[45-47].
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13.4 Comparison Theorems

13.4.1 In[151], Tate considered the p-adic analog of the following situation. Let X
be a smooth proper scheme over the field of complex numbers C. To the analytic space
X (C) on can associate on the one hand, the singular cohomology H" (X (C), Q) and
on the other hand, the de Rham cohomology Hg, (X/C) defined as the hypercoho-
mology of the complex Q% of differential forms on X. The integration of differental
forms against simplexes gives a non-degenerate pairing

H,(X(C), Q) x HRr(X/C) — C, (59)
which induces an isomorphism (comparison isomorphism):
H"(X(C), Q) ®q C ~ HR(X/C)
The spectral sequence
E{ = HI (X, Q,0) = Hy' (X/C)
defines a decreasing exhaustive filtration F' Hl, (X/C) on Hl (X/C) such that
gl HIL (X/C) = H' ' (X, Q4).

By Hodge theory, this filtration splits canonically and gives the decomposition of
Hj, (X/C) into direct sum (Hodge decomposition):

Hi(X/C) = & H'(X,QY).

i+j=n
Therefore, one has the decomposition:

H"(X(0), Q) ®q C 0 HI(X, Q).
i+j=n

13.4.2 Now assume that X is a smooth proper scheme over a local field K of
characteristic 0. The de Rham cohomologies Hj, (X/K) are still defined as the
hypercohomology of £2% . Contrary to the complex case, the filtration F "H (X/K)

has no canonical splitting 2. One has

g Hiy (X/K) = @& H/(X, Q).

i+j=n

In the p-adic situation, the singular cohomology is not defined, but it can be replaced
by the p-adic étale cohomology H(X), which has the additional structure of a

2 However, see [162].
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p-adic representation. The following result formulated by Tate as a conjecture was
proved in full generality by Faltings [57].

Theorem 13.4.3 (Faltings) There exists a functorial isomorphism

H)(X)®, C~ & (H/(X,Qy ) ®k C(—i)).

i+j=n
In particular, H,; (X) is of Hodge—Tate, and
Dur (H) (X)) ~ gr* Hip (X/K).

Tate proved this conjecture for abelian varieties having good reduction using his
results about the continuous cohomology of Gk (see Sect. 4.3). Faltings’ proof
relies on the higher-dimensional generalization of Tate’s method of almost étale
extensions. The theory of almost étale extensions was systematically developped in
[78]. See [130] for further generalization of Faltings’ almost purity theorems.

13.4.4 Inspired by Grothendieck’s problem of mysterious functor [83, 84], Fontaine
[66, 71] formulated more precise conjectures, relating étale cohomology to other
cohomology theories via the rings Beis, Bs: and Bgr. These conjectures are actually
theorems, which can be formulated as follows:

13.4.5 Etale cohomology vs. de Rham cohomology. Recall that the ring By is
equipped with a canonical filtration and a continuous action of the Galois group G .

Theorem 13.4.6 (Cgr-conjecture) Let X/ K be a smooth proper scheme. There exists
a functorial isomorphism

H;)(X) ®q, Bar Hix(X/K) ®k B, (60)

which is compatible with the filtration and the Galois action. In particular, H 1’; (X)
is de Rham, and
Dy (H) (X)) ~ Hjp (X/K).

Using the isomorphism gr*Bgr =~ @ C(i) itis easy to see that this theorem implies
ieZ
Theorem 13.4.3.

13.4.7 Etale cohomology vs. crystalline cohomology. Let X / Ok be a smooth proper
scheme having good reduction. The theory of crystalline cohomology [20] associates
to the special fiber of X finite-dimensional Ko-vector spaces H!. (X) equipped with
a semi-linear Frobenius ¢. By a theorem of Berhtelot—Ogus [22], there exists a
canonical isomorphism

HCIIR(X/K) = Hciris(X) ®Ko Kv

which equips Hci

1is (X) ®k, K with a canonical filtration.
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Theorem 13.4.8 (C,s-conjecture) Let X/ Ok be a smooth proper scheme having
good reduction.
(i) There exists a functorial isomorphism

H;,(X) ®q, Beris = Hiyio (X) @k, Beris, (61)

which is compatible with the Galois action and the action of ¢. In particular, H I’, (X)
is crystalline, and
Dcris (H; (X)) ~ H}

cris (X) .
(ii) The isomorphism (60) can be obtained from (62) by the extension of scalars
B.is ®k, K C Bgr.

13.4.9 Etale cohomology vs. log-crystalline cohomology. Let X/Og be a proper
scheme having semi-stable reduction. The theory of log-crystalline cohomology [92]
associates to X a finite-dimensional K-vector spaces H]"Og _eris (X) equipped with a
semi-linear Frobenius ¢ and a monodromy operator N such that No = ppN. A

theorem of Hyodo—Kato [87] shows the existence of an isomorphism
HéR(X/K) = [{]i)g—cﬁs(X) ®K0 K’

which equips H]’;)g —eris(X) ®k, K with the induced filtration. Note that if X has
good reduction, then N = 0, and the log-crystalline cohomology coincides with the

classical crystalline cohomology of X.

Theorem 13.4.10 (Cg-conjecture of Fontaine—Jannsen) Let X/Og be a proper
scheme having semi-stable reduction.
(i) There exists a functorial isomorphism

H}\(X) ®q, Ba = Hj,y oii(X) ®k, By, (62)

which is compatible with the Galois action and the actions of ¢ and N. In particular,
H)(X) is semi-stable, and

Dy (HE(X)) ~ Hl'(‘)gfms(X).

13.4.11 These conjectures were first proved by two completely different methods:

— The method of almost étale extensions (Faltings [58, 59]);
— The method of syntomic cohomology of Fontaine—Messing (Fontaine—Messing,
Hyodo—Kato, Tsuji [74, 154]).

Alternative proofs were found by Niziot[120, 121] and Beilinson [26, 27]. The
theory of perfectoids gave a new impetus to this subject [24, 25, 34, 49, 131]. The
generalization of comparison theorems to cohomology with coefficients is intimately
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related to the theory of p-adic representations of affinoid algebras [9, 31, 95, 96,
115].

13.4.12 Over the field of complex numbers, the comparison isomorphism can be
alternatively seen as the non-degenerate pairing of complex periods (59). In the p-
adic case, such an interpretation exists for abelian varieties. Namely, if A is an abelian
variety over K, then the p-adic analog of H;(A(C), Q) is the p-adic representation
Vp(A) :=T,(A) ®z, Q. For the first p-adic cohomology of A, one has

H)(A) >~ V,(A)".

The theory of p-adic integration [38, 39, 67] provides us with a non-degenerate
pairing
Hig(A) x Tp(A) — Bar,

which gives an explicit approach to the comparison theorems for abelian varieties.
The simplest case of p-divisible formal groups will be studied in the next section.

14 p-Divisible Groups
14.1 Formal Groups

14.1.1 In this section, we make first steps in studing p-adic representations aris-
ing from p-divisible groups. Such representations are crystalline and the associated
filtered modules have an explicit description in geometric terms. We will focus our
attention on formal groups because in this case many results can be proved by ele-
mentary methods, without using the theory of finite group schemes. We start with a
short review of the theory of formal groups.

Definition Let A be an integral domain. A one-dimensional commutative formal
group over A is a formal power series F' (X, Y) € A[[X, Y]] satisfying the following
conditions:

() F(F(X,Y),Z) = F(X, F(Y, Z));
(i) F(X,Y) = F(Y, X):
(iii) F(X,0)= X and F(0,Y) = Y;
(iv) There exists i (X) € XA[[X]] such that F (X, i(X)) = 0.

It can be proved that ii) and iv) follow from i) and iii) (see [109]). We will often write
X +F Yinstead F(X,Y).

Example 14.1.2 (1) The additive formal group @a (X,Y)=X+7Y. Here i(X) =
-X.
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(2) The multiplicative formal group @m (X,Y)=X+4+Y + XY. Note that

e X
Gu(X,Y) =10+ X)(1+Y)—1.Herei(X) = TIx
(3) More generally, for each a € A, the power series

F(X,Y)=X+Y +aXY

is a formal group over A. Here i (X) = —

l+aX’

14.1.3 We introduce basic notions of the theory of formal groups. An homomor-
phism of formal groups F — G over A is a power series f € X A[[X]] such that
foF(X,Y)=G(f(X), f(Y)). The set Homu (F, G) of homomorphisms F — G
is an abelian group with respect to the addition defined by the formula

f®g=G(f(X), g(X)).

Weset End (F) = Homu (F, F). Then End4 (F) is aring with respect to the addition
defined above and the multiplication defined as the composition of power series:

fog(X) = f(g(X)).

14.1.4 The module le[[xn of formal Kihler differentials of A[[X]] over A is the
free A[[X]]-module generated by d X.

Definition We say that w(X) = f(X)dX € ﬁk[[xn is an invariant differential form
on the formal group F if
o(X+rY) =w(X).

14.1.5 The next proposition describes invariant differential forms on one-
dimensional formal groups. We will write F 1’ (X, Y) (respectively, FZ/(X , Y)) for the
formal derivative of F'(X, Y) with respect to the first (respectively, second) variable.

Proposition 14.1.6 The space of invariant differential forms on a one-dimensional
formal group F(X,Y) is the free A-module of rank one generated by

x) dx
w = —.
d F{(0, X)
Proof See, for example, [88, Section 1.1].

(a) Since F(Y,X)=7Y + X + (terms of degree > 2), the series F[(0, X) is
invertible in A[[X]], and one has

w(X):

Differentiating the identity
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F(Z,F(X,Y))=F(F(Z,X),Y)
with respect ot Z, one has
F{(Z,F(X,Y)) = F/(F(Z,X),Y)  F{(Z, X).
Setting Z = 0, we obtain that

F/(X.Y) 1

F{(0, F(X,Y)) ~ F[(0,X)’

or equivalently, that
dF(X,Y) dX

F/0,F(X,Y)) F[(0,X)

This shows that w(X) is invariant.
(b) Conversely, assume that w(X) = f(X)d X is invariant. Then

FFX,Y)F(X,Y) = f(X).
Setting X = 0, we obtain that f(¥) = F{(0, Y) f(0). Therefore,
o(X) = fO)or(X),

and the proposition is proved. U

Remark 14.1.7 We can write wf in the form:
o0
wr(X) = (ZanX"> X, wherea, € Aandag = 1.
n=0

14.1.8 Let K denote the field of fractions of A. We say that a power series A(X) €
K[[X]] is a logarithm of F, if

AMX 47 Y) = A(X) + A(Y).

Proposition 14.1.9 Assume that char(K) = 0. Then the map

X
> Ay(X) :=/ w
0

establishes an isomorphism between the one-dimensional K -vector space generated
by wr and the K -vector space of logarithms of F.
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Proof (a) Let w(X) = g(X)dX be a non-zero invariant differential form on F. Set
oo

g(X) = > b,X". Since char(K) = 0, the series f(X) has the formal primitive
n=0

X 00
Ao (X) :=/ w= Zb”*‘X" e KI[X]].
0 n=1

n

The invariance of w reads
g(F(X, Y)F{(X,Y) = g(X),
and taking the primitives, we obtain:
ho(X +FY) = 2p(X) + h(Y)
for some h(Y) € K[[Y]]. Putting X = 0 in the last formula, we have h(Y) = A, (Y),
and Ay, (X +r Y) = Ay (X) 4+ X, (Y). Therefore, 1, is a logarithm of F.

(b) Conversely, let A(X) be a logarithm of F. Differentiating the identity A(Y +¢
X) = 1Y) 4+ A(X) with respect to Y and setting ¥ = 0, one has

A0
V= —O
F1(0, X)
Setw = A/ (X)dX. Then w = )/ (0)wp, and the proposition is proved. O

Definition 14.1.10 Set X
)\.F(X) 2/ wWE.
0

Note that Az (X) is the unique logarithm of F' such that
Ap(X) =X (mod deg?2).

From Proposition 14.1.9, it follows that over a field of characteristic 0 all formal
goups are isomorphic to the additive formal group. Indeed, Ar is an isomorphism
F~G@G,.

Example 14.1.11 For the multiplicative group we have

dx > X"
we, (X) = ——, g, (X) =log(l+X) =) (="' —.
1+ X = n

14.1.12 We consider formal groups over the ring of integers of a local field K of
characteristic 0 and residue caracteristic p.
For each n € Z, we denote by [n] the formal multiplication by n:
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X+r+Xp+r---+X, ifn >0,

[n] = "

i([—n)), ifn < 0.
This defines an injection
[ 1:Z— Endo,(F), n—>[nlX)=nX+---.

It can be easily checked that this map can be extended by continuity to an injective
map
[ 1:Z,— Endp,(F), a—[alX)=aX +---.

Proposition 14.1.13 Let F be a formal group over Ok . Then either
[pl(X) =0 (mod mg)

or there exists an integer h > 1 and a power series g(X) = c1X + - - - such that
c1 #0 (mod mg) and

[p1(X) = g(X”") (mod mg). (63)

Proof The proof is not difficult. See, for example, [76, Chap. I, § 3, Theorem 2]. [

Definition 14.1.14 If [p](X) =0 (mod mg), we say that F has infinite height.
Otherwise, we say that F' is p-divisible and call the height of F' the unique & > 1
satisfying condition (63).

14.1.15 Now we can explain the connection between formal groups and p-adic
representations. Recall that we write C for the completion of K. We denote by O¢
the ring of integers of C and by m¢ the maximal ideal of O¢. Any formal group law
F(X,Y) over Ok defines a structure of Z,-module on m¢ of K:

Ol+F,3::F((X,ﬂ), a’ﬁemC7
Z, x m¢c — mc, (a,a) — [a](a).

We will denote by F'(mc) the ideal m¢ equipped with this Z,-module structure. The
analogous notation will be used for Ok -submodules of mc.

Proposition 14.1.16 Assume that F is a formal group of finite height h. Then:
(i) The map [p] : F(m¢) — F(mc) is surjecive.
(ii) The kernel ker ([ p]) is a free F ,-module of rank h.

Proof (i) Consider the equation

[Pl X) =a, «ac F(me).
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A version of the Weierstrass preparation theorem (see, for example, the proof of
[105, Theorem 4.2]) shows that this equation can be written in the form f(X) =
g(a), where f(X) € Ok[X] is a polynomial of degree p such that f(X) = xr'
(mod mg), and g € Ok[[X]]. Therefore, the roots of this equation are in mc.

(ii) To prove that ker ([ p]) is a free Z/ pZ-module of rank /, we only need to show
that the roots of the equation [p](X) = 0 are all of multiplicity one. Differentiating
the identity

[PI(F(X,Y)) = F([pl(X), [p1(Y))

with respect to Y and setting ¥ = 0, we get:
[p]'(X) - F3(X,0) = K, ([pl(X), 0).

Let [p](§) = 0. Since F;(X,0) is invertible in Og[[X]] and & € mc, we have
F;(£,0) # 0 and [p]'(§) # 0. Therefore, £ is a simple root. O

14.1.17 For n > 1, let Tr, denote the p"-torsion subgroup of F(fmc). From
Proposition 14.1.16 it follows that as abelian group, it is not canonically isomorphic
to (Z/p"Z)" and sits in the exact sequence

0— Tp, - F(mc) E) F(m¢) — 0.

As in the case of abelian varieties, the Tate module of F is defined as the projective
limit
T(F) = limTs,,

n

with respect to the multiplication-by-p maps. Since the series [p"](X) have coef-
ficients in Ok, the Galois group Gk acts on Ep,, and this action gives rise to a
Z,-adic representation:

pr : Gk — Autg (T (F)) ~ GLy(Z)).
We will denote by V(F) = T (F) ®z, Q, the associated p-adic representation.
Example 14.1.18 (1) F = @m One has [p"] = (1 + X)?" — 1. Therefore,
Te,,={¢—11¢" =1},
and the map
pr = T s t—=>¢—1
is an isomorphism of G g-modules. In particular, T(@m) ~7Z,(1).

(2) Let E/ Ok be an elliptic curve having good reduction modulo mg. Writing
the group law on E in terms of a local parameter at 0, one obtains a formal power
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series F' (X, Y), which is a formal group law over Og. One can prove that F is of
height 1 if E has ordinary reduction, and of height 2 if E has supersingular reduction.
We have a canonical injection of 7 (F) in the Tate module 7),(E) of E, which is an
isomorphism in the supersingular case. See [146, Chap. 4] for further detail and
applications.

14.1.19 The notion of a formal group can be generalized to higher dimensions. Let
X =(X,...,Xg)andY = (Y, ..., Yy) bed-vectors of variables. A d-dimensional
formal group over Ok is ad-tuple F(X,Y) = (F|(X,Y), ..., F;(X,Y)) with

Fi(X,Y) e OkllX, Y]], 1<i<d,

which satisfies the direct analogs of conditions (i), (iii) and (iv) in the definition of
a one-dimensional formal group. We remark that contrary to the one-dimensional
case, there are non-commutative formal groups of dimension > 2. Non-commutative
formal groups appear in Lie theory. Below, without special mentioning, we consider
only commutative formal groups.

14.1.20 Propositions 14.1.6 and 14.1.9 generalize directly to the higher-dimensional
case. Namely, let I = (X1, ..., X4) C Og[[X]]. We set:

th(0g) =1/1*

and call it the cotangent space of F' over Ok . The module of invariant differential
forms on F is canonically isomorphic to ¢ (Ok). Namely:

(1) Foreacha; X| +---+ay;X; mod I? € 15 (Og), there exists a unique invariant
differential form w such that

o) =adX+---+a,dX,.
This correspondence gives an isomorphism:
15(Ok) = {invariant differential forms onF}.

(2) Each invariant differential form w is closed, i.e. there exists a unique A, (X) €
K[X] such that A,(0, ...,0) =0 and

dhro(X) = .

(3) The map w +— A, establishes an isomorphism between the K -vector space Q}p
generated by invariant differential forms on F and the K -vector space of loga-
rithms of F.

The notion of the height of a formal group generalizes as follows:

Definition 14.1.21 A formal group F is p-divisible if the morphism
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[pI" © OklIX]] = Okl[X]l,  f(X)+— folpl(X)

makes Ok [[X]] into a free module of finite rank over itself.

If F is p-divisible, then the degree of the map [p]* is of the form p” for some
h > 1. This follows from the fact that any finite connected group over kg is of order
ph for some #/ (see, for example [64, Chapitre I, § 9]). We call i the height of F.
A formal group of dimension d defines a structure of Z,-module on m‘é, which
we will denote by F(mc). The definition of the Tate module 7'(F) and the p-adic
representation V (F) generalizes directly to p-divisible formal groups.

14.2  p-Divisible Groups

14.2.1 The category of formal groups is too small to develop a satisfactory theory.
In particular, it is not closed under taking duals. To remedy this problem, it is more
convenient to work in the category of p-divisible groups, introduced by Tate [151].

Definition A p-divisible group of height 4 over Ok is a system 4 = (¢,)nen Of
finite group schemes ¥, of order p" equipped with injective maps i, : ¢4, — 9,1
such that the sequences

In

0% 5% 05 %, n>l

are exact.

From the theory of finite group schemes, it is known that each ¥, sits in an exact
sequence
09" -9, -9 >0, (64)

where 4? is a connected and ¥ is an étale group scheme. We will say that & =
(%) nen 1s connected (respectively, étale) if each ¥, is. The exact sequences (64)
give rise to an exact sequence of p-divisible groups

0>9 > 9 9% 0, (65)

where 49 and ¥ are connected and étale respectively.

14.2.2 To each p-divisible group ¢, one can naturally associate its Tate module,
setting:
T'(&) =1lim%,(Oc).

n

Then T'(¥) is a free Z,-module of rank / equipped with a natural action of G x. We
denote by V(¥) :=Q, ®z, T (%) the associated p-adic representation. From the
exact sequence (65), one has an exact sequence of p-adic representations:
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0— V(@) > V(¥) > V(¥ - 0.

1423 If F(X,Y) is a p-divisible formal group, then the kernels F[p"] of the
isogenies [p"] : F — F formasystem F(p) = (F[p"])nen of finite group schemes
satisfying the above definition, and we have a functor ¥ — F(p) from the category
of formal groups to the category of p-divisible groups.

Proposition 14.2.4 (Tate) The functor F +— F(p) induces an equivalence between
the category of p-divisible formal groups and the category of connected p-divisible
groups.

Proof See [151, Proposition 1] and the references in op. cit. (I

14.2.5 If ¢ is a p-divisible group, we call the dimension of ¢ the dimension of
the formal group F corresponding to its connected component. We also define the
tangent space fy (Og ) of ¢ as the tangent space of F.

14.2.6 The Cartier duality for finite group schemes allows to associate to ¢ a dual
p-divisible group ¢ . We have fundamental relations between the heights and dimen-
sions of 4 and ¥

ht(¥9) =ht(¥9Y), dim(¥) + dim(¥") = ht(4)

([151, Proposition 3]). Moreover, the duality induces a non-degenerate pairing on
Tate modules:
T(G)x T(4") —> Zy(1).

Example 14.2.7 Let E/Ok be an elliptic curve having a good reduction modulo
mg. The kernel E[p"] of the multiplication-by-p" map is a finite group scheme of
order p>*. The system (E[p"]),en is a p-divisible group of height 2. The connected
component of this p-divisible group corresponds to the formal group associated by
E in Example 14.1.18, 2).

14.3 Classification of p-Divisible Groups

14.3.1 In[64], Fontaine classified p-divisible groups over Ok up to isogeny in terms
of filtered ¢-modules. The idea of such classification goes back to Grothendieck
[83, 84] and relies on the following principles:

(1) One associates to any p-divisible group ¢ of dimension d and height 4 a
@-module M (%) together with a d-dimensional subspace L(¥) C M(¥)k.

(2) The p-module M (%) is the Dieudonné module associated to the reduction G of
% modulo mg by the theory of formal group schemes in characteristic p (see,
for example, [112]).



An Introduction to p-Adic Hodge Theory 187

(3) The subspace L(¥) C M(¥)k depends on the lift of % in characteristic 0. The
filtration on M (¥) g is defined as follows:

Fil’M(@)x = M(9) g, Fil'M(F)x = L(4), Fil’M@)x = {0).

14.3.2 We give an interpretation of the module (M (¢), L(%)) for formal p-divisible
groups in terms of differential forms. This description is equivalent to Fontaine’s
general construction (see [64, Chap. V] for the proofs of the results stated below).
Let F be a formal p-divisible group of dimension d and height 4. Recall that a
differential form

d
o= a(Xi,...,X)dXi, a(X,...,Xs) € K[Xy,..., X4l
i=1

is closed if there exists a power series A, € K[[Xy,..., X4]] such that
Ao (0, ...,0) =0anddX, = w.Note thatif wis an invariant form, then A, is the asso-
ciated logarithm of F. As before, we set X = (Xy,..., Xg)and Y = (Y1, ..., Yy)
to simplify notation.

Definition A closed differential form w is
(i) of the second kind on F, if there exists r > 0 such that

ro(X +rY) = 2o(X) — 20 (Y) € p7" OklIX, Y1I;
(i) exact, if there exists r > 0 such that A, € p™" Ok [[X]].
It is easy to see that each exact form is of the second kind. Consider the quotient:

{differential forms of the second kind}

H, (F) =
ar (F) { exact forms}

Then Hle(F ) is a K -vector space of dimension /&, which can be viewed as the first
de Rham cohomology group of F. Let K denote the maximal unramified subfield
of K, and let M(F) be the Ko-subspace of Hj (F) generated by the forms with
coefficients in K. Then M (F) depends only on the reduction of F modulo mg and
one has

Hip(F) = M(F)g.

Moreover, M (F) is equipped with the Frobenius operator ¢ which acts as the absolute
Frobenius on the coefficients of power series and such that p(X;) = X ip :

d

d
® (Zai(Xl, ...,Xd)dXi> = Za;/’(xf’, .., XPyadx?.
i=1

i=1
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Consider the K-vector space Q} generated by invariant forms on F. Recall that
dimg QIF = d. Each invariant form is clearly of the second kind, and Q}p injects into
Hle (F). Set:

L(F) := image of Q}. in Hj (F).

These data define a structure of filtered module on M (F).

14.3.3 Assume that the local field K is absolutely unramified. In that case, formal
groups over Ok were classified up isomorphism by Honda [88], purely in terms of
their logarithms. In this section, we review Honda’s classification. To simplify the
exposition, we restrict our discussion to the one-dimensional case.

The ring of power series K[[X]] is equipped with the Frobenius operator ¢ :

® (ZaiX') = Z‘P(ai)xip-
i=0 i=0

Assume that «y, ..., o1, @, € O satisfy the following conditions:
A1, ..., 0,1 =0 (mod p),
1 h—1 ( p) (66)
o € UK.
Set:
h
A (p) =) g,
i=0

and consider the power series
o -
A(X) = (1 _ %) (X) € K[[X]].

For formal p-divisible groups of dimension one, the result of Honda states as follows:

Theorem 14.3.4 (Honda) (i) Assume that ay, . .., oy, satisfy conditions (66). Then
M X) = Ag(X) for some one-dimensional formal group G of height h.

(ii) Let F be a one-dimensional formal group over Ok of height h. Then there
exists a unique system oy, . . . , oy, satisfying (66) such that

o
<1 - %) Ar(X) € Ok[[X]].

Let G be the formal group associated to oy, ..., oy by parti). Then F >~ G.

The relation between this theorem and Fontaine’s classification is given by the fol-
lowing:
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Proposition 14.3.5 Assume that K is absolutely unramified. Let F be a one-
dimensional formal group over Ok of height h. Denote by br the image of wp
in M(F). Then the following holds true:

(i) The elements bg, ¢(br), ..., "\ (bp) form a basis of M(F) over K.

(ii) Let ay, . .., oy be the parameters associated to F by Honda’s theorem. Then

c19(br) +o29(bp) + -+ ang" (br) = pbr.
(iii) One has an isomorphism of filtered ¢-modules
M(F) ~ Kl¢l/(</(¢) — p),
which sends L(F) = K - br to the one-dimensional K -vector space generated by 1.

Proof See [64, Chapitre V]. O

Remark 14.3.6 In fact, Fontaine’s theory [64] gives more precise results that those
that we have stated. Namely, if the absolute ramification index of K is < p — 1, it
allows to classify p-divisible groups up to isomorphism and not only up to isogeny.
Using new ideas, Breuil [30] classified p-divisible groups up to isomorphism without
any restriction on ramification. See [97] and [33] for further developments.

14.4 p-Adic Integration on Formal Groups

14.4.1 We maintain assumptions and conventions of the previous section. Let F be
aformal p-divisible group of dimension d and height . We denote by T (F) the Tate
module of F. Let & = (§,),>0 € T(F), where §, € Tr, for each n > 0. Recall that
we | have the canonical map 6 : Aj,y — Oc. For each n, choose $n € Alnf such that

0E) =&

Theorem 14.4.2 (Colmez Fontaine) (i) Let w be a differential form of second kind.
Then the sequence ( p”kw(é,,)),,>0 converges in BCrls x =K ®k, B C s Its limit does

not depend on the choice of én and therefore defines the “p-adic mtegral "

/a) = — lim p"\ (“g‘n 67)
§

n—-+00

If o has coefficients in Ky, then fg w e B

(ii) If w is exact, then f w=0.
(iii) The p-adic integmtion (67) is compatible with the actions of the Galois group
and the Frobenius ¢. Namely, one has

cris*
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[rr=o([=).
/g<s>w=g(/g‘°)’ g € Gy.

iv) The p-adic integration induces a non-degenerated pairing
M(F) X T(F) g Bcris,

which is compatible with the Frobenius operator and the Galois action, and a non-
degenerated pairing
Hix(F) x T(F) — B},

which is compatible with the Galois action and filtration.

Proof See [64, Chapitre V, §1], [66, Théoreme 6.2] and [38, Proposition 3.1]. We
remark that the delicate part here is the non-degeneracy of the constructed pairings.
The proof of other points is straightforward. O

Example 14.4.3 Consider the case of the multiplicative formal group @m. Recall
that 7(G,,) >~ Z,(1) is generated by any compatible system (§,,),,>0 such that §, =
{pn — 1 and ¢, # 1. The space Hle (G,,) is generated over K by w = l‘i—XX, and the
formal primitive of w is log(1 4+ X). Take &, = [¢]"/?" — 1. One has

/a) =— lim p"log[e]"/?" = —1.
£ n——+oo

This formula can be seen as the p-adic analog of the following computation. Let C
denote the unit circle on the complex plane parametrized by e**'*, x e [0, 1]. Then

d
/—Z = nlog(z)
c %

Corollary 14.4.4 The representation V (F) is crystalline, and there exist canonical
isomorphisms:

2mi

e
= 2mi.
0

D (V(F)) >~ M(F), Dix(V(F)) >~ Hj;(F).

Corollary 14.4.5 (Tate) The representation V (F) is Hodge—Tate and there exists a
canonical isomorphism

V(F) ®q, C = (5. (K) ®k C) & (tr(K) ® C(1)). (68)

Proof This follows from the previous corollary and the isomorphisms
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1K) = Qpp,  Hig(F)/Qp ~ tp(K)

(the second isomorphism is provided by duality).

Remark 14.4.6 (1) Corollary 14.4.4 holds for all p-divisible groups (see [66,
Théoreme 6.2]). Conversely, Breuil [30] proved that each crystalline representation
with Hodge—Tate weights 0 and 1 arises from a p-divisible group.

(2) The Hodge-Tate decomposition (68) was first proved by Tate [151] for all p-
divisible groups. Some constructions of this paper will be revewed in Sect. 16. The
case of abelian variety with bad reduction follows from the semi-stable reduction
theorem (Raynaud). A completely different proof was found by Fontaine [67].

(3) The construction of p-adic integration in Theorem 14.4.2 generalizes to the
case of abelian varieties [38, 39].

15 Formal Complex Multiplication

15.1 Lubin-Tate Theory

15.1.1 In this section, we discuss the theory of complex multiplication in formal
groups. We start with a brief overview of Lubin—Tate theory [111]. Let K is a local
field of arbitrary characteristic. Set ¢ = |kgx| = p/. Fix an uniformizer 7 of K.

Theorem 15.1.2 (i) Let f(X) € Ok[[X]] be a power series satisfying the following
conditions:
f(X)=nmX (mod deg?2), 69)
f(X)=X? (mod mg).
Then the following holds true:

(i) There exists a unique formal group F¢(X,Y) over Ok such that f(X) €
Endg, (F). Moreover, for each a € Ok, there exists a unique endomorphism [a](X)
€ Endg, (F) such that [a](X) = aX (mod deg?2).

(ii) Let g(X) be another power series satisfying conditions (69) with the same
uniformizer . Then F, and Fy are isomorphic over Ok. In the isomorphism class
of Fy, there exists a formal group Fyr with the logarithm

) Ca
Mr(X) =X+ =+ =5 +--.
T T

(iii) Let w' be another uniformizer of Ok , and let g(X) be a power series satisfying
conditions (69) with 7’ in the place of w. Then F; and F, are isomorphic over the
ring OY.

Proof All these statements can be proved by successive approximation in the rings
of formal power series. We refer the reader to [111] or to [140] for detailed proofs.
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Definition F is called the Lubin—Tate formal group associated to f.

15.1.3 Let Fy be the Lubin-Tate formal group associated to f(X) =X + X9.
The group of points Fy(mc) is an Okx-module with the action of Ok given by

(a,a) — [a]l(a), a € Ok, o€ Fi(me).
In particular, [7](X) = f(X), and for any n > 1, one has

["1(X) = fofo-of(X).

The polynomial
[")/[7x" =7 + 7" "X, (70)

is Eisenstein of degree ¢"~'(q — 1). Let T, denote the group of 7"-torsion points
of Fr. An easy induction together with the previous remark show that 7, is an
abelian group of order ¢". The endomorphism ring Endo, (Fy) 2 Ok acts on Ty,
through the quotient Ok /7" Ok, and Ty, is free of rank one over Ok /7" Ok . The
generators of T, are the roots of the polynomial (70). Let K  , be the field generated
over K by Ty ,. Then

Kf,n = K(]Tn),

n—1

where 7, is any generator of T,,. In particular, [K;, : K] = (¢ — 1)¢"™", and 7,

is a uniformizer of Ky,,.

15.1.4 Let g be another power series satisfying (69) with the same 7. Then F, >~ F,
Tgn =Typ, and Ky, = K, ,,. Since the field generated by 7"-torsion points of a
Lubin-Tate formal group depends only on the choice of the uniformizer 7, we will
write K , in the place of Ky,,. Set:

o0
Kr= UKgy,.

n=1

From the explicit form of Eisenstein polynomials (70), it follows that 7 is a universal
normin K, /K.
The following theorem gives an explicit approach to local class field theory:

Theorem 15.1.5 (Lubin-Tate) i) One has
K®=K".K,.

(ii) Let 0 : K* — Gal(K®/K) denote the reciprocity map. For any u € Uk,
the automorphism 0k (1) acts on the torsion points of Fr by the formula:

Ok ) (E) =[u 1), V& [2"1(5)=0, neN.
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Proof See [111] or [140]. O

Remark 15.1.6 (1) The torsion points of a one dimensional formal group are the
roots of its logarithm (see Proposition 16.1.2 below). Therefore, K® is generated
over K" by the roots of the power series Apr(X). This can be seen as a solution
of Hilbert 12th problem for local fields. Theorem 15.1.5 is the local analog of the
theory of complex multiplication. R

(2) Let K = Q,. The multiplicative formal group G,, is the Lubin-Tate group
associated to the series f(X) = (X 4+ 1)7 — 1. In that case, Theorem 15.1.5 says

that @ = UQ,,(¢,) and that

b, ) (&) = ¢4, Yu e Ug,.

This can be proved without using the theory of formal groups.

(3) Let 7, be a generator of the group of m"-torsion points of Fy. Since 7, is
a uniformizer of K ,, and Theorem 15.1.5 describes the action of Gal(K /K on
7, this allows to compute the ramification filtration on Gal(K ab /K). One has

Ok (U,(j)) — Gal(K®/K)®, Vo> 0.

See [140] for a detailed proof.

15.2 Hodge-Tate Decomposition for Lubin—Tate Formal
Groups

15.2.1 In this section, we assume that K has characteristic 0. We fix a uniformizer
7 and write F for an unspecified Lubin—Tate formal group associated to 7. Since
p =n‘u withe = e(K/Q), and u € Uk, we see that F is a p-divisible group of
height h = ef = [K : Q,]. Its Tate module 7 (F) can be written as the projective
limit of 7”-torsion subgroups with respect to the multiplication-by-7 map. Since
T (F)is an Og-module of rank one, the action of Gx on T (F) is given by a character

Xn ° GK—>UK.

The theory of Lubin-Tate (Theorem 15.1.5) says that x 6 6 coincides with the
projection of K* onto Uk under the decomposition K* >~ Uk X (7).

15.2.2 Let E be a finite extension of K containing all conjugates T K of K over Q,,.
By local class field theory, one has a commutative diagram
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E* —" + Gal(E®/E)

|

K* —" - Gal(K®/K).

Therefore, G acts on T (F') via the character pg = xr o Ng/kx. Consider the vector
space V(F) =T(F) ®o, K as a Gg-module. By the previous remark, V (F) =~
K (pg), and one has

V(F)®q,C~ @ C(ropp).

teHom(K,E)

Compare this decomposition with the Hodge—Tate decomposition:
V(F) ®q, C = t5.(C) @ tr(C)(1).

These decompositions are compatible with the K-module structures on the both
sides. Since K acts on 7z (E) via the embedding K < E, one has

c(l), ifr =id,
C ~ 71
CoPE) =0 ity 2id, D

Proposition 15.2.3 For any continuous character  : Gg — Uk, the following
conditions are equivalent:

(a) ¥ concides with [T t'o pry. on some open subgroup of Ig;
teHom(K,E)

(b) C(t o) = C(x) forall T € Hom(K, E).

Proof See [143, Section A5]. Recall that for two continuous characters ¥; and v,
we write Y| ~ v, if C(¢) and C(y,) are isomorphic as continuous Galois modules.
From (71), one has

Too! o psk ~ XE, ifT =0,

‘L'oo*lopGKNid, if T #o0.
Set:
—1 T
vi= [] v onk
teHom(K,E)
Then the previous formula gives:

ToY ~ XK, VT € Hom(E, K).

Now the proposition follows from Proposition 4.3.6. 0
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15.3 Formal Complex Multiplication for p-Divisible Groups

15.3.1 UsingProposition 15.2.3, we can prove a general result about formal complex
multiplication for p-divisible groups.

Definition Let ¢4 be a p-divisible group over Of of dimension d and height /.
We say that ¢4 has a formal complex multiplication by a p-adic field K C E if
[K : Q,] = h and there exists an injective ring map

K — Endo,(9) ®z, Qp.

If ¢ has a complex multiplication by K, the p-adic representation V(¥) is a K -
vector space of dimension 1, and G g acts on V(¥) viaa character ¥ : Gg — Ukg.
On the other hand, the tangent space ¢ (E) isa (E, K)-module, and the multiplication
by E in ty (E) gives rise to a map

dety : E* — Autg(ty (E)) <5 K*.

Recall that 6z : E* — Gal(E*®/E) denotes the reciprocity map.

Theorem 15.3.2 Let < be a p-divisible group having a formal complex multiplica-
tion by K. Assume that E contains all conjugates of K. Then one has

Yy (05 () = dety W)™,  uel,

for some open subgroup U of Ug.

Proof Compairing the decomposition

V(@) @9, C~ @ Croyy)

teHom(K,E)
and the Hodge—Tate decomposition of V (%), we see that there exists a subset S C
Hom(K, E) such that t¢ (E) >~ @ 7(K) as a K-module and that

Tes

ToYyy ~xg iftes,
Toyy ~1 ift ¢S.

Proposition 15.2.3 implies that 14 concides on an open subgroup of Ir with the

character
-1
l_[ T OprE-
teHom(K,E)

Now the theorem follows from the theory of Lubin-Tate together with the formula
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dety (1) = H‘L'_l o NE/r(K)(u)~
TeS

]

Remark 15.3.3 Theorem 15.3.2 is mentioned in [144]. We remark that it implies
the main theorem of complex multiplication of abelian varieties in the global setting.

16 The Exponential Map

16.1 The Group of Points of a Formal Group

16.1.1 In this section, we study the group of points of a formal group in more detail.
Let F be a formal p-divisible group. We denote by Tr o the group of torsion points

o0
of F. Note that Tr o = UOTp,n, and that there is a canonical isomorphism
n=

Troo = V(F)/T(F).

Proposition 16.1.2 (i) For any invariant differential form w on F, the logarithm
Ao (X) converges on mc.
(ii) The map
logp : F(mc) — tr(C),

logp(@) (@) = Ao(@), VYo e QL

is an homomorphism.
(iii) One has an exact sequence

0= Treo — F(me) 25 1:(C) — 0. (72)

Moreover, logy, is a local isomorphism.

Proof (i) The space of invariant differential forms on F is generated by the forms
Wi, ..., wy such that w; (0) = dX;. Let A, ..., A; denote the logarithms of these
forms. Since w; have coefficients in Ok, the series A; can be written as

xi<X>=Xi+Z< D Xlxd>

n>=2 \nj+--ng=n

where
ndGOK, n=ny+---+ny. (73)

.....
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This implies that the series A; converge on m‘é. Moreover, any logarithm can be
written as a linear combination of A;. Therefore, for any w, the series A, converges
on m‘é. This proves that the map log is well defined.

@i1) Since A, (X +r Y) = A, (X) + 1, (Y), we have

logp(a +F B) = logp(a) + logy(B).

(>iii) Fix ¢ € Ok such that
vk (p)
p—1

vk (c) >

Then from (73) it follows that

¢ hieXi o eX) = Xi+ ) ( Y b X Xd> :

n>2 \nit-tng=n

where b,, ., € Ok. Applying the p-adic version of the inverse function theorem to
the function A(X) = (A4, ..., A,) (see, for example, [129, Chap. 1, Proposition 5.9]),
we see that it establishes an analytic homeomorphism between F (cm¢) and (eme)?.
This shows that log is a local analytic homeomorphism.

We show the exactness of the short exact sequence. Assume that @ € Tr . Then
there exists n such that [ p"](«) = 0, and therefore for each invariant differential form
wone has p"A, () = A, ([p"](«)) = 0. This shows that 1, (o) = O for all w; hence
a € ker(logy). Conversely, assume that o € ker(logy). Take n such that [p"](«) €
F(cmc). Then log, ([p"1(«)) = p" logy () = 0. Since log is an isomorphism on
F (cmc), this shows that o € Tr ,. Thus ker(log,) = Tr . Finally, since logy is a
local isomorphism and F(mc) is p-divisible, log, is surjective. (]

oK (pl)’ the local inverse of logp

Corollary 16.1.3 For each c such that vg(c) >

induces an isomorphism
expy : tr(eme) 2 F(cme).

Tensoring this local isomorphism with Q,, we obtain an isomorphism (which we
denote again by expyp):

expy : tp(C) = F(me) ®z, Q,. (74)

Definition We call log, and exp, the logarithmic map and the exponential map
respectively.

Example 16.1.4 For the multiplicative formal group, the exact sequence (72) reads:

0= ppe = UD€ >0, (75)
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where U((:l) = (1 + m¢)* is the multiplicative group of principal units of C.

16.1.5 Following Tate [151], we give a description of the group of points F (m¢) in
terms of the Tate module of the dual p-divisible group F". Let F(p) = (F[p"Dn>1
be the p-divisible group associated to F. Then F[p"](Oc) = Tr ,. Recall the injec-
tive maps i, : F[p"] — F[p"*']. It’s easy to see that for any s, one has

F(mc/p*) =lim F[p"1(Oc/p*).

In

Therefore, F'(m¢) can be defined in terms of the p-divisible group F(p) :

F(me) = lim F(mc/p*) = lim lim F[p")(Oc/p*).

N s iy

16.1.6 By Cartier duality, for any Og-algebra R, we have a canonical isomorphism
F[p"1(R) = Homg (F"[p"], Gy).

Taking R = Oc¢/ p’ and passing to the limits on the both sides, we obtain a morphism
F(m¢) — Hom (T(FV), Ug>) . (76)

Theorem 16.1.7 (Tate) (i) We have a commutative diagram with exact rows

logp
0— > V(F)/T(F) — = F(mg) 17(C) 0

: ) ]

0 —= V(F)/T(F) — Hom (T(FV), Ué”) — — Hom(T(FY),C) —= 0,

where the morphisms are defined as follows:

— the upper row is the short exact sequence (72);
— the bottom row is induced by the short exact sequence (75) and the isomorphism
V(F)/T(F) ~Hom(T (F"), Q,/Z,(1));
— the middle vertical map is (76).
(ii) The maps f and g are injective.
(iii) The map g agrees with the Hodge—Tate decomposition of V (F). Namely, the
diagram
tr(C(1)) — = Hom(T (F"), C(1))

=~ duality
Hodge—Tate

T(F) ®q, C
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commutes.
(iv) The middle vertical row of the diagram induces an isomorphism

F(my) = Homg, (T(F*), UY).

Proof (i) The commutativity of the diagram and the exactness of rows is clear from
construction.

We omit the proof of (ii)—(iv), which are the key assertions of the proposition. We
remark that assertions (ii) and (iv) are proved in [151, Proposition 11 and Theorem 3]
without any referring to p-adic integration on formal groups. They imply immediately
the Hodge—Tate decomposition for V (F). Assertion (iii) says, roughly speaking, that
the Hodge—Tate decomposition arising from p-adic integration agrees with Tate’s
one. See [64, Chap. V, §1]. O

Corollary 16.1.8 The map f can be identified with the canonical injection
F(me) = T(F) ®z, U (—1)

which gives rise to an isomorphism

Gk
Fang) = (T(F) @2, UL (D) "

Proof This follows from Theorem 16.1.7 and the Cartier duality. (]

16.2 The Universal Covering

16.2.1 In this section, we introduce the notion of the universal covering of a formal
group, and relate it to the p-adic representation V (F).

Definition We call the universal covering of F'(m¢) the projective limit

CF(mc) = lim F (mc)
[p]

taken with respect to the multiplication-by-p map [p] : F(m¢) — F(mc).

We have an exact sequence
0— T(F)—>CF(mC)EE>F(mC)—>0, )
where pr, denotes the projection map

pro§) =&, V&= (50.61....),  [PlEn) = Enr-
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Combining this exact sequence with (72), we obtain an exact sequence

OgF OPTy

0= V(F) - CF(mg) 2% 1.(C) — 0. (78)
16.2.2 Let F; denote the reduction of F' modulo mg, and let S = m¢/mg. Set:

CF.(S) = 1<£n Fi.(S).
[p]

Proposition 16.2.3 The canonical map F(mc) — F(S) induces an isomorphism
CF(mc) >~ CF(S).

In particular, C F (m¢) depends only on the reduction of F.

Proof (a) The map F(mc) — Fi(S) is clearly an epimorphism. Let y = (y,)n>0 €
CFi(S). Let 3, € F(mc) be any lift of y,. It is easy to see that for each n, the
sequence [ p™](Pp+m) converges to some x, € F(mc) and that [p](x,41) = x,. This
proves the surjectivity.

(b) The injectivity follows from the fact that for any non-zero x = (x,),>0 €
C F (mc), there exists N such that vk (x,) < 1forn > N. O

16.2.4 From Corollary 16.1.8, it follows that there exists a canonical isomorphism
CF(mc) = T(F) ®z, CUS (—1). (79)
Example 16.2.5 Consider the universal covering of G, One has
@m(mc) ~ U((:l), U((:l) =1+ me)*,
and
CGu(me) > €U, U = lim U .
xP<x

The universal covering of the reduction of G, is

CGi($) = lim (1 + 8 > (1 + me)",

XP<x

and the isomorphism CG,,(m¢) =~ CG,, +(S) is induced by the isomorphism (32)
for E = C:

. b

1(121 Oc ~ O¢.

xP<x

The short exact sequence (77) reads:

0—Z,(1) - cul’ - U’ —o. (80)
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16.3 Application to Galois Cohomology
16.3.1 In this section, we consider the sequence

0— Q,(1) > BL)*" 5 C -0, (81)

where the first map is the canonical identification of Q, (1) with the submodule Q¢
of (Bjﬂs)‘/’:”. The fundamental exact sequence (54) shows that the sequence (81) is
also exact. Consider the diagram:

0—=2Z,(1) cul’ Ul 0 (82)

J/= J/IOgH llog

0—=Q,(1) —= B )" —~C—>0.

Here we use the isomorphism C Uél) ~ 1 4+ m¢» to define the middle vertical arrow
as follows:

e 1= D"
x = log(lx) = ) (—)" =

n=1

+

We omit the proof of convergence of this series in B_;.

Proposition 16.3.2 The diagram (82) commutes, and the middle vertical map is an
isomorphism.

Proof (a) The proof of commutativity is straightforward.
(b) The map log[ - ] is surjective because the right vertical map log is surjective,
and CU_’ is a Q,-vector space. Since log[x] = 0 implies that [x] is a root of unity,

and C Ug) is torsion free, log|[ - ] is injective. (I

16.3.3 The exact sequence (81) induces a long exact sequence of continuous Galois
cohomology:

0— HGk.Qp(1)) > H(Gg. B )?=P) — HO(Gk.C) 2% H'(Gk.Q,(1))

cris
_ d
— H'(Gg. B} )?=P) - H' (Gk.C) => H*(Gg.Qp(1)).

We use Proposition 16.3.2 to compute the connecting homomorphisms dy and 9;.

16.3.4 Recall that ). denotes the group of p"th roots of unity. For each n, the
Kummer exact sequence

0—>M,,,l—>f*p—">?*—>0
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gives rise to the connecting map
60 K*=HGg,K) = H' (G, jupm).
Passing to the projective limit on n, we obtain a map
8 K* - H'(Gg,Z,(1)).

The following proposition gives an interpretation of the Kummer map in terms of
the fundamental exact sequence:

Proposition 16.3.5 (i) The diagram

Uy — = H'(Gk, Z,(1))

-

K —"~ H'(Gk.Q,(1))

is commutative.
(ii) The diagram

H'(Gg.C) —2= HX(Gg. Q,(1))

K Q,

—Trg

is commutative. Here the left vertical isomorphism is a — alog xx (see Theo-
rem 4.3.2), and the right vertical map is the canonical isomorphism of local class
field theory [140, Theorem 3].

Proof (i) The commutative diagram (82) gives a commutative square:

H(Gk, UY) ——= H'(Gk,Z,(1))

|

HY(Gg.C) ——~ H' (G, Q,(1)).

Here H(G, U((:l)) = U,((l), and H(Gg, C) = K by Ax—Sen-Tate theorem. The
explicit description of the connecting map shows that in this diagram, the upper row
coincides with §. This proves the first assertion.

(ii) Assertion (ii) is proved in [12, Proposition 1.7.2]. O
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16.4 The Bloch-Kato Exponential Map

16.4.1 We maintain previous notation and conventions. Our first goal is to extend
the definition of the Kummer map to the case of general p-divisible formal groups.
Let mz denote the maximal ideal of the ring of integers of K.

For all » > 1, we have an exact sequence

0= Tp, — F(mg) L5 F(mg) — 0,

which can be seen as the analog of the Kummer exact sequence for formal groups.
It induces a long exact sequence of Galois cohomology:

0~ HOGx. Tra) — H'(G. Fimg)) - HGk. F(mg)) " H' (G Tra) > ...
Since H*(K, F (mg)) = F(mg), this exact sequence gives an injection
8p.n ¢ F(mg)/p"F(mg) — H'(Gk, Tr.n)-
Passing to the projective limit, we obtain a map
8p @ F(mg) — HY (K, T(F)),

which is referred to as the Kummer map for F. This map plays an important role in
the Iwasawa theory of elliptic curves (see, for example, [81] for an introduction to
this topic).

16.4.2 Bloch and Kato [28] found a remarkable description of §5 in terms of p-adic
periods, which also allows to construct an analog of the Kummer map for a wide
class of p-adic representations.

Definition Let V be a de Rham representation of Gg. The quotient
tv(K) = Dar(V)/Fil'Dar (V)

is called the tangent space of V.

Using the isomorphisms gr; (B4r) 2~ C(i), one can prove by devissage that the tau-
tological exact sequence

0 — Fil°Bgg — Bgr — Bar /Fil’Bgr — 0
induces an isomorphism
ty(K) ~ H°(Gg, V ®q, Bar /Fil’Bgr).

Consider the fundamental exact sequence (54):
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0— Q, — B’Z' — Bu/Fil’Bg — 0.

cris

Tensoring this sequence with V and taking Galois cohomology, we obtain a long
exact sequence

0 =1 CXPv g1
0— H(Gk, V) = Deis(V)?= — tv(K) —> H (Gg, V).
Definition The connecting homomorphism
expy : ty(K) — HI(GK, V)

is called the exponential map of Bloch and Kato.

16.4.3 We come back to representations arising from p-divisible formal groups.
Since the Hodge—Tate weights of V (F) are 0 and 1, we have

tvr)(K) = H'(Gx, V ®q, C(=1)).
The Hodge-Tate decomposition of V (F) provides us with a canonical isomorphism
tr(K) > tyr)(K). (83)

In Proposition 16.1.2, we constructed the logarithmic map log, : F(mg) — tp(K).
Taking the composition, we obtain a map F(mg) — ty ) (K).

Theorem 16.4.4 (Bloch—-Kato) The diagram

F(mg) ——~ H'(Gg., T(F))

EXPy(F)

ty(r)(K) ———— H'(Gg, V(F)),
where the left vertical map is the composition of the exponential map expp with the
isomorphism (83), is commutative.

Proof Thisis [28, Example 3.10.1]. We first prove the following lemma, which gives
an interpretation of the Kummer map in terms of universal coverings. (]

Lemma 16.4.5 (i) One has a commutative diagram with exact rows and injective
vertical maps:

0 T(F) CF(mc) F(mg) ——0

lz

0 T(F) T(F) ®z, CUS (—1) —= T(F) ®z, U (1) —= 0.
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(ii) This diagram gives rise to a commutative diagram

F(mg) & H'(Gk.T(F))

: :

HO (Gk, T(F) ®z, Ué”(—l)) — ~ HY(Gg,T(F)).

Proof (i) The first statement follows from the exactness of the sequence (80) and
Corollary 16.1.8.

(ii) Directly from construction, it follows that the upper connecting map is
8r. Taking into account the isomorphism from Corollary 16.1.8, we obtain the
lemma. O

16.4.6 Proof of the theorem. Consider the diagram

0 Z, cuP (1) —— v (1) ——=0

j Jos -

0—Q, —= Bf)*7(-1) —— C(=1) ——0

N

0 Q, B/ Bar /Fil’Bgr — 0.

cris

’

The upper part of the diagram is diagram (82) twisted by XEI. Therefore, the two
upper squares commute. It is easy to check that the two lower squares commute
too. Tensoring the diagram with 7 (F) and taking Galois cohomology, we obtain a
commutative diagram

HO (GK, T(F) ®z, Ué”(—l)) . HY(Gg, T(F))

| |

CXPy (F)

ty(r)(K) ————————— H'(Gg, V(F)).

Combining this diagram with Lemma 16.4.5, we obtain the theorem.

16.5 Hilbert Symbols for Formal Groups

16.5.1 To illustrate the theory developed in previous sections, we sketch its appli-
cation to an explicit description of Hilbert symbols on formal groups. Fixn > 1. Let
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L/K be a finite extension containing the coordinates of all points of 7 ,. Recall that
0 : L* — G denotes the reciprocity map.

Definition The Hilbert symbol on F is the pairing
( 9 )F,n : L* X F(mL) — TF,n (84)

defined by the formula

0 (a) —

(@, B)rn=x FX,

where x € F(mg) is any solution of the equation [p"](x) = B.

It is easy to see that this pairing is well defined, i.e. that (e, B) ., does not depend
on the choice of x. If F = G,,, and L contains the group 1« of p"th roots of unity,
it reduces to the classical Hilbert symbol:

¢, )L,n : L*x L* — Mpn s

p @

@ Bra=(WB) /B

16.5.2 By local class field theory, there exists a canonical isomorphism
H*(Gp, ) =~Z/p"Z

(see, for example, [142, Chap. VI]). Since T, is a trivial G-module, one has

H*(GL, iy ® Trp) = Tr .

Consider the cup product

u
HI(GLv Mp”) X Hl(GL’ TF,n) - HZ(GLa /Lp" ® TF,n) x~ TF,n~

Composing this pairing with the Kummer maps ¢, : F(my) - H (G, Tr,)and
8 : L* = H'(Gp, u), we obtain a pairing

L* x F(mL) — Tp,n.
From the cohomological description of the reciprocity map (see for example, [142,

Chap. VI]), it follows that this pairing coincides with the Hilbert symbol (84).

16.5.3 Fix an uniformizer 7, of L. Let f(X) € Og[X] denote the minimal poly-
nomial of 7y, over K. Writing O, as Ok [X]/(f (X)) and taking into account that
D1k = (f'(7wr)), we obtain an explicit description of the module of differentials
Q})L/Zp (see [142, Chap. II1, §7]):

QIOL/Z[) ~ (OL/QL/Q/,) dJTL
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d
(recall that D1 /g, denotes the different of L/Q,). For any « € O we write d_oz

Ty
for an element a € Oy, such that do = a - dmy. Note that a is well defined modulo
da
Dr0..Setdlog(a) = a~ ' —.
L/Q, g(a) .

16.5.4 Fix a base (&;)1<i<n of TF,, over Z/p"% and a basis (wj)igjgn of Hle(F)
in such a way that ()< j<q is a basis of QL. Set:

e dE e e
)»,,,1(51)5 Ay, (62) dn, Ay, (1) dny

~dg ~d, dg,
= | ) S (8) 2 A (&)
OLa=p “’"(él)dnL ws (82) s ‘“"(Eh)dnL .

hog 81 Ay (82) o Ay (B)

Aoy (61) o (§2) o0 A, (8n)
where we adopt the notation:
d

, d§ dho, (§) dg e (s @
b () 2 Zd—Xk " it & =(5".....6).

i
d]TL

Let X = (X;j)1<i,j<n denote the inverse matrix of ®; ,. The theory of p-adic
integration together with Bloch—Kato’s interpretation of the Kummer map allow to
give the following explicit formula for this pairing:

2
Theorem 16.5.5 Foralla € L* and B € F(mp) suchthatv,(B) > T one has
p—

h d

(@ B)rn =Y Y [Trrjq, (Xijdlog(@)i, (B))] &)

i=1j=1

Corollary 16.5.6 Applying this formula to the multiplicative formal group we obtain
the explicit formula of Sen [137] for the classical Hilbert symbol:

@Bl ] 1 dlog(x)
(o, B)Ln = §1[,n Al , where [o, B, 1= FTrL/Qp (m log(ﬁ)) .

For Lubin—Tate formal groups, this formula impoves the explicit reciprocity law of
Wiles [158].

Comments on the proof (a) This formula was proved in [12] assuming that v, (8) > ¢

for some constant ¢ independent of n. In [77], it was noticed that one can take
2

C=—=

p—1
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(b) Let 7, € Ajyr be any lift of 7; under the map 6 : Aj;s — Oc. Note that
T — J?L [S FﬂleR. Take u = (ui)i>0 € T(F), where [p](ui_H) =u;. Let w be a
differential form of the second kind. From the definition of the p-adic integration
in Theorem 14.4.2, it follows that the p-adic period fu  can be approximated as
follows:

du, ~ . .
/ P () S (1, — 7)) (mod Fil’Bgg), ifw € 2L,
w~x dmy,
u —p" () (mod Fil'Bggr), otherwise

(see [12, Sect. 2.4] for precise statements). Therefore, the matrix ®; , can be seen
nn

as “the matrix of p-adic periods of F modulo p"".
(c) The Hodge-Tate decomposition gives an isomorphism

tr(L) = H(GL, T(F) ®z, C(-1)),

which can be described in terms of the matrix of p-adic periods. We consider an
integral mod p" version of this isomorphism. Namely, set:

m};:{xeC|vk(x)>

UK(P)}
p—1})’

and m; = mg N'my. Since Tr , is a trivial G -module, we have a map
e : tr(my) = H(G L, Trn ®z, me(—1)) ~ H(GL, me(=1)) ®z, Tr.n,

which has an explicit description in terms of the matrix ® ,.
(c) The plan of the proof is the following. Usinga mod p" version expy , of the
Bloch—Kato exponential map, we construct a commutative diagram

8pn Uny

L* x tp(mp) H'(Gp, me/p") ®z, Tr.n

l (8pn,eXp ) J/ (Tn,id)

H' (G, pup) x HY(G L, Tr,) ——— HX(GL, i) @ Trp

TF,n-

From the cohomological interpretation of the Hilbert symbol and Theorem 16.4.4,
it follows that the Hilbert symbol (o, 8)r, can be computed as the image of
(ar, log ) under the map §,» U expr, . We compute it using the above diagram, as
the image of (o, logy) under the composition (7, id) o (,» U n,). From construc-
tion, 7, is the integral mod p” version of the connecting map 9, : H 1(G 1,C) —
H?*(Gy, Q, (1)) associated to the exact sequence

0— Q,(1) > (B )" — C — 0.

cris
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Therefore, it can be computed in terms of the trace map using Proposition 16.3.5.
The computation of the cup product §,» U n,, is more subtle, and we refer the reader
to [12] for further details.

Remark 16.5.7 (1) Explicit formulas of other types are proved in [3] and [150]. They
generalize the explicit reciprocity law of Vostokov [156] and also use information
about the matrix of p-adic periods.

(2) The exponential map of Bloch—Kato is closely related to special values of
L-functions and Iwasawa theory [28, 125]. For further reading, see [13, 14, 16, 40,
116, 117, 124].

17 The Weak Admissibility: The Case of Dimension One

17.1 Formal Groups of Dimension One

17.1.1 In this section, we assume that K is a finite totally ramified extension of
Ky = Q;‘. Assume that M is an irreducible filtered ¢p-module over K of rank h
satisfying the following conditions:

() M = My
(2) Fil’Mg = Mg, Fil>Mg = {0}, and dimg Fil' Mg = 1.

The first condition means that M ~ Ky[¢]/(¢" — p), and by the theory of
Dieudonné—Manin, M is the unique irreducible ¢-module with un (M) = 1/ k. Since
ty(M) = 1/ h, we see that M is weakly admissible.

17.1.2 Let Fiy denote the Lubin—Tate formal group with the logarithm

h 2h

¢\ X/ xr
MrX)=(1-"—=) X)=X+—+"—"75+---.
p p p

Extending scalars, we consider Fyr as a formal group over K. The filtered ¢-module
M (Fyr) has the following description. The class byt of the canonical differential
wrr = dApr in M (Fy7) satisfies the relation

¢"(br) = phir,

and the vectors brr, ¢(brr), .. ., <ph‘1(bLT) form a basis of M (Fyr) over Ky. The
filtration on M (Fir)k is given by

Fil'!M(Fir)x = K - bir.

In particular, M (Fir) and M are isomorphic as ¢-modules. Let v, denote the valu-
ation normalized as v,(p) = 1.
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Theorem 17.1.3 (Laffaille) Assume that M is a filtered ¢-module satisfying the
conditions (1)—(2) above. The following holds true:
(i) There exists b € M such that:

(a) b is a generator of M as a p-module, and ¢" (b) = pb;
(b) There existcy = 1,cy, ..., ch_1 € K such that

vy(ci) 2 —i/h  forall 1<i<h—1, (85)

and
h—1

€= "ci¢' (b) € Fil' M.
i=0

(ii) Forallco = 1, ¢y, ..., ch—1 € K satisfying condition (85), the series
h—1 ‘
MX) =Y cimx(x?)
i=0

is the logarithm of some formal p-divisible group over Ok of height h.
(iii) M is admissible. More precisely, there exists a formal group F of dimension
one over Ok such that M(F) >~ M as filtered ¢-modules.

Proof This theorem is proved in [102].

(i) By the discussion preceding the theorem, there exists a generator b’ of M
such that ¢ (b') = pb’ and V', o(b'), ..., ¢"~'(b") is a Ko-basis of M. Then for any
non-zero £ € Fil' Mg, one has

¢ = hiicgcpi(b’), for somec; € K. (86)
i=0
Note that ¢} # 0 for some i. Replacing, if necessary, b’ by ¢’ (b') and dividing ¢ by
c;, we can assume that in (86), c¢; = 1. Let j be such that
vp(c;-)—i-j/hévp(cl/-)—i—i/h, Vi=0,...,h—1.
If v,,(c;-) + j/h >0, thenv,(c}) > —i/h for all i, and we can take
¢ =cl, L=10.
Otherwise c;- # 0. In that case, set:
b=¢' ), =1t/

Then
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h—1
€= cip'(b),
i=0
where the coefficients ¢; are given by

h—j—1

, , . .
C;i = {Ci+.f/c_/’ if 0 gl
i<h-1.

Ciyjn/pC AL h—j

IN N

ForO0<i <h—j—1,onehas
vp(ci) +i/h= vp(cl/urj) - Up(c;') +i/h= (vp(cl/urj) +@ +J)/h) - (Up(c;) +J/h) > 0.
Forh — j <i < h—1, one has

vp(ei) +i/h=v,(ci ;) —vp(c)) —1+i/h
= (vp(clu;) + G+ j = h)/h) = (vp() + j/h) = 0.

This shows that ¢y, c1, . . ., cp—1 satisfy (85).

o8}
(ii) By [86, §15.2], a power series of the form Y a, X?" with ag = 1 is the loga-
n=0
rithm of a formal group if and only if the sums

Ay = pay,
A2 = pay; — (1|A117,

are in Ok . The verification of these conditions for the series A(X) is quite technical
and is omitted here. See [102, proof of Proposition 2.4].
(iii) Let M be a filtered p-module satisfying conditions (1)—(2). By part (i), there

exists a generator b of M such that conditions a-b) hold for some ¢, ..., ¢;,—;. By part
h—1 ,
(ii), the formal power series A(X) = > cikLT(X”Ih) is the logarithm of some formal

i=0
group F of height 4. Then M (F) ~ M as filtered ¢-modules. By Theorem 14.4.2,
one has M(F) ~ D*. (V(F)). Hence, M is admissible. U

cris

Remark 17.1.4 This theorem implies the surjectivity of the Gross—Hopkins period
map [82]. See also [103] for the case of Drinfeld spaces.



212 D. Benois

17.2  Geometric Interpretation of (B;,is)‘”h:P

17.2.1 We maintain previous notation and consider the Lubin-Tate formal group
Fir of height i with the logarithm Arp(X). Note that Fiy is defined over Z,,. Let
Fir x denote the reduction of Fir modulo p. We have the following interpretation of
the universal covering of Frr, which generalizes Example 16.2.5:

Proposition 17.2.2 There is a canonical isomorphism
CFir(me) = Frpe(me).

Proof Since [p](X) = X9 (mod p), the multiplication by p in Fiyy is given by
¢". Set S = mg/(p). Then

CFri(S) =~ I}ITH Fir(S) >~ FLT,k(Li%I S) >~ Fipi(me).
ot P

Now the proposition follows from Proposition 16.2.3. (]

17.2.3 Since Aju/(p) =~ OE, we have a well defined composition

K1 Frime) = Frg(Ane/(p) = CFir(Ai) 2 Fir(Ain).

Here, C Fir(Ain) = lim
level.

. Fir(Ainr), and pr, denotes the projection on the ground

Theorem 17.2.4 (Fargues—Fontaine) The map
Log(x) := Arr(k(x))

establishes an isomorphism Fir (me) =~ (BE )“’h:p.

cris

Proof (Sketch of the proof) The proof of the convergence of the series App(y) in
Bjm for y € Fyr(Ainr) is routine, and we omit it. Since , Fyr(Ajyr) does not contain
torsion points of Fir, the map Log is injective.

The series Fir(X, Y) has coefficients in Z,. Hence, the formal group law com-

mutes with ¢, and one has
@"hr (e (x)) = Ar(@" (k (x))) = Ar (e (9" (x))).

On the other hand, ¢" (x) = [p](x) in Fix(mc»), and therefore
(e (@" () = r([pl(k (x))) = pher (e (x)).

This proves that Log(x) € (B, )¢ =7.

cris
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The proof of the surjectivity is more subtle and we refer the reader to [60, Chap. 4],
where this map is studied in all detail and in a more general setting. O

Example 17.2.5 If 7 = 1, then Fyy is isomorphic to @m Therefore, Firr(mer)
(1 + me»)*, and the map « can be identified with the map log[-] introduced in Propo-
sition 16.3.2.

17.2.6 The next theorem furnishes further information about the structure of
h
(Bli)? =7

Theorem 17.2.7 (Fargues—Fontaine) For any family of elements
ap, o, 0, ..., 01 € C,

not all zero, consider the map:

h—1

frBLTT S C f) =) (e ().
i=1

Then f is surjective, and ker(f) is a Qp-vector space of dimension h.

Proof See [60, Théoreme 8.1.2]. Without loss of generality, we can assume that
v, (o) = 0 and g = 1. The arguments used in the proof of Theorem 17.1.3 apply
and show that there exists a formal group F over O¢ such that

h—1
Ap = Zaﬂpi (Arr).
i=0
Consider the diagram
AFoprg
0 V(F) CF(mc) ——C——=0,
1 7

(B3¢ ="

where the first line is the exact sequence (78) for F', and the vertical isomorphism is
provided by Theorem 17.2.4. Since dimq, V (F)) = h, the theorem is proved. (]

We refer the reader to [41] for the interpretation of this result in terms of the theory
of Banach Spaces, and to [60] and [55] for applications to the theory of Fargues—
Fontaine.
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Kiran S. Kedlaya

This annotated bibliography was prepared as part of a five-lecture series at the summer
school on perfectoid spaces held at the International Centre for Theoretical Sciences
(ICTS), Bengaluru, September 9-13, 2019. It is not intended to be a freestanding
reference, although we do include a few short proofs and some sketches of longer
proofs; instead, I have attempted to give some complements to my Arizona Winter
School 2017 lecture notes [28], which provide a far more complete version of the

story.
Throughout, fix a prime number p.

1 Perfectoid Fields

Primary references: [26, §1], [44, §3], [32, §3.5].

Proposition 1.1 (Fontaine—Wintenberger theorem) The Galois groups of the fields
Q, (p=) and ¥, ((t)) are isomorphic. More precisely, this isomorphism arises from
an explicit isomorphism of Galois categories.

Proof This is a consequence of results announced in [16, 17] and proved in detail in
[51]. Itis also a special case of Proposition 1.16 via Krasner’s lemma (Remark 1.10).

We expand briefly on how Proposition 1.1 is embedded in the aforementioned
papers of Fontaine—Wintenberger. By a theorem of Sen [43], the field Q, (1 =) is
strictly arithmetically profinite in the sense of Fontaine—Wintenberger (we do not
need the exact definition here). This then implies that its norm field is a local field of
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characteristic p withresidue field F, (see [16, Théoréme 2.4], [51, Théoréme 2.1.3]),
and so may be identified with IF,((¢)) via the Cohen structure theorem. The norm
field construction then defines a bijection between finite extensions of Q, (¢ ,~) and
finite separable extensions of its norm field [51, Théoreme 3.2.2]. O

Remark 1.2 The results of Fontaine—Wintenberger cited above also imply that for
any strictly arithmetically profinite algebraic extension K of Q,, the Galois group
of K and its norm field are isomorphic. This more general statement can also be
recovered from Proposition 1.16, by showing that the completion of K is perfectoid
with tilt isomorphic to the completed perfect closure of the norm field.

Before relating the Fontaine—Wintenberger theorem to perfectoid fields, we intro-
duce some background on nonarchimedean fields.

Definition 1.3 A nonarchimedean field is a topological field whose topology is
defined by some nontrivial nonarchimedean absolute value, with respect to which
the field is complete. For K a nonarchimedean field, write |K x | for the value group,
o for the valuation ring, mg for the maximal ideal, and kg for the residue field.

Proposition 1.4 Let K be a nonarchimedean field (a field complete with respect to
a nontrivial nonarchimedean absolute value). Let L /K be a finite extension.

(i) The absolute value on K extends uniquely to a nonarchimedean absolute value

on L.
(ii) There is a unique maximal subextension U of K which is unramified over K:
|UX| = |KX| and Ky [Kkk is separable of degree [U : K. In particular, oy can

be written as og[\] where \ maps to a primitive element of the residue field
extension; in particular, if we write an element x of U as 2;1:—01 ai\ witha; € K,
then x € oy if and only if a; € oy (or equivalently a; € ok ) for all i.

(iii) If kx has characteristic p, then there is a unique maximal subextension T of
K containing U which is totally tamely ramified over U: kr = ky and [|TX| :
|U>< |] = [T : U] is coprime to p. That is, [T : U] is coprime to p, the residue
fields of T and U coincide, and the value group extension of T /U has index
[T : Ul. Moreover, T can be written as U(AY4) in sucha way that Al generates
the quotient of the value groups, in particular, if we write an element x of T as
Z?;ol a; N/ with a; € U, then x € or if and only ifai)\i/d € or foralli.

(iv) With notation as in (iii), the degree [L : U] is a power of p. In particular, if L] K
is Galois with group G, then Gal(L / U) admits a subnormal series in which each
successive quotient is cyclic of order p.

Proof See, for example, [6, Chapter XIII]. O

Remark 1.5 If you are used to thinking about local fields as examples of nonar-
chimedean fields, a warning is in order: for L/ K afinite extension of nonarchimedean
fields, the inequality

[L:K]=>[|L*|: K|k : kk],
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which is always an equality when K is a local field, and can be strict in general. See
[36] for a detailed discussion of this phenomenon.

Definition 1.6 For P(T) = P,T" +---+ Py € K[T] a polynomial over a nonar-
chimedean field K, the Newton polygon of P is the open polygon which forms the
lower boundary of the convex hull of the set

Jti} x [=log | P, i1, 00) C R
i=0

Fori =1, ..., n,the section of this polygon with x-coordinates in the range [i — 1, i]
is a line segment. The slopes of these n line segments form the slope multiset of P.

Proposition 1.7 (Properties of Newton polygons) Let P(T) be a polynomial over
a nonarchimedean field K.

(i) Choose an extension L of K over which P(T) factors as
(T —ay)--- (T —ay). Then the slope multiset of P consists of —

log|ayl, ..., —log|a,| in some order. In particular, the slope multiset of a
product of two polynomials is the union of the slope multisets of the two polyno-
mials.

(ii) If P is irreducible, then the Newton polygon is a straight line segment.
Proof There are many references for this material, see, for example, [23, Chapter 2].

Proposition 1.8 (Krasner’s lemma) Let L/K be a (not necessarily finite) extension
of nonarchimedean fields. Let P(T) € K[T] be a polynomial which factors com-
pletely over L as (T — o) -+ - (T — ;). Then for any B € L such that

B—ail <lag —a1l  (=2,...,n),

we have K (o)) € K(3).

Proof For i=2,...,n, |f—ail=|a;—aq|>|8—a;] by the non-
Archimedean triangle inequality. By Proposition 1.7, the Newton polygon of P(T —
() includes a segment of length 1, which must correspond to an irreducible factor.
Alternatively, see [42, Theorem III.1.5.1], it is assumed therein that K is a discretely
valued field, but the proof remains unchanged in the general case. (]

Proposition 1.9 Let K be a nonarchimedean field and let x be a nonzero element
of K of positive valuation. Then K is algebraically closed if and only if:

(a) the value group of K is not discrete and
(b) every polynomial over ok /(x) has a root in ok /(x).

Proof (The following argument is extracted from [26, Lemma 1.5.4], see also [44,
Proposition 3.8], [32, Lemma 3.5.5].) It is clear that both conditions are necessary. To
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check sufficiency, note first that (a) and (b) together imply that the value group of K
is in fact divisible. With this in mind, we show that every polynomial P(T) € ox[T]
has a root in o, by induction on the degree n of P. (This implies the same with og
replaced by K, by rescaling in 7'.)

To this end, we construct a sequence 2o, z1, - . . asfollows. Start with zg = 0. Given
z;, if P(z;) = 0 there is nothing more to check. If P(z;) # O but the polynomial
P(T + z;) has more than one distinct slope in its slope multiset, Proposition 1.7
allows us to factor it nontrivially and proceed by induction. Otherwise, because K has
divisible value group, we can find a nonzero value u; € K for which P(u; T + z;) has
all slopes equal to 0. By hypothesis (b), there exists y; € og such that P(u;y; + z;) €
X0k, put ziy1 = z; + U;yi-

To conclude the argument, it will suffice to check that if the construction of the
sequence continues infinitely, then the sequence converges to a limit z which is a
root of P. Since P(T + z;) has only one slope in its slope multiset, we must have
lu;| = |P(z:)|"". Since |P(zi+1)| < |x||P(z:)], it follows that u; — 0 as i — o0,
so the z; do converge to a limit z satisfying | P(z)| = 0. O

Remark 1.10 From the previous discussion, we deduce that an algebraic extension
L of K is algebraically closed if and only if its completion is algebraically closed:
the “if” assertion follows from Krasner’s lemma (Proposition 1.8) while the “only
if” assertion follows from Proposition 1.9.

One consequence of this observation for the Fontaine—Wintenberger theorem is
that, on one hand, Q, (1¢,~) and its completion have the same Galois group; on the
other hand, IF,((¢)), its perfect closure, and the completion of its perfect closure all
have the same Galois group.

Definition 1.11 A perfectoid field is a nonarchimedean field K with residue field of
characteristic p and nondiscrete value group, for which the Frobenius map x +— x”
on ok /(p) is surjective. We allow the possibility that K is of characteristic p, in
which case K is forced to be perfect.

Remark 1.12 Any  algebraically closed nonarchimedean field  with
residue field of characteristic p is perfectoid. The completion K of Q, (pP ) is
perfectoid:

ox/(p) ZF,(T\, Ty, ...1/ (T}, T =Ty, ...).

The completion of Q, (u,~) is perfectoid, and we have

~ T T Lol _1 2l 2l T
ox/(p) EF, T\, Ta,...1/(T{ +--+T1+ 1Ty =Ty, ...).

Inboth cases, the tiltis isomorphic to the completion of IV, ((T))[T 1/P*].In particular,
one cannot recover K from K" alone; some extra data is needed which we describe
in the next lecture.

Remark 1.13 As noted in [28, Remark 2.1.8], the definition of a perfectoid field
first appeared in [39] in 1984 under the terminology hyperperfect field (in French,
corps hyperparfait), but the significance of this went unnoticed at the time.
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Proposition 1.14 (after Fontaine) Let K be a perfectoid field.

(i) The natural map

lim i
lim o — 1im ox/(p)
xXt=>xP xXt=>xP

is an isomorphism of multiplicative monoids.

(ii) Using (i)toupgrade og> := l(ingpr 0k to aring, it becomes a perfect valuation
ring of characteristic p with fraction field K := l(iLHXpr K. The valuation on
K" is the restriction along the final projection ti : K* — K.

(iii) The map 1 induces an isomorphism ‘KX| = }Kbx , in particular, both value
groups are p-divisible.

(iv) The fields kg and k> are isomorphic, in particular, both residue fields are
perfect. Moreover, forx € K" such that §(x)/p € 0% (Which exists by (iii)), the
rings ok /(p) and og»/(X) are isomorphic.

We call K" the tilt of K.

Proof See [26, Lemma 1.3.3] or [44, Lemma 3.4]. (While the basic construction
described here was known to Fontaine, the term #ilt, and the notations b and f, were
introduced by Scholze in [44].) O

Proposition 1.15 Let K be a perfectoid field. Then K is algebraically closed if and
only if K" is algebraically closed.

Proof This follows from Propositions 1.9 and 1.14(iii, iv). (Il

We are not yet able to prove the following result; we state the proof modulo a key
construction which we will introduce in the next lecture.

Proposition 1.16 (Generalized Fontaine—Wintenberger theorem) Let K be a per-
fectoid field with tilt K.

(i) Every finite extension of K is perfectoid.

(ii) The functor L — L’ defines an equivalence of Galois categories between finite
extensions of K and K°, and hence an isomorphism between the absolute Galois
groups of K and K°.

Proof We follow the proof of [26, Theorem 1.5.6]. See [44, Theorem 3.7] for a
somewhat different approach (using almost ring theory in place of Witt vectors). We
may omit the case where K is of characteristic p, as in this case K = K > and the
claim is trivial.

We will show in the next lecture (see Proposition 2.16) that there exists a surjective
homomorphism 6 : W(og») — ok with the property that for each finite extension E
of K, there exists a perfectoid field L with

W(0E) ®W(o).0 0k = 0L;
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this isomorphism will induce an isomorphism L” = E. By inverting p in the previous
isomorphism, we will also have an identification

W) p™ 1 ®w..)e 0x = L;

Kb
in case E/K" is a Galois extension with group G, it will follow that G acts on L
with invariant subring K, so by Artin’s lemma L /K is a finite Galois extension with
Galois group G. If E/K" is not necessarily Galois, we may first go up to a Galois
closure of E/K" and then come back down to deduce that [L : K] = [E : K"].

In this way, we will obtain a functor from finite extensions of K" to finite perfectoid
extensions of K which, when followed by the tilting functor, yields an equivalence
of categories (by the degree preservation property from the previous paragraph).
In particular, this functor is fully faithful, and it remains only to check that it is
essentially surjective. For this, let E be a completed algebraic closure of K”. By
Proposition 2.14 again, we may realize E as the tilt of some extension L of K; by
Proposition 1.15, L is algebraically closed. By Remark 1.10(ii), the union of the finite
extensions of K arising from finite extensions of K”, or equivalently finite Galois
extensions of K", is also algebraically closed. Hence, every finite extension L of K
is contained in a finite Galois extension of K arising from a finite Galois extension of
K"; as in the previous paragraph, we deduce that L is itself perfectoid. This proves
the claim. (]

Remark 1.17 Let C be a completed algebraic closure of Q,. By Proposition 1.16;
we can identify C* with a completed algebraic closure of F,((2)) in various ways;
for example, the two calculations from Remark 1.12 give rise to two distinct isomor-
phisms of this sort.

Suppose now that K is an arbitrary untilt of C” of characteristic 0. Since K is
algebraically closed and contains Q,, the completed algebraic closure of Q, within
K is isomorphic to C. However, the resulting inclusion C C K can be strict, see [35]
for examples.

2 Tilting, Untilting, and Witt Vectors

In the previous lecture, the proof of Proposition 1.16 hinged on being able to find
perfectoid fields with a specified tilt using Witt vectors. In order to better understand
the relationship between perfectoid fields and their tilts, we use Witt vectors to
describe all possible fields with a given tilt.

Definition 2.1 A ring R of characteristic p is perfect if the Frobenius homomor-
phism x — x” is an isomorphism; note that injectivity of this map is equivalent to R
being reduced. When R is a field, this is equivalent to the Galois-theoretic condition
that every finite extension of R is separable.

Proposition 2.2 Let R be a perfect ring of characteristic p.
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(a) There exists a p-adically separated and complete ring W (R) with W (R) /(p) =
R (the ring of p-typical Witt vectors with coefficients in R).

(b) The reduction map W(R) — R admits a unique multiplicative section X +— [x]
(called the Teichmiiller map).

(c) The construction of W(R) is functorial in R. In particular, W (R) itself is unique
up to unique isomorphism.

Proof See, for example, [26, §1.1]. Note that the Teichmiiller map can be charac-

terized by the formula x = lim, o X/ " where x, € W (R) is any element satisfying

n . . . n n+1
x; =x (mod p); the limit exists because x; =x7., (mod p"™'). O

Remark 2.3 The Witt vector construction was first introduced in the context where
R is a perfect field. In this case, W(R) is a complete discrete valuation ring with
maximal ideal p and residue field R. For example, W (F,) = Z,.

Remark 2.4 One may fancifully think of W(R) as R[ p] except with some “carries”
in the arithmetic. More precisely, every element x € W (R) has a unique representa-
tion as a convergent series Z;io [x,]1p" with X, € R, but the arithmetic operations
are somewhat complicated to express in terms of these coordinates. (Note that x,, is
not the n-th Witt vector coefficient, but rather its p"-th root.)

Since W (R) is functorial in R, it admits a unique lift ¢ of the Frobenius map on
R. This map has the property that ([x]) = [x”] for X € R, that is, the elements [X]
form the kernel of the associated p-derivation

which occurs prominently in the context of prismatic cohomology [5, 31].

Definition 2.5 For the remainder of this lecture, let F denote a perfect nonar-
chimedean field of characteristic p, and define the ring Ajs(F) := W(oF). This
is a local ring with residue field equal to that of F.

Remark 2.6 Since A;y¢(F) is to be interpreted as or[p], one can form a tenu-
ous analogy between Aj,;(F) and a two-dimensional complete local ring such as
F,[x, y]. On one hand, the ring Ai,s(F) does not have any reasonable finiteness
properties. For starters, it is certainly not noetherian: for any x € oy of positive
valuation, the ideal

(x). @71, /7,0

is not finitely generated. In fact, Aj,¢ (F) has infinite [37] and even uncountable [13]
global dimension, and, in general, is not even coherent [30].

On the other hand, it is true that every vector bundle on the punctured spectrum
of Aiy (F) extends uniquely over the puncture. See [30].

Proposition 2.7 (after Fontaine) Let K be a perfectoid field.
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(i) There is a unique homomorphism 0 : A (K Yy — ox whose restriction along
the Teichmiiller map is the map §.
(ii) The map 6 is surjective.

Proof Part (i) is a formal consequence of the basic properties of p-typical Witt
vectors, see [26, §1.1]. Part (ii) follows from Proposition 1.14(iv). O

To further analyze the kernel of 6, we make a key definition.

Definition 2.8 Anelementz = Y - [Z,]1p" € Aine(F) is primitive if 7o € mp and
Z1 € 0. Anideal of Ay (F) is primitive if it is principal generated by some primi-
tive element. (It will follow from the following remark that every generator is then
primitive.)

Remark 2.9 In the definition of a primitive element, the condition that 7; € o;
may be replaced by the condition that (z — [Z9])/p € Ain(F)* or the condition that
8(z) € Ainr(F)* (because 6(z) = [z]] (mod p)). From the latter formulation and
the identity

d(yz) = yP6(2) +276(y) + pd(»)d(2),

we see that the product of a primitive element with a unit is a primitive element.

Remark 2.10 In the analogy between Ay (F) and F),[x, y], primitive elements
correspond to power series ano,nzo amnx™y" withag o = 0, ap,; # 0. By the Weier-
strass preparation theorem, any such power series can be written as a unit of F, [x, y]
times y — cx for some ¢ € IF,; consequently, the quotient by the ideal generated by

such a power series is isomorphic to F, [x].

Proposition 2.11 For I a primitive ideal, every class in Ay (F)/I can be repre-
sented by some element of At (F) which is a unit times a Teichmiiller lift.

Proof See [26, Lemma 1.4.7]. To summarize, let z be a generator of /. Given x =
Z;’lozo[f,,]p” € Ay (F), x generates the same class in Ay (F)/(z) as

(x —[xoD/p

X — CE0/p z = [Xo] + [Zo]l(x — [X0])/p.

By repeating this construction, we either produce a representative of the desired form,
or verify that x € (z) (in which case we take the representative 0). We will take a
more detailed look at what is going on here in the third lecture. ]

Remark 2.12 A more “prismatic” version of the construction from Proposition 2.11

would be to replace x with
_1(0(x)
xX— — )z
0(2)

However, we have not checked that this has the same convergence property as the
construction given above.
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Proposition 2.13 For K a perfectoid field, the kernel of 0 : Aj(K®) — ok is a
primitive ideal.

Proof We reproduce here [26, Corollary 1.4.14]. By Proposition 1.14(iii), there
exists X € og» such that y := 6(X)/p is a unit in 0. By Proposition 2.7, there exists
w € A (K”) with §(w) = y. Since w must be a unit in Aj,; (K°), the element z :=
pw — [x] is a primitive element in ker(6).

By Proposition 2.11, every nonzero class in Aj,;(K”)/(z) can be represented by
an element of Aj,¢(K®) which is a unit times a Teichmiiller lift; any such element
has nonzero image in 6. It follows that ker(f) = (z), as claimed. O

Proposition 2.14 (Tilting correspondence) For every primitive ideal I of Ay (F),
the quotient Ains(F) /1 can be identified with ok for some perfectoid field K. We
then have an isomorphism K® = F for which I occurs as the kernel of 0 : Ajps (F) =
Ains(K®) — ok. (Any such K is called an untilt of F.)

Proof See [26, Theorem 1.4.13]. To summarize, by Proposition 2.11, we can repre-
sent each class in the quotient by a unit times a Teichmiiller lift, and use the latter
to define the valuation (modulo showing that this does not depend on the choice of
representative). 0

Remark 2.15 Note that z = p is a primitive element, and consistently F is an untilt
of itself. Any other untilt of F is of characteristic 0.

As noted earlier, the following result completes the proof of Proposition 1.16.

Proposition 2.16 (Untilting of extensions) Let K be a perfectoid field. For any
nonarchimedean field E containing K°, the ring

07 1= Aint (E) @4, (k.0 Ok

is the valuation ring of a perfectoid field L with L = E.

Proof By Proposition 2.7, the map 0 : Aj,¢(K”) — ok is surjective and its kernel 7
is a primitive ideal. The ideal /A;,;(E) is again primitive, so by Proposition 2.14,
there is a perfectoid field L for which L" = E and 0 : Ajy(E) — o, has kernel
T Ay (E). This field has the desired property. ]

Remark 2.17 Now that we have a reasonable way to describe the untilts of F, one
can try to construct a moduli space of these untilts. Before doing so, we must observe
that for any primitive ideal 7 of Ay (F), (1) is also a primitive ideal and ¢ induces
an isomorphism A (F) /1 = Ay (F)/@(I), that is, I and (1) define “the same”
untilt of F.

In order to construct the desired moduli space, we must therefore find a way to
define a space associated to Aj,s(F) and then quotient by the action of ¢. Since ¢
is of infinite order, there is no hope of doing this within the category of schemes,
at least not directly. We will compare two different constructions of this form in the
fourth lecture.
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Remark 2.18 The ring A;s(K) plays a central role in Fontaine’s construction of
p-adic period rings. We recommend [3] for a development of this point in modern
language.

3 Perfectoid Rings and Spaces

In this lecture, we describe how the tilting equivalence can be extended to certain rings
and spaces. Some detailed historical remarks, including many original references for
the following statements, can be found in [28, Remarks 2.1.8,2.3.18,2.4.11,2.5.13];
we do not attempt to reproduce these here.

Remark 3.1 These lectures will not include any review of Huber’s theory of adic
spaces, as these are covered in other lectures. For the reader reading this document
in isolation, some introductory sources for the theory are [11] (in the context of rigid
analytic geometry), [28, Lecture 1], [47, Lectures I-V], and [50].

One caution is in order: we will only consider Huber rings A, and Huber pairs
(A, A™), in which A is Hausdorff, complete, and contains a topologically nilpotent
unit (also called a pseudouniformizer); this last condition is usually called Tate. In
[28, Lecture 1], the Tate condition is relaxed to the condition that the topologically
nilpotent elements of A generate the unit ideal; this condition is called analytic.

Definition 3.2 A Huber ring A is perfectoid if the following conditions hold:

(a) The ring A is uniform: its subring A° of power-bounded elements is bounded
(and hence a ring of definition).

(b) There exists a pseudouniformizer o with p € w” A° such that the Frobenius
map ¢ : A°/(w) — A°/(w?) is surjective.

A Huber pair (A, A™) is perfectoid if A is perfectoid. This implies an analogue of
(b) with A° replaced by A™, see [28, Corollary 2.3.10].

Remark 3.3 Beware that different sources use the term perfectoid at different levels
of generality. In [44], the only rings considered are perfectoid K -algebras where K
is itself a perfectoid field. In [32], only perfectoid Q,-algebras are considered. The
definition we give above was introduced by Fontaine [15] and adopted by Kedlaya—
Liu in [33] and Scholze in [47]. Even more general definitions are also possible, as
in [4].

Remark 3.4 Given a perfectoid ring A, there is not much wiggle room left in the
choice of A™; it is a subring of A° and the quotient A°/A™ is an almost zero A™-
module, meaning that it is annihilated by every topologically nilpotent element of
AT,

The notion of an almost zero module is the starting point of almost commutative
algebra as introduced by Faltings and developed by Gabber—Ramero [18], in which
one systematically defines almost versions of various ring-theoretic and module-
theoretic concepts consistent with the previous definition.



Perfectoid Spaces: An Annotated Bibliography 231

A crucial first example is given by the perfectoid analogues of Tate algebras.

Definition 3.5 For K a perfectoid field of characteristic O, the rings
K(TP ™) := (ok[T? "Dplp~"1.  K(T*P7) = (ox[T*" " DhIp "]

are perfectoid rings for the p-adic topologies. More generally, if (A, AT) is a per-
fectoid Huber pair, we may similarly define perfectoid rings A(T? ™), A(T*P ™).

The following is true but not straight forward to prove.

Proposition 3.6 A perfectoid ring which is a field is a perfectoid field. That is, if
the underlying ring is a field, then the topology is induced by some nonarchimedean
absolute value.

Proof See [29, Theorem 4.2]. O

Remark 3.7 A related statement is that for A a perfectoid ring, the residue field of
any maximal ideal of A is a perfectoid field. See [28, Corollary 2.9.14].

As for perfectoid fields, there is a tilting construction that plays a pivotal role in
the theory.

Proposition 3.8 Letr (A, A™) be a perfectoid Huber pair.

(i) The natural map
lim A" — lim A*/(p)
xXt—=>xP X—=>xP
is an isomorphism of multiplicative monoids.

(ii) Using (ii) to upgrade 1<ir_nx'%xp AY to a ring A", this ring occurs in a perfectoid
Huber pair (A°, A°%) of characteristic p in which the underlying multiplicative
monoid of A® is l(ir_nXpr A. (Moreover, A depends only on A, not on A™.)

(iii) Lett: A — A® be the final projection. Then there exists a pseuoduniformer @
of A” such that 8(%) /w is a unit in AT,

(iv) With notation as in (iii), the rings A% /(w) and A°* /(T5) are isomorphic.

Proof See [28, Theorem 2.3.9]. O

Remark 3.9 The construction of perfectoid Tate algebras (Definition 3.5) commutes
with tilting.

Definition 3.10 Let (R, R") be a perfectoid Huber pair of characteristic p. An
element 7z = Z;"’:O[zn] p" € W(R™) is primitive if Zy is topologically nilpotent and
Z1 is a unit. Any associate of a primitive element is again primitive; we thus say that

an ideal of W (R™) is primitive if it is principal and some (hence any) generator is
primitive.

Proposition 3.11 Let (A, A1) be a perfectoid Huber pair.



232 K. S. Kedlaya

(i) There is a unique homomorphism 0 : W(A"*) — AT whose restriction along
the Teichmiiller map is the map {.
(ii) The map 0 is surjective.
(iii) The kernel of 0 is primitive.

Proof See [28, Theorem 2.3.9]. O

Proposition 3.12 Let (R, R") be a perfectoid Huber pair of characteristic p. For
every primitive ideal I of W (R™), there exist a perfectoid Huber pair (A, A") and
an identification (A°, A’*) = (R, RY) under which I corresponds to the kernel of
0.

Proof See [28, Theorem 2.3.9]. O

Remark 3.13 For A a perfectoid ring, the categories of perfectoid rings over A
and A’ are equivalent via tilting, using the primitive ideal coming from A to untilt
extensions of A”. The case where A is a perfectoid field is the form of the tilting
equivalence stated in [44].

The compatibility of tilting with finite extensions of fields has the following ana-
logue for rings.

Proposition 3.14 Let (A, A™) be a perfectoid Huber pair.

(i) Let A — B be a finite étale morphism and let B be the integral closure of A"
in B. Then (B, B™) is again a perfectoid Huber pair.

(ii) The categories of finite étale algebras over A and over A are equivalent via
tilting.

Proof See [28, Theorem 2.5.9]. O

A new feature in the ring case is that we also have a compatibility of tilting with
localization.

Proposition 3.15 Let (A, A™) be a perfectoid Huber pair.

(i) Let (A, AT™) — (B, B™) be a rational localization. Then (B, B") is again a
perfectoid Huber pair. (In particular, B is again uniform.)

(ii) The categories of rational localizations of (A, A*) and of (A®, AP are equiv-
alent via tilting.

Proof See [28, Theorem 2.5.3]. O

This allows to construct adic spaces using the following criterion for sheafiness
of Huber rings.

Definition 3.16 A Huber pair (A, A™) is stably uniform if for every rational local-
ization (A, AT) — (B, B™), the Huber ring B is uniform. This depends only on A,
not on A* [28, Definition 1.2.12].
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Proposition 3.17 (Buzzard—Verberkmoes, Mihara) Any stably uniform Huber pair
is sheafy.

Proof This is due independently to Buzzard—Verberkmoes [7, Theorem 7] and
Mihara [40, Theorem 4.9]. See also [32, Theorem 2.8.10] and [28, Theorem 1.2.13]
(which also covers the case where A is analytic but not Tate). (I

Proposition 3.18 Every perfectoid Huber pair is sheafy.
Proof This follows by combining Proposition 3.15 with Proposition 3.17. (]

Remark 3.19 In the previous statement, it is crucial that we have a criterion for
sheafiness without a noetherian hypothesis: a perfectoid ring cannot be noetherian
unless it is a finite product of perfectoid fields. See [28, Corollary 2.9.3].

Definition 3.20 For (A, A™) a perfectoid Huber pair, by Proposition 3.18 the struc-
ture presheaf on Spa(A, A™) is a sheaf. We may thus define a perfectoid space to be
a locally v-ringed space which is locally of this form.

Remark 3.21 As a first example, one can use the perfectoid Tate algebra to define
analogues of projective spaces in the category of perfectoid algebras; these play an
important role in the application to the weight-monodromy conjecture given in [44],
in which one exploits the fact that the conjecture is known in the equal-characteristic
setting to deduce certain cases of it in mixed characteristic. One can also extend both
the construction and the application to toric varieties; we leave this to the interested
reader.

Proposition 3.22 For (A, A1) a sheafy Huber pair, the structure sheaf on (A, A1)
is acyclic. In particular, by Proposition 3.18, this holds when (A, A™) is perfectoid.

Proof See [28, Theorem 1.4.16]. [l

Remark 3.23 There are some further compatibilities of tilting with other algebraic
operations or properties.

e Tilting commutes with taking completed tensor products [28, Theorem 2.4.1]. This
implies the existence of fiber products in the category of perfectoid spaces.

e Certain properties of morphisms of perfectoid rings are compatible with tilting,
including injectivity [28, Corollary 2.9.13], strict injectivity [28, Theorem 2.4.2],
surjectivity [28, Theorem 2.4.4], or having dense image [28, Theorem 2.4.3].

4 Fargues-Fontaine Curves

‘We now show how to construct “moduli spaces of untilts” in the spirit of Remark 2.17,
leading to the schematic and adic Fargues—Fargues curves.

Throughout this lecture, let F be a perfect(oid) nonarchimedean field of charac-
teristic p.
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Definition 4.1 For any element w of the maximal ideal of o, the ring Aj,¢(F) is
complete for the (p, [w])-adic topology; we may thus view it as a Huber ring using
itself as the ring of definition, and then form the adic spectrum Spa(Ajns (F), Ajne (F)).
From this space, remove the zero locus of p[w]; we denote the resulting space by
Yrp.

Proposition 4.2 The action of ¢ on Y is without fixed points, and moreover is
properly discontinuous: every point admits a neighborhood whose images under the
various powers of @ are pairwise disjoint.

Proof For n € Z, define the rational subsets U,,, V,, of Yz by the formulas

n—1

U, ={veYr: v([w])p’urp’k1 <v(p) < v([w)?'}
Vo= {v e Yr:o(w)” <up) < v’}

Then the U, are pairwise disjoint and ¢(U,) = U, 4; the V, are pairwise disjoint
and ¢(V,) = V,41; and the union of all of the U, and V,, is all of Y. U

Definition 4.3 By Proposition 4.2, we may form the quotient X&' := Yr /. This
quotient is the adic Fargues—Fontaine curve associated to F. (We will define later a
schematic Fargues—Fontaine curve which has X r as its “analytification”.)

In order to say anything more, we must analyze the rings that arise in the con-
struction.

Definition 4.4 Fix a normalization of the absolute value on F. For p € (0, 1), we
define the p-Gauss norm on Aj(F) as the function |e], : Ajys(F) — [0, +-00)
defined by

o0
x = [Flp" > max{p” %, ).
n=0

Remark 4.5 Recalling that we think of W (07 ) as an interpretation of the nonsensical
expression o[ p], we keep in mind that the following facts about the p-Gauss norm
on Ay,¢(F) parallel more elementary facts about the p-Gauss norm on oz [7]:

o0
x=) %,T"+— max{p" [, ]}.
n=0
For any closed interval I C (0, 1), define also
x|, = sup{|x|, : p € I}.

Proposition 4.6 (Hadamard three circles property) For any fixed x € A (F), the
Junction p > |x|, is continuous and log-convex. The latter means that for py, px €

(0, 1) andt € [0, 1], for p := p'py~" we have
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t 1—t
lxl, < lxl,, Ixl,," -
In particular, for any closed interval I = [py, p2] C (0, 1), we have
|x|I = max{'-x'/)l ’ |-x|/12}'

Proof The log-convexity inequality is an equality in case x = [x,]p", and hence a
valid inequality, in general. This in turn implies continuity. O

Proposition 4.7 Forp € (0, 1), the function |e| , is a nonarchimedean absolute value
on Ainf(F).

Proof Modulo changes of notation, this can be found in any of [14, Lemme 1.4.2],
[22, Lemma 2.1.7], [24, Lemma 2.2], [25, Lemma 4.1], [32, Proposition 5.1.2]. To
summarize, the strong triangle inequality follows from the homogeneity of Witt
vector arithmetic, we have

[o¢] o0 o0
Y EIP" + Y TP =Y Elp". T =Fn+ Ty + PRor . Fu 1. F0s o Fu )
=0 n=0 n=0

where P is homogeneous of degree 1 with coefficients in Z. The multiplicative
property is easiest to derive in an indirect way. For any given x and y, the multiplica-
tivity is clear for those values of p for which both maxima are achieved by a unique
index; this omits a discrete set of values of p, which we can fill in by continuity
(Proposition 4.6). [l

Definition 4.8 The Newron polygon associated to an arbitrary element x =
Y ooe o[Xnlp" of Aine (F) is the lower boundary of the convex hull of the set

oo
(I, 00) x [~ log %, 00) € R%.
n=0

The multiplicativity of the Gauss norms implies that this Newton polygon has the
usual property: the slope multiset of a product xy is the multiset union of the slope
multisets of x and y. (See [14, Définition 1.6.18].)

Definition 4.9 For I € (0, 1) a closed interval, let B; be the completion of
Aint (F)[p~", [w] '] with respect to the norm |e|; = supf|e|, : p € I} (extending
lo], t0 Ajnr (F)[ p~ !, [w]~"] by multiplicativity). This norm is power multiplicative
(for all x, |x|§ = |x2‘ ;); consequently, By is a uniform Huber ring.

In case I = [py, p2] where p; = |w|” for some s; € Q, the ring By is the ring
associated to the rational subspace

{veYer:v([wh™ <v(p) < v(w)"}

of Yr. In the analogy between A;,¢(F) and o[ p], B; corresponds to the expression
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w™?
ws p
Remark 4.10 Beware that one cannot express an arbitrary element of B; as a sum

> ez[X,1p" (see the published erratum to [22]). However, for any x € By and any
€ > 0, one can find a finite sum y = ), _,[y,]1p" such that [x — y|; <e.

Proposition 4.11 For I C (0, 1) a closed interval, the ring Bj is a principal ideal
domain.

Proof See [14, Théoréeme 2.5.1], [22, Proposition 2.6.8]. The key point is that the
Banachring B; has the property thatits associated graded ring is a Laurent polynomial
ring (generated by the image of p) over the associated graded ring of F. (]

Proposition 4.12 The ring B; is strongly noetherian (every Tate algebra over it is
noetherian) and sheafy. Consequently, the structure presheaf on Y is a sheaf, so we
may view Y and X§' as “honest” noetherian adic spaces, and consider coherent
sheaves on them.

Proof The strongly noetherian property is proved in [27], using similar ideas as in
the proof of Proposition 4.11. This implies the sheafy property by a result of Huber
[21, Theorem 2]. (Il

Remark 4.13 The rings B; share other properties with the usual affinoid algebras
appearing in rigid analytic geometry, in particular, they are known to be excellent
[49].

Remark 4.14 One can also define the ring B; when [ is a half-open or open
interval, but not as a Banach ring. Rather, one takes the Fréchet completion of
Ains(F)[p~ !, [w]"] with respect to the family of norms |e| o for p € I, that is, one
declares a sequence to be Cauchy (and thus to have a limit) if it is Cauchy for each
Gauss norm individually, but with no uniform control on the rate of convergence.
(One can also use this definition when 1 is closed, by the last part of Proposition 4.6,
it gives the same definition as before.)
The rings B; correspond to the extended Robba rings of [32].

Definition 4.15 Since Yr — X7 is a free quotient by the action of ¢, we can specify
sheaves on X3 by specifying y-equivariant sheaves on Y. For example, forn € Z,
we can define a line bundle O(n) on X%" by taking the trivial line bundle on Yr on
a generator v, then specifying that the action of ¢ takes v to p~"v.

Define the graded ring

Pri=@ Pras  Pry=T(XP,0m) = (Ve O,
n=0

The scheme X := Proj Pr is the schematic Fargues—Fontaine curve associated to
F.Itis a scheme over Spec QQ,, but not over Spec F' (because P is not an F-algebra).
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Proposition 4.16 The scheme X has the following properties:

(a) It is connected, separated, noetherian, and regular of dimension 1.

(b) Foreach closed point x € X, the residue field of x is a perfectoid field whose tilt
may be naturally viewed as a finite extension of F; we write deg(x) for the degree
of this extension. (In particular, if F is algebraically closed, then deg(x) = 1
always.)

(c) The degree map on divisors induces a morphism deg : Pic(Xr) — 7Z taking
O(n) to n. Moreover, if F is algebraically closed, then Pic(Xp) = Z.

Proof See [14, Théoreme 6.5.2] for the case where F is algebraically closed, and
[14, Théoreme 7.3.3] for the general case. ([l

Remark 4.17 Proposition 4.16 states that X z, together with the degree function on
closed points, constitutes an abstract complete curve in the sense of [14, §5].

Definition 4.18 By construction, there is a morphism X%' — X of locally ringed
spaces, along which the canonical ample line bundle O(1) on Xy pulls back to
the prescribed O(1) on X%'. This morphism should be thought of as a form of
“analytification”, analogous to the morphism X*" — X where X is a scheme locally
of finite type over C and X™" is its associated complex analytic space [20, Expose XII],
or similarly with C replaced by a nonarchimedean field, using rigid analytic geometry
in place of complex analytic geometry [10, Appendix].

Proposition 4.19 (GAGA for Xr)

(a) The line bundle O(1) on X% is ample. More precisely, for every coherent sheaf
on X%, there exists a positive integer N such that for each integern > N, F(n)
is generated by global sections and H' (X#, F(n)) =O0foralli > 0. (Note that
this vanishing only has content for i = 1, because X3 admits a covering by two
affinoids.)

(b) Pullback from X i to X3 defines an equivalence of categories between coherent
sheaves on the two spaces. Moreover, the sheaf cohomology of a coherent sheaf
is preserved by pullback from X  to X%

Proof See [14, Théoréme 11.3.1]. O

Remark 4.20 In general, the cohomology groups of a coherent sheaf on Xy are
Banach spaces over Q, which are typically not finite dimensional. However, they do
have a somewhat weaker finiteness property: they are Banach—Colmez spaces [9]. In
fact, the derived categories of coherent sheaves on X and Banach—Colmez spaces
are equivalent [38].

Proposition 4.21 One consequence of Proposition4.19 is that the category of vector
bundles on X r is equivalent to the category of p-equivariant vector bundles on Y.
These can themselves be described algebraically: the space Y is a quasi-Stein space,
so vector bundles correspond to finite projective modules over I'(Yr, O) = B9 ),
and moreover the ring B ) is a Bézout domain (every finitely generated ideal
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is principal), which implies that finite projective modules are free. Consequently,
vector bundles on X can be equated with o-modules over By ), this is the basis
for the description of (p, I')-modules in the sense of Berger using vector bundles on
a Fargues—Fontaine curve.

Another description of vector bundles can be given using the Beauville-Laszlo
theorem [1] to glue them from their restriction to the completed local ring at some
point and to the complement of that point. In the case where we have a specified
untilt K of F in mind, that defines a degree-1 point of X and the completion of
the local ring is Fontaine’s period ring B;’R associated to K. This then leads to the
description of Berger’s (@, I')-modules in terms of B-pairs [2].

5 Vector Bundles on Fargues—Fontaine Curves

We give the classification of vector bundles on Fargues—Fontaine curves, then briefly
introduce the relative version of the construction. See [28, Lecture 3] for a more
detailed discussion.

Asin the previous lecture, let F' be a perfect nonarchimedean field of characteristic

p.

Definition 5.1 Let V be a vector bundle on either X or X% (by Proposition 4.19
these are interchangeable). Since X ¢ is connected, the rank of V is a well-defined
nonnegative integer. The degree of V is the degree of the top exterior power A (V)Y
via the map deg : Pic(Xr) — Z. For V nonzero, the slope of V is the ratio (V) :=
deg(V)/rank(V). We say that V is semistable (resp., stable) if every proper nonzero
subbundle W of V satisfies (W) < u(V) (resp., u(W) < u(V)).

Remark 5.2 The definitions in Definition 5.1 are copied verbatim from the theory
of vector bundles on curves in algebraic geometry. In particular, the term semistable,
having its origins in geometric invariant theory, is quite entrenched within that sub-
ject. This creates a terminological issue in p-adic Hodge theory, where we also
consider semistable Galois representations. This may be unfortunate but is in no way
an accident; this second use of the word can be traced back to the notion of semistable
reduction of families of curves, which is named as such again because it relates to
the same phenomenon in geometric invariant theory.

Proposition 5.3 Let V, V' be semistable vector bundles on Xp. If n(V) > u(V’),
then Hom(V, V') = 0.

Proof As per [28, Lemma 3.4.5], this reduces to the fact that rank-1 bundles are
stable, which in turn reduces to the case of O. This case follows by calculating that
H'(XFr,0) = Q,. ]

Proposition 5.4 Every vector bundle V on X admits a unique filtration

O=WcC---CcVi=V
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in which each quotient V; / V;_1 is a vector bundle which is semistable of some slope
Wi, and py > --- > . This is called the Harder—Narasimhan filtration of V.

Proof This is essentially a formal consequence of Proposition 4.16 and Proposi-
tion 5.3. See [14, Théoréeme 5.5.2] or [28, Lemma 3.4.9]. O

Definition 5.5 For V a vector bundle on X, the Harder—Narasimhan polygon (or
HN polygon) of V is the Newton polygon associated to the Harder—Narasimhan
filtration. It has length equal to the rank of V, and fori =1, ..., [, the slope y;
occurs with multiplicity rank(V;/V;_y).

When F is algebraically closed, one can give a complete classification of vector
bundles on Xr.

Definition 5.6 Let r/s be a rational number written in lowest terms, that is, 7 and s
are integers with gcd(r, s) = 1 and s > 0. Let O(r/s) be the vector bundle of rank
s on X corresponding (via Proposition 4.19) to the trivial vector bundle generated
by vy, ..., Vy on Yr equipped with the -action defined by

(Vi) =va, - (Vi) =V, (V) =p vy
In case s = 1, this reproduces the definition of O(r).

Proposition 5.7 (Classification of vector bundles) Suppose that F is algebraically
closed.

(ii) A vector bundle V on F of slope p is stable if and only if it is isomorphic to
O ().

(ii) Every vector bundle V on F can be expressed (nonuniquely) as a direct sum of
stable subbundles (of various slopes). In particular, the HN filtration of V splits
(nonuniquely).

Proof This result has a slightly complicated history. As formulated, it is due to
Fargues—Fontaine [14, Théoreme 8.2.10], who give two distinct proofs: one using
periods of p-divisible groups, and another using the theory of Banach—Colmez spaces
(see Remark 4.20). However, using Proposition 4.19 it can also be deduced from
earlier results of Kedlaya, see [28, Theorem 3.6.13] for more discussion of this point
(and a high-level sketch of the proof). The key point is to show that any V which sits
in a nonsplit short exact sequence

00— O0C1/n) >V —>0(1)—>0

is trivial; the space of such extensions is essentially the Scholze—Weinstein moduli
space of p-divisible groups [46]. ]

Remark 5.8 Proposition 5.7 is formally similar to the classification of vector bun-
dles on the projective line over a field, in which every vector bundle splits as a
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direct sum of various O(n). A more apt analogy is the classification of rational
Dieudonné modules over an algebraically closed field (Dieudonné—Manin classifi-
cation) in which some higher rank objects with fractional slopes also appear; indeed,
some of the precursor statements to Proposition 5.7 mentioned above are formu-
lated as Dieudonné—-Manin classifications for ¢-modules over the ring B, 1y or other
related rings.

Proposition 5.9 (Analogue of Narasimhan—Seshadri) The functor
Vi T(X5,V)

defines an equivalence of categories between semistable vector bundles of slope 0
on X and continuous representations of the absolute Galois group G of F on
Sfinite-dimensional Q,-vector spaces.

Proof This follows from Proposition 5.7 and the equality I'(Xr, O) = Q,,. O

Remark 5.10 For line bundles, Proposition 5.9 gives rise to a canonical isomor-
phism
Pic(Xr) = Z & Homeon (GF, Q).

Remark 5.11 Proposition 5.9 is meant to evoke the Narasimhan—Seshadri theorem
[41]: for X a compact Riemann surface, and there is a canonical equivalence of
categories between stable vector bundles of slope O on X and irreducible finite-
dimensional unitary representations of the fundamental group of X.

In the theory of vector bundles on curves in algebraic geometry, the Narasimhan—
Seshadri theorem implies that the tensor product of two semistable vector bundles
on a curve is semistable provided that the base field is of characteristic 0. The fact
that this is a highly nonformal statement can be seen by its failure to carry over to
positive characteristic, which was first observed by Gieseker [19]. Correspondingly,
Proposition 5.9 implies that the tensor product of two semistable vector bundles on
X r 1s semistable.

Many applications of the theory of vector bundles on curves involve moduli spaces
of these bundles. In order to study these for Fargues—Fontaine curves, we need to
introduce the relative form of the construction, in which the base field is replaced by
a perfectoid ring (or a space, or...).

Definition 5.12 Let (R, R™) be a perfectoid Huber pair of characteristic p. Let Yz
be the complement of the zero locus of p[w]in Spa(W (R™), W(R™)), where w € R
is any pseudouniformizer (the answer does not depend on the choice).

Now fix a power-multiplicative Banach norm on R. For p € (0, 1), we may define
the p-Gauss norm on W (R™) by the same formula as before. For I a closed interval
in (0, 1), we may then define aring B; g by completing W(R)[p~!, [c]~'] for the
supremum of the p-Gauss norms for all p € I, and again use the spectra of these
rings to cover Yg.
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One cannot hope for the ring B; g to be noetherian, in general, nor is it perfectoid
(because this was already not true when R was a field). However, it is close enough
to being perfectoid to inherit the sheafy property.

Proposition 5.13 The Huber ring B g is stably uniform, and hence sheafy.

Proof While By y is not a perfectoid ring, it turns out that it becomes perfectoid
after taking the completed tensor product over Q, with any perfectoid field. This can
be used to recover the stably uniform property by a splitting construction, see [28,
Lemma 3.1.3]. U

Definition 5.14 By Proposition 5.13, Y is an adic space. Following the previous
model, we form the quotient X%' := Yz /¢ by the totally discontinuous action of ¢;
we define the line bundles O(n) on X%' in terms of (p-equivariant line bundles on
Yg; we define the graded ring Pg := @;O:O Pg , by taking P , to be the sections of
O(n); we define the scheme Xy := Proj Pg; and we obtain a morphism X' — Xg
of locally ringed spaces.

Remark 5.15 There is a natural continuous map X' — Spa(R, R™) of topological
spaces; however, this morphism does not promote to a morphism of locally ringed
spaces due to the mismatch of characteristics (namely, p is invertible on the source
and zero on the target). That said, any untilt (A, A™) of (R, R") over Q p gives rise
to a section of this map which does promote to a morphism of adic spaces.

Remark 5.16 Since neither Xz nor X%' is noetherian, we cannot easily handle
coherent sheaves on these spaces. In [33] and [28, Lecture 1] one finds a theory of
pseudocoherent sheaves, which obey a stronger finiteness condition; we omit this
here and instead restrict attention to vector bundles in what follows. Before doing
so, we point out that the following discussion implicitly uses the analogue of Kiehl’s
theorem for vector bundles on affinoid adic spaces: for (A, A*) a sheafy Huber
pair, the global sections functor defines an equivalence of categories between vector
bundles on Spa(A, A™) and finite projective A-modules [28, Theorem 1.4.2].

Proposition 5.17 (GAGA revisited)

(a) For everyvector bundle V on X%}, there exists a positive integer N such that for
each integern > N, V (n) is generated by global sections and H' (X ¥, V) =
Oforalli > 0.

(b) Pullback from Xy to X% defines an equivalence of categories between vector
bundles on the two spaces. Moreover, the sheaf cohomology of a vector bundle
is preserved by pullback from X to X§'.

Proof See [32, Theorem 8.7.7]. O

The following is analogue of the usual semicontinuity for families of vector bun-
dles on a curve, or more generally on a family of varieties [48].

Proposition 5.18 (Kedlaya-Liu semicontinuity theorem) Let V be a vector bundle
on Xg.
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(i) The Harder—Narasimhan polygons of the fibers of V form a lower semicontinu-
ous function on Spa(R, R*).

(ii) If this function is constant, then the Harder—Narasimhan filtrations of the fibers
of V arise by specialization from a filtration of V.

Proof See [32, Theorem 4.7.5, Corollary 7.4.10]. Additional discussion found in
[28, Theorem 3.7.2]. [l

There is also a relative form of the Narasimhan—Seshadri theorem.

Proposition 5.19 There is an equivalence of categories between étale Q,-local sys-
tems on Spa(R, R™) (see below) and vector bundles on X which are fiberwise
semistable of degree 0.

Proof See[32, Theorem 9.3.13]. Additional discussion found in [28, Theorem 3.7.5]
O

Remark 5.20 In Proposition 5.19, one must be careful about the meaning of the
phrase “étale Q,-local system”. One way to interpret this correctly is via de Jong’s
theory of étale fundamental groups [12]; this amounts to saying that an étale Q ,-local
system is étale-locally the isogeny object associated to a Z,-local system. Another
correct interpretation can be obtained by replacing the étale topology with a certain
pro-étale topology; this is the approach taken in [32] based on a construction of
Scholze [45].

Remark 5.21 The preceding discussion lies at the heart of the construction of mod-
uli spaces of vector bundles on Fargues—Fontaine curves. This of course requires a
globalization of the definition of the relative Fargues—Fontaine curve, first to per-
fectoid spaces, and second to certain stacks on the category of perfectoid spaces (in
particular to what Scholze calls diamonds). See [47] for further discussion of these
stacks and their role in the study of moduli spaces of vector bundles.

Another application of relative Fargues—Fontaine curves is to the study of coho-
mology of Q,-local systems on rigid analytic spaces over p-adic fields. See [34].
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The Fargues-Fontaine Curve and p-Adic m
Hodge Theory i

Ehud de Shalit

Abstract This survey paper is based, in part, on the author’s lectures at the summer
school that was held at Tata Institute’s ICTS in Bangalore in August 2019, and in part
on a web-seminar that was held at the Hebrew University in the Spring Semester of
2020. I would like to thank the organizers of the summer school and the participants
of both events for their contribution. Special thanks go to David Kazhdan for leading
the seminar at the Hebrew University.

The goal of this survey is to explain the main results of [5]. To be able to do so
in a reasonable amount of space we have sacrificed generality and omitted many
interesting topics, but we did choose to give some background, whenever we felt it
was necessary. The reader should always refer to the book by Fargues and Fontaine
for details, missing explanations, and other developments. We have also benefitted
from the excellent Bourbaki seminar by Morrow [16], which we recommend as a
starting point for anybody encountering the topic for the first time.

The informal style of the lectures, especially in their later sections, where they became
increasingly sketchy, was also kept in the printed version. Needless to say, none of
the results surveyed here are due to the author, but errors, as much as they have
escaped my attention, are all original errors.

1 Introduction

Let p be a prime. The Fargues-Fontaine curve is a fundamental geometric object
associated with p, introduced in [5]. It serves as the arena “where p-adic Hodge
theory takes place”. Historically, it was discovered rather late in the development
of the subject, but its discovery offered a new point of view on Fontaine’s rings of
periods, yielded simpler more conceptual proofs to several of the principal theorems
in the field, and gave hope for a geometrization of the classical local Langlands
correspondence (work in progress of Fargues and Scholze). As the fundamental
group of the curve is just Gal (@p /Q,), from the point of view of local Galois
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representations, it may be considered as a richer substitute for Spec(Q,,), over which
such representations should be studied. One cannot avoid a distant dream, that one
day, when the analogy between primes and knots will be made more precise, a global
(three-dimensional?) object will be found, into which the Fargues-Fontaine curves
for the various primes will naturally embed, linked in a way that reflects the relative
position of the various decomposition groups in Gal(Q/Q).

This survey will focus on the construction of the Fargues-Fontaine curve, its main
properties, and the classification of vector bundles over the curve. With the exception
of “weakly admissible equals admissible” we shall not go into any of its beautiful
applications. The reader may find several of them well explained in the original work.

1.1 The Fargues-Fontaine Curve

1.1.1 Curves

Let X be a separated noetherian scheme.

Definition 1 (i) X is a curve if it is regular, one-dimensional, and connected. (ii) A
curve X is complete if

> ordi(f) =0 (1.1)

xe|X|

forevery f € Oy .

Here | X| denotes the set of closed (i.e., codimension 1) points of X and 7 the
unique non-closed (i.e., generic) point; Oy, is the function field of the scheme X.
Thus X can be covered by a finite number of affine sets, each of which is of the form
Spec(A) for a Dedekind domain A. The local rings of X at x € |X| are DVRs, and
ord, are the respective normalized valuations.

Example 2 (i) A smooth connected curve over an algebraically closed field k is a
curve in this definition. It is complete if it is projective. If k were not algebraically
closed, we should have allowed a more general condition instead of (1.1), multiplying
each term by the positive integer deg(x) = [k(x) : k].

(ii) Spec(Z) is a non-complete curve.

(iii) The Fargues-Fontaine curve X7, to be discussed in these lectures.

It would be extremely interesting to discover any new class of examples. Surpris-
ingly, they are not easy to come by.

1.1.2 Some Well-Known Facts About IE”%:

The Fargues-Fontaine curve will resemble the simplest curve over C, the projective
line }P’(}:. To make this comparison, we recall some well-known facts.
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(1) The projective line can be constructed by either (a) dividing A%C — {0} by
the equivalence relation of “generating the same line”, or (b) gluing AL =
Spec(C[z]) and the formal disk Spec(C[[z~'1]) along the punctured formal
disc Spec(C((z™")).

(2) There is a fundamental exact sequence of vector spaces

0 — C — Clz] » C((z™")/Cllz"'1] = 0. (1.2)

(3) Forevery f € C(z)
> orde(f) + ords(f) =0.

¢ceC

(4) The functiondeg(f) = —ords(f) makes C[z] into a Euclidean domain. Recall
the definition.

Definition 3 A Euclidean domain is acommutative ring R, equipped with a function
deg : R — N U {—o00} satisfying:

e (El)deg(f) = —ocoiff f =0; deg(1) = 0.
o (E2)If g # O then deg(f) < deg(fg)
e (E3) If g # O then for any f there are g and r with deg(r) < deg(g) such that

f=qg+r

It follows from the axioms that R is a domain and (E3’) deg(g) = O if and only
if g € R*. We let (E3”) be the same condition as in (E3) where we only demand
deg(r) < deg(g). Anticipating later developments, we make the following defini-
tion, unmotivated at present. A semi-Euclidean domain is a pair (R, deg) satisfying
(E1), (E2), and (E3’) and (E3”) instead of (E3).

(5) There are line bundles O(n) = O(noo) (n € Z), and every vector bundle is
isomorphic to a unique direct sum

k
P ow
i=1

(up to permutation of the factors).
(6) We have
H(PL, O(n)) =0 (n < 0)

H'(PL, O(m) =0 (n > —1).

The last vanishing of H' comes from Serre duality, H'(PL, O(n))Y ~
HO(PL, O(—n — 2)) and reflects the fact that IP’}C has genus 0.
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Point 5 is a theorem of Grothendieck. Let us recall its proof. Cover ]P’(lc with
U = Spec(C[z]) and V = Spec(C[z™']). Then U NV = Spec(C[z, z~']). Since
any rank k vector bundle is trivial when restricted to U or V, which are spectra of
PIDs, we may trivialize it by specifying global bases on each of the two affine pieces.
What completely determines the vector bundle is then the transition matrix between
the bases over U N V, which is a matrix from GL;(C[z, z~']). Taking into account
the freedom to change bases in each piece separately, we see that isomorphism classes
of rank k vector bundles are classified by the double coset space

GLy(Clz'D\GLi(Clz, z7'1)/ GLi(CIz)).

The claim that we have to prove is that any double coset in this space is represented
by a unique diagonal matrix with entries z* where n; > ny > --- > ny. This is
done by induction on k, where the key ingredient is the Euclidean algorithm in C[z]
and C[z~'], applied in column and row operations to reduce the given matrix to its
standard form. We leave the details to the reader as an exercise, but emphasize the
close connection between Point 4 and Point 5: it is not enough to know that C[z]
and C[z~'] are PIDs to deduce Grothendieck’s theorem. Essential use is made of
them being Euclidean. As we shall see later, Point 6 is also closely connected to the
Euclidean property.

Finally, we caution the reader that the category of vector bundles over P, as a
full subcategory of the abelian category of coherent sheaves, is not abelian. Point
5 sheds only little light on its structure. Even if we restrict our attention to short
exact sequences, where the morphisms are morphisms of vector bundles (the image
is locally a direct summand), one encounters non-split short exact sequences such as

0> O(=1)—> 0= O() = 0.

Here we may identify O(1) with the line bundle O(c0); the first morphism is f +—
(zf, f) and the second is (g1, g2) — g1 — 29>. On the other hand, there does not
exist a short exact sequence as above with the roles of O(1) and O(—1) interchanged
(why?).

1.1.3 Comparison with the Fargues-Fontaine Curve

The Fargues-Fontaine curve X = X ¥ (in its simplest form, there are relative ver-
sions nowadays) will be a complete curve over Spec(Q,). Nevertheless, it will not
be of finite type over Q,,. To stress how much not of finite type it will be, we mention
that at one of its closed points, denoted oo, the residue field will be C,,, the comple-
tion of a fixed algebraic closure of Q. In contrast, residue fields at closed points of
curves of finite type over Q, are finite extensions of Q!

The curve X will have a distinguished point co whose complement will be affine,
Spec(B,) for ahuge ring B, that will be constructed explicitly. The completion of the
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local ring at co will be one of Fontaine’s rings BjR. As expected, this is a complete
DVR, whose field of fractions is denoted by B, r. The associated valuation (analogue
of ordy,) is denoted by v g.

Points 1-3 will have good analogues. We shall construct X (at least the set |X|
of its closed points with an appropriate analytic topology) as the set of Frobenius
equivalence classes of |Y|, “the space of untilts” of a certain characteristic p field
F. We will also have, in retrospect, a second construction, by gluing Spec(B,) and
Spec(B;R) along Spec(Byr).

The analogue of point 2 will become the fundamental exact sequence of p-adic
Hodge theory

0— Q, > B2 - Bur/Blx — 0. (1.3)
Here we encounter for the first time another one of Fontaine’s rings, the ring B.,;;.
Both the field B, and its subring B,,;; carry an action of Go, = Gal (@ »/Qp). The
field B,y is a discrete valuation field, hence it carries a natural decreasing filtration
Fil*. The subring B.,;; carries a Frobenius endomorphism ¢ (that does not extend
to Byr) and

B, = H(X — {00}, Ox) = BY7.

The exact sequence (1.3), tensored with a p-adic Galois representation V of GQP’
and the long exact sequence in Galois cohomology that ensues, is the starting point in
any application of p-adic Hodge theory to the study of local Galois representations. It
is of utmost importance. The Fargues-Fontaine curve allows us to give it a geometric
interpretation.

The analogue of point 3 is (1.1); it rephrases the fact that X is complete.

Points 4-6 exhibit subtle differences between X and the projective line that make
the theory of vector bundles over X much richer.

As already hinted above, the ring B, , while a PID, will only be an almost Euclidean
domain with respect to deg = —v,g (the negative of the valuation at co). Given
the important role played by the Euclidean property in the proof of Grothendieck’s
theorem on vector bundles on IF’({:, itis not surprising that being only almost Euclidean
results in a different classification theorem. For each rational number A = d/h (in
reduced terms) there will be an non-decomposable vector bundle O(A) of rank & and
degree d (thus slope 1), and every vector bundle on X will be a direct sum of such.
The Harder-Narasimhan formalism of slopes will apply, and the only semi-stable
vector bundles will be, as in the case of ]P’(lc, the isoclinic ones, vector bundles of the
form O(A)" for some n.

This structure theorem for vector bundles over X is the most difficult part of [5].
The whole theory of p-divisible groups, the crystals associated with them, and period
maps enters in its proof. Is there a simpler proof that avoids this, and instead only
uses Point 2 (the fundamental exact sequence) and the almost Euclidean structure of
B,, as in the proof of Grothendieck’s theorem sketched above?

A closely related difference between X and P(. is in Point 6. The H' cohomologies
of the O(1) will only vanish for A > 0, not for A > —1. While H'(X, Q) =0 is
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often regarded as evidence for “genus 07, this deviation is sometimes summarized
by saying that the Fargues-Fontaine curve has “genus 0 4 ¢”.

1.2 Applications

The construction of X and the study of its properties intrinsically belong to p-adic
Hodge theory. They provide a geometric set-up for Fontaine’s rings of periods and
the relations between them.

The classification of vector bundles over X is related to the classification of
isocrystals over F p» o1, almost equivalently, to the classification of p-divisible groups
up to isogeny (Manin-Dieudonné theory). The finer study of modifications of vector
bundles at the point co (injective maps between vector bundles whose cokernels are
skyscraper sheaves supported at 0o) is related to deformations of p-divisible groups
to p-adically complete rings such as Oc, .

There are several deep theorems for which the Fargues-Fontaine curve supplied
new more transparent proofs. The list below is far from complete.

(a) Fontaine’s conjecture that weakly admissible (i.e., semi-stable of slope 0)
filtered ¢-modules are admissible (i.e., are of the form D.,;;(V) for a crystalline
Galois representation V). This was proved by Colmez and Fontaine, and later a
different proof was found by Berger, but the proof using the Fargues-Fontaine curve
is remarkably short (once all the prerequisites are in place)! The direction “admissible
implies weakly admissible” is an old, easier, result of Fontaine.

(b) Faltings’ theorem on the “isomorphism between the Lubin-Tate and Drinfeld
towers” (towers of generic fibers of certain moduli spaces of p-divisible groups
with level structures added). Understanding this theorem was the subject of a full-
size book by Fargues (Genestier and V. Lafforgue contributing to the function-field
case). Again, the Fargues-Fontaine curve presents a new perspective and a much
shorter proof, as well as a far-reaching generalization, due to Weinstein and Scholze
(last section of [18]).

(c) Geometrization of the local Langlands correspondence—ongoing work of
Fargues and Scholze.
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2 Construction of XF¥

2.1 Tilting and the Space |Y |

2.1.1 Perfectoid Fields and Tilts

Let L be a complete non-Archimedean field of residual characteristic p, and denote
v, the associated valuation normalized by

x| = p".

Definition 4 The field L is called perfectoid if v, is non-discrete, and the p-power
map ¢ : Or/pOr — Or/pOy is surjective.

The non-discreteness of v, is imposed to exclude “small” fields such as Q,,. If L
has characteristic p then it is perfectoid if and only if it is perfect. In characteristic
0 the field C, (the completion of a fixed algebraic closure of Q) is perfectoid, but
there are much smaller examples, e.g., Qf}d = Qp(p=)" (exercise!).

If L is perfectoid we define an I ,-algebra

0, =1im(O./pOy)

where the inverse limit is taken with respect to iterations of the homomorphism
¢. Thus an element of Oi is a sequence x = (xg, X1, ...) with x; € Op/pOp and
x! +1 = X;. Ifthe characteristic of L is p, projection to xq is anisomorphism Oz ~ Oy,
so from now on we assume that L has characteristic 0. Let x; be a representative of
x; in Oy. It is easy to check that

. R
x® = jlgroloxfﬂ e Or

exist, depending only on x (and not on the chosen representatives) and satisfy
x@*Dp = x@_ Conversely, starting with such a sequence and defining x; = x®
mod p we get a point x € ODL. We may therefore identify ODL, as a set, with the
sequences § = (£, &1, . ..) of elements of O satisfying &’ = &. With this identi-
fication, the ring operations of ObL have the following description. Multiplication is
done component-wise. For the addition, & 4+ n = ¢ where

g = lim (&4 + 77i+j)pf~
J—>00

1 By definition, vy, is non-trivial.
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For x € (’)bL let

g ©)

F=xO vp () = v ), [xlp = IxFL.
It is easily checked that x > x* is a multiplicative map and that v;» is a complete
valuation on O} . The residue fields of O} and O, are canonically identified.

We let L” be the fraction field of (’); and we extend the valuation vz» and the map
x > x%to L”. Then F = L’ is a perfectoid field in characteristic p. We remark that
the association L ~» L is functorial: a field homomorphism « : L1 — L, yields a
homomorphism «” : L' — L. The field L" is called the zil of L.

Example 5 Let L = Q5. Then, fixing a basis & of the Tate module T,u =
lim. (L), there is a unique identification of L” with the completed perfect closure
of F,(()), taking ¢ — 1 to o . Starting, instead, with M = Q‘;b (the completion of
the maximal abelian extension of Q) and making the same choice, M” is identified
with the completed perfect closure of F »((@)). An element of this completed perfect
closure is a formal power series

E a;w’

i€Z[1/p]

with the provision that for any 7', only finitely many i < T have a; # 0. The denom-
inators of the i’s in the support of such an element need not be bounded.

2.1.2 Untilts

Definition 6 (i) Starting with a perfectoid field F in characteristic p we define an
untilt of F to be a pair (L, t) where L is a perfectoid field of characteristic 0, and

(L~ F

is an isomorphism of valued fields.

(i1) A homomorphism of untilts isamap « : L1 — L, of valued fields, satisfying
12 oa® = 11. It can be shown that @ must then be an isomorphism, in which case
the two untilts are called (surprise!) isomorphic. (If L, is algebraic over o(L) this
follows from Theorem 7 below.)

(iii) If (L, ¢) is an untilt of F, any untilt which is isomorphic to (L, ¢" o ¢) for
some n € Z is said to be Frobenius equivalent to (L, t).

Theorem 7 Fixanalgebraic closure L9 of L. Every finite extension L ¢ M C L9
is perfectoid and
lim M”
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is an algebraic (separable) closure of L. We have [M" : L"] =[M : L], M/L is
Galois if and only if M°/L" is Galois, and in this case their Galois groups are
canonically identified.

The proof is not difficult, and we refer to the literature. What is not evident,
perhaps, is that starting with F, there are many non-isomorphic? untilts (L, ). But
this will become evident soon.

We are now able to make our first shot at X7

Definition 8 Denote by |Yr| the set of isomorphism classes of untilts of F, and by
Xpl = 1Yrl/9"
the set of Frobenius equivalence classes of such untilts.

Exercise 9 Showthat (L,t) € |Yr|and (L, ¢" o t) € |YF|aredistinct, unlessn = 0.

It turns out that there are adic spaces (a p-adic analytic notion not defined in these
lecture notes) % and ZF, of which |X | and |YF| are the sets of closed points, ¢
acts discretely on % and 2 = %r/¢”. Moreover, there will be a curve X (in
the sense of the definition given in the introduction) whose associated adic space is
X ‘jp" = ZF. We can then identify | X ¢| with the set of closed points of X . However,
there does not exist a curve “Yp”. The space % and the action of ¢ exist only in the
analytic category. This situation is vaguely analogous to the construction of the Tate
elliptic curve as a quotient, in the analytic category, of the analytic multiplicative
group by an infinite cyclic group acting discretely.

Although it is possible to give the definition of X as a scheme, independently
of the adic space ZF, for the “relative theory”, making the same construction over a
large base, rather than over the point Spec(Q)), it is essential to work in the analytic
category. We shall not touch upon the relative theory at all in our lectures.

2.2 Rings of Functions on |YF|

Let F be a perfectoid field in characteristic p. Our goal is to introduce certain “rings
of functions” on the set |Yr| and a topology in which they will be continuous. The
Witt vector construction, which we review briefly, becomes an indispensible tool.

2.2.1 Witt Vectors

We recall the main facts about Witt vectors. Fix a prime p and let, for n > 0

2 In fact, even the isomorphism type of L, disregarding ¢, might be different, but this is more difficult
and not needed below.
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n n—1
Wa(xo, x1,...) =x§ + px{  +-+ p'x,.

If R is any Zp)-algebra and x;, y; € R satisfy x; = y; mod p*R for s > 1 then
Wi (x0, X1, ...) = W,(y0, y1...) mod p*™R.

Proposition 10 There exists a unique affine ring scheme W over Zyy, whose under-
lying scheme is Spec(Z,)[Xo, X1, .. .1) such that

W= Wy, W, ..): W— AN

is a ring homomorphism.

The ring structure in AN is by component-wise addition and multiplication.
What this means is that there are polynomials So(X, Y), S1(X, Y), ... and Py(X, Y),
Pi(X,Y), ... with coefficients in Z,) such that

W, (So, 81, ...) = Wh(Xo, X1, ...) + W (Yo, Y1, ..0)
Wh(Po, P1,...) = Wa(Xo, X1, ...) - W, (Yo, Y1, ...

The polynomials S, and P, will involve, in fact, only X, ..., X,, Yo, ..., Y,. This
has the following consequence: if we denote by W, the truncated Witt vectors of
length n + 1 they also form an affine ring scheme and

W =limW,.
For the proofs, see [20], I1.6. Check that

[y )
So = Xo + Yo, 51=X1+Y1+;(X0+Y0 — (X0 + Yo)?)

Py = XoYo, P1=X1Y)+X{Y1+ pXiY1.

The polynomials W, are called the ghost components of the Witt vector (xg, x1, ...).
If p=0in R then W, (x) = x{ " and the higher x; do not show up. Although we are
primarily interested in W (R) where R is an IF ,-algebra, to prove the proposition one
must work over Z).

Themap V : W(R) - W(R), V(xg, x1, ...) = (0, xp, x1, ...) is an additive group
homomorphism.

Over an IF,-algebra we also have the Frobenius® F : W(R) — W(R), raising
the coordinates to power p, which is a ring endomorphism (automorphism if R is
perfect). We have F o V =V o F = p (multiplication by p). We shall sometimes
denote F also by ¢. It should be said that F always exists (even if R is not an
IF,-algebra), but it is in general not given by raising the coordinates to pth powers,

3 This notation is standard, and there should be no confusion with the field F.
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and while F o V = p, instead of V o F = p we only get the “projection formula”
V(Fx-y)=x-Vy.

The construction of Witt vectors W (R) is clearly functorial in R. The previous
remark about F is a special case of this functoriality.

Example: W (F,) = Z,, W(F,) = Z.

A strict p-ring is aring A which is complete and separated in the p-adic topology,
without p-torsion. Recall that the first assumption means that the natural map induces
an isomorphism

A~ liin A/p"A.

If R is a perfect IF,-algebra (i.e., ¢ (x) = x” is bijective) then W(R) is, up to an
isomorphism, the unique strict p-ring A with A/pA = R. ([20], II, Theorems 5 and
8). In this case we define the Teichmiiller representative of a € R to be

l[a] = (a,0,0,..) € W(R).

If @ denotes any lifting of a to W(R), then

—

[a] = lim(a?™)?".

We clearly have [ab] = [a][D]. Any element x € W (R) has a unique representation
) o0
x = (x,x], x5 ,...) = Zp"[xn].
n=0

We caution the reader that these results all fail if R is non-perfect. While Witt rings
of non-perfect I ,-algebras do appear in p-adic Hodge theory, they are not as well-
behaved.

One concludes that the functor

W : {perfect IF, algebras} — {strict p rings}

is the left adjoint of the functor “reduction modulo p”.
In the computations below we shall need the following lemma.

Lemma 11 Let R be a perfect ¥ ,-algebra equipped with a non-Archimedean abso-
lute value . Assume that |x,| < p and |y,| < p. If

D P el + ) Pl = Pzl
n=0 n=0 n=0

then |z,| < p too. If the assumption holds for n < k only, the conclusion also holds
forn <k.
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Proof 1If we give the variables X; and Y; weight p’ then the universal polynomi-
als S, (Xo, Xy, ..., Yo, Y1, ...) describing the addition law in the Witt group scheme
become isobaric-homogeneous of weight p”. This means that S, is a polynomial, all
of whose monomials have weight p". Its coefficients lie in Z,). Since

" p P p P
Z2 = 8, (X0, X7, X5 ooy Y0 Y15 V5 s o)

the lemma follows at once. O

2.2.2 TheRing A;,

Recall that F is a perfectoid field of characteristic p. The ring Op is perfect (¢ (x) =
x? is an automorphism) and we define

Aiy = W(Orp).

As we remarked above, this ring is characterized by the unique* p-adically com-
plete and torsion-free ring A with A/pA >~ OpF. It is local with maximal ideal
pW(Op) + W(mp), but of course it is not noetherian. An element of A;,s has a
unique “Teichmiiller expansion”

a=(@al,o .= pla 2.1)

where

—_—

[e] = (@, 0,...) = lim(@? )"

is the Teichmiiller representative of «. Here X denotes any lift of x € O to W(OF).
The Frobenius ¢ is the automorphism

pla)=> p"lef].
n=0

Remark 12 Suppose that F = (Q;yd)b. ‘We have noted that this field is isomorphic
to the field of all power series

E a,o"

—oo<<méeZ[1/p]

4 up to unique isomorphism
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where w =e -1, e = (1,81, &, ...), & a primitive pth root of unity. Here the
an € IF, and for any T, a,, # O for only finitely many m < T. The power series in
Op are those with a,, = 0 for m < 0. It follows that W(Op) is isomorphic to the
ring <7 of all power series

Z ap X

0<meZ[1/p]

with a,, € Z, such that for any T there are only finitely many m < T with v,(a,) <
T. To prove this claim, note that this <7 is a strict p-ring and that the map &/ — Op
sending a,, to a,, mod p and X to @ is a surjective homomorphism.

In the earlier days of p-adic Hodge theory, this presentation of W (Op) was being
used. The power series expansion in p used in (2.1) goes in the opposite direction.
If Q, were replaced by k((rr)), this is similar to considering (k[[z ]])[[7]] instead
of (k[[]1])[[zz]]. In this purely characteristic p analogue, the symmetry between
and @ can be exploited further.

2.2.3 The Rings B>+ c B’ and Their Gauss Norms

Elements of A;,r will be viewed, in analogy with the ring Z,[[X]], as “analytic
functions of the variable p with coefficients in OF, convergent in the punctured unit
disk” (we say “punctured” because we will soon want to invert p). This point of view
works very well, and allows to use tools such as the Newton polygon, Weierstrass
preparation, and Weierstrass division, much as they are used in the classical function
theory of Z,[[X]]. Unlike Z,[[X]], arithmetic in A;,s involves “carrying” between
the coefficients of the p™’s, but thanks to Lemma 11, the analogues of the above-
mentioned tools are still valid.
Let @ be any element of O with 0 < || < 1. Define

1 1
B"" = Ajpl—1, B’ =B"T[—].
p []

Both are subrings of the very large field & = W(F)[1/p] D Og = W(F). (Thering
O plays a fundamental role in the theory of (¢, I')-modules.) We have

B’ ={x= Z p"[x,]| x, € F bounded
n>>-—0oQ

and Bt is the subring where x,, € Op.
The Frobenius ¢ extends to an automorphism of these rings.
Ifx =Y p'lx,] € B®and0 < p = p™" < 1 (thus 0 < r < oo) we let

xlp = sup [, |p", vr(x) = inf(v(x,) +nr).
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You should think of p as a variable and x as an analytic function on the open unit
disk, and then |x|, is like the sup norm on the open disk of radius p. This analogy
will become precise once we interpret elements of B” as functions on |Yr|, the set
of untilts of F.

Proposition 13 The v, is a non-Archimedean valuation and |.|, is the associated
absolute value.

Proof 1t suffices to work in A;,; instead of B”. Let x € A;,s. Define Ni(x) =
SUPg<, <k 1Xnl. Since p <1,

x|, = sup Nx(x)p*.
k>0

If o € Op, then |Ni(x)| < || if and only if x € [a]A;,r + pk“A,-nf. Using this it
is easy to see that
Nie(x + y) < max(N(x), Ne(»)),

the essential point being that if «, 8 € a C Op (an ideal) and [a]+ [B] =
ano p"[v,] then all the y,, € a. See Lemma 11. The two displayed formulae imply

Ix + ylp < max{|xl,, |yl,}.

To show [xy|, = |x],|y], we may assume (by the continuity of the norm in p) that
p < 1. In this case
|x], = max,|x,|p".

If the [x,]p0", |yn|p" different from O are all distinct, then the multiplicativity of |.|,
follows from the strong triangle inequality, since in each of the expressions

x= Pl y=) P "l xy= Y Pyl

n>0 m=>0 n,m>0

there will be precisely one term of maximal p-norm. For given x, y the set of p’s for
which this happens is dense in (0, 1), so by the continuity of the norm in p we get
the multiplicativity everywhere. (I

Note that vy is the “Gauss norm” inf,, v(x,). Note also that if » > 0 the equivalent
valuation r~'v, (x) = inf,(r—'v(x,) + n) is such that its limit, as r — 0o is

Voo (x) = inf{n| x, # O}.

This is the valuation inherited from the p-adic valuation of &. The corresponding
absolute value is |x|g = p VW),

The weak topology of A;,; is the (p, [z])-adic topology. The following propo-
sition is easy and left as an exercise.
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Proposition 14 Let 0 < p < 1. Then A,y is complete for |.|,. The resulting topol-
ogy on Ay is the p-adic topology if p = 0, the weak topology if 0 < p < 1, and the
[ |-adic topology if p = 1. If p < 1 then Z, C A,y inherits the p-adic topology,
but if p = 1 then Z,, is discrete.

Fix x € B”. Since r > v,(x) is the infimum of the linear functions v(x,) + nr it
is concave for 0 < r < oo (analogue of Hadamard’s three circles theorem in complex
variables). The maximum principle is easily seentobe valid: if 0 < p; < p < p, < 1,
then

], < max{lxly,. |x],).

2.2.4 An Interlude: The Legendre Transform

Let ¢(x) : R — R U {400} be any function. We define its Legendre transform ¢ =

Z(p)
Y(r) R — RU {00}, ¥(r) = inflp(x) +xr}.

The inverse Legendre transform is ¢ = £ () where
@(x) = sup{y (r) — xr}.

These two transforms are “tropical” analogues of the Fourier transform and its
inverse. The function .Z(¢) is always concave, £ (v/) is always convex, and if
@ were convex to begin with, £ (£ (¢)) = ¢. In general, we obtain the convex hull
of the function ¢. If ¢ is piecewise linear and convex, then we can talk about its
slopes. To conform with the conventions used in the theory of Newton polygons,
these are the negatives of the slopes of the graph of ¢. The break points of the graph
of ¢ are the points where left and right derivatives aren’t the same.

A left shift of ¢ by x( results in the subtraction of the linear function xyr from its
Legendre transform. Adding a linear function xry to ¢ (x) results in a left shift of its
Legendre transform. Dual statements hold for the inverse Legendre transform.

If ¢(x) is convex decreasing and asymptotic to a horizontal line when x — o0
then its Legendre transform is finite for r > 0 and —oo elsewhere.

In general, the Legendre transform of a piecewise linear function interchanges
slopes and break points. The slopes (resp. break points) of £ (¢) are the break points
(resp. slopes) of ¢. Note that for a convex (dually, concave) piecewise linear function,
the slopes and the break points determine the function up to an additive constant.

Although not necessary for our purposes, it is clear that these notions have ana-
logues where the two copies of R (with coordinates x, r) are replaced by a finite-
dimensional real vector space and its dual.

In the discussion of the previous section, given f € B?, f= Zn»_oo p"xql,
its Newton polygon N7 (x) is the largest non-increasing convex function lying on or
below the points (n, vp(x,)). Since x, are bounded elements of F, N £ is asymp-
totic to the horizontal line at height vy(f) = inf vr(x,). Its Legendre transform is
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the function r — v, (f) if r > 0, r — —oo if r < 0. (The fact that the Legendre
transform lives only in the first quadrant reflects the fact that \/; was defined to be
non-increasing.)

2.2.5 The Rings B

Let I C [0, 1] be a non-empty interval (closed, open, or half-closed). Pushing the
analogy with Z,[[X]] we now define rings that represent functions “converging in
the annulus of radii in I (if O € I this is a disk).

Definition 15 Let B; be the completion of B” in the family of norms |.| o P €1
Here are some properties of these rings.

e A;,r C By isclosed (since it is complete in any |.|,).

e If J C I thereis a continuous map B; — Bj (itis injective, but this is non-trivial:
[5], 1.6.15).

e Bjo1) = B? (i.e., B is already complete in the family of all norms).

e If I =[py, p2] where 0 < p; < p, < 1 then By is a Banach algebra in the norm
[I.1l; = max{|.|,, |.|5,}. If p» =1 this norm is trivial on Z, (gives 1 to any non-
zero element). If po < 1 it induces on Z,, the p-adic topology.

o If I =[p1, p2] where 0 < p; = |a| < |b| = p» < 1 for some a, b € O then

Tal p 1
B = Ajpfl—, —1[—
i f[p [b]][p]

where the completion is w.r.t. the p-adic topology. Note | p~'[a]|,, < |p~'[all,, =
Land [p[b]™"],, < |plb]7'],, = 1.

o By =& =W,

e In general, if I = (J[pn, p,]is an increasing union then letting 7, = [pn, 0,1, Bs
is Fréchet (its topology is defined by a countable family of norms) and in fact is
equal to lim. By, , an inverse limit of Banach algebras.

e [fO e Ibutl ¢ I then

Bi=1{ > p'lxleé| lim |x,|p" — 0 Vpel}y CBo =6
n— o0

n>>-—00

Definition 16 Let By = By,1). If the reference to F is clear, we shall write simply
B for this ring.

Remark 17 Consider formal expressions Z:O:foo p"[x,] where x,, € F and for any
0 < p < 1 wehave |x,|p" — Owhenn — Fo0. They converge in Bg. Surprisingly,
it is not known (?) if any element of By admits such a “Laurent expansion” in p, and
if distinct Laurent expansions represent distinct elements of Br. The same question
arises with the B; for any interval I such that O ¢ [.
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Forany p letp(p) = p”.Since |p(x) |, = |x|5,itisimmediate thaty : B> ~ B®
extends to an isomorphism ¢ : B; 2 B, (. In particular, ¢ is a continuous automor-
phism of Bp.

The ring

o]

P

k=0

is a graded ring. Its structure is so far unclear. But we can at least give the scheme-
theoretic definition of the Fargues-Fontaine curve

oo
X = Proj (@ Bﬁz”k) :

k=0

At this point this is still a useless definition.

2.2.6 The Robba Ring

Using the rings B; we can define two of the most important rings of p-adic Hodge
theory:

& = lim By ) = { Z p'lx.] € &3p > 0, sup|x,|p" < oo} C By =¢.

n>>-—00

(the limit over p > 0). This is the ring of “overconvergent” elements of &.

Proposition 18 & with the p-adic valuation v, is a henselian discretely valued
field, whose completion is &.

Proof [5], 1.8.2. O

The Robba ring is
Z = lim B(O.p]-

This is a much larger ring, but nevertheless any unit of % appears already in &.
Proposition 19 The inclusion & C % induces (&1)* ~ %*.
Proof [5] 1.8.6. [l

We shall not use these rings, but we remark that they play an important role in the
theory of p-adic representations and (¢, [')-modules. Here we take (in the simplest
example) F = (@;yd)b. In addition to the Frobenius ¢ the perfect field F has a
commuting action of I' = Gal(Q, (1 p~)/Q,) =~ Z;. These actions induce actions
on & and &7. A (¢, I')-module is a finite-dimensional vector space M over &, with
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semi-linear commuting actions of ¢ and I'. The matrix of ¢ in any basis should,
furthermore, be invertible. M is “overconvergent” if it comes, via base change, from
a similar object M over &. Overconvergent (¢, I')-modules can be base-changed to
Z. The big advantage of the Robba ring is that one can perform hard p-adic analysis
(p-adic differential equations) over it, a tool that is missing over the “formal” & .

Basic theorems of Katz and Fontaine connect p-adic local Galois representations
to étale (¢, I')-modules (albeit over a smaller &...). Here a (¢, I')-module M is étale
if with respect to a suitable basis the matrix of ¢ is in GL,(Os). Luckily, by a
theorem of Cherbonnier and Colmez, étale (¢, I')-modules are overconvergent, so
the procedure described above applies to them.

We make one final remark. The reader might have seen, when F = (ngd)b, a
description of the Robba ring as a ring of germs of functions converging in some
annulus R < |X| < 1, when R — 1. Here we look at germs of functions in the
punctured disk 0 < |p| < p (regarding p as a variable), when p — 0. This is not a
mistake. It is related to the dual points of view discussed in Remark 12.

2.2.7 TheMap 6,

From now on we assume, to simplify things, that F' is algebraically closed. By
Theorem 7, any untilt of 7' would then be algebraically closed too. Lety = (Cy, ty) €
|Yr| be an untilt of F. The multiplicative map sending x € OF to x* € O, extends
tox € W(OFf) = A,y as follows: '

[e ] o0
0, ") =Y p'xi.
n=0 n=0

Lemma 20 This map is a surjective homomorphism 0y : A;,y — Oc,. Its kernel is
principal
ker(6y) = (§y) = (p — [w, D),

where wy, = 1,(p, plr, pl/pz, L) =1 (p”) (p° is unique only up to multiplication
by an element of Tp1).

Proof Write C = C,. The “ghost component” homomorphism
Wy : Wu(Oc/p") — Oc/p"
P! P n—1
Wn(a()’al’-“aan—l):ao + pa; +---+p ap—1

depends only ona; mod p, so factors through a homomorphism 6, : W,,(O¢/p) —
Oc¢/p". We have the commutative diagram
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W1 (Oc/p) 5 Oc/p!
) '

O,
W.(Oc/p) — Oc/p"

where ¢ (ag, ..., a,) = (@}, ...,a’ ). Taking the inverse limit gives a homomor-
phism 0 : W(Or) — Oc. Since it sends [x] to x* it agrees with the map defined
above. To check the surjectivity, it is enough to check it modulo p, but then we
recover the surjectivity of x > x*. Finally, the element p — [e,] is evidently in the
kernel. Any element of A;,; may be written as a = [x] + (p — [, ])b (“division
with remainder”, see Appendix 7). We then have x* = 6(a) = Oifand only if x = 0,
ifand only ifa € (p — [w,]). ([l

2.2.8 Primitive Elements of A;,; and the Perfectoid Correspondence
for Algebraically Closed Fields

The element a = )_ p"[a,] € Ay is called primitive of degree n if ag # 0, a, €
OF and «; € my for i < n. For example, “primitive of degree 0” is equivalent to
being a unit. An element is primitive of degree 1 if it is of the form

[a] — pu,

where 0 # o € mpandu € AJ ;. The element p — [, ] encountered before is such
an element.

It turns out that a primitive element of degree n is a product of n primitive elements
of degree 1, much as a polynomial over an algebraically closed field factors into a
product of linear terms.

We claim that ideals generated by primitive elements of degree 1 are in a bijection
with the untilts (L, t) € |Yr| of F. We have already seen one direction, starting with
an untilt and finding that the kernel of 6, is such an ideal. In the converse direction,
let £ be a primitive element of degree 1. Let Oc = A,y /(&) and let 6 : A;,y — Oc¢
be the canonical projection. By “division with remainder”, since & is primitive of
degree 1, any element of A, is of the form [x] 4- £b, so every element of O is of
the form 6([x]). One proves that if 8([x]) = 6([y]) then vp(x) = vp(y) and that if
we set v (0([x])) = vr(x) the ring O¢ becomes a complete valuation ring untilting
Opr. Admitting these unchecked details, we have proved the following theorem.

Theorem 21 (Perfectoid correspondence for algebraically closed fields) The maps
described above establish a bijection between ideals in A;,y = W(Op) generated
by primitive elements of degree 1, and untilts (C,t) € |Yr| of F.

Corollary 22 Every primitive element of degree 1 is of the form u(p — [w]) for
somew € mpandu € A,-an.
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Proof 1f & is a primitive element of degree 1 consider the corresponding untilt
Oc¢ = Ainr/(&) and the corresponding map 6. We have seen thatker(0) = (p — [@])
for a suitable . It follows that £ = u(p — [ew]) foru € Aixnf. (]

Remark 23 In Lemma 20 we seemed to have answered the question: when do (p —
[@])and (p — [@']) generate the same ideal of A;,, ¢, i.e., when do they give the same
untilt? Indeed, if the untiltis (Cy, t,) then @, = 1,(p”) where p* = (p, p'/?,...) €
C 5 is unique precisely up to multiplication by a generator of 7' 4 (Cy ), the Tate module
of p-power roots of unity in C,. This answer is not satisfactory, as it depends on
knowing the untilt (Cy, t,). One may wonder if, intrinsically in F, we can find a
criterion telling us when @w and @’ give rise to the same untilt. This is possible via
a different approach to primitive ideals of degree 1, which we do not describe here.
See [5], 2.3.2, and Sect. 2.2.12.

2.2.9 The Ring By as a Ring of Functions on | Y|

We keep our assumption that F is an algebraically closed complete valued field in
characteristic p. The perfectoid correspondence, which identifies primitive ideals of
degree 1in A;,,r with untilts of /7, has two consequences. It allows us to interpret A;,,r,
B?, and its completion By = Bo,1), as rings of functions on |Yr|. These functions
take values in changing fields, but we are accustomed to this already in algebraic
geometry, or (say, Berkovich) analytic geometry. It also allows us to put a topology
on |Yr| in which these functions become continuous.
To achieve the first goal, if y = (Cy, t,) € |Yr| and f € A;,f define

F) =06,(f) € Cy.

Since p and [z | map under 6, to p and wt, which are both non-zero, this extends
to f € BY. We shall write
[ =1,

If f =[x] mod &, x € O, then |f(y)| = |xtt|c_v = |x|F. In particular, |[x](y)| =
|x|F is constant on |Yr|. In contrast

P = 16,(P)lc, = 16,(@,Dlc, = |o]lc, = @, |r

can get any value in (0, 1). Thus elements of the form [x] should be regarded as
“constants” and p as a “variable”. This explains our previous remark that the Teich-
miiller expansion ZH>>7OO p"[x,] of an element from B? should be regarded as a
Laurent power series in the variable p with coefficients from Op.

Forp € (0, Dleta, = {x = > 72 p"[xn] € Ains| ¥ |xu|F < p}. By Lemma 11,
this is anideal. If I, J C A;,y are two ideals define

d(I,J) =inf{p| I +a,=J +a,}.
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If y1, y» € |YF| define
d(y1, y2) = d((&,), §y,)).

Warning: As we have seen, it may well happen that @, # @,, but nevertheless
(p — [@1]) = (p — [@2]). However, with our standard notation, it can be easily
shown that

d(yi, y2) = 15y, (02| = |&,, (YD)l

This is intuitively pleasing: the function &,, is a local parameter at y; and the absolute
value at y, (an element of C,,) measures the distance of y, from y;.

We also warn the reader that Fargues and Fontaine denote by d the logarithmic
distance function, i.e., — logp of our d(—, —).

The metric d(—, —) is an ultrametric distance function on |Yr|. Via this distance
function | Y| resembles the punctured unit disk. If we define “distance to the origin”

t(y) =d((&)), (p) = loylr = |p()I

then v : |Yr| — (0, 1) is continuous and v~ ([p, 1)) is complete for any p > O (the
proof of completeness is straightforward, see [5], Proposition 2.3.4).
For a fixed y, the function
6y:B"— C,

is continuous with respect to the Gauss norm .|,y on B?, as can be seen from

(o =t(»)
IFI=1)_ p"xile, < sup|p"xilc, = sup p"1xalr = |y,

so extends to the completion of B with respect to this norm. This way we can
consider B as aring of continuous functions on | Yr|. Continuity means that for any
¢ > 0and any f € Bp the set

{y e IYEIl If I < &}

is open in |Yr|, where we remember that | f(y)| = |f(y)Ic,. More generally, if
I C (0, 1) is an interval then B; is a ring of continuous functions on the “annulus”
~1
v (D).
Recall that ¢ acted on |Yr| and it is straightforward to check that

t(p(y)) = ()7,

The action of ¢ is therefore discrete.

At this point it is natural to ask whether |Yr| is the set of closed points of a
certain (Huber, adic, or Berkovich)-analytic space % (justifying, in retrospect, the
cumbersome notation |Yr| that we have been carrying all along). This is indeed so,
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and the rings B; play an important role in defining this analytic structure. To construct
% as an adic space we would have to review adic geometry first. The adic approach
is indispensible when one develops the Fargues-Fontaine curve in the relative set-up,
but as we do it here, it can be postponed.

2.2.10 Weierstrass Factorization for A;, s

Theorem 24 Let f € A,y be a primitive element of degree k > 1. Then there are
wiemp(l <i<k)andu € Alqu such that

f=ulp—Il@1]) - (p—[@].

Proof Inview of Corollary 22 itis enough to prove that f = & - - - & with&; primitive
of degree 1. We do it by induction on k. The key step is the next lemma, asserting that
f has a zero at some y € |Yr|. Applying division with remainder (see Appendix),
f=1[x]1+&gand f(y) =0 implies x = 0. It is easy to see that g is primitive of
degree k — 1, and we may apply the induction hypothesis. O

Lemma 25 Let f be as above. Then f(y) = 0 for some y € |YF]|.

Proof If f =377 p"[x,] € Ajns its Newton polygon N (x) is the largest non-
increasing convex function R— RU{+ o0} lying below (or on) the points (1, v (x,)).
We have Ny (x) = +o0 for x < v (f) (the p-adic valuation of f, or the first n with
x, # 0) and

lim Ny (x) = vo(f) = inf vr (xy).

The slopes of Ny are by definition the negatives of the slopes of the graph. They are
non-negative. The definitions extend naturally to f € B.

If f € A;,yis primitive of degree k then vr (xp) < ocoand vr(x;) =0, SONf (x) =
0 for x > k and N has k positive slopes. If f is in the form of the theorem then its
positive slopes are the vp(w;), 1 <i < k (with multiplicities). This would be well-
known if p were replaced by a variable X, but holds true also in A;,f, in view of
what might be called the “arithmetic of carrying”. For example, suppose that k = 2,
u =1, and || < |@,|. Then

f = [mw] — (1] + [@2])p + p*.

Let
[@1] + [@2] = [71 + @2] + plsi] + p*lsal + - -

where by Lemma 11 vp(s;) > min{vp (@), vr(@,)} > 0. It follows that in the
expression for f

Vr(x0) = vp(wy) + ve(@2), vp(x) = min{vp (@), vr(®2)},
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with equality if v (w)) > vr(@2), vr(x2) = 0, and of course vp(x,) > Oforn > 3.
Thus the claim follows in this case, and the proof of the general case is similar.

To prove the lemma, let A be the smallest positive slope of ;. We have to show
that f has a zero y € |Yy| with t(y) = p~* (this will be the largest zero, i.e., “the
one farthest from the origin”). In other words, f will be divisible by

Ey =p—- [w_y]

with vg(w,) = A. This is done by successive approximations. Start with z € Op
with vr(z) = A solving

k
Z 7"x, =0
n=0

(which exists since F is algebraically closed). Since A was the smallest slope of
N 7, it is the smallest valuation of a root of the polynomial Z,];:o Z"x,, 80 Vp(x,) >
(k — n)A. It follows that we can write (for 0 < n < k)

ann — kan

with w, € Op, and Zﬁ:o w, = 0. Letting y; correspond to the primitive element
§ = (p — [z]) we have 6, ([z]) = p, so (6 = 6,,)

e’} k k
fO0=00_p" D) =00 ") =p" Y 0(w,) =0 mod p'Oc,.

n=0 n=0 n=0

The last congruence follows from the fact that Zﬁzo[w,,] € pAijns.
We have already remarked that applying “division with remainder” we can write
f =lao]l + fi&. Applying this remark inductively we obtain an expression

f=> lag",
n=0

expressing f as a power series in & instead of p. As before, a, € mp for 0 <n <
k,and a; € OF. Furthermore, 6y, ([ao]) = f(y1) =0 mod p**', orve, (f(y1)) =
vr(ag) > (k+ 1A,

We now improve y;. Let y, be the point corresponding to & — [u], where u is the
smallest root (i.e., root of largest valuation) solving

k
E u'"a, =0.
n=0
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Note that since vr (ag) is the sum of the valuations of the k roots, vy (1) > vg(ag)/k >
(k + 1)A/k. This v (u) gives us the bound

d(y1, y2) = p~r® < p= DAk

so in passing we see that t(y2) = t(y;) = p~*. We now compute f(y,) and show
that it is smaller (in absolute value; it lies in a different field!) than f(y;). Since u
was a root of largest valuation, vg(a,) > vg(ap) — nvp(u), so there are b, € Op
such that u"a,, = b,a,. As before, Zﬁ:o b, = 0. We get (6 =6,,)

00 k 00
0(f) =) 0Ua,llu"]) =0 _[baD)0(laol) +0C Y [a,][u"]).

n=0 n=0 n=k+1

The first sum has valuation at least (k 4+ 2)A, (k + 1)A coming from ag and one
extra A coming from Zﬁ:c [,] =0 mod p. The second term has valuation at least
(k+ Dvp@u) = (k+ D22/k = (k +2)x. Thus ve, (£ (72)) = (k + 2)A.
Repeating this procedure we improve y; successively to obtain a sequence of
points y; € |Yp| such that f(y;) — 0, and {y;} is a Cauchy sequence. By the com-
pleteness of |Yx| “away from 0” (all the y; have the same t(y;) = p~*), the y;
converge to a zero y of f. For more details, see [5], Theorem 2.4.1. U

Let I C [0, 1) be an interval not containing 1. It can be open, closed, or half-open.
To extend the Newton polygon from f € B’ to f € B;, we must have a version of
the Newton polygon that “sees” only the slopes of f that belong to the interval 1.
Start with f € B?. Using the Legendre transform Fargues and Fontaine define a
“partial” Newton polygon N ; (x) which is “the part of Ny with slopes in I7. Its
domain is therefore limited to an interval. If there are no slopes of Ny in I we write

; = ). (We say, by abuse of language, that a slope A > 0 belongs to I if p™ € I.)
By continuity, N ; can be defined now for f € B;. Note however that if / is not
compact and f ¢ B® N ; may have infinitely many positive slopes (accumulating at
the missing end-points of 7).

Corollary 26 LetI C [0, 1) be acompact interval. If I = {p}withp = 0orp ¢ |F|
then By, is a field. In any other case, By is a PID, and its maximal ideals are in
bijection with |Y;| = v~'(I).

Proof (Sketch). We have already seen that Bygy = & is a field. Assume that ] =
[o1,p2] with 0 < p; < pp <1 or p; = po € |F*|. Since [ is compact, for each
non-zero f € B; its Newton polygon N/ ; contains only finitely many slopes A with
p~* € I.1f this set of slopes (with multiplicities), call it Slopes;(f), is empty, one
proves that f € B;. The proof of this fact is essentially identical to the proof of
the statement that a power series in Z,[[X]] not having A as a slope is invertible
on the annulus of radius p~*. See [5], 1.6.25. On the other hand, any time a slope
A € Slopes;(f) occurs, we can, by the previous theorem (extended from A;,s to
B;—this needs justification, and of course relies on p’* € I), find a factor &, =
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p — @] of f,t(y) = p~, the quotient by which has one less /-slope. Here the
assumption that p, < 1 is being used to apply a change of variable p — p[z] for
some z € mp (multiplying the radii by |z|r), after which we may assume that f is
primitive (extracting a certain p"[w ] from all the coefficients).

It follows that any element of B; can be written as u&; . ..&,, with u a unit, and
the &; primitive of degree 1, hence irreducible (since they generate a maximal ideal
in By). This factorization is unique up to order and multiplication by a unit. The
corollary follows from the well-known fact that a unique factorization domain is a
PID if and only if the ideals (£) generated by its irreducible elements are maximal.

The remaining case where I = {p} but p ¢ | F| is treated similarly, noting that in
this case Slopes;(f) =, so every non-zero f is invertible and By, is a field. [

If J C I C(0,1) are two compact intervals the map B; — Bj is a “localization
and completion”. The irreducibles &, for y € I — J are inverted. Since B = By is
the projective limit of the B; where I C (0, 1) is a compact interval, we deduce that
the maximal ideals of B are in bijection with |Yr]|.

The ring B is not principal, nor is B; if I is not compact. However, similar to
the classical (complex or p-adic) situation, a function 0 # f € B admits an infinite
“Weierstrass product” decomposition “near 0”. See [5], Theorem 2.6.1.

Passing from maximal ideals to arbitrary closed ideals allows to identify them
with Div*(Yr), the monoid of formal expressions Zye\Yfl ny[yl, ny > 0, where
for any compact I C (0, 1), only finitely many y € |Y;| have n, # 0. This follows
formally from the fact that if a is a closed ideal in B = lim . B; (inverse limit over
compact intervals in (0, 1)) then

a=limaBy,
<«

while
Divt(Yr) = lim Divt (Y)).

Corollary 27 The correspondence

D= Y nylyl+> ap={f € Blord,(f) = ny ¥y € |Yrl}

yelYr|

is an isomorphism of monoids between Div* (Yr) and the monoid of closed ideals
of B.

There is an obvious notion of a divisor div(f) associated to f € B (or By in
general), and f|g if and only if div(g) > div(f). The closed ideal aj, is principal
if and only if D is a principal divisor.

The nature of the rings B; for non-compact / is not easily determined. If I = (0, p]
with p < 1 then it can be proved that B; is Bézout, and the principal ideals, the
finitely generated ideals, and the closed ideals are all the same. Equivalently, every
D € Div*(Y;) is principal, D = div(f) for some f € B;. As a result, the Robba
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ring
Z =1im By p)

is also Bézout.

To summarize what we have seen so far, | Y| is exhausted by an increasing union
of the |Y;|, for compact intervals /. These indeed look like curves—|Y;| is identified
with the maximal spectrum of a PID B;.

2.2.11 Dividing by the Action of Frobenius

Itis now time to divide |Y| = |Yr| by the action of ¢. As usual, the ring isomorphism
@ : B; > By(p) induces a map in the opposite direction on maximal spectra ¢ = ¢* :
Yol = [Yil,50if y < (§,) = (p — [@,]) we have wy(,) = @,/” and t(¢(y)) =
t(y)V/?. Similarly, d(¢ (y1), ¢ (y2)) = d(y1, y2)'/?. As already noted, the action of
¢ is discrete, and we define a topological space

1X| = |XF| = |Y|/0"

We identify
Div(X) = Div(Y)?=!

and similarly for the monoid of effective divisors Div*(X).
There is a homomorphism

deg : Div(X) > Z

taking > " ny[y]to Zy mod ¢ "y
The ring B~ is too small; in fact, it will be shown to coincide with Q »- However,
if f e B="" then div(f) is ¢-invariant and effective (these functions should be
regarded as analogues of theta functions in the classical theory of elliptic curves).
Denote by | [,.,(Br — {O})“’:f’k the monoid which is the disjoint union of (By —

{0})“’=Pk, with multiplication as the monoid operation.

Theorem 28 ([5], Theorem 6.2.1.) The homomorphism of monoids

div <]_[(Bp - {0})<P=Pk> /Q; — Div*(Xr)

k>0

is an isomorphism. It respects degrees: if ph = p*h then deg(div(h)) = k. In par-
ticular, B?zl =Q,.

Proof (sketch) Before we prove the theorem, let us make some remarks on Newton
polygons. Let i € B. Its Newton polygon, j\/,(o’l) will be denoted for simplicity by

n
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N,. If h € B?, this is the Newton polygon of 4, with the slope 0 part removed (if
slope 0 occurs, corresponding to p = 1). In general, for I a compact sub-interval
of (0, 1) and h € B; the Newton polygon A/ is the limit of J\/h’ for a sequence 4,
converging to & in the Banach norm of B;. These Newton polygons are the same
for n >> 0, so N}, has finitely many slopes. For I non-compact, like (0, 1), /\fh’ is
the union of N,/ for J C I a compact sub-interval, and may have infinitely many
slopes. Going back to & € B and \j, = N;**", it follows from the definitions that it
is defined for all x sufficiently small and that lim,_, _o, N} (x) = +o00. For f ¢ B?,
the Newton polygon may or may not attain the value +oo for some x.

Finally, Nym (x) = pNju(x) and Nyny(x) = N (x — m) (shift to the left if m <
0). This is readily proved for i1 € B” and extends by continuity to 4 € B.

Injectivity: Suppose two non-zero functions f € Be=r" andg € BY=" withk > ¢
have the same divisor. Then h = g f~! € B/ for every compact I (B; being a PID).
It therefore belongs to B = lim _ B;. It even belongs to BY="" where m = £ — k. It
suffices to show that B¥="" = 0 if m < 0 and Q,, if m = 0. This is again a Newton
polygon argument.

Ifm <0and h # 0 pN,(x) = N (x — m) implies that A/, must be increasing,
while by definition it is non-increasing, a contradiction (note that it cannot get only
the two values 0, 400 in this case). If m = 0 N}, (x) can get only the values O or
oo and for x << 0 A, (x) = +o0o. This implies ([5], Proposition 1.9.1, the proof
seems to contain a gap, but can be fixed) that & lies in By 1) C B,1) = B. But
Byo,1y C Byoy =& = W(F)[1/p] and

W(F)[1/pl*=" = W(F,)[1/p] = Q,.
Surjectivity: It is enough to show that if y € |Y| then there exists a function
ty € BY=P with
div(ty) = Y [¢" ().

nez

Let&, = p — [w,] be a primitive element of degree 1 corresponding to y. Consider
the product

o =[le" &/ =T]0-1="1/p).

n=0 n=0

The product converges in B and satisfies Syw(ty* )= pt_j’ ,and di v(t;L )= <" (M1
On the other hand, the equation

o(T) =§T

can be shown to have a solution 7 € A;,s. This is easy and done by successive
approximations modulo p”, using the fact that F, being algebraically closed, admits
p — 1 roots and solutions of Artin-Schreier equations, see [5], Proposition 6.2.10.
Its divisor satisfies
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¢~ div(ry)) = [yl +div(;),

sodiv(t;) =), o[¢"(»)], and is supported on Yj,i» 1) Where p = t(y).

It follows that ¢, = ¢ is the desired element. Note that this element cannot
belong to B as its Newton polygon satisfies NV (x + 1) = A}, (x)/p, so it has
infinitely many slopes (in both directions). ' ' ]

Remark 29 The space BY"=r"isa Q,-vector space and is in fact a closed Banach
subspace of By,r ;) if we choose any p € (0, 1). This is because if a sequence of
functions f, € BY'="" converges in Bi,» o) one may use the action of Frobenius to
show that they converge inany By v ,,-v, and the limit function clearly also satisfies
©"(f) = p®h.When N — oothese compact intervals exhaust (0, 1). While the norm
induced on this space depends on the choice of p, the Banach topology does not. We

shall always consider it with this Banach space topology.

2.2.12 An Alternative Parametrization of |Y| via the Multiplicative
Formal Group

Lete € mp — {0} and

1+el—1 24 .
[ +8] Z[l +81/p]l c Ainf-
=0

Ug = —[1 +81/P] 1 = Z

Modulo p, u, = &?~V/? £ 0, and under W(Or) — W(kr) (kr = Op/mp) the
second expression shows that it maps to p. Thus u, is a primitive element of degree
1. Let y, be the point of |Y| corresponding to (u,) C A;,r.If a € Z, we can look at®

oo

a _ 1 _ a n
fa}(e) =0 +e)* -1 —E(ﬂ)s emp
and then
[(1T+e)]—1

0= e - 1

Ifae Z; then [(1 + &)“] — 1 and [1 + ¢] — 1 divide each other in A;,r 50 U4}
and u, differ by a unit, and y, = y(4)(). If @ = p the two points differ by Frobenius
¢. Since F is perfect the notation {a}(e) can be extended to a € Q,,.

Proposition 30 The association € +— Yy, gives bijections

(mp —{0D/Z; >~ |Yrl, (mp—{0})/Q, =~ [XF|.

5 Endomorphisms of formal groups are usually denoted by [«]. In order not to conflict with the
notation for Teichmiiller representatives, we use {a}.
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Proof 1t is enough to prove the first claim. To prove injectivity, let C = C,_, and
suppose that y = y, = y,. First note that since 0, (#;) = 0 we must have (1 + g)? =
1inC,s0if l + & =¢ € F = C” then

é‘ = (17 Clv {2’ )

where ¢; is a p’ root of unity in C. In fact, (1 + &'/7)? # 1, or else 6, (u.) = p, so
¢ should be a primitive p' root of unity. The same holds for &', so ¢’ = ¢ for some
a € Z, and g ={a}(e).

To prove surjectivity, given y € |Yr|let C = C, and choose ¢ € C* = F in such
a way that ¢ = 1 + ¢ is a basis of the Tate module of 7 (C). Then working the
above arguments backward we see that u, is a primitive element of degree 1, and is
in the kernel of 6,, so must generate it, and y = y,. O

Corollary 31 Up to a Q,-multiple, the element t, constructed before by means of
Weierstrass products is also given by

oo 1 _
ty =log([1 +e]) = Y (1" W
n=1

for ¢ such that y = y.. (We denote this element also by t..)

Proof 1t is easy to check that the power series converges in By, so it represents an
element there (that does not belong, of course, to B?!). Clearly @(ty) € BY=7, but
the elements in this space vanishing at y form a one-dimensional space over Q,,, as
we have seen. O

Remark 32 We shall see later that the spaces B¢=! and B?=” are related to periods
of the p-divisible groups Q,/Z, and p ,~. More generally, the “Banach-Colmez”
space BY"=r' for0<d <h relatively prime will be related to the periods of p-
divisible groups of dimension d and height /. Here we are only considering, for the
construction of X g, the case & = 1, so the relation to p-divisible groups occurs only
for d = 0, 1. For the study of vector bundles over X we shall have to consider all
values of 4.

Banach-Colmez spaces is one of the topics completely absent from these notes,
for reasons of space. They are intimately woven into the fabric; however, the reader
can learn more about them from the original book by Fargues and Fontaine, or from
Colmez’ original paper.
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2.3 The Schematic Fargues-Fontaine Curve and Its Main
Properties

2.3.1 The Definition of the Curve

Having studied the ring B = B(¢,1) and its completions B; for I C (0, 1) a compact
interval (PIDs !), we can finally define the curve X and get its main properties.

Let
P=P Be=r',
k=0

This is a graded ring and we let
Xp = Proj(P).

A graded ring P = @, Py is called graded factorial with irreducible elements
in degree 1 if Py is a field E and the multiplicative monoid

[ [P —{0n/E™

k=0

is free and generated by (P, — {0})/E*. Theorem 28 yields the following:

Corollary 33 The ring P is graded factorial with irreducible elements in degree I,
and Py = Q,.

2.3.2 The Fundamental Exact Sequence

Besides the last corollary, there is another important ingredient needed to prove that
Xrisa“curve”. Itis an exact sequence which yields the “fundamental exact sequence
of p-adic Hodge theory”. In this sub-section we explain what it is and how to derive
it.

Lemma 34 Let y € |Y|. Let &, € A,y be a corresponding primitive element of
degree I, andm, = &, B = ker(0,) the corresponding maximal ideal of B. The homo-
morphism 0, : B — B/m, = C, is surjective when restricted to BY=P.

Proof We have seen that every element & € B¥=? is associated with div(h) =
> nezl@"y'] for some y’, and that div(h) determines / up to a Q[X) -multiple. Since
every element of |Y| is of the form y,, every element of BY=? is t, = log([1 + ¢])
for a unique ¢ € mp. Replacing ¢ by {a}(e) for a € Q; (the freedom allowed
keeping the Frobenius orbit of y unchanged) results in multiplying . by a. But
0, (t:) = log((1 + €)*) and (1 + &)* can be an arbitrary element of 1+ mc¢,. The
lemma follows from the fact that log : 1 + m¢ — C is surjective. Recall that by the
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convergence of exp on pO¢ (4O¢ if p = 2) its image contains a neighborhood of 0.
But since 1 + m¢ is p-divisible, so is the image of log; hence it is all of C. ]

Proposition 35 The sequence

o,
0— Qty > B > B/my=Cy, -0

is an exact sequence of Q,-Banach spaces.
Proof We have checked that 6, is onto, and that ker(6y) = Q,¢,. O

Theorem 36 Lety,, ...,y be pairwise ¢-inequivalent and e; > 1. Lett; = t,. Let
d =Y e;. Then the sequence

e e o=p‘ e e
0— Qpy " — B — B/mj ---my — 0

is exact.

Proof The sequence is clearly a 0-sequence. If h € Be=r' maps to 0 then div(h) >
> e;[y:i]. Since it is ¢-invariant and the y; are Frobenius inequivalent,

div(h) > div(t]" -+ - 1)

Since both divisors are of degree d, they are equal. This means thath € Q ;" - - - .
The surjectivity of the map from B is proved by induction on d. The case
d = 1 was already done. The map B*=r' — B /m,, = C,, is surjective since we can
multiply any element from BY=? by tffl where ¥’ # y; and 6,, (t,/) # 0. It remains
therefore to show that we can get any element in my, /mS} - - - m{ . By induction we
can get any element in B /mf;‘]‘1 ---m{ as the image of an element from B=r"",

Multiplying by t,, gives the desired result. O

Remark 37 The B-module B/ mi has a non-split filtration
0 — my/m} - B/m; - B/m, — 0

where the two terms at the extremes are isomorphic to C,. This suffices to show that
multiplication by ¢,/ for y" ¢ ¢”y is bijective on B/ mg. Similar claims hold for any

.. .mér
B/m,VI myr'

Corollary 38 Let 0 £+t € Pp = B*=P and choose y € |Y| so that div(t) =
Y nezl@"y1. Then there is a canonical isomorphism of graded algebras

P/tP =Py @& @D Pe/tP1 > {f € C,IT]| £(0) € Q).
k=1

Proof Senda € Py/tPy_; to Gy(a)Tk (here P_; = 0). [l
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2.3.3 The Ring BJR, y and the Field Byg

Let y € |Y|. We denote the completion of B” at the maximal ideal my, = (§) =
ker(6,) by B;R,y' Thus
Bip, = lim BY/(&]).

By abuse of language we denote by m, the kernel of 6, in any of the rings B’, By,
and B.

Proposition 39 B;R. y is a complete DVR, and &y is a uniformizer. The homomor-
phisms
B’ < B — B

(I a compact interval in (0, 1) containing t(y)) induce isomorphisms on the com-
pletions of their localizations at y.

Proof 1Itisenough to prove the second claim because B; is a PID and €, is a generator
of m, C B;. Recall that B and B; were obtained as certain topological completions
of B? in the family of norms |.|,, while B;R’ y is the formal completion at my. The
proposition follows from the fact that the kernel of 6, in B or By is still principal and
generated by &y, in itself proven via approximations, and from the identity

By /6By = B/,B = B/&,B" = C,.

The proof should be compared to the proof that the formal completion of the ring of
germs of holomorphic functions at 0 is the same as the formal completion of C[z]
at 0. In this classical example one argues with Taylor expansions. In our case, such
expansions do not exist, as B;R’ , 1s not a vector space over C,. Instead, one has to
argue with filtrations and graded objects. Except for this, the proof is the same. [

Viewing Bjp |
(the image of) #, as a uniformizer. We denote by By, the field of fractions of B;R’ -
ie., BjR,y[l/ty].

as a completion of the localization of B at y we can also consider

Remark 40 We have started from an arbitrary perfectoid field F in characteristic
p and looked at all its untilts, parametrized by |Yr|. Had we started with C, and
tilted it to get F := C;,we would have a distinguished untilt (namely C, with the
canonical identification of (C;, with F'), i.e., a point co € |YFr| and a corresponding
point in | X r|. Originally, Fontaine called the resulting Bsg o simply Byg. It was
only later realized that such a field exists for every untilt y.

We make another remark about notation.

Remark 41 The use of the superscript + might be occasionally confusing. In the
context of Byp it is used to denote the valuation ring before ¢ is inverted. However,
in the context of the ring B” it was used to denote an intermediate ring
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b b
Aing C BT C B” = Auyl1/p, 1/ ]]

in which p was inverted, but [ ] not yet. The convergent power series

Gy
=2

“Bl'—‘

(¢ = p — [@]) shows that
B"*/(€") = B /(E"),

hence B, = lim B”*/(&") as well. But beware: B}, contains B” and B, not only
Bb +.

There is also the ring B¥ C B, which is the closure of B”* in B. It can be shown
that it coincides with the f € B = By 1) for which N (x) > 0 for all x. Note that
in passing from A;,; to B? = Ai,,f(é, ﬁ) division by p moves Newton polygons
horizontally to the left, invading the second quadrant, while further division by [=]
moves them vertically downwards, thus invading the third and fourth quadrants.
Using this characterization it is easy to see that ford, h > 0

Bwh:pd _ (B+)¢h:pd.
We shall later discuss also divided power completions of A;,r and the ring

B;;y: mfi: /I/l' n= 1][1/p]
(the big hat signifying p-adic completion). It will then be true also that

h_ d +
B-Hp P = Bcr(zps =
The fundamental exact sequence (associated with the point co) will take the more
familiar form
0— Qut? — (BF, )= p — B /"B, — 0.

cris

2.3.4 The Main Theorem ([5], Théoréme 6.5.2)

Theorem 42 (i) The scheme X is a complete curve, whose field of definition
HY(X, Ox) = Q,. All the closed points have degree 1.

(ii) For t € Py = BY=P the locus VT (t) C Proj(P) = X consists of a single
point 0o;. The residue field C, at 0o, is a complete valued field, algebraically closed,
whose tilt is canonically identified with F.

(iii) The map Q;t > o0, is a bijection (P — {0})/(@; < | X]|.
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(iv) The ring Ox , is a DVR, whose completion is canonically identified with
B;R’y where y € |Y| is any point such that div(t) = ZneZ " ([y]).

(v) Let B, = B[1/t1*=! = B*[1/t]1?='. Then B, is a PID and Spec(B,) =
Dt (t) = X — {o0,}. Furthermore, if ord, is the valuation on Frac(B,) C Byr.c,
then the couple (B,, —ordx,) is an almost Euclidean domain.

(vi) The degree homomorphism induces Pic(X) ~ 7Z.

(vii) We have H' (X, Ox) = 0.

The proof of the theorem rests on a general construction of complete curves. The
next section is motivated by the application we have in mind, but is set in a general
axiomatic framework.

2.4 Construction of Curves ([5], Chap. 5)

2.4.1 Curves

We recall the definition from the introduction. A separated noetherian scheme X is
called a curve if it is regular, one-dimensional, and connected. We denote by 7 its
generic point, by E(X) = Oy, its function field, and by ord, : E(X) — Z U {oo}
the normalized valuation associated with a closed point x € | X]|.

Letdeg(x) € N be given for every x € | X|. For a divisor D € Div(X) we define
deg(D) as usual. The group Div(X) is identified with the group of Cartier divisors,
hence with the group of pairs (£, s) where L is a line bundle and s is a rational
section. The sequence

0— I'(X,0x)" = EX)* Y Div(X) = Pic(X) = 0

is exact.
A curve X, equipped with a degree function, is called complete, if

deg(div(f)) =) ord.(f)deg(x) =0
forany f € E(X)*.If X is complete and 0 # f € I'(X, Ox) thendiv(f) > 0, but
since deg(div(f)) =0, div(f) = 0 and f is invertible. Thus £ = I'(X, Oy) is a
field, called the field of definition of X.

2.4.2 Almost Euclidean Rings

A ring B equipped with a degree function deg : B — N U {—o0} satisfying
(1) deg(a) = —oc0iffa =0, deg(1) =0
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(2) deg(a) < deg(ab) forb # 0
is called almost Euclidean if in addition
3) deg(a) =0iffa € B*
(4) For any x, y # 0 there exist a, b with x = ay + b and deg(b) < deg(y).

Note that (B, deg) is Euclidean if in the last property we have a strict inequality.
Suppose B is an integral domain with fraction field K. Letordy, : K — Z U {oo}
be a normalized discrete valuation with valuation ring A. Suppose that

e ord.(b) <0 for every 0 # b € B and ord(b) =0 iff b € B* (ie, ANB =
B* U {0}).

Note that in this case E = A N B is a field, and the function deg = —ordy : B —
{—o0} U N satisfies 1. and 2. above. It even satisfies

deg(ab) = deg(a) + deg(b).

Let Fil;B = {b € B|deg(b) < i}. Thisis an increasing filtrationon B, FilyB = E.

Proposition 43 Suppose that for i > 1 the map Fil;B/Fil;_B — m;i/m/:i"'l is
surjective. Then (B, deg) is almost Euclidean.

Proof Point 3. is satisfied by assumption. Let us prove “weak division with remain-
der” by induction on deg(x) — deg(y). If deg(x) < deg(y) let a =0, b = x.

Assume that deg(x) =i > j = deg(y). Then xy~' € m’ " and there exists an

a € Fil;_; B mapping to it modulo m{f”l. Itfollowsthat 8 = x —ay = y(xy~' —
o) € Bsatisfiesdeg(B) < j+ (i —j — 1) <i.Thusdeg(B) —deg(y) < deg(x)—
deg(y) and by the induction hypothesis we can write 8 = ay + b, deg(b) < deg(y).
But then

x=(+a)y+Db

as desired. 4

Example 44 Fix 1 € P; where P, = By~ ' Let oo, € |X| be the corresponding
pointand y € |Y| a point mapping toit. Let Bjg = Byg,y, and BJR its valuation ring.
Observe that B;R = lim_ Br/(£}) contains Br. In the role of B of the Proposition
we take

B, = Bp[1/1)?=' € K = Frac(B.).

—=pk . . . . . .
Clearly B, = |2, t *BY~" andsincet~*b = t*~!(b) this is an increasing union.
The discrete valuation on B, induces a discrete valuation on K. Its valuation ring
is
_ pt
A =B, NK,

and AN B, = B}, N B, = Q,. In fact
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— nk
Fil,B,=t*Bj, N B, =t7*BY"

precisely. The fundamental exact sequence implies that for k£ > 1

! —k+1

—k po=p* | —k+1 po=p""" ko —k
t7"Bp "/t By ~tCy, ~xmy,"/my

so the condition of the Proposition is satisfied. We conclude that (B,, —ordy) is an
almost Euclidean ring. We shall see later that it is even a PID.

2.4.3 Construction of Complete Curves

Let P = @kzo Py be a graded integral domain in which Py = E is a field. Assume
dimg P; > 2. Let
X = Proj(P),

a scheme over E.

Theorem 45 ([5], Théoreme 5.2.7) Assume

(1) The multiplicative monoid ]_[kzO(Pk —{O)/E* is free on (P; —{0})/E™ as
generators.
(2) Foreveryt € Py — {0} there exists a field E C C such that

P/Pt>~D ={f eC[T]| f(0) € E}

as a graded E-algebra.

Then:

(a) For every t € Py — {0}, the locus V' (t) = {oo,} is a single (necessarily
closed) point.

(b) The association t — o0, induces a bijection

(P —{O)/E™ >~ |X|

with the closed points of X.

(c) Letting deg(x) = 1 for every x € |X|, X is a complete curve.

(d) For any oo € |X|, X — {00} is affine open of the form Spec(B) for a PID B,
i.e., Pic(X — {o0}) = 0. Moreover, (B, —ordy,) is almost Euclidean.

Proof (1) Lett € P, — {0}. Using 2. for the structure of P/ Pt we get that
V*(t) = Proj(P/Pt)

is a closed point co,, as any non-zero homogenous prime ideal of D contains 7C[T]
(exercise: note that C ¢ D, so a little argument is needed!). This proves (a).
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(2) We have
X — {oo;} = Spec(B), B = P[1/t]p.

Every non-zero element of B is of the form x¢ % with x € P;. By 1. it can be written
uniquely up to an E*-multiple as ]_[f:1 (s;/t) withs; € Py — Et. Thus B is a unique
factorization domain with irreducible elements of the form s/t for s € P; — Et. To
show that it is a PID it is enough to verify that for any such s, (s/f) is a maximal
ideal. But

B/(s/t) = (P/sP)[1/t]o.

By assumption 2., now for s, P /s P maps isomorphically onto another ring D’ con-
structed from another field extension C’ of E. The element ¢ is homogenous of degree
1 so must map to ¢T for some ¢ € C'. But D'[1/cT]y ~ C’ is a field, so (s/f) is a
maximal ideal of B. This proves the first part of (d). Furthermore, the closed points
of X — {oo,} are in bijection with the irreducible s as above (up to E*), and this
proves (b). If s, ¢ are in P; — {0} as above then div(s/t) = {oos} — {00}, so is of
degree 0. As any element of the function field of X is a finite product of such s/¢, X
is a complete curve and (c) is proved.

(3) It remains to check that® B = P[1/t]y is almost Euclidean with respect to
deg = —ords, (00 = 00;). Here deg(f) for f € B is the usual degree of the divisor
div(f) (recall B is aPID). Itis checked immediately that ord, is a discrete valuation
on K = Frac(B) (the function field of X) and that 7 is a uniformizer. For “almost
Euclidean” we use the criterion from Proposition 43. Since every element of B is

(s; € Pr—Et, ue E*),ordx(f) = —k <0and ifitjs 0, we must have k = 0 so
f =u € E*isinvertible. Let i > 1. An element of m}' is of the form

STt Sitj
s
1 J

where u € E*, the s, € Py — Et and s, € Py — {0}. Fil;B consists of the same
elements with j = 0. We claim that

Fil; B/Fil;_1B ~wm; /m}’
(an isomorphism of modules over P/t P). Let S be the multiplicative subset of P

generated by P; — Et. Then K = (S7'P[1/t])o and as Fil; B = ¢t P; after multi-
plication by #' the claim becomes the claim that for i > 1

6 In the application to the Fargues-Fontane curve, this will be the ring B,, not the much larger B!
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Pi/tPi_y =[S (P/tP)];.

Butidentifying P/tP = E & @2, CT' we get S~'(P/tP) = @, CT' (Laurent
polynomials), hence the desired isomorphism. (]

2.5 Vector Bundles on Curves

2.5.1 Beauville-Laszlo Gluing

Let X be a complete curve with a field of definition E = H(X, Ox). Let K =
E(X) = Ox,y be the function field of X. Let oo € |X| be a closed point and U =
X \ {oo}. Consider the category ¥ of triples (£, N, u) consisting of a vector bundle
& on U, a free finite rank module N over Oy o, and an isomorphism

u:NQ®o, Kx=E,.

Similarly, let % be the category of triples (&, N, u) where & is as above, N is a free
finite rank module over Oy o and

u: N\®6x,o<; Koo ™ g’,, =&, ®« Koo
Let 7 %x be the category of vector bundles of finite rank on X.
Proposition 46 The functors V Bx — € and V Bx — 2 given by
& (glUv gooa Can), (€|U7 5001 Can)

are both equivalences of categories.

Proof Call these functors as, and . For any open V containing oo there is a
similar functor oy built from the cover {U, V} of X, which is a usual Zariski gluing,
hence an equivalence of categories. Thus a = lim_, ay is also an equivalence. To
show that @, is an equivalence one uses an approximation argument, based on the
fact that R R
GLy(K)/GLy(Ox,00) =~ GLy(Ko)/GLu(Ox,00)-

O

Remark. (i) If U = Spec(B) is affine and B is a PID, then the isomorphism classes
of rank n vector bundles over X are given by

GL,(B)\ GL,(K)/GL,(Ox o).
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(ii) There is an obvious generalization to the situation where X \ U is a finite
number of points.

2.5.2 Cohomology and Twisting

Assume now that U = X \ {oo} is affine, U = Spec(B) where B is a PID (equiv-
alently Pic(U) =0) and let £|y correspond to the B-module M, N = &, and
N = . Let  be a uniformizer at co. We want to describe the cohomology of &£
in terms of (M, N, u) where u : M ®p K >~ N ®o, ., K (we follow the notation of
[5] which for some reason switch in the middle between u and »~') and similarly in
terms of (M, N, @0).

Proposition 47 The complex of abelian groups RT" (X, £) is canonically isomorphic
to the complex

M®N — N ®o, . K

(x,y) = u(x) —

and similarly to the same complex where N, u are replaced by ﬁ, uwand K by fw.
In particular R
HX, &) =u(M)NN =a(M)NN

H'(X,€) = N ®o,., K/w(M)+N) =N ®p, K/@M)+ N).

Proof Once again, if X is covered by U = Spec(B) and V = Spec(A) with both
rings PIDs, the analogous statement is the familiar comparison between derived
functor cohomology and Cech cohomology. The Proposition follows from this case
in the same way as the previous proposition. (]

We let £(koo) denote the twist of the vector bundle £ by the line bundle O(koo)
associated with the divisor k[oco]. We leave the proof of the next proposition to the
reader.

Proposition 48 Suppose that £ is represented by a triple (M, N, u) (or (M, N, ).
Then E(koo) is represented by

(M, t7*N,u), (M,17*N,%).

2.5.3 The Relation with the (Almost) Euclidean Property

We assume that X is a complete curve such that deg(co) = 1 and X \ {oo} =U =
Spec(B) with B a PID, i.e., Pic(U) = 0. It is then easily verified that via deg,
Pic(X) ~7. We let E = HO(X Ox) be the ﬁeld of definition and K = E(X) =

Oy, the functions field, A = Ox « and K= K . Welett € K be a uniformizer at
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oo. Note AN B = E. We write deg = —ordy : B — N U {—o00}. The line bundle
O(1) is endowed with a canonical section “1” with a simple zero at co and nowhere
else. Tensoring with it gives

E=H"X,0)c HX,01) C---
which corresponds to the filtration by deg on B
E = BdegSO C Bdegsl C .-
(via Proposition 47). For k < 0 H°(X, O(k)) = 0. For k € Z cupping with “1” is a
surjection
HY(X,O0k)) —» H' (X, Ok + 1))

K/(B+1t7%4) - K/(B+17514).

It follows that if H'(X, O(k)) = 0 then H'! vanishes for all larger ks.
Leti : {oo} < X. Then there is an exact sequence of sheaves

0= Ot —1) = OKk) — in(my*/m* 1) — 0.
It follows that if H'(X, ©) = 0 then for all k > 1 the map
Bdegfk/BdegSkfl N m/_xk/mXHl

is surjective (in fact an isomorphism). Recall that this was our criterion for (B, deg)
to be almost Euclidean. If P is as in theorem 45 and ¢ € P, an element such that
o0 = oo, then for k£ > 0 we have

P, ~ BY9=k — HO(X, O(k))

b~ t_k
50 X = Proj (&2, (X, O(k))). The sequence of inclusions of the H*(X, O(k))’s
becomes the sequence

Xt Xt
P()-) P1—>P2—)~-~

Proposition 49 The following equivalences hold:
(i) (B, deg) is almost Euclidean < H' (X, 0) =0
(ii) (B, deg) is Euclidean < H'(X, O(-1)) = 0.

Proof Denote by t € K a uniformizer at co (if t € P; as above then this ¢ is the
previous ¢ /s for some s € P; \ Et). Recall that
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H'(X,0)=K/(B+A), H'(X,0(-1)) = K/(B +1A).

We prove (ii). The proof of (i) is identical, replacing < by < at one place. If K =
B + t A then given x, y € B with y # 0 we write

f=b—}—ta
y

with b € B and a € A. Then x = yb + tay where yb € B and hence tay € B but
since ordyo(ta) > 1,deg(tay) < deg(y). In the converse direction one reverses the
argument to show that if x = by 4 r with deg(r) < deg(y) one can write r = tay
witha € A (i.e., ordso(a) > 0)sox/y € B +tA. O

2.6 Conclusion of the Proof of Theorem 42

2.6.1 Putting Everything Together

All the ingredients are now in place. We have checked the two conditions in Theorem
45: the structure of the monoid [ [ P*/E* and the fundamental exact sequence,
leading to the description

P/Pt~{f € C[T]| f(0) € E},

where t € P and C = C,. We have also checked that K = B + A, in example 44.
Here K = E(X) = Frac(P)*=',

B =B, = Bp[1/1]*=" = P[1/1]*=', A=K NBJ; ..

Theorem 42 follows now at once from its abstract version, Theorem 45, and Propo-
sition 49.

2.6.2 The Field of Meromorphic Functions on |Y|/¢”

We want to wrap up everything by relating the field £ (X), derived from the schematic
point of view, with the “analytically constructed” field of meromorphic functions on
|X| = |Y|/¢”. Here we define the latter in an ad hoc fashion, as we have not defined
the adic (Huber) spaces underlying |Y| or | X|.
Recall that
Br = liin By

(over compact intervals I C (0, 1)). The B; are PIDs. We define
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M (Y) =1lim Frac(By).

It can be shown ([5], Proposition 3.5.10) that .#Z (Y) = Frac(BF). Define the field
of meromorphic functions on X to be

M (X) = H#(Y).

Proposition 50 We have E(X) ~ .# (X).

Proof We have E(X) = {x/y|x,y € P homogenous of the same degree} C
Frac(P) C Frac(Bf) = #(Y). Clearly E(X) lands in the g-invariant part. Sup-
pose f € .#(Y)*='. Then by the description of the monoid Div(Y/¢%)" ~

112y PS/E> (where P, = By " ") we can write
div(f) =div(g) — div(h),
where g € P and h € P;*. It follows that
f= u%,
where u € . (Y') has neither poles nor zeros. From
MY) = li(r_n Frac(By)

and the fact that the B; are PIDs we get thatu € lim B, = By. Now gu = p*~*u

sou € Pp_y and u~! € P,_,. But we have seen that P; = 0 if d < 0. This forces
k=+¢andu € Py = E*. Thus f € E(X). |

3 Vector Bundles on X g

The classification of vector bundles on the Fargues-Fontaine curve brings into the
picture the theory of p-divisible groups, their moduli spaces, and the two period
morphisms, gy (the Grothendieck-Messing, or de-Rham period morphism) and
g, the Hodge-Tate period morphism.

We shall start with generalities about vector bundles on curves, but at a certain
point we shall need to take a long detour into the theory of p-divisible groups. We
shall therefore try, following Morrow’s Bourbaki talk, to present the theory of vector
bundles on X in a self-contained manner, “blackboxing” the necessary input from
p-divisible groups. We shall then return to that theory and fill in the details as much
as time will permit us.

Let us stress that for the most spectacular applications of the Fargues-Fontaine
curve, to p-adic Hodge theory and local Galois representations (“weakly admissible



The Fargues-Fontaine Curve and p-Adic Hodge Theory 287

= admissible”), to moduli spaces of p-divisible groups (“Drinfeld tower = Lubin
Tate tower”), and to local Langlands (geometrizing it via analogues of Drinfeld’s
Shtukas), it is the theory of vector bundles on it, and not its bare structure, that we
have been studying so far, that plays the crucial role.

3.1 Harder-Narasimhan Categories

3.1.1 Vector Bundles on Curves

Let X be a compact Riemann surface, or more generally a smooth projective curve
over an algebraically closed field. To every vector bundle E on X one associates

e Itsrank rk(E) € N

e Its degree deg(E) = deg(/\’k(E) E) € Z (the degree of a line bundle L is the
degree of the divisor D such that L >~ O(D))

e Itsslope u(E) =deg(E)/rk(E).

If0 > E' - E — E” — 0is an exact sequence of vector bundles then

E/ E//
rk( )M(E/)Jrrk( )

= k() gy MED

u(E)

is a convex combination of the slopes of £’ and E”.

The vector bundle E is said to be semi-stable if for every E’ C E a sub-vector bun-
dle (locally a direct summand) u(E’) < u(E). Equivalently, for every quotient bun-
dle E” u(E) < n(E"). The following key theorem is due to Harder and Narasimhan
(1974).

Theorem 51 For every vector bundle E there exists a unique filtration
O=EyCE, C---CE,=E

byvector sub-bundles such that (i) E; | E;_ is semi-stable (ii) u(E; | E; 1) are strictly
decreasing.

The proof is not difficult. If E is semi-stable take m = 1 and E = E,. Otherwise
let E| be a sub-bundle of highest slope, and if there are several such, take among
them one of highest rank. It is clearly semi-stable. Apply induction to E/E;. One
only has to show that u(E,/E;) < u(Ep). Butif we had w(E>/E) > u(E;) then
w(E>) > w(E)), contradicting the choice of E;.

It turns out that there are many categories in which one can define rank and degree
for which the slope satisfies the same formalism. Yves André axiomatized it, and
here we take a slightly more restrictive axiomatization, that is nevertheless sufficient
for our purposes.



288 E. de Shalit
3.1.2 A Generalization

LetC be a category and assume that for any object E € C we can associate rk(E) € N
and deg(E) € Z such that:

(HN1) C is an exact category (a full additive subcategory of an abelian category
closed under extensions’), and rk and deg are additive on exact sequences.

(HN2) There exists an exact faithful functor F (“generic fiber”) F : C — A where
A is an abelian category, satisfying:

(1) The functor F induces a bijection between strict subobjects of X € C and
subobjects of F(X) € A. Here a strict subobject is a subobject X’ of X sitting in an
exact sequence 0 - X’ — X — X” — 0. One should think of the inverse of this
bijection as an operation of taking “schematic closure”.

(ii) The rank function on C factors through a rank function rk : A — N satisfying
rk(X) =0iff X =0.

(iii) If u : X’ — X is a morphism in C such that F(u) : F(X') — F(X) is an
isomorphism then deg(X’) < deg(X) with an equality iff u is an isomorphism.

Example 52 Let C be a smooth complete curve over an algebraically closed field,
C the category of vector bundles on C, the exact sequences being exact sequences in
the category of sheaves. A strict subobject is a vector sub-bundle. The category A
is the category of vector spaces over K, the function field of C, and F(E) = E, is
the generic fiber. Note that if £’ C E is a strict subobject, then E" = E} N E (inside
E,), giving (i). Point (ii) is clear and (iii) stems from the fact that if E” C E and they
have the same rank, then deg(E’) < deg(E) with equality iff E’ = E. In fact, it is
enough to treat the case of a line bundle.

It turns out that the Harder-Narasimhan theorem holds in C, if one defines slope
and semi-stability in the same way. To be precise, X is semi-stable if for any strict
subobject X' — X we have u(X’) < u(X).

3.1.3 More Examples

(1) In the special case of vector bundles over P' the category can be described, via
Beauville-Laszlo gluing, also as the category of triples (M, N, u) where M is a free
module over C[z], N is a free module over C[[1/z]], and u : M ®c[;) C((1/z)) =~
N Qcyi1/z11 C((1/z2)). Here the rank is the usual rank, and the degree can be computed
as follows. Let m; be a basis of M over C[z] and n; a basis of N over C[[1/z]]. Then
n; = Za,»jmj and

7 The notion of an exact category can be defined intrinsically: one starts with an additive category
and defines a notion of exact structure. The embedding theorem says that such a category is always
a full subcategory of an abelian category closed under extensions. Some examples (such as the
category of vector bundles on a curve) are better conceived as subcategories of abelian categories
(of all modules on the curve), while other examples (e.g., the category of filtered objects in an
abelian category) are more naturally described as an additive category with an exact structure, i.e.,
a class of exact sequences satisfying some axioms.
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deg(M, N, u) = ordx(det(a;;)).

The functor F of (HN2) takes (M, N, u) to the vector space M ®cp;; C((1/z2))
over C((1/2)).
(2) Let C be the category of B-pairs introduced by Laurent Berger. Here we take
B, and BjR (having fixed oo € Xr) and consider triples (M, N, u) where M is a
finite free module over the PID B,, N is a finite free module over B;R, and u is an
isomorphism
u:M®®p, Bip = N ®B¢TR Byr.

The rank and degree are defined as in example (1). We have seen that this category
is identified with the category of vector bundles on X .

(3) Filtered vector spaces. Let L/ F be a field extension. Let C be the category of
pairs (V, Fil*Vy) where V is a finite-dimensional vector space over F and Fil®is a
separated exhaustive decreasing filtration on V. Rank is the dimension. The degree
is given by

deg(V, Fil*Vy) = i dim(gr'Vy).

i

Here a strict subobject is a subspace of V whose filtration is induced by the one on V.
(not only compatible with it). The map F simply forgets the filtration and remembers
only the vector space V. Verifying the axioms is elementary linear algebra.

(4) Isocrystals (p-modules). Let k be a perfect field in characteristic p, Ko =
Frac(W(k)). Denote by ¢ the Frobenius of K. An isocrystal over k is a finite-
dimensional Kj-vector space D with a ¢-semi-linear bijective map ¢p : D — D.
Its rank rk(D, ¢p) = dimg, D. Its degree is

deg(D, pp) = —vi,(det(P))

where & is the matrix of ¢p on the basis of D. Note that since a change in basis
changes ® to p(P) ® P!, the determinant is not independent of the basis, but its val-
uation is. We remark that —deg is also a valid degree function, and the choice of the
minus sign is a matter of convention. This is because the only condition that distin-
guishes deg from —deg is (HN2)(iii). But if (D', ¢},) — (D, ¢p) is “generically an
isomorphism”, i.e., is an isomorphism as K-vector spaces, we must have ¢p = ¢/,
and the degrees are equal. With this convention, effective isocrystals (having a ¢p-
invariant W (k)-lattice) have a non-positive degree.

In passing we remark that the fact that both deg and —deg are valid degree func-
tions, together with the Harder-Narasimhan theorem, that has the following corollary.
Every isocrystal over a perfect field in characteristic p has a unique direct sum decom-
position into isoclinic isocrystals, i.e., isocrystals all of whose subisocrystals have
the same slope.

Example 53 Let D be spanned by ey, ..., e, and ¢p(e;)=e;+1 (1<i<h) ¢p(ey) =
p‘de]. Then (D, ¢p) has rank h and degree d. If d < 0 then the W (k)-span of the
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e; is an invariant lattice M. The following non-isomorphic M (due to Oort) leads to
an isomorphic D. Let ¢; (i € Z) be subject to the identification e;,, = p~'e;. Let
¢p(e;) = ejrq. Note that (p}[)ei = p’dei. If d < 0 we let M be the module spanned
by ey, ..., e,. Note also that if 0 < —d < h then pM C ¢p(M) C M. Such an M
(but not the previous one) will turn out to be the Dieudonné module associated with
a p-divisible group of dimension —d and height A.

If A =d/h € Qinreduced terms we denote the isocrystal (D, ¢p) by (Dy, ¢;).

The following theorem is classical. For the proof see [3, 13]. We denote by Isocy
the category of isocrystals over k.

Theorem 54 (Dieudonné-Manin) Let k be algebraically closed of characteristic p.
The category of isocrystals over k is semi-simple and the (D, ¢,) are its simple
objects. The endomorphism algebra of (D, ¢,) is the central division algebra over
Q, with invariant A.

If k is any perfect field of char. p (not necessarily algebraically closed), Dieudonné
showed that Isocy is anti-equivalent, via a functor called the Dieudonné module, to
the category of p-divisible groups over k up to isogeny.

(5) Filtered isocrystals (filtered p-modules). This example combines the previous
two. Let K /K be a totally ramified extension and consider triples (D, ¢p, Fil®*Dg)
where (D, ¢p) is as in (4), (D, Fil®) is as in (3). There need not be any relation
between ¢p and the filtration. Setting

deg(D, ¢p, Fil*) = Zidim(gr"DK) — v, (det @)
gives the notion of a filtered isocrystal. Note that (D, ¢p, Fil®) is semi-stable of
slope 0 iff
Z i dim(gr' Dg) = v, (det ®)

i

and for any strict subobject (D', ¢p, Fil®) (meaning that the filtration is induced
from the one of D and Frobenius leaves D’ stable) there is an inequality

Z i dim(gr' D) < vk, (det @),

i

3.1.4 Semi-stable Objects of Slope 0

Let ¢ be a Harder-Narasimhan category. We denote by ¢;° the full subcategory
whose objects are semi-stable of slope A. It is clearly an additive subcategory closed
under extensions.

Proposition 55 The category 6,° is an abelian category.

We do not prove the proposition. Our interest lies in A = 0. In many examples the
proposition will then be self-evident.
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3.2 Classification of Vector Bundles—Statement of the
Results

3.2.1 Recall of Fontaine’s Rings

Fix a point 00 on X = X corresponding to € By~ " (and recall that oo determines
t up to Q;). Recall that B;“R = Ox .~ and

B, =T(X \ {o0}, ©) = Bp[1/1]~" = Ut_iPi
i=0

where P, = B,‘?:pl (B, is a PID). Recall that we also had P; = B;‘q’:pl where B
is the closure of B>+ = W(Op)[1/p] in Bp, or alternatively the set of f € Bp
whose Newton polygon satisfies Ny (x) > 0 for all x € R. This was an immediate
consequence of the relation

Ny —i) = pNj(x)

which holds for any f satisfying ¢f = p' f, because this relation and the fact that
Ny (x) = 00 as x — —oo force Ny(x) > 0. Thus in the definition of B, we can
replace Br by Bjf.

3.2.2 Relation with B,

One can show that P, = B:;;szi as well, hence B, = B:.’;TSI (Beris = B, [1/1]).
Here, while B} is the completion of B+ = W(OF)[1/p] in the family of norms
[.I, (0 <p <1, Bjm = Aqis[1/p] where A5 is the divided power completion

in the ideal (£) corresponding to any point of |Yr| (any untilt) above co (in the
Frobenius orbit of untilts corresponding to co). Thus

B}, = W(Op)[&"/nll1/pl.

The relation between the two rings B} and B}, is

cris

o0
Bf c B, Bf= ﬂ¢”(B+ ).

cris’ cris
n=0

(We do not prove this—it boils down to computations with divided powers and the
norms |.|,.) In other words, B} is the largest subring of B}, on which ¢ is bijective.®
It is this characterization which is responsible for

8 In some older papers B;r was called B"'9.
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i i
B;:’(P—l’ — B+s</’ p

cris

Indeed, the LHS is clearly contained in the RHS. But if an element x € B:;is satisfies
@x = p'x then A A
x=plex)=p P (x) ="

sox € (o2, ¢"(BE

cris

)= B;. From here one gets the desired identity

Belt/o= = o By = o B = B = B
Although classically B-pairs were defined by Berger using B,.,;; we shalluse Bg[1/¢]
instead. Thanks to the above computations, it gives the same modules.

3.2.3 Construction of the Vector Bundles £ (D, ¢)

Letk = Fp, L=W(W)[l/p]l= @’;,7 . Since we assumed F was algebraically closed,
W(Op)[1/p] ar_ld hence Bp is an L-algebra. If (D, ¢p) € Isocy, define a graded

P =&7,By" "_module

M(D, ¢p) = &Z(D ®; Bp)*=",

where the ¢ on D ® B is ¢p ® . If D is the trivial isocrystal we get P itself.

Definition 56 £(D, ¢p) is the associated Oy-module M (D, ¢p).

Proposition 57 (i) The module E(D, ¢p) is a vector bundle.

(ii) Its rank and degree as a vector bundle are the rank and degree of (D, ¢p) as
an isocrystal.

(iii) It is associated to the (B,, BJR)—pair (M, N, u)

M = (D ®; Br[1/t])*=", N=D®; Bjg, u=utcan,

where
Ucan : M ®p, Bar = N ®p+ Bar

is the canonical map (which turns out to be an isomorphism).
(iv) The functor
E(—) : Isocy ~ V Bx,

is compatible with tensor products and duals.

When (D, ¢p) = (Dy, ¢;) A = d/ h inreduced terms, we shall denote this vector
bundle O(A) or O(d, h). It has rank /4, degree d, and slope A. We shall show below
that it is semi-stable.
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The proof of the proposition, due to Berger (and in another form to Kedlaya), is
not very difficult. The crucial point for proving (i) and (iii) is to show that the modules
M, N have the same rank &2 = rk(D, ¢p) over B, and B[}"R, respectively. Since k is
algebraically closed, it is enough to do it with D = D, ;, the explicit model given in
example 53. To complete the proof of (ii) we have to show that the resulting vector
bundle has then degree d. Finally, (iv) is more or less automatic.

We shall prove the Proposition below, after we have given an alternative definition
of the O(d, h) that does not single out the point oo and is therefore more symmetric.

In any case, the Dieudonné-Manin theorem has the following corollary.

Corollary 58 The vector bundle £(D, ¢p) is a direct sum of O(L)’s.

3.2.4 The Classification Theorem

The next theorem is deep and its proof will be long.

Theorem 59 (Classification Theorem) Every vector bundle on X is E(D, ¢p) for
a unique isocrystal (D, ¢p). In other words, every vector bundle is of the form

&~ @O()ul')”i
where the slopes ); and their multiplicities n; are uniquely determined.

Corollary 60 (i) The functor £(—) is essentially surjective. (ii) A vector bundle is
semi-stable iff it is isoclinic, i.e., of the form O(\)".(iii) The abelian category of semi-
stable slope O vector bundles on X f is equivalent to the category of finite-dimensional
vector spaces over Q, under V ~~V ® Ox, € ~» HY(X, ).

We stress that £(—) is far from being an equivalence of categories!

3.3 The Curves Xp g, for h > 1

3.3.1 The Unramified Coverings X g,

To give a more symmetric construction of the vector bundles O(d, k), it is time
to construct a family of unramified cyclic coverings of the Fargues-Fontaine curve.
They will be denoted as Xy g, — X, their Galois group will be cyclic of order #,
and their field of definition will be Ej, the unramified extension of Q,, of degree h.

From an analytic (adic) point of view, not worked out in these notes, the X g,
are very easy to construct. Just as |Xr| = |Y¢|/¢%, we let

| X g, | = Yr|/Q"



294 E. de Shalit

This already gives a working definition of the closed points of the would-be Xr g,
and hints that Gal (X g, — Xr) should be cyclic with a canonical generator ¢.
We therefore put

00 : 00

o' =p? 49t =pd

Po =D B = DB
d=0 d=0

XF,E;, = Proj(PEh).

Lemma 61 We have Xp g, >~ Xr X Ej.

Proof For any graded algebra @;>0R; and any & > 1 we have Proj(@;>oR;) =~
Proj(@;soRp;). We therefore have

o0
h__ dh
Xr.p, = Proj (@ BL ™).
d=0

h_ pdh
The Ej-vector space B} ~”  has the semi-linear automorphism v = p~%p, whose

—pd . . . . . . .
invariants are By " . Although it is infinite dimensional, the action of v is locally
finite (since W’ is the identity), so Hilbert’s theorem 90 implies that

h_ pdh —pd
By =" =By Q@ Ey.

The lemma follows. O

3.3.2 Properties of Xr g,

All the good properties of X ¢ hold also for X g,, either with the same proof, or
because itis a base change of X p. Lety € |Yp|andletoo, € |XF g, | be the ¢"-orbit
of y, mapping to 0o € |X |, which is its ¢Z-orbit. The points of X g, above oo are
¢' (o), 0<i<h—1

Just as we constructed a t € By whose divisor (in |Yr|) was Y., ¢'[y], we
can construct a t;, € B?hz” whose divisor is )", #"[y]. It will then be unique up
to an Ej,-multiple and will satisfy

h-1
[]e' @) =t

i=0

(up to a Q,-multiple). Recall how ¢ was constructed. First, we found an ¢ € my such
that
[14+e]l—1

T lrelrl—1

&
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was a primitive element of degree 1 in W(Op) vanishing to the first order at y. Then
we let

t =t, =log([1+¢€]).

In our case we letqg = p' and consider the Lubin-Tate formal group law F (X, Y)
over Ej, attached (e.g., the choice of a model of this formal group will change things
by an isomorphism) to the endomorphism

{Plo(X) = 0(x) = pX + X17.

Welet Q, = Q o---0 Q (ntimes) and define the Q-twisted Teichmiiller represen-
tative to be

[elo = lim Q,("]).

Here we should think of Q,, as a lifting of the n-th power of Frobenius of order ¢ to
characteristic 0. Note that if Q0 = X9 we would get [.]p = [.], while if ¢ = p and
Q=1+ X)? -1, we would get [e]p = [1 + ¢] — 1. In general, the limit exists
and satisfies

Q(elo) =[]0

If we put
_ lelo
Ue,0 = [81/q]Q

then as before we get a primitive element of degree 1 of W(OpF), every primitive
ideal of degree 1 is of the form (u,, ), and ¢ is unique up to € — {a}o(e), where
a € Oy, . We may therefore select ¢ so that u, o vanishes at a given y. Furthermore,

{Plo(e) = Q(e) = &7.

If logQ(X) = X + .- € XE,[[X]] is the logarithm of the Lubin-Tate group and
we put
th = 1,0 = logy(lelg)

then we get
" (tn) =log,([e*]0) = log,({p}o(le]o)) = pty

as desired. The divisor of #, on |Y¢|is ) ;5 oyl

Remark 62 More generally, Fargues and Fontaine make similar constructions for
any [E’ : E] < 0o, not necessarily unramified. Lubin Tate groups over E’ play a
similar role.
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3.4 Construction of Vector Bundles on X

3.4.1 Operations on Vector Bundles

Quite generally, if 7 : ¥ — X is a finite étale covering of complete curves (in the
sense discussed in the introduction) and £, F are vector bundles on X, Y, respectively,
deg(mw) = h, then we have the vector bundles 7*€ and . F and they satisfy

rk(n*E) = rk(€), deg(n*E) =h-deg(E)
rk(meJF) =h-rk(F), deg(w,F) = deg(F).

The first two equalities are clear: for the rank there is nothing to prove, and for the
degree it is enough to consider the case of the line bundle O(D), where D is a divisor
of degree d on X. Then m*(O(D)) = O(nw (D)) and 7 =" (D) is of degree hd. The
second pair of equations follows from the first if we note, say in the Galois case, that

71 F = ®oecaiy)x)F°

and all the 7 have the same degree. The general case is reduced as usual to the Galois
case, but we shall actually be only concerned with the cyclic cover X g, — Xr.

3.4.2 The Vector Bundles O(d, h)

In this subsection we do not assume that d and # are relatively prime. As before, we
have on X g, the line bundle O(d), whose global sections may be identified with

Bﬁh:pd. We define the vector bundle O(d, k) to be 7,O(d), where 7 : Xp g, — Xp
is the degree h cyclic étale covering the constructed above. The advantage of this
construction, besides being symmetrical and not requiring the distinguished point
00, is that it comes out automatically to be a vector bundle of degree d and rank /.

Claim 63 This definition agrees with the sheaf £(D, ¢p) defined before, where
D=Dgy,.

Proof Starting with the identification

Xr.g, = Proj <@ Bﬁhpk> = Proj (@ B?m) |

k=0 k=0

the line bundle O(d) on Xy g, corresponds to the graded module

g h k+d
(plzp +

L

k=0
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for the graded algebra on the left, or, for the graded algebra on the right, to the graded

module
g I kh-+d
_ ¢'=p
M =P B} :
k=0

Since 7w : X g, — XF corresponds to the graded homomorphism

oy k a h kh
_ =p pt=p™
P=DB5" > D"
k=0 k=0

the vector bundle O(d, h) = m,O(d) corresponds to the same module M, regarded
as a graded module over P. On the other hand, £(D, ¢p) was associated to the graded
P-module

o0
M =D B
k=0

We therefore have to identify M, ,i with My, i.e.,

kh+d

(D ®p Bp)?=" ~ BY=""",

Recall that D, had a basis ey, ..., e, with p(e;) = ¢4 for i < h and ¢(e;) =
p~%e;. Weseethatx = Z?:l be; satisfies o(x) = p*x ifand onlyif p(b;) = p*b;
for1 <i < hand ¢(b,) = p*™b,. The coefficient b, € By determines the remain-
ing b; uniquely, and the only condition imposed on it is ¢"(b;) = p***?b,. The
homomorphism associating to x the coefficient b, is therefore the desired isomor-
phism. |

This proves (i) and (ii) of Proposition 57. Part (iii) follows from the dictionary
between vector bundles and B-pairs. Part (iv) will be checked below for the O(d, h).
Note the consequence that

Be[1/1V'="

is free of rank A over B, = BF[I/t]V’Zl. Indeed, it is free of rank 1, with t;f as a
generator, over Bp[l/t]‘ﬂh=1 = B. Qf Ej.

3.4.3 Basic Properties of the O(d, h)

Proposition 64 (i) If § = (d, h) then O(d, h) = O(d/ h)®°.

(ii) Write X, for Xr g, and X for Xp. Then 7,.(Ox,(d, h)) = Ox(d, nh) and
71 (Ox(d, b)) = Ox, (nd. h).

(iii) The vector bundle Ox (d, h) is semi-stable of slope d / h.

(iV) We have Ox(d[,h])@@x(dz,hz) 20x(d|h2+d2h|,h1h2) and
Ox(d, h)Y >~ Ox(—d, h).
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(v) For A > it we have Hom(Ox (1), Ox(u)) = 0. For A < u we have
Ext'(Ox (L), Ox () =0.

Proof (i) and (ii) follow from the definitions and standard facts (the projection for-
mula). For example, if d = d;h then

Ox(d, h) = 1+ (Ox,(d)) = 7 (71, Ox (d1)) = Ox(d1) Q mpery; O,
= Ox(d)) ® 0%, = Ox(d)".

We next show how (iii) is deduced from (i) and (ii). Since 7; multiplies the slope
of any vector bundle by #, it is enough to show that 7r;Ox(d, h) is semi-stable on
Xh . But

m;Ox(d, h) = Oy, (dh, h) = Ox, (d)®".

For any line bundle O(d), the vector bundle Ox(d)®" is semi-stable. In fact, on
any curve an extension of semi-stable vector bundles of the same slope is again
semi-stable.
For (iv) it is enough to assume, by (i), that (h, hy) = 1. Consider then the cov-
erings
Xniny
v N
X, X, .
N e

X
We have
Ox(di, h1) ® Ox(d2, h2) = 7,4 (Ox, (d1)) Q 7h,+(Ox,, (d2))
= Tyhys (T, 1y 1, O, (1) @ 7035 1,4, Ox,, (d2))

= Mo (Ox,, , (hody + hidr)) = Ox(dihy + dohy, hihy).

Here the passage from first to second line comes from the fact that for A-algebras
B and B, and modules M; over B; there is a canonical isomorphism

My ®4 My >~ (B, @4 M1) ®p,0,8, (B1 @4 M>).

For (v) the claim about Hom follows from the fact that Oy (11) is semi-stable of
slope w, and from the fact that if £ — & is an injective homomorphism of vector
bundles of the same rank then deg(€") < deg(E). This last fact is property HN2(iii)
of the abstract Harder-Narasimhan formalism, whose verification boils down to the
case of line-bundles, where it becomes obvious.
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For Ext note that
Ext"(Ox(3), Ox(n) ~ H' (X, Ox (=) ® Ox(n))
~ H'(X, Ox(n — 1)"
for some natural number m (see (i)). If u — A =d/h > 0 then
H'(X,Ox(d/h)) = H' (X, 14 (Ox,(d))) = H' (X, Ox,(d)) =0

by what we already know about the cohomology of line bundles. (I

Corollary 65 If (D, ¢p) is a semi-stable isocrystal over k = F,, then £(D, ¢p) is
a semi-stable vector bundle on X .

4 An Application to Galois Representations: Weakly
Admissible Equals Admissible

We still have to complete the proof of the classification theorem (Theorem 59). But
before we dive into it, we want to give an application to a deep theorem of p-adic
Hodge theory, which for the first time brings in Galois representations.

4.1 Fontaine’s Formalism of B-Admissible Galois
Representations

4.1.1 Galois Representations and the General Strategy

Let £ =Q, (more generally, we could take E to be any finite extension of
Q). Let Gg = Gal(E/E). By a “Galois representation” we shall understand a
finite-dimensional @Q,-vector space V with a continuous Gg action. Let Repy =
Repg(Q),) be the Tannakian category of all such representations.

So far, our theory of the Fargues-Fontaine curve was functorially built from a
given algebraically closed complete valued field F. If we fix an algebraic closure E,
its completion E=C p inherits a G g-action, hence so do F = (C?, and all the rings
built from it: W(OF), B>+ C B?, the completions B; and in particular Br = B 1),
the rings B., BJR, oo C Bar oo and B.,is o. Here we implicitly use the fact that the
G g-action commutes with ¢, and that the distinguished point co (corresponding to
the choice of (C,,, tcq) as an untilt) is fixed by G . We shall drop the subscript oo
from B, and B, ;5.

Lemma 66 BJ: = BS" = E.

cris
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Proof Since B.,;; C Byp it is enough to prove that BdGRE =E, or BJRG £ = E. This
follows from the fact that

Fil' B/ Fil ™' B, >~ C, (i)
and from Tate’s basic theorem that
H%(Gg,Cp(i) =0
ifi >0and H°(Gg,C,) = E. O

Fontaine’s strategy for studying the category Repg was to associate to a Galois
representation V and some “rings of periods” B, carrying a G action, the group

Dp(V) = (B ®r V)7,

where G acts on the tensor product diagonally. Assuming also that BY2 = E (this
fixed subring should be a field in general, but it need not be E, a simplifying assump-
tion that we make here), Dy (V) becomes an E-vector space, and under a fairly
general assumption, which holds for B;g and B, for example, we have

dim Dg(V) < dim V.

The representation V is called “B-admissible” (or de-Rham, resp. crystalline,
if B = By resp. B.iy) if equality holds here. The full subcategory Repg p of B-
admissible Galois representations is mapped via Dp faithfully to the category of E-
vector spaces and the functor Dy is exact. In general, it is impossible to reconstruct
V from Dg(V), even if V is B-admissible, as the functor Dy is not fully faithful.

The “game” is to endow B with “extra structure” that commutes with G, so is
inherited by Dg(V), which can now be considered as an object of a more refined
category than just vector spaces. This category will still be considerably simpler
than the category of B-admissible Galois representations. The hope is that if enough
“extra structure” is imposed, (a) the functor Dy will become fully faithful, (b) its
essential image will be describable in terms of the extra structure, and (c) a formula
will be given to retrieve V from D, if D is in the image of Dp.

Two such examples of extra structure come to mind: Byy is equipped with a
filtration Fil® and B, with a Frobenius ¢. It turns out that each of these extra
structures alone is not sufficient to answer our hopes and retrieve V, but both together
do. If we use both we get an object in the category of filtered ¢-modules (filtered
isocrystals), and it can be shown rather easily that this object must be semi-stable of
slope 0, or equivalently, weakly admissible. Fontaine conjectured that the category
of weakly admissible filtered ¢-modules, as a full subcategory of the category of all
filtered p-modules, is an abelian tensor category, and in fact isomorphic, under D, ;;,
to the category of crystalline representations. It should be mentioned that a B, ;-
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admissible representation is also B,;g-admissible, so although the filtration comes
from B,g, the functor to be studied is D,,;;.

Rather than develop the general formalism of B-admissibility, we focus from
now on these two examples, and let B = B,y or B,,;. It should be mentioned that
Galois representations coming from (geometric) p-adic (étale) cohomology of proper
smooth varieties over Q, with good reduction are crystalline. There is a richer ring
of periods, By, that carries another piece of structure—a monodromy operator N—
which enables to detect and reconstruct “semi-stable” representations, typically those
coming from p-adic cohomology of proper smooth varieties with semi-stable reduc-
tion. We do not discuss the semi-stable case in these lectures.

Fontaine’s conjecture has the non-trivial consequence that the category of weakly
admissible filtered ¢-modules is closed under tensor products, an analogue of the
Faltings-Totaro theorem. Fontaine’s conjecture was proved in 2000 by Colmez and
Fontaine. A second proof was given by Berger. The Fargues-Fontaine curve, and the
classification of vector bundles over it, enables us to give a short and elegant proof,
which we describe in this section.

4.1.2 de-Rham and Crystalline Representations

Let V be a p-adic representation, B = Byg or B;s, and D = Dg(V) = (B Qg
V)%=, Recall that B.,;; C Byg and that B,y is a complete discrete valuation field.

Proposition 67 (i) dim D < dim V.
(ii) If equality holds (i.e., V is B-admissible), then the natural map op : B @
D — B ®g V is an isomorphism

B®g D>~BQ®gV.

(iii) If equality holds for D = D, (i.e., V is crystalline) then equality also holds
for D = Dyg (i.e., V is de Rham) and D = D¢ ,;s(V) = Digr(V).

(iv) If V is crystalline, then endowing D with a structure of a filtered ¢-module
(possible in view of (iii)),

V = Vais(D) = (Beris ® D)= N Fil®(Byg ®k D).

Here ¢ acts diagonally, the filtration is the tensor product filtration, and the resulting
Galois action on 'V comes from the G g action on B.,;s or Byg.

Proof We start with B = B,g, which is a field, and prove first that s is injective.
Assume that 0 # Zf:l b; ® d; is an element in ker(ag) and r is minimal. Without
loss of generality, by = 1. Let 0 € Gg. Applying o and subtracting we get

Z(O’bi — b,) ® d,' S ker(aB),
i=2
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so from the minimality of r all b; € BdGRE = E, which implies r = 1, and d; = 0,
a contradiction. The injectivity of op immediately proves (i), and (ii) is a formal
consequence, counting dimensions over Byg.

Now take B = B,,;s C Byg.Since D,;s(V) C Dyr(V) (i) is clear. It is also clear
that if V is crystalline, it is de Rham, and D,,;s(V) = D4g(V), hence (iii). To prove
(@ii) for B.,;s we need the following property of B.,;; (incorporated in Fontaine’s
axioms for a “regular” ring of periods B; B,; is hence regular):

e If 0 # b € B, and the line Eb is Gg-stable, then b € B

Assume this property for the moment, let V be crystalline, let vy, .. ., v, be a basis
of Vandd,,...,d, abasisof D = D.;;(V) = Dyr(V). Write

d = Zbij ®v;, bij € Beris.
The injectivity of ap implies that b = det(b;;) # 0. Since
diAN---ANd, =bvy A---AV,)

the left-hand side is G g-invariant. As Ev; A --- A v, i1s G g-stable, we see that Eb
is G g-stable, hence b = det(a ) is invertible and «p is an isomorphism.
To prove the property of B.,;; used above let

E =W(,)[1/p] =Qy.

We claim that if b € B,,;, is such that Ebis G g-stable, then Eb = Et' for some i.
This will imply of course our property. Going over to B, and twisting by a suitable
power of 1 we may assume that b € B}, and its image 6(b) modulo Fil' = mgp is
non-zero. We get an element 6(b) € C, such that E0 (b) is G g-stable. A theorem of
Sen [19] (answering a question of Serre) implies then that 8 (b) is algebraic over E.
It follows that the action of G ; = Ir C G (the inertia subgroup) on 6 (b) factors
through a finite quotient. But the E-line Eb C B.,is is also Ig-stable and 6 is injective
on it. Thus the action of /g on b factors through a finite quotient as well and b is
algebraic over E. Tt follows that E [b] s a field and b~! belongs to it (in fact, it can
be shown that b € E).
(iv) Using (ii), assuming V is crystalline and letting D = D,,;5(V),

(Beris @& D)?=' N Fil’(Bygr ® D) = (Beris @£ V)*=' N Fil’(Byr @£ V)

=BT @ V)N (B ®:V)=B! NBL) @V =V

cris cris

since, by the fundamental exact sequence of p-adic Hodge theory, Bf”:.sl NBj, =E.
O
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Corollary 68 If V is one-dimensional and crystalline, then E®pV ~E() for
some i (a Tate twist). Consequently, the inertia group 1, C Gg acts on 'V via a
power of the cyclotomic character.

Proof If visabasisof V and b € B, is such thatd = b ® v is G g-invariant, then
G preserves the line Eb, and the proof of the Proposition shows that /g acts on b
via a power of the cyclotomic character (as it acts on #'). O

Remark 69 If E is a finite extension of Q, and V' is a one-dimensional crystalline
Q,-representation of G g then the same stays true. However, if V' is a one-dimensional
crystalline E-representation then there are more possibilities: for example, Ir can
acton V via a Lubin-Tate character associated with E, .7 : Gg — Op. In general,
p-adic Hodge theory over bases Q, ; E has “cyclotomic analogues” or “Lubin-
Tate analogues™ of the results over QQ,, depending on the coefficients. Similarly,
there are (at least) two natural candidates for I in the theory of (¢, I')-modules:
Loyt = Gal(E(up=)/E), or ' 1 5. The latter is much larger and depends on the
prime 7.

4.1.3 Admissible Is Weakly Admissible
We consider the functor
D,y : RepE,cris - (PMOdFllE

from the category of crystalline Galois representations into the category of filtered
¢-modules over E. Notice that this is essentially the category of filtered isocrystals
discussed before, except that we consider filtered isocrystals over IF, (i.e., E-vector
spaces) and not over F p (e, E-vector spaces). As we have seen in the Proposition,
the functor is fully faithful. In fact, a quasi-inverse was found in part (iv) of the
Proposition: it takes D € g Mod Filg to

Veris(D) = (Beris @ D)?=' N Fil’(Byg ®k D).

It remains to identify the essential image of D,,;y.

Definition 70 A D € pModFilg is called admissible if it is in the essential image
of D.,s. It is called weakly admissible if it is semi-stable of slope O.

Recall that semi-stable of slope 0 means that

ty(D) =Y idimgr'D = v (det(®)) =: ty(D),

where @ is a matrix representing ¢ in some basis, and for every strict subobject
D’ C D (strict = with the induced filtration) there is an inequality < in the above
equation. (The symbols 75 and ty refer to the end points of the Hodge and Newton
polygons.)
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Proposition 71 If D is admissible, then it is weakly admissible.

Proof Assume D = D,,;(V) and let r = dim V. Then \" D = D..;s(/\" V) and
so /\" V is crystalline. We have t5(/\" D) = ty (D) and similarly for ¢y. This is
tautological for ¢ty and an easy exercise in filtered vector spaces for ¢y, which we
leave to the reader. Thus to prove that t5 (D) = 5 (D) we may assume that D is one-
dimensional. But V is then a one-dimensional representation on which [, acts via
x', where y is the cyclotomic character. In this case both ¢ and ¢y can be computed
directly and come out to be —i. Exercise: compute them for Q, (i) and show that they
are unchanged by an unramified twist. In fact, the filtration is not affected by such
a twist, so ty is clearly unchanged. As for ty, since we assumed that £ = Q,, for
simplicity, ¢ is linear and is given by ® € Q. An unramified twist of V' is reflected
in D in a change of ® by u € Z;. Over O, u = o (v)/v where o is the arithmetic

Frobenius, so all such D’s become isomorphic over E.
Next, we have to show that for D’ a strict subobject of D = D,;5(V), we have

th(D") < ty(D")

(“The Hodge polygon lies below the Newton polygon”). For this we follow [1],
Theorem 9.3.4.° Let s = dim D’ < r = dim D. Replacing D’ and D by

/S\D/C/S\D

we may assume, without loss of generality, that s = 1, i.e., D’ is a ¢-stable line in
D with the induced filtration.

Assume therefore that D' = E¢’ C D = D,,;5(V). Applying a Tate twist to V
results in a Tate twist of all the objects, so we may assume that ¢ (D") = 0 and show
that 7y (D’) > 0. Let ¢(¢') = Le’ where ty(D’) = n = ord,(A). Letvy, ..., v. be a
basis of V and write

.
e = Zbi Qv € Byis Qe V.

i=1

By the assumption that 757 (D) = 0 all the b; € B}, and one of them, say by ¢ m ..

Since
p

re' =g(e) =Y ob)®v;

i=1

we have ¢(b;) = Ab;. It is enough to prove that if ord, (1) = n < 0 then

=\
B "N B, =0.

cris

9 Although Fontaine must have known the proof, the one given in “Périodes p-adiques”, Proposition
5.4.2 is flawed!
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Write & = up” where u € Z. Twisting by ™" we have to show that

Bc‘f;rlz'su n tinB;R =0.
Let b belong to this group. Let v € E be a unit such that ¢ (v) /v = u. Replacing b by
v~'h we may assume that u = 1. But then the fundamental exact sequence implies

that BY> N'm}, = 0, contradicting n < 0. O

4.2 Weak Admissibility Implies Admissibility

4.2.1 Vector Bundles Associated with Filtered ¢-Modules Over E.

If (D, @) was a g-module (over E, i.e., anisocrystal over IF‘,,), we associated to it the
vector bundle £ (5, @) on the Fargues-Fontaine curve X r. In terms of (B,, B;R)-
pairs, it was given by the pair ((Br[1/t] ® 3 D)‘ﬁzl, BjR Q% D).

Suppose (D, ¢p, Fil®) is a filtered p-module over (Ko, K) = (E, E). We let
E(D, ¢p, Fil*) be the vector bundle associated with the pair ((Br[1/t] ® D)*=",
Fil’(Big ®¢ D). . .

Note that if Fil°D = D, Fil'D = 0, then we recover £(D, ¢p), where D =
E®g D. Clearly £ is a functor from the category of filtered ¢-modules to ¥ ZBy.
As a particular example, consider a homomorphism

(D, gp, Fil}) — (D, ¢p, Fil}).

This amounts to the identity on D and two filtrations satisfying Fi li CFi lé. The
induced mapon (Brp[1/t] g D)#=!isthe identity, so we getthatE(D, ¢p, Fil}) —
E(D, ¢p, Fil3) is a modification at oo, i.e., an injective homomorphism of vector
bundles which is an isomorphism away from oco. The cokernel is a skyscraper sheaf
at co. We record even a more special case in the next Proposition.

Proposition 72 Let (D, ¢p, Fil®) be a filtered ¢-module such that Fil°D = D.
Then there is an exact sequence of sheaves on X

0 — E(D, ¢p) = E(D, ¢p, Fil®) = inu(Fil’(Bag ® D)/Bjz ®¢ D)) — 0.

We recall that if Fil'oD = 0 then

io—1

Fil’(Byg ® D) = Y t7'Bjp ® Fil'D.
i=0
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In particular, if Fil 2D = 0, the last term in the exact sequence (the skyscraper sheaf)
isC,(-1)® Fil'D. Such a modification of £(D, ¢p), in which the skyscraper sheaf
at oo is killed by ¢, hence is a B;R /() = C,-vector space, is called minuscule.

By the main classification theorem (yet to be proved!)

8(D, ®D, Fll.) ~ E(D/, (pD/)

for some ¢-module (D', ¢ p/). Which one we get is a subtle question, and depends
on the relative position of the filtration w.r.t ¢.

4.2.2 Gg-Equivariant Vector Bundles

There is an extra structure we can impose on the vector bundles £(D, ¢p, Fil®) for
(D, ¢p, Fil*) € pMod Filg.Recall that previously, when we constructed the vector
bundles O()), we started with the category of isocrystals over H‘_’p, i.e., the category
@Mod. Now, even if we ignore the filtration (i.e., put the trivial filtration), we are
using the category of isocrystals over IF,, which is richer: every isocrystal over the
algebraic closure has an [ ,-structure, but this structure is not unique. In addition,
our F and all the resulting rings now carry a G g-action (something that did not exist
for a general F).

The Galois action allows us, as usual, to put on £(D, ¢p, Fil®) a structure of an
G g-equivariant vector bundle, i.e., for every o € G g an isomorphism

o i 0*E=E

where o* denotes the pull-back w.r.t. the map induced by ¢ on X, such that the
cocycle condition
Cor =C¢ O T*(Cd)

holds. In terms of B-pairs, ¢, is induced by the action of o on ((Br[l/f] ®¢
D)?=!, Fil°(B4g ® D)) arising from its action on Br[1/¢] and Byg. The fact that
this action is semi-linear over (B,, B;[R), exactly means that it translates to an O -
linear isomorphism between ¢*€ and €.

The G g-equivariant vector bundles on X form a category'® ”//ﬁgﬁ . We have
therefore constructed a functor

£ :@pModFilp ~ V B3

If £ is a G g-equivariant vector bundle, then V = H 9(X f, &) inherits a G g-action
and is therefore an (infinite dimensional in general) Galois representation over E.

10The G g-orbit of every point of Xg other than oo is infinite. The quotient of Xy under Gg
therefore does not exist as a scheme. If we wanted to “descend” an equivariant vector bundle we
would have to do it in some stacky sense.
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Similarly, H 9(Xp \ {00}, &) is a semi-linear Galois representation, free over B, of
rank equal to rk(£).

Finally, we remark that there is another “cheap” way to get Galois equivariant
vector bundles, associating to V € Repg the equivariant vector bundle V ® g Oy,
which will be semi-stable of slope 0. In fact, every semi-stable slope 0 equivariant
vector bundle is of this sort and the functors

Vs VRpOx =€, E~H(Xp, )=V
are easily seen to define an equivalence of categories
Repg =~ {Semi-stable slope 0 equivariant vector bundles}.
The proof of this is the same as the proof of the equivalence
Vecty ~ {Semi-stable slope 0 vector bundles}

(resulting from the basic classification theorem for vector bundles), enriching both
categories with Galois action. For the details, see [5].

The intersection of the two families, i.e., the semi-stable, slope 0 equivariant vector
bundles of the form £(D, ¢p, Fil*®), will correspond to the full subcategory Repg cris
of crystalline representations. But this is non-trivial, and is an equivalent formulation
of the Colmez-Fontaine theorem that “admissible equals weakly admissible”.

The following diagram summarizes the situation:

Repr 2V E=VRgOx+—> H'Xp, & =V
U I Il Il Il -
RepE,cris > V = E(Dcris(v)) = Vcris(Dcris(V)) = V

4.2.3 Slopes and Semi-stability

The next theorem generalizes what we have proved before, without the filtration.

Theorem 73 (i) The functor € : pModFil ~ 7/93)6(; preserves rank and degree.
(i) (D, @p, Fil®) is semi-stable if and only if so is £(D, ¢p, Fil®).

Recall that
deg(D, ¢p, Fil®) = Z i dim(gr' D) — ord,(det ®).

In the example given above of a minuscule modification, the graded pieces are non-
zero for i =0, 1 only, so this is dim Fil'D — ord,(det @), while the degree of
(D, ¢p) is just —ord,(det ®). Thus the increase in slope due to the filtration is
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dim Fil'D

(&, gp, Fil*)) — n(E(D, ¢p)) = GimD

Proof (i) The statement about the rank is obvious. The statement about the degree
follows from the case of the trivial filtration proved already, and from the fact that if
a: & < &' is amodification at 0o, deg(£’) — deg(€) = lengthB;R (coker(x)).

(i1) This follows from a more precise (and more general) statement, that if

oOcDh cCc---cD,=D

is the Harder-Narasimhan filtration of the filtered ¢-module D = (D, ¢p, Fil®),
then
0Ccé&WDy) C---C&WDy)=EWD)

is the Harder-Narasimhan filtration of the vector bundle £(D). Now the Harder-
Narasimhan filtration of a Gg-equivariant vector bundle is clearly a filtration by
equivariant sub-bundles (by its uniqueness). Therefore, in conjunction with (i), it
suffices to show that any equivariant vector sub-bundle £’ of &€ = £(D) is £(D’) for
a (strict) @- sub-module D’ C D.

Let M = M, (D) = (Br[1/t1 Q¢ D)?=! = H(X \ {0}, £), a free B,-module
of rank » = dim D. By the Galois equivariance of & it carries a G g-action, which
is of course compatible with the the Galois action on Br[1/¢] and the trivial action
on D. Let M' = H(X \ {00}, &) and M" = M/M’. Since &' is locally a direct
summand and B, is a PID, M’ and M” are free over B,. Put

D' = (Br[1/t1®p, M')°"

(here we use the fact that since £’ is Galois equivariant G g preserves M’) and define
D” similarly. These are ¢-modules where the action of ¢ comes from its action on
Br[1/t].

By Galois cohomology, we have an exact sequence of ¢-modules

0—- D —- D— D",

We have dimg D' < rkg,M' = rk(E’), dimg D" <rkg M" = rk(E") (where £" =
E/E&). The proof of this is the same as the proof that dimg D.,;5(V) < dimg V. (It is
easier to prove the stronger claim with By replacing Bp[1/t], since Byp is a field.)
Clearly, rk(E) = rk(E’) + rk(E"). It follows, by dimension counting, that the short
exact sequence is also exact on the right and that the inequalities are equalities. In
particular

dlmE D/ = VkBEM/.

Now
Br[1/t1®g D' C Bp[1/t]1 ®p, M’
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and if dimg D" = rkg, M’ we must have an equality. The proof of this is the same
as the proof of (i) and (ii) in Proposition 67. Taking g-invariants and recalling that
Bp[l/t]‘/’=1 = B, we get

(Brl1/11®@E D)*~' = M' = H(X \ {00}, £).
Similarly for M”. Finally, we put on D" and D" the filtration induced from the one of
D and verify that the completion of the stalk of £ at oo is given by Fil®(Byg ® D’)
and similarly for £”. This completes the proof that £ = £(D’) for a strict ¢-sub-
module D’ C D, hence, in view of (i), that the Harder-Narasimhan filtration of & is
obtained from the one of D. (]
4.2.4 The Functor £(V)
We can now compose the functor £(—) with the functor D,,;; to get a functor

G
RepE,crix ~ qj/ﬂxf )

that we denote also by
Vi E(V) = E(Deis(V)).

Since a crystalline representation may be reproduced from D = D.,;;(V) as
V = Veyis(Deris (V) = (Beris ® D)= N Fil’(Byg ®k D),

and since, as mentioned before, (B..is @ D)?=! = (Bp[1/t] ®¢ D)*=!, we con-
clude that if V' is crystalline,

V =H'Xp, E(V)).
As we have seen, if V is crystalline then D.,; (V) is weakly admissible, i.e.,
semi-stable of slope 0. This implies that £(V) is also semi-stable of slope 0, and by

the corollary of the classification theorem

E(V) =V QO0x.

4.2.5 The Main Theorem

Theorem 74 (Colmez-Fontaine) Let D = (D, ¢p, Fil®) be a weakly admissible
filtered p-module over E of dimension r. Then

V= Veis (D)
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is an r-dimensional crystalline representation, and D = D.,;;(V), i.e., D is admis-
sible.

Proof As we have seen, slope and semi-stability are preserved by the functor £(—),
so £(D) is an equivariant semi-stable vector bundle of slope 0. Being semi-stable
of slope 0, the classification theorem shows that £ is a trivial vector bundle, so
V = V,is(D) = H'(Xp, ) is also r-dimensional and £ ~ V ® Ox (with Galois
action). This was the crucial step. (]

We will show that the equality of dimensions dimg V,,;;(D) = dimg D forces
Dcris(v) =D.

Thus V is crystalline (because D,,;s(V) is of maximal possible dimension) and D
is admissible (because it is D,,;s of a crystalline representation).
We need a lemma, which settles the 1-dimensional case.

Lemma 75 Let D be a I-dimensional filtered ¢-module. Then:

i) Ifty(D) < ty(D) then Veris(D) = 0.

(ii) If tyg(D) = ty(D) then V,..;s(D) is one-dimensional and crystalline and
D.is(Veris (D)) = D. Furthermore if d is a basis of D and v = bd (b € Beig) is
a basis of V then b € B

cris”

(iii) If ty (D) > ty(D) then V.,;s(D) is infinite dimensional.

Let us assume the validity of the lemma for the moment, and finish the proof of the
theorem. Let C,,;s be the field of fractions of B,,;,. Since C,,;s C Bgg, Cgfs =FE.
Consider the canonical map

a Ccris R V- Ccris RE D
(recall V C B,is @ D). Since its image is a C,,;s-subspace stable under G, it is
of the form C,,;; ® D’ for a subspace D’ C D. Since Im(«) is ¢-stable, so is D’.
Equipping D’ with the filtration induced from the filtration of D, it becomes a strict
sub-filtered ¢-module. Let s = dim D’ < r. We have

V C Vcris(D/) C Veis(D) =V

so they are all equal. Let vy, ..., v; be elements of V such that «(1 ® v;) is a basis
of Coris @ D'. Letdy, ..., d, be abasis of D’. Write

a(l®v) =) bj®d

with b,‘j € B.is. Then b = det(bi_,-) # 0. Let

0 75 W= /\V = Vcris(/S\D/)'
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By the assumption that D is weakly admissible, 7 (/\' D') = ty(D') < ty(D') =
tv(/\* D'). Since W does not vanish, the lemma implies that ¢ (D’) = ty(D’), that
W is 1-dimensional, hence r = s, D’ = D, and « is an isomorphism. Furthermore,
b € B}, by part (ii) of the lemma, so « is an isomorphism also over B :

o Bcris F V>~ Bcris QF D.

But this isomorphism respects the Galois action so D = D,,;;(V), showing that V
is crystalline and that D is admissible.
To conclude, we prove the lemma.

Proof Let D = Ed, where ¢(d) = Ad and the filtration of d is ty (D). Tate-twisting
we may assume that t5 (D) = 0. Then n = ty(D) = ord,(1). We have

|
Veris(D) =~ BYZ" N By

cris

Applying an unramified twist we may assume that

Veris(D) ~ B=P " N B, = t"(BYS nmllp).

cris cris

The lemma is now clear. O

5 The Classification Theorem

5.1 Preparations

5.1.1 A Lemma on Harder-Narasimhan Filtrations in Finite étale
Galois Coverings

Lemma 76 Let f : X — Y be a finite étale Galois morphism of complete curves
(in the sense discussed in these notes). Let £ be a vector bundle on Y and

0=&céE cCc---céE =€
its Harder-Narasimhan filtration. Then
0=f*&cCf&c---CfE=fE

is the Harder-Narasimhan filtration of f*E. In particular f*E is semi-stable if and
only if € is.

Proof By uniqueness, the Harder-Narasimhan filtration of f*& is Galois-stable, so
since f is finite étale it is pulled back from some filtration of £. The lemma is an
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immediate consequence of the fact that pulling back by f multiplies the slope by
d = deg(f). O

5.1.2 Equivariant Structures on a Vector Bundle

Let X be a scheme, equipped with an action of a finite group I". Let (£, (¢y)ser) be
a ['-equivariant vector bundle. Thus

Co :0E~E, crotcy =cCyr.
Then I acts on the group Aut (£) of automorphisms of £ on the right via
frf=c,00"foc; .
If (c)) is another structure of an equivariant vector bundle on £ then
dy =c,0(ch)™" € Aut(€)
and (d,) € Z' (", Aut(€)) is a 1-cocycle, i.e.,
dyr =1(dy) 0 d;.

Conversely, if (d,) satisfies this condition, ¢, = d~ 6 ¢, is another structure of an
equivariant vector bundle. The following proposition is standard.

Proposition 77 Two equivariant structures on & are isomorphic (i.e., there is an
automorphism of € carrying one structure to the other) if and only if the cocycles
(¢cs) and (c) differ by a coboundary (i.e., are cohomologous). The set of equivariant
structures on a given &, up to isomorphism, is either empty or a (set-theoretic) torsor
for HY(T, Aut (£)).

5.1.3 Pure Vector Bundles on the Fargues-Fontaine Curve

Recall the vector bundles Ox (1) (A € Q) that were constructed on the Fargues-
Fontaine curve X. We call a vector bundle £ pure if it is isomorphic to Ox (1)* for
some da.

Corollary 78 Let m), : X, — X be the cyclic degree h covering of the Fargues-
Fontaine curve associated with the unramified field extension E,/E of degree h.
Then a vector bundle € on X is pure if and only if ;i€ is pure on X,.

Proof We have seen the “only if”” before. Assume that 7 & is pure. Enlarging h if
necessary we may assume that
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7 ~ Oy, (d)*

where d € 7. Since the degree of 7;;€ must be a multiple of &, we get hlad. We
therefore have

d
71 = Oy, (d)* ~ Ox, (ad, a) = n,f(’)x(%, a) =: F.

The isomorphism classes of equivariant vector bundle structures on F are, according
to the last Proposition, in a bijection with

HY(Z/hZ, Aut (F)).

But Aut (F) = GL,(E}), so by Hilbert’s theorem 90 the last pointed set is a point,
and the equivariant structure is unique. This implies that F can be descended in a
unique way, so £ =~ (’)X(ﬂ, a). O

5.2 An Abstract Classification Theorem

The following criterion, leading to the conclusion that every vector bundle on the
Fargues-Fontaine curve is adirect sum of O(A)’s, was inspired by the work of Kedlaya
on slope filtrations.

Theorem 79 Consider the following statement. Criterion(X ): for every vector bun-
dle € on X and for every n > 1, if we have a short exact sequence

1
0—> Ox(——)— & — Ox(1) >0,
n

then HY(X, £) # 0.

Suppose we prove Criterion(X), and that the same is true if X is replaced by its
cyclic unramified covering X, of degree h for every h > 1, i.e., Criterion(X,) also
holds. Then:

(i) The semi-stable vector bundles on X are the pure ones.

(ii) The Harder-Narasimhan filtration of X is split.

(iii) Every vector bundle on X is isomorphic to

P oxt
i=1

for unique rational numbers Ay > Ay > -+ > A,.
Furthermore, if we prove Criterion(X},) only for vector bundles & of rank <r (and
every h), then (i)-(iii) hold for vector bundles of rank < r.
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Proof Observe first that (i) implies (ii) and (iii). To deduce (ii) from (i) use
Ext'(O(), O(u)) = 0if > A. Then (iii) is a formal consequence of (i) and (ii).
Furthermore, if we prove (i) for ranks < r, then the same argument gives (ii) and (iii)
for ranks < r.

The proof of (i) will be by induction on the rank n of the semi-stable vector
bundle £. When n = 1 (i) is obvious. We assume that (i) is proved up to rank n and
letrk(E&) =n+ 1.

Step 1. Since £ is semi-stable (resp. pure) if and only if ;€ is, we may pull back
to X and assume that «(£) € Z. Since twisting by a line bundle does not change
the conclusion, we may assume now that «(£) = 0. Replacing X by X, we may
therefore, without loss of generality, assume that £ is semi-stable of slope 0 and
prove that it is trivial. This is therefore the key case, and also, incidentally, the only
case of the classification theorem that was needed in the proof of “weakly admissible
is admissible”.

Step 2. Let n + 1 = rk(€) and consider ;€. Let £ C m,;€ be a line sub-bundle
of maximal degree d and consider the short exact sequence

0> Lo>m&—>E —0.

By the semi-stability of 7€ we have d < 0 < u(&').

Step 4. Assume d = 0. In this case £ is semi-stable of slope 0. But the category
of semi-stable vector bundles of slope 0 (or such objects in any Harder-Narasimhan
category) is an abelian category closed under kernels, quotients, and extensions, so
&’ is also such. Applying the induction hypothesis on the rank, £’ is trivial. Since
Extl(O"n, Ox,) =0, 7€ is trivial, hence so is £.

Step 5. It is impossible to have d < —2. Since (') > 0, applying induction
on the rank we know that there exists a A > 0 with Oy, (1) a sub-bundle of £’. Since
d<-=-2

Hom(Ox,(d +2), Ox,(3) = H*(X,, Ox,(h —d = 2)) #0
so there exists a non-zero homomorphism
u:0x,(d+2)— Ox,A) C&.
Pulling back the short exact sequence which defined £’ we get a short exact sequence
0>L—>E" > 0x,d+2)—0
or, after twisting
0> L(—d—1)—>E&"(—d—-1)—> Ox, (1) > 1.

Since L(—d — 1) =~ Oy, (—1), by our assumption the vector bundle in the middle
has a global section, i.e., a non-zero homomorphism
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Oxn(d +1) —> &,
The morphism £” — 7€ is a monomorphism, so we get a non-zero homomorphism
v:0x,d+1) — 7)€

The image of v spans a line sub-bundle whose degree is > d + 1 (the inequality
comes from the fact that v need not be a local direct factor, but then taking the line
sub-bundle spanned by the image of v, the degree only grows). This contradicts the
maximality of d.

Step 6. It is impossible to have d = —1. Since 7, is finite étale, 7, is the left
adjoint of ;" (on modules), if R — R’ is a finite étale ring extension

Homp (L', R"®@r M) = Homg(L', M),

the map from the LHS to the RHS uses properties of 77/ in finite étale extensions).
Thus we have a non-zero

1
ue€ Homyx (L, E) = Homx(mp L, E) = Homx(Ox(—-), ).
n

Denote by Im(u) the vector sub-bundle spanned by the image of u in £. Since
OX(_:T) is semi-stable of slope —1/n and

OX(—%)/ker(u) — Im(u)

is an isomorphism in the generic fiber (i.e., up to a torsion module), we get that
w(Im(u)) > —1/n. Since £ was assumed to be semi-stable of slope 0 we must have

1
—= =< pn(m@u)) <0.
n
Since the rank of I/m(u) is at most n we can have only two possibilities
1
uIm)) =0, -

(1) If w(Im(u)) = 0 then its slope is 0, it is semi-stable as a sub-bundle of &,
and so is £/Im(u), so by induction they are both trivial, and so is £ (no non-trivial
extensions of trivial modules!).

) f u(Im(u)) = —1/n, rk(Im(u)) = n and u is a monomorphism. But since

u: Ox(—%) — Im(u)
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is an isomorphism on the generic fiber and both vector bundles have degree —1, it is
an isomorphism. We have

0—>OX(—1)—>€—>£/—>0
n

and £’ is a line bundle of degree 1. But by our assumption this implies that there is a
non-zero homomorphism Oy — &£, whose image would be a line-bundle of degree
> 0, pulling back to a similar line bundle in 7€, contradicting d = —1. ]

5.3 Some Constructions Related to p-Divisible Groups

For the proof of the classification theorem on the Fargues-Fontaine curve we need
to understand the relation between modification of vector bundles on X and period
maps of p-divisible groups. We take now a rather long detour to review some aspects
of the crystalline theory of p-divisible groups. It is due to Grothendieck, Messing,
Katz, Mazur and later developments by Kottwitz, Rapoport, and Zink.

The pace will be quick, compared to the rest of the notes, and we will assume
some familiarity with formal groups and p-divisible groups. For basics on p-divisible
groups see [3, 7, 13, 15, 22, 23]. For the crystalline theory, see [9, 14]. For moduli
and period maps, see [4, 6, 12, 17]. Much of what we do below is explained, besides
the book by Fargues and Fontaine, also in the paper [18]. These lists are far from
complete, of course, and notation and approach vary from one reference to another.
We warn the reader that it is often a non-trivial exercise to reconcile the explicit
power-series-based approach of Hazewinkel with the sheaf-theoretic point of view
of Messing, or the Lubin-Tate and the Rapoport-Zink formalisms of moduli (when
they both apply).

5.3.1 Adic Rings

We work over an adic ring R over Z,. Recall that an adic ring is a topological ring
which is complete and separated in the /-adic topology for some ideal I C R, i.e.,

R>~1limR/I".

The ideal I is not part of the data, only the topology induced by it. Any ideal J
satisfying J" C I, I C J for some m, n gives the same topology, and is called an
ideal of definition.

Caution: If R isnoetherian and / is any ideal, then the completion R=Ilm._R /1"
is an adic ring with T = IR as an ideal of definition. But in an arbitrary ring R, if 1
is not finitely generated, funny things can happen.
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Adic rings with continuous homomorphisms form a category. The category of adic
rings over Z, is, as usual, the relative category of continuous morphisms Z, — R
in the category of adic rings. Note that if R is an adic ring over Z, we may always
assume that p belongs to the ideal of definition of R (in any case, a power of p will
belong to any ideal of definition).

Any discrete ring in which p" = 0 is trivially an adic ring over Z,.

In this section we write C for a complete algebraically closed valued field of
characteristic 0 and residual characteristic p, such as C,, and C > for its tilt.

5.3.2 The Universal Covering of a p-Divisible Group
Let R € Adicz, and let G be a p-divisible group. For § € Adicg we re-define the

notion of points of G by
G(S) =lim G(S/I§")

where Ig is any ideal of definition for S. If G = (G,) (i.e., G, = G[p"]) then
G(S) =1lim G(S/I') = limlim G, (S/1I3").
For example, if G = p,~ we get
G(Oc) = limlim 1t,n (Oc/p™) =1 +me = Cu(Oc).
One cannot change the order of the limit and the colimit! This example is typical. If
G is the p-divisible group associated to a p-divisible formal group law G over R,
then R
G(S) = G(9).
On the other hand, if S is discrete (so some I’ = 0) then G(S) is the usual notion

of points of an ind-scheme. Note that, with our modified definition of G (S), we still
have

G(O[p"] = GI[p"I(S).
If S is discrete this is so by definition, and, in general, it follows from
GIp"1($) = lim G[p"1(S/13).

We let Ab be the category of abelian groups.

Definition 80 The universal covering G of G is the functor Adicg ~ Ab

G(S) = (1_1121 G(S) = {(x0, x1,...)|x;i € G(S), [plg(xiy1) = xi}.
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Here are the main (easy) points about this definition.

(1) This is a presheaf of Q,-vector spaces. Multiplication by p~ s left shift.

2) fG=Q,/Z,then G =Q,.If G = pp~ then G(O¢) =1+ meo.

(3) If G and G’ are isogenous then any isogeny between them induces an isomor-
phism on the universal coverings.

The next property is not difficult either but is of fundamental importance, so we
single it out as a lemma.

Lemma 81 (Crystalline nature of the universal covering) Let S € Adicg. If I is a
closed topologically nilpotent ideal of S (in particular if it is an ideal of definition)
reduction modulo I induces a bijection

G(S) = G(S/D).

Proof (sketch)Lety = (yo, y1,...) € G(S/I). Letz; € G(S) lift y;. Defining x; =
li~m[ Pzt ), the limit exists, is independent of the lifting, and defines the unique
G(S) > x > y. In the case of u = this goes back to the computations we did when
we gave the two equivalent definitions of the tilt. O

Corollary 82 Let T — S € Adicg be a pro-nilpotent thickening (i.e., the kernel of
T — S is pro-nilpotent, or equivalently, contained in some ideal of definition of T ).
Let G’ be a lifting of G to T. Then

G'(T) = G'(S) = G(S),

hence depends functorially only on G and not on the lifting G'.

Proposition 83 Assume that R is a perfect IF,-algebra. Let G be a commuta-
tive formal group law in d variables, and assume that the resulting formal group
functor'! is p-divisible (this is equivalent to R[X,, ..., X4] being finite flat over
[PIZ(RIX1, ..., Xal)). Let R

G = (GIp"D,%,
be the associated p-divisible group (such a_p-divisible group is called formal or
connected). Then (locally on R) the functor G is represented by a formal scheme

G = Spf(RIX\"", ... X" 1).

Proof See [18]. The key idea is to replace the lim,, with lim,r where F is the
Frobenius morphism. For this we need to consider

¢ Lgoh Lged

1 For § € Adicg G (S) is the set of d-tuples of topologically nilpotent elements of S, with addition
given by G.
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and this is why we need R to be perfect. (]

Let H be a p-divisible group over Oc. Let k = O¢/mc (an algebraically closed
field of characteristic p). Since k = Op/p where L = Q, = W(k)[1/p], there is a
canonical section to O¢/p — k, which allows us to view O¢/p as a k-vector space.
Suppose there exists a p-divisible group H over k and a quasi-isogeny

p:Hxo.Oc/p--+Hx;Oc/p

(this means that the reduction modulo p of H is isotrivial: is isogenous to a trivial
p-divisible group, i.e., one that is extended from k by base change; by a deep theorem
of Scholze and Weinstein, using the fact that C is perfectoid, this is always the case.)

Corollary 84 Under the above assumptions
H = SpfOcliX)”", ..., x"
~Spf(OcllX)” ..., X,/ " 1D.

Proof We can take
H=H XO¢ k,

because p would anyhow specialize to a quasi-isogeny between the two, so we are
allowed to replace H in our assumption by H X o k.

By the crystalline nature of H we have for any S € Adicp,, H(S) H(S/p).
By the invariance of H under i isogeny and our assumption the given quasi-isogeny

ps:H xo. S/p-->Hx,S/p
induces ﬁ(S/p) o~ ﬁ-VH(S/p). Since k is perfect and HH = H X . k the corollary fol-
lows from the last Proposition. Note that to give a sequence of p-power compatible
elements in S is the same as giving a similar sequence in S/ p, by the usual tilting
argument. (I

5.3.3 The Tate Module

Let G = (G,), G, = G[p"] be a p-divisible group over R € Adicz,. Define the
functor Adicg ~~ Ab

7,G(S) = Einp G[p"1(S), V,G(S) =T,G(S) ®z, Q,.

Clearly, T,G(S) is a sub-module of (N;(S), consisting of the sequences (xg, X1, ...)
with xp = 0. Since the latter is a Q,-vector space, so is V,G(S).
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Caution: If G’ is a lifting of G g to a pro-nilpotent thickening 7 — S then we have
seen that 5’(T) = 5(5) depends only on G. But the subspace V,G'(T') very much
depends on the lifting G' andon T'.

Goal: Let G be a p-divisible group over O¢. Denote by Gy its special fiber over
k. Assume that G x o, O¢/p and Gy x; O¢/p are isogenous (as mentioned above,
this is the case by a theorem of Scholze and Weinstein). As we have seen, any such
quasi-igoney p between them induces

p:G(Oc) =G(Oc/p) = Go(Oc/p),

where we emphasize that the RHS depends functorially only on G,. We would like
to construct a long exact sequence (LOG)

0> V,G(Oc) > G(Oc) > Lie(G)[1/p] - 0
I
Go(Oc/p)

and later on recover it as the global sections of an exact sequence of a modification
of vector bundles on the Fargues-Fontaine curve. Observe that Lie(G)[1/p] is a d-
dimensional C-vector space, while V,,G (Oc) is the usual rational Tate module, which
is a Q,-vector space of dimension & = ht(G), so the term in the middle is likely
to be again one of these Banach-Colmez spaces mentioned before (and deliberately
avoided in our notes).

5.3.4 Logarithms

The construction of the exact sequence we want is based on the logarithm of the
p-divisible group. This is standard and we briefly describe it when G is formal (G
obtained from a p-divisible formal group G as before). By means of the connected-
étale exact sequence, the case of a general G can be reduced to the case of a formal
one.

Thus let G, be a formal p -divisible group, and denote by G=S pf(A), A=
R[[X;...., X4]] the corresponding formal group so that G,, = a[p”].

The cotangent space of G at the origin may be identified, as usual, with the
translation invariant differentials, and these are all closed:

WG/R = @?:leX,‘h) ~ {a) S SZA/R|m*(a)) =o®l1+1 ®a)}

Assume that R is flat over Z,, (i.e., contains no p-torsion). The formal Poincaré
lemma, whose proof on the level of formal power series is elementary, says that
any translation invariant @ as above admits a unique primitive A,, € A[1/p] without
constant term so that dA,, = w; furthermore, A, € Homg1/,)(G, (@a).

Consider the map @ +> X,,. This canonical map is a homomorphism (over R[1/p])
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(W Ay) € Hom(gG/R, Hom(G, Ga)) = Hom(G, Hom(gG/R, @a)).

Recalling that Lie(G) = Hom (QG/R, @a), we have defined the logarithm of G
log € Hompgj1/)(G. Lie(G)).
Let 0 = log; opro where pry : G— Gisx > Xo. Then it is easily verified that
(LOG) is exact. If prg : G(S) — G(S) is surjective, @ is surjective too. This is the
case for § = O¢. We shall soon see that 6 is related to the “0” of Fontaine’s rings.

5.3.5 The Universal Vectorial Extension

Let G g be a p-divisible group, and assume for the moment that p = 0 in R. The
sequence of fppf sheaves on the category Alg, of R-algebras

0> Glp'l—- G5 G0
is exact. Applying R Hom(—, G,) we get a short exact sequence (SES)
0 - Hom(G, G,)/p" — Hom(G[p"], G,) — Ext(G, G,)[p"] — 0.

Observe first that Hom (G, G,) = 0 since G is p-divisible but p¥ G, = 0. Next,
if n > N then

Ext(G,G,) = Ext(G,Gy)[p"] = Hom(G[p"], G,) = {a € Ay|m5(a) =a®1+1®a)

= Lie(GY[p"]) = Lie(G") = Hom(wgv, R).

Here we have used Cartier duality, and wrote G[p"] = Spec(A,). The primitive

elements of A, = Hom(A,/, R) (i.e., the elements satisfyingm3(a) =a® 1+ 1Q
a), when regarded as linear functionals from A) to R, define ring homomorphisms

AY — R[e]/(e%)

reducing modulo ¢ to the co-unit homomorphism (the dual of the structure homomor-
phism R — A,)). This is the same as defining an R[]/ (&%)-valued point of G¥[p"]
reducing to the identity, and this, by definition, is a point of the Lie algebra.
Similarly, for any R-module M and the associated vector group scheme M, we
have
Ext(G, M) ~ Hom(wgv/r, M).
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Taking M = wgv g and the identity homomorphism on the right-hand side yields
a “universal” extension

0—> w5 g > EG—>G—0
from which any (fppf sheaf) extension of G by a vector-group M is gotten by a
unique push-out.

This construction is functorial, covariant in G. Finally, passing to the limit over N
gives the same thing over a p-adic base R, i.e., a base satisfying R ~ lim. R/p"R.

5.4 The Crystal of a p-Divisible Group

5.4.1 Rigidified Extensions of G

Apply the functor Lie(—) to the universal vectorial extension. Since Lie of a vector
group is the vector group itself, we get a SES of vector groups (MG = Lie(EG))

0 — wgv /g = MG — Lie(G) — 0.

In [14] Messing shows that VS € Alg,, MG(S) is a locally free module, and that
rk(MG) = ht(G).

Our goal is to enhance M G to a crystal of modules on the crystalline site of R.
What we need is an interpretation whereby M G classifies rigidified extensions of
G" by G,. This is not a mistake: The Lie algebra of the universal vectorial extension
of G classifies rigidified extensions of the dual p-divisible group G by G,. Here is
the definition.

Definition 85 A rigidification of an (fppf) extension E of G¥ by G, is a splitting
(of a SES of sheaves)

0—> G, — Lie(E) S Lie(GY) — 0.

Rigidifications always exist, locally for the fppf topology. Any two rigidifications
differ by a homomorphism from Lie(G") to Gy, i.e., by an element of wgv/g. The
group of rigidified extensions Ext*(G", G,) therefore sits in an exact sequence of
sheaves as in the top row of the following diagram:

0 — wgv/g — Ext*(GY,G,) - Ext(GY,G,) — 0

Il Il Il
0> wgyyg > MG(R) — Lie(G) — 0.

We have already commented on the identification Ext (G, G,) >~ Lie(G") (except
that we have now reversed the roles of G and G"). It is not surprising, and in fact



The Fargues-Fontaine Curve and p-Adic Hodge Theory 323

proved in [14], that the middle terms are canonically identified as well, in a way that
makes this whole diagram commutative.

5.4.2 The Crystalline Site

The big crystalline site over R € AngP is based on the following category. Objects

are diagrams
pd
T —

XN =

where S € Algg, and T is a nilpotent divided powers thickening of S. If S is Z,,-
flat this means that x € I =ker(T — §) = x"/n! € I, and 3N s.t. (x|'/ny!)---
' /ny=0ifx; € I, > n; > N.

If S is not Z ,-flat the notion of a divided power (pd) thickening is more compli-
cated, as the divided powers y, (x) = "x"/n!" are part of the structure that one has
to give on /. This structure is subject to a list of axioms that guarantee that all the
good consequences that we would like to draw from divided powers (e.g., standard
results on exponentials) hold.

Morphisms are maps between such diagrams that “preserve the pd structure”.

To complete the definition of the crystalline site we need to say which collections
of morphisms are singled out as coverings (checking that they satisfy the axioms for
coverings is easy). To simplify the notation we drop the reference to the ground ring

d d
R. Coverings of T s will be, just as in the Zariski topology, collections {(7; %

d
S;) < (T e )} s.t. Spec(T) = | Spec(T;) is a Zariski cover, and S; = S Q7 T;.
Note that the arrows go backwards since we consider rings, not the associated affine
schemes.

d
Finally, the structure sheaf is the sheaf O(T i S) = O(T).

5.4.3 The Grothendieck-Messing Crystal

The key theorem, and the reason for introducing the crystalline site, at least in the
context of p-divisible groups, is the following.

Theorem 86 (Grothendieck-Messing) If (T Zﬁ S) is as above and G is a lifting of
Gs to T then MG’ depends functorially only on G. Denote it by MG (T — S).

We shall follow Katz in sketching a proof in a favorable case, that highlights the
relevance of divided powers, and at the same time indicates an important relation
between M G and de Rham cohomology. First, we make two remarks.

e Liftings G’ of G to any (not necessarily pd-) thickening T — S always exist by
an old (1955) theorem of Lazard, see [7]. But there are many, and the whole point
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is that M G’ is canonically independent of the lifting if the thickening is endowed
with a pd structure.

e MG(T — S) is alocally free coherent sheaf of rank equal to ht (G), and we shall
denote MG(S — S) by MG(S) = M(Gy).

Explanation (after Katz [9]): Start with R € Adicy,,, Z,-flat (so no p-torsion). Let
Fr a p-divisible formal group,

F =Spf(R[[X1,...,XD).
Consider
H,p(F/R) = {[nl|n closed Iform, m%(n) —n ® | = 1 @  exact}/{exact n}.

These are the translation invariant cohomology classes. Notice that it is the coho-
mology class [n], and not the form 1 itself, that is required to be translation invariant.
However, the translation-invariant forms (which are all closed) definitely define such
classes. In fact, they inject into H dl R

wrr =M =n®1+1®n} — Hix(F/R),

because R is p-adic, and F is p-divisible, so if n is both exact and translation
invariant = n = 0. (Logarithms “need” R[1/p].)

Proposition 87 There is a commutative diagram with exact rows (whose terms are
explained below):

0> wrg = HW(F/R) > HX(F:G,), — 0

I Il I
0 = wr/r = Ext"(F;G,) —» Ext(F;G,) - 0

Recall that Ext*(F; G,) is the group of rigidified extensions, and that the bottom
row has been identified, when GV «~ F, with

0 — wgv/g = MG(R) — Lie(G) — 0.

Proof (Sketch) We first explain the map 9 (to ease the notation only when d =
dim F = 1). The formal group law F gives rise to cohomology groups based on
power-series manipulations. Specifically, in degree 2 we have

{A(X,Y) € R[[X, Y]]"| symm., §(A) = 0}
{8(f) = F(X[H]Y) = f(X) = fF(DI f € RIIXTIT)

8(A)=A,Z2)— AX[+]Y,2)+ AX, Y[+]Z2) — A(X,Y)

H*(F;G,), =
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RIIX, YII" = XRI[X, Y11+ YRI[X, Y1].

The map from H}.(F/R) is the following: given [n], find a primitive f(X) €
R[1/pI[[X1]T for n, and let A = 8(f). Then [5] is translation invariant = A is
integral: we have

8(n) =8(df) =d((f)) =dA.

But we know that §(7) is exact over R, hence, by the uniqueness of the primitive,
A is integral. If we add to 1 an exact form, say dh with & € R[[X]]", then we end
up adding to A the power series § (/). This means that we may define 0 by setting
a([nD) = [A]

The identification HZ?(F; G,)s; =~ Ext(F:G,) is standard, and that of
H}.(F/R) ~ Ext*(F; G,) requires only a little more work. The key to the crys-
talline nature of M G is the following lemma. ]

Lemma 88 Let F', F” be liftings of F to T ZI» R. Let ¢ : F' — F" be a morphism
of pointed Lie varieties reducing to the identity on R. Then (i) ¢* : Hd' R(F'/T) ~
H 0} r(F'/T) (preserving the invariance under the group law). (ii) ¢* is independent
of @. (iii) Similarly, if ¢ reduces to an endomorphism ¢ of F, ¢* is a homomorphism
that depends only on ¢y.

Proof (d = 1, see Katz for more variables). Let n = df, f € T[1/p][[X]], repre-

pd
sent[n] € HJp(F"/T).Let] =ker(T — R), g1, ¢ € T[[Y]], 9:(0) =0, 91 = ¢
mod /. Then by Taylor

o> () — @i () = (Zf(’”( - ‘””)

and (---) € T[[Y]] since [ has divided powers and f M is already integral. This
shows (ii) @3 ([n]) = ¢ ([n]). A similar argument proves (i) and (iii). O

We remark that in the situation of the Lemma, it is blatantly false that ¢* maps
wgv 7 t0 wg 7. The proof highlights the use of divided powers, explains the phrase:
“M G’ (T) depends functorially only on G”, and also the relation between crystalline
and de Rham cohomology. For a proof when R is not Z,-flat see, Messing’s thesis
[14].

5.4.4 Dieudonné Modules

The Grothendieck-Messing crystal is a powerful tool. Let us explain how it captures
the classical Dieudonné module of a p-divisible group over a perfect field of char-
acteristic p. Let k be such a field, W = W (k) its ring of Witt vectors, and o the
Frobenius automorphism of W.
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Let G4 be a p-divisible group. Its Dieudonné module can be defined as
D(G) := M(GY)Y(W —» k).

Here are its main features:

e Itis a contravariant, free W-module of rank 7 = ht(G).
e M(GY)(k) = D(G)/pD(G).If G = A[p*°] for an abelian variety .A over k then

D(G)/pD(G) >~ H,r(A/k).

If (—)” denotes base-change with respect to o, then D(G?) = D(G)™V).

Let Fg : G — G'P be the (relative) Frobenius isogeny, and let Verschiebung (of
G") be the dual isogeny Vv : GYP) — GV. By functoriality of M (—) we get F :
D(G)”) — D(G), i.e., a o-linear map D(G) — D(G). Similarly, V; : G —
G ~» o~ !-linear V. The relation V; o F = pg that holds for the two isogenies
implies, on the level of semi-linear algebra,

FoV=VoF=p.

e wg = VD(G)? ) /pD(G) ~ D(G)? D /FD(G).

We conclude that (D(G), F, V) is an F-crystal over k. These objects form an additive
category Feryst,. The Manin-Dieudonné theory yields a complete classification of
p-divisible groups over £ in terms of their Dieudonné modules. In fact:

Theorem 89 (Dieudonné-Manin ) D(—) is an anti-equivalence between pdivgp,
and Fcryst, .

For the proof, see [3, 13].
For completeness we remark that the original definition was

D(G) := Homi(G,CW),

where CW is the group of co-Witt vectors. The actions of F and V resulted, in this
approach, from their action on CW.

5.4.5 F-Isocrystals

Recall that an F-isocrystal (N, F, V) is a finite-dim. W[1/p]-vector space N,
equipped with a o-linear bijective endomorphism F. We define V = pF~!. Such an
N may or may not contain a W-lattice stable under both F and V (i.e., an F-crystal),
and if it contains one, its isomorphism type is not unique, in general.

The Dieudonné-Manin theorem yields an equivalence of categories between the
categories of “p-divisible groups up to isogeny” and “F-isocrystals containing an
invariant F-crystal”.
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Example 90 Let(r,s) =1,5 > 0,A =r/s.LetN, = Zle WIl/ple;, Fe; = ei41
(i <s), Fe; = p"ey. Call A the (Frobenius) slope of N,.

Theorem 91 Let k be algebraically closed. The category of F-isocrystals over k is
semi-simple. Its simple objects are the N,. An F-isocrystal contains an F-crystal iff
all its slopes are contained in [0, 1].

Consider in particular A = 1/ h. In this case it is not difficult to see that Ny, con-
tains aunique underlying F -crystal (up to isomorphism). By means of the Dieudonné-
Manin theorem, this implies that there is a unique one-dimensional p-divisible group
over k of height 4 which is not isogenous to a product of two p-divisible groups of
smaller heights. Explicitly, it can be obtained as follows. Start with a Lubin-Tate
formal group over the ring of integers of Q,+ (the unramified extension of degree /
of Q,), see [11], reduce it modulo p, and extend scalars from IF,» to the algebraically
closed k. Honda has a different approach to the same groups, see [7].

5.4.6 Endomorphisms of F-Isocrystals

The algebra of endomorphisms (up to isogeny) of a p-divisible group over an alge-
braically closed field k can be calculated as the endomorphism algebra of its isocrys-
tal. This is a pleasant exercise in semi-linear algebra whose outcome is the following.

Proposition 92 End(N,) = D_,, the division ring over Q, with invariant —A
mod 1.

If N = D(G)[1/p] this means g End(G) =~ D,. Note the change in invariant,
from —A to A. This results from the fact that D(—) is a contravariant functor, so
End(D(G)) = End(G)°? and not End(G).

/

e Exercise: If 0 <r < s extend ¢, by €]

+ms = P"e;, define the F-crystal

K
§ : / / / / ’
MA = Weiv Fei =€y Vei = Cips—r-

i=1
Then N, has a lattice isomorphic to M, (but there are others).

Over a non-algebraically closed perfect field k of characteristic p, the category of
isocrystals is not semi-simple anymore. However, one still has a direct sum decom-
position with respect to slopes.

Definition 93 Let k be perfect. Call an isocrystal N isoclinic of slope A if N ® k ~
NP

Proposition 94 (Slope decomposition) Let k be perfect and N an F-isocrystal over
k. Then N = @,cqN (1) where N () is isoclinic of slope ).
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Let A < Ay < --- < A, be the slopes of N. Then the Newton polygon N P(N)
is the convex polygon starting at (0, 0), and having slopes A; with horizontal length
rk(N (1;)). Its break points are in Z.

5.5 The Grothendieck-Messing Period Map
5.5.1 The Quasi-Logarithm and a Big Diagram

d
Let R,S eAdicZ’_, T:S Y R a divided power thickening, and S ~

lim S/(ker )". Assume S to be flat over Z,, e.g., (S ﬁ R) = (O¢c — O¢/p).

Start with a p-divisible group G over R and let G5 lift G, r. Both the universal
covering G and the Grothendieck-Messing crystal M G have a “crystalline nature”,
and our goal is to relate them. We do so via a big commutative diagram. The “top
floor” maps to the “bottom floor” via canonical maps or vialog’s (to keep the diagram
readable, not all the “logarithms” are shown). Its rows are exact.

wevs = EG(S) e G(S)
A /56 / |
7,G(S) <= G(S) — G(S) logs
| \: (5.1)
D wevsg < MG(S)g -+ — Lie(G)g
\: /! /" qlog /

VoG(S) < 6(5) e Lie(G)g

The groups appearing in the diagram have all been defined. Let us explain the various
maps starting at the top.

e 5G(x0, x1,...) =lim[p"]gc (&), if EG(S) 3 &, — x, € G(S). The convergence
follows from the fact that ﬂn>0 p"wgvss = 0. Since p"(x,) = xo the right square
of the top floor commutes. This defines then a between the two kernels.

® oG = sglr1,G(s) has the following interpretation (check directly from the defini-
tions!):

x € T,G(S) ~ x, € G()[p"] = Homs(G"[p"], G)

compatible w.r.t. GV[p"] < G"[p"*'], so take its differential "Lie(x)" :
~ ag(x) = Lie(x) € Hom(Lie(G"), G,) = wgvs.

e qlog; = logg osg. If G «~ G (a formal group), fix coordinates on EG, let x =
(x0, x1, ...) and &, be as above, then (check!)
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: : 1 n+m
qlogg (x) = limlim —[p"™] g (&,).
m n p

o 0 =log;oprg= pr%eG(G) o qlog.

We emphasize that the maps s, qlog; are morphisms of crystals, hence depend, like
their source and target, only on Go,r; 8, ag depend on G5 and will be related to
the GM (Grothendieck-Messing) / HT (Hodge-Tate) period maps, respectively.

5.5.2 Rapoport-Zink Deformation Spaces

To define the period maps we have to discuss deformation spaces of p-divisible
groups. Although the first such spaces were studied by Lubin and Tate [12] and
Drinfeld [4], we shall follow the more general, and somewhat different, set-up of
Rapoport and Zink [17]. The latter differs from the former, both in technical details
(the category of test objects is different), and in more substantial matters (allowing
quasi-isogenies at the special fiber), as well as in allowing polarization, endomor-
phisms, and level structures. Needless to say, this is a quick survey, leading to the
notions necessary for the study of vector bundles on the Fargues-Fontaine curve, and
all proofs are omitted.

Let k be an algebraically closed field of char. p, W = W (k), and Hy,; a fixed
p-divisible group, of height 4 and dimension d. Set

My = MHy(W — k) = D(Hy) ~ W".

As our test objects we take rings S from the category Nilpy, of W-algebras in which
p is locally nilpotent, e.g., Oc/p". Note that S need not be noetherian or local and
if it is local noetherian, it need not be complete. With such an S we associate the set

D(S) = ((G. )| Gs pdivep, 1: G x5 S/p -~ Hy xx S/p}.

Next, if S is a p-adic W-algebra, we let D(S) = lim._ D(S/p"). If S is also flat
over W, tinduces, as we have seen, an isomorphism M G (S)g =~ My ®w Sp. Indeed,
the ideal pS having canonical divided powers, we know that

MG(S) = MGy(S — S/p)

where Gy is the reduction of G modulo p. The quasi-isogeny ¢ induces an isomor-
phism
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5.5.3 Examples and Representability

Let us first compare with the more classical treatment in [12], followed also in [6]. In
the Lubin-Tate cased = 1,and Hy, is the unique one-dimensional formal p-divisible
group of height % (see the discussion following Theorem 91). As test objects Lubin
and Tate take R € Cy, the category of complete local noetherian rings with residue
field k. Forsuchan R, S = R/ m% € Nilpw. As their deformation functor, Lubin and
Tate take the functor

M : C ~ Sets

M(R) = {(H, 1) H formal gp/R, 1 : H x g k <> Hy).

Note that by the uniqueness of Hy, H x g k and Hy must be isomorphic (though not
necessarily via t). The endomorphism algebra of H is the skew-field Dy, and

Dlx/h = (II) - OSW

where IT is the Frobenius isogeny of degree p. This shows that the functor M breaks
up, in the Lubin-Tate case, to a disjoint union indexed by st (¢) € Z of copies of the
sub-functor M©, in which ¢ is required to be an isomorphism between H X g k and
H,. The paper [12] indeed concerns M? and not M, but the difference is minor.

We claim that for S = R/p" € Nilpy, we have D(S) = M(S). This follows from
rigidity of quasi-isogenies (see [10], Lemma 1.1.3)

qgHomgs;,(H x5 §/p, Hy x; S/p) ~ gHompm,(H x5 §/mgS, Hp).

In general, outside the Lubin-Tate case, a quasi-isogeny Gy — H, of height O need

not be an isomorphism, so cannot replace RN by ~~, even on D" (the sub-functor of
D where ht (1) = 0).

The deformation problems, whether in the Rapoport-Zink language, or in the one
of Lubin-Tate or Drinfeld, are easy to pose. Their description can be subtle, especially
if one adds PEL structure (which we have not, so far). Here are some examples.

Example 95 1)d =1, h =2, Hy = Q,/Z, x pp~.Since Q,/Z, and u ,~ do not
deform (the first since it is étale, the second since it is the Cartier dual of an étale
group) .

DU(S) = Exts(Qp/Zp, ptp~) = Gy ()

(“Serre-Tate canonical coordinate”). Note D°(k) is a point.

2)d =2, h =4, Hy= Hy;; x Hyj, where Hj; is the one-dimensional formal
group of height 2 (the formal group of a supersingular elliptic curve). D°(k) will
be infinite because there are P! (k)’s of pairwise non-isomorphic G isogenous to Hy
(Moret-Bailly families).
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3) Lubin-Tate case: Hj the unique one-dimensional ht & formal p-divisible group
over k. Then the main result of [12] is that D° = M? is represented by “the open
unit disk in 2 — 1 variables” Spf(W[[Xy, ..., X;—1]]) and again DOk) is a point.

These examples are typical. The main representability theorem is the following.

Theorem 96 (Drinfeld, Rapoport-Zink) The functor D is pro-representable by a
formal scheme over W whose ideal of definition is locally finitely generated. Every
irreducible component of its (reduced) special fiber is proper over k.

5.5.4 The Grothendieck-Messing Period Map

To the formal scheme D (we use the same letter to denote the functor and the formal
scheme representing it) one can associate an analytic space. In the old days this was a
rigid analytic space that was called “the generic fiber of D in the sense of Raynaud”.
The suffix “in the sense of Raynaud” meant to remind the reader that formal schemes
over Spf (W) do not have a generic fiber, as they are simply a compatible system of
schemes over W/p" W for all n > 1. Nevertheless, Raynaud had a round-about way
to attach to D a rigid analytic space. One of the advantages of Huber’s adic spaces
is that we can truly speak of generic fibers. While the intuition is clear (at least in
examples 1 and 3 above), we skip in these notes the foundational aspects of adic
spaces completely, and refer to the literature.

Let Dzd therefore denote the analytic space associated to D (over W[1/p]). The
period map mgy will be a map of analytic spaces (over W[1/p]) from D,“Id to
Gr(d, Mo)j’]" . For simplicity we only describe it on (C, O¢)-points.

Take S = O¢. For (G, t) € D(O¢) we have a quotient map

-1
My @y C ~ MG(O¢)g — Lie(Ge)

from our fixed My ®w C ~ C" onto a d-dimensional vector space.
This defines a “period map” from the moduli space to a Grassmanian

wem (G, 1) € Gr(d, Mp)(C) = Gr(d, h)(C).

Once again, the definition, at least on C-points, is straightforward and intuitively
clear. The basic features of the definition are more subtle:

e Fact: The period map wgyy : Df]‘d — Gr(, Mo)‘,’]d is an étale analytic map.

o Example (Dwork): d = 1, h =2, Hy = Q,/Z, X ft,~. Then D = G,,, D is
the open unit disk A around 1, and gy :A — A' C P! is g — log(g). This is
typical: (a) log is analytic étale, but (b) it is not algebraic, (c) its kernel in O-points
is discrete but infinite (roots of unity) and (d) log(1 4+ m¢) = C (it is surjective
on closed points). Nevertheless (e) log is an isomorphism on W-valued points,
log: 1+ pW =~ pW (p > 2), and in fact will continue to be an isomorphism
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on Og-points as long as the absolute ramification index of K is < p — 1. It is
not an accident that this is also the estimate needed to insure that mg has divided
powers. Quite generally, if (G, 1) € D(W) (unramified) the Grothendieck-Messing
theorem allows to identify the deformation with its period:

Theorem 97 (Grothendieck-Messing) The assignment G +— Lie(G) is a bijection
between the liftings G of Hy to W (up to strict isomorphism) and the liftings of
M Hy(k) — Lie(Hy) to a free quotient My — L over W.

5.5.5 The Period Map in the Lubin-Tate Case

To analyze what happens to the period morphism when the ramification in K grows,
let us examine once again the Lubin-Tate case.

e In the Lubin-Tate case, the map sending (G, ) € MO(W) to mu (G, 1) €
Gr(1, My)(W) >~ P"~1(W) is one-to-one, and its image is the W-points of the
residue disk R, in P"~!(W) reducing to x = [M Hy(k) — Lie(H,)]. However:

e The relation between the Lubin-Tate coordinates (i1, ..., u,_1) € mfv‘vf1 and the
projective-space coordinates on the residue disk R, is the period morphism and is
highly transcendental. Look up the appendix to [6], where formulae are worked
out when h = 2.

e If K is a finite ramified extension of W[1/p], Og — k is in general no longer a
pd thickening, so the Grothendieck-Messing theorem does not apply. We still have
D(Ok) ~ M°(Ok) ~ m’}{l, but a quasi-isogeny of height 0 over Ok / p (unlike
over k!) is not necessarily an isomorphism, so (G, () € DY(Ok) only provides a
map

My Qw K =~ MG(OK)Q — Lie(Gg),

i.e., a point of Gr(1, My)(K) ~ P"~1(K). Since it is not defined integrally, we
cannot talk about its reduction.

e The resulting period map from D°(Ox) to P"~!(K) isnot 1 : 1 in general, and its
image is not confined anymore to a residue disk. In the Lubin-Tate case (but not in
general), when K is replaced by C, it is even surjective, and its fibers are infinite.

The period morphismrmgy : M(O¢) — P'~1(C) was studied further in [6]. Part (i)
of the following theorem is natural and expected. The action of D* on P-1(C)
is via the (projective) regular representation. The element IT acts (in appropriate
coordinates) like
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Part (ii) describes the fibers of the period morphism; two deformations of Hj to R
are in the same fiber if and only if the given quasi-isogeny between their reductions
modulo p lifts to R.

Point (iii) is the afore-mentioned surjectivity on closed points, special to this
case, which is eventually an explicit computation (nowadays embedded in the more
general question of characterizing the image by conditions of weak admissibility,
see below).

In (iv) we consider, for the first time, level structure. Over the Lubin-Tate moduli
space lies the Lubin-Tate tower, whose n-th layer is a formal scheme parametrizing
deformations of Hj together with a full p"-level structure, i.e., a trivialization of
the group H (R)[p"]. This turns out to be a finite Galois covering with Galois group
GL,(Z]p"7Z), whose associated covering of analytic spaces (“generic fibers”) is even
étale (the special fibers are highly ramified though). Letting M, , be the analytic
space associated with the full tower (properly defined!) and M, = Mg"‘d the one
associated with MO (nothing but the 4 — 1 dimensional open polydisk), we get

M, ~ My,/GL,(Z,).

Point (iv) is very pleasing: it re-interprets (ii) and (iii) as saying that projecting M,,
further down to }P’Z_' by the period morphism is the same as dividing M , all the
way by GL;(Q)). This is as close as we can get to saying that the period morphism
is “like dividing by a group action”; had GLj(Z,) been normal in GL;(Q,) this
would have been the case!

Theorem 98 (Gross-Hopkins) (i) mgy is D> -equivariant (D = Dy, the endomor-
phism algebra).

(ii) tom (G, 1) = gy (G',V) < 3f : G 56,/ o f=u

(iii) ngM : MY(O¢) = P"1(C) is surjective.

(iv) Moo, — M, — P! gives PE' = M,/ GLL(Q)).

In general, the image of 775, is restricted by the notion of ‘“weak admissibil-
ity”. Given an exact sequence (recall My = MHy(W — k) = D(H)') ~ why

0— Fil > MO,C_>M().C/F”_)O

with associated filtration Fil® = My ¢ D Fil' = Fil D Fil> =0, N = (N, Fil) =
(Mo.c, Fil) becomes a filtered F-isocrystal. We recall the definitions from §4.2.

e If N’ is a sub- F-isocrystal let Fil' = Fil N (N’ ®wpi/p C), N' = (N', Fil').
e For any filtered F-isocrystal N define

INewton (M) =V (det(d)))

(independent of the matrix representing ®, since this matrix is unique up to o -
conjugation),
tHodge(N) = Y _ i dim grf,,. = dim Fil.
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e Call N = (N, Fil) weakly admissible if for any sub F-isocrystal N' C N

tHodge(M,) < tNewmn(M,)

with equality for N' = N.

e Given Hyy, the weakly admissible period domain is an open subspace §"* C
Gr(d, Mo)f]d such that §“*(C) consists of all d-dimensional quotients

MO,C —- U = MO’C/FZ'I

for which N is weakly admissible.

Theorem 99 (i) The image of TGy : D;‘]‘l — Gr(d, Mo)%d factors through §V°.
(ii) The image contains all the classical points of §*¢ (points whose residue field
is a finite extension of Ky = W[1/p]).

Remarks: (i) is relatively easy. (ii) is a variant of “weakly admissible filtered
isocrystals are admissible”. However, in contrast to what we did in §4.2, we consider
p-divisible groups over C, not only over finite extensions K of Q,. As a result,
the Galois representation “evaporates” and we cannot argue anymore directly via
the functor D,,;; as we did there. We shall later relate (ii) to the geometry of the
Fargues-Fontaine curve. Finally, we mention that Hartl described the non-classical
points in §¢ = Im(wgy). In general, §¢ # F*°.

5.6 The Hodge-Tate Decomposition and the HT Period Map

Besides the Grothendieck-Messing period map, the Big Diagram (5.1) contains the
seeds for the other period morphism, the Hodge-Tate period map. There is a beautiful
duality between the two (see [5], §8.1 and the last chapter of [18]), on which we can
not comment here for lack of space. However, since we already touched on it, let us
at least give the definition, which goes back to Tate’s fundamental paper [23].

5.6.1 The HT Exact Sequence

Recall the map o : T,G(R) — wgv r. Let R = O¢ and let —(1) denote Tate twist.
The following theorem was the beginning of p-adic Hodge theory, 50 years ago. It
holds in the generality stated here, although, strictly speaking, at the time Tate proved
it only if G is defined over Ok for a finite extension K of Q,.

Theorem 100 (Tate) (i) There is an exact sequence

Ul(v;v(l)

0 — Lie(Ge)(1) & T,G(Oc) ®z, C =% wgvjc — 0.
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(ii) (Hodge-Tate decomposition) If G is defined over Og where K C C is a
complete discrete valuation field, then the sequence splits canonically (respecting
'k = Gal(K/K) action)

TpG(OC) ®Z,, C ~ wGv/c D Lle(GC)(l)

Remark 101 A few remarks are in order.
() The map a /. (1) is constructed from ag- by duality. It sends Lie(G¢)(1) =
Hom(wg/c, Typpx ® C) to

Hom(T,G" ® C, Tyup~ ® C) ~T,G & C.

The last equality comes from Cartier duality, and is the reason we needed not only
to dualize, but also to twist by Z, (1) = Tt p.

(i) To get (ii) from (i) invoke Tate’s theorems in Galois cohomology, that
H°(Tg,C(@i)) = H' (g, C(>i)) = 0 if i # 0 and both cohomology groups are 1-
dimensional if i = 0. In the absence of a Galois action, there is no canonical splitting
of (i).

(iii) Let G = &/[p°°] where & is an abelian scheme over O¢. Dualizing, (i) is
equivalent to the existence, and degeneration, of a spectral sequence (Faltings: the
Hodge-Tate spectral sequence)

E}; = H'(#.Q1, (=) = H,(«/.Q,) ®g, C.

Compare with the Hodge spectral sequence that starts with Ei{ j=H i, wa /C).
This applies to any proper smooth variety over C (Faltings), and in fact to any proper
and smooth rigid analytic variety, even if not algebraic, by recent work of Scholze.

(iv) The fact that the Hodge-Tate decomposition is not valid in families, only the
HT filtration, leads to the HT period map, just as over C the fact that only the Hodge
filtration varies holomorphically in families lies behind the classical period map to
classify spaces of Hodge structures.

5.6.2 The Hodge-Tate Period Map

Let us put ourselves once again in the Lubin-Tate case. Consider the full Lubin-Tate
tower and take
(Gv L, aoo) € MOO(OC)

Use oy : Z?’, >~ T,G(Oc¢) to construct the linear map (ag ® 1) o (@eo ® 1) :
C" - wgv /¢, whose kernel is a line (because G is h — 1 dimensional). Mapping

(G, t, ao) to this line is

Tt Moo(Oc) — P1H(C).
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Unlike 7y, gt is defined only on M. It goes canonically to Ph=1(C) while
ey landed in P(My)(C) ~ P—1(C).

e Fact: wyr comes from an analytic map M, , — (Ph")j;d . In our “basic” case
(but not always), it is also étale.

e For§ € D*, myr o § = myr (obvious).

e myy intertwines the actions of GL;(Q,) on M, , and P"~! (obvious).

A global detour (7 = 2): modular curves at the infinite level. Let Y, be the (open)
modular curve of full level p” over @, and Y, the scheme lim. Y,. A point of
Yo (C) is an elliptic curve E,c equipped with an isomorphism o : Zi ~T,E.
As above, we get Tyt : Yoo (C) — P'(C). Let X = P1(C) \ P/(Q,) (the Drinfeld
p-adic upper half plane).

Theorem 102 The map 7wyt : Yoo(C) — PY(C) is surjective. We have
n;lT(IP’l(Qp)) = Yoo (C)? (the pairs (E, ax) where E has bad, or good ordi-
nary reduction) and JT;T(X) = Yoo (C)** (the pairs where E has good supersingular
reduction).

Note the anomaly: at infinite level the “fat” set Yo, (C)*"? gets mapped to the
“meager” P! (Q ») and the meager Y (C)** fills up its complement X.

If E has good ordinary or bad multiplicative reductionandG = E[p*]then T, G°,
the Tate module of the “kernel of reduction” is a line in 7,,G, and spans ker(ag ® 1).
This proves g7 (E, as) € PHQ »). Conversely, if E is defined over a CDVF K and
a7 (E, do) € P! (Qp) then 'y ~ T,,G is potentially reducible, so E is ordinary.
This proves the theorem, except for the surjectivity. In general, for the Lubin-Tate
tower, we have the following.

Theorem 103 (i) Theimage of tpr : Mooy — (]P’h_l)f]d is the Drinfeld p-adic sym-
metric domain
x©O)=P'o)\ |J H.
ae®"=1*(Q,)

(ii) myT induces Moo,,,/Dlx/h >~ X(C) (on the level of C-points, so far).

6 Conclusion of the Classification Theorem

6.1 What We Have to Prove and a Reduction Theorem

Recall that we have to prove the following criterion, an almost formal consequence
of which was the classification theorem for vector bundles (Theorem 79).

Criterion. For every vector bundle £ on X and for every n > 1, if we have a short
exact sequence

1
0— Ox(—=) = & — Ox(1) = 0,
n
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of vector bundles, then H(X, &) # 0, and the same is true if X is replaced by X,
its cyclic unramified covering of degree #, for every h > 1.

In what follows we shall only check things for X, but it should be understood that
the same proofs go over to every X, with the necessary modifications.

We first replace this criterion with two similar-looking criteria, which are together
equivalent toit. As will turn out at the end, and as might be implied by the formulation,
there is a certain duality underlying the relation between (i) and (ii) below. Note that
the exact sequences in the new criteria are not short exact sequences of vector bundles,
but modifications of vector bundles.

Theorem 104 (/5], 5.6.29, p.233-236) Suppose: (i) Whenever there is a short exact
sequence
0—-&—>0x(1/n) > F—>0

with F a torsion sheaf of degree 1, then £ >~ O%.
(ii) If n > 1 and there is an exact sequence

00y —->E&—-F—0

where & is a vector bundle and F is a torsion sheaf of degree 1, then for some
1<m<n

E~ 0" ®Ox(1/m).

Suppose further (i) and (ii) hold with X, instead of X for every h > 1. Then the
Criterion holds.

Exercise. Prove (i) and (ii) assuming the classification theorem, by the arithmetic
of degrees and ranks.

Proof We skip the proof. It involves arguments on vector bundles on curves, in the
style of the proof of Theorem 79. In particular, p-divisible groups and period maps
do not show up (yet) in this reduction step. (I

6.2 Modification of Vector Bundles Associated with
p-Divisible Groups

6.2.1 The Modification

Let (D, ¢) be anisocrystal (p-module) over F »- Thus D is a finite dimensional vector
space over

L=Q,=W(F,)[l/pl

Fix oo € X as before, with residue field C, so that BjR = @X,oo- Let t = log[e] be
the usual uniformizer. Giving a modification
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0—>E& —ED,¢)—>F—0
with F coherent torsion module supported at co is the same as giving a B}/,-lattice
A CD®L Bl F=io(D®L Bjp/N).

Recall that the modification is called minuscule if F is killed by ¢, ie.,isa C =
BJR /(t) -vector space. Giving a minuscule modification is therefore the same as
giving a filtration

FilDc

inDc=D®, C=D®; Bj/D Q1B
Definition 105 A triple (D, ¢, Fil D¢) is admissible if

E(D, ¢, FilDc) = ker(E(D, ¢) = ioosx(Dc/FilDc) — 0

is the trivial vector bundle.

Remark. In the proof of weakly admissible = admissible we considered vector
bundles £(D, ¢, Fil) where Fil was a filtration defined over E (or over a finite
extension K of E, although for simplicity of the presentation we took it to be E =
Q,). But in principle we can take the filtered ¢-module to have its filtration defined
over C, and now we need to consider all of these. Of course, we lose the Galois action
on the Tate module of the p-divisible group, if the latter is only defined over Oc,
and we can not use Tate’s theorems in Galois cohomology the way we did before.
The geometry of the Fargues-Fontaine curve, in a sense, replaces these arguments.

6.2.2 The p-Divisible Group H and Its Grothendieck-Messing Period

Fix a p-divisible group H over k = F » (the “model p-divisible group”) and a defor-
mation H, in the sense of Rapoport and Zink, to Oc¢. This means that we are given
a quasi-isogeny

p:H&Oc/p -+ H®o. Oc/p

(previously we took it in the opposite direction; we changed direction to adhere to
the notation of [5]). We let

D = MHE(W — k)[1/p]

be the rational covariant Dieudonné module of H, so that (D, ¢) is an isocrystal as
above (with slope in [0, 1]). Here M G signifies the Grothendieck-Messing crystal,
i.e., the Lie algebra of the universal vectorial extensionof G, W = W (k),and W — k
has the standard pd structure on pW. The quasi-isogeny p induces, as we have seen,
an isomorphism
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14 b.c.
MH(Oc)[1/pl = MH(Oc — Oc/p)[1/p]l = MH(Oc — Oc/p)[1/pl = Dc.
The Hodge filtration exact sequence
0 — wpvyc > MH(O¢)[1/p] — Lie(H/C) — 0

induces therefore a filtration Fil Dc C D in the C-points of our “model isocrystal”.
As the deformation (H, p) changes, this filtration changes too. We record the fact that
if H is of height 4 and dimension d then Fil D¢ is of dimension 4 — d = dim H".
Thus

wem(H, p) = (D¢, FilDc) € § = Grg4(C) = Gry(Dc).

This is the Grothendieck-Messing (or Hodge-de Rham) period of the point (H, p) €
D(O¢) = Df;d (C) (the O¢-points of the Rapoport-Zink deformation space, regarded
as a formal scheme, or the C-points of the associated analytic space). § is the “period
domain”, a Grassmanian in this case (again, regarded as an analytic space).

In particular, if d = 1 and H is connected we are in the “Lubin-Tate case”. In
this case, as we have remarked, H is unique. Furthermore, § = P"~! and D, the
Rapoport-Zink (= Lubin-Tate) deformation space, consists of Z copies (indexed
by the height of the quasi-isogeny p) of Spf(WI[[X,..., X,-1]]), the open unit
polydisk of dimension 2 — 1 over W.

In this Lubin-Tate case the map

oy D — F=P"1

has been analyzed by Gross and Hopkins, and was shown to be onto. This fact will
play a crucial role in the proof.

6.2.3 Admissibility of (D, p~l¢, FilD¢)

In general, as we have seen, the image of mgy, lies in §%¢, the weakly admissible
period domain. However, we are able now to prove that (D, p~'¢, Fil D¢) is admis-
sible in the sense defined above (which is a priori stronger than weakly admissible).
The p~! in front of ¢ is an artifact having to do with the fact that we are using now
the covariant D. Passing from contravariant to covariant involves taking the Cartier
dual, hence a Tate twist (otherwise the slope would end up in [—1, 0] instead of
[0, 1D).

Note that since H is defined only over C, V,H does not carry a Galois action.
Thus admissibility can not be defined now as being in the image of the functor D,, s,
as we had before. But as we shall see, admissibility will still bring back to the picture
V,H.

Proposition 106 The filtered p-module (D, p~'¢, FilD¢) is admissible, and we
have a natural map
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E(D, p~'o, FilD¢) ~ V,H ®g Ox.

Proof (sketch) Step 1. Recall the diagram (5.1). We first remark that we have, for
the universal covering,

H(O¢) = H(O¢/a) = H(Oc/a) = (O /a).

where a is an ideal of definition of O¢ containing p, modulo which p induces an
isomorphism
H, ® Oc/a~ H Qo. Oc/a

(such an a can be shown to exist; in fact, its existence is equivalent to the existence
of the quasi-isogeny p, but the further p is from an isomorphism, the closer a would
have to be to m¢; note that m itself is not an ideal of definition).
By Proposition 83, since H is defined over a perfect IF ,-algebra (namely, the field
k),
H(Oc¢/a) ~ H((Oc/a)") = H(OF).

We therefore get ~
VpyH(Oc) C H(Oc¢) = H(OF).

Step 2. From the definition of the contravariant Dieudonné module D* using
homomorphisms from H to the ind-scheme of co-Witt vectors one gets the isomor-
phism

H(OF) =~ Homyu)(D*, B})*~!

(see [5], Corollaire 4.4.4). Since here we have been using the rational covariant
Dieudonné module, which is the rational Dieudonné module of the Cartier dual H",
we get

H(OF) ~ (D ®, Bf)*=" = (D ®. Bp)*~".

Under this homomorphism, the E-subspace V, H(O¢) gets mapped isomorphically
to
Fil(D ® Bp)*=" =0~ (FilD¢)

(see [5], Proposition 4.5.14). This follows essentially from the fact that the quasi-
logarithm map in the big diagram (5.1) maps V, H to the Hodge filtration wgv ;0.
We thus get an exact sequence

0=  V,HO: — HOo) =% Lie(H/C) -0
I Il Il
0 — Fil(D ®;, Br)*=" — (D ®, Br)*=" 5 Dc/FilDc — 0

Step 3. This means that the induced homomorphism of vector bundles
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V,H(Oc) ®¢ Ox — E(D, p~'p)
(expressed for example in terms of B-pairs) factors through the sub-bundle £(D, p~'¢,
FilD¢). The upshot is that we have used the period morphism for (H, p) and the
“big diagram” to construct a homomorphism of vector bundles
u:V,H(Oc) ®¢ Ox — E(D, p~'o, FilD¢).
When we tensor over E = B;ﬁ:] with Bp[1/¢] we get an isomorphism

V,;H(Oc) ®g Br[l1/t] ~ D ®p Brp[l/t]
(if we used B, instead this would have recovered the old Fontaine-Messing compar-
isonisomorphism). Thus, remembering that H(X \ {oo}, Ox) = B, = Bp[1/t]¢=!,
u is generically an isomorphism, so it is injective. To show that u is an isomorphism
all that remains is to compare degrees on both sides. On the left the degree is 0 (a
trivial vector bundle). On the right it comes out to be

dimH —-dimH =0

as well. We conclude that u is an isomorphism, and the Proposition is proved. [

6.3 Conclusion of the Proof

We sketch the main steps.

6.3.1 Proof of Point (i)
We have to show that if
0> &—>0x(1/n) > F—=>0

is an exact sequence, and F is a degree 1 torsion sheaf supported at oo, then £ is
trivial. But this O(1/n) is just £(D, ¢) where D is the Dieudonné module of H, the
unique one-dimensional formal group of height n over k. By the theorem of Gross-
Hopkins, on the surjectivity of the Grothendieck-Messing period map on C-points
in the Lubin-Tate case, there exists a deformation (H, p) of H over Oc¢ as above,
such that F = i «(D ® B}/ A) where

A/(D ®tB}y) = FilD¢ = ker(MH(O¢)[1/p] — Lie(H/C)).
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This puts us in the situation considered above, where the modification is the one
associated with a deformation H of H, and the triviality of £ = £(D, ¢, FilD¢)
follows from the last Proposition.

6.3.2 Proof of Point (ii)

The proof of (i) was the key step, and the way p-divisible groups and their period maps
enter the classification of vector bundles. In a way, it was again the weak admissibility
= admissibility that played a role, but we could not use the Colmez-Fontaine theorem
of course, because that theorem was only about Galois representations, and we had
to consider deformations of H over O¢, and not only over Ok for a finite extension
K of E = Q,. (Anyhow, our short proof of Colmez-Fontaine in §4.2 relied on the
classification theorem, so the argument would have been circuitous.)

The proof of point (ii) is somewhat similar, in principle, even if the technical
details are different. Recall that we start with a modification

00y —>E&E—->F—0 (6.1)

where F is a torsion sheaf of degree 1 supported at oo, and we must show that for
somel <m <n
ExOV" @ Ox(1/m).

After a reduction Lemma, which rules out the possibility of factoring an O} ™"
from &, thereby replacing n by a smaller m, one applies a duality principle, taking
(derived) sZ0om(—, Ox(1/n)) of coherent sheaves. We get a new modification of
vector bundles

0-G¢ —-G—>H—-0 6.2)

where
G = HomE, Ox(1/n)), G=0x(1/n)", H=Ext"(F,Ox(1/n)).

Since End(Ox(1/n)) = Ay,,, the division algebra over E = Q,, of invariant 1/n
(commonly denoted D, and sometimes Bj,,, but we have too many D’s and B’s),
this new modification lies in a category of modifications of sheaves with Ajy,-
structure, that are related to filtered @-modules with Ayj,-structure, in the same
way we had before. Note that 7#om(F, Ox(1/n)) = 0 if F is torsion, while H =
Ext'(F, Ox(1/n)) is easily computable, since F is a sky-scraper sheaf supported at
oo, so we are talking about extensions as BJR-modules, and B;R is a DVR. It leads
of course, again, to a torsion sheaf supported at co, and if F was killed by ¢ (the
modification was minuscule), so is H.

In fact, taking JZ0om, (= Ox(1/n)) back recovers the original modification
(6.1), so one obtains an anti-equivalence between two similar categories of modifi-
cations.



The Fargues-Fontaine Curve and p-Adic Hodge Theory 343

What we have to prove is that G’ is trivial. This is analogous to what we did in
point (i), and is done in the same way, essentially. What replaces the surjectivity
of the period map on Lubin-Tate groups (the Gross-Hopkins theorem) is a similar
argument on the period map into the Drinfeld symmetric domain, which is the period
domain for the kind of formal groups with A/, action that show up here. In fact, in
the Drinfeld case, unlike the Lubin-Tate case, the period map

wom DI - =P\ ) H
ae(P=*(E)

is an isomorphism of analytic (adic, or rigid analytic) spaces.
For the details, see [5], 8.3.2.

7 Appendix: Weierstrass Division in A;, ¢

7.1 Notation

Let F be an algebraically closed perfectoid field of characteristic p. Let @ € mp,
u e W(Opr)* and
§=p—lolueWOp),

primitive of degree 1 (every primitive element of degree 1 is of this form). Let
6 :W(Or) > W(Op)/(§) =D

denote the canonical projection. The key to proving that D = O¢ for a complete
valued field C, for which F ~ C°, is the “Weierstrass division theorem” below. In
[5], Corollaire 2.2.10, the authors prove it in an indirect way, first showing that every
element of D has roots of any order in D, and then deducing it from this fact. We give
a variation on this proof that is a little more direct, in the sense that it first proves a
Weierstrass division theorem in W, (OF) and then uses this theorem to deduce what
we want along the lines of the Fargues-Fontaine proof.

7.2 Weierstrass Division in W, (OF)

We have W, (Or) = W(Or)/(p"*"). Fix f € W(Op).
Proposition 107 There exists a z € OF such that f = [z] mod (£, p"*1).

Proof We work in W, (Of). Write f = (by, ..., b,) with b; € Op. Write u =
(uo, ..., u,) withu; € Of and ug € Op. We need to solve
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(boy...,by) =(z,0,...,0) 4+ (p — [@](uo, . .., up)) (X0 . - -, Xp).

Replacing @ by wu, we may assume that uy = 1. Reducing modulo p we see that
7z = by + @wxp. The equation can be written as

(bo, b1, ..., by) = (bo + wxo, b, ..., =, un)(@wxo, whxy, ..., @w? x,).

Recall that
(x(),~-~,xn)+(y()a-~~»yn) = (SO""asn)

(o, - ..y un)(xo, ..., x0) = (Po, ..., Py)

where the S; and P; are isobaric of weight p’ in the variables x; and y; (0 < j < i).
Here x; and y; are given weight p/ and the u; are treated as scalars of weight 0. We
therefore have to solve the n equations

Hi(xo,...,x;)) =x'" |+ @Qi(x0, x1,...,xi—1) — @’ x; —b; =0

(1 <i < n) where the Q; (xo, ..., x;—1) are polynomials of weight pi (i.e., all their
monomial have weight < p') with integral coefficients.
We claim that
A, = Orlxo, ..., x,1/(Hy, ..., Hy)

is finite over Of[x,], and in fact generated over it as a module by xé"xlj hoL x,{”jl‘ with
0 < ji < p — 1. Observe that H; has weight p', contains a term Ax;” | with A € O},
but also a linear term in x;. If not for this linear term in x;, the finiteness of A,, over
OF[x,] would be trivial. That linear term complicates things a little bit.

Let M be the Or[x,]-submodule of A, spanned by x)’x{" ... x| with0 < j; <
p — 1. For an integer w we denote by M" and A}’ the Op-submodules of M and A,,

spanned by monomials x/ = x{’x{" ... x| x;" of weight

w()=jotph+--+pj<w

(and in the case of M, j; < p — 1 fori < n — 1). These are O-submodules of finite
rank, so it is enough to prove that

AV = M" + @ A,

This is clear since modulo @ A” we have H; = x| — b;, so these equations may be
used to reduce the exponents of xy, . . ., X, in any monomial to therange [0, p — 1].

Thus A, is finite over Op[x,]. We claim that the map Or[x,] — A, is injective.
Suppose 0 # h € Op[x,] were in the kernel. If 47 € mp then tensoring with F we
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would get F @p, A, = 0,but F ®p, A, = F[xo] because over F the equation H;
can be used to solve for x; in terms of the lower x;. If 2 were not a scalar, we
would still get that F ®, A, is finite over F[x,]/(h), hence finite over F, again a
contradiction.

By the going-up theorem, for every homomorphism v : Of[x,] — OF corre-
sponding to a prime ideal ker(y) = p C Op[x,], there exists a prime ideal 3 C A,
lying above p. The integral domain A, /%8 is a finite extension of O = Op[x,]/p.
But since F is algebraically closed we must have A, /B = Op. This means that
extends to a homomorphism A, — Op, hence the equations H; have acommon zero
in OpF, as desired. O

7.3 Weierstrass Division in W (OF)

To go further we need a few lemmas.

Lemma 108 Let R be a p-adically complete ring. If p # 2, any element of 1 + p*R
(if p = 2, any element of 1 + 8R) has a p-th root.

Proof Since ord, (k') < k/(p — 1) we find easily that

1+ p*0)l/r = Z (1£p>p2kxk

k=0

converges p-adically. If p = 2 we need to work modulo p? but the argument is the
same. (]

Lemma 109 The ideal (§) is closed in the weak topology of W(Opr). In particular

G P (@] = ©).

n>2

Proof Suppose f = &g, + h, where h, € (p", ["]). Then &g, converges to f in
the weak topology. We must show that g, converges in the weak topology. Write
I = Y peolynkl p*. Since convergence in the weak topology is convergence of each
{yn.x}n separately, we may assume that ko is the first index for which this sequence
does not converge in OF. Subtracting the limit of Z:";Ol [y.x]1p* and dividing by
p* we may assume, without loss of generality, that ko = 0. But then reducing £g,
modulo p we see that up@ y, o is a Cauchy sequence, which forces y, o to be Cauchy
as well, hence to converge. O

Lemma 111 Any element of D has a p-th root in D.

Proof We must show that for any f € W(Op) there exists a g € W(Op) such that
f =g” mod (§). By the Proposition, for every n > 1 we may write
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f =1zl + p"?h, mod (£).

For n sufficiently large vp(@") > vp(z,) or else by Lemma 109 f =0 mod (§)
and there is nothing to prove. But p = [@]u mod (§) so

f =1z.)(1 + p*le"z, ' 1u"h,) mod (§).

The factor [z,,] has a p-th root of course, and the second factor also has a p-th root
by Lemma 108. (]

Theorem 112 (Weierstrass division) Let &€ € W(Opf) be a primitive element of
degree 1. Then for every f € W(OF) there exist z € O and g € W(OF) such that

f=1lz1+é&g.

In other words, 6(f) = 6([z]). Note that, contrary to Weierstrass division in
Z,[[X1], z and g are not unique.

Proof The ring D = W(Op)/(&) is p-adically complete and separated and has no
p-torsion. The first assertion follows from the same fact for W(Op) and the fact
that (§) is p-adically closed. The second is immediate: if pf = (p — [ ]u)g then
reducing modulo p we see that g is divisible by p,so f =0 mod (§).

We may therefore tilt D to form D’ =lim._ (D /pD), the inverse limit taken with
respect to Frobenius, and identify it with sequences (« © oM . )ofelements of D
in which ¢*V? = oV, Furthermore, Lemma 111 shows that «® may be arbitrary.
We have

D/pD = W(OFr)/E, p) = Or/(@)

and its perfection D" is therefore canonically identified with Of. The map sending
z€ Op = D’ to z¥ € D is the map z — 60([z]), as can be seen in the diagram.

z>[z]

O — W(Op)
1l 0
p - D

Here :((z) = (z'/7" mod wOp), and (2)* =lim6([z'/?"])?" = 6([z]) because
0([z"/7"]) € Disalift of z'/?" mod wOp € D/pD.

But we have just remarked that any element of D is of the form z* for some z.
This is what we had to show. O

Corollary 113 D is an integral domain.

Proof This follows from 0([z,1)0([z2]) = 0([z1z2]). O
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Simplicial Galois Deformation Functors )

Check for
updates

Yichang Cai and Jacques Tilouine

Abstract In [13], the authors showed the importance of studying simplicial gener-
alizations of Galois deformation functors. They established a precise link between
the simplicial universal deformation ring R pro-representing such a deformation
problem (with local conditions) and a derived Hecke algebra. Here we focus on the
algebraic part of their study which we complete in two directions. First, we introduce
the notion of simplicial pseudo-characters and prove relations between the (derived)
deformation functors of simplicial pseudo-characters and that of simplicial Galois
representations. Secondly, we define the relative cotangent complex of a simplicial
deformation functor and, in the ordinary case, we relate it to the relative complex of
ordinary Galois cochains. Finally, we recall how the latter can be used to relate the
fundamental group of R to the ordinary dual adjoint Selmer group, by a homomor-
phism already introduced in [13] and studied in greater generality in [26].

1 Introduction

Let p be an odd prime. Let K be a p-adic field, let O be its valuation ring, @ be
a uniformizing parameter, and k = O/(w) be the residue field. Let I" be a profinite
group satisfying

(®,) the p-Frattini quotient I'/ I'?(I", T) is finite.

For instance, I" could be Gal(Fs/ F'), the Galois group of the maximal S-ramified
extension of anumber field F with S finite. Let G be a split connected reductive group
scheme over O. Letp: I' — G (k) be a continuous Galois representation. Assume it
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is absolutely G-irreducible, which means its image is not contained in P (k) for any
proper parabolic subgroup P of G. The goal of this paper is to present and develop
some aspects of the fundamental work [13] and the subsequent papers [26] and [2],
by putting emphasis on the algebraic notion of simplicial deformation over simplicial
Artin local O-algebras of p.

In the papers mentioned above, it is assumed that the given residual Galois repre-
sentation is automorphic: p = p,. for a cohomological cuspidal automorphic repre-
sentation on the dual group of G over a number field F, then the (classical and simpli-
cial) deformation problems considered impose certain local deformation conditions
satisfied by p at primes above p and at ramification primes for 7. The fundamental
insight of [13] is to relate the corresponding universal simplicial deformation ring to
a derived version of the Hecke algebra acting on the graded cohomology of a locally
symmetric space. Actually, the main result [13, Theorem 14.1] (slightly generalized
in [2]) is that after localization at the non-Eisenstein maximal ideal m of the Hecke
algebra corresponding to p, the integral graded cohomology in which 7 occurs is free
over the graded homotopy ring of the universal simplicial deformation ring (and the
degree zero part of this ring is isomorphic to the top degree integral Hecke algebra).
This is therefore a result of automorphic nature.

Here, on the other hand, we want to focus on the purely algebraic machinery of
simplicial deformations and pseudo-deformations and their (co)tangent complex for
a general profinite group I" satisfying ().

In [16, Sect. 11], V. Lafforgue introduced the notion of a pseudo-character for a
split connected reductive group G. He proved that this notion coincides with that of
G-conjugacy classes of G-valued Galois representations over an algebraically closed
field E. The main ingredient of his proof is a criterion of semisimplicity for elements
in G(E)" in terms of closed conjugacy class; it is due to Richardson in characteristic
zero. It has been generalized to the case of an algebraically closed field of arbitrary
characteristic by [5] replacing semisimplicity by G-complete reducibility (see also
[23] and [4, Theorem 3.4]). Note that absolute G-irreducibility implies G-complete
reducibility.

Using this (and a variant for Artin rings), Boeckle-Khare-Harris-Thorne [4, The-
orem 4.10] proved a generalization of Carayol’s result for any split reductive group
G: any pseudo-deformation over G of an absolutely G-irreducible representation p
is a G-deformation.

In Sect. 3.2.2, we reformulate the theory of [4, Sect. 4] in the language of simplicial
deformation. Our main results are Theorem 3.16 and Theorem 3.20. In Sect. 3.3, we
propose a generalization of this theory for derived deformations. Unfortunately, the
result in this context is only partial, but still instructive.

In Sect. 4, after recalling the definition of the tangent and cotangent complexes
and its calculation for a Galois deformation functor, we introduce a relative version
of the cotangent complex. In order to relate the cotangent complex of the universal
simplicial ring R pro-representing a deformation functor to a Selmer group, we shall
take ' = G s for a number field F and for S equal to the set of places above p and
oo, and we shall deal with the simplest sort of local conditions, namely, unramified
outside p and ordinary at each place above p. We show that the cotangent complex



Simplicial Galois Deformation Functors 351

L0 ®r T is related to the ordinary Galois cochain complex. Note that here the
base T is arbitrary, whereas in [13] and [2] it was mostly the case T = k.

Finally, in Sect. 5, we recall how this is used to define a homomorphism, first
constructed in [13, Lemma 15.1] and generalized and studied in [26], which relates
the fundamental group of the simplicial ordinary universal deformation ring and the
ordinary dual adjoint Selmer group.

This work started during the conference on p-adic automorphic forms and Per-
fectoids held in Bangalore in September 2019. The authors greatly appreciated the
excellent working atmosphere during their stay.

2 C(lassical and Simplicial Galois Deformation Functors

2.1 Classical Deformations

LetI" be a profinite group which satisfies (® ). When necessary, we view I" as projec-
tive limit of finite groups I';. Let Arty be the category of Artinian local O-algebras
with residue field k. Recall that the framed deformation functor D= : Arty, — Sets of
p is defined by associating A € Art to the set of continuous liftings p: I' — G(A)
which make the following diagram commute:

r—"- G (1)

Sk

Let Z be the center of G over O. We assume throughout it is a smooth group scheme
over O. Let a(A) = Ker(G(A) — G(k)), resp., 2(A) = Ker(Z(A) — Z(k)). Let
g = Lie(G/O),resp.,3 = Lie(Z/O) be the O-Lie algebra of G, resp., Z, and let g, =
g ®o k,resp., 3x = 3 ®o k. The universal deformation functor D = Def;: Artp —
Sets is defined by associating A € Artp to the set of @(A)—conjugacy classes of
pH (A). As an application of Schlessinger’s criterion (see [21, Theorem 2.11]), the
functor DY is pro-representable, and when p satisfies HO(I", g¢) = 3, the functor D
is pro-representable (see [25, Theorem 3.3]).

We shall consider (nearly) ordinary deformations. In this case, we always suppose
I' = GF s, where Fisanumberfieldand § = S, U S is the set of places above p and
o0o. Note that I" is profinite and satisfies (® ). Foranyv € S, letI", = Gal(fv/Fv).
Let B=TN C G be a Borel subgroup scheme (7" is a maximal split torus and N
is the unipotent radical of B); all these groups are defined over O. Let ® be the
root system associated to (G, T) and @ the subset of positive roots associated to
(G, B, T). Assume that for any place v € S, we have

(Ord,) there exists g, € G(k) such that p|r, takes values in g,/ L. Bk) - G-
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LetX,: I'y — T (k) be the reduction modulo N (k) of g, - plr, ~§;1.Letw: r,—
k> be the mod. p cyclotomic character. We shall need the following conditions for
vES,:

(Reg,) forany a € &+, a0, # 1, and

(Reg?) forany a € ®*, a o), # w.

We can define the subfunctor D7"° ¢ DU of nearly ordinary liftings by the
condition that p € DM if and only if for any place v € S » there exists g, € G(A)
which lifts g, such that p|r, takes values in g,° 1. B(A) - g,. Note that this implies
that the homomorphism x,,: ', = T (A) given by g, - plr, - g, ' lifts X,

We define the subfunctor D™° C D of nearly ordinary deformations by D"°(A) =
DUno(4)/G(A).

Recall [25, Proposition 6.2]:

Proposition 2.1 Assume that HY(T", gi) = 3, and that (Ord,) and (Reg,) hold for
all places v € S,,. Then D" is pro-representable, say by the complete noetherian
local O-algebra R™°.

Note that the condition (Reg)) will occur later in the study of the cotangent
complex in terms of the (nearly) ordinary Selmer complex.

Remark 2.2 As noted in [25, Chapter 8], under the assumption (Reg,) (Vv € S,),
the morphism of functors D"° — [, . s, Defy, given by [p] > (X,.0)ves, provides
a structure of A-algebra on R™° for an Iwasawa algebra A called the Hida-Iwasawa
algebra.

Remark 2.3 A lifting p: ' — G(A) of p is called ordinary of weight p if for any
v € §,, after conjugation by g,, the cocharacter p|;, : I, — T(A) = B(A)/N(A)is
given (via the Artin reciprocity map rec,) by porec;': I, — OIX% — T(A).

If we assume that p admits a lifting po: I' = G(O) which is ordinary of weight
u, we can also consider the weight p ordinary deformation problem, defined as
the subfunctor D™*# C D"™° where we impose the extra condition to [p] that for any
v € §,, after conjugation by some g,, pl;v: I, = T(A) = B(A)/N(A) is given (via
the Artin reciprocity map rec,) by porec,': I, > Of — T(O) — T(A). This
problem is pro-representable as well, say by R°. The difference is that R" has a
natural structure of algebra over an Iwasawa algebra, while, if pg is automorphic,
RE"’ is often proven to be a finite (O-algebra (see [29] or [9], for instance).

These functors have natural simplicial interpretations.

2.2 Simplicial Reformulation of Classical Deformations

In this section, we’ll try to introduce the basic notions of simplicial homotopy theory
and proceed at the same time to give a simplicial definition of the deformation functor
of p.
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Recall that a groupoid is a category such that all homomorphisms between two
objects are isomorphisms. Let Gpd be the category of small groupoids. We have a
functor Gp — Gpd from the category Gp of groups to Gpd sending a group G to
the groupoid with one object e and such that End(e) = G.

A model category is a category with three classes of morphisms called weak
equivalences, cofibrations, and fibrations, satisfying five axioms, see [15, Definition
7.1.3]. The category of groups is not a model category. But it is known (see [24,
Theorem 6.7]) that the category of groupoids Gpd is a model category, where a
morphism f: G — H is

(1) a weak equivalence if it is an equivalence of categories;

(2) acofibration if it is injective on objects; and

(3) afibrationifforalla € G,b € Handh: f(a) — b thereexists g: a — a’ such
that f(a’) = b and f(g) = h.

If C is a model category, its homotopy category Ho(C) is the localization of C at
weak equivalences. It comes with a functor C — Ho(C) universal for the property
of sending weak equivalences to isomorphisms.

In Gpd, the empty groupoid is the initial object and the unit groupoid consisting
in a unique object with a unique isomorphism is the final object. In a model category,
a fibration, resp., cofibration, over the final object, resp., from the initial object, is
called a fibrant, resp., cofibrant object. Note that every object of Gpd is both cofibrant
and fibrant, and the homotopy category Ho(Gpd) is the quotient category of Gpd
modding out natural isomorphisms. If we regard a group G as a one point groupoid,
the functor Gp — Ho(Gpd) so obtained has the effect of modding out conjugations,
so, for any finite group I';, we have

Homep (T, G(A))/ G* (A) = Homyo(gpa) (Ti, G(A)). 2

To construct the deformation functor, we first need to recall the construction of
the classifying simplicial set BG associated to a groupoid G.

Let A be the category whose objects are sets [1n] = {0, ..., n} and morphisms
are non-decreasing maps. It is called the cosimplicial indexing category (see [15,
Definition 15.1.8]). Given a category C, the category sC of simplicial objects of C is
the category of contravariant functors F': A — C. In particular, sSets is the category
of simplicial sets. For any n > 0, let A[n] be the simplicial set

[k] — Homa ([k], [n]).
Note that the category sSets admits enriched homomorphisms: if X, Y are two sim-
plicial sets, there is a natural simplicial set sHom(X, Y) whose degree zero term is

Homges (X, Y). Actually,

sHom(X, Y), = Homygets (X x A[n], Y).
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For X € sSets, the morphism (d;, dy): X; — X X X, generates an equivalence
relation X;. The zeroth homotopy set my X is defined as the quotient set X/ X,. Let
X be fibrant and let x € X; one can define fori > 1, the i-th homotopy set m; (X, x)
as the quotient of the set of pointed morphisms HOMgets, (A[n], X) (morphisms
sending the boundary 0A[n] to x) by the homotopy relation (see [27, Sect. 8.3]).
Then 7; (X, x) is naturally a group which is Abelian when i > 2 (see [11, Theorem
L7.2]).

For X € sSets, let AX be the category whose objects are pairs (n, o) wheren > 0
ando: A[n] — X is a morphism of simplicial sets, and morphisms (n, ) — (m, )
are given by a non-decreasing map ¢: [n] — [m] such that o = 7 o . The category
A X is called the category of simplices of X (see [15, Definition 15.1.16]).

The following lemma is well known:

Lemma 2.4 Suppose C is a category admitting colimits; let F: A — C be a covari-

ant functor. Let F,: C — sSets be the functor which sends A € C to the simplicial

set X = (Xp)nso given by X,, = Hom¢ (F ([n]), A) at n-th simplicial degree, and let

F*: sSets — C be the functor which sends X € sSets to h_n)l F (o). Then F* is
(n,0)eAX

left adjoint to F,.

Proof 1t’s clear that F, is well defined, and F* is well defined since every simplicial
set morphism f: X — Y induces a functor AX — AY.For X € sSetsand A € C,
we have

Hom¢ (F*(X), A) = lim Homc¢ (F([n]), A)
(Aln]—X)e(AX)op
= Lﬁl Homsets (Aln], Fi(A))
(Aln]— X)e(AX)op
=Homgses( lim  Aln], Fi(A))
(Aln]—>X)eAX

= Homggets (X, Fi(A)),

where the last equation follows from [15, Proposition 15.1.20]. So F* is left adjoint
to F.. O

Example 2.5 (1) Let A — Cat be the functor defined by regarding [#] as a posetal
category: its objectsare 0, 1, . . . n and Homp,;(k, £) has at most one element, and
is non-empty if and only if k < £. We write P: sSets — Cat and B: Cat —
sSets for the associate left adjoint functor and right adjoint functor, respectively.
The functor B is called the nerve functor. The simplicial set BC = (X,,) is
defined by sets X, C Ob(C)!"! of (n 4 1)-tuples (Cy, ..., C,) of objects of C
with morphisms Cy — C; when k < £, which are compatible when n varies;
it is a fibrant simplicial set if and only if C € Gpd (see [11, Lemma 1.3.5]). In
a word, for BC to be fibrant, it must have the extension property with respect
to inclusions of horns in A[n] (Vrn > 1). For n = 2, it amounts to saying that
all homomorphisms in C are invertible; for n > 2, the extension condition is
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automatic (details in the reference above). For C € Cat, we have PBC = C, so
Homca¢(C, D) = Homysets(BC, BD) (VC, D € Cat). Note that B(C x [1]) =
BC x A[1] (product is the degreewise product); in consequence, when C € Cat
and D € Gpd, two functors f, g: C — D are naturally isomorphic if and only
if Bf and Bg are homotopic.

(2) As a corollary of (1), we have Homgpa(GPX, H) = Homgges(X, BH) for
X € sSets and H € Gpd, where G PX is the free groupoid associated to P X.
We remark that GPX and 7| X| (the fundamental groupoid of the geometric
realization) are isomorphic in Ho(Gpd) (see [11, Theorem III.1.1]).

Recall that a functor between two model categories is called right Quillen if it pre-
serves fibrations and trivial fibrations (i.e., fibrations which are weak equivalences).

Lemma 2.6 The nerve functor B: Gpd — sSets is fully faithful and takes fibrant
values (Kan-valued). Moreover, it is right Quillen.

Proof For the first statement, we know by Example 2.2 that: Homcy(C, D) =
Homgges(BC, BD) (VC, D € Cat, hence the fully faithfulness. Moreover BC is
fibrant for a groupoid C.

For the second statement, note that B obviously preserves weak equivalences;
moreover, by definition, Bf : BG — BH is a fibration if and only if it has the right
lifting property with respect to inclusions of horns in A[n], Vn > 1 (see [11, page
10]). For n = 1 this means exactly that f is a fibration, while for n > 2 it’s automatic
(see the proof of [11, Lemma 1.3.5]). O

Let A € Artp. Consider the group G(A) of A-points of our reductive group
scheme G. Passing to homotopy categories, we get the isomorphism

Homypa) (Iis G(A)) = HOoMyggssets) (BT:, BG(A))
= 79 SHoMgets (BT;, BG(A)).

Let X = (BT;); be the pro-simplicial set associated to the profinite group I'. We
define
HomSSetS(Xa -)= h_n)l HomsSets(B L, —).

l

Then the Galois representation p: I' — G(k) gives rise to an element of
Homgges (X, BG (k)), which we also denote by p. In order to take into account the
deformations of p, we introduce the overcategory M = sSets/ g of pairs (Y, 7)
where Y is a simplicial setand 7: ¥ — BG (k) is a morphism of simplicial sets. The
category M has a natural simplicial model category structure: the cofibrations, fibra-
tions, weak equivalences, and tensor products are those of sSets (see [11, Lemma
I1.2.4] for the only non-trivial part of the statement). When we consider X € M, we
specify the morphism p: X — BG(k); similarly, when we consider BG(A) € M
for A € Artp, we specify the natural projection BG(A) — BG(k).For X, Y € M,
we can define an object of M of enriched homomorphisms sHom (X, Y) for which
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sHom (X, Y), consists in the morphisms X x A[n] — Y compatible to the pro-
jections to BG (k). Since BG(A) — BG (k) is a fibration, BG(A) € M is fibrant.
Similar to the discussion of the preceding paragraph, we have

D(A) = Homyean (X, BG(A)) = mpsHom (X, BG(A)) 3)
for A € Artp. Note that SHom (X, BG(A)) is the fiber over p of the fibration map
sHOM;gets (X, BG(A)) — sHomsets (X, BG (k)),

soitactually calculates the homotopy fiber (see [ 15, Theorem 13.1.13 and Proposition
13.4.6]).

WhenT' = Gr g, S = S, U Sy and p satisfies (Ord,) forv € S, we reformulate
the definition of the nearly ordinary deformation subfunctor D"° C D as follows. For
eachv € §,, we formI', = hm I'; , where I'y — I induces morphisms I'; , — T
of finite groups. Let X, = (BT, ,)), be the pro-simplicial set associated. For the fixed
Borel subgroup B of G, we have a natural cofibration BB(A) C BG(A). Recall that
Gy - plr, '§;1 takes values in B(k). Let D,(A) be m of the fiber over p|r, of the
fibration map

SHomsSets(Xva BG(A)) g SHomsSets(va BG(k))s
and let D™°(A) be m of the fiber over g, - plr, - g, ' of the fibration map
SHomsSetS(Xv» BB(A)) - SHomsSets(Xm BB(k))

Then there is a natural functorial inclusion i, of Dj°(A) into D, (A). Let Djoc(A) =
l_[veS Dy(A) and Dp2(A) = ]_[vesp D}°(A). There is a natural functorial map
D(A) — Dioc(A), resp., D2 (A) = Dioc(A), induced by p — (plr, Jves,» Tesp., by

HUES
We deﬁne D"°(A) as the fiber product

loc

D" (A) = D(A) xp,.(4) Dpye(A).

loc

Lemma 2.7 Suppose (Reg,) holds for each place v € S,. Then the functor D" is
isomorphic to the classical nearly ordinary deformation functor.

Proof 1t follows easily from what precedes. See [2] or [26]. O
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2.3 Simplicial Reformulation of Classical Framed
Deformations

Let Gpd, and sSets, be the model categories of based groupoids and based simplicial
sets (in other words, under categories ,\Gpd and ,\sSets), respectively. Then we
have

Homgy, (I';, G(A)) = Homyo(Gpa,) (I'i, G(A)). “4)

Let M, be the over and under category ,\sSets/ps ). Note that X and BG(A) for
A e Alg, are naturally objects of M... Proceeding as the unframed case, we see that

DU(A) = Homyoar,) (X, BG(A)) = mo sHom v, (X, BG(A)). (5)

We remark that sHomu (X, BG(A)) is weakly equivalent to
hofib, (sHom y( (X, BG(A)) — sHom (%, BG(A))), since sHom(X, BG
(A)) — sHom((x, BG(A)) is a fibration.

2.4 Derived Deformation Functors

We have defined the functor sHom (X, BG(—)) from Arto to sSets. Our next
goal is to extend this functor to simplicial Artinian O-algebras over k, which we
define below.

Let sCR be the category of simplicial commutative rings (these are simplicial
sets which are rings in all degrees and for which all face and degeneracy maps are
ring homomorphisms). A usual commutative ring A can be regarded as an element of
sCR, which consists of A on each simplicial degree with identity face and degeneracy
maps. In this way, we regard O and k as objects of sCR. With the natural reduction
map O — k, the over and under category »\sCR/, has a simplicial model category
structure, such that the cofibrations, fibrations, and weak equivalences are those of
sCR, and the tensor product of A € »\sCR/; and K € sSets is the pushout of
O« 0O®K — A® K. Note that degreewise surjective morphisms A — B are
fibrations.

Since s CR is cofibrantly generated, any A € o \sCR admits a functorial cofibrant
replacement c(A):

O < c(A) > A.

Concretely, for any n > 0 the O-algebra c¢(A), is a suitable polynomial O-algebra
mapping surjectively onto A, . The key property of the cofibrant replacement is that
-c(A) is a cofibrant object and
-c(A) — A is atrivial fibration (i.e., a fibration which is a weak equivalence).
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Note that the functor B — sHom(c(A), B) commutes to weak equivalence (this
is called homotopy invariance), while it is not necessarily the case of the functor
B — sHom(A, B).

For A € 0\sCR, for any i > 0, ;A is a commutative group and @l— ;A i
naturally a graded O-algebra, hence a myA-algebra (see [10, Lemma 8.3.2]).

Definition 2.8 The simplicial Artinian O-algebras over k, which we denote by
o\sArt/y, is the full subcategory of »\sCR/, consisting of objects A € »\sCR/;
such that:

(1) mA is Artinian local in the usual sense.
(2) ™A = ®;>om; A is finitely generated as a module over myA.

Note that »\sArt/; is not a model category, and cofibrations, fibrations, and
weak equivalences in o \sArt/; are used to indicate those in »\sCR/;. Neverthe-
less, o \sArt/ is closed under weak equivalences since the definition only involves
homotopy groups. We also remark that every A € o\sArt/y is fibrant since A — k
is degreewise surjective.

We define Oy, € Algé (i.e., a functor A — Alg,, also called a cosimplicial
object in Algy) as follows: in codegree p we have Oy, = O?p , and the coface
and codegeneracy maps are induced from the comultiplication and the coidentity of
the Hopf algebra Og, respectively. Then for A € Alg, the nerve BG(A) is nothing
but Homyg o(On,G, A), with face and degeneracy maps induced by the coface and
codegeneracy maps in Oy,g. When A € »\sCR, the naive analogy is the diagonal
of the bisimplicial set ([p], [¢g]) = Homyg ° (@] N,G> A,) (recall that the diagonal of
a bisimplicial set is a simplicial set model for its geometric realization). However,
we need to make some modifications using cofibrant replacements to ensure the
homotopy invariance.

Definition 2.9 (1) For A € »\sCR, we define Bi(A) to be the bisimplicial set

(Lp]. [q]) — Hom,\,cr(c(Oy,c), AM),

with face and degeneracy maps induced by the coface and codegeneracy maps
in Oy, and the face and degeneracy maps in A2[*!,
(2) The diagonal of Bi(A), which is denoted by diag Bi(A), is the simplicial set

induced from the diagonal embedding A®® — A% x AP B, Sets.

When A is an O-algebra regarded as a constant object in »\sCR, we have
Bi(A),4 = Homg\scr (¢(On,6), A% = Homyig, (O, a. A),

where the latter isomorphism is because the constant embedding functor is right
adjoint to mp: 0 \sCR — Alg,,. Hence, Bi(A) is just a disjoint union of copies of
BG(A)inindex q. In particular, for A € o\sArt/, thereis anatural map Bi(A), , —
BG (k) for each g > 0, so we may regard Bi(A) € MA” via the association [¢] —>
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Bi(A),, 4 (recall that M is the overcategory sSets/ g )), and diag Bi(A) is an object
of M). Recall that any morphism X — Y in sSets admits a functorial factorization

X—>X—>»Y

into a trivial cofibration and a fibration.

Definition 2.10 For A € »\sArt/, the simplicial set BG(A) is defined by the func-
torial trivial cofibration-fibration factorization diag Bi(A) < B G(A) - BG(k).

It’s clear that BG: o \sArt/; — M defines a functor. If A € Arty is regarded
as a constant simplicial ring, then diag Bi(A) = BG(A) — BG (k) is a fibration, so
BG(A) is a strong deformation retract of BG(A) in M (see [15, Definition 7.6.10]).
In particular, these two are indistinguishable in our applications.

Remark 2.11 Our BG(A) is weakly equivalent to the simplicial set Ex*™ diag Bi(A)
which is the definition chosen in [13, Definition 5.1]. There is a slight difference:
we want to emphasize the fibration BG(A) - BG (k), so that it’s more convenient
to handle the homotopy pullbacks.

As mentioned above, the reason for taking cofibrant replacements is
Lemma 2.12 If A — B is a weak equivalence, then so is BG(A) — BG(B).

Proof f A — B is a weak equivalence, then sHom,\,cr (C(ONpg), A) —>
SHomo\xCR(C(ON,,G), B) is a weak equivalence for each p > 0, sois diag Bi(A) —
diag Bi(B) (see [15, Theorem 15.11.11]), and so is BG(A) — BG(B). O

Definition 2.13 (1) The derived universal deformation functor sD: o \sArt/; —
sSets is defined by
sD(A) = sHom (X, BG(A)).

(2) The derived universal framed deformation functor sD9: o\sArt/, — sSets is
defined by

sDY(A) = hofib, (sD(A) — sHom v (x, BG(A))).

Remark 2.14 1In [13, Definition 5.4], the derived universal deformation functor is
defined by

sD(A) = hofib,(SHOMgets (X, Ex™ diag Bi(A)) — SHOM,seis (X, BG (k))).

Since Ex*™ diag Bi(A)) and BG(A) are weakly equivalent fibrant simplicial sets,
sHomM g5 (X, Ex* diag Bi(A)) is weakly equivalent to SHOMges (X, BG(A)). But
sHoMgets (X, BG(A)) — sHOMsets (X, BG(k)) is a fibration, so sHom
(X, BG(A)) is weakly equivalent to the homotopy fiber.
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When I'=Gr 5, S=S, U Sy and p satisfies (Ord,) for v € S, we can define for
each ve S, a functor sD,: o\sArt/; — sSets as A > SHOMsets/, 6, (Xo,
BG(A)), and a functor sD)°: o\sArt/, — sSets as A — SHom‘YSetS/BB(M (X,
BB(A)). Let sDioc = [[,c5 $D, and let sD = [[,c5 sDy°. Define sD" as the
homotopy fiber product ! !

sD" = sD xlp  sD2.
Definition 2.15 Let F: p\sArt/, — sSets be a functor. We say F is formally
cohesive if it satisfies the following conditions:

(1) F is homotopy invariant (i.e., preserves weak equivalences).

(2) Suppose that
A B
C D

is a homotopy pullback square with at least one of B — D and C — D degree-
wise surjective, then

P

(6)

e

F(A) —— F(B) @)

L

F(C) —— F(D)

is a homotopy pullback square.
(3) F(k) is contractible.

We summarize our preceding discussions:

Proposition 2.16 The functors sD, sDH, SDZ (here ? = #J or n. 0) and sD™° are all
formally cohesive.

Proof We first verify three conditions in the above definition for sD:

(1) If A — B is a weak equivalence, then 5G(A) — BG(B) is a weak equivalence
between fibrant objects in M, so sHom (X, BG(A)) — sHom (X, BG(B))
is also a weak equivalence.

(2) First we show that

BG(A) —— BG(B) (8)

.

BG(C) —— BG(D)
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is a homotopy pullback square in M. Note that regarding the above diagram as
adiagram in sSets doesn’t affect the homotopy pullback nature. By [13, Lemma
4.31], it suffices to check:

(1) the functor QBG: o \sArt/; — sSets preserves homotopy pullbacks and
2) mBG(C) — mBG(D) is surjective whenever C — D is degreewise sur-
jective.

Part (a) follows from [13, Lemma 5.2], and part (b) follows from [13, Corollary
5.3].

Since small filtered colimits of simplicial sets preserve homotopy pullbacks, we
may suppose the pro-object X lies in M. Then SHom (X, —): M — sSets is
aright Quillen functor, hence its right derived functor commutes with homotopy
pullbacks in the homotopy categories. But we are dealing with fibrant objects,
so0 in the homotopy category SHom (X, —) is isomorphic to its right derived
functor. The conclusion follows:

(3) It’s clear that sD(k) is contractible.

The same argument applies for A — sHom (%, BG(A)). So sD" is formally
cohesive because it is the homotopy pullback of formally cohesive functors.

In the nearly ordinary case, we may replace X by X, and replace G by B and the
same argument applies. Hence sD’, (? = ¢ or n. 0) is formally cohesive. Since sD™°
is the homotopy limits of formally cohesive functors, it is also formally cohesive.

O

2.4.1 Modifying the Center

None of these functors cannot be pro-representable unless G is of adjoint type. If
G has a non-trivial center Z, we need a variant sD, resp., sD%°, of the functor
sD, resp., of sD™°, in order to allow pro-representability. For this modification, we
follow [13, Section 5.4]. For a classical ring A € Art, we have a short exact sequence

11— Z(A) = G(A) > PG(A) — 1.

It yields a fibration sequence BG(A) — BPG(A) — B%Z(A).Indeed, given a sim-
plicial group H and a simplicial sets X with a left H-action, we can form the
bar construction N,(*, H, X) at each simplicial degree (see [10, Example 3.2.4]),
which gives the bisimplicial set ([p], [¢]) — H,‘f x X, =: Ny(*, H,, X,). Con-
sider the action Z(A) x G(A) — G(A), and the corresponding simplicial action
N,Z(A) x N,G(A) — N,G(A) (note that N,Z(A) is a simplicial group because
Z(A) is Abelian). We identify for each p > 0,

BG(A), = N,(x, %, NyG(A)),

BPG(A)p, = N,(x, N,Z(A), N,G(A)),
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and we put
B*Z(A), = N,(x, N,Z(A), %)

(with diagonal face and degeneracy maps). The desired fibration is given by the
canonical morphisms of simplicial sets which in degree p are

N,(x, %, N;G(A)) = Np(x, NyZ(A), NyG(A)) — Np(x, N,Z(A), *).

Let us generalize this to A € p\sArt/;. For this, we note first that BPG(A)
can also be defined as the functorial fibrant replacement of diag(~N) where N is the
trisimplicial set associated to (p, q,r) = Ny(x, NyZ(A,), Ny,(G(A,)) (replacing
Onpaa,) by its functorial cofibrant replacement as above).

Then, we define B2Z(A) as the functorial fibrant replacement of diag(N’) where
N’ is the trisimplicial set associated to (p, ¢, r) — N, (x, N,Z(A,), *) (replacing
Onpaa,) by its functorial cofibrant replacement as above). The obvious system of
maps N, (¢, NyZ(A,), NyG(A,)) — Ny(x, NyZ(A,), *) gives the desired map

BPG(A) — B*Z(A).

The functor sDz : »\sArt/;, — sSetsis defined by the homotopy pullback square
(here for simplicity we use M, but the base maps are those induced from BG (k) —
BPG(k) — B*Z(k))

sDz(A) ——— sHom v (*, B2Z(A))

|

sHom v (X, BPG(A)) — Hom (X, B2Z(A)).

Then sD; is formally cohesive because it is the homotopy pullback of formally
cohesive functors. Observe that sD; and sD coincide when Z is trivial.

Remark 2.17 (1) We’ll see later that sD is pro-representable, under the assump-
tion HO(T, ar) = 3k

(2) In the nearly ordinary case, one defines similarly sDioc.z = [, s, sD, z and
sDpe 7 = [yes, sy Note that the construction for sD7 is functorial in X
and G, we can form the homotopy pullback

n.o __ h n.0
sD;° =s5Dy X Droe 7 S'DIOC’Z.

All these functors are formally cohesive. We’ll see later that sD7%° is pro-
representable, under the assumption HO(T, gi) = 3.

Proposition 2.18 When A is homotopy discrete, we have mosDz(A) = D(mpA) and
705D} ,(A) = D](moA) (here ? = or n.o). If in addition (Reg,) holds for each
v € S, then mosD%°(A) = D"°(mpA).
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Proof We may suppose A € Artp by the formal cohesiveness.
From the definition of sD, it follows that we have a natural fibration sequence

sD(A) — sDz(A) — sHom (%, BZZ(A)).

Since m; SHOM ¢ (*, B2Z(A)) vanishes for i # 2, we have mosD (A) = mosD(A).
By Equation 3 of Sect. 2.2, we have mysD(A) = D(A), hence also mpsDz(A) =
D(A).

By applying the same argument with X replaced by X, and G replaced by B
when necessary, we obtain ms D, ,(A) = D}(A) (? =¥ or n.0).

We have the exact sequence

m1sDz(A) & (@D 15Dy (A) — @D m1sDy 2(A)

ves, ves,
— mosDY°(A) — mosDz(A) & (D 705D} (A)) — €D mosDu 2(A).
ves, ves,

We will see later (Lemma 4.20) that sD, (A) is weakly equivalent to holim y hofib,
(BG(A) — BG(k)), and (by Lemma 4.22) m sD,(A) = H*(T,, 5(A)). Similarly
msDM(A) = HO(T,, B(A)).

By the assumption (Reg,) and Artinian induction, the map msD)°(A) —
718Dy (A) is an isomorphism, and so is wlngg%(A) — msD, z(A). We deduce
that mosD%°(A) is the kernel of D(A) & (@vesp Di°(A)) — @vesp D,(A), which
is isomorphic to D™°(A) by Lemma 2.7. |

3 Pseudo-Deformation Functors

3.1 Classical Pseudo-Characters and Functors on FFS

Recall the notion of a (classical) G-pseudo-character due to V. Lafforgue (see [16,
Définition-Proposition 11.3] and [4, Definition 4.1]):

Definition 3.1 Let A be an O-algebra. A G-pseudo-character ® on I' over A is

a collection of (D-algebra morphisms ®,, : (’)j‘\}in% — Map(I'”, A) for each n > 1,

satisfying the following conditions:

(1) For each n,m > 1 and for each map (: {1,...,n} —> {1,...,m}, f € Oj‘\f]mGG,
and Vi, ...,V € ', we have

O (L)1 -y Ym) = On(F)Vettys -+ -+ Ve

where (g1, .., gm) = F(Gcys - - - Gem)-
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(2) Foreachn > 1, foreach i, ..., 7,41 € I', and for each f € (9%1%, we have

®n+1(f,\)(’719 s 'Yn+1) = ®n(f)(’yls <o Yn—1, ’yl’l’yn+1)s

where f(g1. ... gur1) = f(91. -\ Gnots Gnns1)-
We denote by PsCh(A) the set of pseudo-characters over A.

We want to give a simplicial reformulation of this notion. As a first step, following
[28], let us consider FS the category of finite sets and FFS be the category of finite
free semigroups. For any finite set X, let My be the finite free semigroup generated
by X; we have I'* = HOMgemep(Mx, T') and GX = HOMgemgp(My, G). For a semi-
group M € FFS, note that HOMgemap (Mx, G) is a group scheme, so we can define
a covariant functor FFS — Algn, M — Ohom,g,(m.6)- We can also define the
covariant functor M +— Map(HOoMemgp(M, I'), A). These functors on FFS extend
canonically those defined on the category FS by X +— Ogx and X — Map(T'X, A).
Moreover, the natural transformation

OX¢ — Map(I'*, A)

extends uniquely to a natural transformation of functors on FFS. Actually, there
are several useful functors on FFS; by the canonical extension from FS to FFS
mentioned above, it is enough to define them on the objects [n], as in [28, Example
2.4 and Example 2.5]:

(1) The association [1n] — ' defines an object I'* € Sets**S" .

(2) For A € Alg,, the association [n]+— Map(I'", A) defines an object
Map(T'*, A) € Alghys.

(3) The association [n] — O}'G, defines an object O} € AlghYs,

(4) Let G"/G = Spec(Oy'%). Then for A € Algy, the association [n] —
(G"JG)(A) defines an object (G*/G)(A) € Sets"™S"

As noted in [28, Theorem 2.12], one sees that a G-pseudo-character ® of I' over

A is exactly a natural transformation from (’)}‘\}’.GG to Map(I"®, A) (we call these natural
FFS

transformations Alg,>-morphisms).
Lemma 3.2 For A € Alg, there is a bijection between PsCh(A) and Homg,, reser

(I'*, (G*/G)(A)).

Proof 1t suffices to note that there is a bijection between Sets™S”

(G*/G)(A) and Alg{)®-morphisms O%'%, — Map(T"*, A).

-morphisms I'* —

For an algebraically closed field A and a (continuous) homomorphism p: I' —
G(A), we say that p is G-completely reducible if any parabolic subgroup con-
taining p(I") has a Levi subgroup containing p(I"). Recall the following results in
[4, Sect. 4]:
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Theorem 3.3 (1) [4, Theorem 4.5] Suppose that A € Algy is an algebraically
closed field. Then we have a bijection between the following two sets:

(a) The set of G(A)-conjugacy classes of G-completely reducible group homo-
morphisms p: T’ — G(A).
(b) The set of pseudo-characters over A.

(2) [4, Theorem 4.10] Fix an absolutely G-completely reducible representation
p: I' = G(k), and suppose further that the centralizer of p in G,id is scheme-
theoretically trivial. Let ® be the pseudo-character, which regarded as an ele-
ment of Homg,, res» (I, (G* /G)(k)) is induced from (71, ..., v.) = (p(n),

..y p(M)). Let A € Arto. Then we have a bijection between the following two
sets:

(a) The set of G (A)-conjugacy classes of group homomorphisms p:
' > G(A) which lift p. B
(b) The set of pseudo-characters over A which reduce to ©® modulo my.

Note that there are similarities between Sets™>" and Sets®” = sSets. In the
following, we shall prove similar results with Sets™™> ' replaced by sSets.

3.2 Classical Pseudo-Characters and Simplicial Objects

Recall that on Oy ¢ there are natural coface and codegeneracy maps, and we can
regard Oy, ¢ as an object in Algé (i.e., a cosimplicial O-algebra). The adjoint action
of G on G* induces an action of G on Oy, g, which obviously commutes with the
coface and codegeneracy maps. In consequence, O?\ﬂ% is well defined in Algé.

Definition 3.4 We define the functor BG : Alg,, — sSets by associating A € Alg,,
to Homyg,, ((9';‘\;1.%, A) with face and degeneracy maps induced from the coface and

: adG
codegeneracy maps in ON.G'

Note that the inclusion O/, — Oy, ¢ gives a natural transformation BG — BG.

3.2.1 Algebraically Closed Field

Let A € Alg,, be an algebraically closed field. We would like to characterize the
elements of Homgets (BT, BG(A)). They correspond to the quasi-homomorphisms,
which we define below.

Definition 3.5 Let I' and G be two groups. We say a map p: ' - G is a
quasi-homomorphism if there exists a map ¢: I' — G such that p(x)~'p(xy) =
$(x)p(y) ¢(x)~ forany x, y € T,
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Obviously a group homomorphism is a quasi-homomorphism. Note that every
quasi-homomorphism preserves the identity, and the set of quasi-homomorphisms
is closed under G-conjugations.

Remark 3.6 A quasi-homomorphism can fail to be a group homomorphism. We
can construct a quasi-homomorphism as follows: let o: I' — G be a group homo-
morphism, let ¢: I' = Z(o(I")) be a group homomorphism and let g € G, then
p(x) = g 'o(x)p(x)gd(x)~! is a quasi-homomorphism. Such p is not necessarily
a group homomorphism, an example could be the following: take G = H x H,
0:T— H x{e}and ¢: I" — {e} x H, and choose g such that g ¢ Z(¢(I")).

Lemma 3.7 Let p be a quasi-homomorphism and let ¢ as above. Then the map
¢ induces a group homomorphism I' — G/Z(p(I")) which doesn’t depend on the
choice of ¢.

Proof For x,y,z € I', we have

P(xy)p(D)pxy) ™" = pxy) ' plxyz)
= (@) p(NPxX) ) (pX)p(y2)Pp(x) )
= ¢®)p(») ' p(y2)px) ™!
= ¢(X)p(NP()P() " P(x) "

Hence gb(xy)‘l(b(x)qb(y) € Z(p(I')) forany x, y € I', and ¢ induces a group homo-
morphism I' — G/Z(p(I")). For any other choice ¢, such that p(x)’lp(xy) =
1) p(») 1 (x)~!, we see gbfl(x)(ﬁ(x) € Z(p(T")), and the conclusion follows. [

Lemma 3.8 Suppose that A € Algy is an algebraically closed field. Let f €
Homyses (BT, BG(A)). Then we can associate a quasi-homomorphism p: I' —
G(A) to f such that f sends (v1,...,7.) € BT, to the class in BG(A), repre-

sented by (p(TT—y )~ o1y Vi)i=1...on-

Proof For each n > 1 and v= (Y15 .--57) € ', we choose a representative
T(f_y) =(91,...,92) € G(A)" of (1) with closed orbit, note that any other rep-
resentative with closed orbit is conjugated to (g1, ..., g,). Let H(7) be the Zariski

closure of the subgroup of G(A) generated by the entries of T'(7). Let n(y) be the
dimension of a parabolic P € G4 minimal among those containing H (7), we see
n(y) is independent of the choice of P. Let N = sup,. ,cr» n(7). We fix a choice
of 6 = (61, ..., 8,) satisfying the following conditions:

(1) n(d) = N.

(2) Forany §' € I'" satisfying (1), we have dim Z¢, (H (9)) < dim Zg, (H(5")).

(3) For any § eI satisfying (1) and (2), we have #mo(Zg,(H(9))) <
#10(Zg,(H(9))).

Write T'(6) = (hy, ..., hy). As in the proof of [4, Theorem 4.5], we have the follow-
ing facts:
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(1) For any (v, ..., vm) € '™, there exists a unique tuple (g1, ..., gn) € G(A)"
such that (hy, ..., h,, g1, ..., gn) is conjugated to T (81, ..., Oy Y1y« + -5 Yim)-

(2) Let(hy, ..., hy, g1, ..., gn)beasabove. Any finite subset of the group generated
by (hi, ..., hy, g1, ..., gm) Which contains (hy, ..., h,) has a closed orbit.

We define p() to be the unique element such that (hy, ..., h,, p(7y)) is conjugated
toT(y,...,0,, ’)/).

Suppose for vy, ..., ym € T, the unique tuple conjugatedto T (61, . .., 0, Y15 - - - »
Ym)is (hy, ..., hy, g1, - .., gm). Consider the following diagram, where the horizon-
tal arrows are compositions of face maps:

Oty ey O Vs oY) —= Ay, ooy, g1y ooy Gi)

| |

(61’ "‘76n7 H;‘:l 7]) —_— (hlv '~-1hn’ Hi‘:] g])

Since (hy, ..., h,, ]_[3:1 g;) has a closed orbit and is a pre-image of f(dy,...,
5”’ Hljzl 7/)’ we have 1_[;:1 g/ = p(l_[‘I]ZI fy])’ and gl = p(]_[lj_zll ’Yj)_lp(l_[lj=l ’}//)
~vVi=1,...,m).
Let x,y € I'. Then the element in G(A)*"*? associated to (61, ..., 6,, x, 01,
ey O, y) IS

and the element in G (A)?*+! associated to (J1, ..., 8n, 01, ..., Oy, ¥) is

n—1 n

Iy e | I ER R RN B BRI N KRR
Jj=1 Jj=1 j=1 j=1

We see both (p(x 172} 6) ' pCr [Ticy 6)))iz1.n  and  (o(IT/2) 67"
are conjugated by some ¢(x) € G(A). Since Zg,(H (§)) is minimal by the defin-
ing property, ¢(x) must conjugate p([T}_; 6,) ' p([Tj_; 6; - ») to p(x [T} 67"
p(ITj=; 0+ y). We deduce that Vx,y € T, p(x)~'pxy) = px)p(»)o(x) ",
and p is a quasi-homomorphism. It’s obvious that for any (vyi,...,7v,) € I'",

(T2 v) ™ p(T5 =y ¥))i=1....n is a pre-image of £ (71, ..., %) U
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3.2.2 Artinian Coefficients

Letp: T' — G(k) be an absolutely G-completely reducible representation, and sup-
pose that H(T", g) = 3. We write f € HOMges(BT", BG(k)) for the map induced

from (y1, ..., %) = (P71, ..., p(W)).
Definition 3.9 For A € Arto, the set aDef 7(A) is the fiber over f of the map

HOMsets (BT, BG(A)) — HOMgets (BT, BG (k).

Definition 3.10 Let A € Artp. We say amap p: I' = G(A) is a quasi-lift of p if
p mod my = p and p is a quasi-homomorphism.

Remark 3.11 In general, a quasi-lift may not be a group homomorphism. Let 0 —
I — A; - Apbeaninfinitesimal extensionin Arty.Let pg: ' = G(Ag) beagroup
homomorphism, let o: G(Ag) — G(A;) be a set-theoretic section of G(A;) —
G(Ap) andlet p = o o py. Let’s construct a quasi-lift p; = exp(X,)pwhere X: I' —
g ®¢ I is a cochain to be determined.

For o, B € T, there exists ¢, 3 € g ® I such that p(a)p(B) = exp(ca,p)p(a3)
since pg: ' = G(Ap) is a group homomorphism. It’s easy to check that ¢ €
Z*(T, g®i I). Let ¢(a) = exp(Y,) where Y: I' - g ®; I is a group homomor-
phism also to be determined. We require p;(a3) = p;(a)d(a)p;(B)p(a)~! for all
a, 8 € I'. Note that p; (o) = exp(X,p)p(a3) and

p1(@)$(@)p1 (Bp(a) ™ = exp(Xa)p(er) exp(Ya) exp(X 3)p(3) exp(Yo) ™!
= exp(Xa)p(@) exp(X 3 + Yo — Ad p(B)Ya)p(B)
= exp(Xq + Ad p(0) X 3) exp(Ad p(a) (1 — Ad p(3)) Ya) p(c) p(3)
= exp(Xa + Ad p(@) X 3) exp(Ad p(a) (1 — Ad p(53))Ya) exp(ca, ) P(af3).

so we need to find a group homomorphism Y : I' — g ®; I such that Ad p(«a)(1 —

Ad p(B3))Y,) + ca.p is a coboundary. In particular, in the case H>*(T', g) = 0, we
can take an arbitrary group homomorphism Y: I' — g. Note that p; is a group
homomorphism if and only if ¢(«) = exp(¥Y,) € Z(A) forany a € T'.

Lemma 3.12 Let A € Artp and let p: I’ — G(A) be a quasi-lift of p. Then
Z(p(T)) = Z(A).

Proof See [25, Lemma 3.1] (note that the condition that p is a group homomorphism
is not used in the proof).

Corollary 3.13 Let A € Arto and let p: I' — G(A) be a quasi-lift of p. Then
p induces a uniquely determined group homomorphism ¢: T' — Ker(G*(A) —
G (k) such that p(x)~' p(xy) = G(x)p(y)(x)~ forany x, y € T.

Proof By combining the above lemma with Lemma 3.7, we see ¢: I' — G*(A)
is uniquely determined. Since p is a group homomorphism, ¢ mod m, commutes
with p(I'), and hence ¢ mod m is trivial. ([l



Simplicial Galois Deformation Functors 369

Now we can characterize aDef 7(A) in terms of quasi-lifts. The following propo-
sition owing to [4] plays a crucial role (see also its use in the proof of [4, Theorem
4.10]):

Proposition 3.14 Suppose that X is an integral affine smooth O-scheme on which G
acts. Letx = (xy, ..., x,) € X (k) beapoint with Gy - x closed, and Z¢, (x) scheme-
theoretically trivial. We write X% for the functor Arto — Sets which sends A
to the set of pre-images of x under X (A) — X (k), and write G" for the functor
Art» — Sets which sends A to Ker(G(A) — G(k)). Then

1. The G"-action on X" is free on A-points for any A € Arte.

2. Let X/G = Spec O[X]C, let 7: X — X /G be the natural map, and let
(X G) ™ be the functor Art — Sets which sends A to the set of pre-images
of m(x) under (X/G)(A) — (X/G)(k). Then w: X — X /G induces an iso-
morphism X"*/G = (X /G)N™®,

Proof See [4, Proposition 3.13]. O

Corollary 3.15 If (7i,...,vm) is a tuple in T such that (p(7y1), ..., p(Ym))
has a closed orbit and a scheme-theoretically trivial centralizer in G, then

(21670 ﬁ(vm)z has a lift (g1,...,9m) € G(A)" which is a pre-image of
F s -y Ym) € BG(A),,, and any other choice is conjugated to this one by a unique
element of G (A).

Theorem 3.16 Let A € Arto. Then aDef 7(A) is isomorphic to the set of G(A)—
conjugacy classes of quasi-lifts of p.

Proof G1ven a quasi-lift p: I' - G(A), then the association (7y1,...,Vn)
(p(]_[J L) lp(]_[’j=1 ¥j))i=1....m defines an element of aDef 7(A).

In the following, we will construct a quasi-lift from a given f* € aDef 7(A).

Let n > 1 be sufficiently large and choose §;,...,68, € I' such that (h; =
p(81), ..., h, = p(6,)) is a system of generators ofp(F) then the tuple (hy, ..., hy,)
has a scheme -theoretically trivial centralizer in Gad. By [5, Corollary 3.7], the abso-
lutely G-completely reducibility implies that the tuple (hi, ..., hy) hasaclosed orbit.
By the above corollary, we can choose a lift (hy, ..., h,) € G(A)" of (hl, oo h n)
which is at the same time a pre-image of f(61,..., 5n).

For any « € I, the tuple (hiy ..., By, p()) obviously has a closed orbit and
a trivial centralizer in G,id, so we can choose a tuple in G(A)"*! which lifts
(ﬁl, o hy, p(7v)) and is a pre-image of f(dy, ..., d,,y). For this tuple, the first
n elements are conjugated to (h1, ..., h,) by a unique element of G2 (A), so there
is a unique g € G(A) such that the tuple is conjugated to (hy, ..., h,, g). We define
p(7) to be this g. It follows immediately that p mod m4 = p.

Now suppose 7y, ..., vm € I'. Asabove, let (gi, . . ., g,) be the unique tuple such
that (hy, ..., "y, g1, ..., gm) lifts (hl, ol (M), - .., p(ym)) and is a pre-image
of f(01,...,0, V1, ..., Vm), consider the following diagram, where the horizontal

arrows are compositions of face maps:
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(617'~-35n3ryl"-'7’Ym)H(hlv"'vhnsgh-n’gm)

| |

(517"'75}'171_[‘[]':17])%—(k]v"'ﬂhna l_[ljzlgj)
Then (hy,....h. [l g lifts  (hi.... ke p(T5_; 7)) and  is
pre-image of f(é'l,...,én,]_[’j:] ;). Hence ]_[lj:l gj =P(n;:1 v), and g; =
P12 ) oy v) Vi =1, m).

Let x, y € I". Then the element in G (A)>**? associated to (J1, . .., 6n, X, 01, - . .,
On, y) is

and the element in G (A)?*+! associated to (d1, ..., 8n, 01, ..., Op, ¥) is
n—1 n n n
(h1, s by p@0), o p (LT 00 o[ T 00 o[ T00 " 2 ([ T6) - ¥0)-
j=1 j=1 j=1 j=1

We see both  (p(x[T,2} )~ px [Toy 0)iztn  and  (p([T;Z) 67"

p(]_[j.=1 0;))i=1,....n are lifts of (hi, ..., hy) and pre-images of f (4, ..., d,), so they
are conjugated by some ¢(x) € G(A). We can even suppose ¢(x) € Ker(G(A) —
G (k)) because the centralizer of (h1, ..., h,) is Z. Since ¢(x) is uniquely determined

modulo Z(A), it must conjugate p([1j_,; 9,) " p([Tj=, &, - ¥) to p(x [Tj_; 5~
p(x ]_[_';:1 0j - y). We deduce that Vx, y € T, p(xX) " p(xy) = d(x)p(y)p(x)~!, and
p is a quasi-lift.

For the p constructed as above, we canrecover f from the formula (71, ..., ) =

So it remains to prove that if p; and p, have the same image in aDef 7(A),
then they are equal modulo Ker(G(A) — G(k))-conjugation. Since

lifts of (A1, ..., h,) and pre-images of f (4, . , 0), they are conjugated by some

g € G(A), and we may choose g € Ker(G(A) — G(k)) because the centralizer

of (hy,...,h,) is Z. After conjugation by g, we may suppose (pl(]_[’j_:l1 6j)_1

11521 6))i=1.n = (Pz(]_[_l,-;ll 5j)71p2(1_[lj:] 8;)i=1,..n = (W}, ..., h)). Thenfor
ve o1z c5j)’1;)k(]_[;’.=l d; - 7) (k = 1, 2) is uniquely determined by the con-

dition: (h%, ..., h), pk(]_[';:1 5j)*1pk(]_[';=1 0; -y lifts (hy, ..., hy, p(y)) and is a

pre-image of f(dy, ..., d,, 7). In consequence, we have p; = p;.
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For A € Artp, letaDef ; .(A) be the subset of aDef 7(A) consisting of f: BI" —
BG(A) which factorizes through some finite quotient of I'. In fact, we have
aDef ; .(A) = HomSSets“}G(k) (X, BG(A)) (recall that X is the pro-simplicial set
(BT});). The following corollary is obvious:

Corollary 3.17 Let A € Arto. Then aDef ; .(A) is isomorphic to the set of G-
conjugacy classes of continuous quasi-lifts of p.

As a by-product of the proof of Theorem 3.16, we also have

Corollary 3.18 For A € Arto, the set aDef 7(A) (resp., aDef (A)) is isomorphic
to Hom (BT, BG(A)/G"(A)) (resp., HomM(X BG(A)/GA(A)))

But unfortunately, the simplicial set BG(A)/G"(A) isn’t generally fibrant.

We attempt to compare the difference between aDef 7. -(A) and D(A). Motivated
by the front-to-back duality in [27, 8.2.10], we make the following definition. Let
the reflection action r act on BI" and BG (A) as follows:

(Hh ractson B, =T x---xTbyr(vi, ..., V) = s o+ -5 V1)
(2) r acts on Oy, by r(f)(gl, veesGn) = f(gn, ..., g1). We see that r preserves
Oj‘\?%, hence r acts on BG(A),.

Definition 3.19 For A € Arto, we define bDef 7(A) (resp., bDef ; .(A)) to be the
subset of aDef 7(A) (resp., aDef ; .(A)) consisting of f: BI' — BG(A) which com-
mutes with r.

Theorem 3.20 Let A € Arto. Suppose the characteristic of k is not 2. Then
bDef 7(A) is in bijection with the set of group homomorphisms I' — G(A) which
lift p, and bDef ; .(A) is in bijection with D(A).

Proof Let f € bDef 7(A). It suffices to prove that the quasi-lift p obtained in
Theorem 3.16 is a group homomorphism. We choose the tuple (41, ..., d,) such
that ; = d,,41_; and ]_[;: 1 0; = e. Write p for the quasi-lift constructed from this
tuple as in Theorem 3.16, note that the choice of (dy, ..., d,) only affects p by
some conjugation. Let ¢p: I' - G(A)/Z(A) be the group homomorphism such
that p(xy) = p(x)p(x)p(y)d(x)~! for any x, y € I'. Note that #(x) mod my = 1
because p is a group homomorphism.

Since f commutes with », we have

(1) px) =px=H~",vx eT.

(2) p(x)~'p(xy) = p(yx)p(x)~", Vx,y €T.

By substituting (1) into p(xy) = p(x)d(x)p(y)d(x)~!, we get p(y 'x~H~' =
p(x N 1o p(y™H)'p(x)7!, then consider (x,y) > (x~!, y~') and take the

inverse, we get p(yx) = 6(x) " p(3)d(x) p(x). Now (2) implies p(xy) p(x) = p(x)p(yx),
which in turn gives

p(X)P(x)p(M)P(x) " p(x) = p(x)p(x) ' p(3)(x) p(x).
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So ¢(x)* commutes with p(I") for any x € T, and ¢*> = 1. Since the characteristic of
kisnot2 and ¢(x) mod my =1 € G(k)/Z(k), we deduce ¢ = 1 and p is a group
homomorphism. ]

3.3 Derived Deformations of Pseudo-Characters

The functor aDef ; . = Homssets/im(k) (X, BG(-)) is analogous to the functor DH =
Homggets sow (X> BG(=)), so it’s natural to consider the function complex
sHOoM sets 6 (X, BG(—)) and then to extend the domain of definition to o \sArt/,
as constructing the functor sD: o \sArt/; — sSets.

Definition 3.21 For A € o\sArt/,, we define BG(A) to be the Ex™ of the diagonal
of the bisimplicial set

(pl, gD — HOmo\scR(c(O?;lp%), ALy

and define saD(A) = hofib (HOM;sets (X, BG(A)) — Homses(X, BG(k))).

If A € Artp, then the bisimplicial set ([p], [¢]) — Homo\SCR(C(O?\;ipGG)v Anlaly

doesn’t depend on the index ¢, and each of its lines is isomorphic to EX®*BG(A).
Hence f can be regarded as an element of HOMges (X, BG(k)). As the derived
deformation functors sD, we see that saD: o \sArt/; — sSets is homotopy invari-
ant.

Note that the inclusion O?\}{% < Oy, induces a natural transformation sD —
saD.

We would like to understand mpsaD(A). Let’s first analyze the case A € Arto.
For simplicity, we don’t take the Ex* here. Since BG(A) — BG(k) is a fibra-
tion, SHomssets/gG(k) (X, BG(A)) is a good model for sD(A). However, if BG(A) —
BG (k) is a not fibration, then SHOM gets o (X, BG(A)) is not weakly equivalent
to saD(A).

We have the commutative diagram

SHOM,sets 55, (X, BG(A))g ——— SHOM et ;. (X, BG(A))o

| |

70 SHOMets 4, (X, BG(A)) —— 7o SHOMsets ;.5 (X, BG(A)).

Note that mosaD(A) is the coequalizer of saD(A); = saD(A)o = aDef 7 .(A) by
definition.

Proposition 3.22 The above diagram is naturally isomorphic to
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DPH(A) aDef ; .(A)

/7
—
—~
—~
—
—~

D(A) — mo SHOM,sets ;.5 (X, BG(A)).

And there is a dotted arrow which makes the diagram commutative, whose image is
bDef 7 .(A) C aDef ; .(A).

Proof We have sHOMges, 56, (X, BG(A))o = Homa( (X, BG(A)), which is
exactly DY(A), since B: Gpd — sSets is fully faithful. The other isomorphisms
follow by definition.

The dotted arrow signifies the inclusion of usual deformations into pseudo-
deformations, whose image is bDef ; .(A) by Theorem 3.20. ]

Remark 3.23 Note however that the functor saD: »\sArt/, — sSets remains
quite mysterious. It may be asked whether there is a more adequate derived defor-
mation functor for pseudo-characters.

4 (Co)tangent Complexes and Pro-Representability

4.1 Dold-Kan Correspondence

Let’s briefly review the Dold-Kan correspondence. Let R be a commutative ring.
Our goal here is to recall an equivalence (of model categories) between the category
of simplicial R-modules sMody and the category of chain complexes of R-modules
concentrated on non-negative degrees Ch-((R). Recall the model category structures
on sMody and Chs((R):

(1) For sModg, the fibrations and weak equivalences are linear morphisms which are
in sSets, and the cofibrations are linear morphisms satisfying a lifting property
(see [15, Proposition 7.2.3]).

(2) For Chs((R), the cofibrations, fibrations, and weak equivalences are linear mor-
phisms satisfying the following:

(a) f: Cy — D, isacofibration if C,, — D, is injective with projective coker-
nel forn > 0.

®) f: Cy, — D, isafibration if C,, — D, is surjective forn > 1.

(c) f:C, — D,isaweakequivalence if the morphism H, f induced on homol-
ogy is an isomorphism.

We write M € sMody for the simplicial R-module with M, on n-th simpli-
cial degree. Let N(M) be the chain complexes of R-modules such that N(M), =

—1
() Ker(d;) € M, with differential maps
i=0

n
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n—1 n—2
(=1)"d,: ﬂ Ker(d;) € M, — ﬂKer(di) cM,_,.
i=0 i=0

Obviously M +— N (M) is functorial. We call N(M) € Chso(R) the normalized
complex of M.

The Dold-Kan functor DK: Chs¢(R) — sMody is the quasi-inverse of N.
Explicitly, for a chain of R-modules C, = (Cy <— C; <= C, < ...), we define
DK(C,) € sModg as follows:

(1) DK(Co)n = D Cr.

(2) For 0: [m] —[:];1[]](,]we define the corresponding DK(C,),, — DK(C,),, on each
component of DK(C,), indexed by [n] 5% [k] as follows: suppose [m1] 5 [s] Ci
[£] is the epi-monic factorization of the composition [m] —€> [n] 5 [k], then the

map on component [7] 5% [k] is

Cki;cx‘—> @ C,.

[m]—Ir]

Theorem 4.1 (1) (Dold-Kan) The functors DK and N are quasi-inverse and
hence form an equivalence of categories. Moreover, two morphisms f, g €
Homymea, (M, N) are simplicially homotopic if and only if N(f) and N(g)
are chain homotopic.

(2) The functors DK and N preserve the model category structures of Ch=o(R) and
sMody defined above.

Proof See [27, Theorem 8.4.1] and [11, Lemma 2.11]. Note that (1) is valid for any
Abelian category instead of sModp.

Remark 4.2 Let Ch(R) be the category of complexes (C;);cz of R-modules and
Ch((R) the subcategory of complexes for which C; = 0 for i < 0. The category
Ch((R) is naturally enriched over simplicial R-modules, and we have

sHomcp_ () (Co, D) = sHOM poa, (DK(C,), DK(D,)).
Given C,, D, € Ch>((R). Let [C,, D,] € Ch(R) be the mapping complex, more
precisely, [C,, D.1, = [],, HOMg(C,,, Dy yn) and the differential maps are natural

ones. Let 7> be the functor which sends a chain complex X, to the truncated complex

0« Ker(Xg— X_1) < X| «~— ...
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Then there is a weak equivalence
SHomChZQ(R) (Co ) D.) ~ DK(TZO [Co ) Do])

(see [18, Remark 11.1]).
It’s clear that m; SHomChZO(R)(C., D,) is isomorphic to the chain homotopy
classes of maps from C, to D ,.

4.2 (Co)tangent Complexes of Simplicial Commutative Rings

We recall Quillen’s cotangent and tangent complexes of simplicial commutative
rings.

Let A be a commutative ring. For R an A-algebra, let Qg,4 be the module of
differentials with the canonical R-derivationd : R — Qg 4. Let Der4 (R, —) be the
covariant functor which sends an R-module M to the R-module

Derg(R,M) ={D: R — M | D is A-linear and D(xy) = xD(y) + yD(x), Vx,y € R}.

It’s well known that HOomz(S2g/4, —) is naturally isomorphic to Ders (R, —) via
¢ pod.

Let T be an A-algebra, and let 4\CR/7 be the category of commutative rings
R over T and under A. Then for any T-module M and any R € 4\CR/7, we have
natural isomorphisms

HomT(QR/A ®r T, M) =Dergy(R,M) = HomA\CR/T(R, THM),

where T @ M is the T-algebra with square-zero ideal M. So the functor R +—
Qpr/a ®r T is left adjoint to the functor M — T @ M.

The above isomorphisms have level-wise extensions to simplicial categories (see
[11] Lemma II.2.9 and Example 11.2.10). For R € 4\sCR, we can form Qg/1 ®z
T € SMOdT.

We have

sHoMod, (R2r/4 @ T, M) = sHom \scr/, (R, T & M).

The functor M +— T @& M from sMody to 4\sCR/ preserves fibrations and weak
equivalences (we may see this via the Dold-Kan correspondence), so the left adjoint
functor R > Qg4 ®g T is left Quillen and it admits a total left derived functor. We
introduce the cotangent complex Lg,4 in the following definition, so that the total
left derived functor has the form R + Lg/a®,T. Note that given two simplicial
modules M, N over a simplicial ring S, one can form (degreewise) a tensor product,
denoted M® SN , which is a simplicial S-module.
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Definition 4.3 For R € 4\sCR,wedefine Lg,4 = QC(R)/A@C(R)R € sModpy, where
c(R) is the middle object of some cofibration-trivial fibration factorization A <>

c(R) 5 R, and we call Lg/4 the cotangent complex of R.

Note that it is an abuse of language, as it should be called cotangent simplicial
R-module, because for R simplicial, Lr;4 € sModp but there is no notion of com-
plexes of R-modules.

By construction, Lg/a®,T is cofibrant as it’s the image of the cofibrant object
c(R) under a total left derived functor, and it is fibrant in sMod ¢ (all objects are fibrant
there). Note also that the weak equivalence class of Lg/4® T is independent of the
choice of ¢(R). It follows from these two observations that Lg,4 is determined up
to homotopy equivalence (by the Whitehead theorem [15, Theorem 7.5.10]). Using
the Dold-Kan equivalence, we can form the normalized complex (determined up to
homotopy equivalence)

N(LR/A@RT) € Chzo(T)

From now on, we keep the functor N understood and simply write
Lrja ®r T € Chxo(T).

Recall that for M, N € Ch(T), the internal Hom [M, N] € Ch(T) is defined as

[M, N]n = l_[ HomT(Mms Nm+n)-

m

Note that if M € Cho(T), then [M, T] € Cho(T). For C € Chy(T), we write
C' = C_, fori > 0; we thus identify Ch-o(7) = Ch=°(T).
For R € 4\sCR/r and C, € Ch((T), we have (by Remark 4.2)

sHom,\scr/, (¢(R), T ® DK(C.)) = sHOMmod, (Lr/a®, T, DK(C.))
>~ DK(7=0[Lg/a ®r T, C,]).

Definition 4.4 The T-tangent complex tRy of R — T is the internal hom complex
[Lg/a ®& T, T] € Ch=(T).

Note that tRy is well defined up to chain homotopy equivalence since it is the
case for Lg/s ®r T.
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4.3 Tangent Complexes of Formally Cohesive Functors
and Lurie’s Criterion

In [13, Sect. 4], the authors define the tangent complexes of formally cohesive func-
tors. To summarize, we have the following proposition:

Proposition 4.5 Let F: o\sArt/; — sSets be a formally cohesive functor.
Then there exists L € Ch(k) such that F(k & DK(C,)) is weakly equivalent to
DK(7s0[L £, C,]) for every C, € Chs((k) with H,(C,) finite over k. U

Proof See [13, Lemma 4.25].
Definition 4.6 Let F: »\sArt/;, — sSets be a formally cohesive functor.

(1) We call L the cotangent complex of F.
(2) The tangent complex tF of F is the chain complex defined by the internal hom
complex [L £, k].

Note that L » and tF are uniquely determined up to quasi-isomorphism. We shall
use t' F to abbreviate the homology groups H_;tF.

Remark 4.7 If R € p\sCR/; is cofibrant, then the functor Fy =
sHom,\scr,, (R, —): o\sArt/, — sSets is formally cohesive.  Since
DK(70[L 7, k[n]]) = sHom ,\scr/, (R, k @ k[n]) = DK(7=0[Lr/0 ®r k, k[n]]),
the cotangent complexes Lz, and Lg/o ®p k are quasi-isomorphic.

Definition 4.8 We say a functor F: o\sArt/; — sSets is pro-representable, if
there exists a projective system R = (R,),cn With each R, € »\sArt/; cofibrant,
such that F is weakly equivalent to h_r)n sHom,\sart/, (Rn, —). In this case, we say

R = (Ry)nen is a representing ring for . We shall write SHom ,\sart/, (R, —) for
h_H)l SHomo\sArt/k (Rn P _)-

Remark 4.9 The pro-representability defined above 1is called sequential
pro-representability in [13], but we will only deal with this case.

Theorem 4.10 (Lurie’s criterion) Let F be a formally cohesive functor. If dimy t' F

is finite for every i € Z, and ' F = 0 for every i < 0, then F is (sequentially) pro-
representable.

Proof See [17, Corollary 6.2.14] and [13, Theorem 4.33]. (I
The following lemma illustrates the conservativity of the tangent complex functor:

Lemma 4.11 Suppose F, F>: o\sArt/, — sSets are formally cohesive functors.
Then a natural transformation F, — F, is a weak equivalence if and only if it
induces isomorphisms tF - tF foralli.

Proof Ifthe natural transformation induces isomorphisms t' 7, — t F,, then F; (k ®
k[n]) — F>(k & k[n]) is a weak equivalence. So by simplicial Artinian induction
[13, Sect. 4], it induces a weak equivalence F1(A) — F»(A) for A € p\sArt/;. O
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4.4 Pro-Representability of Derived Deformation Functors

In the following, we suppose p > 2,and I' = G s for § = §, U S. Suppose fur-
ther that p satisfies (Ord,) and (Reg,) for v € S, and HOT, 1) = 3x. Recall
that we’ve introduced derived deformation functors sD and sD"°, as well as the
modifying-center variants sDz and sD%°. These functors are all formally cohesive.
Their tangent complexes are related to the Galois cohomology groups H: (T, gi) of
adjoint representations, where * = ¢ or n. o.

4.4.1 Galois Cohomology

We briefly review the Galois cohomology theory. To define the nearly ordinary coho-
mology, we fix the standard Levi decomposition B = T N of the standard Borel of G;
it induces a decomposition of Lie algebras over k: by = t; @ n;. Recall the definition
of the Greenberg-Wiles nearly ordinary Selmer group

Hl(rvv gk)

71 _ 1
H) (T, go) = Ker [ H' (T g0) — [ ] T

ves,
where L, = im(H"(T"y, bp) = H' Ty, gi)).

For v € §,, let I:v c Z'(I'y, gi) be the pre-image of L,. Let C; (I, gi) be the
mapping cone of the natural cochain morphism

0—— % g) ————C' (T, ) C2(Mgg) ——— ...

| |

0 0 @UGSP Cl(rv»gk)/zv H@UESP Cz(l"u,gk) _— ..

Then we define the nearly ordinary cohomology groups H, (I, gx) as the cohomol-
ogy of the complex C; (', g¢). They fit into the exact sequence (¥):

0—H’ (T,g) — H' (T, g1) = 0
—H, (T, g0) > H' (T, gi) > @ H'(Tw, g0) /Lo

ves,

—H (T, g¢) —> H(T, g1) - P H' (T, 90)

ves,

—H> (T, 1) = 0.

In particular, ﬁnl‘O(I‘, o) = H! (T, g1).
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Definition 4.12 For a finite O[[']-module M, we write MY = Homp (M, K /O)
and M* = Homp (M, K/O(1)). In particular, if M is a k-vector space, MV =
Hom (M, k) and M* = Hom (M, k(1)).

Recall the local Tate duality H'(T,, gx) x H'(Ty, g}) — k. Let L:CH'([T,, g})
be the dual of L,. We define similarly the cohomology groups H (I, g;). In
particular,

PrL.— H'T.g)” > HL, (gD’ >0

veS,

is exact. By fitting this into the Poitou-Tate exact sequence (see [20, Theorem 1.4.10]),
we obtain the exact sequence (% ):

H' (T, g1) - D H' (T, g0)/ Lo

ves,

—~ Hl (T.g)" > H*T, g0) —> P H* T g0)

ves,

— HT, g;)" —0.

We deduce the Poitou-Tate duality:

Theorem 4.13 For eachi € {0, 1, 2, 3}, there is a perfect pairing

Hy o (T, ) x HOJH(T gi) — k.
Proof Fori € {0, 1}, it suffices to compare the exact sequences (%) and (% % ). The
cases i € {2, 3} follow by duality. ([

4.4.2 Tangent Complex

Lemma 4.14 (1) We have t'sD = H'T(T, g;) for all i € Z. On the other hand,
tisD, = tisD when i # —1, and t1sD, = 0.

(2) Let v € §,. Then we have tsD, = H*TY(T,, gx) for all i € Z. On the other
hand, t'sD, ; = t'sD, wheni # —1, and t " 'sD, ; = H(T'y, gx) /3.

(3) Letv € S,. Then we have tisDL"° = HTY(T,, by) for all i € Z. On the other
hand, ¥ 5D} = t'sD)y° when i # —1, and t~'sD} = HO(Ty, by)/3x. More-
over, t'sD™ = 0 if (Reg?) holds.

Proof Note that t/ = F = m; F(k @ k[j]) for any formally cohesive functor F and
any i, j > 0. Later in Sect. 4.5 we shall give a slightly generalized version of the
lemma. See also [13, Sect. 7.3].

In particular, by Lurie’s criterion (Theorem 4.10), this lemma together with the
finiteness of the cohomology groups implies
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Corollary 4.15 The center-modified functor sDy is pro-representable.

Now we treat the nearly ordinary case sD%°. Let’s recall that sD z =
[Ties, sDv.z. Do 7 = [1yes, sDy% and sDY° = sDz Xy, sDje 5. Recall that
p satisfies (Ord,) and (Reg,) for v € S,, so sD%° is indeed the derived general-
ization of D", i.e., mps DY (A) = D™°(mA) for homotopy discrete A € o \sArt/,
(see Proposition 2.18).

Lemma 4.16 Suppose furthermore (Reg’) for v € S,. Then t sD%° = HITI(T, g)
wheni > 0, and t’kD‘%’o =0wheni < 0.

Proof We have the Mayer-Vietoris exact sequence (see [13, Lemma 4.30 (iv)] and
[27, Sect. 1.5])

. . . . 1
t'sDy° — t'sDz @ t'sDjye ; — t'5Dioc 2 q...

By Lemma 4.14, we obtain an exact sequence

0 — 715Dy — @ HTy. b) /3 — @D HO(Ty. 010 /5

ves, ves,
— (D} — H'(T, g0 & (P H' (T, b)) — @ H' Ty, 00)
ves, ves,
— t'sDY° — HX(T. go) — @D HA(T. bo)
ves,

— 5sDL° — 0.

By assumption (Reg, ), the map H(T"y, by) /3 — H®(T'y, gi)/3« is anisomorphism.
The conclusion follows from comparing the above exact sequence with (¥). ]

In particular t~'sD%° = 0 (note that for this we don’t need (Reg?)). By Lurie’s
criterion (Theorem 4.10) and the finiteness of the cohomology groups, we have the
following corollary:

Corollary 4.17 The functor sD%° is pro-representable.

Let R*™° be a representing (pro-)simplicial ring. Since mosD}%°(A) = D"°(A)
for A € Artp, the ring mo R*"° represents the classical nearly ordinary deformation
functor D™°.

4.5 Relative Derived Deformations and Relative Tangent
Complexes

Let T € Artp and let pr: I' — G(T) be a nearly ordinary representation. For v €
S,, we write pr, for the restriction of p7 on I', and we suppose the image of
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pr.» lies in B(T) (more precisely, we should say the image of some conjugation
of pr, lies in B(T), but there is no crucial difference). Let X and X, be the pro-
simplicial sets associated to the profinite groups I' and I',. We identify pr as a
map of (pro-)simplicial sets X — BG(T) — BG(T) (here BG(T) is the classical
classifying space of the finite group G(7') and BG(T) is a fibrant replacement, see
Definition 2.10) and identify p7 , as X, - BB(T) — BB(T) — BG(T).

Let’s consider the derived deformation functors over pr.

Definition 4.18 (1) LetsD,, : o\sArt/; — sSets be the functor
A — hofib,, (SHOMgets (X, BG(A)) — sHOMgers (X, BG(T))).
(2) Forv e S, letsD,,, : o\sArt/r — sSets be the functor
A — hofib,, (sHOMgets (X, BG(A)) — sHOMgets (X, BG(T))).
(3) Forv € §),letsDj° @ o\sArt/r — sSets be the functor
A — hofib,,  (SHOMgets (X, BB(A)) — sHOMsets (X, BB(T))).

Our goal is to prove the following proposition (see also [13, Example 4.38 and
Lemma 5.10]):

Proposition 4.19 Let M be a finite module over an arbitrary Artin ring 7. Then for
i, j = 0 we have

TisDy (T @ M[j1) = H'W /T, gr @1 M).

Note that sSHOMges(X, —) is defined by the filtered colimit
li_n)1i SHOoM,gets (BT;, —), which commutes with homotopy pullbacks. So it suffices
to prove the proposition with I" replaced by I'; and X replaced by BT';. To simplify
the notations, we suppose I" is a finite group during the proof.

Lemma 4.20 Let A € p\sArt/r. Then sD,, (A) is weakly equivalent to
holim xhofib, (BG(A) — BG(T)).
Proof By [15, Proposition 18.9.2], X is weakly equivalent to hocolima x)or* (i.e.,
the homotopy colimit of the single-point simplicial set indexed by (A X)°P). Hence
(see [15, Theorem 18.1.10])
SHOMgets (X, BG(A)) =~ holima x SHOMgets (x, BG(A)) =~ holimax BG (A),

and

SHOMgets (X, BG(T)) =~ holima x SHOM gets (x, BG(T')) = holimax BG(T).
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Note that p7, as the single-point simplicial subset of SHOMgets (X, BG(T)), is iden-
tified with holimp y* — holimaxBG(T). Since homotopy limits commute with
homotopy pullbacks, we conclude that

sD,, (A) > holima xhofib, (BG(A) — BG(T)).

Let’s first analyze hofib, (BG(T & M[j]) — BG(T)).

Lemma 4.21 The homotopy groups of hofib,(BG(T & M[j]) — BG(T)) are triv-
ial except at degree j + 1, where it is g7 Q1 M.

Proof Note that A — hofib,(BG(A) — BG(T)) preserves weak equivalences and
homotopy pullbacks.

Since T @ M[j] — T is j-connected, the map BG(T & M[j]) — BG(T) is
(j + 1)-connected (see [13, Corollary 5.3]), and the homotopy groups of the homo-
topy fiber vanish up to degree j. Since the functor A + hofib,(BG(A) — BG(T))
maps the homotopy pullback square

TeMlj—1]———T

| |

T T o Mlj]

to a homotopy pullback square, we get

7 j+khofiby (BG(T & M[j]) — BG(T)) = 7jq,—1hofib (BG(T & M[j — 1]) — BG(T))
for any k > 0. Consequently
7 j1ihofib, (BG(T & M[j]) — BG(T)) = mihofib, (BG(T @ M[0]) — BG(T)),

and hofib,(BG(T & M[j]) — BG(T)) has homotopy groups concentrated on
degree j + 1, where it is g7 @1 M. O

Let Y be the AX-diagram in sSets (i.e., functor AX — sSets) which takes the
value hofib, (BG(A) — BG(T)). Then Y is alocal system (see [13, Definition 4.34],
it’s called the cohomological coefficient system in [12, Page 28]) on X. There is hence
am (X, x)-action on the homotopy group g7 ®7 M. By unwinding the constructions,
we see this is the conjugacy action of pr on gr @7 M.

It suffices to calculate holimY . Under the Dold-Kan correspondence, we may iden-
tify hofib,(BG(A) — BG(T)) with the chain complex with homology gr & M
concentrated on degree j + 1. But in fact it’s more convenient to regard hofib,
(BG(A) — BG(T)) as acochain complex with cohomology gr ®7 M concentrated
on degree —(j + 1), because the homotopy limit of cochain complexes is drastically
simple (see [8, Sect. 19.8]). By shifting degrees, it suffices to suppose that the coho-
mology is concentrated on degree 0.
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Lemma 4.22 Let N be a T[I']-module, and we regard N as a cochain complex
concentrated on degree 0. Let Y be the AX -diagram in Ch=°(T) (i.e., functor AX —
Ch=%(T)) which takes the value N. Then holimY ~ C*(T", N). Here C*(T', N) is the
cochain which computes the usual group cohomology.

Proof By[15,Lemma 18.9.1], holimY is naturally isomorphic to the homotopy limit
of the cosimplicial object Z in Ch=%(T) whose codegree [n] term is ]_[(,eX“ Y, =
[l x, V. We have to explain the coface maps of Z. For this purpose, we describe
Z = (Z™), as follows:

The T[I']-module N defines a functor D from the one-object groupoid e with
End(e) = I' to Ch=%(T), such that D(e) = N, and D(T") acts on N by the I'-action.
Then Z"is [ D(y,) (all i’s are equal to the object e here, but keeping the

{9 -y
difference helps to clarify the process). Let d be the k-th face map from I'*+! to I'",
in other words, d; maps (ip — -+ — iy+1) to (jo = -+ — Jj,) by “covering up”
ix. Then the corresponding D(j,) — D(i,+1) is the identity map if k 7% n + 1 and
is D(i, > iyp) ifk=n+1.

By [8, Proposition 19.10], holim Z is quasi-isomorphic to the total complex of the
alternating double complex defined by Z. Since each Z" is concentrated on degree
0, the total complex is simply

--~—>1_[N—> HN—)...

rn l’*n+l

and the alternating sum [[ N — [] N is exactly the one which occurs in computing
In l'w+l
group cohomology. We conclude that holimY =~ holimZ ~ C*(T", N). ]

Now we can prove Proposition 4.19:

Proof From the above discussions, sD,, (T @ M[j]) corresponds to 70+t
(I', g7 ®r M) under the Dold-Kan correspondence (with Chs((7) replaced by
Ch=(T)). Hence 7;sD,, (T & M[j]) = H'*/~\(T, gr ®r M). O

We can define the modifying-center version sD,, z as in Sect. 2.4.1. Note
the fibration sequence (see [13, (5.7)]) hofib(SHOMgets (X, BZ(A)) — SHOMgets
(X, BZ(T))) — sD,,(A) — sD,, z(A). From this, we deduce that m;sD,, 7 (T &
M[j]) = 7;sD,, (T & M[j]) wheni # j+ 1, and w1 1sD,, z(T & M[i]) = 0.

For each v € §,, there is also a modifying-center version sD,, 7, resp., SDE'T‘_’W z
of sD,, ., resp., sDE;’“. Similar to the global situation, we have

12

misDp,.z(T & M[j])

H'"W=(T,, gr ® M) wheni # j + 1;
H(T,, g7 ®r M)/Gr @r M) wheni = j + 1.

And

12

14 j—i L
misDy? (T @ M[j]) {H (Ty, br ®7 M) wheni # j + 1;

H(T,,br ® M)/Gr @r M) wheni = j + 1.
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The global nearly ordinary derived deformation functor over pr is defined as

follows:
h
5Dy’ 7 =Dy, 2 Xocs, Doy 2 l_[ sDy? 7.
ves,
Then 7;sD’ (T ® M[j]) (?=n.o or ) depends only on j —i. We denote

pr.Z
t73ysD) ;= msD} (T & M[j)).

Proposition 4.23 Suppose (Reg,) and (Reg;).Let j > i > 0 and let M be a finitely
generated (classical) T-module. Then m;sD)° (T ® M[j]) = Had/7U(T, g7 @1
M).

Proof By preceding discussions, we have the exact sequence

0— thsDp0 , — @@ HOTy, by @1 M)/Gr ®7 M) — @ HO(Tw, o &1 M)/G7 @1 M)

veSy vesy
) usDpe 7 — H'(T g7 @7 M) & (P H' Ty, by @7 M)) > @ H' (Tv. 97 @7 M)
veSy veSy
— th 5D, — HAT, g7 ©7 M) > ) H* Ty, b7 1 M)
vesSy

— t7~A491) 7 0.

Note that we have used H2(I",, by @ M) = 0forv € S,. To see this, it suffices to
show H?(I'", by) = 0by Artinian induction. By local Tate duality, it suffices to prove
HOT,, b}) = 0. But we have a Galois-equivariant isomorphism b} = g; /n.(1), so
the result follows from the assumption (Reg;).

Under the condition (Reg,), the map H*(T', by @ M) — H(Ty, gr @1 M) is
an isomorphism. Let L, 7.y = im(H'(I"y, by ®7 M) — H'(T,, g7 ®7 M)), then
we have the following exact sequence similar to (¥ ):

0—H’ (T, gr ® M) — H(T', gr @ M) — 0
—H, (T, g7 ®r M) — H'(T. gr @ M) —> @ H' (T, g7 ®7 M)/Ly.7.m

veS,

H} (T, gr ® M) > H*(T, gr ® M) > @ H' (T, gr @1 M)

ves,

H> (T, 9r ®r M) — 0.

By comparing the two exact sequences above, we get tiT, MsD';TOZ =

HITUT, gr @1 M). O

Recall that we have a pro-simplicial ring R*™° which represents sD%°. Then pr
defines a map
R>™ — myR*"° — T.
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With this specified map, we regard R*™° € pro—p\sArt/r, and it’s easy to see
that R*™° represents sD;;f” 2 Write R*"° = (Ry) for a projective system (Ry) in
o\sArt/r. Then

misDZ(T ® M[j1) = m; lim SHOM g \sare/, (R, T & M[j])
k
= iy li_I)nDK(Tz()[LRk ®R,< Tv M[]]])
k
>~ H, 11_;1)1[LRk ®r, T, M[j]].

Let’s define [Lgo ®rT,M]= hm [LRk/O ®g, T, M] for =(Ry) €
pro—o\sArt/7. Then [L gsno;0 @ gsno T M ], when regarded as a cochaln complex,
has the same cohomology groups as the complex 7=°C*t1(T", gr ®7 M). We thus
obtain the following corollary:

Corollary 4.24 For every finite T-module M, there is a quasi-isomorphism
[Lrsnojo @pono T, M1~ 72°CE (T, a7 @1 M).

Remark 4.25 Recall that there is a natural transformation D™ — [T, . s, Defy, (see
Remark 2.2). We can construct the derived analogue s'D“‘O 'y > ]_[vE s, S Defy, 7, s0
it’s natural to ask if R®"™° is a A-simplicial ring. Indeed this is the case when
()i ® has no torsion for every v € Sp. In general, let OF"~ T — A, x W, be a

decomposition of (’) P~ into a finite group A, and a pro-p group W,, and let
go Ay, —> O be a ﬁxed character we can modify sDJ°; by taking into account

= (¢v)ves, the resulting sD° pT,Z is then pro- represented by a simplicial Artinian
A—algebra R*"™% and we canrelate [L gsnow/p ®pgsnow T, M]tothe ordinary cochain
complex as Corollary 4.24. See [2] for details.

Comments: Let pr: I' — G(T') be an ordinary representation of weight p, which
satisfies (Reg,) forall v € S,. This means that the cocharacter givenby prl;,: I, —
B(T)/N(T) is given (via Artln reciprocity) by p o recv 2 I, > OF — O(T) (here
® = B/N is the standard maximal split torus of B). In this whole section, if pr is
ordinary of weight v, we could consider instead of the functor sDJ:° the subfunctor
sD, > of ordinary deformations of fixed weight p. This means we impose as local
condition at v € S, that

DU (A) = hofiborec- (SDE'T‘Z (A) — sHom(BI,, B@(A))) .

Then, sD;" is pro-representable by a simplicial pro-Artinian ring R;;™° and we
have an analogue of Proposition 4.23:

Proposition 4.26 Suppose (Reg,) and (Reg}). Let j >i >0 and let M be a
finitely = generated (classical) = T-module. Then W,SDHO T © M[j])

- Hnlgjstrl (Fa gr ®T M)
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Here H, o,/ (T, g7 ®7 M) is the cohomology of the subcomplex Coou(T, g7 ®r
M) defined as in Sect. 4.4.1, replacing (L., ZU) by (L), Z;) where L is the image in
H' (T, gr ® M) of the kernel of H'(T",, by ® M) — H'(I,, (b7 /n7) ® M), and
L is the inverse image of L', in Z'(T',, g7 ® M).

The proof is identical to Proposition 4.23. As a corollary, we get

Corollary 4.27 For every finite T-module M, there is a quasi-isomorphism

[Lginojo0 @pene T, M] =~ 20C T (T, gr @1 M).

n.o,u

In the next section, we shall use these objects with a fixed weight .

5 Application to the Galatius-Venkatesh Homomorphism

Let I' = Gal(Fs/F) for S =S, U 8. Let p: I' = G(k) be an ordinary repre-
sentation of weight p, which satisfies (Reg,) for all v e S,. Let T be a finite
local O-algebra and pr: I' — G(T') be an ordinary lifting of weight p of p. Let
M be a T-module which is of O-cofinite type, that is, whose Pontryagin dual
Homop (M, K/O) is finitely generated over (. We use the notations of Defini-
tion 4.12. Recall that if p: I' — G(k) is ordinary automorphic, it is proven under
certain assumptions (see [6, Th.5.11] and [26, Lemma 11]) that Hnllo(l", or Qr M)
is finite and Hnl (g7 ®r M) is of O-cofinite type. Let 7, = T/(w"); it is a
finite algebra over O, = O/(w"). Let R = R};™°, which pro-represents simplicial
ordinary deformations of weight ;.. We consider the simplicial ring homomorphism

On: R— T,

given by the universal property for the deformation p, = p,, (mod (ww")).Let T, =
T /(w"); it is a finite algebra over O, = O/(w"). We consider the simplicial ring
homomorphism

On: R— T,

given by the universal property for the deformation p, = p,, (mod (w")). Let M,
be a finite 7,,-module. Consider the simplicial ring ®, = T,, & M,[1] concentrated
in degrees 0 and 1 up to homotopy. It is endowed with a simplicial ring homomor-
phism pr,: ®, — T, given by the first projection. Let L, (R) be the set of homo-
topy equivalence classes of simplicial ring homomorphisms ®: R — ®, such that
pr, o® = ¢,. By Proposition 4.26, there is a canonical bijection

L,(R) = H;, (T, gz, ®1, M,).

n.o,str

Moreover, as noticed in [13, Lemma 15.1], there is a natural map
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m(n, R): Ly(R) — Homz(m(R), M)

defined as follows. Let [®] be the homotopy class of ® € Homr (R, ©,); then
m(R)(P) is the homomorphism which sends the homotopy class [y] of a loop y
to ® oy € Homygets (A[1], M, [1]) = M,,. Recall a loop «y is a morphism of sSets

v All] — O,

from the simplicial interval A[1] to the simplicial set ®, which sends the boundary
OA[1]t0 0. For G = GLy and F a CM field (assuming Calegari-Geraghty assump-
tions), it is proven in [26] that

Proposition 5.1 For any n > 1, the map m(n, R) is surjective.

Then, we choose M, = Hom(T,w"0O/0O); we take the Pontryagin dual
m(n, R)Y and apply Poitou-Tate duality

H, .. (T, g1, ®7, My) = H, . (T, (g7, ®7, M;))").

We obtain a T'-linear homomorphism called the mod. w" Galatius-Venkatesh homo-
morphism:
GVy: Homy (mi(R), My)” = Hyo g (T, (87, ®1, Ma)").

The left-hand side is m(R) ® w™"/O and the right-hand side is Selyo s
(Ad(p,)(1)). Taking inductive limit on both sides, we obtain

Proposition 5.2 There is a canonical T'-linear injection
GVr: m(R™™°) ®0 K/O < Sel(Ad(pr)”(1)).

For G = GLy, F CM, and under Calegary-Geraghty assumptions, and for T
the non-Eisenstein localization of the Hecke algebra acting faithfully on the Betti
cohomology, it follows from [6, Theorem 5.11] that the left-hand side is ww-divisible
of corank rk(7) and it is proven in [26, Lemma 11] that the right-hand side has
corank rk(T). For any O-finitely generated ordinary I'-module M such that the
Selmer group H, . (I, M ® Q/Z) is O-cofinitely generated, we define its Tate-
Shafarevich module as

IH(M) = Hnl.o,str (F’ M® Q/Z)/Hrlo,str (F’ M® Q/Z)w*div'

It is the torsion quotient of H} | . (I', M ® Q/Z). For any O-algebra homomor-
phism A\: T — O, let p) = pr ®, O. For M = Ad(p,)¥ (1)), one shows in [26,
Lemma 11], using Poitou-Tate duality, that III(Ad(p,)¥ (1))) is Pontryagin dual to

Seln.o,str (Ad(P/\))
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It follows from [26, Lemma 11] that the cokernel of G V) can be identified to the

Tate-Shafarevich group III(Ad(p,)"¥ (1)) in the sense of Bloch-Kato. So that

Coker GV = Sely o5 (Ad(py))".
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