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Preface

This book contains selected chapters and the introduction as well as several applica-
tions of perfectoid spaces, as invented by Peter Scholze in his Fields medal winning
work. These papers are presented at the conference on “Perfectoid Spaces” held at
the International Centre for Theoretical Sciences, Bengaluru, India, from 9 to 20
September 2019.

p-adic methods play a key role in the study of arithmetic properties of modular
forms. This theme takes its origins in Ramanujan congruences between the Fourier
coefficients of the unique eigenform of weight 12 and the Eisenstein series of the
same weight modulo the numerator of the Bernoulli number B12. After the work
of Deligne on Ramanujan’s conjecture, it became clear that congruences between
modular forms reflect deep properties of corresponding p-adic representations. The
general framework for the study of congruences between modular forms is provided
by the theory of p-adic modular forms developed in fundamental papers of Serre,
Katz, Hida, and Coleman (1970’s–1990’s).

p-adic Hodge theory was developed in pioneering papers of Fontaine in 1980s as
a theory classifying p-adic representations arising from algebraic varieties over local
fields. It culminatedwith the proofs of Fontaine’s deRham, crystalline and semistable
conjectures (Faltings, Fontaine–Messing, Kato, Tsuji, Niziol, ...). In order to classify
all p-adic representations of Galois groups of local fields, Fontaine (1990) initiated
the theory of (ϕ,G)-modules. This gave an alternative approach to classical construc-
tions of the p-adic Hodge theory (Cherbonnier, Colmez, Berger). The theory of (ϕ,
G)-modules plays a fundamental role in Colmez’s construction of the p-adic local
Langlands correspondence for GL2. On the other hand, in their famous paper on
L-functions and Tamagawa numbers, Bloch and Kato (1990) discovered a conjec-
tural relation between p-adic Hodge theory and special values of L-functions. Later
Kato discovered that p-adic Hodge theory is a bridge relating Beilinson–Kato Euler
systems to special values of L-functions of modular forms and used it in his work on
Iwasawa–Greenberg main conjecture. One expects that Kato’s result is a particular
case of a very general phenomenon.

The above work of Scholze represents the main conceptual progress in p-adic
Hodge theory after Fontaine and Faltings. Roughly speaking, it can be seen as a

v



vi Preface

wide generalization, in the geometrical context, of the relationship between p-adic
representations in characteristic 0 and characteristic p provided by the theory of (ϕ,
G)-modules. As an application of his theory, Scholze proved the monodromy weight
conjecture for toric varieties in the mixed characteristic case. On the other hand, in
a series of papers, Scholze applied his theory to the study of the cohomology of
Shimura varieties. In particular, the construction of mod p Galois representations is
predicted by the conjectures of Ash (see, P. Scholze. “On torsion in the cohomology
of locally symmetric space”. Ann. of Math. 182: 2015). Another striking application
of this theory is the geometrization of the local Langlands correspondence in the
mixed characteristic case. Here, the theory of Fontaine–Fargues plays a fundamental
role.

Pune, India
La Jolla, USA
Jerusalem, Israel
Jatni, India
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On ψ-Lattices in Modular
(ϕ, �)-Modules

Elmar Grosse-Klönne

Introduction
Let F/Qp be a finite field extension. It was a fundamental insight of Fontaine [1]
that (p-adically continuous) representations of the absolute Galois group Gal(F/F)

of F on finite free modules over Qp or Zp or Fp—for short: p-adic Galois
representations—can equivalently be described by linear algebra objects which he
called étale (ϕ, �)-modules. These are modules over certain Laurent series rings, in
one variable, endowed with commuting semilinear actions by a Frobenius operator ϕ
and thegroup� = O×

F .
1 ApproachingGalois representations through their associated

étale (ϕ, �)-modules has proven to be an extremely powerful method in numerous
contexts. We mention here only the important role which it plays in Colmez’ work
[2] on the p-adic local Langlands program. Also, the theory of (ϕ, �)-modules has
been vastly generalized since into numerous directions. Among these generalizations
is the work by Zábrádi [3] who showed that (for F = Qp), the representations of the
d-fold self product Gal(F/F) × · · · × Gal(F/F) are in category equivalence with
étale (ϕ, �)-modules over certain Laurent series rings in d variables (multivariable
étale (ϕ, �)-modules).

In this note we restrict attention to p-modular coefficients only, i.e., our Galois
representations (which however remain entirely in the background) and étale (ϕ, �)-
modules are (in particular)Fp-vector spaces. In this context, an étale (ϕ, �)-module is
a finite dimensional k((t))-vector space D, for a finite extension k of the residue field
of F , endowed with said actions by ϕ and �. A critical ingredient in the aforemen-
tioned work of Colmez was the detection and study of finite k[[t]]-lattices spanning
D, stable under � and a certain operator ψ left inverse to ϕ, on which ψ in fact acts

E. Grosse-Klönne (B)
Humboldt University, Berlin 12489, Germany
e-mail: gkloenne@math.hu-berlin.de

1 In fact, � was taken to be a slightly different group in [1], but there is no substantial difference to
the point of view taken here.
© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
D. Banerjee et al. (eds.), Perfectoid Spaces, Infosys Science Foundation Series
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2 E. Grosse-Klönne

surjectively. Among these lattices he identified a minimal one, denoted by D�, and a
maximal one, denoted by D�.

The purposes of this note are the following. Firstly, we want to explain that the
study of D� and D� makes sense similarly in the context of (p-modular) multivari-
able étale (ϕ, �)-modules. Secondly, we want to advocate an approach toward these
lattices D� and D� in which we rather construct and study their k-linear duals. This
approach goes hand in hand with a method for constructing étale (ϕ, �)-modules. In
this latter function, i.e., as a tool for the explicit construction and description of étale
(ϕ, �)-modules (which typically is quite delicate, since, e.g., testing if candidates
for ϕ- and �-actions, given by explicit power series, really commute with each other
can be quite challenging), the method was introduced by Colmez in [2] and then
used later in [4], both in the one-variable case. We intend to use the constructions
presented here (the construction and analysis of D� and D�) to generalize the work
[4] to a multivariable setting in the future. Thirdly, by discussing several examples
we try to shed some more light on the behavior of D� and D�. Actually, most of these
examples pertain to the one-variable case, yet we think that they demonstrate some
features of D� and D� which at least have not yet been documented in the literature
(although undoubtedly known to the experts).

1 Multivariable Modular étale (ϕ•, �•)-Modules

Notations: Let F/Qp be a finite field extension. Denote by q the number of elements
of the residue field Fq of F . Let π be a uniformizer in the ring of integers OF of F .
Let k be a finite extension field of Fq . Put � = O×

F .
There is a unique (up to isomorphism) Lubin-Tate group for F with respect

to π . Fixing a coordinate t we write �(t) for the corresponding Lubin-Tate for-
mal power series describing multiplication by π . Equivalently, to any power series
�(t) ∈ OF [[t]]with �(t) ≡ π t modulo t2OF [[t]] and �(t) ≡ tq modulo πOF [[t]]
is associated a Lubin-Tate formal group law, with �(t) representing multiplication
by π , and the resulting formal group (with multiplication byOF ) is independent (up
to isomorphism) on the specific �(t). For γ ∈ � let [γ ]�(t) ∈ OF [[t]] denote the
power series describing the action of γ in the Lubin-Tate group. Let D be a finite
set, and for each d ∈ D let td be a free variable. Put

k[[t•]] = k[[td ]]d∈D, k((t•)) = k[[t•]][t−1
D ] with tD =

∏

d∈D

td .

For each d ∈ D let �d be a copy of �. For γ ∈ � let γd denote the element in
�• = ∏

d∈D �d whose d-component is γ and whose other components are trivial.
The formulae

γd(td) = [γ ]�(td), γd1(td2) = td2
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with γ ∈ � and d, d1, d2 ∈ D such that d1 �= d2 define an action of �• on k((t•)).
Consider the k[[t•]]-algebra

k[[t•]][ϕ•, �•] = k[[td ]]d∈D[ϕd , �d ]d∈D

with commutation rules given by

xd1 · yd2 = yd2 · xd1 ,

γd · ϕd = ϕd · γd , γd · td = (γd(td)) · γd , ϕd · td = �(td) · ϕd = tq
d · ϕd

for γ ∈ � and x, y ∈ � ∪ {ϕ, t} and d, d1, d2 ∈ D with d1 �= d2. Similarly we define
the k((t•))-algebra k((t•))[ϕ•, �•] and its subalgebra k((t•))[�•].
Definition An étale ϕ•-module over k((t•)) is a k((t•))[ϕ•]-module D which is
finitely generated over k((t•)) such that for each d ∈ D the linearized structure map

id ⊗ ϕd : k((t•)) ⊗ϕd ,k((t•)) D −→ D

is bijective. An étale (ϕ•, �•)-module over k((t•)) is a k((t•))[ϕ•, �•]-module whose
underlying ϕ•-module is étale. In the case |D| = 1 we drop the indices (.)d resp. (.)•
and simply talk about étale (ϕ, �)-modules over k((t)).

Remark The action of �• on an étale (ϕ•, �•)-module is automatically continuous
for the weak topology.

Lemma 1.1 ([5] Lemma 4, Proposition 6)
The category of étale (ϕ•, �•)-modules over k((t•)) is abelian.
Regard k((t)) as a k((t•))-module by means of td · x = t x for d ∈ D and x ∈

k((t)). The functor
D �→ k((t)) ⊗k((t•)) D

is an exact and faithful functor from the category of étale (ϕ•, �•)-modules over
k((t•)) to the category of étale (ϕ, �)-modules over k((t)).2

Theorem 1.2 (a) (Fontaine [1], Kisin-Ren [6], Schneider [7]) There is an equiv-
alence between the category of étale (ϕ, �)-modules over k((t)) and the cate-
gory of continuous representations of Gal(F/F) on finite dimensional k-vector
spaces.

(b) (Zábrádi [3]) Assume F = Qp. There is an equivalence between the category of
étale (ϕ•, �•)-modules over k((t•)) and the category of continuous representa-
tions of Gal(Qp/Qp) × · · · × Gal(Qp/Qp) (with |D| many factors indexed by
D) on finite dimensional k-vector spaces.

2 We will not make use of the second statement of Lemma 1.1 in the following.
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(c) Statements (a) and (b) merge into a common generalization (Pupazan [8]): For
any F, there is an equivalence between the category of étale (ϕ•, �•)-modules
over k((t•)) and the category of continuous representations of Gal(F/F) ×
· · · × Gal(F/F) on finite dimensional k-vector spaces.

Definition A ψ-operator on k[[t•]] is a system ψ• = (ψd)d∈D of additive maps

ψd : k[[t•]] −→ k[[t•]]

for d ∈ D such that ψd1(γd2(td1)) = γd2(ψd1(td1)) for all γ ∈ � and d1, d2 ∈ D, such
that ψd1(td2) = td2 for d1 �= d2 and such that the following holds true: If we view the
ϕd as acting on k[[t•]], then ψd1 ◦ ϕd2 = ϕd2 ◦ ψd1 for d1 �= d2, but

ψd(ϕd(a)x) = aψd(x)

for a, x ∈ k[[t•]].3

Lemma 1.3 ([5] Lemma 3) There is a ψ-operator ψ• on k[[t•]] such that each ψd

is surjective.

To be explicit, in the case where |D| = 1 (the general case is handled factor by
factor) and�(t) = π t + tq , we may chooseψk((t)) on k((t)) such that for m ∈ Z and
0 ≤ i ≤ q − 1 we have4

ψk((t))(t
mq+i ) =

⎧
⎨

⎩

q
π

tm : i = 0
0 : 1 ≤ i ≤ q − 2
tm : i = q − 1

. (1)

In the following, we fix ψ• as in Lemma 1.3.
LetD be an étale (ϕ•, �•)-module over k((t•)). For d ∈ D we define the composed

map
ψd : D −→ k((t•)) ⊗ϕd ,k((t•)) D −→ D

where the first arrow is the inverse of the structure isomorphism id ⊗ ϕd , and where
the second arrow is given by a ⊗ x �→ ψd(a)x .

Lemma 1.4 For all x ∈ D, γ ∈ �, a ∈ k((t•)) and d ∈ D we have

ψd(aϕd(x)) = ψd(a)x, ψd(ϕd(a)x) = aψd(x), γd(ψd(x)) = ψd(γd(x)).

For all x ∈ D and d1 �= d2 ∈ D we have

ψd1(ψd2(x)) = ψd2(ψd1(x)), ψd1(ϕd2(x)) = ϕd2(ψd1(x)).

3 Notice that we do not require ψd (1) = 1.
4 Notice that q

π
= 0 (in k) if F �= Qp .
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Proof The formula ψd(aϕd(x)) = ψd(a)x is immediate from the construction. To
see the formula ψd(ϕd(a)x) = aψd(x), write x = ∑

i aiϕd(ei ) with ei ∈ D and ai ∈
k((t•)) (this is possible as D is étale). We then compute

ψd(ϕd(a)x) =
∑

i

ψd(ϕd(a)aiϕd(ei )) =
∑

i

ψd(ϕd(a)ai )ei

= a
∑

i

ψd(ai )ei = a
∑

i

ψd(aiϕd(ei )) = aψd(x).

To see the formula γd(ψd(x)) = ψd(γd(x)) observe that, since the actions of γd and
ϕd on k[[t•]] commute, and since �• acts semilinear on D, the additive map

k((t•)) ⊗ϕd ,k((t•)) D → k((t•)) ⊗ϕd ,k((t•)) D,

a ⊗ b �→ γd(a) ⊗ γd(b)

is the map corresponding to the action of γd on D under the isomorphism id ⊗ ϕd ,
and under a ⊗ x �→ ψd(a)x it commutes with γd acting on D since the actions of γd

and ψd on k((t•)) commute. The remaining commutation formulae are clear. �

Definition For a k-vector space
wewrite
∗ = Homk(
, k).We say that a k[[t•]]-
module 
 is admissible if it is a torsion module5 over k[[td ]] for each d ∈ D and
if


[t•] = {x ∈ 
 | td x = 0 for each d ∈ D}

is a finite dimensional k-vector space.

Proposition 1.5 ([5] Proposition 5) Let 
 be a finitely generated k[[t•]][ϕ•, �•]-
module which is admissible as a k[[t•]]-module and satisfies 
 = k[[t•]]ϕd(
) for
each d ∈ D. Then 
∗ ⊗k[[t•]] k((t•)) is in a natural way an étale (ϕ•, �•)-module
over k((t•)). The functor 
 �→ 
∗ ⊗k[[t•]] k((t•)) is exact.

We remark that the k[[t•]][�•]-action on 
∗ ⊗k[[t•]] k((t•)) results from the
k[[t•]][�•]-action on 
∗ given by the formulae

(a · �)(δ) = �(aδ),

(γ · �)(δ) = �(γ −1δ)

for a ∈ k[[t•]], � ∈ 
∗, δ ∈ 
 and γ ∈ �•. The ϕ•-action on 
∗ ⊗k[[t•]] k((t•)) is a
certain right inverse to the dual of the ϕ•-action on 
; its construction involves the
ψ-operator ψ• on k[[t•]].

5 In [5] we had not included this torsion condition into the definition of admissibility; however, for
staying consistent with established terminology we should have done so. (Yet, the omission of this
condition in the paper [5] does not invalidate its results.)
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Lemma 1.6 Let 
 and D = 
∗ ⊗k[[t•]] k((t•)) be as in Proposition 1.5 and suppose
that each td acts surjectively on 
.

(a) The natural map 
∗ → D = 
∗ ⊗k[[t•]] k((t•)) is injective. Each ψd respects

∗ and acts on it by the rule

[� : 
 → k] �→ [
 → k, x �→ �(ϕd(x))].

(b) If each ϕd acts injectively on 
 then each ψd acts surjectively on 
∗.

Proof This follows immediately from the construction (given in [5] Proposition 5)
referred to in Proposition 1.5. �

2 The lattices D� and D� inside D

We write ψD = ∏
d∈D ψd and ϕD = ∏

d∈D ϕd (as k-linear operators on k((t•))).
Let D be an étale (ϕ•, �•)-module over k((t•)). We call a finitely generated

k[[t•]]-submodule of D a lattice in D if it generates D (as a k((t•))-module).

Lemma 2.1 Let E be a lattice in D, let d ∈ D.

(a) ψd(E) is a k[[t•]]-module.
(b) If ϕd(E) ⊂ E then E ⊂ ψd(E).
(c) If E ⊂ k[[t•]] · ϕd(E) then ψd(E) ⊂ E.
(d) If ψd(E) ⊂ E then ψd(t

−1
d E) ⊂ t−1

d E. For each x ∈ D there is some n(x) ∈ N

such that for all n ≥ n(x) we have ψn
D(x) ∈ t−1

D E.

Proof (a) Use ψd(ϕd(a)x) = aψd(x) for a ∈ k((t•)) and x ∈ D.
(b) Choose a ∈ k[[t•]] with ψd(a) = 1. For e ∈ E we have e = ψd(aϕd(e)) which

belongs to ψd(E) since ϕd(E) ⊂ E .
(c) Let e ∈ E . By assumption there are ei ∈ E andai ∈ k[[t•]]with e = ∑

i aiϕd(ei ),
hence ψd(e) = ∑

i ψd(ai )ei ∈ E .
(d) For i ≥ 1 we have

ψd(ϕ
i
d(t

−1
d )E) ⊂ ϕi−1

d (t−1
d )ψd(E) ⊂ ϕi−1

d (t−1
d )E

where the second inclusion uses the assumption. Taking the product over all d this
implies

ψD(ϕi
D(t−1

D )E) ⊂ ϕi−1
D (t−1

D )ψD(E) ⊂ ϕi−1
D (t−1

D )E . (2)

From ϕd(t
−1
d ) = t−q

d we get

ψd(t
−1
d E) ⊂ ψ(ϕd(t

−1
d )E) ⊂ t−1

d E

and taking the product over all d we thus get
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ψD(t−1
D E) ⊂ ψ(ϕD(t−1

D )E) ⊂ t−1
D E .

Moreover, if n(x) ∈ N is such that x ∈ ϕn
D(t−1

D )E for n ≥ n(x), then iterated
application of formula (2) shows

ψn
D(x) ∈ ψn

D(ϕn
D(t−1

D )E) ⊂ ψn−1
D (ϕn−1

D (t−1
D )E) ⊂ . . . ⊂ t−1

D E

for n ≥ n(x). �

Lemma 2.2 (a) There are lattices E0, E1 in D with

ϕD(E0) ⊂ tD E0 ⊂ E0 ⊂ E1 ⊂ k[[t•]]ϕD(E1).

(b) For any n ≥ 0 we have ψn
D(E0) ⊂ ψn+1

D (E0) ⊂ E1.

Proof (a) Let e1, . . . , er be a generating system of D as a k((t•))-module. Then
also ϕd(e1), . . . , ϕd(er ) is such a generating system of D, for each d ∈ D. We
therefore find elements fi j , gi j in k((t•)) such thatϕD(e j ) = ∑r

i=1 fi j ei and e j =∑r
i=1 gi jϕD(ei ) for all 1 ≤ j ≤ r . Choose n ∈ N with tn(q−1)

D fi j ∈ tDk[[t•]] and
tn(q−1)
D gi j ∈ tdk[[t•]] for all i , j . Then

E0 =
r∑

i=1

tn
Dk[[t•]]ei , E1 =

r∑

i=1

t−n
D k[[t•]]ei

work as desired.
(b) Choose a ∈ k[[t•]] with ψD(a) = 1. For x ∈ E0 we have ψn

D(x) = ψn+1
D

(aϕD(x)) ∈ ψn+1
D (E0) since ϕD(E0) ⊂ tD(E0) implies ϕD(x) ∈ E0 and hence

aϕD(x) ∈ E0. This shows ψn
D(E0) ⊂ ψn+1

D (E0). As E0 ⊂ E1 ⊂ k[[t•]]ϕd(E1),
an induction using Lemma 2.1 shows ψn+1

D (E0) ⊂ E1. �

Proposition 2.3 (a) There exists a unique lattice D� in D with ψD(D�) = D� and
such that for each x ∈ D there is some n ∈ N with ψn

D(x) ∈ D�.
(b) For any lattice E in D we have ψn

D(E) ⊂ D� for all n >> 0.
(c) For any lattice E in D with ψD(E) = E we have

tDD� ⊂ E ⊂ D�.

Proof Let E0, E1 be as in Lemma 2.2. For n ∈ N put Fn = ψn
D(E0). For x ∈ E0 we

haveψn
D(x) = ψn+1

D (ψD(1)ϕD(x)); sinceψD(1)ϕD(x) ∈ E0 this shows that (Fn)n is
an increasing sequence of lattices inD. As E1 ⊂ k[[t•]]ϕD(E1), Lemma2.1 (c) shows
Fn ⊂ E1. As k[[t•]] and hence E1 is noetherian, there is some n0 with Fn = Fn0 for
all n ≥ n0, and hence with ψD(Fn0) = Fn0 . For m ∈ N put

Gm = ψm
D t−1

D Fn0 .
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Lemma2.1 (d) shows that (Gm)m is a descending sequence of lattices inD, containing
Fn0 since ψD(Fn0) = Fn0 . As t−1

D Fn0/Fn0 is artinian we therefore find some m0 with
Gm = Gm0 for all m ≥ m0, and hence withψD(Gm0) = Gm0 . Moreover, Lemma 2.1
(d) shows that for each x ∈ Gm0 there is some i(x) ∈ N with ψ i

D(x) ∈ t−1
D Fn0 for all

i ≥ i(x). We then have ψ
m0+i
D (x) ∈ Gm0 for all i ≥ i(x). Thus, D� = Gm0 works as

desired.
To see the uniqueness of D�, assume that there is another candidate D̃� satisfying

the same properties. Then so does D� + D̃�, hence we may assume D� ⊂ D̃�. But
ψd for any d ∈ D acts both surjectively and nilpotently on the finite dimensional
k-vector space D̃�/D�, hence D� = D̃�. �

Proposition 2.4 (a) For any lattice E in D contained in D� and stable under ψd

for d ∈ D we have ψd(E) = E.
(b) The intersection D� of all lattices in D contained in D� and stable under ψd for

all d ∈ D is itself a lattice, and it satisfies ψd(D�) = D� for all d ∈ D.

Proof (a) Since D� as well as E and ψd(E) are lattices in D�, both D�/E and
D�/ψd(E) are finite dimensional k-vector spaces. ψd induces an isomorphism
D�/E = D�/ψd(E) (as ψd(E) ⊂ E), hence ψd(E) = E .

(b) For any lattice E in D contained in D� and stable under ψd for all d ∈ D we
have tDD� ⊂ E by what we saw in (a) together with proposition 2.3. This shows
tDD� ⊂ D�, hence D� is indeed a lattice, and ψd(D�) = D� follows by applying
(a) once more. �

Lemma 2.5 Let 
 be as in Lemma 1.6, with each ϕd acting injectively on 
. If 
[t•]
generates 
 as a k[[t•]][ϕ•]-module then 
∗ = D�.

Proof For i = (id)d∈D ∈ ZD≥0 let

Fi
∗ = {� ∈ 
∗ | �((
∏

d∈D

tnd
d ϕ

id
d )(x)) = 0 for all nd > 0, x ∈ 
[t•]}.

This is a k[[t•]]-submodule of 
∗. Let E be a lattice in D contained in D� with
ψd(E) ⊂ E for all d ∈ D. We have ∩i Fi
∗ = 0 since 
[t•] generates 
 as a
k[[t•]][ϕ•]-module. As E generates D we therefore find Fi
∗ ⊂ E for some i . But

(
∏

d∈D

ψ
id
d )Fi
∗ = {�((

∏

d∈D

ϕ
id
d )(.)) | � ∈ 
∗} = 
∗

where the second equality follows from the injectivity of the ϕd . We thus obtain

∗ ⊂ E as the ψd respect E . �
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Proposition 2.6 (Colmez) Suppose |D| = 1. If D is an irreducible étale
(ϕ, �)-module with dimk((t))(D) ≥ 2, then D� = D�. If dimk((t))(D) = 1 then dimk

(D�/D�) = 1.

Proof See [9] Corollaire II.5.21 for the first statement. The second one follows, e.g.,
from I.3.2. Exemple in [2], but also from the discussion of example (a) below. �
Remark It is easy to see that both D �→ D� and D �→ D� are functors from the cat-
egory of étale (ϕ•, �•)-modules to the category of ψ•-modules (obvious definition).
Moreover, if

0 −→ D1 −→ D −→ D2 −→ 0 (3)

is an exact sequence of étale (ϕ•, �•)-modules, then the sequences

0 −→ D�
1 −→ D� −→ D�

2 −→ 0, (4)

0 −→ D�
1 −→ D� −→ D�

2 −→ 0 (5)

are both exact on the left and on the right (see [9] Proposition II 4.6 and Proposition II
5.19 for the case |D| = 1). However, in general they need not be exact in the middle.
We are going to exemplify this below.

3 Examples

(a) By Proposition 2.6, if |D| = 1 then a rank one étale (ϕ, �)-module contains
precisely two (ψ, �)-stable lattices with surjective ψ-operator. If |D| > 1 we find
more.

Fix some cd ∈ k× and some md ∈ Z/(q − 1)Z for each d ∈ D. Put

B =
⊕

C⊂D

k.eC ,

the k-vector space with basis {eC }C⊂D indexed by the subsets C of D. Let k[[t•]][�•]
act on B by requiring

td · eC =
{
0 : d ∈ C
eC∪{d} : d ∈ D − C

,

γd · eC =
{

γ
md+1
d eC : d ∈ C

γ
md
d eC : d ∈ D − C

.

(On the right-hand side of the defining formula for γd · eC we refer to multiplication
with the scalar in k× to which γ ∈ � = O×

F is mapped.)
Let D be a set of subsets of D such that for any C ∈ D and d ∈ D − C we also

have C ∪ {d} ∈ D. It is clear that
∑

C∈D k.eC is a k-sub vector space of B stable
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under k[[t•]][�•], hence k[[t•]][�•] acts on

BD = B∑
C∈D k.eC

.

Define


D = 
D(c•, m•) = k[[t•]][ϕ•] ⊗k[[t•]] BD
〈tq−1

d ϕd ⊗ e∅ − 1 ⊗ cde∅〉d∈D

where 〈?〉 indicates the k((t•))[ϕ•]-sub module generated by all expressions within
the brackets (and e∅ actually means the class of e∅ ∈ B in BD). One checks that
this submodule 〈tq−1

d ϕd ⊗ e∅ − 1 ⊗ cde∅〉d∈D is in fact also stable under the action
of �•; indeed, the tq−1

d ϕd ⊗ e∅ − 1 ⊗ cde∅ are eigenvectors under the action of �•.
It follows that 
D becomes a k[[t•]][ϕ•, �•]-module. It is finitely generated over
k[[t•]][ϕ•], admissible over k[[t•]] and each ψd acts surjectively on 
∗

D = (
D)∗.
Thus 
∗

D is a lattice inside

D = D(c•, m•) = 
∗
D ⊗k[[t•]] k((t•)).

The natural projections BD → BD′ for D ⊂ D′ induce k[[t•]]-linear inclusions

∗

D′ → 
∗
D which, when tensored with k((t•)), become isomorphisms. In partic-

ular, the rank one étale (ϕ•, �•)-module D is in a natural way independent ofD, and
(inside D) we have


∗
D �=
∗

D′ whenever D �= D′.

Taking D1 to be set empty set, so that B = BD1 , we find 
∗
D1

= D�. Taking D0 =
{D ⊂ C | D �= ∅}, so that BD0 is of k-dimension 1 (generated by the class of e∅), we
find 
∗

D0
= D�, cf. Lemma 2.5.

In the following examples we choose (as we may) the coordinate t such that
�(t) = π t + tq . We assume |D| = 1 and drop subscripts (.)d . We describe var-
ious 
’s as quotients 
 = (k[[t]][ϕ] ⊗k M)/∇ with finite dimensional k-vector
spaces M , and where always ∇ is generated as a k[[t]][ϕ]-submodule by elements
in k[[t]]ϕ ⊗k M + k[[t]] ⊗k M only (i.e., no higher powers of ϕ occur in these gen-
erators).

In all these examples, ϕ acts injectively in 
 (hence ψ acts surjectively on 
∗)
and t acts surjectively on 
 (hence 
∗ is t-torsion free).

(b) We describe a 
 defining an extension between two rank one étale (ϕ, �)-
modules.

Fix α ∈ k. Let 〈e1, e2, f 〉k denote the k-vector space with basis {e1, e2, f }. In
k[[t]][ϕ] ⊗k 〈e1, e2, f 〉k consider the subset6

6 In writing the elements of R we suppress the symbol ⊗.
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R = {te1 − e2, te2, t f,

tq−1ϕ f − f, tq−1ϕe1 − e1 − αtq−2ϕ f }

and let
 denote the quotient of k[[t]][ϕ] ⊗k 〈e1, e2, f 〉k by the k[[t]][ϕ]-submodule
generated by the elements inR. Let 〈 f 〉k denote the k-sub vector space of 〈e1, e2, f 〉k

spanned by f and define the k-vector space 〈e1, e2〉k by the exact sequence

0 −→ 〈 f 〉k −→ 〈e1, e2, f 〉k −→ 〈e1, e2〉k −→ 0.

We identify {e1, e2} with a k-basis of 〈e1, e2〉k . We obtain an exact sequence

0 −→ k[[t]][ϕ] ⊗k 〈 f 〉k

∇1
−→ 
 −→ k[[t]][ϕ] ⊗k 〈e1, e2〉k

∇2
−→ 0

where ∇1 (resp. ∇2) is the respective k[[t]][ϕ]-submodule generated by t f and
tq−1ϕ f − f (resp. by te1 − e2, te2 and tq−1ϕe1 − e1).

Next, fix a ∈ Z and let γ ∈ � act on 〈e1, e2, f 〉k by means of

γ · f = γ 2+a f and γ · ei = γ i+aei .

(Here, in the expression γ 2+a f resp. γ i+aei the γ refers to the scalar in F×
q to which

γ ∈ � = O×
F is projected.) Then

k[[t]][ϕ] ⊗k 〈e1, e2, f 〉k
∼= k[[t]][ϕ, �] ⊗k[�] 〈e1, e2, f 〉k

so that k[[t]][ϕ] ⊗k 〈e1, e2, f 〉k receives a k[[t]][ϕ, �]-action. One checks that all
elements inR are eigenvectors for the action of�. (For the elements tq−1ϕ f − f and
tq−1ϕe1 − e1 − αtq−2ϕ f this computation uses that [γ ](t) ≡ γ t modulo tqk[[t]], as
is implied by our assumption �(t) = π t + tq , see Lemma 0.1 in [4].) It follows that

, as well as the above exact sequence are in fact k[[t]][ϕ, �]-equivariant.

In view of Proposition 1.5 we get an induced exact sequence (3) of étale (ϕ, �)-
modules, with dimk((t))(D1) = dimk((t))(D2) = 1. If F = Qp then the Galois char-
acter attached (by Theorem 1.2) to D1 is obtained from the one attached to D2 by
multiplying with the cyclotomic character. We have 
 = D�. Neither the sequence
(4) nor the sequence (5) is exact.

(c) In contrast to what one might be tempted to think in view of Proposition 2.6,
the possible failure of exactness of the sequences (4) or (5) can not exclusively be
reduced to the non-uniqueness of (ψ, �)-stable lattices with surjective ψ-operator
inside étale (ϕ, �)-module of rank one.

Let 〈e1, e2, ẽ, f1, f2〉k denote the k-vector space with basis {e1, e2, ẽ, f1, f2}. Let
0 ≤ s ≤ q − 1. In k[[t]][ϕ] ⊗k 〈e1, e2, ẽ, f1, f2〉k consider the subset

R = {tq−1ϕe1 − e2 − t sϕ f2, ϕe2 − e1, tq−2−sϕ f1 − f2, t1+sϕ f2 − f1,

te1 − ẽ, t ẽ, te2, t f1, t f2}
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and let 
 denote the quotient of k[[t]][ϕ] ⊗k 〈e1, e2, ẽ, f1, f2〉k by the k[[t]][ϕ]-
submodule generated by the elements in R. The exact sequence 0 → 〈 f1, f2〉k →
〈e1, e2, ẽ, f1, f2〉k → 〈e1, e2, ẽ〉k → 0 gives rise to an exact sequence

0 −→ k[[t]][ϕ] ⊗k 〈 f1, f2〉k

∇1
−→ 
 −→ k[[t]][ϕ] ⊗k 〈e1, e2, ẽ〉k

∇2
−→ 0,

where∇1 (resp.∇2) is the respective k[[t]][ϕ]-submodule generated by tq−2−sϕ f1 −
f2 and t1+sϕ f2 − f1 and t f1, t f2 (resp. by tq−1ϕe1 − e2 and ϕe2 − e1 and te1 − ẽ,
t ẽ, te2).

Next, fix a ∈ Z and let γ ∈ � act on 〈e1, e2, ẽ, f1, f2〉k by means of

γ · e1 = γ ae1, γ · e2 = γ ae2, γ · ẽ = γ a+1ẽ, γ · f1 = γ 1+a f1, γ · f2 = γ a−s f2.

Then

k[[t]][ϕ] ⊗k 〈e1, e2, ẽ, f1, f2〉k
∼= k[[t]][ϕ, �] ⊗k[�] 〈e1, e2, ẽ, f1, f2〉k

so that k[[t]][ϕ] ⊗k 〈e1, e2, ẽ, f1, f2〉k receives a k[[t]][ϕ, �]-action. One checks
that all elements in R are eigenvectors for the action of �. It follows that 
, as
well as the above exact sequence are in fact k[[t]][ϕ, �]-equivariant. In view of
Proposition 1.5 we get an induced exact sequence (3) of étale (ϕ, �)-modules, with
dimk((t))(D1) = dimk((t))(D2) = 2. We have D�

1 = D�
1 and D�

2 = D�
2, with both D1

and D2 being irreducible, but the sequence (5) is not exact.
(d) Let 〈e1, e2, f1, f2〉k denote the k-vector space with basis {e1, e2, f1, f2}.

We view it as a k[[t]]-module with trivial action by t . Fix 0 ≤ s ≤ k ≤ q − 1. In
k[[t]][ϕ] ⊗k[[t]] 〈e1, e2, f1, f2〉k consider the subset

R = {t kϕe1 − e2 + t sϕ f2, tq−1−kϕe2 − e1, t k−sϕ f1 − f2, tq−1−k+sϕ f2 − f1}

and let 
 denote the quotient of k[[t]][ϕ] ⊗k[[t]] 〈e1, e2, f1, f2〉k by the k[[t]][ϕ]-
submodule generated by the elements in R. One first checks that there is a natural
exact sequence

0 −→ k[[t]][ϕ] ⊗k[[t]] 〈 f1, f2〉k

∇1
−→ 
 −→ k[[t]][ϕ] ⊗k[[t]] 〈e1, e2〉k

∇2
−→ 0,

where∇1 (resp.∇2) is the respective k[[t]][ϕ]-submodule generated by t k−sϕ f1 − f2
and tq−1−k+sϕ f2 − f1 (resp. by t kϕe1 − e2 and tq−1−kϕe2 − e1).

Next, let � act on 〈e1, e2, f1, f2〉k by means of

γ · e2 = γ ke2, γ · f2 = γ k−s f2, γ · f1 = f1, γ · e1 = e1

(understanding γ ke2 and γ k−s f2 similarly as before). Then
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k[[t]][ϕ] ⊗k[[t]] 〈e1, e2, f1, f2〉k
∼= k[[t]][ϕ, �] ⊗k[[t]][�] 〈e1, e2, f1, f2〉k

so that k[[t]][ϕ] ⊗k[[t]] 〈e1, e2, f1, f2〉k receives a k[[t]][ϕ, �]-action. Now one
checks that all elements in R are eigenvectors for the action of �. It follows that

, as well as the above exact sequence are in fact k[[t]][ϕ, �]-equivariant. In view
of Proposition 1.5 we get an induced exact sequence (3) of étale (ϕ, �)-modules,
with dimk((t))(D1) = dimk((t))(D2) = 2. It does not split. The étale (ϕ, �)-module D
lies in the essential image of the functor from supersingular modules over the pro-p
Iwahori Hecke algebra of GL2(F) to étale (ϕ, �)-modules constructed in [4] if and
only if s = 0.
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The Relative (de-)Perfectoidification
Functor and Motivic p-Adic
Cohomologies

Alberto Vezzani

1 Introduction

The categories of (derived, abelian) motives arise naturally by imposing homotopy-
invariance onto the (infinity) category of sheaves of �-vector spaces on the category
of smooth spaces over a base S. Depending on the choice of the topology (typically:
the Nisnevich topology or the étale topology), the choice of S (a scheme, a rigid
analytic variety [1]...) the choice of the interval over which homotopies are defined
(typically the affine line, but there are log-variants [2]) and the choice of the coefficient
ring � (which may even be omitted [3] or replaced with a ring spectrum [4]) such
categories may enjoy different properties and may be useful for the inspection of
the various invariants and constructions related to Weil cohomology theories such as
periods, Chow groups, the six functor formalism, nearby cycles or even automorphic
forms, etc.

The aim of this paper is to make a quick survey on some particular applications of
the formalism of motives in the realm of p-adic Hodge theory. More specifically, we
consider perfectoid PerfDAét(S) = PerfDAét(S,Q) and rigid analytic étale motives
RigDAét(S) = RigDAét(S,Q). That is, we consider the homotopy invariant infinity-
étale sheaves of Q-vector spaces on smooth perfectoid resp. rigid analytic varieties
over an adic space S, where homotopies are defined over the perfectoid (closed) ball
resp. the rigid analytic (closed) ball.

The author is partially supported by the Agence Nationale de la Recherche (ANR), projects ANR-
14-CE25-0002 and ANR-18-CE40-0017

A. Vezzani (B)
Dipartimento di Matematica F. Enriques, Università degli Studi di Milano, Via Cesare Saldini 50,
20133 Milan, Italy

LAGA, Université Sorbonne Paris Nord, 99 Avenue Jean-Baptiste Clément, 93430 Villetaneuse,
France
e-mail: alberto.vezzani@unimi.it

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
D. Banerjee et al. (eds.), Perfectoid Spaces, Infosys Science Foundation Series
in Mathematical Sciences https://doi.org/10.1007/978-981-16-7121-0_2

15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-7121-0_2&domain=pdf
mailto:alberto.vezzani@unimi.it
https://doi.org/10.1007/978-981-16-7121-0_2


16 A. Vezzani

In particular, we focus on the equivalence between the two categories introduced
above:

RigDAét(S) ∼= PerfDAét(S) (♣)

that is shown in [5]. Such an equivalence can be considered as a method to
“(de-)perfectoidify” functorially and canonically an adic space over a base, up to
homotopy. We remark that whenever S is perfectoid, there is a canonical equiva-
lencePerfDAét(S) ∼= PerfDAét(S�) induced by the classic tilting functor of perfectoid
spaces, which preserves homotopies and the étale sites. This leads to an equivalence

RigDAét(S) ∼= RigDAét(S
�) (♠)

that can be interpreted as a way to “(un-)tilt” canonically and functorially even
rigid analytic spaces, up to homotopy. It is expected (see [5]) to give the following
generalization of (♠) which should hold for an arbitrary adic space S overQp, using
the language of diamonds:

RigDAét(S) ∼= RigDAét(S
�). (♦)

In this paper, we give a full proof of (♣) in the case of a perfectoid base S in
characteristic p, generalizing the statement of [6] that only deals with the case of a
perfectoid field S = Spa(K , K ◦).

Moreover, wemake a survey on how the language of motives can be used to define
and prove some fundamental properties of de Rham-like p-adic cohomologies on
adic spaces and algebraic variety in characteristic p (that is, Große-Klönne’s over-
convergent de Rham cohomology, and Berthelot’s rigid cohomology).We then recall
how to merge such constructions with the (un-)tilting and (de-)perfection procedures
of (♣)-(♠)-(♦) and obtain new de Rham like cohomology theories for perfectoid
varieties and rigid spaces in positive characteristic. Finally, we cite further cohomol-
ogy theories that have been introduced using rigid motives by other authors (such as
Ayoub and Le Bras) and a Betti-like cohomology in the spirit of Berkovich.We insist
on the fact that, in all these procedures, the role of homotopies is crucial, and that
consequently, motivic categories provide a natural framework where such definitions
and proofs can be made.

2 Definitions and Main Properties of Adic Motives

Once and for all, we fix a cardinal κ and we consider only adic spaces that have
a κ-small covering by affinoid subspaces. The categories of motives that we will
introduce are easily seen not to depend on κ , but this choice allows one to prove
that they are compactly generated, under suitable hypotheses (see [7, Proposition
2.4.20]).
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Definition 2.1 Let K be a non-archimedean field, and S be a stably uniform adic
space over it.

(1) We let B1
K be the rigid analytic variety Spa(K 〈T 〉,OK 〈T 〉) and B1

S be the fiber
product S ×K B1

K , for any adic space S over K .
(2) If K is perfectoid,we let̂B1

K be the perfectoid spaceSpa(K 〈T 1/p∞〉,OK 〈T 1/p∞〉)
and ̂B1

S be the fiber product S ×K ̂B1
K , for any perfectoid space S over K .

(3) We also let T1
S [resp. ̂T

1
S] be the rational open U (1/T ) of B1

K [resp. of ̂B1
K ].

(4) We let RigSm /S be the full subcategory of adic spaces over S whose objects
are locally étale over a poly-disc BN

S (in case S is a rigid analytic variety, this
recovers the usual notion of smooth rigid analytic varieties over S) and equip it
with the étale topology.

(5) In case K is a perfectoid field and S is perfectoid, we also consider the full
subcategory PerfSm /S of adic spaces over S whose objects are locally étale
over the perfectoid poly-disc ̂BN

S , and equip it with the étale topology.

Definition 2.2 Let K and S be as above, and� be a (commutative, unital)Q-algebra.

(1) We let Shét(RigSm /S,�) [resp. Shét(PerfSm /S,�)] be the monoidal DG-
category of complexes of étale sheaves of �-vector spaces on RigSm /S [resp.
PerfSm /S].

(2) We let RigDAeff
ét,B1(S,�) (or RigDAeff

ét (S) for short) be the monoidal DG-
subcategory of Shét(RigSm /S,�) spanned by those objects F that are B1-
local, meaning that the natural map F(B1

X ) → F(X) is an equivalence, for
all X ∈ RigSm /S. We recall that there is a left adjoint Shét(RigSm /S,�) →
RigDAeff

ét (S) to the natural inclusion.
(3) Similarly, we let PerfDAeff

ét,̂B1(S,�) (or PerfDAeff
ét (S) for short) be the DG-

subcategory of Shét(PerfSm /S,�) spanned by those objectsF that arêB1-local.
(4) We will use the same notation RigDAeff

ét (S), PerfDAeff
ét (S) for the associated

monoidal stable infinity-categories.

We remark that Yoneda defines a functor

h : RigSm /S → Psh(RigSm /S) → Psh(RigSm /S,�) → RigDAeff
ét (S)

and for any X wewill let�S(X) be the image of X under h. We use the same notation
for perfectoid spaces and PerfDAeff

ét (S).

Definition 2.3 We let K , S and � be as above.

(1) We let TS be the quotient of the split inclusion �S(S) → �S(T
1) given by the

unit.
(2) Similarly, if S is perfectoid,wedefine anobject̂TS in PerfDAeff

ét (S) as the quotient
of the split inclusion �S(S) → �S(̂T

1) given by the unit.
(3) We introduce RigDAét(S) and PerfDAét(S) as the targets of the universal left

adjoint DG-functors
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RigDAeff
ét (S) → RigDAét(S) PerfDAeff

ét (S) → PerfDAét(S)

to DG-categories in which the endofunctor − ⊗ TS [resp. − ⊗ ̂TS] becomes
invertible. They are endowed with a monoidal structure for which the functors
above are monoidal.

(4) We use the notation RigDAét(S) and PerfDAét(S) also for the associated
monoidal stable infinity-categories.

(5) When we write RigDA(eff)
ét (S)wemean that one can consider either the category

RigDAeff
ét (S) (eff standing for effective motives) or the category RigDAét(S),

and similarly for PerfDA(eff)
ét (S).

All in all, in the category RigDAeff
ét (S) one can find objects of the form �S(X)

where X is any smooth rigid analytic variety over S coming from the Yoneda functor,
as well as any complex of sheaves � that represents a Weil cohomology theory
(with �-coefficients, in our situation). The homology of the mapping complexes
Map(�S(X),�) coincide with the cohomology theory associated to �. Almost by
construction, we point out that the objects �S(X) are isomorphic to �S(B

1
X ) and

coincide with the homotopy colimit of any diagram of the form �S(U •) with U •
being an étale hypercover of X . This translates in terms of cohomology theories into
B1-invariance, and the existence of some exact sequences à la Mayer-Vietoris.

By means of the six-functor formalism (see [8]) it is possible to define motives
�S(X) attached to any rigid analytic variety X over S (not necessarily smooth). In
particular, the definition of a well-behaved cohomology theory on smooth varieties
extends automatically to all varieties.

It is also possible to consider (co-)homology theories which are equipped with
a richer structure than the one of a mere �-module: as soon as one has a functor
H : RigSm /S → CwithC being a�-linear DG-category such that H satisfies étale
descent and is homotopy invariant [and for which the Tate twist is invertible] then
by construction one can (Kan) extend it to motives

RigSm /S
H

h

C

RigDA[eff]
ét (S)

RH

obtaining a so-called realization functor RH . In Sect. 5 we will try to convince
the reader that it is sometimes easier to define a motivic realization RH and hence
deduce an interesting (co-)homology theory H on RigSm /S.

Remark 2.4 One is free to replace the sites, the interval objects, and the rings of coef-
ficients with any other choice and define corresponding categories of motives. Clas-
sically, the categories of étale motives over a scheme S are denoted by DA(eff)

ét (S,�)

(here, DA(eff)
ét (S) for short). One may also consider non-commutative variants where

the category of �-modules is replaced by the infinity-category of spectra, or the
category of modules of any commutative ring spectrum.
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Remark 2.5 For the categories of algebraic motives DAét(S) the realizations func-
tors induced by Betti, de Rham and �-adic cohomologies have been widely studied
in different articles: see [9–11].

Rather than making a full recollection of all the formal properties of motives and
their variants, for which there are already staple references such as [9, 10, 12, 13],
we focus on two peculiar properties of the categories of rigid motives which are
proved in [7].

The first property is the so-called (effective) semi-separatedness.

Theorem 2.6 ([7, Corollary 2.9.10]) Let S′ → S be a universal homeomorphism.
The base change functor induces an equivalence of categories

RigDA(eff)
ét (S) ∼= RigDA(eff)

ét (S′)

Remark 2.7 As noted in [7], the effective part of the statement is not known for the
usual algebraic motives DAeff

ét (S).

Corollary 2.8 Let X ′ → X be a universal homeomorphism between smooth rigid
analytic varieties over a base S. The induced map of motives �S(X ′) → �S(X) is
invertible in RigDA(eff)

ét (S).

Proof The motive �(X) is the image of �X (X) = � under the functor p� which is
the left adjoint to the functor RigDAeff

ét (S) → RigDAeff
ét (X) induced by the pullback

p∗ along the map p : X → S. By the previous theorem, we deduce p��X (X) ∼=
p′

��X ′(X ′) as wanted. �

The second property is referred to as “continuity” in [7].

Theorem 2.9 ([7, Theorem 2.8.14]) Let {Si } be a cofiltered system of stably uniform
adic spaces over a non-archimedean field K with qcqs transition maps and let S be
a uniform adic space such that S ∼ lim←− Si in the sense of Huber [14, (2.4.1)]. Then
the base change functors induce an equivalence of categories

RigDA(eff)
ét (S) ∼= lim−→RigDA(eff)

ét (Si )

where the homotopy colimit is computed in the category of presentable infinity-
categories, and colimit-preserving functors.

Remark 2.10 The analogous statement for algebraic motives also holds: in case S is
the limit of a diagram of schemes {Si } with affine transition maps, then DA(eff)

ét (S) ∼=
lim−→DA(eff)

ét (Si ). However, the proof of the analytic version is much more involved,
and uses homotopies in a crucial way: this is related to the fact that (in case all
spaces S, Si are affinoid) the ring lim−→O(Si ) does not coincide with O(S), but it is
only dense in it. In particular, the “continuity” statement for étale sheaves (on the
big sites), before performing the B1-localization, is false.
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A special case of continuity gives the following computation of “stalks” for
RigDAét(−).

Corollary 2.11 Let s = Spa(C,C+) → S be an étale point of a stably uniform adic
space S. Let U → S vary among étale neighborhoods of s in S. The base-change
functors induce an equivalence in the category of presentable infinity-categories and
colimit-preserving functors:

RigDAeff
ét (Spa(C,C+)) ∼= lim−→

s∈U→S

RigDA(eff)
ét (U ).

3 De-Perfectoidification

The aim of this section is to prove the following.

Theorem 3.1 Let S be a rigid space over a non-archimedean field K of character-
istic p. Then the base change along SPerf → S and the relative perfection functor
define equivalences:

RigDA(eff)
ét (S) ∼= RigDA(eff)

ét (SPerf) ∼= PerfDA(eff)
ét (SPerf).

The first half of the statement follows from the “separatedness” and the “continu-
ity” properties of RigDAét.

Proposition 3.2 Let S be a rigid space over a non-archimedean field K of charac-
teristic p. Then the base change along SPerf → S defines an equivalence:

RigDA(eff)
ét (S) ∼= RigDA(eff)

ét (SPerf).

Proof The space SPerf is a weak projective limit of the diagram · · · → S
ϕ→ S

ϕ→ S
with ϕ being the Frobenius. We note that by Theorem 2.6 the motivic functor ϕ∗ is
an equivalence, and the claim then follows from Theorem 2.9. �

We nowmove to the second part of the statement. From now on, we will therefore
assume that S = SPerf is a perfectoid space of characteristic p > 0. The second half
is a refinement of [6, Theorem 6.9] in two different directions: on the one hand
we get rid of the Frobét-localization (or, equivalently, of correspondences see [15])
proving an effective claim that holds for RigDAeff

ét ; on the other hand, we promote
the equivalence from the case of a base field of height one Spa(K �, K �◦) to a general
(perfectoid) base S.

It is worth noting that, because of the computation of stalks for RigDA(eff)
ét (−)

(which can be generalized easily to PerfDA(eff)
ét (−)) the missing crucial case is the

one of a base S = Spa(C,C+)which is a complete algebraically closed valued field,
with a valuation of height n ∈ N≥2. As this case is not essentially easier than the one
of a general base S we do not restrict to this case in what follows.
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In order to extend the result of [6], we follow the blueprint given by the proof
of loc. cit., and we simplify it at the same time. We try to highlight here the main
differences with respect to the original approach. We first introduce some notation.

Definition 3.3 Let F be in Psh(RigSm /S,�).

(1) We let LϕF be the presheaf X �→ lim−→n
F(X (p−n)) where we let X (p−n) be

X ×S,ϕ−n S and X (p−n−1) → X (p−n) be the map induced by Frobenius.
(2) We let LB1F be the normalized complex associated to the cubical presheaf

of complexes of abelian groups Hom(B•,F) where Hom(Br ,F)(−) = F((−)

〈u1, . . . , ur 〉).
Proposition 3.4 LetF be in Psh(RigSm /S,�). The natural mapF → LB1LϕF is
an equivalence in RigDAeff

ét (S,�).

Proof It is well known that the maps F → LB1F are B1-equivalences, see [16]. By
construction, the complex LϕF is local with respect to the relative Frobenius maps
�S(X (p−1)) → �S(X) (we will refer to this property as “being Frob-local”) and
doesn’t alter those which are already Frob-local. We deduce that the mapF → LϕF
is a Frob-local equivalence, that is an equivalence with respect to the localization
over relative Frobenius maps. In particular, the map of the statement is a (B1,Frob)-
local equivalence hence a (B1,Frob, ét)-local equivalence, but the latter are simply
(B1, ét)-local equivalences as shown in Corollary 2.8. �

Proposition 3.5 Locally with respect to the analytic topology, any space X ∈
RigSm /S [resp. PerfSm /S] is given by Spa(R, R+) with (R, R+) given by [the
completed perfection of] the following adic pair

(

O(U )〈x, y〉/(P1, . . . , Pm),O(U )〈x, y〉/(P1, . . . , Pm)+〉
)

(	)

where U ⊂ S is an affinoid subspace, x := (x1, . . . , xn) is a n-tuple of vari-
ables with n ∈ N, y := (y1, . . . , ym) is a m-tuple of variables with m ∈ N, and

P := (P1, . . . , Pm) is a m-tuple of polynomials in O(U )[x, y] such that det( ∂Pi
∂y j

)

is invertible in O(U )〈x, y〉/(P1, . . . , Pm).

Proof Any étale space over the perfectoid relative poly-discBn
S ∼ lim←−ϕ

Bn
S is locally

defined over Bn
S so the claim on RigSm /S, which follows from [14, Proposition

1.7.1(iii)] immediately implies the claim on PerfSm /S. �

Proposition 3.6 Let X = Spa(R, R+) and X ′ = Spa(R′, R′+) be spaces in
RigSm /S of the form (	) and let f : X ′ Perf → X be a morphism. There exists a
homotopy H : X ′ Perf × ̂B1 → X such that H0 = f and H1 has a (unique) model
X ′(p−n) → X for some n � 0.

Proof We let R′+
n be the image in ̂R′+ := O+(X ′Perf) of the injective map

O+(X ′(p−n)) → O+(X ′ Perf) (we recall that X ′ is reduced as it is smooth over the
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reduced space Swhich is perfectoid) andwe remark that ̂R′+ is theπ -adic completion
of R′+∞ := ⋃

R′+
n . The morphism f is determined by some mapping xi �→ si ∈ ̂R′+

and y j �→ t j ∈ ̂R′+. By means of [6, Corollary A.2] we may find a unique array of
power series F1, . . . , Fm ∈ ̂R′[[σ − s]] such that P(σ, F(σ )) = 0, F(s) = t . More-
over, they are in ̂R′+[[π−N (σ − s)]] for a sufficiently big N � 0. For any s̃ ∈ R′+∞
which is sufficiently close to s we may then define a homotopy H as the map deter-
mined by

(x, y) �→ (s + (s − s̃) · τ, F((s − s̃) · τ))

and remark that, by definition, we have H0 = f . In order to show that H1 factors
(uniquely, as the maps R′

n → ̂R′ are injective) over some X ′(p−n), we are left to show
that the elements t̃ := F(s − s̃) lie in R′∞.

Suppose without loss of generality that s̃ lie in R′ = R′
0. We consider

the R′-algebra E defined as E = R′〈y〉/(P(s̃, y)) which is étale over R′, and over

which the map R′ → ̂R′ factors. In particular, the étale morphism Spa(E, E+) ×X ′

X ′ Perf → X ′ Perf splits. In light of the equivalence between the étale topos of X ′ Perf
and X0 we conclude that Spa(E, E+) → X ′ splits proving that t̃ is a m-tuple in R′

0
as wanted. �
Proposition 3.7 Let X = Spa(R, R+) and X ′ = Spa(R′, R′+) be spaces in
RigSm /S of the form (	). The canonical map

(LB1Lϕ�(X))(X ′) → (LB1Lϕ Perf∗ Perf∗ �(X))(X ′)

is a quasi-isomorphism.

Proof By direct inspection, we may rewrite the two complexes above as follows:

lim−→
n

N�((X ′ × B•)(p
−n), X) → N�(X ′ Perf × ̂B•, X)

with N denoting the normalized complex associated to the cubical complex of abelian
groups. The claim then follows from (the proof of) Proposition 3.6 by arguing as in
[6, Proposition 4.2]. �
Proof of Theorem 3.1 The effective part of the theorem easily implies the stable ver-
sion, so we stick to it for simplicity. By means of Proposition 3.5 and the equivalence
fo the étale site of XPerf and of X we see that Perf∗ sends a class of compact genera-
tors to a class of compact generators, and that Perf∗ commutes with ét-sheafification,
preserving then the ét-local equivalences. The multiplication μ on̂B1 defines a mor-
phism

Perf∗(Perf∗ �S(̂B1
X ) ⊗ �S(B1

S)) ∼= Perf∗ Perf∗ �S(̂B1
X ) ⊗ �S(̂B1

S) → �S(̂B1
X ) ⊗ ̂B1

S
μ→ �S(̂B1

X )

which induces a homotopy between the identity and the zero-map on Perf∗(�(̂B1
X )),

showing that Perf∗ sends ̂B1-local equivalences to B1-local equivalences.



The Relative (de-)Perfectoidification Functor ... 23

We deduce that in order to prove the claim, it suffices to show that F →
Perf∗ Perf∗ F is a (B1, ét)-local equivalence for any F and we may actually restrict
to the case where F is �S(X) with X as in (	) as such motives are a class of com-
pact generators (by Proposition 3.5). Using Proposition 3.4 we may alternatively
prove that LB1Lϕ�S(X) → LB1Lϕ Perf∗ Perf∗ �S(X) is a weak-equivalence, and
this follows from Proposition 3.7. �

When trying to generalize the second half of Theorem 3.1 to the case of a per-
fectoid S in characteristic 0, one is immediately stopped by the lack of a canonical
map RigDAét(S) → PerfDAét(S) which is as “geometric” as the one given by the
perfection in positive characteristic. As in [6] we now give an alternative route to
constructing such a map, in a compatible way with the characteristic p case.

Definition 3.8 We let s PerfSm /S be the full subcategory of Rig /S whose objects
are spaces X that are locally étale overBN

S ×S ̂BM
S for someM, N ∈ N. This category

obviously contains Sm /S (by taking M = 0) and PerfSm /S (by taking N = 0). We
let sPerfDAeff

ét (S)be the category of̂B1-invariant étale (hyper)sheaves on s PerfSm /S
with values in�-modules. The continuous inclusions α : Sm /S → s PerfSm /S and
β : PerfSm /S → s PerfSm /S induce adjoint pairs

α∗ : RigDAeff
ét (S) � sPerfDAeff

ét (S) :α∗

and
β∗ : PerfDAeff

ét (S) � sPerfDAeff
ét (S) :β∗.

In particular, there is a functor β∗α∗ : RigDAeff
ét (S) → PerfDAeff

ét (S).

We remark that the functor above is the same as the one of Theorem 3.1 in case
char S = p. Indeed, under this hypothesis, we may consider the relative perfection
functor also at the level of semi-perfectoid spaces s PerfSm /S → PerfSm /S, X �→
XPerf . It induces an adjoint pair

Perf ′∗ : RigDAeff
ét (S) � sPerfDAeff

ét (S) :Perf ′∗
and we note that the functor Perf∗ is nothing more than the composition Perf ′∗ α∗.
Our claim then follows from the following:

Proposition 3.9 Suppose that S has characteristic p. The functor β∗ is a left adjoint
to Perf ′∗. In particular, β∗α∗ ∼= Perf∗.

Proof We remark that β : PerfSm /S → s PerfSm /S is a left adjoint to
Perf ′ : s PerfSm /S → PerfSm /S. By theYoneda lemma,wededuce that they extend
to an adjoint pair

β∗, : Psh(PerfSm /S,�) � Psh(s PerfSm /S,�) : Perf ′∗
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between the (infinity) categories of (complexes of) presheaves. Both functors
preserve étale (hyper)covers, fiber products and the object ̂B1

S so they both pre-
serve (ét,̂B1

S)-equivalences. As Perf
′∗ has a left adjoint that preserves these equiv-

alences, we deduce that it also preserves (ét,̂B1
S)-local objects. We then conclude

that the adjunction (β∗,Perf ′∗) extends to an adjunction on the motivic categories,
as wanted. �

It is a non-trivial endeavor to prove the following generalization of Theorem 3.1
whose proof we won’t comment here.

Theorem 3.10 ([5]) Let S be a perfectoid space over some field. The functor β∗α∗
defines an equivalence RigDA(eff)

ét (S) ∼= PerfDA(eff)
ét (S).

By putting together Theorem 3.1 and the previous result, we obtain the following:

Corollary 3.11 Let S be aperfectoid space. There is an equivalenceRigDA(eff)
ét (S) ∼=

PerfDA(eff)
ét (S) ∼= RigDA(eff)

ét (S�).

Proof The tilting equivalence translates motivically into an equivalence
PerfDA(eff)

ét (S) ∼= PerfDA(eff)
ét (S�). The equivalence of the statement is then obtained

by putting together Theorems 3.1 and 3.10. �

4 Classic De Rham-Like Cohomologies via Motives

In this section, wemake a survey on the “classic” de Rham-like cohomology theories
for rigid analytic varieties and perfectoid spaces, revisited in the language ofmotives,
based on [17] and [18] which is further expanded by [5].

Remark 4.1 Though we won’t comment on them in the present article, also �-adic
realizations for analytic motives have been defined in [19] and [7, Sect. 2.10].

We start by a recollection of standard facts on the rigid and the overconvergent
de Rham cohomologies, that will be necessarily imprecise and incomplete. All the
details can be found in [20–23].

Let’s fix a field k of characteristic p > 0 that we will assume to be perfect (for
simplicity). The approach of Berthelot [24] and Monsky-Washnitzer [25] for the
definition of a de Rham-like p-adic cohomology for varieties over k can be summa-
rized (somehow a posteriori, following Große-Klönne) as follows: a smooth variety
X̄ over k can be lifted locally as a smooth variety X over W (k) (the DVR given by
the Witt ring). The choice of such lifts is unique, étale-locally on the special fiber,
“up to homotopy”, and even canonical “up to automorphisms” if we consider smooth
formal liftsX overW (k). A precise statement can be found in [26, Théorèmes 2.2.2,
3.3.2]. It is therefore possible, “somehow canonically” to associate locally a smooth
rigid analytic variety (the generic fiber X of X) to the smooth variety X̄ .
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This way, we have changed the base field: from k (of positive characteristic) to
K = FracW (k)which has characteristic 0, but with a major drawback: we now have
to consider rigid analytic varieties rather than algebraic varieties. Without further
structure, a (non-proper) smooth rigid analytic variety doesn’t give rise to a well-
behaved deRham-like cohomology theory.One needs to do a choice of a “thickening”
(what we will call an overconvergent structure following [27]) X† := (X � X ′) of X
into a strictly larger (i.e., containing the absolute compactification over K ) smooth
rigid analytic variety X ′ and consider the subcomplex �X†/K of �X/K of those
differential forms that extend to a strict neighborhood of X inside X ′. Once again,
such local choices are sufficiently canonical, “up to homotopy” (see [22]). It is
therefore possible “somehow canonically” to associate locally to the smooth variety
X a smooth overconvergent variety X† and a de Rham-like complex �X†/K which is
used to define a cohomology theory for X , and a posteriori for X̄ by combining the
two procedures above. It is a non-trivial task to prove that these cohomology theories
are well-defined and functorial, and enjoy the expected properties of a de Rham-like
cohomology theory (for example, being finite dimensional on qcqs varieties): see
[23, 28–30] etc.

We now give an alternative way to describe the above phenomena. Since the
eventual aim is to define aWeil cohomology theory for varieties over k [resp. analytic
varieties over K ] it is quite natural to consider the motivic categories associated to
these objects. As expected, they form a convenient setting where to state and study
lifts and thickenings “up to homotopy”. We collect the principal motivic facts in the
following statement.

Theorem 4.2 Let K be a complete non-archimedean field of characteristic 0 with
valuation ringOK and a perfect residue field k, and let� be aQ-subalgebra of K .We
also let B1†

K be the overconvergent variety given by the strict embedding B1
K � P1 an

K

and RigDA†(eff)
ét (K ) be the (effective) DG-category of B1†-invariant étale sheaves of

�-vector spaces on smooth overconvergent varieties over K .

(1) The complex of presheaves �† : X† �→ �X†/K is a (B1†, ét)-local object of
RigDA† eff

ét (K ). In particular, for any overconvergent smooth rigid variety X†

one has
Map(�K (X†),�†) ∼= �

†
X†/K .

(2) The forgetful functor l : X† = (X � X ′) �→ X induces an equivalence of
monoidal compactly generated stable infinity categories RigDA†(eff)

ét (K )

∼= RigDA(eff)
ét (K ).

(3) The analytification functor X̃ �→ X̃ an induces a compact-preserving, colimit-
preserving map of monoidal compactly generated stable infinity categories
DA(eff)

ét (K ) → RigDA(eff)
ét (K ).

(4) The special fiber functor induces an equivalence of monoidal compactly gener-
ated stable infinity categories FDA(eff)

ét (OK ) ∼= DA(eff)
ét (k) where FDA(eff)

ét (OK )

is the category of (effective, étale, with�-coefficients) motives of formal schemes
over OK (see [7, Remark 3.1.5(2)]).
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(5) The generic fiber functor induces a compact-preserving, colimit-preserving map
of monoidal compactly generated stable infinity categories FDA(eff)

ét (OK ) →
RigDA(eff)

ét (K ).
(6) In particular, we obtain the following compact-preserving, colimit-preserving,

monoidal functor:

DAét(k) ∼= FDAét(OK ) → RigDAét(K ) ∼= RigDA†
ét(K )

and a monoidal contravariant realization functor on the last category, with
values in K -modules:

R†
dR : RigDA†

ét(K) → D(K)op

induced by M �→ Map(M,�†). The associated cohomology theory on DAét(k)
coincides with Berthelot’s rigid cohomology H∗

rig, the one on RigDAét(K ) coin-
cides with Große-Klönne’s overcovergent de Rham cohomology H∗

dR† and the
one onDAét(K ) (via analytification) coincides with the usual algebraic de Rham
cohomology H∗

dR.
(7) In case K is perfectoid, for any fixed embedding k → K � we can define, in light

of (♠) a functor

DAét(k) → DAét(K
�) → RigDAét(K

�) ∼= RigDAét(K ) ∼= RigDA†
ét(K ).

which is equivalent to the one in Point (6).
(8) Compact motives of RigDAét(K ) are fully dualizable. In particular, the over-

convergent de Rham cohomology is finite dimensional on any compact motive in
RigDAét(K ) such as motives of smooth quasi-compact rigid varieties over K , or
analytifications of quasi-projective (not necessarily smooth) varieties over K .

(9) Compactmotives ofDAét(k) are fully dualizable. In particular, rigid cohomology
is finite dimensional on any compact motive in DAét(k) such as motives of any
quasi-projective (not necessarily smooth) variety X̄ over k.

Proof Points (1) and (6) are shown in [17, Proposition5.12], point (2) is [17,Theorem
4.23] and point (4) is [1, Corollaire 1.4.29]. Point (7) is the content of [18]. The
functors of points (3) and (5) are left adjoint functors, hence colimit-preserving. As
they preserve direct products, they induce monoidal functors on motives. Moreover,
they send affine smooth varieties to affinoid smooth varieties. Motives of such spaces
are a class of compact generators (by [1, Proposition 1.2.34]) so the functors are also
compact-preserving. The fact that compact motives in DAét(k) and DAét(K ) are
dualizable follows from [31] and the same is true for RigDAét(K ) by [1, Théorème
2.5.35]. Points (8) and (9) then follows from the classic description of compact
objects (perfect complexes) in D(K ). �

Remark 4.3 The content of Theorem 4.2(4) is the most precise way to state the
following: it is possible to associate canonically a smooth rigid analytic motive over
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K to any variety X̄ over k. Similarly, the content of Theorem 4.2(2) can be rephrased
by saying that it is possible to associate canonically an overconvergent rigid analytic
motive over to any rigid analytic variety X over K .

Remark 4.4 Let X be an algebraic variety over OK . The special fiber of its π -adic
completion is just the special fiber Xk of X . In light of Theorem 4.2(4) we conclude
that cohomologically speaking, the act of π -adically completing X gives the same
information as the act of taking its special fiber.More precisely: the following triangle
commutes.

FDAét(OK )

(−)∗k∼DAét(OK )

̂(−)
∗

ι∗

DAét(k)

Remark 4.5 Following [32, Sects. 0.2–0.3] there are two possible ways to “anali-
tify” a smooth algebraic variety X over OK : on the one hand one can consider the
formal scheme given by its π -adic completion X and then the generic fiber Xη of it;
on the other hand one can first take the generic fiber XK (an algebraic variety over
K ) and then its analytification X an

K . It is well-known (see [32, Proposition 0.3.5])
that the first rigid analytic space is canonically embedded as an open subvariety of
the second, and that they coincide whenever X is smooth and proper (they differ in
general: for example whenever X is lives on the generic fiber Spec K of SpecOK ,
the first space is empty). It is easy to see that such functors preserve étale covers and
homotopies, therefore defining the following (non-commutative) square of monoidal
colimit-preserving maps:

DAét(OK ) DAét(K )

DAét(k)
∼ FDAét(OK )

α

RigDAét(K )
RdR

D(K )op

where the natural transformation α is induced by the functorial open immersion
Xη ⊂ X an

K and RdR is the (overconvergent) de Rham realization. We then obtain
two monoidal realizations DAét(OK ) D(K ) . When applied to some motive
�OK (X ), one gives the rigid cohomology of the special fiber Xk and the other gives
the de Rham cohomology of the generic fiber XK , respectively. Moreover, α defines
a canonical natural transformation between the two which is invertible on the full
monoidal subcategory with sums generated by (the motives of) smooth and proper
varieties.

Remark 4.6 Even though the motivic categories are defined as sheaves on smooth
varieties (or smooth formal schemes, or smooth rigid varieties etc.) it is possible to
define motives attached to an arbitrary quasi-projective variety (or arbitrary rigid
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varieties) using the 6 functor formalism: the (homological) motive �(X) attached
to such a variety X is given by f! f !� with f : X → Spa K being the structural
morphism. This formalism is fully developed in [8, 33] (in the algebraic case) and
in [7] (in the analytic case).

5 New De Rham-Like Cohomologies via Motives

In this section, we make a survey on the “new” de Rham-like cohomology theories
for rigid analytic varieties and perfectoid spaces whose construction is based on the
properties of motivic categories.

We start by a de Rham cohomology for perfectoid spaces introduced in [17, 18,
34], which is further expanded by [5]. Simply by combining Theorems 3.1 and 4.2
we deduce the following.

Theorem 5.1 Let K be a perfectoid field.

(1) Suppose that char K = 0. Let ̂X ∼ lim←− Xh be a smooth perfectoid space obtained

by relative perfection of an étale map X0 → BN
K . For any i , the system Hi

dR†(Xh)

is eventually constant, and the association ̂X �→ Hi
dR(Xh), h � 0 induces a

well-defined functorial cohomology theory H∗
dR(̂X , K ) on smooth perfectoid

motives over K . It has étale descent, a Künneth formula, and finite dimension
whenever X is quasi-compact.

(2) Suppose that char K = p > 0. For any fixedun-tilt K � of K the association ̂X �→
Hi

dR(̂X �, K �) is a well-defined functorial cohomology theory Hi
dR†(̂X , K �) on

smooth perfectoid motives over K . It has étale descent, a Künneth formula, and
finite dimension whenever X is quasi-compact.

(3) Suppose that char K = p > 0. For any fixed un-tilt K � of K the association
X �→ Hi

dR(XPerf , K �) is a well-defined functorial cohomology theory on smooth
rigid analytic varieties over K which extends to arbitrary rigid analytic varieties
and is compatible with rigid cohomology with coefficients is K � whenever X is
of good reduction. Moreover, it has étale descent, a Künneth formula, and finite
dimension whenever X is smooth and quasi-compact or the analytification of a
quasi-projective algebraic variety.

Remark 5.2 In [5] also a relative version of the (overconvergent) de Rham coho-
mology for rigid analytic spaces is introduced. It is also shown that it enjoys many
properties which are common to the archimedean/algebraic analogue, such as the
fact that H∗

dR(X/S) is a vector bundle on the base whenever X → S is smooth and
proper.

Suppose that K is a perfectoid field of characteristic p > 0. The need of choosing
an un-tilt of K in order to define a de Rham-like cohomology theory for (rigid
analytic) varieties over K can be considered unnatural and unsatisfactory for some
purposes. To remedy this, in [5] the various cohomology theories X �→ H∗

dR(X, K �)
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are “pasted together” into a vector bundle over the Fargues-Fontaine curve of K by
means of the following

Theorem 5.3 ([5]) Let K be a perfectoid field of characteristic p > 0. We letXK be
the analytic space given by the adic Fargues-Fontaine curve associated to it. There
is a monoidal realization functor

RdRFF : RigDAét(K ) → QCoh(XK )op

giving rise to a cohomology theory H∗
dR(−,XK ) with values in quasi-coherent XK -

modules (defined as in [35]). Moreover, whenever M is compact (eg. M is the motive
of a quasi-compact smooth rigid variety, or the analytification of a quasi-projective
algebraic variety) then the modules H∗

dR(M,XK ) are vector bundles, and equal to
zero if |i | � 0.

Remark 5.4 The previous result gives a canonical analytic de Rham cohomology
in positive characteristic, and answers positively to a conjecture of Fargues [36,
Conjecture 1.13] and Scholze [37, Conjecture 6.4].

Remark 5.5 In [5] also a relative version of the previous theorem is shown, building
on Remark 5.2.

The cohomology H∗
dR(−,XK ) above is not the only motivic cohomology theory

with values on vector bundles on a Fargues-Fontaine curve. Fix an algebraically
closed complete valued field C over Qp. In [34], Le Bras gives a motivic, over-
convergent and rational version of the Ainf -cohomology introduced for smooth and
proper formal schemes overOC defined as follows: consider the pro-étale sheafAinf,X

defined on affinoid perfectoid spaces over X := XC as Spa(P, P+) �→ W (P�+) and
its pull-back Rν∗Ainf to the Zariski site ofX. Take the complex obtained by décalage
LημRν∗Ainf (μ being [ε] − 1) and, finally, the complex R�Zar(X, LημRν∗Ainf). This
complex is known to be related to the various p-adic integral cohomologies defined
on X (see [38]).

Theorem 5.6 ([34]) Let C be an algebraically closed complete valued field over
Qp.

(1) Let X be a smooth rigid analytic variety over C endowed with a dugger structure
X† = (X � X ′). Consider the association

X �→ lim−→
X�Xh⊂X ′

R�ét(Xh, Lηt Rν∗B)

where Rν∗B is the pull-back to the étale topos of Xh of the pro-étale sheaf B
defined on affinoid perfectoid spaces over Xh asSpa(P, P+) �→ O(Y(P,P+)) and
Lηt is the décalage functor with respect to a generator t of ker(θ : W (P�+) →
P+). It gives rise to a well-defined functor

RFF : RigDA(eff)
ét (C) → QCoh(XC� )op
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(2) If C = Cp and M ∈ RigDA(eff)
ét (C) is compact (for example, it is the motive of a

quasi-compact smooth rigid variety, or the analytification of a quasi-projective
algebraic variety) then the cohomology groups Hi (RFFM) are vector bundles
on the curve XC� and equal to 0 for |i | � 0.

Remark 5.7 It is not hard to see thatRFF is the rational, overconvergent analogue
of theAinf -cohomology, and it is also possible to relate it to the deRham cohomology,
see [34].

Finally, we sketch briefly the construction of Ayoub of a “new motivic Weil
cohomology” for varieties over a field k of positive characteristic. The aim of this
construction is somehow different from the previous ones: we have mentioned that
the Ainf -cohomology specializes to the various p-adic cohomology theories, and is
therefore intimately linked to p-adic Hodge theory and p-adic periods. The con-
structions above are aimed to generalizations and extensions of this idea.

On a different direction, one can try to build a realization which specializes to the
various �-adic realizations (including � = p): such an approach would be interesting,
for example, to inspect the independence on � for �-adic cohomologies. Choose a
(non necessarily complete!) valued field K of mixed characteristic, with k as residue
field and let ̂K be its completion. We already considered the following two adjoint
pairs

ξ : DAét(k) � RigDAét(
̂K ) : χ

Rig∗ : DAét(K ) � RigDAét(
̂K ) : Rig∗

The fact that ξ and Rig∗ are monoidal induces formally a decomposition of the
functors above:

DAét(k) DAét(k, χ1)
ξ ′

RigDAét(
̂K )

χ ′
(A)

DAét(K ) DAét(K ,Rig∗ 1)
Rig′∗

RigDAét(
̂K )

Rig′∗
(B)

where the category DAét(k, χ) [resp. DAét(K ,Rig∗ 1)] in the middle denotes the
category of modules over the motive χ1 [resp. Rig∗ 1]. This object inherits a natural
algebra structure deduced from the monoidality of ξ [resp. Rig∗]. The adjunction
on the left is simply given by the free module structure/forgetful pair, while the
adjunction on the right is built out of the natural χ1-module structure [resp. Rig∗ 1-
module structure] which can be given to the objects of the form χM [resp. Rig∗ M].

The main theorem of [39] is then the following.

Theorem 5.8 ([39]) Let K be a subfield of C equipped with a rank-1 valuation
with residue field k of characteristic p > 0 and completion ̂K.

(1) The functor Rig′∗ of (B) gives an equivalence of monoidal ∞-categories
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DAét(K ,Rig∗ 1) ∼= RigDAét(
̂K ).

(2) The (homological) algebraic de Rham realization

RdR : DAét(K ) → D(K )

induces a monoidal functor

R′
dR : RigDAét(

̂K ) ∼= DAét(K ,Rig∗ 1) → D(K ,AK )

where the category on the right denotes the category of modules over the object
AK := RdR Rig∗ 1 equipped with its natural DG-algebra structure.

(3) The complex AK is in D≥0(K ). In particular AK := H0(AK ) has a K -algebra
structure, there exists a map of DG-algebras AK → AK and one can define a
realization for DAét(k) as follows:

Rnew : DAét(k)
ξ→ RigDAét(

̂K ) ∼= DAét(K ,Rig∗ 1)
R′

dR−→ D(K ,AK ) → D(AK ).

(4) The algebra AK can be explicitly computed in terms of generators and relations.
(5) There are ring maps AK → ̂K and AK → Q� for any � �= p (depending on

a choice of isomorphism Q�
∼= C) such that the realizations obtained by base

change

DAét(k)
Rnew−→ D(AK ) → D(̂K ) DAét(k)

Rnew−→ D(AK ) → D(Q�)

are equivalent to the rigid realization, and the �-adic realization, respectively.

Remark 5.9 One of the main results of [39] is actually the explicit computation of
the algebra AK that we only vaguelymentioned in the theorem above. It turns out that
the description of the ring AK is the non-archimedean analogue of the construction of
the ring of complex periods considered in [40]. In spite of this explicit presentation,
a full understanding of the algebraic properties of AK (eg. being an integral domain)
seem to be out of reach, and any progress in this direction would be of much interest
as explained in [39].

The construction above is based on the equivalence RigDAét(
̂K ) ∼=

DAét(K ,Rig∗ 1) arising from the monoidal left adjoint functor Rig∗. In [7] the
other monoidal functor ξ is analyzed, obtaining the following analogue of Theo-
rem 5.8((1)).

Theorem 5.10 ([7, Theorem 3.3.3]) Suppose that ̂K is algebraically closed. The
functor ξ ′ of (A) defines an equivalence of monoidal ∞-categories

DAét(k, χ1) ∼= RigDAét(
̂K ).
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Remark 5.11 In [7] a more general statement is shown: one can extend the equiv-
alence above even in the case of a higher rank valuation, defined by some valuation
subring ̂K+ ⊂ ̂K , obtaining an equivalence

DAét(Spec(̂K+/π), χ1) ∼= RigDAét(Spa(̂K , ̂K+))

where π ∈ ̂K+ is a non-zero topologically nilpotent element.

6 A Betti-Like Cohomology via Motives

The aim of this section is to define another motivic cohomology theory for rigid
analytic varieties and perfectoid spaces. Contrarily to the deRhamversion considered
above, this won’t be a Weil cohomology and can’t be expected to compare to �-
adic cohomologies. Nonetheless, Berkovich showed ([41]) that it contains some
interesting information, and the motivic language can be used to extend his results.
The main theorems of this section are taken from [42].

We recall that the Berkovich topological space |X |Berk underlying a rigid analytic
variety X is the maximal Hausdorff quotient of the (locally spectral) topological
space |X | It coincides with the topological space defined by the partially proper
topology on X , or equivalently, to the topological space introduced by Berkovich.

Theorem 6.1 ([42]) Let K be a complete non-archimedean valued field, and let �

be a prime which is invertible in the residue field k. Let also C be a fixed complete
algebraic closure of K .

(1) Put � = Q. There is an �-adic realization functor

R� : RigDA(eff)
ét (K ) → Shproét (K ,Q�)

which is monoidal, and which sends compact objects to constructible complexes.
For any smooth variety X over K , the homology groups H∗(R��(X)) compute
the �-adic homology of X.

(2) The canonical functor

ι∗ : Shét(K ,�) → RigDAeff
ét (K )

induced by the inclusion of the small étale site into the big one, has a left adjoint

RB : RigDAeff
ét (K ) → Shét(K ,�)

that can be described explicitly as the functor induced by mapping a variety X to
the singular complex �[Sing(|XC |Berk)] of the topological space |XC |Berk with
coefficients in �.
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(3) Suppose that K is a finite extension of Qp and let F : Gal(k) → Gal(K ) be a
fixed lift of Frobenius. The following diagram

Shctét(K ,Q)

−⊗QQ�=R�

ι∗
RigDAeff,ct

ét (K ,Q)

R�

Shctét(K ,Q�)

F∗

Shctproet(K ,Q�)

F∗

Shctét(k,Q�)
ι∗

Shctproet(k,Q�)

is commutative and left adjointable, in the sense that there are left adjoint func-
torsRB to the functors ι∗ and the canonical natural transformationRB F∗R� ⇒
F∗R�RB is invertible.

Proof Only the last point does not appear as stated in [42], but it is easily seen to be
equivalent to [42, Corollary 5.5]. �
Remark 6.2 In [42]we showed that the theoremabove canbeused to have a concrete
generalization of a result of Berkovich [41] for which whenever K is a local field,
the Betti cohomology of the underlying Berkovich space with Q�-coefficients of a
variety X coincides with the smooth part of the Galois �-adic representation given
by the associated étale cohomology.

As we focus in this paper on the role of motivic tilting and de-perfectoidification,
we point out that the Berkovich realization given above can be equivalently defined
for perfectoid motives, in a compatible way with the equivalences of Theorem 3.1.

Proposition 6.3 ([42]) Let K be a perfectoid field and C be a complete algebraic
closure of it.

(1) The functor X �→ �[Sing(|XC |Berk)], where�[Sing(T )] is the singular complex
of a topological space T with coefficients in �, induces a colimit-preserving
monoidal functor

RB : PerfDAeff
ét (K ) → Shét(K ,�).

(2) The following diagram is commutative.

RigDAeff
ét (K )

RB∼

PerfDAeff
ét (K )

RB Shét(K ,�)

RigDAeff
ét (K �)

RB

∼

Shét(K
�,�)

∼
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Proof In light of [42, Sect. 4] only the formula for the perfectoid version of RB

needs to be justified. As the tilting equivalence gives rise to homeomorphisms on
the Berkovich spaces attached to perfectoid spaces, we may assume charC = p.
By the equivalence Perf∗ : RigDAeff

ét (C) ∼= PerfDAeff
ét (C) the formula then follows

from the analogous formula for rigid analytic varieties and the homeomorphism
|XPerf | ∼= |X |. �

As previously anticipated, this cohomology theory is not a Weil cohomology. It does
not even extend to the stable categories of motives as indeed it “kills” Tate twists
(this is compatible with Remark 6.2).

Remark 6.4 If X is a geometrically connected rigid variety of good reduction over
K , then RB�(X) ∼= �[0]. In particular, we have RB(TK ) ∼= 0.

As a matter of fact, because of the functor ξ : DAét(k) → RigDAét(K ) that
we introduced above, it is impossible to define any Weil realization functor from
RigDAét(K ) with values in Q-vector spaces, whenever K is a local field of mixed
characteristic. Any such realization would otherwise violate Serre’s counterexample
to the existence of a rational Weil cohomology theory for varieties over a finite field
([43, Page 315]).
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1 Introduction

Smooth complex representations of reductive p-adic groups play a pivotal role in
the global Langlands program as they appear as local factors of automorphic repre-
sentations. These local representations are admissible. Recall that a representation
is smooth if every vector has an open subgroup fixing that vector, and it is admis-
sible if the subspace fixed by any open subgroup is finite-dimensional. The mod p
analogue of the local Langlands correspondence makes it necessary to understand
smooth mod p representations of reductive p-adic groups. Unlike complex represen-
tations, one does not have analytic methods at one’s disposal to study smooth mod
p representations of p-adic groups because they do not admit a non-zero Fp-valued
Haar measure. Diagrams give a powerful tool to construct interesting smooth mod
p representations of reductive p-adic groups.

Breuil and Paskunas used diagrams attached to certain Galois representations to
construct irreducible admissible supercuspidal mod p representations of GL2(Qp f )

whereQp f is the degree f unramified extension ofQp ([1]). The universal supercus-
pidal representations, i.e., the compact inductions of weights modulo the image of
theHecke operator, classify all irreducible admissible supercuspidalmod p represen-
tations of GL2(Qp), while in general, their irreducible admissible quotients exhaust
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all admissible supercuspidal representations of GL2(Qp f ) for f > 1 ([2], Proposi-
tion 4.6). The theory of diagrams can be used to show that, for f > 1, the universal
supercuspidal representation is not of finite length and is also not admissible ([3],
Theorem 3.3). This also follows from [4], Corollary 2.21 and [5], Corollary 4.5. This
indicates that the mod p representation theory of GL2(Qp f ) is more involved than
that of GL2(Qp) ([6], [1]). For some work on the mod p representation theory of
GL2 over a totally ramified extension of Qp, see, for example, [7], and for a general
finite extension of Qp, see [8].1

By the work of many mathematicians such as Harish-Chandra, Jacquet, and
Vignéras, it is known that all smooth irreducible representations of connected reduc-
tive2 p-adic groups over algebraically closed fields of characteristic not equal to p are
admissible ([11], II §2.8). Themain point is to show that all irreducible supercuspidal
representations are admissible, since a general smooth irreducible representation is
a subrepresentation of the parabolic induction of an irreducible supercuspidal rep-
resentation and parabolic induction preserves admissibility. However, it is no longer
true that irreducible supercuspidal representations over characteristic p fields are
admissible. Recently, Daniel Le constructed non-admissible irreducible (supercus-
pidal) Fp-linear representations of GL2(Qp f ) using infinite-dimensional diagrams
for all f > 2, although only the case f = 3 is presented in his paper for simplicity
([12]). Applying Le’s method to a diagram attached to a split reducible Galois rep-
resentation, the authors have constructed non-admissible irreducible representations
of GL2(Qp2) ([13]).

This article gives an expository treatment of the theory of diagrams of Breuil and
Paskunas, and provides a proof of Le’s construction of non-admissible irreducible
mod p representations of GL2(Qp f ) for all f > 2. It is organized as follows. In
Sect. 2, we introduce (finite-dimensional) diagrams and describe how they give rise
to smooth admissible representations of GL2 over p-adic fields. Section 3 focuses
on diagrams attached to Galois representations and on the irreducible admissible
supercuspidal representations of GL2(Qp f ) that they give rise to. Finally, we prove
Le’s theorem for all f > 2 in Sect. 4.

1.1 Notation

Let p > 2 be a prime number andQp be the field of p-adic numbers. LetQp f denote
the unramified extension of Qp of degree f with ring of integers Zp f . The residue
field of Qp f is the finite field Fp f with p f elements. Fix an algebraic closure Fp of
Fp and an embedding Fp f ↪→ Fp.

For an arbitrary but fixed f , let G = GL2(Qp f ), K = GL2(Zp f ), and � =
GL2(Fp f ). Let B and U be the subgroups of � consisting of the upper triangular

1 The words supersingular and supercuspidal are used interchangeably in the literature for mod p
representations. These two a priori different notions are now known to be equivalent ([9]).
2 The reductive hypothesis is necessary; see [10].



Diagrams and Mod p Representations of p-adic Groups 39

matrices and the upper triangular unipotent matrices, respectively. Let I and I1 be
the preimages of B and U , respectively, under the natural surjection K � �. The
subgroups I and I1 of K are called the Iwahori and the pro-p Iwahori subgroup of
K , respectively. Let Kn denote the nth principal congruence subgroup of K , i.e., the
kernel of the reduction map K −→ GL2(Zp f /pnZp f ) modulo pn for n ≥ 1. Write
N for the normalizer of I (and of I1) in G. Then N is generated by I , the center Z
of G and by the element � = (

0 1
p 0

)
.

Unless stated otherwise, all representations considered in this paper are on Fp-
vector spaces and are sometimes referred to as mod p representations. A weight
is a smooth irreducible representation of K . The K -action on such a representation
factors through� and thus a weight is an irreducible representation of� ([2], Lemma
2.14). For a characterχ of I ,χs denotes its�-conjugate sending g in I toχ(�g�−1).
Given aweightσ, the subspaceσ I1 of its I1-invariants has dimension 1.We denote the
corresponding smooth character of I afforded by the space σ I1 by χσ . If χσ �= χs

σ,
then there exists a unique weight σs such that χσs = χs

σ ([14], Theorem 3.1.1).
For an I -representation V and an I -character χ, we write V χ for the χ-isotypic
part of V .

2 Diagrams and the Existence Theorem

Diagrams were introduced by Paskunas in [14] to construct smooth admissible rep-
resentations of G.

Definition 2.1 Adiagram is a triple (D0, D1, r)where D0 is a smooth representation
of K Z , D1 is a smooth representation of N , and r : D1 −→ D0 is an I Z -equivariant
map. A diagram (D0, D1, r) is called a basic diagram if p acts trivially on D0 and
D1, and r induces an isomorphism D1

∼−→ DI1
0 of I Z -representations.

The idea is to use the data of a basic diagram to construct a space � admitting
actions of both K Z and N which agree on I Z = K Z ∩ N . Let G0 be the subgroup
of G consisting of matrices whose determinant is a p-adic unit. Since G0 is an
amalgamated product of K and�K�−1, and G = G0

� �Z, the actions of K Z and
N on � glue together to give a G-action on �. This G-action is unique because K Z
and N generate the group G ([2], Theorem 3.3 and Corollary 3.4).

A way to construct � is to use injective envelopes of finite-dimensional repre-
sentations of finite groups. An injective envelope of a representation is the “small-
est” injective object containing the representation ([2], Definition 5.12). If the sub-
space DK1

0 of K1-invariants of D0 is finite-dimensional, then the K -socle socK D0 of
D0, i.e., the maximal semi-simple K -subrepresentation of D0, is finite-dimensional,
and therefore the direct limit lim−→n

injK/Kn
(socK D0) of finite-dimensional injective

envelopes exist in the category of smooth K -representations. By [2], Proposition
5.17, this direct limit is the smooth injective envelope injK (socK D0) of D0.

Let� := injK (socK D0) be equippedwith the K Z -action such that p acts trivially.
The smooth injective I -envelope injI D1 of D1 appears as an I -direct summand of
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� via the I Z -equivariant map r . There is a unique N -action on injI D1 compatible
with that of I and compatible with the action of N on D1 ([2], Corollary 6.7). Let e
denote the projection of � onto injI D1. By [1], Lemma 9.6, there is a non-canonical
N -action on (1 − e)(�) extending the given I -action. This gives an N -action on
� whose restriction to I Z is compatible with the action coming from K Z on �.
Consequently, there is a G-action on � as discussed two paragraphs above.

Let π be the G-representation generated by D0 inside �. Then, we see that

socK D0 ⊆ socKπ ⊆ socK (injK (socK D0)) = socK D0

so that equality holds throughout.
We summarize the above discussion in the following theorem ([2], Theorem5.10).

Theorem 2.2 (The existence theorem) Let (D0, D1, r) be a basic diagram such
that D0 is finite-dimensional and K1 acts trivially on D0. Then there exists a smooth
admissible representation π of G such that

(1) (πK1 ,π I1 , can) contains (D0, D1, r), where can is the canonical inclusion,
(2) π is generated by D0 as a G-representation,
(3) socKπ = socK D0.

Note that the representation π in the theorem above is admissible because πKn ⊆
(injK (socK D0))

Kn = injK/Kn
(socK D0)which is finite-dimensional (cf. [14], Lemma

6.2.4).
We remark that the discussion in this section, i.e., the notion of a basic diagram

and the existence theorem, works for G = GL2(F) for any finite extension F of Qp.

Example 2.3 Let G = GL2(Qp) and σ be a weight. Take D0 = σ ⊕ σs and D1 =
DI1

0 = χσ ⊕ χs
σ . Let�map a basis vector of the underlying vector space ofχσ to that

of χs
σ . By letting p act trivially on D0 and D1, we get a basic diagram (D0, D1, can)

where can is the canonical injection. The existence theorem applied to this diagram
gives rise to aG-representationπ that is irreducible and supercuspidal, and isuniquely
determined by the diagram (D0, D1, can) ([2], Lemma 5.2). In fact, one obtains all
irreducible admissible supercuspidal representations of G up to a smooth twist in
this way as σ varies. Under the mod p local Langlands correspondence for GL2

over Qp, π is mapped to a continuous 2-dimensional irreducible representation of
Gal(Qp/Qp) whose restriction to the inertia subgroup contains the information of
socKπ = socK D0 = σ ⊕ σs .

3 Diagrams Attached to Galois Representations

Let f > 2 for the rest of the article.
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3.1 Diamond Diagrams

Let ρ : Gal(Qp/Qp f ) −→ GL2(Fp) be a continuous irreducible generic Galois rep-
resentation ([1], Definition 11.7). In [15], Buzzard, Diamond, and Jarvis associate
with ρ a finite set D(ρ) of distinct weights anticipating that it would describe the
K -socle of the supercuspidal representation of G corresponding to ρ under the con-
jectural mod p local Langlands correspondence for GL2 over Qp f .3 As we shall see,
the setD(ρ) can indeed be used to construct irreducible supercuspidal representations
with K -socle described byD(ρ). However, it turns out that there are infinitely many
such representations up to isomorphism. Themod p local Langlands correspondence
for GL2 over finite extensions of Qp thus still remains puzzling.

The set D(ρ) has cardinality 2 f . By elementary representation theoretic argu-
ments, there exists a unique finite-dimensional Fp-linear representation D0(ρ) of �

whose �-socle equals
⊕

σ∈D(ρ) σ, and is maximal with respect to the property that
each σ ∈ D(ρ) occurs exactly once in D0(ρ) as a Jordan–Hölder factor. Further, there
is an isomorphism of �-representations

D0(ρ) ∼=
⊕

σ∈D(ρ)

D0,σ(ρ)

with soc�D0,σ(ρ) = σ ([1], Proposition 13.1). Viewing D0(ρ) as a K -representation,
let us denote by D1(ρ) the I -representation D0(ρ)I1 and by D1,σ(ρ) the
I -representation D0,σ(ρ)I1 . If an I -character χ appears in D1(ρ) then so does χs .

While for any finite set of weights, there exists a finite-dimensional
�-representation D0 satisfying the same properties listed above, the properties of
D0(ρ) and D1(ρ) specific to the set of weights D(ρ) are summarized below.

Proposition 3.1

(1) The Jordan–Hölder factors of D0(ρ) are multiplicity free.
(2) D1(ρ) is a multiplicity-free semi-simple I -representation of dimension 3 f − 1

and thus
D1(ρ) =

⊕

I−character χ

χ ⊕ χs .

Proof See [1], Corollary 13.5, Corollary 13.6, Lemma 14.1, and Proposition 14.7.
�

Proposition 3.1 allows us to define an action of � on D1(ρ) by mapping
I -characters to their �-conjugates, thereby giving a family of basic diagrams
D(ρ, r) := (D0(ρ), D1(ρ), r)parameterizedby I Z -equivariant injections r : D1(ρ) ↪→
D0(ρ). The diagrams D(ρ, r) attached to Galois representations ρ in this way are
called Diamond diagrams in [1].

3 They associate a finite set of weights with any continuous semi-simple generic Galois represen-
tation ρ. We stick to irreducible ρ in this exposition. However, see Remark 4.5.
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3.2 The Map δ

We now introduce the map δ : D(ρ) −→ D(ρ) which governs the dynamics of the
�-action on D(ρ, r) and plays an important role in proving the irreducibility of
representations of G coming from D(ρ, r). There is a natural identification of the
set D(ρ) of weights with the set of subsets of Z/ f Z = {0, 1, . . . , f − 1} ([1], §11).
Under this identification, the map δ is defined as follows:

Definition 3.2 For J ⊆ Z/ f Z,

δ(J ) :=
{

{ j − 1 | j ∈ J } ∪ {0} if 1 /∈ J

{ j − 1 | j ∈ J } \ {0} if 1 ∈ J

with the convention −1 = f − 1.

Note that δ is a bijection and partitions the set D(ρ) into δ-orbits.

Example 3.3 We list the four δ-orbits for f = 5.

�1 = {
φ �→ {0} �→ {0, 4} �→ {0, 3, 4} �→ {0, 2, 3, 4} �→ {0, 1, 2, 3, 4} �→
{1, 2, 3, 4} �→ {1, 2, 3} �→ {1, 2} �→ {1}},

�2 = {{2} �→ {0, 1} �→ {4} �→ {0, 3} �→ {0, 2, 4} �→ {0, 1, 3, 4} �→ {2, 3, 4} �→
{0, 1, 2, 3} �→ {1, 2, 4} �→ {1, 3}},

�3 = {{3} �→ {0, 2} �→ {0, 1, 4} �→ {3, 4} �→ {0, 2, 3}�→{0, 1, 2, 4}�→{1, 3, 4} �→
{2, 3} �→ {0, 1, 2} �→ {1, 4}},

�4 = {{2, 4} �→ {0, 1, 3}}.

The map δ has a nice reinterpretation. Identify the set of subsets of Z/ f Z as the
set of binary numbers (sequences of 0s and 1s) of length f . The subset J ⊆ Z/ f Z
corresponds to the binary number a1a2 . . . a f under the rule a j = 1 if and only if
j ∈ J , where we make the identification f = 0. Under this identification, δ is the
map that moves the first digit of a binary number to the end and changes its parity:

δ(a1a2 . . . a f ) = a2a3 . . . a f (a1 + 1) with the convention 2 = 0.

Example 3.4 Let f = 5. The subset {0, 1, 3} corresponds to the binary number
10101 and δ(10101) = 01010 which corresponds to {2, 4}.
It follows from the definition that

δ2 f (a1a2 . . . a f ) = (a1 + 2)(a2 + 2) . . . (a f + 2) = a1a2 . . . a f .
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Hence, the order of δ is at most 2 f . In fact, the order of δ equals 2 f as one easily
sees by considering the δ-orbit of the empty set (= f zeros). It follows that the size
of any δ-orbit divides 2 f . Observe that δ changes the size of a subset J by ±1. So
any δ-orbit contains an even number of subsets. Therefore, the size of a δ-orbit is 2 f ′
for some f ′ dividing f . Using the reinterpretation of δ, we can prove the following
result which is of independent interest.

Lemma 3.5 The set D(ρ) has a δ-orbit of size 2 f ′ if and only if f
f ′ is odd.

Proof (⇒) Suppose d := f
f ′ is even. Let a = a1a2 . . . a f belongs to a δ-orbit of size

2 f ′. We write

a = a1a2 . . . a f ′a f ′+1a f ′+2 . . . a2 f ′ . . . a(d−1) f ′+1a(d−1) f ′+2 . . . a f .

Then

δ f ′
(a) = a f ′+1a f ′+2 . . . a2 f ′a2 f ′+1a2 f ′+2 . . . a3 f ′ . . . (a1 + 1)(a2 + 1) . . . (a f ′ + 1).

Since a j and δ f ′
(a) j must have opposite parity for all 1 ≤ j ≤ f and d is even by

assumption, we get a1 = a(d−2) f ′+1. Comparing the parity of the last block of f ′
digits in a and δ f ′

(a), we also have a(d−1) f ′+1 = a1. This implies that the first digit
a(d−2) f ′+1 of the second last block of f ′ digits in a is equal to the first digit a(d−1) f ′+1

of the second last block of f ′ digits in δ f ′
(a), a contradiction.

(⇐) Let a be the f -digit binary number starting with f ′ 0s, followed by f ′ 1s,
followed by f ′ 0s, and so on. The number a ends with f ′ 0s as f

f ′ is odd. Clearly,

δ f ′
(a) flips the parity of the digits of a, showing that the δ-orbit of a has size 2 f ′.

If σ ∈ D(ρ) corresponds to a subset J , let δ(σ) denote the weight corresponding
to the subset δ(J ). The map δ is characterized by the following property.

Lemma 3.6 For σ ∈ D(ρ), δ(σ) ∈ D(ρ) is the unique weight such that σs is a
Jordan–Hölder factor of D0,δ(σ)(ρ).

Proof See [1], Lemma 15.2.

Using the combinatorics of the �-action dynamics on D(ρ, r) described by δ,
one obtains the following theorem.

Theorem 3.7 The basic diagram D(ρ, r) is indecomposable, i.e., the K Z-
representation D0(ρ) does not have a proper non-zero K Z-direct summand X such
that X I1 is stable under the action of �.

Proof See [1], Theorem 15.4.
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3.3 Irreducible Admissible Supercuspidal Representations

Let τ (ρ, r) be a smooth admissible representation of G given by the existence the-
orem applied to a Diamond diagram D(ρ, r). We briefly sketch the argument of the
irreducibility of τ (ρ, r) using Theorem 3.7. Let τ ′ ⊆ τ (ρ, r) be a non-zero subrep-
resentation. Since 0 �= socK τ ′ ⊆ socK τ (ρ, r) = socK D0(ρ), we have σ ∈ socK τ ′
for some σ ∈ D(ρ). Thus, D1(ρ)χσ ⊆ τ ′. As τ ′ is stable under the �-action, we
have D1(ρ)χ

s
σ ⊆ τ ′. By Lemma 3.6, we see that D1,δ(σ)(ρ)χ

s
σ ⊆ τ ′. As τ ′ is clearly

a K -representation, it follows that τ ′ contains the unique K -subrepresentation
I (δ(σ),σs) of D0,δ(σ)(ρ) with quotient σs . It is a non-trivial fact that the embed-
ding I (δ(σ),σs) ↪→ τ ′ extends uniquely to an embedding D0,δ(σ)(ρ) ↪→ τ ′. This
requires delicate analysis of non-split extensions between weights (cf. [1], §17 and
18). Repeating the argument for δ(σ), we get D0,δ2(σ)(ρ) ⊆ τ ′ and so on. Since the
map δ has finite order, we get D0,σ(ρ) ⊆ τ ′. It then follows that

⊕

σ∈socK τ ′
D0,σ(ρ) = τ ′ ∩ D0(ρ).

Since the space of I1-invariants of the right-hand side in the above is stable under
the action of �, the same is true for the left-hand side which is a non-zero direct
summand of D0(ρ). This contradicts Theorem3.7 unless τ ′ = τ (ρ, r). Hence, τ (ρ, r)
is irreducible.

As socK τ (ρ, r) = socK D0(ρ), the number of weights in the K -socle of τ (ρ, r)
is equal to the size of D(ρ) which is 2 f > 2. Any subquotient of a principal series
representation of G has at most two weights in its K -socle ([2], Remark 4.9). It
follows that τ (ρ, r) is supercuspidal.

Finally, we remark that if D(ρ, r) and D(ρ, r ′) are two non-isomorphic basic
diagrams, then any two smooth admissible G-representations τ (ρ, r) and τ (ρ, r ′)
are non-isomorphic ([1], Theorem 19.8 (ii)). In fact, even the representation τ (ρ, r)
is not uniquely determined by D(ρ, r) ([6]).

3.4 Extra Characters

Let us now fix a diagram D = (D0, D1, r) in the family {D(ρ, r)}r for the rest of the
article. We have D0 = ⊕

σ∈D(ρ) D0,σ . Write D1,σ = (D0,σ)I1 . For any δ-orbit �, we
write

D0,� :=
⊕

σ∈�

D0,σ and D1,� := (D0,�)I1 .

We call an I -character χ ⊂ D1 extra if χ �= χσ and χ �= χs
σ for any σ ∈ D(ρ).

There are a total of 3 f − 1 characters in D1 (Proposition 3.1). Of these, at most 2 f +1

characters correspond to the socle weights and their �-conjugates. Therefore, the
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set of extra characters is non-empty because 3 f − 1 > 2 f +1 as f > 2. We remark
that Lemma 3.6 together with Theorem 3.7 implies that for a given δ-orbit �, there
is an extra character χ such that (D1,�)χ �= 0.

Let n be the number of δ-orbits of D(ρ). As the set D(ρ) has cardinality 2 f and
f > 2, we have n > 1. The existence of the set of extra characters established in
the following lemma is used crucially by Le in his construction of non-admissible
irreducible G-representations.

Lemma 3.8 There exists a set S of 2(n − 1) extra characters closed under
�-conjugation such that given a δ-orbit �, there is a χ ∈ S satisfying (D1,�)χ �= 0.

Proof Choose any δ-orbit, call it �1, and pick an extra character, say χ1, such that

(D1,�1)
χ1 �= 0 and

( ⊕

σ∈D(ρ)\�1

D1,σ

)χs
1 �= 0.

The existence of such a χ1 is guaranteed by Theorem 3.7. Call the orbit�2 for which
(D1,�2)

χs
1 �= 0. Using Theorem 3.7 again, there is an extra character χ2 such that

(
D1,�1

⊕
D1,�2

)χ2 �= 0 and
( ⊕

σ∈D(ρ)\(�1��2)

D1,σ

)χs
2 �= 0.

Note that χ2 /∈ {χ1,χ
s
1}. Call the orbit �3 for which (D1,�3)

χs
2 �= 0. Proceed-

ing in this way, we find n δ-orbits �1,�2, . . . ,�n of D(ρ) and (n − 1) extra
characters χ1,χ2, . . . ,χn−1 such that (D1,� j+1)

χs
j �= 0 for all 1 ≤ j ≤ n − 1. Take

S = {χ1,χ
s
1,χ2,χ

s
2, . . . ,χn−1,χ

s
n−1}. �

4 Infinite-dimensional Diagrams and Non-admissible
Representations

WenowexplainLe’smethodof constructing infinite-dimensional diagrams fromDia-
monddiagrams toproducenon-admissible irreducible representations.Let D0(∞) :=⊕

i∈Z D0(i) be the smooth K Z -representation with componentwise K Z -action,
where there is a fixed isomorphism D0(i) ∼= D0 of K Z -representations for every
i ∈ Z. Denote the natural inclusion D0

∼−→ D0(i) ↪→ D0(∞) by ιi , and write
vi := ιi (v) for v ∈ D0 for every i ∈ Z. Let D1(∞) := D0(∞)I1 .

We make use of the δ-orbits and the set S of extra characters from the proof
of Lemma 3.8 to define a �-action on D1(∞) which is different from the com-
ponentwise �-action. Pick a pair of extra characters {ψ,ψs} not belonging to the
set S. To justify the existence of such a pair, note that it is enough to show the
inequality 2(n − 1) < 3 f − 1 − 2 f +1 for all f > 2. Since the size of any δ-orbit
is even, we have n ≤ 2 f −1. Thus 2(n − 1) ≤ 2 f − 2. It is now easy to check that
2 f − 2 < 3 f − 1 − 2 f +1 for all f > 2.



46 E. Ghate and M. Sheth

Let us choose a weight σk ∈ �k for all 1 ≤ k ≤ n and let λ = (λi ) ∈ ∏
i∈Z Fp

×
.

For all integers i ∈ Z, define

�vi :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(�v)i if v ∈ Dχ
1 for χ /∈ {χσ1,χ

s
σ1

, . . . ,χσn ,χ
s
σn

,ψ,ψs},
(�v)i+1 if v ∈ Dχ

1 for χ ∈ {χσ1, . . . ,χσn−1},
(�v)i−1 if v ∈ D

χσn
1 ,

λi (�v)i if v ∈ Dψ
1 .

This uniquely determines a smooth N -action on D1(∞) such that p = �2 acts triv-
ially on it. Thus, we get a basic diagram D(λ) := (D0(∞), D1(∞), can) with the
above actions where can is the canonical inclusion D1(∞) ↪→ D0(∞).

Theorem 4.1 (Le) There exists a smooth representation π of G such that

(1) (π|K Z ,π|N , id) contains D(λ),
(2) π is generated by D0(∞) as a G-representation, and
(3) socKπ = socK D0(∞).

Proof The idea is to consider the infinite direct sum
⊕

i∈Z �(i) where each �(i) is
isomorphic to the smooth injective K -envelope � of D0, and equip this direct sum
with an N -action extending the N -action on D1(∞) defined above. The proof is the
same as that of [12], Theorem 3.2, presented for f = 3.

Theorem 4.2 (Le) If λi �= λ0 for all i �= 0, then any smooth representation π of
G satisfying the properties (1), (2), and (3) of Theorem 4.1 is irreducible and non-
admissible.

Proof Let π′ ⊆ π be a non-zero subrepresentation of G. By property (3), we have
HomK (σ,π′) �= 0 for some σ ∈ socK D0. Considering that σ could be embedded
diagonally in π′, there exists a non-zero (ci ) ∈ ⊕

i∈Z Fp such that

( ∑

i

ci ιi
)
(σ) ⊂ π′,

or equivalently (∑

i

ci ιi
)
(D0,σ) ∩ π′ �= 0,

because the K -socle of
( ∑

i ci ιi
)
(D0,σ) is

( ∑
i ci ιi

)
(σ), which is irreducible.

We claim that (∑

i

ci ιi+ j
)
(D0) ⊂ π′ for all j ∈ Z. (4.3)

We prove the claim (4.3) assuming σ ∈ �n . The cases where σ is in an orbit other
than �n are proved similarly. If σ ∈ �n , then σ is in the same δ-orbit �n as σn is.
So it follows from the discussion in Sect. 3.3 that
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( ∑

i

ci ιi
)
(σ) ⊂ π′ =⇒ ( ∑

i

ci ιi
)
(σn) ⊂ π′.

Note that the indices i are unchanged since the action of� on ιi (D
χσ

1 ) fixes the index
i of the embedding ιi for all σ ∈ �n except σn . Since the �-action takes ιi (D

χσn
1 ) to

ιi−1(D
χs

σn
1 ), we have

(∑

i

ci ιi−1
)
(D0,δ(σn)) ⊂ π′.

Therefore, again from the discussion in Sect. 3.3, we get that

( ∑

i

ci ιi−1
)
(D0,�n ) ⊂ π′.

Continuing in this fashion, we obtain

(∑

i

ci ιi+ j
)
(D0,�n ) ⊂ π′ for all j < 0.

Making use of the extra character χs
n−1 in the proof of Lemma 3.8, we have in

particular,
(∑

i

ci ιi+ j
)
(D

χs
n−1

1 ) ⊂ π′ for all j < 0.

Therefore, (∑

i

ci ιi+ j
)
(Dχn−1

1 ) ⊂ π′ for all j < 0.

We know from the proof of Lemma 3.8 that (D1,�k )
χn−1 �= 0 for some 1 ≤ k < n.

Since the �-action takes ιi (D
χσk
1 ) to ιi+1(D

χs
σk

1 ), we obtain

(∑

i

ci ιi+ j
)
(D0,�k ) ⊂ π′ for all j ∈ Z for some 1 ≤ k < n.

Making use of the extra character χs
k−1, by the same arguments as above, we obtain

(∑

i

ci ιi+ j
)
(D0,�k′ ) ⊂ π′ for all j ∈ Z for some 1 ≤ k ′ < k.

Continuing in this fashion, we finally get that

( ∑

i

ci ιi+ j
)
(D0,�1) ⊂ π′ for all j ∈ Z.

Recall from the proof of Lemma 3.8 that
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( l⊕

m=1

D1,�m

)χl �= 0 and (D1,�l+1)
χs
l �= 0 for all 1 ≤ l ≤ n − 1. (4.4)

Using (4.4) with l = 1, we get

(∑

i

ci ιi+ j
)
((D1,�1)

χ1) ⊂ π′ and
(∑

i

ci ιi+ j
)
((D1,�2)

χs
1) ⊂ π′ for all j ∈ Z.

This implies (∑

i

ci ιi+ j
)
(D0,�2) ⊂ π for all j ∈ Z.

Similarly, using (4.4) successively for l = 2, . . . , n − 1, we obtain

( ∑

i

ci ιi+ j
)
(D0,�r ) ⊂ π′ for all j ∈ Z and for all 1 ≤ r ≤ n.

Hence,
( ∑

i ci ιi+ j
)
(D0) ⊂ π′ for all j ∈ Z as desired.

For (di ) ∈ ⊕
i∈Z Fp, let #(di ) denote the number of non-zero di ’s. Among all

the non-zero elements (ci ) of
⊕

i∈Z Fp for which
(∑

i ci ιi
)
(D0) ⊂ π′, we pick one

with #(ci ) minimal. We may also assume that c0 �= 0 using (4.3). We now show that
#(ci ) = 1. Assume to the contrary that #(ci ) > 1. Since

( ∑
i ci ιi

)
(Dψ

1 ) ⊂ π′ and π′
is stable under the �-action, we have

( ∑

i

λi ci ιi
)
(Dψs

1 ) ⊂ π′.

Since
( ∑

i λ0ci ιi
)
(Dψs

1 ) is also clearly in π′, subtracting it from the above, we get

( ∑

i

(λi − λ0)ci ιi
)
(Dψs

1 ) ⊂ π′.

Let ν ∈ D(ρ) be the weight for which Dψs

1,ν �= 0. Writing (c′
i ) := ((λi − λ0)ci ), we

see that ( ∑

i

c′
i ιi

)
(D0,ν) ∩ π′ �= 0.

Following the same arguments as in the previous paragraph proving the claim (4.3),
we get that

(∑
i c

′
i ιi

)
(D0) ⊂ π′. However, the hypothesis λi �= λ0 for all i �= 0, and

the assumption #(ci ) > 1 imply that (c′
i ) is non-zero and #(c′

i ) = #(ci ) − 1 contra-
dicting the minimality of #(ci ). Therefore, we have c0ι0(D0) ⊂ π′. So ι0(D0) ⊂ π′.
Using (4.3) again, we get that

⊕
j∈Z ι j (D0) = D0(∞) ⊂ π′. By property (2) of The-

orem 4.1, we have π′ = π.
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The non-admissibility of π is clear because πK1 ⊇ socKπ and socKπ is not finite-
dimensional by property (3) of Theorem 4.1. �

Remark 4.5 The strategy to construct non-admissible irreducible representations
explained above fails for the group GL2(Qp2) because of the absence of extra char-
acters in D1(ρ) when f = 2. However, it turns out that a Diamond diagram attached
to a reducible split mod p Galois representation of Gal(Qp/Qp2) does have enough
extra characters to employ Le’s strategy to produce non-admissible irreducible rep-
resentations of GL2(Qp2) (cf. [13]).

Remark 4.6 Note that the smooth irreducible non-admissible representations π in
Theorem 4.2 and in [13], Theorem 3.2, have a central character because the action
of p on π is trivial. By [16], Theorem 33 (1), π is a quotient of c-IndGK Zσ/(T −
λ)(c-IndGK Zσ) for some σ ∈ socKπ and λ ∈ Fp. If λ �= 0, by [16], Corollary 31,
π is the unique irreducible quotient and by [16], Lemma 28 (1) and Theorem
33, all such quotients are admissible. It follows that λ = 0 and π is a quotient of
c-IndGK Zσ/T (c-IndGK Zσ), i.e., π is supercuspidal. Since quotients of admissible rep-
resentations are admissible, by [17], Theorem 1, we deduce that the universal super-
cuspidal representation c-IndGK Zσ/T (c-IndGK Zσ) is not admissible. This was already
known, as mentioned in the introduction.
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A Short Review on Local Shtukas and
Divisible Local Anderson Modules

Urs Hartl and Rajneesh Kumar Singh
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1 Introduction

The theory of p-adic Galois representations is concerned with the continuous repre-
sentations

ρ : Gal(Lalg/L) −→ GLr (Qp) (1.1)

of the absolute Galois group Gal(Lalg/L) of a finite field extension L of Qp. It
started with Tate’s introduction of p-divisible groups in [33]. These are also called
Barsotti-Tate groups. The Tate module TpX of a p-divisible group X of height
r over L induces Galois representations VpX := TpX ⊗Zp Qp and H1

ét (X, Qp) :=
HomZp (TpX, Qp) as in (1.1). If X extends to a p-divisible group over OL , one
says that X has good reduction. In this case, the special fiber X0 := X ⊗OL κ of
X over the residue field κ of OL can be described by its crystalline cohomology
H 1

cris

(
X0/W (κ)

)
, where W (κ) is the ring of p-typical Witt vectors with coefficients

in κ. The p-divisible group X , which can be viewed as a lift of X0 toOL , is described
by the F-crystal H 1

cris

(
X0/W (κ)

)
together with its Hodge filtration. All this was

proved byMessing [27]. Grothendieck [15] reformulated this as a functor relating the
p-adic étale cohomology H1

ét(X, Qp) to the crystalline cohomology H1
cris(X0/L0)

with its Hodge filtration, where L0 := W (κ)[ 1p ] and H1
cris(X0/L0) is a filtered
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isocrystal; see Remark 6.6 below. Grothendieck then posed the problem to extend
this functor, which he called the mysterious functor, to general proper smooth
schemes X over L with good reduction. For those X , the problem was solved by
Fontaine [10–13], who defined the notion of crystalline p-adic Galois represen-
tations and constructed a functor from crystalline p-adic Galois representations to
filtered isocrystals. Fontaine conjectured that Hi

ét (X ×L Lalg, Qp) is crystallinewhen
X is a proper smooth scheme over OL . After contributions by Grothendieck, Tate,
Fontaine, Lafaille, Messing, Hyodo, Kato, and many others, Fontaine’s conjecture
was proved independently by Faltings [8], Niziol [28], and Tsuji [34].

Our goal in this survey is to describe the function field analog of the above. In
this analog, p-divisible groups are replaced by divisible local Anderson modules
which we discuss in Sect. 4. The analog of Messing’s [27] theory of crystalline
Dieudonné-modules for p-divisible groups is Theorem4.2. In it,Messings F-crystals
are replaced by local shtukas, which we treat first in Sect. 2. The anti-equivalence
between divisible local Anderson modules and local shtukas passes through finite
flat group schemes and finite shtukas. We review it in Sect. 3. Analogous to the étale
and crystalline cohomology we mentioned for p-divisible groups in the previous
paragraph, local shtukas possess cohomology realizations as described in Sect. 5. In
the final Sect. 6, we explain how the theory of local shtukas provides the function
field analog of Fontaine’s theory of p-adic Galois representations (1.1).

2 Local Shtukas

The theory of local shtukas is the function field analog of Fontaine’s theory of p-
adic Galois representations. Let Aε be a complete discrete valuation ring with finite
residue field Fε of characteristic p such that the fraction field Qε of Aε also has
characteristic p. The rings Aε and Qε are the function field analogs of Zp and Qp.
We choose a uniformizing parameter z ∈ Aε. Then Aε is canonically isomorphic to
Fε[[z]]. Let q̂ = #Fε be the cardinality of Fε. As base rings R over which our objects
are defined, we are interested in this article in two kinds of Aε-algebras:

(a) The first kind are Aε-algebras in which the image ζ of the uniformizer z of Aε

is nilpotent. We denote the category of these Aε-algebras by NilpAε
.

(b) Let K be a fieldwhich is completewith respect to a non-trivial, non-Archimedean
absolute value | . | : K → R≥0 and let OK = {x ∈ K : |x | ≤ 1} be the valuation
ring of K . We makeOK into an Aε-algebra via an injective ring homomorphism
γ : Aε ↪→ OK such that ζ := γ(z) �= 0 lies in the maximal ideal mK ⊂ OK .

The relation between the two kinds of base rings is that OK /(ζn) ∈ NilpAε
for all

positive integers n.
Let R be a base ring as in (a) or (b). To define local shtukas over R, we

consider modules M̂ over the power series ring R[[z]], which Zariski locally on
Spec R are free over R[[z]]. We call such a module a locally free R[[z]]-module of
rank r .We set M̂[ 1

z−ζ
] := M̂ ⊗R[[z]] R[[z]][ 1

z−ζ
], and M̂[ 1z ] := M̂ ⊗R[[z]] R((z))where
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R((z)) := R[[z]][ 1z ], and σ̂∗M̂ := M̂ ⊗R[[z]], σ̂ R[[z]] where σ̂ is the endomorphism of

R[[z]] with σ̂(z) = z and σ̂(b) = bq̂ for b ∈ R. Note that R[[z]][ 1
z−ζ

] = R((z)) if

R ∈ NilpAε
as in (a), but R[[z]][ 1

z−ζ
] �= R((z)) if R is a valuation ring as in (b). There

is a natural σ̂-semilinear map M̂ → σ̂∗M̂, m 
→ σ̂∗
M̂
m := m ⊗ 1. For a morphism

of R[[z]]-modules f : M̂ → M̂ ′, we set σ̂∗ f := f ⊗ id : σ̂∗M̂ → σ̂∗M̂ ′.

Definition 2.1 A local σ̂-shtuka (or local shtuka) of rank r over R is a pair M̂ =
(M̂, τM̂) consisting of a locally free R[[z]]-module M̂ of rank r , and an isomorphism

τM̂ : σ̂∗M̂[ 1
z−ζ

] ∼−→ M̂[ 1
z−ζ

]. If τM̂(σ̂∗M̂) ⊂ M̂ then M̂ is called effective, and if

τM̂(σ̂∗M̂) = M̂ then M̂ is called étale. We say that τM̂ is topologically nilpotent,
if M̂ is effective and there is an integer n such that im(τ n

M̂
) ⊂ zM̂ , where τ n

M̂
:=

τM̂ ◦ σ̂∗τM̂ ◦ . . . ◦ σ̂(n−1)∗τM̂ : σ̂n∗M̂ → M̂ .
A morphism of local shtukas f : (M̂, τM̂) → (M̂ ′, τM̂ ′) over R is a morphism of

R[[z]]-modules f : M̂ → M̂ ′ which satisfies τM̂ ′ ◦ σ̂∗ f = f ◦ τM̂ . We denote the set

of morphisms from M̂ to M̂
′
by HomR(M̂, M̂

′
).

A quasi-morphism between local shtukas f : (M̂, τM̂) → (M̂ ′, τM̂ ′) over R is
a morphism of R((z))-modules f : M̂[ 1z ] → M̂ ′[ 1z ] with τM̂ ′ ◦ σ̂∗ f = f ◦ τM̂ . It is
called a quasi-isogeny if it is an isomorphism of R((z))-modules. We denote the set
of quasi-morphisms from M̂ to M̂

′
by QHomR(M̂, M̂

′
).

For any local shtuka (M̂, τM̂) over R ∈ NilpAε
, the homomorphism M̂ → M̂[ 1

z−ζ
]

is injective by the flatness of M̂ and the following.

Lemma 2.2 ([21, Lemma 2.2]) Let R be an Aε-algebra as in (a) or (b). Then the
sequence of R[[z]]-modules

0 R[[z]] R[[z]] R 0

1 z − ζ , z ζ

is exact. In particular, R[[z]] ⊂ R[[z]][ 1
z−ζ

].
Of fundamental importance is the following.

Example 2.3 Let Fq be a finite field with q elements, let C be a smooth projective
geometrically irreducible curve over Fq , and let Q := Fq(C) be the function field of
C . Fix a closed point ∞ of C , and let A := �(C � {∞},OC) be the ring of regular
functions on C outside ∞. The rings A and Q are the function field analogs of Z

and Q.
Let ε ⊂ A be a maximal ideal and let Aε be the completion of A at ε. Then Fε

is a field extension of Fq with q̂ := #Fε = q [Fε:Fq ]. Let R be a base Aε-algebra
as in (a) or (b) and denote its structure morphism by γ : Aε → R. Set AR :=
A ⊗Fq R and let σ := idA ⊗Frobq,R be the endomorphism of AR with σ(a ⊗ b) =
a ⊗ bq for a ∈ A and b ∈ R. An effective A-motive of rank r over R is a pair
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M = (M, τM) consisting of a locally free AR-module M of rank r and an injec-
tive AR-homomorphism τM : σ∗M ↪→ M whose cokernel is a finite free R-module
and is annihilated by a power of the ideal J := (a ⊗ 1 − 1 ⊗ γ(a) : a ∈ A) =
ker(γ ⊗ idR : AR � R) ⊂ AR .

More generally, an A-motive of rank r over R is a pairM = (M, τM) consisting of
a locally free AR-moduleM of rank r and an isomorphism τM : σ∗M |Spec AR�V(J )

∼−→
M |Spec AR�V(J ) of the associated sheaves outside V(J ) ⊂ Spec AR . Note that if
A = Fq [t], then J = (t − γ(t)) and Spec AR � V(J ) = Spec R[t][ 1

t−γ(t) ].
Let M be an (effective) A-motive over R. We consider the ε-adic completions

Aε,R = lim←− AR/εn AR of AR and M ⊗AR Aε,R := (M ⊗AR Aε,R , τM ⊗ id) of M . If

Fε = Fq , and hence q̂ = q and σ̂ = σ, we have Aε,R = R[[z]] andJ · Aε,R = (z − ζ)

because R ⊗AR Aε,R = R. SoM ⊗AR Aε,R is an (effective) local shtuka over Rwhich
we denote by M̂ε(M) and call the local σ̂-shtuka at ε associatedwith M . If f := [Fε :
Fq ] > 1, the construction is slightly more complicated; compare the discussion in [4,

after Proposition 8.4]. Namely, we consider the canonical isomorphism Fε[[z]] ∼−→
Aε and the ideals ai = (a ⊗ 1 − 1 ⊗ γ(a)q

i : a ∈ Fε) ⊂ Aε,R for i ∈ Z/ f Z, which
satisfy

∏
i∈Z/ f Z ai = (0), because

∏
i∈Z/ f Z(X − aq

i
) ∈ Fq [X ] is a multiple of the

minimal polynomial of a over Fq and even equal to it when Fε = Fq(a). By the
Chinese remainder theorem, Aε,R decomposes

Aε,R =
∏

i∈Z/ f Z

Aε,R/ai . (2.1)

Each factor is canonically isomorphic to R[[z]]. The factors are cyclically per-
muted by σ because σ(ai ) = ai+1. In particular, σ f stabilizes each factor. The
ideal J decomposes as follows: J ·Aε,R/a0 = (z − ζ) and J ·Aε,R/ai = (1) for
i �= 0. We define the local σ̂-shtuka at ε associated with M as M̂ε(M) := (M̂, τM̂) :
= (

M ⊗AR Aε,R/a0 , (τM ⊗ 1) f
)
, where τ

f
M := τM ◦ σ∗τM ◦ . . . ◦ σ( f −1)∗τM .

Of course, if f = 1 we get back the definition of M̂ε(M) given above. Also note if
M is effective, then M/τM(σ∗M) = M̂/τM̂(σ̂∗M̂).

The local shtuka M̂ε(M) allows to recover M ⊗AR Aε,R via the isomorphism

f−1⊕

i=0

(τM ⊗ 1)i mod ai :
( f−1⊕

i=0

σi∗(M ⊗AR Aε,R/a0), (τM ⊗ 1) f ⊕
⊕

i �=0

id
) ∼−→ M ⊗AR Aε,R ,

because for i �= 0 the equality J ·Aε,R/ai = (1) implies that τM ⊗ 1 is an isomor-
phism modulo ai ; see [4, Propositions 8.8 and 8.5] for more details. Note that
M 
→ M̂ε(M) is a functor.

We quote the next lemma from [21, Lemma 2.3].

Lemma 2.4 Let (M̂, τM̂) be a local shtuka over R. Then there are e, e′ ∈ Z

such that (z − ζ)e
′
M̂ ⊂ τM̂(σ̂∗M̂) ⊂ (z − ζ)−e M̂. For any such e, the map τM̂ :
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σ̂∗M̂ → (z − ζ)−e M̂ is injective, and the quotient (z − ζ)−e M̂/τM(σ̂∗M̂) is a locally
free R-module of finite rank.

Example 2.5 We discuss the case of the Carlitz module [5]. We keep the notation
from Example 2.3 and set A = Fq [t]. Let Fq(θ) be the rational function field in
the variable θ and let γ : A → Fq(θ) be given by γ(t) = θ. The Carlitz motive over
Fq(θ) is the A-motive M = (

Fq(θ)[t], t − θ
)
.

Now let ε = (z) ⊂ A be a maximal ideal generated by a monic prime element
z = z(t) ∈ Fq [t]. Then Fε = A/(z) and Aε is canonically isomorphic to Fε[[z]]. Let
OK ⊃ Fε[[ζ]] be a valuation ring as in (b) and let θ = γ(t) ∈ OK . The Carlitz motive
has good reduction in the sense that it has a model over OK given by the A-motive
M = (OK [t], t − θ) over OK .

If degt z(t) = 1, that is, z(t) = t − a for a ∈ Fq , then Fε = Fq , ζ = θ − a, and
z − ζ = t − θ. So M̂ε(M) = (OK [[z]], z − ζ).

If degt z(t) = f > 1, then M̂ε(M) = (OK [[z]], (t − θ)(t − θq) · · · (t − θq
f−1

)
)
.

Here, the product (t − θ)(t − θq) · · · (t − θq
f −1

) = (z − ζ)u for a unit u ∈
Fε[[ζ]][[z]]×, because τM(σ∗M) = (t − θ)M implies that M̂ε(M) is effective and
M̂/τM̂(σ̂∗M̂) = M/τM(σ∗M) is free over OK of rank 1. In order to get rid of u,
we denote the image of t in Fε by λ. Then Fε = Fq(λ) and z(t) equals the mini-
mal polynomial (t − λ) · · · (t − λq f −1

) of λ over Fq . Moreover, t ≡ λ mod zAε and
θ ≡ λ mod ζFε[[ζ]]. We compute in Fε[[ζ]][[z]]/(ζ)

z(t) = (t − λ) · · · (t − λq
f −1

) ≡ (t − θ) · · · (t − θq
f −1

) ≡ (z − ζ)u ≡ zu mod ζ .

Since z is a non-zero-divisor in Fε[[ζ]][[z]]/(ζ), it follows that u ≡
1 mod ζ Fε[[ζ]][[z]]. We write u = 1 + ζu′ and observe that the product

w :=
∞∏

n=0

σ̂n(u) =
∞∏

n=0

σ̂n(1 + ζu′) =
∞∏

n=0

(
1 + ζ q̂

n
σ̂n(u′)

)

converges in Fε[[ζ]][[z]]× because Fε[[ζ]][[z]] is ζ-adically complete. It satisfies
w = u · σ̂(w) and somultiplicationwithw defines a canonical isomorphism (OK [[z]],
z − ζ) ∼−→ M̂ε(M).

We conclude that M̂ε(M) = (OK [[z]], z − ζ), regardless of degt z(t).

3 Finite Shtukas

In this section, let R be an arbitrary Fε-algebra. For an R-module M̂ we set σ̂∗M̂ :=
M̂ ⊗R,Frobq̂ R where Frobq̂ is the q̂-Frobenius endomorphism of R with Frobq̂(b) =
bq̂ for b ∈ R.
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Definition 3.1 A finite Fε-shtuka over R is a pair M̂ = (M̂, τM̂) consisting of a
locally free R-module M̂ of finite rank denoted by rk M̂ , and an R-module homo-
morphism τM̂ : σ̂∗M̂ → M̂ satisfying f ◦ τM̂ = τM̂ ′ ◦ σ̂∗ f . That is, the following
diagram is commutative

σ̂∗M̂
σ̂∗ f

τM̂

σ̂∗M̂ ′

τM̂ ′

M̂
f

M̂ ′ .

A finite Fε-shtuka over R is called étale if τM̂ is an isomorphism. We say that τM̂ is
nilpotent if there is an integer n such that τ n

M̂
:= τM̂ ◦ σ̂∗τM̂ ◦ . . . ◦ σ∗

qn−1τM̂ = 0.

Finite Fε-shtukas were studied at various places in the literature. They were called
“(finite) ϕ-sheaves” by Drinfeld [7, §2], Taguchi andWan [31, 32], and “Dieudonné
Fq -modules” by Laumon [25]. Finite Fε-shtukas over a field admit a canonical
decomposition.

Proposition 3.2 ([25, Lemma B.3.10]) If R = L is a field, every finite Fε-shtuka
M̂ = (M̂, τM̂) is canonically an extension of finite Fε-shtukas

0 −→ (M̂ét, τét) −→ (M̂, τM̂) −→ (M̂nil, τnil) −→ 0

where τét is an isomorphism and τnil is nilpotent. M̂ ét = (M̂ét, τét) is the largest étale

finite Fq -sub-shtuka of M̂ and equals im(τ
rk M̂

M̂
). If L is perfect, this extension splits

canonically.

Example 3.3 Every effective local shtuka (M̂, τM̂) of rank r over R yields for every
n ∈ N a finite Fε-shtuka

(
M̂/zn M̂, τM̂ mod zn

)
of rank rn, and (M̂, τM̂) equals the

projective limit of these finite Fε-shtukas.

Thus, from Proposition 3.2 we obtain the following.

Proposition 3.4 If R = L is a field inNilpAε
, that is, ζ = 0 in L, then every effective

local shtuka (M̂, τM̂) is canonically an extension of effective local shtukas

0 −→ (M̂ét, τét) −→ (M̂, τM̂) −→ (M̂nil, τnil) −→ 0

where τét is an isomorphism and τnil is topologically nilpotent. (M̂ét , τét ) is the
largest étale effective local sub-shtuka of (M̂, τM̂). If L is perfect, this extension
splits canonically. �

Finite Fε-shtukas and local shtukas are related to group schemes in the following
way. Let M̂ = (M̂, τM̂) be a finite Fε-shtuka over R. Let

E = Spec
⊕

n≥0

Symn
R M̂
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be the geometric vector bundle corresponding to M̂ over Spec R, and let Fq̂,E : E →
σ̂∗E be its relative q̂-Frobenius morphism over R. On the other hand, the map τM̂
induces another R-morphism Spec(Sym• τM̂) : E → σ̂∗E . Drinfeld defines

Drq̂(M̂) := ker
(
Spec(Sym• τM̂) − Fq̂,E : E→σ̂∗E

) = Spec
(⊕

n≥0

Symn
R M̂

)
/I

where the ideal I is generated by the elements m⊗q − τM̂(σ̂∗m) for all elements m
of M̂ . (Here, m⊗q lives in Symq

R M̂ and τM̂(σ̂∗m) in Sym1
R M̂ .) Note that locally

on Spec R, we have M̂ = ⊕d
i=1 R · mi and E ∼= Spec R[m1, . . . ,md ] = Gd

a,R . The

subgroup scheme Drq̂(M̂) is finite locally free over R of order q̂ rk M̂ , that is, the

R-algebra ODrq̂ (M̂) is a finite locally free R-module of rank q̂ rk M̂ . It is also an Fε-
module scheme over R via the comultiplication � : m 
→ m ⊗ 1 + 1 ⊗ m and the
Fε-action [a] : m 
→ amwhich it inherits from E . It is even a strict Fε-module scheme
in the sense of Faltings [9] and Abrashkin [2]. For a proof, see [2, Theorem 2] or [21,
§5]. Thismeans thatFε acts on the co-Lie complex of Drq̂(M̂) over R, see Illusie [26,
§VII.3.1], via the scalar multiplication through Fε ⊂ R. A detailed explanation of
strict Fε-module schemes is given in [21, §4].

Conversely, let G = Spec A be a finite locally free strict Fε-module scheme over
R. Note that on the additive group schemeGa,R = Spec R[x], the elements b ∈ R act
via endomorphisms ψb : Ga,R → Ga,R given by ψ∗

b : R[x] → R[x], x 
→ bx . This
makes Ga,R into an R-module scheme, and in particular, into an Fε-module scheme
via Fε ⊂ R. We associate with G the R-module of Fε-equivariant homomorphisms
on R

M̂q̂ (G) := HomR-groups,Fε-lin(G, Ga,R) = {
x ∈ A : �(x) = x ⊗ 1 + 1 ⊗ x, [a](x) = ax, ∀a ∈ Fε

}
,

with its action of R via R → EndR-groups,Fε-lin(Ga,R). It is a finite locally free R-
module by [30, Proposition 3.6 and Remark 5.5]; see also [1, VIIA, 7.4.3] in the
reedited version of SGA 3 by P. Gille and P. Polo. The composition on the left
with the relative q̂-Frobenius endomorphism Fq̂,Ga,R of Ga,R = Spec R[x] given by
x 
→ xq̂ defines a map M̂q̂(G) → M̂q̂(G),m 
→ Fq̂,Ga,R ◦ m which is not R-linear,
but σ̂-linear, because Fq̂,Ga,R ◦ ψb = ψbq̂ ◦ Fq̂,Ga,R . Therefore, Fq̂,Ga,R induces an R-
homomorphism τM̂q̂ (G) : σ̂∗M̂q̂(G) → M̂q̂(G). Then M̂q̂(G) := (

M̂q̂(G), τM̂q̂ (G)

)
is

a finite Fε-shtuka over R. If f : G → H is a morphism of finite locally free strict
Fε-module schemes over R, then M̂q̂( f ) : M̂q̂(H) → M̂q̂(G), m 
→ m ◦ f . This

defines the functor M̂q̂ from the category of finite locally free strict Fε-module
schemes over R to finite Fε-shtukas over R. It has the following properties.

Theorem 3.5 ([21, Theorem 5.2])

(a) The contravariant functors Drq̂ and M̂q̂ are mutually quasi-inverse anti-equi-
valences between the category of finite Fε-shtukas over R and the category of
finite locally free strict Fε-module schemes over R.
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(b) Both functors are Fq -linear and map short exact sequences to short exact
sequences. They preserve étale objects and map the canonical decompositions
from Propositions 3.2 and 3.6 below to each other.

Let M̂ = (M̂, τM̂) be a finite Fε-shtuka over R and let G = Drq̂(M̂). Then

(c) The Fε-module scheme Drq̂(M̂) is radical over R if and only if τM̂ is nilpotent.

(d) The order of the R-group scheme Drq̂(M̂) is q̂ rk M̂ .
(e) There is a canonical isomorphism between coker τM̂ = M̂/τM̂(σ̂∗M̂) and the

co-Lie module ωDrq̂ (M̂) := e∗�1
Drq̂ (M̂)/R

where e : Spec R → Drq̂(M̂) is the zero

section.

Proposition 3.6 ([21, Proposition 4.2]) If R = L is a field, everyFε-module scheme
G over L is canonically an extension 0 → G◦ → G → G ét → 0 of an étale
Fε-module scheme G ét by a connected Fε-module scheme
G◦. The Fε-module scheme G ét is the largest étale quotient of G. If L is perfect,
G ét is canonically isomorphic to the reduced closed Fε-module subscheme Gred of
G and the extension splits canonically, G = G◦ ×L Gred.

4 Divisible Local Anderson Modules

Let R ∈ NilpAε
and let M̂ = (M̂, τM̂) be an effective local shtuka over R. Set

M̂n := (M̂n, τM̂n
) := (M̂/zn M̂, τM̂ mod zn) and consider the finite locally free strict

Fε-module scheme Drq̂(M̂n) over R from the previous section. Drq̂(M̂n) inherits
from M̂n an action of Aε/(zn) = Fε[z]/(zn). The canonical epimorphisms M̂n+1 �
M̂n induce closed immersions in : Drq̂(M̂n) ↪→ Drq̂(M̂n+1). The inductive limit
Drq̂(M̂) := lim−→ Drq̂(M̂n) in the category of sheaves on the big fppf -site of Spec R

is a sheaf of Aε-modules that satisfies the following.

Definition 4.1 A z-divisible local Andersonmodule over R is a sheaf of Aε-modules
G on the big fppf -site of Spec R such that

(a) G is z-torsion, that is, G = lim−→ G[zn], where G[zn] := ker(zn : G → G);

(b) G is z-divisible, that is, z : G → G is an epimorphism;
(c) For every n, the Fε-module G[zn] is representable by a finite locally free strict

Fε-module scheme over R in the sense of Faltings [9] and Abrashkin [2];
(d) Locally on R, there exists an integer d ∈ Z≥0, such that (z − ζ)d = 0 on ωG

where ωG := lim←− ωG[zn ] and ωG[zn ] = e∗�1
G[zn ]/R is the pullback under the zero

section e : Spec R → G[zn].Here, the actionof z onωG comes from the structure
of Aε-module on G, while the action of ζ on ωG comes from the structure of
R-module on ωG .
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A morphism of z-divisible local Anderson modules over R is a morphism of fppf -
sheaves of Fε[[z]]-modules. It is shown in [21, Lemma 8.2 and Theorem 10.8] that
ωG is a finite locally free R-module, and we define the dimension of G as rk ωG .
Moreover, it follows from [21, Proposition 7.5] that there is a locally constant function
h : Spec R → N0, s 
→ h(s) such that the order of G[zn] equals q̂nh . We call h the
height of the z-divisible local Anderson module G.

The category of z-divisible local Anderson modules over R and the category of
local shtukas over R are both Aε-linear. The construction and the equivalence from
Sect. 3 extend to an equivalence between the category of effective local shtukas over
R and the category of z-divisible local Anderson modules over R.

Thequasi-inverse functor to M̂ 
→ Drq̂(M̂) is given as follows.LetG = lim−→ G[zn]
be a z-divisible local Anderson module over R. We set

M̂q̂(G) = (
M̂q̂(G), τM̂q̂ (G)

) := lim←−
n

(
M̂q̂(G[zn]), τM̂q̂ (G[zn ])

)
.

Multiplication with z on G gives M̂q̂(G), the structure of an R[[z]]-module. The
following theorem was proved in [21, Theorem 8.3].

Theorem 4.2 Let R ∈ NilpAε
.

(a) The two contravariant functors Drq̂ and M̂q̂ are mutually quasi-inverse anti-
equivalences between the category of effective local shtukas over R and the
category of z-divisible local Anderson modules over R.

(b) Both functors are Aε-linear, map short exact sequences to short exact sequences,
and preserve (ind-) étale objects.

Let M̂ = (M̂, τM̂) be an effective local shtuka over R, and let G = Drq̂(M̂) be its
associated z-divisible local Anderson module. Then

(c) G is a formal Aε-module, i.e. a formal Lie group equipped with an action of Aε,
if and only if τM̂ is topologically nilpotent.

(d) The height and dimension of G are equal to the rank and dimension of M̂.
(e) The R[[z]]-modules ωDrq̂ (M̂) and coker τM̂ are canonically isomorphic.

Example 4.3 In the notation of Example 2.3, let R ∈ NilpAε
and let r be a positive

integer. A Drinfeld A-module of rank r over R is a pair E = (E,ϕ) consisting of a
smooth affine group scheme E over Spec R of relative dimension 1 and a ring homo-
morphism ϕ : A → EndR-groups(E), a 
→ ϕa satisfying the following conditions:

(a) Zariski-locally on Spec R there is an isomorphismα : E ∼−→ Ga,R ofFq -module
schemes such that

(b) the coefficients of �a := α ◦ ϕa ◦ α−1= ∑

i≥0
bi (a)τ i∈EndR-groups,Fq -lin(Ga,R) =

R{τ } satisfy b0(a) = γ(a), br(a)(a) ∈ R× and bi (a) is nilpotent for all i >

r(a) := −r [F∞ : Fq ] ord∞(a).
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Here, R{τ } := { n∑

i=0
biτ i : n ∈ N0, bi ∈ R

}
is the non-commutative polynomial ring

with τb = bqτ , and the isomorphism of rings R{τ } ∼−→ EndR-groups,Fq -lin(Ga,R) is
given by sending τ to the relative q̂-Frobenius endomorphism Fq̂,Ga,R of Ga,R =
Spec R[x] given by x 
→ xq̂ and b ∈ R to the endomorphism ψb given by ψ∗

b : x 
→
bx .

For a Drinfeld A-module E = (E,ϕ), we consider the set M := M(E) :=
HomR-groups,Fq -lin(E, Ga,R) of Fq -equivariant homomorphisms of R-group schemes.
It is a locally free module over AR := A ⊗Fq R of rank r under the action given on
m ∈ M by

A � a : M −→ M, m 
→ m ◦ ϕa =: am
R � b : M −→ M, m 
→ ψb ◦ m =: bm

In addition, we consider the map τ : m 
→ Fq,Ga,R ◦ m on m ∈ M , where Fq,Ga,R

is the relative q-Frobenius of Ga,R over R. Since Fq,Ga,R ◦ ψb = ψbq ◦ Fq,Ga,R , and
hence τ (bm) = bqτ (m), the map τ is σ-semilinear and induces an AR-linear map
τM : σ∗M → M , which makes M(E) := (

M(E), τM) into an effective A-motive
over R in the sense of Example 2.3. The functor E 
→ M(E) is fully faithful and its
essential image is described in [18, Theorems 3.5 and 3.9] generalizing Anderson’s
description [3, Theorem 1].

Now let M̂ := M̂ε(M(E)) be the effective local σ̂-shtuka at ε associated with
M(E); see Example 2.3. Let n ∈ N and let εn = (a1, . . . , as) ⊂ A. Then

E[εn] := ker
(
ϕa1,...,as := (ϕa1 , . . . ,ϕas ) : E −→ Es

)

is called the εn-torsion submodule of E . It is an A/εn-module via A/εn →
EndR(E[εn]), ā 
→ ϕa and independent of the set of generators of εn; see [18,
Lemma 6.2]. Moreover, by [18, Theorem 7.6] it is a finite locally free R-group
scheme and a strict Fε-module scheme and there are canonical A/εn-equivariant
isomorphisms of finite locally free R-group schemes

Drq̂(M̂/εn M̂) ∼−→ E[εn] and

M̂/εn M̂ ∼−→ HomR-groups,Fε-lin
(
E[εn] , Ga,R

)

of finite Fε-shtukas. In particular, E[ε∞] := lim−→ E[εn] = Drq̂(M̂) is a z-divisible

local Anderson module over R.

5 Cohomology Realizations of Local Shtukas

In this section, we work over a valuation ring OK as in (b). With local shtukas over
OK , one can associate various cohomology realizations, which are related to each
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other under period isomorphisms. We describe the ε-adic, the de Rham, and the
crystalline realizations. These period isomorphisms are used in [20, 22] to study the
periods of A-motives with complex multiplication.

Definition 5.1 Let M̂ = (M̂, τM̂) be a local shtuka over a valuation ringOK as in (b).

Then τM̂ induces an isomorphism τM̂ : σ̂∗M̂ ⊗OK [[z]] K [[z]] ∼−→ M̂ ⊗OK [[z]] K [[z]],
because z − ζ ∈ K [[z]]×. We define the (dual) Tate module

H1
ε(M̂, Aε) := Ťε M̂ := (M̂ ⊗OK [[z]] K

sep[[z]])τ̂ := {
m ∈ M̂ ⊗OK [[z]] K

sep[[z]] : τM̂ (σ̂∗
M̂
m) = m

}

and the rational (dual) Tate module

H1
ε(M̂, Qε) := V̌εM̂ := {

m ∈ M̂ ⊗OK [[z]] K
sep((z)) : τM̂ (σ̂∗

M̂
m) = m

} = Ťε M̂ ⊗Aε Qε .

By [19, Proposition 4.2], the Tate modules are free over Aε, resp. Qε of rank equal to
rk M̂ and carry a continuous action of Gal(K sep/K ). They are also called the ε-adic
realizations of M̂ .

Theorem 5.2 ([19, Theorem 4.20]) Assume that OK is discretely valued. Then the
functor Ťε : M̂ 
→ ŤεM̂ from the category of local shtukas over OK to the cate-
goryRepAε

Gal(K sep/K ) of continuous representations ofGal(K sep/K ) on finite free

Aε-modules and the functor V̌ε : M̂ 
→ V̌εM̂ from the category of local shtukas over
OK with quasi-morphisms to the category RepQε

Gal(K sep/K ) of continuous repre-
sentations ofGal(K sep/K ) on finite-dimensional Qε-vector spaces are fully faithful.

Definition 5.3 Let OK be discretely valued. The full subcategory of
RepQε

Gal(K sep/K )which is the essential image of the functor V̌ε from Theorem 5.2
is called the category of equal characteristic crystalline representations.

We will explain the motivation for this definition in Sect. 6.

Example 5.4 We describe the ε-adic (dual) Tate module ŤεM = ŤεM̂ε(M) of the
Carlitz motive M = (OK [t], t − θ) from Example 2.5 by using the local shtuka
M̂ := M̂ε(M) = (OK [[z]], z − ζ) computed there. For all i ∈ N0, let �i ∈ K sep be

solutions of the equations �
q̂−1
0 = −ζ and �

q̂
i + ζ�i = �i−1. This implies |�i | =

|ζ|q̂−i/(q̂−1) < 1. Define the power series �+ = ∑∞
i=0 �i zi ∈ OK sep [[z]]. It satisfies

σ̂(�+) = (z − ζ)·�+, but depends on the choice of the �i . A different choice yields a
different power series �̃+ which satisfies �̃+ = u�+ for a unit u ∈ (K sep[[z]]×)σ̂= id =
A

×
ε , because σ̂(u) = σ̂(�̃+)

σ̂(�+)
= �̃+

�+ = u. The field extension Fε((ζ))(�i : i ∈ N0) of

Fε((ζ)) is the function field analog of the cyclotomic tower Qp(
pi
√
1 : i ∈ N0); see

[16, §1.3 and §3.4]. There is an isomorphism of topological groups called the ε-adic
cyclotomic character

χε : Gal
(
Fε((ζ))(�i : i ∈ N0)

/
Fε((ζ))

) ∼−→ A
×
ε ,
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which satisfies g(�+) := ∑∞
i=0 g(�i )z

i = χε(g) · �+ in K sep[[z]] for g in the Galois
group. It is independent of the choice of the �i . The ε-adic (dual) Tate module ŤεM̂
of M̂ and M is generated by �−1

+ on which the Galois group acts by the inverse of
the cyclotomic character.

Definition 5.5 Let M̂ be a local shtuka over a valuation ringOK as in (b).We denote
by K [[z − ζ]] the power series ring over K in the “variable” z − ζ and by K ((z − ζ))
its fraction field. We consider the ring homomorphismOK [[z]] ↪→ K [[z − ζ]], z 
→
z = ζ + (z − ζ) and define the de Rham realization of M̂ as

H1
dR

(
M̂, K [[z − ζ]]

) := σ̂∗M̂ ⊗OK [[z]] K [[z − ζ]] ,

H1
dR

(
M̂, K ((z − ζ))

) := σ̂∗M̂ ⊗OK [[z]] K ((z − ζ)) and

H1
dR(M̂, K ) := σ̂∗M̂ ⊗OK [[z]], z 
→ζ K

= H1
dR

(
M̂, K [[z − ζ]]

) ⊗K [[z−ζ]] K [[z − ζ]]/(z − ζ) .

The de Rham realization H1
dR

(
M̂, K ((z − ζ))

)
contains a full K [[z − ζ]]-lattice

qM̂ := τ−1
M̂

(M̂ ⊗OK [[z]] K [[z − ζ]]), (5.1)

which is called the Hodge-Pink lattice of M̂ . The de Rham realization H1
dR(M̂, K )

carries a descending separated and exhausting filtration F• by K -subspaces called
the Hodge-Pink filtration of M̂ . It is defined via p := H1

dR(M̂, K [[z − ζ]]) and (for
i ∈ Z)

Fi H1
dR(M̂, K ) := (

p ∩ (z − ζ)iqM̂
)/(

(z − ζ)p ∩ (z − ζ)iqM̂
) ⊂ H1

dR(M̂, K ) .

(5.2)
If we equip H1

dR

(
M̂, K ((z − ζ))

)
with the descending filtration Fi H1

dR

(
M̂, K ((z −

ζ))
) := (z − ζ)iqM̂ by K [[z − ζ]]-submodules, then Fi H1

dR(M̂, K ) is the image of

H1
dR

(
M̂, K [[z − ζ]]

) ∩ Fi H1
dR

(
M̂, K ((z − ζ))

)
in H1

dR(M̂, K ). Since z = ζ + (z −
ζ) is invertible in K [[z − ζ]], the de Rham realization with Hodge-Pink lattice and
filtration is a functor on the category of local shtukas overOK with quasi-morphisms.

Note, however, that the Hodge-Pink filtration onH1
dR(M̂, K ) does not behave well

under tensor products, as opposed to the Hodge-Pink lattice; see Remark 6.3 below.
Therefore, the more important concept is the Hodge-Pink lattice qM̂ .

Theorem 5.6 ([19, Theorem 4.15]) Let K be the completion of an algebraic closure
K alg of K . There is a canonical functorial comparison isomorphism

hε,dR : H1
ε(M̂, Qε) ⊗Qε K ((z − ζ)) ∼−→ H1

dR
(
M̂, K ((z − ζ))

) ⊗K ((z−ζ)) K ((z − ζ)) ,

which satisfies hε,dR
(
H1

ε(M̂, Qε) ⊗Qε
K [[z − ζ]]

) = qM̂ ⊗K [[z−ζ]] K [[z − ζ]] and
which is equivariant for the action of Gal(K sep/K ), where on the source of hε,dR
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this group acts on both factors of the tensor product and on the target of hε,dR it acts
only on K .

Definition 5.7 Let k = OK /mK be the residue field ofOK . A z-isocrystal over k is
a pair (D, τD) consisting of a finite-dimensional k((z))-vector space together with a
k((z))-isomorphism τD : σ̂∗D ∼−→ D. A morphism (D, τD) → (D′, τD′) is a k((z))-
homomorphism f : D → D′ satisfying τD′ ◦ σ̂∗ f = f ◦ τD .

Definition 5.8 Let M̂ = (M̂, τM̂) be local shtuka over a valuation ringOK as in (b).
Then the crystalline realization of M̂ is defined as the z-isocrystal over k = OK /mK

H1
cris

(
M̂, k((z))

) := σ̂∗(M̂, τM̂) ⊗OK [[z]] k((z)) . (5.3)

It only depends on the special fiber M̂ ⊗OK k of M̂ and defines a functor M̂ 
→
H1

cris

(
M̂, k((z))

)
from the category of local shtukas over OK with quasi-morphism

to the category of z-isocrystals. This functor is faithful by [19, Lemma 4.24] if⋂
n σ̂n(mK ) = (0).

To formulate the comparison between the de Rham and the crystalline realization,
we assume that there exists a fixed section k ↪→ OK . Then there is a ring homomor-
phism

k((z)) ↪−→ K [[z − ζ]] , z 
−→ ζ + (z − ζ) ,
∑

i
bi z

i 
−→
∞∑
j=0

(z − ζ) j · ∑

i

(i
j
)
bi ζ

i− j .

(5.4)
We always consider K [[z − ζ]] and its fraction field K ((z − ζ)) as k((z))-vector spaces
via (5.4).

Theorem 5.9 ([19, Theorem 5.18]) Let M̂ be a local shtuka over OK . Assume
thatOK is discretely valued or that M̂ = M̂ε(M) for an A-motive M overOK as in
Example 2.3. Then there are canonical functorial comparison isomorphisms between
the de Rham and crystalline realizations

hdR,cris : H1
dR(M̂, K [[z − ζ]]) ∼−→ H1

cris

(
M̂, k((z))

) ⊗k((z)) K [[z − ζ]] and

hdR,cris : H1
dR(M̂, K ) ∼−→ H1

cris

(
M̂, k((z))

) ⊗k((z)), z 
→ζ K .

To formulate the comparison between the crystalline and the ε-adic realizations,
we introduce the OK -algebra

OK [[z, z
−1} := { ∞∑

i=−∞
bi z

i : bi ∈ OK , |bi | |ζ|ri → 0 (i → −∞) for all r > 0
}
.

(5.5)
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It is a subring of K [[z − ζ]] via the expansion
∞∑

i=−∞
bi zi =

∞∑

j=0
ζ− j

( ∞∑

i=−∞

(i
j

)
biζ i

)
(z − ζ) j . Thehomomorphism (5.4) factors throughOK [[z, z−1}.

We view the elements of OK [[z, z−1} as functions that converge on the punctured
open unit disk {0 < |z| < 1}. An example of such a function is

�− :=
∏

i∈N0

(1 − ζ q̂
i

z ) ∈ Fε[[ζ]][[z, z
−1} ⊂ OK [[z, z

−1} , (5.6)

which satisfies �− = (1 − ζ
z ) · σ̂(�−). In addition, we let K be the completion of an

algebraic closure K alg of K and recall the element �+ ∈ OK [[z]] from Example 5.4,
which satisfies σ̂(�+) = (z − ζ) · �+. We set

� := �+�− ∈ OK [[z, z
−1} . (5.7)

Then σ̂(�) = z ·� and g(�) = χε(g)·� for g ∈ Gal(K sep/K ) where χε is the cyclo-
tomic character from Example 5.4.

Theorem 5.10 ([19, Theorem 5.20]) Let M̂ be a local shtuka overOK . Assume that
OK is discretely valued or that M̂ = M̂ε(M) for an A-motive M over OK as in
Example 2.3. Then there is a canonical functorial comparison isomorphism between
the ε-adic and crystalline realizations

hε,cris : H1
ε(M̂, Qε) ⊗Qε OK [[z, z−1}[�−1] ∼−→ H1

cris
(
M̂, k((z))

) ⊗k((z)) OK [[z, z−1}[�−1] .

The isomorphism hε,cris is Gal(K sep/K )- and τ̂ -equivariant, where on the left
module Gal(K sep/K ) acts on both factors and τ̂ is id⊗σ̂, and on the right
module Gal(K sep/K ) acts only on OK [[z, z

−1}[�−1] and τ̂ is (τD ◦ σ̂∗
D) ⊗ σ̂. In

other words, hε,cris = τD ◦ σ̂∗hε,cris. Moreover, hε,cris satisfies hε,dR = (h−1
dR,cris ⊗

idK ((z−ζ))) ◦ (hε,cris ⊗ idK ((z−ζ))). It allows to recover H1
ε(M̂, Qε) from

H1
cris

(
M̂, k((z))

)
as the intersection inside H1

cris

(
M̂, k((z))

) ⊗k((z)) K ((z − ζ))

hε,cris
(
H1

ε(M̂, Qε)
) = (

H1
cris

(
M̂, k((z))

) ⊗k((z)) OK [[z, z−1}[�−1])τ̂= id ∩ qD ⊗K [[z−ζ]] K [[z − ζ]] ,

where qD ⊂ H1
cris

(
M̂, k((z))

) ⊗k((z)) K ((z − ζ)) is the Hodge-Pink lattice of M̂.

6 Crystalline Representations over Function Fields

We explain the motivation for Definition 5.3; compare [19, Remarks 5.13 and 6.17].
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Let OK be discretely valued and let M̂ be a local shtuka over OK . Theo-
rem 5.9 allows to define a Hodge-Pink lattice and a Hodge-Pink filtration on
H1

cris

(
M̂, k((z))

)
. More precisely, we equip the finite-dimensional k((z))-vector space

D := H1
cris

(
M̂, k((z))

)
with the Hodge-Pink lattice

qD := (hdR,cris ⊗ idK ((z−ζ)))(q
M̂) ⊂ D ⊗k((z)) K ((z − ζ)) ,

where qM̂ ⊂ H1
dR

(
M̂, K ((z − ζ))

)
is the Hodge-Pink lattice from (5.1). Together with

the Frobenius τD := σ̂∗τM̂ ⊗ idk((z)) on D = H1
cris

(
M̂, k((z))

)
from (5.3), the triple

D(M̂) := D = (D, τD, qD) forms a z-isocrystal with a Hodge-Pink structure as in
the following.

Definition 6.1 A z-isocrystal with Hodge-Pink structure over OK is a triple D =
(D, τD, qD) consisting of a z-isocrystal (D, τD) over k and a K [[z − ζ]]-lattice qD
in D ⊗k((z)) K ((z − ζ)) of full rank, which is called the Hodge-Pink lattice of D. The
dimension of D is called the rank of D and is denoted by rk D.

A morphism (D, τD, qD) → (D′, τD′ , qD′) is a k((z))-homomorphism f : D →
D′ satisfying τD′ ◦ σ̂∗ f = f ◦ τD and ( f ⊗ id)(qD) ⊂ qD′ .

A strict subobject D′ ⊂ D is a z-isocrystal with Hodge-Pink structure of the form
D′ = (

D′, τD|σ̂∗D′ , qD ∩ D′ ⊗k((z)) K ((z − ζ))
)
where D′ ⊂ D is a k((z))-subspace

with τD(σ̂∗D′) = D′.
On a z-isocrystal with Hodge-Pink structure D, there always is the tautolog-

ical K [[z − ζ]]-lattice pD := D ⊗k((z)) K [[z − ζ]]. Since K [[z − ζ]] is a principal
ideal domain, the elementary divisor theorem provides basis vectors vi ∈ pD such
that pD = ⊕r

i=1 K [[z − ζ]] · vi and qD = ⊕r
i=1 K [[z − ζ]] · (z − ζ)μi · vi for inte-

gers μ1 ≥ . . . ≥ μr . We call (μ1, . . . ,μr ) the Hodge-Pink weights of D. Alterna-
tively, if e is large enough such that qD ⊂ (z − ζ)−epD or (z − ζ)epD ⊂ qD , then the
Hodge-Pink weights are characterized by

(z − ζ)−epD/qD ∼=
n⊕

i=1

K [[z − ζ]]/(z − ζ)e+μi ,

or qD/(z − ζ)epD ∼=
n⊕

i=1

K [[z − ζ]]/(z − ζ)e−μi .

Like in (5.2), the Hodge-Pink lattice qD induces a descending filtration of DK :=
D ⊗k((z)), z 
→ζ K by K -subspaces as follows. Consider the natural projection

pD � pD/(z − ζ)pD = DK .

The Hodge-Pink filtration F•DK = (Fi DK )i∈Z is defined by letting Fi DK be the
image in DK of pD ∩ (z − ζ)iqD for all i ∈ Z. This means, Fi DK = (

pD ∩ (z −
ζ)iqD

)/(
(z − ζ)pD ∩ (z − ζ)iqD

)
.
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Definition 6.2 Let D = (D, τD, qD) be a z-isocrystal with Hodge-Pink structure
over OK and set r = dimk((z)) D.

(a) Choose a k((z))-basis of D and let det τD be the determinant of the matrix rep-
resenting τD with respect to this basis. The number tN (D) := ordz(det τD) is
independent of this basis and is called the Newton slope of D.

(b) The integer tH (D) := −μ1 − . . . − μr , where μ1, . . . ,μr are the Hodge-Pink
weights of D from Definition 6.1, satisfies ∧rqD = (z − ζ)−tH (D) ∧r pD and is
called the Hodge slope of D.

(c) D is called weakly admissible if

tH (D) = tN (D) and tH (D′) ≤ tN (D′) for every strict subobject D′ ⊂ D.

Remark 6.3 One can show that the tensor product

D ⊗ D′ = (
D ⊗k((z)) D

′, τD ⊗ τD′ , qD ⊗K [[z−ζ]] qD′
)

of twoweakly admissible z-isocrystalswithHodge-Pink structures D and D′ overOK

is again weakly admissible. It was Pink’s insight that for this result the Hodge-Pink
filtration does not suffice, but one needs the finer information present in the Hodge-
Pink lattice. The problem arises if the field extension K/Fq ((ζ)) is inseparable; see
[29, Example 5.16]. This is Pink’s ingenious discovery.

Proposition 6.4 ([19, Corollary 6.11]) Let M̂ be a local shtuka over OK . Assume
that OK is discretely valued or that M̂ = M̂ε(M) for an A-motive M over OK as
in Example 2.3. Then the z-isocrystal with Hodge-Pink structure D(M̂) constructed
at the beginning of this section is weakly admissible. The functor M̂ 
−→ D(M̂)

from the category of local shtukas overOK with quasi-morphisms to the category of
weakly admissible z-isocrystals with Hodge-Pink structure is fully faithful.

There is a converse to this proposition.

Theorem 6.5 ([14, Théorème 7.3], [17, Theorem 2.5.3]) IfOK is discretely valued,
then every weakly admissible z-isocrystal with Hodge-Pink structure D over OK is
of the form D(M̂) for a local shtuka M̂ over OK .

Remark 6.6 The theory presented here has as analog, the theory of p-adic Galois
representations. There L is a discretely valued extension of Qp with perfect residue
field κ and L0 := W (κ)[ 1p ] is the maximal, absolutely unramified subfield of L .
Let σ̂ := W (Frobp) be the lift to L0 of the p-Frobenius on κ which fixes the uni-
formizer p of L0. Crystalline p-adic Galois representations are described by filtered
isocrystals D = (D, τD, F•DL) over L , where D is a finite-dimensional L0-vector
space, τD : σ̂∗D ∼−→ D is an L0-isomorphism, and F•DL is a descending filtration
on DL := D ⊗L0 L by L-subspaces. More precisely, the Theorem of Colmez and
Fontaine [6, Théorème A] says that a continuous representation of Gal(Lsep/L) in
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a finite-dimensional Qp-vector space is crystalline if and only if it isomorphic to
F0(D ⊗L0 B̃rig)

τ = id for a weakly admissible filtered isocrystal D = (D, τD, F•DL)

over L . Here, B̃rig is a certain period ring from Fontaine’s theory of p-adic Galois
representations, which carries a filtration and a Frobenius endomorphism Frobp. The
function field analog of B̃rig is the Qε-algebra OK [[z, z

−1}[�−1]; see [16, §§2.5 and
2.7]. In the function field case, when K is discretely valued, we could therefore define
the category of equal characteristic crystalline representations of Gal(K sep/K ) as
the essential image of the functor

D = (D, τD, qD) 
−→ (
D ⊗k((z)) OK [[z, z−1}[�−1])τ= id ∩ qD ⊗K [[z−ζ]] K [[z − ζ]] (6.1)

from weakly admissible z-isocrystals with Hodge-Pink structure D to continuous
representations of Gal(K sep/K ) in finite-dimensional Qε-vector spaces. By Theo-
rems 6.5, 5.10, and 5.2 and Proposition 6.4, this functor is fully faithful and this
definition coincides with our Definition 5.3 above.
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Introduction

0.1 These notes grew out of author’s lectures at the International Center of Theo-
retical Sciences of Tata Institute in Bangalore in September 2019. Their aim is to
provide a self-contained introduction to p-adic Hodge theory with minimal prerequi-
sties. The reader should be familiar with valuations, complete fields and basic results
in the theory of local fields, including ramification theory as, for example, the first
four chapters of Serre’s book [142]. In Sects. 3 and 4, we use the language of con-
tinuous cohomology. Sects. 15 and 16 require the knowledge of Galois cohomology
and local class field theory, as in [142] or [140].

0.2 Section 1 is utilitarian. For the convenience of the reader, it assembles basic
definitions and results from the theory of local fields repeatedly used in the text.
In Sect. 2, we discuss the structure of the absolute Galois group of a local field.
Although only a portion of this material is used in the remainder of the text, we think
that it is important in its own right. In Sect. 3, we illustrate the ramification theory by
the example of Zp-extensions. Following Tate, we define the normalized trace map
and compute continuous cohomology of Galois groups of such extensions.
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Krasner [100] was probably the first to remark that local fields of characteristic p
appear as “limits" of totally ramified local fields of characteristic 0.1 In Sects. 4–6, we
study three important manifestations of this phenomenon. In Sect. 4, we introduce
Tate’s method of almost étale extensions. We consider deeply ramified extensions
of local fields and prove that finite extensions of a deeply ramified field are almost
étale. The main reference here is the paper of Coates and Greenberg [37]. The book
of Gabber and Ramero [78] provides a new conceptual approach to this theory in a
very general setting, but uses the tools which are beyond the scope of these notes. As
an application, we compute continuous Galois cohomology of the absolute Galois
group of a local field.

In Sect. 5, we study perfectoid fields following Scholze [130] and Fargues–
Fontaine [60]. The connection of this notion with the theory of deeply ramified
extensions is given by a theorem of Gabber–Ramero. Again, we limit our study to
the arithmetic case and refer the interested reader to [130] for the general treatment.
In Sect. 6, we review the theory of field of norms of Fontaine–Wintenberger and
discuss its relation with perfectoid fields.

Sections 7–13 are devoted to the general theory of p-adic representations. In
Sect. 7, we introduce basic notions and examples and discuss Grothendieck’s �-
adic monodromy theorem. Next, we turn to the case � = p. Section 8 gives an
introduction to Fontaine’s theory of (ϕ, �)-modules [69]. Here, we classify p-adic
representations of local fields using the link between the fields of characteristic 0
and p studied in Sects. 5–6. In Sects. 9–13, we introduce and study special classes
of p-adic representations. The general formalism of admissible representations is
reviewed in Sect. 9. In Sect. 10, we discuss the notion of a Hodge–Tate representation
and put it in the frame of Sen’s theory of CK -representations. Here, the computation
of the continuous Galois cohomology from Sect. 4 plays a fundamental role. In
Sects. 11–13, we define the rings of p-adic periods BdR, Bcris, and Bst and introduce
Fontaine’s hierarchy of p-adic representations. Its relation with p-adic comparison
isomorphisms is quickly discussed at the end of Sect. 13.

In the remainder of the text, we study p-adic representations arising from formal
groups. In this case, the main constructions of the theory have an explicit description,
and p-adic representations can be studied without an extensive use of algebraic
geometry. In Sect. 14, we review the p-adic integration on formal groups following
Colmez [38]. A completely satisfactory exposition of this material should cover the
general case of p-divisible groups, which we decided not to include in these notes.
For this material, we refer the reader to [30, 39, 64, 66]. In Sects. 15 and 16, we
illustrate the p-adic Hodge theory of formal groups by two applications: complex
multiplication of abelian varieties and Hilbert pairings on formal groups. In Sect. 17,
we prove the theorem “weakly admissible ⇒ admissible" in the case of dimension
one by the method of Laffaille [102]. This implies the surjectivity of the Gross–

1 See [52] for a modern exposition of Krasner’s results.
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Hopkins period map. Finally, we apply the theory of formal groups to the study
of the spaces (B+

cris)
ϕh=p, which play an important role in the theory of Fargues–

Fontaine. For further detail and applications of these results, we refer the reader
to [60].

0.3 These notes should not be viewed as a survey paper. Several important aspects
of p-adic Hodge theory are not even mentioned. As a partial substitute, we propose
some references for further reading in the body of the text.

1 Local Fields: Preliminaries

1.1 Non-Archimedean Fields

1.1.1 We recall basic definitions and facts about non-Archimedean fields.

Definition A non-Archimedean field is a field K equipped with a non-Archimedean
absolute value that is, an absolute value | · |K satisfying the ultrametric triangle
inequality:

|x + y|K � max
{|x |K , |y|K

}
, ∀x, y ∈ K .

We will say that K is complete if it is complete for the topology induced by | · |K .
To any non-Archimedean field K , one associates its ring of integers

OK = {x ∈ K | |x |K � 1
}
.

The ring OK is local, with the maximal ideal

mK = {x ∈ K | |x |K < 1
}
.

The group of units of OK is

UK = {x ∈ K | |x |K = 1
}
.

The residue field of K is defined as

kK = OK /mK .
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Theorem 1.1.2 Let K be a complete non-Archimedean field and let L/K be a finite
extension of degree n = [L : K ]. Then the absolute value | · |K has a unique contin-
uation | · |L to L, which is given by

|x |L = ∣∣NL/K (x)
∣∣1/n
K ,

where NL/K is the norm map.

Proof See, for example, [10, Chap. 2, Theorem 7]. �

1.1.3 We fix an algebraic closure K of K and denote by K sep the separable closure
of K in K . If char(K ) = p > 0,we denote by K rad := K 1/p∞

the purely inseparable
closure of K . Thus K = K sep if char(K ) = 0, and K = (K rad)sep if char(K ) = p >
0. Theorem 1.1.2 allows to extend | · |K to K . To simplify notation, we denote again
by | · |K the extension of | · |K to K .

Proposition 1.1.4 (Krasner’s Lemma) Let K be a complete non-Archimedean field.
Let α ∈ K sep and let α1 = α, α2, . . . , αn denote the conjugates of α over K . Set

dα = min
{|α − αi |K | 2 � i � n

}
.

If β ∈ K sep is such that |α − β| < dα, then K (α) ⊂ K (β).

Proof We recall the proof (see, for example, [119, Proposition 8.1.6]). Assume
that α /∈ K (β). Then K (α, β)/K (β) is a non-trivial extension, and there exists an
embedding σ : K (α, β)/K (β) → K/K (β) such that αi := σ(α) �= α. Hence,

|β − αi |K = |σ(β − α)|K = |β − α|K < dα,

and

|α − αi |K = |(α − β)+ (β − αi )|K � max
{|α − β|K , |β − αi |K

}
< dα.

This gives a contradiction. �

Proposition 1.1.5 (Hensel’s Lemma) Let K be a complete non-Archimedean field.
Let f (X) ∈ OK [X ] be a monic polynomial such that

(a) the reduction f̄ (X) ∈ kK [X ] of f (X) modulo mK has a root ᾱ ∈ kK ;
(b) f̄ ′(ᾱ) �= 0.

Then there exists a unique α ∈ OK such that f (α) = 0 and ᾱ = α (mod mK ).

Proof See, for example, [106, Chap. 2, §2]. �

1.1.6 Recall that a valuation on K is a function vK : K → R ∪ {+∞} satisfying
the following properties:
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(1) vK (xy) = vK (x)+ vK (y), ∀x, y ∈ K ∗;
(2) vK (x + y) � min{vK (x), vK (y)}, ∀x, y ∈ K ∗;
(3) vK (x) = ∞ ⇔ x = 0.

For any ρ ∈]0, 1[, the function |x |ρ = ρvK (x) defines an ultrametric absolute value
on K . Conversely, if | · |K is an ultrametric absolute value, then for any ρ ∈]0, 1[
the function vρ(x) = logρ |x |K is a valuation on K . This establishes a one to one
correspondence between equivalence classes of non-Archimedean absolute values
and equivalence classes of valuations on K .

Definition A discrete valuation field is a field K equipped with a valuation vK such
that vK (K ∗) is a discrete subgroup ofR. Equivalently, K is a discrete valuation field
if it is equipped with an absolute value | · |K such that |K ∗|K ⊂ R+ is discrete.

Let K be a discrete valuation field. In the equivalence class of discrete valuations
on K , we can choose the unique valuation vK such that vK (K ∗) = Z. An element
πK ∈ K such that vK (πK ) = 1 is called a uniformizer of K . Every x ∈ K ∗ can be
written in the form x = π

vK (x)
K u with u ∈ UK , and one has

K ∗ 
 〈πK 〉 ×UK , mK = (πK ).

1.1.7 Let K be a complete non-Archimedean field. We finish this section by dis-
cussing the Galois action on the completion CK of K .

Theorem 1.1.8 (Ax–Sen–Tate) Let K be a complete non-Archimedean field. The
following statements hold true:

(i) The completion CK of K is an algebraically closed field, and K sep is dense in
CK .

(ii) The absolute Galois group GK = Gal(K sep/K ) acts continuously on CK , and
this action identifies GK with the group of all continuous automorphisms of CK

that act trivially on K .
(iii) For any closed subgroup H ⊂ GK , the field CH

K coincides with the completion
of the purely inseparable closure of (K sep)H in K .

Proof The statement (i) follows easily from Krasner’s Lemma, and (ii) is an imme-
diate consequence of continuity of the Galois action. The last statement was first
proved by Tate [151] for local fields of characteristic 0. In full generality, the the-
orem was proved by Ax [11]. Tate’s proof is based on the ramification theory and
leads to the notion of an almost étale extension, which is fundamental for p-adic
Hodge theory. We review it in Sect. 4. �
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1.2 Local Fields

1.2.1 In these notes, we adopt the following convention.

Definition 1.2.2 A local field is a complete discrete valuation field K whose residue
field kK is finite.

Note that many (but not all) results and constructions of the theory are valid under
the weaker assumption that the residue field kK is perfect.

We will always assume that the discrete valuation

vK : K → Z ∪ {+∞}

is surjective. Let p = char(kK ). The following well-known classification of local
fields can be easily proved using Ostrowski’s theorem:

• If char(K ) = p, then K is isomorphic to the field kK ((x)) of Laurent power series,
where kK is the residue field of K and x is transcendental over k. The discrete
valuation on K is given by

vK ( f (x)) = ordx f (x).

Note that x is a uniformizer of K and OK 
 kK [[x]].
• If char(K ) = 0, then K is isomorphic to a finite extension of the field of p-adic
numbersQp.The absolute value on K is the extension of the p-adic absolute value

∣∣∣
a

b
pk
∣∣∣
p

= p−k, p � |a, b.

In all cases, set fK = [kK : Fp] and denote by qK = p fK the cardinality of kK . The
group of units UK is equipped with the exhaustive descending filtration:

U (n)
K = 1 + πn

K OK , n � 0.

For the factors of this filtration, one has

UK /U
(1)
K 
 k∗

K , U (n)
K /U

(n+1)
K 
 mn

K /m
n+1
K . if n � 1. (1)

1.2.3 If L/K is a finite extension of local fields, the ramification index e(L/K ) and
the inertia degree f (L/K ) of L/K are defined as follows:

e(L/K ) = vL(πK ), f (L/K ) = [kL : kK ].

Recall the fundamental formula:

f (L/K ) e(L/K ) = [L : K ]
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(see, for example, [10, Chap. 3, Theorem 6] ).

Definition 1.2.4 One says that L/K is
(i) unramified if e(L/K ) = 1 (and therefore f (L/K ) = [L : K ]);
(ii) totally ramified if e(L/K ) = [L : K ] (and therefore f (L/K ) = 1).

The following useful proposition follows easily from Krasner’s lemma.

Proposition 1.2.5 Let K be a local field of characteristic 0. For any n � 1, there
exists only a finite number of extensions of K of degree � n.

Proof See [106, Chap. 2, Proposition 14]. �

We remark that, looking at Artin–Schreier extensions, it’s easy to see that a local
field of characteristic p has infinitely many separable extensions of degree p.

1.2.6 The unramified extensions can be described entirely in terms of the residue
field kK . Namely, there exists a one-to-one correspondence

{finite extensions of kK } ←→ {finite unramified extensions of K } ,

which can be explicitly described as follows. Let k/kK be a finite extension of
kK . Write k = kK (α) and denote by f (X) ∈ kK [X ] the minimal polynomial of α.
Let f̂ (X) ∈ OK [X ] denote any lift of f (X). Then we associate to k the extension
L = K (̂α), where α̂ is the unique root of f̂ (X) whose reduction modulo mL is α.
An easy argument using Hensel’s lemma shows that L doesn’t depend on the choice
of the lift f̂ (X).

Unramified extensions form a distinguished class of extensions in the sense of
[104]. In particular, for any finite extension L/K , one can define its maximal unram-
ified subextension Lur as the compositum of all its unramified subextensions. Then

f (L/K ) = [Lur : K ], e(L/K ) = [L : Lur].

The extension L/Lur is totally ramified.

1.2.7 Assume that L/K is totally ramified of degree n. Let πL be any uniformizer
of L , and let

f (X) = Xn + an−1X
n−1 + · · · + a1X + a0 ∈ OK [X ]

be the minimal polynomial of πL . Then f (X) is an Eisenstein polynomial, namely

vK (ai ) � 1 for 0 � i � n − 1, and vK (a0) = 1.

Conversely, if α is a root of an Eisenstein polynomial of degree n over K , then
K (α)/K is totally ramified of degree n, and α is an uniformizer of K (α).
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Definition 1.2.8 One says that an extension L/K is
(i) tamely ramified if e(L/K ) is coprime to p.
(ii) totally tamely ramified if it is totally ramified and e(L/K ) is coprime to p.

Using Krasner’s lemma, it is easy to give an explicit description of totally tamely
ramified extensions.

Proposition 1.2.9 If L/K is totally tamely ramified of degree n, then there exists a
uniformizer πK ∈ K such that

L = K (πL), πn
L = πK .

Proof Assume that L/K is totally tamely ramified of degree n. Let 
 be a uni-
formizer of L and f (X) = Xn + · · · + a1X + a0 itsminimal polynomial. Then f (X)
is Eisenstein, and πK := −a0 is a uniformizer of K . Let αi ∈ K (1 � i � n) denote
the roots of g(X) := Xn + a0. Then

|g(
)|K = |g(
)− f (
)|K � max
1�i�n−1

|ai
i |K < |πK |K

Since |g(
)|K =
n∏

i=1
(
− αi ), and 
 = (−1)n

n∏

i=1
αi , we have

n∏

i=1

|
− αi |K <
n∏

i=1

|αi |K .

Therefore, there exists i0 such that

|
− αi0 |K < |αi0 |K . (2)

Set πL = αi0 . Then ∏

i �=i0

(πL − αi ) = g′(πL) = nπn−1
L .

Since (n, p) = 1 and |πL − αi |K � |πL |K , the previous equality implies that

d := min
i �=i0

|πL − αi |K = |πL |K .

Together with (2), this gives
|
− αi0 |K < d.

Applying Krasner’s lemma, we find that K (πL) ⊂ L . Since [L : K ] = [K (πL) :
K ] = n, we obtain that L = K (πL), and the proposition is proved. �
1.2.10 Let L/K be a finite separable extension of local fields. Consider the bilinear
non-degenerate form
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tL/K : L × L → K , tL/K (x, y) = TrL/K (xy), (3)

where TrL/K is the trace map. The set

O ′
L := {x ∈ L | tL/K (x, y) ∈ OK , ∀y ∈ OL

}

is a fractional ideal, and

DL/K := O−1
L := {x ∈ L | xO ′

L ⊂ OL
}

is an ideal of OL .

Definition The ideal DL/K is called the different of L/K .

If K ⊂ L ⊂ M is a tower of separable extensions, then

DM/K = DM/LDL/K . (4)

(see, for example, [106, Chap. 3, Proposition 5]).
Set

vL(DL/K ) = inf{vL(x) | x ∈ DL/K }.

Proposition 1.2.11 Let L/K be a finite separable extension of local fields and e =
e(L/K ) the ramification index. The following assertions hold true:

(i) If OL = OK [α], and f (X) ∈ OK [X ] is the minimal polynomial of α, then
DL/K = ( f ′(α)).

(ii) DL/K = OL if and only if L/K is unramified.
(iii) vL(DL/K ) � e − 1.
(iv) vL(DL/K ) = e − 1 if and only if L/K is tamely ramified.

Proof The first statement holds in the more general setting of Dedekind rings (see,
for example, [106, Chap. 3, Proposition 2]). We prove ii-iv) for reader’s convenience
(see also [106, Chap. 3, Proposition 8]).

(a) Let L/K be an unramified extension of degree n.Write kL = kK (ᾱ) for some
ᾱ ∈ kL . Let f (X) ∈ kK [X ] denote the minimal polynomial of ᾱ. Then deg( f̄ ) = n.
Take any lift f (X) ∈ OK [X ] of f̄ (X) of degree n. By Proposition 1.1.5 (Hensel’s
lemma), there exists a unique root α ∈ OL of f (X) such that ᾱ = α (mod mK ). It’s
easy to see that OL = OK [α]. Since f̄ (X) is separable, f̄ ′(ᾱ) �= 0, and therefore
f ′(α) ∈ UL . Applying (i), we obtain

DL/K = ( f ′(α)) = OL .

Therefore, DL/K = OL if L/K is unramified.
(b) Assume that L/K is totally ramified. Then OL = OK [πL ], where πL is any

uniformizer of OL . Let f (X) = Xe + ae−1Xe−1 + · · · + a1X + a0 be the minimal
polynomial of πL . Then
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f ′(πL) = eπ e−1
L + (e − 1)ae−1π

e−2
L + · · · + a1.

Since f (X) is Eisenstein, vL(ai ) � e, and an easy estimation shows that
vL( f ′(πL)) � e − 1. Thus,

vL(DL/K ) = vL( f
′(α)) � e − 1.

This proves (iii). Moreover, vL( f ′(α)) = e − 1 if and only if (e, p) = 1, i.e. if and
only if L/K is tamely ramified. This proves iv).

(c) Assume that DL/K = OL . Then vL(DL/K ) = 0. Let Lur denote the maximal
unramified subextension of L/K . By (4), a) and b) we have

vL(DL/K ) = vL(DL/Lur ) � e − 1.

Thus, e = 1, and we showed that each extension L/K such that DL/K = OL is
unramified. Together with a), this proves (i). �

1.3 Ramification Filtration

1.3.1 Let L/K be a finite Galois extension of local fields. Set G = Gal(L/K ). For
any integer i � −1, define

Gi = {g ∈ G | vL(g(x)− x) � i + 1, ∀x ∈ OL}.

Then Gi are normal subgroups of G, called ramification subgroups. We have a
descending chain

G = G−1 ⊃ G0 ⊃ G1 ⊃ · · · ⊃ Gm = {1}

called the ramification filtration on G (in low numbering). From definition, it easily
follows that

G0 = Gal(L/Lur), G/G0 
 Gal(kL/kK ).

Below, we summarize some basic results about the factors of the ramification filtra-
tion. First remark that for each i � 0, one has

Gi =
{
g ∈ G0 | vL

(
1 − g(πL)

πL

)
� i

}
.

Proposition 1.3.2 (i) For all i � 0, the map

si : Gi/Gi+1 → U (i)
L /U

(i+1)
L , (5)
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which sends ḡ = g mod Gi+1 to si (ḡ) = g(πL)

πL
(mod U (i+1)

L ), is a well-defined

monomorphism which doesn’t depend on the choice of the uniformizer πL of L .
(ii) The composition of si with the maps (1) gives monomorphisms:

δ0 : G0/G1 → k∗, δi : Gi/Gi+1 → mi
K /m

i+1
K , for all i � 1. (6)

Proof The proof is straightforward. See [142, Chapitre IV, Propositions 5-7]. �

An important corollary of this proposition is that the Galois group G is solvable
for any Galois extension. Also, since char(kK ) = p, the order of G0/G1 is coprime
to p, and the order ofG1 is a power of p.Therefore, L tr = LG1 is themaximal tamely
ramified subextension of L . From this, one can easily deduce that the class of tamely
ramified extensions is distinguished. To sup up, we have the tower of extensions:

L

G1

G0 L tr

G0/G1

Lur

G/G0

K

(7)

Definition 1.3.3 The groups IL/K := G0 and PL/K := G1 are called the inertia sub-
group and the wild inertia subgroup, respectively.

1.3.4 The different DL/K of a finite Galois extension can be computed in terms of
the ramification subgroups.

Proposition 1.3.5 Let L/K be a finite Galois extension of local fields. Then

vL(DL/K ) =
∞∑

i=0

(|Gi | − 1). (8)

Proof Let OL = OK [α], and let f (X) be the minimal polynomial of α. For any
g ∈ G, set iL/K (g) = vL(g(α)− α). From the definition of ramification subgroups,
it follows that g ∈ Gi if and only if iL/K (g) � i + 1. Since

f ′(α) =
∏

g �=1

(α − g(α)),

we have
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vL (DL/K ) = vL ( f
′(α)) =

∑

g �=1

vL (α − g(α)) =
∑

g �=1

iL/K (g) =
∞∑

i=0

(i + 1)(|Gi | − |Gi+1|)

=
∞∑

i=0

(i + 1)
(
(|Gi | − 1)− (|Gi+1| − 1)

) =
∞∑

i=0

(|Gi | − 1).

�

1.3.6 We review Hasse–Herbrand’s theory of upper ramification. It is convenient to
define Gu for all real u � −1 setting

Gt = Gi , where i is the smallest integer � u.

For any finite Galois extension, theHasse–Herbrand functions are defined as follows:

ϕL/K (u) =
∫ u

0

dt

(G0 : Gt )
,

ψL/K (�) = ϕ−1
L/K (�) (the inverse of ϕL/K ).

(9)

Proposition 1.3.7 Let K ⊂ F ⊂ L be a tower of finite Galois extensions. Set G =
Gal(L/K ) and H = Gal(L/F). Then the following holds true:

(i) ϕL/K = ϕF/K ◦ ϕL/F and ψL/K = ψL/F ◦ ψF/K .

ii) (Herbrand’s theorem) For any u � 0,

GuH/H 
 (G/H)ϕM/L (u).

Proof See [142, Chap. IV, §3]. �

Definition The ramification subgroups in upper numbering G(�) are defined by

G(�) = GψL/K (�),

or, equivalently, by G(ϕL/K (u)) = Gu .

Therefore, Herbrand’s theorem can be stated as follows:

(G/H)(�) = G(�)/G(�) ∩ H, ∀� � 0. (10)

The Hasse–Herbrand function ψL/K can be written as

ψL/K (�) =
∫ �

0
(G(0) : G(t))dt.

1.3.8 Hebrand’s theoremallows to define the ramificationfiltration for infiniteGalois
extensions. Namely, for any (finite or infinite) Galois extension of local fields L/K
define
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Gal(L/K )(�) = lim←−
F

Gal(F/K )(�),

where F runs through finite Galois subextensions of L/K . In particular, we can
consider the ramification filtration on the absolute Galois group GK of K . This
filtration contains fundamental information about the field K .We discuss it in more
detail in Sect. 2.3.

Definition A real number � � 0 is a ramification jump of a Galois extension
L/K if

Gal(L/K )(�+ε) �= Gal(L/K )(�) for any ε > 0.

1.3.9 Formula (8) can be written in terms of upper ramification subgroups:

vK (DL/K ) =
∫ ∞

−1

(
1 − 1

|G(�)|
)
d�.

In this form, it can be generalized to arbitrary finite extensions as follows. For any
� � 0, define

K
(�) = K

G(�)K .

Then for any finite extension L/K , one has

vK (DL/K ) =
∫ ∞

−1

(

1 − 1

[L : L ∩ K
(�)]

)

d� (11)

(see [37, Lemma 2.1]).

1.3.10 The description of the ramification filtration for general Galois extensions is a
difficult problem (see Sect. 2.3 below). It is completely solved for abelian extensions
(see Sect. 2.2). In particular, the ramification jumps of an abelian extension are
rational integers (theorem of Hasse–Arf). For non-abelian extensions, we have the
following result.

Theorem 1.3.11 (Sen) Let K∞/K be an infinite totally ramified Galois extension
whose Galois group G = Gal(K∞/K ) is a p-adic Lie group. Fix a Lie filtration
(G(n))n�0 on G. Then there exists a constant c � 0 such that

G(neK+c) ⊂ G(n) ⊂ G(neK−c), ∀n � 0.

In particular, (G : G(�)) < +∞ for all � � 0.

Proof This is the main result of [134]. �
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1.4 Norms and Traces

1.4.1 The results proved in this section are technical by the nature, but they play a
crucial role in our discussion of deeply ramified extensions and the field of norms
functor. Assume that L/K is a finite extension of local fields of characteristic 0.

Lemma 1.4.2 One has
TrL/K (m

n
L) = mr

K ,

where r =
[
vL (DL/K )+n

e(L/K )

]
.

Proof From the definition of the different, it follows immediately that

TrL/K (D
−1
L/K ) = OK .

Set δ = vL(DL/K ) and e = e(L/K ). Then:

mr
K = TrL/K

(
mr

KD
−1
L/K

)
= TrL/K

(
mre−δ

L

) ⊂ TrL/K
(
m
(δ+n)−δ
L

)
= TrL/K

(
mn

L

)
.

Conversely, one has

TrL/K (m
n
Lm

−r
K ) = TrL/K (m

n
Lm

−er
L ) ⊂ TrL/K (m

n−(δ+n)
L ) = TrL/K (D

−1
L/K ) = OK ,

Therefore, TrL/K (mn
L) ⊂ mr

K , and the lemma is proved. �

1.4.3 Assume that L/K is a totally ramified Galois extension of degree p. Set
G = Gal(L/K ) and denote by t the maximal natural number such that Gt = G (and
therefore Gt+1 = {1}). Formula (8) reads:

vL(DL/K ) = (p − 1)(t + 1). (12)

Lemma 1.4.4 For any x ∈ mn
L ,

NL/K (1 + x) ≡ 1 + NL/K (x)+ TrL/K (x) (mod ms
K ),

where s =
[
(p−1)(t+1)+2n

p

]
.

Proof Set G = Gal(L/K ), and for each 1 � n � p denote by Cn the set of all
n-subsets {g1, . . . , gn} of G (note that gi �= g j if i �= j). Then:

NL/K (1 + x) =
∏

g∈G
(1 + g(x)) = 1 + NL/K (x)+ TrL/K (x)

+
∑

{g1,g2}∈C2

g1(x)g2(x)+ · · · +
∑

{g1,...gp−1}∈Cp−1

g1(x) · · · gp−1(x).
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It’s clear that the rule

g � {g1, . . . , gn} = {gg1, . . . , ggn}

defines an action ofG onCn.Moreover, from the fact that |G| = p is a prime number,
it follows that all stabilizers are trivial, and therefore each orbit has p elements. This
implies that each sum

∑

{g1,...gn}∈Cn

g1(x) · · · gn(x), 2 � n � p − 1

can be written as the trace TrL/K (xn) of some xn ∈ m2n
L . From (12) and Lemma 1.4.2,

it follows that TrL/K (xn) ∈ ms
K . The lemma is proved. �

Corollary 1.4.5 Let L/K is a totally ramified Galois extension of degree p. Then

vK (NL/K (1 + x)− 1 − NL/K (x)) � t (p − 1)

p
.

Proof From Lemmas 1.4.2 and 1.4.4, it follows that

vK (NL/K (1 + x)− 1 − NL/K (x)) �
[
(p − 1)(t + 1)

p

]
,

Since [
(p − 1)(t + 1)

p

]
=
[
(p − 1)t

p
+ 1 − 1

p

]
� t (p − 1)

p
,

the corollary is proved. �

1.5 Witt Vectors

1.5.1 In this subsection, we review the theory ofWitt vectors. Consider the sequence
of polynomials w0(x0), w1(x0, x1), . . . defined by

w0(x0) = x0,

w1(x0, x1) = x p
0 + px1,

w2(x0, x1, x2) = x p2

0 + px p
1 + p2x2,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
wn(x0, x1, . . . xn) = x pn

0 + px pn−1

1 + p2x pn−2

2 + · · · + pnxn,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
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Proposition 1.5.2 Let F(x, y) ∈ Z[x, y] be a polynomial with coefficients inZ such
that F(0, 0) = 0. Then there exists a unique sequence of polynomials

�0(x0, y0) ∈ Z[x0, y0],
�1(x0, y0, x1, y1) ∈ Z[x0, y0, x1, y1],
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
�n(x0, y0, x1, y1, . . . , xn, yn) ∈ Z[x0, y0, x1, y1, . . . , xn, yn],
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

such that

wn(�0,�1, . . . , �n) = F(wn(x0, x1, . . . , xn), wn(y0, y1, . . . , yn)), for all n � 0.
(13)

To prove this proposition, we need the following elementary lemma.

Lemma 1.5.3 Let f ∈ Z[x0, . . . , xn]. Then

f pm (x0, . . . , xn) ≡ f pm−1
(x p

0 , . . . , x
p
n ) (mod pm), for all m � 1.

Proof The proof is left to the reader. �

1.5.4 Proof of Proposition 1.5.2We prove the proposition by induction on n. For n =
0, we have�0(x0, y0) = F(x0, y0).Assume that�0,�1, . . . , �n−1 are constructed.
From (13), it follows that

�n = 1

pn

(
F(wn(x0, x1, . . . , xn), wn(y0, y1, . . . , yn))− (�pn

0 + · · · + pn−1�
p
n−1)

)
.

(14)
This proves the uniqueness. It remains to prove that �n has coefficients in Z. Since

wn(x0, . . . , xn−1, xn) ≡ wn−1(x
p
0 , . . . , x

p
n−1) (mod pn),

we have

F(wn(x0, . . . , xn−1, xn), wn(y0, . . . , yn−1, yn))

≡ F(wn−1(x
p
0 , . . . , x

p
n−1), wn−1(y

p
0 , . . . , y

p
n−1)) (mod pn).

(15)

On the other hand, applying Lemma 1.5.3 and the induction hypothesis, we have

�
pn

0 + · · · + pn−1�
p
n−1 ≡ wn−1

(
�0(x

p
0 , y

p
0 ), . . . , �n−1(x

p
0 , y

p
0 , . . . , x

p
n−1, y

p
n−1)

)

≡F(wn−1(x
p
0 , . . . , x

p
n−1), wn−1(y

p
0 , . . . , y

p
n−1)) (mod pn).

(16)
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From (15) and (16), we obtain that

F(wn(x0, . . . , xn−1, xn), wn(y0, . . . , yn−1, yn)) ≡ �
pn

0 + · · · + pn−1�
p
n−1 (mod pn).

Togetherwith (14), thiswhows that�n has coeffiients inZ.The proposition is proved.

1.5.5 Let (Sn)n�0 denote the polynomials (�n)n�0 for F(x, y) = x + y and (Pn)n�0

denote the polynomials (�n)n�0 for F(x, y) = xy. In particular,

S0(x0, y0) = x0 + y0, S1(x0, y0, x1, y1) = x1 + y1 + x p
0 + y p

0 − (x0 + y0)p

p
,

P0(x0, y0) = x0y0, P1(x0, y0, x1, y1) = x p
0 y1 + x1y

p
0 + px1y1.

1.5.6 For any commutative ring A, we denote by W (A) the set of infinite vectors
a = (a0, a1, . . .) ∈ AN equipped with the addition and multiplication defined by the
formulas:

a + b = (S0(a0, b0), S1(a0, b0, a1, b1), . . .),

a · b = (P0(a0, b0), P1(a0, b0, a1, b1), . . .).

Theorem 1.5.7 (Witt) With addition and multiplication defined as above, W (A) is
a commutative unitary ring with the identity element

1 = (1, 0, 0, . . .).

Proof (a) We show the associativity of addition. From construction, it is clear that
there exist polynomials (un)n�0, and (�n)n�0 with integer coefficients such that
un, �n ∈ Z[x0, y0, z0, . . . , xn, yn, zn] and for any a, b, c ∈ W (A)

(a + b)+ c = (u0(a0, b0, c0), . . . , un(a0, b0, c0, . . . , an, bn, cn), . . .),

a + (b + c) = (�0(a0, b0, c0), . . . , �n(a0, b0, c0, . . . , an, bn, cn), . . .).

Moreover,

wn(u0, . . . , un) = wn( f0(x0, y0), f1(x0, y0, x1, y1), . . .)+ wn(z0, . . . , zn)

= wn(x0, . . . , xn)+ wn(y0, . . . , yn)+ wn(z0, . . . , zn),

and

wn(�0, . . . , �n) = wn(x0, . . . , xn)+ wn( f0(y0, z0), f1(y0, z0, y1, z1), . . .)

= wn(x0, . . . , xn)+ wn(y0, . . . , yn)+ wn(z0, . . . , zn).

Therefore,
wn(u0, . . . , un) = wn(�0, . . . , �n), ∀n � 0,
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and an easy induction shows that un = �n for all n. This proves the associativity of
addition.

(b) We will show the formula:

(x0, x1, x2, . . .) · (y0, 0, 0, . . .) = (x0y0, x1y
p
0 , x1y

p2

0 , . . .). (17)

In particular, it implies that 1 = (1, 0, 0, . . .) is the identity element of W (A). We
have

(x0, x1, x2, . . .) · (y0, 0, 0, . . .) = (h0, h1, . . .),

where h0, h1, . . . are some polynomials in y0, x0, x1 . . .. We prove by induction that
hn = xn yn0 . For n = 0, we have h0 = g0(x0, y0) = x0y0. Assume that the formula is
proved for all i � n − 1.We have

wn(h0, h1, . . . , hn) = wn(x0, x1, . . . , xn)wn(y0, 0, . . . , 0).

Hence:

h p
n

0 + ph p
n−1

1 + · · · + pn−1h1 + pnhn = (x p
n

0 + px p
n−1

1 + · · · + pn−1x1 + pnxn)y
pn

0 .

By induction hypothesis, hi = xi y
pi

0 for 0 � i � n − 1. Then hn = xn y
pn

0 , and the
statement is proved.

Other properties can be proved by the same method. �

1.5.8 Below, we assemble some properties of the ring W (A):

(1) For any homomorphism ψ : A → B, the map

W (A) → W (B), ψ(a0, a1, . . .) = (ψ(a0), ψ(a1), . . .)

is an homomorphism.
(2) If p is invertible in A, then there exists an isomorphism of rings W (A) 
 AN.

Proof The map

w : W (A) → AN, w(a0, a1, . . .) = (w0(a0), w1(a0, a1), w2(a0, a1, a2), . . .)

is an homomorphism by the definition of the addition and multiplication in W (A).
If p is invertible, then for any (b0, b1, b2, . . .), the system of equations

w0(x0) = b0, w1(x0, x1) = b1, w2(x0, x1, x2) = b2, . . .

has a unique solution in A. Therefore, w is an isomorphism. �

(3) For any a ∈ A, define its Teichmüller lift [a] ∈ W (A) by
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[a] = (a, 0, 0, . . .).

Then [ab] = [a][b] for all a, b ∈ A. This follows from (17).
(4) The shift map (Verschiebung)

V : W (A) → W (A), (a0, a1, 0, . . .) �→ (0, a0, a1, . . .)

is additive, i.e. V (a + b) = V (a)+ V (b). This can be proved by the same
method as for Theorem 1.5.7.

(5) For any n � 0, define:

In(A) = {(a0, a1, . . .) ∈ W (A) | ai = 0 for all 0 � i � n
}
.

Then (In(A))n�0 is a descending chain of ideals, which defines a separable
filtration on W (A). Set:

Wn(A) := W (A)/In(A).

Then
W (A) = lim←−W (A)/In(A).

We equipW (A)/In(A)with the discrete topology and define the standard topol-
ogy onW (A) as the topology of the projective limit. It is clearly Hausdorff. This
topology coincides with the topology of the direct product on W (A):

W (A) = A × A × A × · · · ,

where each copy of A is equipped with the discrete topology. The ideals In(A)
form a base of neighborhoods of 0 (each open neighborhood of 0 contains In(A)
for some n).

(6) For any a = (a0, a1, . . .) ∈ W (A), one has

(a0, a1, a2, . . .) =
∞∑

n=0

V n[an].

This can be proved by the same method as for Theorem 1.5.7.
(7) If A is a ring of characteristic p, then the map

ϕ : W (A) → W (A), (a0, a1, . . .) �→ (a p
0 , a

p
1 , . . .),

is a ring endomomorphism. In addition,

ϕV = Vϕ = p.
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Proof The map ϕ is induced by the absolute Frobenius

ϕ : A → A, ϕ(x) = x p.

We should show that
p(a0, a1, . . .) = (0, a p

0 , a
p
1 , . . .).

By definition of Witt vectors, the multiplication by p is given by

p(a0, a1, . . .) = (h̄0(a0), h̄1(a0, a1), . . .),

where h̄n(x0, x1, . . . , xn) is the reduction mod p of the polynomials defined by the
relations:

wn(h0, h1, . . . , hn) = pwn(x0, x1, . . . , xn), n � 0.

An easy induction shows that hn ≡ x p
n−1 (mod p) and the formula is proved. �

Definition Let A be a ring of charactersitic p. We say that A is perfect if ϕ is an
isomorphism. We will say that A is semiperfect if ϕ is surjective.

Proposition 1.5.9 Assume that A is an integral perfect ring of characteristic p. The
following holds true:

(i) pn+1W (A) = In(A).
(ii) The standard topology on W (A) coincides with the p-adic topology.
(iii) Each a = (a0, a1, . . .) ∈ W (A) can be written as

(a0, a1, a2, . . .) =
∞∑

n=0

[a p−n

n ]pn.

Proof (i) Since ϕ is bijective on A (and therefore on W (A)), we can write:

pn+1W (A) = V n+1ϕ−(n+1)W (A) = V n+1W (A) = In(A).

(ii) This follows directly from (i).
(iii) One has

(a0, a1, a2, . . .) =
∞∑

n=0

V n([an]) =
∞∑

n=0

pnϕ−n([an]) =
∞∑

n=0

[a p−n

n ]pn.

�

Theorem 1.5.10 (i) Let A be an integral perfect ring of characteristic p. Then there
exists a unique, up to an isomorphism, ring R such that:

(a) R is integral of characteristic 0;
(b) R/pR 
 A;
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(c) R is complete for the p-adic topology, namely

R 
 lim←−
n

R/pn R;

(ii) The ring W (A) satisfies properties a–c).

Proof (i) See [142, Chapitre II, Théorème 3].
(ii) This follows from Proposition 1.5.9. �

Example 1.5.11 (1) W (Fp) 
 Zp.

(2) Let Fp be the algebraic closure of Fp. Then W (Fp) is isomorphic to the ring
of integers of the p-adic completion Q̂ur

p of Qur
p .

1.6 Non-abelian Cohomology

1.6.1 In this section, we review basic results about non-abelian cohomology. We
refer the reader to [119, Chap. 2, §2 and Theorem 6.2.1] for further detail.

LetG be a topological group. One says that a (not necessarily abelian) topological
groupM is aG-group if it is equippedwith a continuous action ofG, i.e. a continuous
map

G × M → M, (g,m) �→ gm

such that

g(m1m2) = g(m1) g(m2), if g ∈ G, m1,m2 ∈ M,

(g1g2)(m) = g1(g2(m)), if g1, g2 ∈ G, m ∈ M.

LetM be aG-group. A 1-cocycle with values inM is a continuousmap f : G → M
which satisfies the cocycle condition

f (g1g2) = f (g1) (g1 f (g2)) , g1, g2 ∈ G.

Two cocycles f1 and f2 are said to be homologous if there exists m ∈ M such that

f2(g) = m f1(g) g(m)
−1, g ∈ G.

This defines an equivalence relation ∼ on the set Z1(G,M) of 1-cocycles. The first
cohomology H 1(G,M) of G with coefficients in M is defined to be the quotient set
Z1(G,M)/ ∼ . It is easy to see that if M is abelian, this construction coincides with
the usual definition of the first continuous cohomology. In general, H 1(G,M) is not
a group but it has a distinguished element which is the class of the trivial cocycle.
This allows to consider H 1(G,M) as a pointed set. The following properties of the
non-abelian H 1 are sufficient for our purposes:
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(1) Inflation–restriction exact sequence. Let H be a closed normal subgroup of
G. Then there exists an exact sequence of pointed sets:

0 → H 1(G/H,MH )
inf−→ H 1(G,M)

res−→ H 1(H,M)G/H .

(2) Hilbert’s Theorem 90. Let E be a field, and F/E be a finite Galois extension.
Then GLn(F) is a discrete Gal(F/E)-group, and

H 1(Gal(F/E),GLn(F)) = 0, n � 1.

1.6.2 A direct consequence of the non-abelianHilbert’s Theorem 90 is the following
fact. Let V be a finite-dimensional F-vector space equippedwith a semi-linear action
of Gal(F/E):

g(x + y) = g(x)+ g(y), ∀x, y ∈ V,

g(ax) = g(a)g(x), ∀a ∈ F,∀x ∈ V .

Let {e1, . . . , en} be a basis of V . For any g ∈ Gal(F/E), let Ag ∈ GLn(F) denote
the unique matrix such that

g(e1, . . . , en) = (e1, . . . , en)Ag.

Then the map
f : Gal(F/E) → GLn(F), f (g) = Ag

is a 1-cocyle. Hilbert’s Theorem 90 shows that there exists a matrix B such that the
(e1, . . . , en)B isGal(F/E)-invariant. To sumup, V always has aGal(F/E)-invariant
basis.

Passing to the direct limit, we obtain the following result.

Proposition 1.6.3 (i) H 1(GE ,GLn(E sep)) = 0 for all n � 1.
(ii) Each finite-dimensional E sep-vector space V equipped with a semi-linear

discrete action of GE has a GE-invariant basis.

1.6.4 Let E be a field of characteristic p, and let E be a complete unramified field
with residue field E . Let E ur denote the maximal unramified extension of E . The
residue field of E ur is isomorphic to E sep, and we have an isomorphism of Galois
groups:

Gal(E ur/E ) 
 GE .

Let Ê ur denote the p-adic completionofE ur and Ôur
E its ringof integers. The following

version of Hilbert’s Theorem 90 can be deduced fromProposition 1.6.3 by devissage.

Proposition 1.6.5 (i) H 1(Gal(E ur/E ),GLn(Ôur
E )) = 0 for all n � 1.

(ii) Each free Ôur
E -module equipped with a semi-linear continuous action of GE

has a GE-invariant basis.
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2 Galois Groups of Local Fields

2.1 Unramified and Tamely Ramified Extensions

2.1.1 In this section, we review the structure of Galois groups of local fields. Let K
be a local field. Fix a separable closure K sep of K , and set GK = Gal(K sep/K ). Set
q = |kK |. Since the compositum of two unramified (respectively, tamely ramified)
extensions of K is unramified (respectively, tamely ramified)wehave thewell defined
notions of themaximal unramified (respectively,maximal tamely ramified) extension
of K . We denote these extensions by K ur and K tr respectively.

2.1.2 The maximal unramified extension K ur of K is procyclic and its Galois group
is generated by the Frobenius automorphism FrK :

Gal(K ur/K )
∼−→ Ẑ,

FrK ←→ 1,

FrK (x) ≡ xq (mod πK ), ∀x ∈ OK ur .

2.1.3 Passing to the direct limit in the diagram (7), we have:

K

PK

IK K tr

K ur

Ẑ

K

(18)

Consider the exact sequence:

1 → Gal(K tr/K ur)→ Gal(K tr/K ) → Gal(K ur/K )→ 1. (19)

Here Gal(K ur/K ) 
 Ẑ. From the explicit description of tamely ramified extensions,
it follows that K tr is generated over K ur by the roots π1/n

K , (n, p) = 1 of any uni-
formizer πK of K . This immediately implies that

Gal(K tr/K ur) 

∏

� �=p

Z�. (20)
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Let τK be a topological generator of Gal(K tr/K ur). Fix a lift of the Frobenius auto-
morphism FrK to an element F̂rK ∈ Gal(K tr/K ). Analyzing the action of these ele-
ments on the elements π1/n

K , one can easily determine the structure of Gal(K tr/K ).

Proposition 2.1.4 (Iwasawa) The group Gal(K tr/K ) is topologically generated by
the automorphisms F̂rK and τK with the only relation:

F̂rK τK F̂r
−1
K = τ

q
K . (21)

Proof See [89] or [119, Theorem 7.5.3]. From (19), it follows that Gal(K tr/K ) is
topologically generated by F̂rK and τK . The relation (21) follows from the explicit
action of τK and F̂rK on π1/n

K for (n, p) = 1. �

2.2 Local Class Field Theory

2.2.1 Let K ab denote the maximal abelian extension of K . Then Gal(K ab/K ) is
canonically isomorphic to the abelianization Gab

K = GK /[GK ,GK ] of GK . Local
class field theory gives an explicit description of Gal(K ab/K ) in terms of K .Namely,
there exists a canonical injective homomorphism (called the reciprocity map) with
dense image

θK : K ∗ → Gal(K ab/K )

such that:

(i) For any finite abelian extension L/K , the homomorphism θK induces an iso-
morphism

θL/K : K ∗/NL/K (L
∗) ∼−→ Gal(L/K ),

where NL/K is the norm map;
(ii) If L/K is unramified, then for any uniformizer π ∈ K ∗ the automorphism

θL/K (π) coincides with the arithmetic Frobenius FrL/K ;
(iii) For any x ∈ K ∗, the automorphism θK (x) acts on K ur as

θK (x)|K ur = FrvK (x)K .

The reciprocity map is compatible with the canonical filtrations of K ∗ and
Gal(K ab/K )(�). Namely, for any real � � 0 set U (�)

K = U (n)
K , where n is the smallest

integer � �. Then

θK

(
U (�)

K

)
= Gal(K ab/K )(�), ∀� � 0. (22)

For the classical proof of this result, see [142, Chap. XV].
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2.2.2 The theoryofLubin–Tate [111] (see also [140]) gives an explicit constructionof
K ab in terms of torsion points of formal groups with a “big” endomorphism ring, and
describes the action of the Galois group Gal(K ab/K ) on these points. In particular,
it gives a simple and natural proof of (22). This theory can be seen as a local analog
of the theory of complex multiplication, providing the solution of Hilbert’s twelfth
problem for local fields. We review it in Sect. 15 below.

2.2.3 Local class field theory was generalized to the infinite residue field case by
Serre, Hazewinkel and Suzuki–Yoshida [53, 138, 149]. In another direction, Parshin
and Kato developed the class field theory of higher-dimensional local fields [91, 122,
123]. We refer the reader to [63] for survey articles and further references.

2.3 The Absolute Galois Group of a Local Field

2.3.1 First, we review the structure of the Galois group of the maximal p-extension
of a local field. A finite Galois extension of K is a p-extension if its degree is a power
of p = char(kK ). It is easy to see that p-extensions form a distinguished class, and
we can define the maximal pro-p-extension K (p) of K as the compositum of all
finite p-extensions. Set GK (p) = Gal(K (p)/K ).

First assume that char(K ) = p.We have the Artin–Schreier exact sequence

0 → Fp → K (p)
℘−→ K (p)→ 0,

where ℘(x) = x p − x . Taking the associated long exact cohomology sequence and
using the fact that Hi (GK (p), K (p)) = 0 for i � 1, we obtain:

H 1(GK (p),Fp) = K (p)/℘ (K (p)), H 2(GK (p),Fp) = 0.

General results about pro-p-groups (see, for example, [99, Chap. 6]) say that

dimFp H
1(GK (p),Fp) = cardinality of a minimal system of generators of GK (p);

dimFp H
2(GK (p),Fp) = cardinality of a minimal relation system of GK (p).

(23)

This leads to the following theorem:

Theorem 2.3.2 If char(K ) = p, then GK (p) is a free pro-p-group of countable
infinite rank.

The situation is more complicated in the inequal characteristic case. Let K be a
finite extension of Qp of degree N . For any n, let μn denote the group of nth roots
of unity.

Theorem 2.3.3 (Shafarevich, Demushkin) Assume that char(K ) = 0.
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(i) If K doesn’t contain the group μp, then GK (p) is a free pro-p-group of rank
N + 1.

(ii) If K contains μp, then GK (p) is a pro-p-group of rank N + 2, and there
exists a system of generators g1, g2, . . . , gN+2 of GK (p) with the only relation:

g ps

1 [g1, g2] [g3, g4] · · · [gN+1, gN+2] = 1, (24)

where ps denotes the highest p-power such that K contains μps

Comments on the proof. The Poincaré duality in local class field theory gives
perfect pairings:

Hi (GK (p),Fp)× H 2−i (GK (p), μp) → H 2(GK (p), μp) 
 Fp, 0 � i � 2.

Therefore, we have:

H 1(GK (p),Fp) 
 (K ∗/K ∗p)∨, H 2(GK (p),Fp) 
 μp(K )
∨,

where ∨ denotes the duality of Fp-vector spaces. Assume that K doesn’t contain the
group μp. Then these isomorphisms give:

dimFp H
1(GK (p),Fp) = N + 1,

H 2(GK (p),Fp) = 0.

Now from (23) we obtain that GK (p) is free of rank N + 1. Note that this was first
proved by Shafarevich [145] by another method.

Assume now that K contains μp. In this case, we have:

dimFp H
1(GK (p),Fp) = N + 2,

H 2(GK (p),Fp) = 1.

Therefore, GK (p) can be generated by N + 2 elements g1, . . . , gN+2 with only one
relation. In [54], Demushkin proved that g1, . . . , gN+2 can be chosed in such a way
that (24) holds. See also [101] and [139].

2.3.4 The structure of the absolute Galois group in the characteristic p case can be
determined using the above arguments. One easily sees that the wild inertia subgroup
PK is pro-p-free with a countable number of generators. This allows to describe GK

as an explicit semi-direct product of the tame Galois group Gal(K tr/K ) and PK (see
[98] or [119, Theorem 7.5.13]). The characteristic 0 case is much more difficult. If
K is a finite extension of Qp, the structure of the GK in terms of generators and
relations was first described by Yakovlev [163] under additional assumption p �= 2.
A simpler description was found by Jannsen and Wingberg in [90]. For the case
p = 2, see [164, 165].
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2.3.5.The ramification filtration (G(�)K ) on GK has a highly non-trivial structure. We
refer the reader to [1, 2, 4, 7, 79] for known results in this direction. Abrashkin [5]
and Mochizuki [113] proved that a local field can be completely determined by its
absolute Galois group together with the ramification filtration. In another direction,
Weinstein [157] interpreted GQp as the fundamental group of some “perfectoid"
object.

3 Z p-Extensions

3.1 The Different in Z p-Extensions

3.1.1 The results of this section were proved by Tate [151].We start with illustrating
the ramification theory with the example of Zp-extensions. Let K be a local field of
characteristic 0. Set e = e(K/Qp). Let vK : K → Q ∪ {+∞} denote the extension
of the discrete valuation on K to K .

Definition AZp-extension is aGalois extensionwhoseGalois group is topologically
isomorphic to Zp.

Let K∞/K be a Zp-extension. Set � = Gal(K∞/K ). For any n, pnZp is the
unique open subgroup of Zp of index pn , and we denote by �(n) the corresponding
subgroup of �. Set Kn = K �(n)∞ . Then Kn is the unique subextension of K∞/K of
degree pn over K , and

K∞ := ∪
n�1

Kn, Gal(Kn/K ) 
 Z/pnZ.

Assume that K∞/K is totally ramified. Let (�n)n�0 denote the increasing sequence
of ramification jumps of K∞/K . Since � 
 Zp, and all quotients �(�n)/�(�n+1) are
p-elementary, we obtain that

�(�n) = pnZp, ∀n � 0.

Proposition 3.1.2 Let K∞/K be a totally ramified Zp-extension.
(i) There exists n0 such that

�n+1 = �n + e, ∀n � n0.

(ii) There exists a constant c such that

vK (DKn/K ) = en + c + p−nan,

where the sequence (an)n�0 is bounded.
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This is [151, Proposition 5]. Below, we reproduce Tate’s proof, which uses local
class field theory. See also [73, Proposition 1.11].

The following lemma is a classical and well known statement.

Lemma 3.1.3 (i) The series

log(1 + x) =
∞∑

m=1

(−1)m+1 x
m

m

converges for all x ∈ mK .

(ii) The series

exp(x) =
∞∑

m=0

xm

m!

converges for all x such that vK (x) >
e

p−1 .

(iii) For any integer n > e
p−1 we have isomorphisms:

log : U (n)
K → mn

K , exp : mn
K → U (n)

K ,

which are inverse to each other.

Corollary 3.1.4 For any integer n > e
p−1 , one has

(
U (n)

K

)p = U (n+e)
K .

Proof
(
U (n)

K

)p
and U (n+e)

K have the same image under log . �

3.1.5 Proof of Proposition 3.1.2
(a) Let � = Gal(K∞/K ). By Galois theory, � = Gab

K /H , where H ⊂ Gab
K is a

closed subgroup. Consider the exact sequence

{1} → Gal(K ab/K ur)→ Gab
K

s−→ Gal(K ur/K )→ {1}.

Since K∞/K is totally ramified, (K ab)H ∩ K ur = K , and s(H) = Gal(K ur/K ).
Therefore

� 
 Gal(K ab/K ur)/(H ∩ Gal(K ab/K ur)).

By local class field theory, Gal(K ab/K ur) 
 UK , and there exists a closed subgroup
N ⊂ UK such that

� 
 UK /N .

The order of UK /U
(1)
K 
 k∗

K is coprime with p. Hence, the index of U (1)
K /(N ∩

U (1)
K ) in UK /N is coprime with p. On the other hand, UK /N 
 � is a pro-p-group.

Therefore,
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U (1)
K /(N ∩U (1)

K ) = UK /N ,

and we have an isomorphism:

ρ : � 
 U (1)
K /(N ∩U (1)

K ).

(b) To simplify notation, set:

U (�) = U (�)
K /(N ∩U (�)

K ), ∀� � 1.

By (22) and (10), we have:

ρ(�(�)) 
 U (�), � � 1.

Let γ be a topological generator of �. Then γn = γ pn is a topological generator of
�(n). Let n0 be an integer such that

ρ(γn0) ∈ U (m0),

with some integer m0 >
e

p−1 . Fix such n0 and assume that, for this fixed n0, m0 is
the biggest integer satisfying this condition. Since γn0 is a generator of �(n0), this
means that

ρ(�(n0)) = U (m0), but ρ(�(n0)) �= U (m0+1).

Hence, m0 is the n0-th ramification jump for K∞/K , i.e.

m0 = �n0 .

We can write ρ(γn0) = x, where x = x (mod (N ∩U (m0)
K )) and x ∈ U (m0)

K \
U (m0+1)

K . By Corollary 3.1.4,

x pn ∈ U (m0+en)
K \U (m0+en+1)

K , ∀n � 0.

Since ρ(γn0+n) = x pn , and γn0+n is a generator of �(m0 + n), this implies that

ρ(�(n0 + n)) = U (m0+ne), and ρ(�(n0 + n)) �= U (m0+ne+1).

This shows that for each integer n � 0, the ramification filtration has a jump at
m0 + ne, and

�(m0+ne) = �(n0 + n).

In other terms, for any real � � �n0 = m0, we have:

�(�) = �(n0 + n + 1) if �n0 + ne < � � �n0 + (n + 1)e.
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This shows that �n0+n = �n0 + en for all n � 0, and assertion i) is proved.
(c) We prove (ii) applying formula (11). For any n > 0, set G(n) = �/�(n).We

have

vK (DKn/K ) =
∫ ∞

−1

(
1 − 1

|G(n)(�)|
)
d�.

ByHerbrand’s theorem,G(n)(�) = �(�)/(�(n) ∩ �(�)). Since�(�n) = �(n), the ram-
ification jumps of G(n) are �0, �1, . . . , �n−1, and we have:

|G(n)(�)| =
{
pn−i , if �i−1 < � � �i ,
1, if � > �n−1

(25)

(for i = 0, we set �i−1 := 0 to uniformize notation). Assume that n > n0. Then

vK (DKn/K ) = A +
∫ �n−1

�i0

(
1 − 1

|G(n)(�)|
)
d�,

where A =
∫ �n0

−1

(
1 − 1

|G(n)(�)|
)
d�.We evaluate the second integral using i) and

(25):

∫ �n−1

�n0

(
1 − 1

|G(n)(�)|
)
d� =

n−1∑

i=n0+1

(�i − �i−1)

(
1 − 1

|G(n)(�)|
)

=
n−1∑

i=n0+1

e

(
1 − 1

pn−i

)
.

Now an easy computation gives:

n−1∑

i=n0+1

e

(
1 − 1

pn−i

)
= e(n − n0 − 1)+ e

p − 1

(
1 − 1

pn−n0−1

)
.

Setting c = A − e(n0 + 1)+ e
p−1 , we see that for n > n0,

vK (DKn/K ) = c + en − 1

(p − 1)pn−n0−1
.

This implies the proposition. �

Remark 3.1.6 Proposition 3.1.2 shows that the ramified Zp-extensions are arith-
metically profinite in the sense of Sect. 6.1.
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3.2 The Normalized Trace

3.2.1 In this section, K∞/K is a totally ramified Zp-extension. Fix a topological
generator γ of �. For any x ∈ Kn, set:

TK∞/K (x) = 1

pn
TrKn/K (x).

It is clear that this definition does not depend on the choice of n. Therefore, we have
a well defined homomorphism

TK∞/K : K∞ → K .

Note that TK∞/K (x) = x for x ∈ K . Our first goal is to prove that TK∞/K is continu-
ous. It is probably more natural to state the results of this section in terms of absolute
values rather that in terms of valuations. Let | · |K denote the absolute value on K
associated to vK .

Proposition 3.2.2 (i) There exists a constant c > 0 such that

|TK∞/K (x)− x |K � c|γ (x)− x |K , ∀x ∈ K∞.

(ii) The map TK∞/K is continuous and extends by continuity to K̂∞.

Proof (a) By Proposition 3.1.2, vK (DKn/Kn−1) = eK + αn p−n,where αn is bounded.
Applying Lemma 1.4.2 to the extension Kn/Kn−1, we obtain that

|TrKn/Kn−1(x)|K � |p|1−b/pn

K |x |K , ∀x ∈ Kn, (26)

with some constant b > 0 which does not depend on n.
(b) Set γn = γ pn . For any x ∈ Kn we have:

TrKn/Kn−1(x) =
p−1∑

i=0

γ i
n−1(x),

Therefore

TrKn/Kn−1 (x)− px =
p−1∑

i=0

(γ in−1(x)− x) =
p−1∑

i=1

(1 + γn−1 + · · · + γ i−1
n−1)(γn−1(x)− x),

and we obtain that
∣∣∣∣
1

p
TrKn/Kn−1(x)− x

∣∣∣∣
K

� |p|−1
K · |γn−1(x)− x |K , ∀x ∈ Kn.
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Since γn−1(x)− x = (1 + γ + · · · + γ pn−1−1)(γ (x)− x), we also have:

∣∣∣∣
1

p
TrKn/Kn−1(x)− x

∣∣∣∣
K

� |p|−1 · |γ (x)− x |K , ∀x ∈ Kn. (27)

(c) By induction on n, we prove that

∣∣TK∞/K (x)− x
∣∣
K � cn · |γ (x)− x |K , ∀x ∈ Kn, (28)

where c1 = |p|K and cn = cn−1 · |p|−b/pn

K . For n = 1, this follows from formula
(27). For n � 2 and x ∈ Kn, we write:

TK∞/K (x)− x =
(
1

p
TrKn/Kn−1 (x)− x

)
+ (TK∞/K (y)− y), y = 1

p
TrKn/Kn−1 (x).

The first term can be bounded using formula (27). For the second term, we have:

|TK∞/K (y)− y|K � cn−1|γ (y)− y|K = cn−1|p|−1
K · |TrKn/Kn−1 (γ (x)− x)|K

� cn−1|p|−b/pn

K |γ (x)− x |K .

(Here the last inequality follows from (26)). This proves (28).

(d) Set c = c1
∞∏

n=1
|p|−b/pn

K = c1|p|−b/(p−1)
K . Then cn < c for all n � 1. From for-

mula (28), we obtain:

∣∣TK∞/K (x)− x
∣∣
K � c · |γ (x)− x |K , ∀x ∈ K∞.

This proves the first assertion of the proposition. The second assertion is its immediate
consequence. �

Definition The map TK∞/K : K̂∞ → K is called the normalized trace.

3.2.3 Since TK∞/K is an idempotent map, we have:

K̂∞ = K ⊕ K̂ ◦
∞,

where K ◦∞ = ker(TK∞/K ).

Theorem 3.2.4 (Tate) (i) The operator γ − 1 is bijective, with a continuous inverse,
on K̂ ◦∞.

(ii) For any λ ∈ U (1)
K which is not a root of unity, the map γ − λ is bijective, with

a continuous inverse, on K̂∞.

Proof (a) Write Kn = K ⊕ K ◦
n , where K ◦

n = ker(TK∞/K ) ∩ Kn. Since γ − 1 is
injective on K ◦

n , and K ◦
n has finite dimension over K , γ − 1 is bijective on K ◦

n and
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on K ◦∞ = ∪
n�0

K ◦
n . Let ρ : K ◦∞ → K ◦∞ denote its inverse. From Proposition 3.2.2, it

follows that
|x |K � c|(γ − 1)(x)|K , ∀x ∈ K ◦

∞,

and therefore
|ρ(x)|K � c|x |K , ∀x ∈ K ◦

∞.

Thus ρ is continuous and extends to K̂ ◦∞. This proves the theorem for λ = 1.
(b) Assume that λ ∈ U (1)

K is such that

|λ− 1|K < c−1.

Then ρ(γ − λ) = 1 + (1 − λ)ρ, and the series

θ =
∞∑

i=0

(λ− 1)iρi

converges to an operator θ such that ρθ(γ − λ) = 1. Thus γ − λ is invertible on
K̂ ◦∞. Since λ �= 1, it is also invertible on K .

(c) In the general case, we choose n such that |λpn − 1|K < c−1. By assumptions,
λp

n �= 1. Applying part b) to the operator γ pn − λpn , we see that it is invertible on
K̂ ◦∞. Since

γ pn − λpn = (γ − λ)
pn−1∑

i=0

γ pn−i−1λi ,

the operator γ − λ is also invertible, and the theorem is proved. �

3.3 Application to Continuous Cohomology

3.3.1. We apply the results of the previous section to the computation of some con-
tinuous cohomology of �. For any continuous character η : � → UK , we denote
by K̂∞(η) the group K̂∞ equipped with the natural action of � twisted by η:

(g, x) �→ η(g) · g(x), g ∈ �, x ∈ K̂∞.

Let Hn(�,−) denote the continuous cohomology of � (see, for example, [119,
Chap. II, §7] for definition).

Theorem 3.3.2 (Tate) (i) H 0(�, K̂∞) = K and H 0(�, K̂∞(η)) = 0 for any contin-
uous character η : � → UK with infinite image.

(ii) H 1(�, K̂∞) is a one-dimensional vector space over K , and H 1(�, K̂∞(η)) =
0 for any character η : � → UK with infinite image.
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Proof (i) The first statement follows directly from Theorem 3.2.4.
(ii) Since � is procyclic, any cocycle f : � → K̂∞(η) is completely determined

by f (γ ). This gives an isomorphism between H 1(�, K̂∞(η)) and the cokernel of
γ − η(γ ). Applying again Theorem 3.2.4, we obtain ii). �

4 Deeply Ramified Extensions

4.1 Deeply Ramified Extensions

4.1.1 In this section, we review the theory of deeply ramified extensions of Coates–
Greenberg [37]. This theory goes back to Tate’s paper [151], where the case of Zp-
extensions was studied and applied to the proof of the Hodge–Tate decomposition
for p-divisible groups.

Let K∞/K be an infinite algebraic extension of a local field K of characteristic 0.
Recall that for eachm, the number of algebraic extensions of K of degreem is finite.
Hence, we can always write K∞ in the form

K∞ = ∞∪
n=0

Kn, K0 = K , Kn ⊂ Kn+1, [Kn : K ] < ∞.

Following [75], we define the different of K∞/K as the intersection of the differents
of its finite subextensions:

Definition The different of K∞/K is defined as

DK∞/K = ∞∩
n=0
(DKn/K OK∞).

4.1.2 Let L∞ be a finite extension of K∞. Then L∞ = K∞(α), where α is a root
of an irreducible polynomial f (X) ∈ K∞[X ]. The coefficients of f (X) belong to a
finite extension K f of K . Set:

n0 = min
{
n ∈ N | f (X) ∈ Kn[X ]}.

Let Ln = Kn(α) for all n � n0. Then

L∞ = ∞∪
n=n0

Ln.

In what follows, we will assume that n0 = 0 without loss of generality. Note that the
degree [Ln : Kn] = deg( f ) does not depend on n � 0.

Proposition 4.1.3 i) If m � n, then

DLn/Kn OLm ⊂ DLm/Km .
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ii) One has

DL∞/K∞ = ∞∪
n=0
(DLn/Kn OL∞).

Proof (i) We consider the trace pairing (3):

tLn/Kn : Ln × Ln → Kn.

Let {ek}sk=1 be a basis of OLn over OKn , and let {e∗
k }sk=1 denote the dual basis. Then

DLn/Kn = OLne
∗
1 + · · · + OLne

∗
s .

Since {ek}sk=1 is also a basis of Lm over Km, any x ∈ D−1
Lm/Km

can be written as

x =
s∑

k=1

ake
∗
k .

Then
ak = tLm/Km (x, ek) ∈ OKm , ∀1 � k � s,

and we have:
x ∈ OKme

∗
1 + · · · + OKme

∗
s ⊂ D−1

Ln/Kn
OLm .

Hence, D−1
Lm/Km

⊂ D−1
Ln/Kn

OLm , and thereforeDLn/Kn OLm ⊂ DLm/Km .

(ii) By the same argument as in the proof of (i), the following holds:

∞∪
n=0
(DLn/Kn OL∞) ⊂ DL∞/K∞ .

We need to prove that DL∞/K∞ ⊂ ∞∪
n=0
(DLn/Kn OL∞) or, equivalently, that

∞∩
n=0
(D−1

Ln/Kn
OL∞) ⊂ D−1

L∞/K∞ .

Let x ∈ ∞∩
n=0
(D−1

Ln/Kn
OL∞) and y ∈ OL∞ . Choosing n such that x ∈ D−1

Ln/Kn
and y ∈

OLn , we have:
tL∞/K∞(x, y) = tLn/Kn (x, y) ∈ OKn ⊂ OK∞ .

The proposition is proved. �
4.1.4 For any algebraic extension M/K of local fields (finite or infinite) we set:

vK (DM/K ) = inf{vK (x) | x ∈ DM/K }.
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Definition (i) We say that K∞/K has finite conductor if there exists � � 0 such that

K∞ ⊂ K
(�)
. If that is the case, we call the conductor of K∞/K the number

c(K∞) = inf{� | K∞ ⊂ K
(�−1)}.

(ii) We say that K∞/K is deeply ramified if it does not have finite conductor.

Below, we give some examples of deeply ramified extensions.

Example 4.1.5 (1) The cyclotomic extension K (ζp∞)/K is deeply ramified. This
follows from Proposition 3.1.2.

(2) Fix a uniformizer π of K and set πn = π1/pn . Then the infinite Kummer

extension K (π1/p∞
) = ∞∪

n=1
K (πn) is deeply ramified. This can be proved by a direct

computation or alternatively computing the different of this extension and using
Theorem 4.1.7 below.

(3) Let K∞/K be a totally ramified infinite Galois extension such that its Galois
groupG = Gal(K∞/K ) is a Lie group. From Theorem 1.3.11, it follows that K∞/K
is deeply ramified. We will come back to this example in Sect. 6.

4.1.6 Now we state our main theorem about deeply ramified extensions.

Theorem 4.1.7 (Coates–Greenberg) Let K∞/K be an algebraic extension of local
fields. Then the following assertions are equivalent:

(i) vK (DK∞/K ) = +∞;
(ii) K∞/K is deeply ramified;
(iii) For any finite extension L∞/K∞, one has

vK (DL∞/K∞) = 0;

(iv) For any finite extension L∞/K∞, one has

TrL∞/K∞(mL∞) = mK∞ .

In sections 4.1.8–4.1.12 below, we prove the implications

(i) ⇔ (i i) ⇒ (i i i) ⇒ (iv).
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Lemma 4.1.8 For any finite extension M/K, one has

c(M)

2
� vK (DM/K ) � c(M).

Proof We have:

[M : M ∩ K
(�)] = 1, for any v > c(M)− 1;

[M : M ∩ K
(�)] � 2, if − 1 � v < c(M)− 1.

Therefore

vK (DM/K ) =
∫ ∞

−1

(

1 − 1

[M : M ∩ K
(�)]

)

d� �
∫ c(M)−1

−1
dv = c(M),

and

vK (DM/K ) =
∫ ∞

−1

(

1 − 1

[M : M ∩ K
(�)]

)

d� � 1

2

∫ c(M)−1

−1
d� = c(M)

2
.

The lemma is proved. �
4.1.9 Weprove that (i) ⇔ (i i).First assume thatvK (DK∞/K ) = +∞.For any c > 0,
there exists K ⊂ M ⊂ K∞ such that vK (DM/K ) � c. By Lemma 4.1.8, c(M) � c.
This shows that K∞/K doesn’t have finite conductor.

Conversely, assume that K∞/K doesn’t have finite conductor. Then for each

c > 0, there exists a non-zero element β ∈ K∞ ∩ K
(c)
. Let M = K (β). Then

vK (DM/K ) � c
2 by Lemma 4.1.8. Therefore, vK (DK∞/K ) = +∞.

Lemma 4.1.10 Assume that � is such that L ⊂ K
(�)
. Then for any n � 0,

[Ln : Ln ∩ K
(�)] = [Kn : Kn ∩ K

(�)].

Proof Since K
(�)
/K is a Galois extension, Kn and K

(�)
are linearly disjoint over

Kn ∩ K
(�)
. Therefore Kn and K

(�) ∩ Ln are linearly disjoint over Kn ∩ K
(�)
. We

have:
[Kn : Kn ∩ K

(�)] = [Kn · (K (�) ∩ Ln) : (K (�) ∩ Ln)]. (29)

Clearly Kn · (K (�) ∩ Ln) ⊂ Ln. Conversely, from Ln = Kn · L and L ⊂ K
(�)
, it

follows that Ln ⊂ Kn · (K (�) ∩ Ln). Thus

Ln = Kn · (K (�) ∩ Ln).

Together with (29), this proves the lemma. �
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4.1.11 We prove that (i i) ⇒ (i i i). By the multiplicativity of the different, for any
n � 0, we have:

vK (DLn/Kn ) = vK (DLn/K )− vK (DKn/K ).

Let � be such that L ⊂ K
(�)
. Using formula (11) and Lemma 4.1.10, we obtain:

vK (DLn/Kn ) =
∫ ∞

−1

(
1

[Kn : (Kn ∩ K
(�)
)]

− 1

[Ln : (Ln ∩ K
(�)
)]

)

d� =
∫ �

−1

(
1

[Kn : (Kn ∩ K
(�)
)]

− 1

[Ln : (Ln ∩ K
(�)
)]

)

d� �
∫ �

−1

d�

[Kn : (Kn ∩ K
(�)
)]
.

Since [Kn : (Kn ∩ K
(�)
)] � [Kn : (Kn ∩ K

(�)
)] if � � �, this gives the following

estimate for the different:

vK (DLn/Kn ) � � + 1

[Kn : (Kn ∩ K
(�)
)]
.

Since K∞/K doesn’t have finite conductor, for any c > 0 there exists n � 0 such

that [Kn : (Kn ∩ K
(�)
)] > c, and therefore vK (DLn/Kn ) � (� + 1)/c. This proves

that vK (DL∞/K∞) = 0.

4.1.12 We prove that (i i i) ⇒ (iv).We consider two cases.
(a) First assume that the set {e(Kn/K ) | n � 0} is bounded. Then there exists

n0 ∈ I such that e(Kn/Kn0) = 1 for any n � n0. Therefore, e(Ln/Ln0) = 1 for any
n � n0, and by the mutiplicativity of the different

DLn/Kn = DLn0 /Kn0
OLn , ∀n � n0.

From Proposition 4.1.3 and assumption iii), it follows that DLn/Kn = OLn for all
n � n0. Therefore, the extensions Ln/Kn are unramified, and Lemma 1.4.2 (or just
the well known surjectivity of the trace map for unramified extensions) gives:

TrLn/Kn (mLn ) = mKn , for all n � n0.

Thus TrL∞/K∞(mL∞) = mK∞ .

(b) Now assume that the set {e(Kn/K ) | n � 0} is unbounded. Let x ∈ mK∞ .Then
there exists n such that x ∈ mKn . By Lemma 1.4.2,

TrLn/Kn (mLn ) = mrn
Kn
, rn =

[
vLn (DLn/Kn )+ 1

e(Ln/Kn)

]
.

From our assumptions and Proposition 4.1.3, it follows that we can choose n such
that in addition
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vK (DLn/Kn )+
1

e(Ln/K )
� vK (x).

Then

rn � vLn (DLn/Kn )+ 1

e(Ln/Kn)
=
(
vK (DLn/Kn )+

1

e(Ln/K )

)
e(Kn/K ) � vKn (x).

Since TrLn/Kn (mLn ) is an ideal in OKn , this implies that x ∈ TrLn/Kn (mLn ), and the
inclusion mK∞ ⊂ TrL∞/K∞(mL∞) is proved. Since the converse inclusion is trivial,
we have mK∞ = TrL∞/K∞(mL∞).

4.2 Almost étale Extensions

4.2.1 In this section, we introduce, in our very particular setting, the notion of an
almost étale extension.

Definition A finite extension E/F of non-Archimedean fields is almost étale if and
only if

TrE/F (mE ) = mF .

It is clear that an unramified extension of local fields is almost étale. Below, we
give two other archetypical examples of almost étale extensions.

Example 4.2.2 (1) Assume that F is a perfect non-Archimedean field of character-
istic p. Then any finite extension of F is almost étale.

Proof Let E/F be a finite extension. It is clear that TrE/F (mE ) ⊂ mF . Moreover,
TrE/F (mE ) is an ideal of OF , and for any α ∈ mE , one has

lim
n→+∞ |TrE/Fϕ−n(α)|F = 0.

This implies that mF ⊂ TrE/F (mE ), and the proposition is proved. �

(2) Assume that K∞ is a deeply ramified extension of a local field K of charac-
teristic 0. By Theorem 4.1.7, any finite extension of K∞ is almost étale.

4.2.3. Following Tate [151], we apply the theory of almost étale extensions to the
proof of the theorem ofAx–Sen–Tate. Let K be a perfect complete non-Archimedean
field, and letCK denote the completion of K . For any topological groupG, we denote
by Hn(G,−) the continuous cohomology of G.
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Theorem 4.2.4 Assume that F is an algebraic extension of K such that any finite
extension of F is almost étale. Then

H 0(GF ,CK ) = F̂ .

We first prove the following lemma. Fix an absolute value | · |K on K .

Lemma 4.2.5 Let E/F be an almost étale Galois extension with Galois group G.
Then for any α ∈ E and any c > 1, there exists a ∈ F such that

∣∣α − a
∣∣
K < c · max

g∈G
∣∣g(α)− α∣∣K .

Proof Let c > 1.By Theorem 4.1.7 iv), there exists x ∈ OE such that y = TrE/F (x)
satisfies

1/c < |y|K � 1.

Set: a = 1

y

∑

g∈G
g(αx). Then

|α − a|K =
∣∣∣∣∣∣

α

y

∑

g∈G
g(x)− 1

y

∑

g∈G
g(αx)

∣∣∣∣∣∣
K

=
∣∣∣∣∣∣

1

y

∑

g∈G
g(x)(α − g(α))

∣∣∣∣∣∣
K

� 1

|y|F · max
g∈G
∣∣g(α)− α∣∣

K
.

The lemma is proved. �

4.2.6 Proof of Theorem 4.2.4 Let α ∈ CGF
K . Choose a sequence (αn)n∈N of elements

αn ∈ K such that |αn − α|K < p−n. Then

|g(αn)− αn|K = |g(αn − α)− (αn − α)|K < p−n, ∀g ∈ GF .

By Lemma 4.2.5, for each n, there exists βn ∈ F such that |βn − αn|K < p−n. Then

α = lim
n→+∞βn ∈ F̂ .

The theorem is proved. �
4.2.7 Now we compute the first cohomology group H 1(GF ,CK ).

Theorem 4.2.8 Under the assumptions and notation of Theorem 4.2.4,
mF H 1(GF , OCK ) = {0} and H 1(GF ,CK ) = {0}.

The proofwill be given in Sects. 4.2.9–4.2.10 below. For anymap f : X → OCK ,

where X is an arbitrary set, we define | f | := supx∈X | f (x)|K .
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Lemma 4.2.9 Let E/F be a finite Galois extension with Galois group G. Then for
any map f : G → OK and any y ∈ mF , there exists α ∈ OE such that

|y f − hα| < |∂( f )|K ,

where hα : G → OK is the 1-coboundary hα(g) = g(α)− α and ∂( f ) : G ×
G → OK is the 2-coboundary ∂( f )(g1, g2) = g1 f (g2)− f (g1g2)+ f (g1).

Proof Since E/F is almost étale, there exists x ∈ OE such that y = TrE/F (x). Set:

α := −
∑

g∈G
g(x) f (g).

An easy computation shows that for any τ ∈ G, one has

τ(α)− α = y f (τ )−
∑

g∈G
τg(x) · ∂( f )(τ, g).

This proves the lemma. �

4.2.10 Proof of Theorem 4.2.8 Let f : GF → OCK be a 1-cocycle. Fix y ∈ mF . By
continuity of f, for any n � 0 there exists amap f̃ : GF → OK such that | f̃ − f | <
p−n, and f̃ factors through a finite quotient of GF . Note that |∂( f̃ )| < p−n because
∂( f ) = 0. By Lemma 4.2.9, there exists α ∈ mK such that

|y f − hα| < |∂( f̃ )| < p−n.

Using this argument together with successive approximation, it is easy to see
that y · cl( f ) = 0. This proves that mF H 1(GF , OCK ) = {0}. Now the vanishing of
H 1(GF ,CK ) is obvious. �

The following corollary should be compared with Theorem 1.1.8.

Corollary 4.2.11 Let F be a complete perfect non-Archimedean field of character-
istic p. Then the following holds true:

(i) H 0(GF ,CF ) = F;
(ii) mF · H 1(GF , OCF ) = 0;
(iii) H 1(GF ,CF ) = 0.

4.3 Continuous Cohomology of GK

4.3.1 Assume that K is a local field of characteristic 0.

Theorem 4.3.2 (Tate) (i) Let K∞/K be a deeply ramified extension. Then
H 0(GK∞ ,CK ) = K̂∞ and H 1(GK∞ ,CK ) = 0.
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(ii) H 0(GK ,CK ) = K , and H 1(GK ,CK ) is the one dimensional K -vector space
generated by any totally ramified additive character η : GK → Zp.

(iii) Let η : GK → Z∗
p be a totally ramified character with infinite image. Then

H 0(GK ,CK (η)) = 0, and H 1(GK ,CK (η)) = 0.

Proof (i) The first assertion follows from Theorems 4.1.7 and 4.2.8.

(ii) Let K∞ = K
ker(η)

. Then K∞/K is a Zp-extension, and we set � =
Gal(K∞/K ). By Proposition 3.1.2, K∞/K is deeply ramified. Hence,
H 0(GK∞ ,CK ) = K̂∞ by Theorem 4.2.4. Applying Theorem 3.3.2, we obtain that
H 0(GK ,CK ) = H 0(�, K̂∞) = K . To compute the first cohomology, consider the
inflation-restriction exact sequence:

0 → H 1(�,CGK∞
K ) → H 1(GK ,CK )→ H 1(GK∞ ,CK ).

By assertion i), CGK∞
K = K̂∞, and H 1(GK∞ ,CK ) = 0. Hence,

H 1(GK ,CK ) 
 H 1(�, K̂∞).

Applying Theorem 3.3.2, we see that H 1(GK ,CK ) is the one-dimensional K -vector
space generated by η : GK → Zp.

(iii) The last assertion can be proved by the same arguments. �

4.3.3 The group GK acts on the groups μpn of pn-th roots of unity via the character
χK : GK → Z∗

p defined as

g(ζ ) = ζ χK (g), ∀g ∈ GK , ζ ∈ μpn , n � 1.

Definition The character χK : GK → Z∗
p is called the cyclotomic character.

It is clear that logχK is an additive character of GK with values in Zp.

Corollary 4.3.4 H 1(GK ,CK ) is the one-dimensional K -vector space generated by
logχK .

4.3.5 Let E/K be a finite extension which contains all conjugates τK of K over
Qp. We say that two multiplicative characters ψ1, ψ2 : GE → UK are equivalent
and writeψ1 ∼ ψ2 ifCK (ψ1) 
 CK (ψ2) asGE -modules. Theorem 4.3.2 implies the
following proposition, which will be used in Sect. 15.

Proposition 4.3.6 The conditions (a) and b) below are equivalent:
(a) τ ◦ ψ1 ∼ τ ◦ ψ2 for all τ ∈ Hom(K , E).
(b) The characters ψ1 and ψ2 coincide on an open subgroup of IE .

Proof See [143, Section A2]. �

4.3.7 Using Tate’s method, Sen proved the following important result.
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Theorem 4.3.8 (Sen) Assume that K∞/K is deeply ramified. Then

H 1(GK∞ ,GLn(CK )) = {1}.

Proof For deeply ramified Zp-extensions, it was proved in [136], and the proof is
similar in the general case. �

5 From Characteristic 0 to Characteristic p
and Vice Versa I: Perfectoid Fields

5.1 Perfectoid Fields

5.1.1 The notion of perfectoid field was introduced in Scholze’s fundamental paper
[130] as a far-reaching generalization of Fontaine’s constructions [66, 70]. Fix a
prime number p. Let E be a field equipped with a non-Archimedean absolute value
| · |E : E → R+ such that |p|E < 1. Note that we don’t exclude the case of char-
acteristic p, where the last condition holds automatically. We denote by OE the ring
of integers of E and by mE the maximal ideal of OE .

Definition Let E be a field equipped with an absolute value | · |E : E → R+ such
that |p|E < 1. One says that E is perfectoid if the following holds true:

(i) | · |E is non-discrete;
(ii) E is complete for | · |E ;
(iii) The Frobenius map

ϕ : OE/pOE → OE/pOE , ϕ(x) = x p

is surjective.

We give first examples of perfectoid fields, which can be treated directly.

Example 5.1.2 (1) A perfect field of characteristic p, complete for a non-Archi-
medean valuation, is a perfectoid field.

(2) Let K be a non-Archimedean field. The completionCK of its algebraic closure
is a perfectoid field.

(3) Let K be a local field. Fix a uniformizer π of K and set πn = π1/pn . Then the

completion of the Kummer extension K (π1/p∞
) = ∞∪

n=1
K (πn) is a perfectoid field.

This follows from the congruence

(
m∑

i=0

[ai ]π i
n

)p

≡
m∑

i=0

[ai ]pπ i
n−1 (mod p).
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5.1.3 The following important result is a particular case of [78, Proposition 6.6.6].

Theorem 5.1.4 (Gabber–Ramero) Let K be a local field of characteristic 0. A com-
plete subfield K ⊂ E ⊂ CK is a perfectoid field if and only if it is the completion of
a deeply ramified extension of K .

5.2 Tilting

5.2.1 In this section, we describe the tilting construction, which functorially asso-
ciates to any perfectoid field of characteristic 0 a perfect field of characteristic p.This
construction first appeared in the pionnering papers of Fontaine [64, 66]. The tilting
of arithmetically profinite extensions is closely related to the field of norms functor
of Fontaine–Wintenberger [161].Wewill come back to this question in Sect. 6. In the
full generality, the tilting was defined in the famous paper of Scholze [130] for per-
fectoid algebras. This generalization is crucial for geometric application. However,
in this introductory paper, we will consider only the arithmetic case.

5.2.2 Let E be a perfectoid field of characteristic 0. Consider the projective limit

O�E := lim←−
ϕ

OE/pOE = lim←−(OE/pOE
ϕ←− OE/pOE

ϕ←− · · · ), (30)

where ϕ(x) = x p. It is clear that O�E is equipped with a natural ring structure. An
element x of O�E is an infinite sequence x = (xn)n�0 of elements xn ∈ OE/pOE

such that x p
n+1 = xn for all n. Below, we summarize first properties of the ring O�E :

(1) For all m ∈ N, choose a lift x̂m ∈ OE of xm . Then for any fixed n, the sequence
(̂x pm

n+m)m�0 converges to an element

x (n) = lim
m→∞x̂ pm

m+n ∈ OE ,

which does not depend on the choice of the lifts x̂m . In addition,
(
x (n)
)p = x (n−1)

fol all n � 1.

Proof Since x p
m+n = xm+n−1,we have x̂

p
m+n ≡ x̂m+n−1 (mod p), and an easy induc-

tion shows that x̂ pm

m+n ≡ x̂ pm−1

m+n−1 (mod pm).Therefore, the sequence (̂x pm

n+m)m�0 con-
verges.Assume that x̃m ∈ OE are another lifts of xm ,m ∈ N.Then x̃m ≡ x̂m (mod p)
and therefore x̃ pm

n+m ≡ x̂ pm

n+m (mod pm+1). This implies that the limit doesn’t depend
on the choice of the lifts. �

(2) For all x, y ∈ OE � one has

(x + y)(n) = lim
m→+∞

(
x (n+m) + y(n+m)

)pm
, (xy)(n) = x (n)y(n). (31)
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Proof It is easy to see that x (n) ∈ OE is a lift of xn. Therefore, x (n+m) + y(n+m) is a
lift of xn+m + yn+m, and the first formula follows from the definition of (x + y)(n).
The same argument proves the second formula. �
(3) The map x �→ (x (n))n�0 defines an isomorphism

O�E 
 lim←−
x p←x

OE , (32)

where the right hand side is equipped with the addition and the multiplication
defined by formula (31).

Proof This follows from from (2). �
Set:

| · |E � : O�E → R ∪ {+∞},
| x |E � = |x (0)|E .

Proposition 5.2.3 (i) | · |E � is a non-Archimedean absolute value on OE � .

(ii) O�E is a perfect complete valuation ring of characteristic p, with maximal
ideal m�E = {x ∈ O�E | |x |E � < 1} and residue field kE .

(iii) Let E � denote the field of fractions of O�E . Then |E �|E � = |E |E .
Proof (i) Let x, y ∈ O�E . It is clear that

|xy|E � = |(xy)(0)|E = |x (0)y(0)|E = |x (0)| · |y(0)|E = |x |E � |y|E � .

One has

|x + y|E� = |(x + y)(0)|E = | lim
m→+∞(x

(m) + y(m))p
m |E = lim

m→+∞ |x (m) + y(m)|pmE
� lim

m→+∞max{|x (m)|E , |x (m)|E }pm = lim
m→+∞max

{∣∣(x (m))p
m ∣∣

E ,
∣∣(x (m))p

m ∣∣
E

}

= max
{∣∣(x (0))

∣∣
E ,
∣∣(x (0))

∣∣
E

} = max
{|x |E� , |y|E�

}
.

This proves that | · |E � is an non-Archimedean absolute value.
(ii) We prove the completeness of O�E (other properties follow easily from i) and

properties 1-3) above. First remark that if y = (y0, y1, . . .) ∈ O�E , then

yn = 0 ⇔ |y|E � � |p|pnE . (33)

Let (xn)n∈N be a Cauchy sequence in O�E . Then for any M > 0, there exist N such
that for all n,m � N

|xn − xm |E � � |p|pM

E .

Write xn = (xn,0, xn,1, . . .) and xm = (xm,0, xm,1, . . .).Using formula (33), we obtain
that for all n,m � N
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xn,i = xm,i for all 0 � i � M.

Hence, for each i � 0 the sequence (xn,i )n∈N is stationary. Set ai = limn→+∞ xn,i .
Then a = (a0, a1, . . .) ∈ O�E , and it is easy to check that limn→+∞ xn = a. �

Definition The field E � will be called the tilt of E .

Proposition 5.2.4 A perfectoid field E is algebraically closed if and only if E � is.

Proof The proposition can be proved by successive approximation. We refer the
reader to [60, Proposition 2.1.11] for the proof that E � is algebraically closed if E
is and to [130, Proposition 3.8], and [60, Proposition 2.2.19, Corollary 3.1.10] for
two different proofs of the converse statement. See also [23]. �

5.3 The Ring Ainf(E)

5.3.1 Let F be a perfect field, complete for a non-Archimedean absolute value | · |F .
The ring of Witt vectors W (F) is equipped with the p-adic (standard) topology
defined in Sect. 1.5. Now we equip it with a coarser topology, which will be called
the canonical topology. It is defined as the topology of the infinite direct product

W (F) = FN,

where each F is equipped with the topology induced by the absolute value | · |F .
For any ideal a ⊂ OF and integer n � 0, the set

Ua,n = {x = (x0, x1, . . .) ∈ W (F) | xi ∈ a for all 0 � i � n}

is an ideal inW (F). In the canonical topology, the family (Ua,n) of these ideals form
a base of the fundamental system of neighborhoods of 0.

5.3.2 Let E be a perfectoid field of characteristic 0. Set:

Ainf(E) := W (O�E ).

Each element of Ainf(E) is an infinite vector

a = (a0, a1, a2, . . .), an ∈ O�E ,

which also can be written in the form

a =
∞∑

n=0

[
a p−n

n

]
pn.
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Proposition 5.3.3 (Fontaine, Fargues–Fontaine) (i) The map

θE : Ainf(E) → OE

given by

θE

( ∞∑

n=0

[an]pn
)

=
∞∑

n=0

a(0)n pn

is a surjective ring homomorphism.

(ii) ker(θE ) is a principal ideal. An element
∞∑

n=0
[an]pn ∈ ker(θE ) is a generator

of ker(θE ) if and only if |a0|E � = |p|E .
Proof (i) For any ring A, set Wn(A) = W (A)/In(A). From the definition of Witt
vectors, it follows that for any n � 0, the map

wn : Wn+1(OE ) → OE ,

wn(a0, a1, . . . , an) = a pn

0 + pa pn−1

1 + · · · + pnan

is a ring homomorphism. Consider the map:

ηn : Wn+1(OE/pOE ) → OE/p
n+1OE ,

ηn(a0, a1, . . . , an) = â pn

0 + pâ pn−1

1 + · · · + pnân,

where âi denotes any lift of ai in OE . It’s easy to see that the definition of ηn does
not depend on the choice of these lifts. Moreover, the diagram

Wn+1(OE )
wn

OE

Wn+1(OE/pOE )
ηn

OE/pn+1OE

commutes by the functoriality of Witt vectors. This shows that ηn is a ring homo-
morphism. Let θE,n : Wn+1(O

�

E ) → OE/pn+1OE denote the reduction of θE mod-
ulo pn+1. From the definitions of our maps, it follows that θE,n coincides with the
composition

Wn+1(O
�

E )
ϕ−n−−→ Wn+1(O

�

E ) −→ Wn+1(OE/pOE )
ηn−→ OE/p

n+1OE .

This proves that θE,n is a ring homomorphism for all n � 0. Therefore, θE is a ring
homomorphism.

The surjectivity of θE follows from the surjectivity of the map
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θE,0 : O�E → OE/pOE .

(ii) We refer the reader to [66, Proposition 2.4] for the proof of the following

statement: an element
∞∑

n=0
[an]pn ∈ ker(θE ) generates ker(θE ) if and only if |a0|E � =

|p|E .
Since |E �| = |E |, there exists a0 ∈ OE � such that |a0|E � = |p|E . Then

θE ([a0])/p ∈ UE , and by the surjectivity of θE , there exists b ∈ Ainf(E) such that
θE (b) = θE ([a0])/p.Thus x = [a0] − pb ∈ ker(θE ).Since |a0|E � = |p|E , the above
criterion shows that x generates ker(θE ).See [60, Proposition 3.1.9] for further detail.
�

5.4 The Tilting Equivalence

5.4.1 We continue to assume that E is a perfectoid field of characteristic 0. Fix an
algebraic closure E of E and denote by CE its completion. By Proposition 5.2.4,
C�E is algebraically closed and we denote by E � the algebraic closure of E � in C�E .

Let CE � := Ê � denote the p-adic completion of E �.We have the following picture,
where the horizontal arrows denote the tilting:

CE
�

C�E

E
�

E �.

Let F be a complete intermediate field E � ⊂ F ⊂ C�E . Fix a generator ξ of ker(θE ).
Set:

O�F := θC(W (OF)),

where we write θC instead θCE to simplify notation. Consider the diagram:

0 ξAinf(E) Ainf(E)
θE

OE 0

0 ξW (OF) W (OF) O�F 0

0 ξAinf(CE ) Ainf(CE )
θC

OCE 0

Note that O�F = W (OF)/ξW (OF). Set:
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F� = O�F[1/p].

Proposition 5.4.2 F� is a perfectoid field, and (F�)� = F.

Proof (a) First prove that O�F is complete. For each n � 1,wehave an exact sequence

0 → ξWn(OF)→ Wn(OF) −→ O�F/p
nO�F → 0,

whereWn = W/pnW. Since the projection mapsWn+1(OF)→ Wn(OF) are surjec-
tive, the passage to inverse limits gives an exact sequence

0 → ξW (OF) → W (OF)→ lim←−
n

O�F/p
nO�F → 0.

Hence, O�F = lim←−n
O�F/p

nO�F, and O�F is complete.
(b) Fix a valuation vE on E .We prove that for any x ∈ W (OF),

vE (θC(x)) � n · vE (p)⇒ x ∈ pnW (OF)+ ξW (OF).

It’s sufficient to prove this assertion for n = 1. Let x =
∞∑

k=0
[xk]pk be such that

vE (θC(x)) � vE (p). If x0 = 0, the assertion is clearly true.Assume that x0 �= 0.Then

vE (x
(0)
0 ) � vE (p). By Proposition 5.3.3, ξ =

∞∑

k=0
[ak]pk with vE (a

(0)
0 ) = vE (p).

Hence,
x0 = a0y, for some y ∈ OF,

and
x = ξ [y] + pz, for some z ∈ W (OF).

This shows that x ∈ pW (OF)+ ξW (OF).

(c) Assume that α ∈ F� belongs to the valuation ring of F�. Write α = β/pn

with β = θC(x), x ∈ W (OF). Then vE (θC(x)) � n · vE (p). By part b), there exists
y ∈ W (OF) such that θC(x) = pnθC(y). Therefore, α = θC(y) ∈ O�F. This proves

that O�F is the valuation ring of F�.
(d) From (a) and (c), it follows that F� is a complete field with the valuation ring

O�F. In addition, the induced valuation on F
� is clearly non-discrete. Writing ξ in the

form ξ =
∞∑

k=0
[ak]pk, we see that

O�F/pO
�

F 
 OF/a0OF.

This implies that F� is a perfectoid field. Moreover, it is easy to see that the map
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OF → lim←−
ϕ

OF/a0OF, z �→ (
ϕ−n(z) mod (a0OF)

)
n�0

is an isomorphism. Therefore, (F�)� = F, and the proposition is proved. �

Proposition 5.4.3 One has C�E = CE � .

Proof Since E � ⊂ C�E , and C�E is complete and algebraically closed, we have
CE � ⊂ C�E . Set F := CE � . By Proposition 5.4.2, (F�)� = F. Since F is complete and
algebraically closed, F� is complete and algebraically closed by Proposition 5.2.4.
Now from F� ⊂ CE , we deduce that F� = CE . Therefore

F = (F�)� = C�E .

The proposition is proved. �

Now we can prove the main result of this section.

Theorem 5.4.4 (Scholze, Fargues–Fontaine) Let E be a perfectoid field of charac-
teristic 0. Then the following holds true:

(i) One has GE 
 GE � .

(ii) Each finite extension of E is a perfectoid field.
(iii) The tilt functor F �→ F � realizes the Galois correspondence between the

categories of finite extensions of E and E � respectively.
(iv) The functor

F �→ F�, F� := (W (OF)/ξW (OF)
) [1/p]

is a quasi-inverse to the tilt functor.

Proof The proof below is due to Fargues and Fontaine [60, Theorem 3.2.1].
(a) We prove assertion (i). The Galois group GE = Gal(E/E) acts on CE and

C�E . To simplify notation, set F = CE � . By Proposition 5.4.3, C
�

E = F, and we have
a map

GE → Aut(C�E/E
�)

∼−→ Aut(F/E �)
∼−→ Aut(E �/E �) = GE � . (34)

Conversely, again by Proposition 5.4.3, we have an isomorphism

W (OF)/ξW (OF) 
 OCE , (35)

which induces a map

GE �
∼−→ Aut(F/E �) → Aut(CE/E)

∼−→ GE .

It is easy to see that the maps (34) and (35) are inverse to each other. Therefore

GE 
 GE � ,
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and by Galois theory we have a one-to-one correspondence

{
finite extensions of E

}↔ {
finite extensions of E �

}
. (36)

(b) Let F/E � be a finite extension. By Proposition 5.4.2, F� is a perfectoid field,
and

(F�)� = F.

Consider the exact sequence:

0 → W (OF)[1/p] ξ−→ W (OF)[1/p] → W (OF)/ξW (OF)[1/p] → 0.

By Corollary 4.2.11 (Ax–Sen–Tate in characteristic p), one has

H 0(GF,W (OF)) = W (OF).

By the same corollary,mF · H 1(GF, OF) = 0.Using successive approximation, one
verifies that [a] · H 1(GF,W (OF)) = 0 for any a ∈ mF. The generator ξ ∈ ker(θE )
can be written in the form ξ = [a] + pu, where a ∈ mE � and u is invertible in
Ainf(E). If

f ∈ ker

(
H 1(GF,W (OF))[1/p] ξ−→ H 1(GF,W (OF))[1/p]

)
,

then [a] f = 0, ξ f = 0, and therefore f = 0. Hence,

ker
(
H 1(GF,W (OF))[1/p] ξ−→ H 1(GF,W (OF))[1/p]

) = 0.

Therefore, the long exact sequence of cohomology associated to the above short
exact sequence gives an isomorphism:

(W (OF)/ξW (OF)[1/p])GF 
 W (OF)/ξW (OF)[1/p].

The isomorphism GE 
 GE � identifies GF with an open subgroup of GE . By The-
orem 4.3.2 (Ax–Sen–Tate in characteristic 0), CGF

E 
 (E)GF . Since

CE 
 (W (OF)/ξW (OF)) [1/p],

one has
E

GF 
 W (OF)/ξW (OF)[1/p] =: F�.

Wehave proved that the Galois correspondence (36) associates toF/E � the extension
F�/E .
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(c) Conversely, let F be a finite extension of E . Set F =
(
E �
)GF

. From part b),

it follows that F = F�. Applying Proposition 5.4.2, we obtain that F is a perfectoid
field and that F � = (F�)� = F. This concludes the proof of the theorem. �

Remark 5.4.5 For the theory of almost étale extensions in the geometric setting and
Scholze’s theory of perfectoid algebras, we refer the reader to [59, 78] and [130]. See
also [95]. In another direction, further development of these ideas led to the theory
of diamonds [132], closely related to the theory of Fargues–Fontaine [60].

6 From Characteristic 0 to Characteristic p
and Vice Versa II: The Field of Norms

6.1 Arithmetically Profinite Extensions

6.1.1 In this section, we review the theory of the arithmetically profinite extensions
and the field of norms construction of Fontaine–Wintenberger [161]. Let K be a local
field of characteristic 0 with residue field of characteristic p.

Definition An algebraic extension L/K is called arithmetically profinite (APF) if
and only if

(GK : G(�)K GL) < +∞, ∀� � −1.

If L/K is a Galois extension with G = Gal(L/K ), then it is APF if and only if

(G : G(�)) < +∞, ∀� � −1.

It is clear that any finite extension isAPF.Below,we give some archetypical examples
of APF extensions.

Example 6.1.2 (1) Any totally ramified Zp-extension is APF (see Sect. 3.1).
(2) The p-cyclotomic extension K (ζp∞)/K is APF. This easily follows from

the fact that K (ζp∞)/K (ζp) is a totally ramified Zp-extension. See also Proposi-
tion 6.1.10 below.

(3) Letπ be a fixed uniformizer of K , and let Kπ be themaximal abelian extension
of K such that π is a universal norm in Kπ , namely that

π ∈ NF/K (F
∗), for all K ⊂ F ⊂ Kπ .

By local class field theory, Kπ/K is totally ramified and one has

Gal(Kπ/K )
(�) 
 U (�)

K , ∀� � 0.

Therefore, Kπ/K is APF.
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(4)More generally, from Sen’s Theorem 1.3.11 it follows that any totally ramified
p-adic Lie extension is APF. The converse is false in general (see [61] for examples).

(5) Letπ be a fixed uniformizer of K .The associatedKummer extension K ( p∞√π)
is an APF extension, which is not Galois. This can be proved by showing first that
the Galois extension K (ζp∞ , p∞√π) is APF. The last assertion can be either proved
by a direct computation or deduced from Sen’s theorem. The extension K ( p∞√π)
plays a key role in Abrashkin’s approach to the ramification filtration [4, 5, 7] and
in integral p-adic Hodge theory [29, 33, 97].

6.1.3 We analyze the ramification jumps of APF extensions. First we extend the
definition of a ramification jump to general (not necessarily Galois) extensions.

Definition Let L/K be an algebraic extension. A real number � � −1 is a ramifi-
cation jump of L/K if and only if

G(�+ε)K GL �= G(�)K GL ∀ε > 0.

If L/K is a Galois extension, this definition coincides with Definition in Sect. 1.3.

Proposition 6.1.4 Let L/K be an infinite APF extension, and let B denote the set
of ramification jumps of K . Then B is a countably infinite unbounded set.

Proof (a) Let L/K be an APF extension. First we prove that B is discrete. Let
�2 > �1 � −1 be two ramification jumps. Then

(GK : G(�1)K GL) � (GK : G(�2)K GL) < +∞,

and
(G(�1)K GL : G(�2)K GL) < +∞.

Therefore, there exists only finitely many subgroups H such that

G(�2)K GL ⊂ H ⊂ G(�1)K GL .

This implies that there are only finitely many ramification jumps in the interval
(�1, �2).

(b) Assume that B is bounded above by a. Then GLG
(a)
K = ∩

t�0
GLG

(a+t)
K . Let

g ∈ GLG
(a)
K . Then for any n � 0, we can write g = xn yn with xn ∈ GL and yn ∈

G(a+n)
K . SinceGL is compact, we can assume that (xn)n�0 converges. Hence, (yn)n�0

converges to some y ∈ ∩
n�0

G(a+n)
K . From ∩

n�0
G(a+n)

K = {1}, we obtain that g ∈ GL .

This shows that GLG
(a)
K = GL . Therefore

(GK : GLG
(a)
K ) = (GK : GL) = +∞,

which is in contradiction with the definition of APF extensions. �
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6.1.5 Let L/K be an infinite APF extension. We denote by B+ = (bn)n�1 the set
of its strictly positive ramification jumps. For all n � 1, set:

Kn = K
GLG

(bn )
K .

Proposition 6.1.6 The following statements hold true:

(i) L = ∞∪
n=1

Kn.

(ii) K1 is the maximal tamely ramified subextension of L/K.
(iii) For all n � 1, Kn+1/Kn is a non-trivial finite p-extension.
(iv) Assume that L/K is a Galois extension. Then for all n � 1, the group

Gal(Kn+1/Kn) has a unique ramification jump. In particular, Gal(Kn+1/Kn) is a
p-elementary abelian group.

Proof We prove assertion (ii). The maximal tamely ramified subextension of L/K
is

L tr = K
GL PK

,

where PK is the wild ramification subgroup. From the definition of the ramification
filtration, it follows that PK is the topological closure of ∪

�>0
G(�)K in GK . This implies

that GL PK = GLG
(b1)
K , and ii) is proved.

The assertions (i), (iii) and (iv) are clear. �

Corollary 6.1.7 An infinite APF extension is deeply ramified.

Proof Proposition 6.1.6 shows that such extension does not have finite
conductor. �

Remark 6.1.8 The converse of this corollary is clearly wrong. However Fesenko
[61] proved that every deeply ramified extension L/K of finite residue degree and
with discrete set of ramification jumps is APF.

6.1.9 We record some general properties of APF extensions.

Proposition 6.1.10 Let K ⊂ F ⊂ L be a tower of extensions.
(i) If F/K is APF and L/F is finite, then L/K is APF.
(ii) If F/K is finite and L/F is APF, then L/K is APF.
(iii) If L/K is APF, then F/K is APF.

Proof See [161, Proposition 1.2.3]. �

6.1.11 The definition of Hasse–Herbrand functions can be extended to APF exten-
sions. Namely, for an APF extension L/K , set:

ψL/K (�) =
⎧
⎨

⎩

�, if � ∈ [−1, 0],∫ �

0
(G(0)K : G(0)L G(t)K )dt, if � � 0,

ϕL/K (u) = ψ−1
L/K (u).
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It is not difficult to check that if K ⊂ F ⊂ L with [F : K ] < +∞, then one has

ψL/K = ψL/F ◦ ψF/K , ϕL/K = ϕF/K ◦ ϕL/F .

6.2 The Field of Norms

6.2.1 In this section, we review the construction of the field of norms of an APF
extension. Let E(L/K ) denote the directed set of finite subextensions of L/K .

Theorem 6.2.2 (Fontaine–Wintenberger) Let L/F be an infinite APF extension.
Set:

X (L/K ) = lim←−
E∈E(L/K )

E∗ ∪ {0}.

Then the following assertions hold true:
(i) Let α = (αE )E∈E(L/K ) and β = (βE )E∈E(L/K ). Set:

(αβ)E := αEβE ,

(α + β)E := lim
E ′∈E(L/E)

NE ′/E (αE ′ + βE ′).

Then αβ := ((αβ)E )E∈E(L/K ) and α + β := ((α + β)E )E∈E(L/K ) are well-defined
elements of X (L/K ).

(ii) The above defined addition andmultiplication equipX (L/K )with a structure
of a local field of characteristic p with residue field kL .

(iii) The valuation on X (L/K ) is given by

v(α) = vE (αE ),

for any K1 ⊂ E ⊂ L .Here K1 denotes themaximal unramified subextension of L/K .
(iv) For any ξ ∈ kL , let [ξ ] denote its Teichmüller lift. For each K1 ⊂ E ⊂ L set:

ξE := [ξ ]1/[E :K1].

Then the map
kL → X (L/K ), ξ �→ (ξE )E∈E(L/K1)

is a canonical embedding.

The proof occupies the remainder of this section. See [161, Sect. 2] for detail.

Definition The field X (L/K ) is called the field of norms of the APF extension
L/K .
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6.2.3 We start by writing Theorem 6.2.2 in a slightly different form, which also
makes more clear its relation to the theory of perfectoid fields.

For any APF extension E/F (finite or infinite), set:

i(E/F) = sup{� | GEG
(�)
F = GF }

If E ⊂ E ′ ⊂ E ′′ is a tower of finite extensions, then the relation ψE ′′/E = ψE ′′/E ′ ◦
ψE ′/E implies that

i(E ′′/E) � min{i(E ′/E), i(E ′′/E ′)}. (37)

Let B = (bn)n�0 denote the set of ramification jumps of L/K and let Kn = K
GLG

(bn )
K .

Since
ψL/K (�) = ψKn/K (�), ∀� ∈ [−1, bn],

from ψL/K = ψL/Kn ◦ ψKn/K , it follows that ψL/Kn (�) = � for � ∈ [−1, ψL/K (bn)],
and ψL/Kn (�) �= � for � > ψL/K (bn). Therefore

i(L/Kn) = ψL/K (bn), n � 1. (38)

In particular, i(L/Kn)→ +∞ when n → +∞.
6.2.4 For any E ∈ E(L/K1), set:

r(E) := smallest integer � (p − 1)i(L/E)

p
,

and
OE := OE/m

r(E)
E .

Theorem 6.2.5 Let L/K be an infinite APF extension. Then:
(i) For all finite subextensions E ⊂ E ′ of L/K , the norm map induces a ring

homomorphism
NE ′/E : OE ′ → OE .

(ii) The projective limit
A(L/K ) := lim←−

E∈E(L/K1)

OE

is a discrete valuation ring of characteristic p with residue field kL .
(iii) The map

kL → A(L/K ), ξ �→
(
ξE mod m

r(E)
E

)

E∈E(L/K1)
, ξE = [ξ ]1/[E :K1]

is a canonical embedding.



An Introduction to p-Adic Hodge Theory 125

6.2.6 The proof of Theorem 6.2.5 relies on the following proposition:

Proposition 6.2.7 Let E ′/E be a finite totally ramified p-extension. Then
(i) For all α, β ∈ OE ′ ,

vE (NE ′/E (α + β)− NE ′/E (α)− NE ′/E (β)) � (p − 1)i(E ′/E)
p

.

(ii) For any a ∈ OE , there exists α ∈ OE ′ such that

vE (NE ′/E (α)− a) � (p − 1)i(E ′/E)
p

.

Proof (a) Assume first that E ′/E is a Galois extension of degree p. From
Corollary 1.4.5 it follows that for any x ∈ OE ′, one has

vE (NE ′/E (1 + x)− 1 − NE ′/E (x)) � (p − 1)i(E ′/E)
p

.

Assume that vE ′(α) � vE ′(β). Setting x = α/β, we obtain i).
Let πE ′ be any uniformizer of E ′. Set πE = NE ′/E (πE ′). Write a ∈ OE in the

form:

a =
p−1∑

k=0

[ξk]π k
E , ξk ∈ kE .

Then again by Lemma 1.4.5, we have:

vE (NE ′/E (α)− a) � (p − 1)i(E ′/E)
p

forα =
p−1∑

k=0

[ξk]1/pπ k
E ′ .

Therefore, the proposition is proved for Galois extensions of degree p.
(b) Assume that the proposition holds for finite extensions E ′′/E ′ and E ′/E .Then

for α, β ∈ OE ′′ we have:

NE"/E ′(α + β) = NE ′′/E ′(α)+ NE ′′/E ′(β)+ γ,

and
NE"/E (α + β) = NE ′′/E (α)+ NE ′′/E (β)+ NE ′/E (γ )+ δ,

where vE ′(γ ) � (p−1)i(E ′′/E ′)
p and vE (δ) � (p−1)i(E ′/E)

p . Since E ′/E is totally rami-

fied, one has vE (NE ′/E (γ )) � (p−1)i(E ′′/E ′)
p , and from (37) it follows that

vE (NE"/E (α + β)− NE ′′/E (α)− NE ′′/E (β)) � (p − 1)i(E ′′/E)
p

.
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Therefore, the proposition holds for all finite p-extensions.
(c) The general case can be reduced to the case b) by passing to the Galois closure

of E ′. See [161, Sect. 2.2.2.5] for detail. �

6.2.8 Sketch of Proof of Theorem 6.2.5. From Proposition 6.2.7, if follows that
A(L/K ) is a commutative ring. Let x = (xE )E ∈ A(L/K ). If x �= 0, the there exists
E ∈ E(L/K1) such that xE �= 0. For any E ′ ∈ E(L/E), let x̂E ′ ∈ OE ′ be a lift of xE ′ .

Then v(x) := vE ′ (̂xE ′) does not depend on the choice of E ′ and defines a discrete
valuation of A(L/K ). It is easy to see that the topology defined by this valuation
coincideswith the topology of the projective limit of discrete sets on A(L/K ).Hence,
A(L/K ) is complete. Lemma6.2.9 below shows that the element x = (xE )E∈E(L/K1),

with xE = p mod m
r(E)
E for all E, is zero in A(L/E).Therefore, A(L/E) is a ring of

characteristic p.For all ξ1, ξ2 ∈ kL , the congruence [ξ1 + ξ2] ≡ [ξ1] + [ξ2] (mod p)
together with Lemma 6.2.9 imply that the map

kL → A(L/K ), ξ �→ (ξE mod π r(E)
E )E∈E(L/K1), ξE = [ξ ]1/[E :K1]

is an embedding of fields. Finally, from the definition of the valuation on A(L/K ),
we see that its residue field is isomorphic to kL . Theorem 6.2.5 is proved. �

Lemma 6.2.9 Let L/E be a totally ramified APF pro-p-extension. Then

vE (p) � (p − 1)i(L/E)

p
.

Proof First assume that F/E is a Galois extension of degree p. From elementary
properties of the ramification filtration, it follows that Gi = {1} for all i > eF

p−1 ,

where eF is the absolute ramification index of F (see [142, Exercise 3, p. 79]). This
implies that vE (p) � (p−1)i(F/E)

p for such extensions.
Now we consider the general case. Take the Galois closure M of L over E and

denote by M1/E its maximal tamely ramified subextension. It is clear that M1/E is
linearly disjoint with L/E . FromGalois theory, it follows that LM1/M1 has a Galois
subextension F of degree p over M1. Then the inequality (37) implies that

vE (p) � (p − 1)i(F/M1)

p
� (p − 1)i(LM1/M1)

p
.

Since the extensions M1/E and LM1/L are tamely ramified, from ψLM1/M1 ◦
ψM1/E = ψLM1/L ◦ ψL/E it follows that i(LM1/M1) = i(F/E). The lemma is
proved. �

6.2.10 Sketch of Proof of Theorem 6.2.2. We will use repeatedly the following
inequality: if F/E is a totally ramified p-extension, then for all x, y ∈ OF , one has

vE (NF/E (x)− NF/E (y)) � ϕF/E (t), if vF (x − y) � t. (39)
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This estimation can be proved by induction using Corollary 1.4.5. See [142,
Chap. V,§6] for the Galois case. The general case can be treated by passing to
the Galois closure.

Let α = (αE )E∈E(L/K ) and β = (βE )E∈E(L/K ) ∈ lim←−E∈E(L/K ) OE . From Proposi-
tion 6.2.7 and formula (39), it follows that for all intermediate finite subextensions
K ⊂ E ⊂ E ′ ⊂ E ′′ ⊂ L one has

vE
(
NE ′′/E (αE ′′ + βE ′′)− NE ′/E (αE ′ + βE ′)

)
� ϕE ′/E (r(E

′)) � ϕL/K (r(E ′)).

Since r(E ′)→ +∞ when E ′ runs over E(L/E), this proves the existence of the
limit

(α + β)E := lim
E ′∈E(L/E)

NE ′/E (αE ′ + βE ′).

Therefore, the addition and the multiplication on X (L/E) are well defined.
Consider the map

lim←−
E∈E(L/K )

OE → A(L/K ), (αE )E∈E(L/K ) �→ (αE )E∈E(L/K1), (40)

where αE = αE mod m
r(E)
E . Proposition 6.2.7 shows that this map is compatible

with the addition and the multiplication on the both sets.
Now let x = (xE )E ∈ A(L/K ). For all E , choose a lift x̂E ∈ OE .Applying again

the inequality (39), we see that for all E, the sequence NE ′/E (̂xE ′) converges to some
αE ∈ OE . From our constructions, it follows that the map

A(L/K )→ lim←−
E∈E(L/K1)

OE , x �→ (αE )E∈E(L/K1)

is the inverse of the map (40). Now the theorem follows from Theorem 6.2.5. �

6.3 Functorial Properties

6.3.1 In this section, L/K denotes an infinite APF extension. Any finite extension
M of L can be written as M = L(α), where α is a root of an irreducible polynomial
f (X) ∈ L[X ]. The coefficients of f (X) belong to some finite subextension F ∈
E(L/K ). For any E ∈ E(L/F), one has

F(α) ∩ E = F,

and we set:
E ′ = E(α).
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The system (E ′)E∈E(L/K ) is cofinal in E(M/K ). Consider the map

jM/L : X (L/K )→ X (M/K )

which sends any α = (αE )E∈E(L/K ) ∈ X (L/K ) to the element β = (βE ′)E ′∈E(M/K )
∈ X (M/K ) defined by

βE ′ = αE if E ′ = E(α)with E ∈ E(L/F).

The previous remarks show that jM/L is a well-defined embedding.
The following theorem should be compared with Theorem 5.4.4.

Theorem 6.3.2 (Fontaine–Wintenberger) (i) Let M/L be a finite extension. Then
X (M/K )/X (L/K ) is a separable extension of degree [M : L]. If M/L is a Galois
extension, then the natural action of Gal(M/L) on X (M/L) induces an isomor-
phism

Gal(M/L) 
 Gal (X (M/K )/X (L/K )) .

(ii) The above construction establishes a one-to-one correspondence

{finite extensions of L} ↔ {finite separable extensions ofX (L/K )},

which is compatible with the Galois correspondence.

Proof We only explain how to associate to any finite separable extension M of
X (L/K ) a canonical finite extension M of L of the same degree. Let M =
X (L/K )(α), where α is a root of an irreducible polynomial f (X) with coef-
ficients in the ring of integers of X (L/K ). We can write f (X) as a sequence
f (X) = ( fE (X))E∈E(L/K ), where fE (X) ∈ E[X ]. Then M = L (̂α), where α̂ is a
root of fE (X), and E is of “sufficiently big" degree over K . See [161, Sect. 3] for a
detailed proof. �

6.3.3 From this theorem, it follows that the separable closureX (L/K ) ofX (L/K )
can de written as

X (L/K ) = ∪[M :L]<∞X (M/K ).

Corollary 6.3.4 The field of norms functor induces a canonical isomorphism of
absolute Galois groups:

GX (L/K ) 
 GL .

6.3.5 Let L/K be an infinite totally ramified Galois APF extension. The Galois
group Gal(L/K ) acts naturally on X (L/K ). Fixing an uniformizer of X (L/K ),
we idenfifyX (L/K )with the local field kK ((x)) of Laurent power series. Let τ be an
automorphism of kK ((x)). If τ acts trivially on kK , then it is completely determined
by the power series τ(x) = a1x + a2x2 + · · · ∈ kK [[x]] with a1 �= 0. Consider the
group of formal power series
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Aut

(
kK ((x))

)
=
{

f (x) =
∞∑

i=1

ai x
i | a1 �= 0

}

with respect to the substitution group law f ◦ g(x) = f (g(x)).We have an injective
map

Gal(L/K ) ↪→ Aut

(
kK ((x))

)
. (41)

This map encodes important information about the ramification filtration on
Gal(L/K ). Recall that for any automorphism g of a local field E we defined:

iE (g) = vE (g(πE )− πE ).

Now we define this function on the infinite level, setting:

ix (g) = ordx (g(x)− x), g ∈ Gal(L/K ).

Then there exists F ∈ E(L/K ) such that for any Galois extension E ∈ E(L/F), one
has

iE (g) = ix (g)

(see [161, Proposition 3.3.2]).

6.3.6 The map (41) can be described explicitly for cyclotomic extensions of
unramified local fields. Assume that K is unramified, and set K∞ = K (ζp∞). Let
�K = Gal(K∞/K ). The action of �K on K∞ is given by the cyclotomic character:

χK : �K → Z∗
p, τ (ζpn ) = ζ

χK (τ )
pn , τ ∈ �K .

Set:
ε = (ζpn )n�0 ∈ X (K∞/K ). (42)

Then x = ε − 1 is a uniformizer of X (K∞/K ), and X (K∞/K ) = kK ((x)). The
action of �K onX (K∞/K ) is given by

τ(x) = (1 + x)χK (τ ) − 1 (mod p), τ ∈ �K . (43)

This explicit formula can be generalized to the case of maximal abelian totally
ramified extensions using the Lubin–Tate theory.

We refer the reader to [62, 107, 108, 133, 159, 160] for further results about
the connection between Galois groups and automorphisms of local fields of positive
characteristic.

6.3.7 We discuss the compatibility of reciprocity maps in characteristics 0 and p
with the field of norms functor. Let L/K be an APF extension. For any E ∈ E(L/K )
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we have the reciprocity map
θE : E∗ → Gab

E .

Passing to projective limit, and identifying lim←−E∈E(L/K ) E
∗ with X (L/K )∗, we

obtain an injective homomorphism:

θ∞ : X (L/K )∗ → Gab
L .

By Corollary 6.3.4, the Galois group Gab
L is canonically isomorphic to Gab

X (L/K ). Let

θX (L/K ) : X (L/K )∗ → Gab
X (L/K )

denote the reciprocity map for the field of norms X (L/K ).

Theorem 6.3.8 (Laubie) The diagram

X (L/K )∗
θ∞

θX (L/K )

Gab
L




Gab
X (L/K )

commutes.

Proof See [107, Théorème 3.2.2]. �

6.4 Comparison with the Tilting Equivalence

6.4.1 Recall that an infinite APF extension if deeply ramified, and therefore its
completion L̂ is a perfectoid field. We finish this section with comparing the field
of norms with the tilting construction. A general result was proved by Fontaine and
Wintenberger for APF extensions satisfying some additional condition.

Definition A strictly APF extension is an APF extension satisfying the following
property:

lim inf
�→+∞

ψL/K (�)

(G(0)K : G(0)L G(�)K )
> 0.

From Sen’s Theorem 1.3.11, it follows that if Gal(L/K ) is a p-adic Lie group,
then L/K is strictly APF.

6.4.2 Let L/K be an infinite strict APF extension. Recall that we denote by K1 the
maximal tamely ramified subextension of L/K . For E ∈ E(L/K1), set d(E) = [E :
K1]. For each n � 1, set:
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En = {E ∈ E(L/K1) | pn divides d(E)}.

Let α = (αE )E∈E(L/K ) ∈ X (L/K ). It can be proved (see [161, Proposition 4.2.1])
that for any n � 1, the family

α
d(E)p−n

E , E ∈ En

converges to some xn ∈ L̂.Once the convergence is proved, it’s clear that x p
n = x p

n−1

for all n, and therefore x = (xn)n�1 ∈ L̂�. This defines an embedding

X (L/K ) ↪→ L̂�.

Theorem 6.4.3 (Fontaine–Wintenberger) Let L/K be an infinite strict APF exten-
sion. Then

̂X (L/K )rad = L̂�.

Proof See [161, Théorème 4.3.2 & Corollaire 4.3.4]. �

Remark 6.4.4 In [61], Fesenko gave examples of deeply ramified extensions which
do not contain infinite APF extensions.

7 �-Adic Representations

7.1 Preliminaries

7.1.1 Let E be a complete normed field, and let V be a finite-dimensional E-vector
space. Each choice of a basis of V fixes a topological isomorphism V 
 En and
equips V with a product topology. Note that this topology does not depend on the
choice of the basis.

Definition A representation of a topological group G on V is a continuous homo-
morphism

ρ : G → AutEV .

Fixing a basis of V, one can view a representation of G as a continuous homomor-
phism G → GLn(E).

Let K be a field and let K be a separable closure of K . We denote by GK the
absolute Galois group Gal(K/K ) of K . Recall that GK is equipped with the inverse
limit topology and therefore is a compact and totally disconnected topological group.

Definition Let � be a prime number. An �-adic Galois representation is a repre-
sentation of GK on a finite dimensional Q�-vector space equipped with the �-adic
topology.



132 D. Benois

Sometimes it is convenient to consider representations with coefficients with a
finite extension E of Q�. Below, we give some archetypical examples of �-adic
representations.

7.1.2 One-dimensional representations. Let V be a one-dimensional Galois rep-
resentation. Then the action of GK on V is given by a continuous character
η : GK → Z∗

p, and we will write Qp(η) instead V .

7.1.3 Roots of unity. The following one-dimensional representations are of particular
importance for us. Let � �= char(K ). The group GK acts on the groups μ�n of �n-th
roots of unity via the �-adic cyclotomic character χK ,� : GK → Z∗

� :

g(ζ ) = ζ χK ,�(g), ∀g ∈ GK , ζ ∈ μ�n .

Set Z�(1) = lim←−n
μ�n and Q�(1) = Z�(1)⊗Z� Q�. Then Q�(1) is a one dimensional

Q�-vector space equipped with a continuous action of GK . The homomorphism
GK → AutQ�Q�(1) 
 Q∗

� concides with χK ,�.

7.1.4 Abelian varieties. Let A be an abelian variety over K , and let � �= char(K ).The
group A[�n] of �n-torsion points of A(K ) is a Galois module, which is isomorphic
(not canonically) to (Z/�nZ)2d as an abstract group. The �-adic Tate module of A is
defined as the projective limit

T�(A) = lim←−
n

A[�n].

T�(A) is a free Z�-module of rank 2d equipped with a continuous action of GK . The
associated vector space V�(A) = T�(A)⊗Z� Q� gives rise to an �-adic representation

ρA,� : GK → AutQ�V�(A).

Note that T�(A) is a canonical GK -lattice of V�(A). The reduction of T�(A) modulo
� is isomorphic to A[�].
7.1.5 �-Adic Cohomology. Let X be a smooth projective variety over K . Fix � �=
char(K ). The Galois groupGK acts on the étale cohomology Hn

ét(X ×K K ,Z/�nZ).
Set:

Hn
� (X) = lim←−

n

Hn
ét(X ×K K ,Z/�nZ)⊗Z� Q�.

It is known that the Q�-vector spaces Hn
� (X) are finite dimensional and therefore

can be viewed as �-adic representations of GK :

GK → AutQ�H
n
� (X). (44)

These representations contain fundamental informations about the arithmetic of alge-
braic varieties. If X is a smooth proper schemeover afinite fieldFq of characteristic p,
then the geometric Frobenius Frq acts on Hn

� (X), and the zeta-function Z(X/Fq , t)
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has the following cohomological interpretation envisioned by Weil and proved by
Grothendieck:

Z(X/Fq , t) =
2d∏

i=0

(
1 − Frq t | Hn

� (X)
)(−1)n+1

.

Katz’s survey [93] contains an interesting discussion of what is known and not known
about �-adic cohomology over finite fields.

Let now X be a smooth projective variety over a number field K . For any finite
place p of K , we can consider the restriction of the representation (44) on the
decomposition group at p. This gives a representation of the local Galois group
GKp

= Gal(K p/Kp):
GKp

→ AutQ�H
n
� (X).

If p � � and X has a good reduction Xp at p, the base change theorem says that
Hn
� (X) is isomorphic to Hn

� (Xp). In particular, Hn
� (X) is unramified at p, i.e. GKp

acts on Hn
� (X) through its maximal unramified quotient Gal(K ur

p /Kp). The converse
holds for abelian varieties: if V�(A) is unramified, then A has good reduction at p � �

(criterion of Néron–Ogg–Shafarevich [144]).
If p � �, and X has bad reduction at p, an important information about the action

of GKp
is provided by Grothendieck’s �-adic monodromy theorem (Theorem 7.2.3

below). The case p | � can be studied by the tools of p-adic Hodge theory. This is
the main subject of the remainder of these notes.

7.1.6 Wedenote byRepQ� (GK ) the category of �-adic representations of the absolute
Galois group of a field K . Some of its first properties can be summarized in the
following proposition:

Proposition 7.1.7 RepQ� (GK ) is a neutral Tannakian category.

We refer the reader to [51] for the tannakian formalism. In particular,RepQ� (GK )

is an abelian tensor category. If V1 and V2 are �-adic representations, the Galois group
GK acts on V1 ⊗Q� V2 by

g(�1 ⊗ �2) = g�1 ⊗ g�2, ∀g ∈ GK , �1 ∈ V1, �2 ∈ V2.

RepQ� (GK ) is equipped with the internal Hom:

Hom(V1, V2) := HomQ� (V1, V2).

The Galois group acts on Hom(V1, V2) by

g( f )(�1) = g f (g−1�1), ∀g ∈ GK , f ∈ Hom(V1, V2), �1 ∈ V1.

For any �-adic representation V , we denote by V ∗ its dual representation

V ∗ := Hom(V,Q�) := HomQ� (V,Q�),
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where Q� denotes the trivial representation of dimension one.
For any positive n, we set Q�(n) = Q�(1)⊗n and Q�(−n) = Q�(n)∗.

7.1.8 We will also consider Z�-representations. Namely, a Z�-representation of GK

is a finitely generated freeZ�-module equippedwith a continuous linear action ofGK .

The category RepZ� (GK ) of Z�-representations is abelian. It contains the tannakian
subcategory RepF� (GK ) of representations of GK over the finite field F� = Z/�Z.
We have the reduction-modulo-� functor

RepZ� (GK )→ RepF� (GK ),

T �→ T ⊗Z� F�.

The following proposition can be easily deduced from the compactness of GK :

Proposition 7.1.9 For any �-adic representation V , there exists a Z�-lattice stable
under the action of GK . In particular, the functor

RepZ� (GK ) → RepQ� (GK ),

T �→ T ⊗Z� Q�

is essentially surjective.

7.2 �-Adic Representations of Local Fields (� �= p)

7.2.1 From now on, we consider �-adic representations of local fields. Let K be a
local field with residue field kK of characteristic p. To distinguish between the cases
� �= p and � = p, we will use in the second case the term p-adic keeping �-adic
exclusively for the inequal characteristic case.

7.2.2 We consider the �-adic case. Recall that for the tame quotient of the inertia
subgroup we have the isomorphism (20):

Gal(K tr/K ur) 

∏

q �=p

Zq .

Let ψ� denote the projection

ψ� : IK → Gal(K tr/K ur)→ Z�.

The following general result reflects the Frobenius structure on the tame Galois
group.

Theorem 7.2.3 (Grothendieck’s �-adic monodromy theorem) Let

ρ : GK → GL(V )
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be an �-adic representation. Then the following holds true:
(i) There exists an open subgroup H of the inertia group IK such that the auto-

morphism ρ(g) is unipotent for all g ∈ H.
(ii) More precisely, there exists a nilpotent operator N : V → V such that

ρ(g) = exp(Nψ�(g)), ∀g ∈ H.

(iii) Let F̂rK ∈ GK be any lift of the arithmetic Frobenius FrK . Set F = ρ(F̂rK ).
Then

FN = q N F,

where q = |kK |.
Proof See [144] for details.

(a) By Proposition 7.1.9, ρ can be viewed as an homomorphism

ρ : GK → GLd(Z�).

Let U = 1 + �2Md(Z�). Then U has finite index in GLd(Z�), and there exists a
finite extension K ′/K such that ρ(GK ′) ⊂ U. Without loss of generality, we may
(and will) assume that K ′ = K .

(b) The wild ramification subgroup PK is a pro-p-group. SinceU is a pro-�-group
with � �= p,wehaveρ(PK ) = {1}, andρ factors through the tame ramification group
Gal(K tr/K ). Since Gal(K tr/K ur) 
∏

q
Zq , the same argument shows that ρ factors

through the Galois group of the extension K tr
� /K , where

K tr
� = K ur(π1/�∞), π is a uniformizer ofK .

Let τ� be the automorphism that maps to 1 under the isomorphism Gal(K tr
� /K

ur) 

Z�. By Proposition 2.1.4, Gal(K tr

� /K ) is the pro-�-group topologically generated by
τ� and by any lift f� of the Frobenius automorphism, with the single relation:

f�τ� f
−1
� = τ

q
� . (45)

(c) Set X = ρ(τ�) ∈ U. The �-adic logarithm map converges on U, and we set:

N := log(X) =
∞∑

n=1

(−1)n+1 (X − 1)n

n
.

Then for any g ∈ IK , we have:

ρ(g) = ρ(τ
ψ�(g)
� ) = exp(Nψ�(g)).
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Moreover, applying the identity log(BAB−1) = B log(A)B−1 to (45) and setting
F = ρ( f�), we obtain:

FNF−1 = qN .

(d) From the last formula, it follows that N and qN have the same eigenvalues.
Therefore, they are all zero, and N is nilpotent. The theorem is proved. �

8 Classification of p-Adic Representations

8.1 The Case of Characteristic p

8.1.1 In this section, we turn to p-adic representations. It turns out, that it is possible
to give a full classification of p-adic representations of the Galois group of any field
K of characteristic p in terms of modules equipped with a semi-linear operator. This
can be explained by the existence of the Frobenius structure on K . To simplify the
exposition, we will work with the purely inseparable closure F := K rad of K . How-
ever, it is not absolutely necessary (see [69]). On the contrary, it is often preferable
to work with non-perfect fields. We will come back to this question in Sect. 8.2.

8.1.2 Consider the ring of Witt vectors

OF = W (F).

Recall that OF is a complete discrete valuation ring of characteristic 0 with maximal
ideal (p) = pOF and residue field F. Its field of fractions F = OF [1/p] is an
unramified discrete valuation field. The field F = K

rad
is an algebraic closure of F,

and the Galois groups of K/K and F/F are canonically isomorphic. Set:

Ôur
F = W (F), F̂ ur = Ôur

F [1/p].

Then F̂ ur is a complete unramified discrete valuation field with residue field F and
therefore can be identified with the completion of the maximal unramified extension
of F . The field F is equipped with the following structures:

– The action of the absolute Galois group GK ;
– The absolute Frobenius automorphism ϕ : F → F, ϕ(x) = x p.

The actions of GK and ϕ commute to each other. One has

F
GK = F, F

ϕ=1 = Fp.

These actions extend naturally from F to Ôur
F and F̂ ur, and one has

(Ôur
F )

GK = OF , (Ôur
F )

ϕ=1 = Zp.
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Definition Let A = F, OF or F . A ϕ-module over A is a finitely generated A-
module D equipped with a semi-linear injective operator ϕ : D → D. Namely, ϕ
satisifies the following properties:

ϕ(x + y) = ϕ(x)+ ϕ(y), ∀x, y ∈ D,

ϕ(ax) = ϕ(a)ϕ(x), ∀a ∈ A, x ∈ D.

Amorphism of ϕ-modules is an A-linear map f : D1 → D2 which commutes with
ϕ :

f (ϕ(d)) = ϕ( f (d)), ∀d ∈ D1.

8.1.3 Consider A as an A-module via the Frobenius map ϕ : A → A. For a ϕ-
module D, let D ⊗A,ϕ A denote the tensor product of A-modules D and A. We
consider D ⊗A,ϕ A as an A-module:

λ(d ⊗ a) = d ⊗ λa, λ ∈ A, d ⊗ a ∈ D ⊗A,ϕ A.

Then the semi-linear map ϕ : D → D induces an A-linear map

� : D ⊗A,ϕ A → D, d ⊗ a �→ aϕ(d).

Definition (i) Let A = F or OF . A ϕ-module D over A is étale if the map � :
D ⊗A,ϕ A → D is an isomorphism.

(ii) A ϕ-module over F is étale if it has an étale OF -lattice.

Let A = F or OF , and assume that D if free over A. Then D is étale if and only
if the matrix of ϕ : D → D is invertible over A. Note that this property does not
depend on the choice of the A-base of D.

8.1.4 We denote byMϕ,ét
A the category of étale ϕ-modules over A = F, OF ,F .We

refer the reader to [69] for a detailed study of these categories. All these categories
are abelian. They are equipped with the tensor product:

D1 ⊗A D2, ϕ(d1 ⊗ d2) = ϕ(d1)⊗ ϕ(d2)

and the internal Hom :

Hom(D1, D2) := HomA(D1, D2).

The action of ϕ on Hom(D1, D2) is defined as follows. Let f : D1 → D2. Then
ϕ( f ) is the composition of maps:

ϕ( f ) : D1
�−1−−→ D1 ⊗A,ϕ A

f ⊗id−−→ D2 ⊗A,ϕ A
�−→ D2.
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The categories Mϕ,ét
F and Mϕ,ét

F are neutral tannakian. If A = F or F , then for any
D ∈ Mϕ,ét

A , we denote by D∗ the dual module:

D∗ = HomA(D, A).

8.1.5 The term étale can be explained as follows. Let D be a ϕ-module over F . Fix
a basis {e1, . . . , en} of D.Write:

ϕ(ei ) =
n∑

i=1

ai j e j , ai j ∈ F, 1 � i � n.

Let I ⊂ F[X1, . . . , Xn] denote the ideal generated by

X p
i −

n∑

i=1

ai j X j , 1 � i � n.

Then the algebra A := F[X1, . . . , Xn]/I is étale over F if and only if D is an étale
ϕ-module. Consider the Fp-vector space HomF (D, F)ϕ=1. Let f ∈ HomF (D, F).
Then ϕ( f ) = f if and only if the vector ( f (e1), . . . , f (en)) ∈ F

n
is a solution of

the system

X p
i −

n∑

i=1

ai j X j = 0, 1 � i � n.

Therefore, we have isomorphisms:

HomF (D, F)
ϕ=1 = HomF−alg(A, F) = Spec(A)(F).

Note that if D is étale, then the cardinality of Spec(A)(F) is pn , andHomF (D, F)ϕ=1

is a Fp-vector space of dimension n.

8.1.6 For the dual module D∗, we have a canonical isomorphisms:

D ⊗F F 
 HomF (D
∗, F)⊗F F 
 HomF (D

∗, F).

Then
(D ⊗F F)ϕ=1 
 HomF (D

∗, F)ϕ=1,

and applying the previous remark to D∗, we see that (D ⊗F F)ϕ=1 is a Fp-vector
space of dimension n.

8.1.7 Following Fontaine [69], we construct a canonical equivalence between the
category RepFp

(GK ) of modular Galois representations of GK and Mϕ,ét
F . For any

V ∈ RepFp
(GK ), set:

DF (V ) = (V ⊗Fp F)
GK .
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Since GK acts trivially on F, it is clear that DF (V ) is an F-module equipped with
the diagonal action of ϕ (here ϕ acts trivially on V ). For any D ∈ Mϕ,ét

F , set:

VF (D) = (D ⊗F F)ϕ=1.

Then VF (D) is an Fp-vector space equipped with the diagonal action of GK (here
GK acts trivially on D).

Theorem 8.1.8 (i) Let V ∈ RepFp
(GK ) be a modular Galois representation of

dimension n. Then DF (V ) is an étale ϕ-module of rank n over F.
(ii) Let D ∈ Mϕ,ét

F be an étale ϕ-module of rank n over F. Then VF (D) is a
modular Galois representation of GK of dimension n over Fp.

(iii) The functors DF and VF establish equivalences of tannakian categories

DF : RepFp
(GK )→ Mϕ,ét

F , VF : Mϕ,ét
F → RepFp

(GK ),

which are quasi-inverse to each other. Moreover, for all T ∈ RepFp
(GK ) and D ∈

Mϕ,ét
F , we have canonical and functorial isomorphisms compatible with the actions

of GK and ϕ on the both sides:

DF (T )⊗F F 
 T ⊗Fp F,

VF (D)⊗Fp F 
 D ⊗F F .

Proof (a) Let V ∈ RepFp
(GK ) be a modular representation of dimension n. The

Galois group GF acts semi-linearly on V ⊗Fp F . FromHilbert’s Theorem 90 (Theo-
rem 1.6.3), it follows that DF (V ) = (V ⊗Fp F)

GF has dimension n over F, and that
the multiplication in F induces an isomorphism

(V ⊗Fp F)
GF ⊗F F

∼−→ V ⊗Fp F .

Hence:
DF (V )⊗F F

∼−→ V ⊗Fp F .

This isomorphism shows that the matrix of ϕ is invertible in GLn(F) and therefore
in GLn(F). This proves that DF (V ) is étale.

Taking the ϕ-invariants on the both sides, one has

VF (DF (V )) = (DF (V )⊗F F)ϕ=1 ∼−→ (V ⊗Fp F)
ϕ=1 = V . (46)

(b) Conversely, let D ∈ Mϕ,ét
F .We already know (see Sect. 8.1) that VF (D) is a

Fp-vector space of dimension n. Consider the map

α : (D ⊗F F)ϕ=1 ⊗Fp F → D ⊗F F, (47)
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induced by themultiplication in F .Weclaim that thismap is an isomorpism. Since the
both sides have the same dimension over F, it is sufficient to prove the injectivity. To
do that, we use the following argument, known as Artin’s trick. Assume that f is not
surjective, and take a non-zero element x ∈ ker(α)which has a shortest presentation
in the form

x =
m∑

i=1

di ⊗ ai , di ∈ VF (D), ai ∈ F .

Without loss of generality, we can assume that am = 1 (dividing by am). Note that
ϕ(x)− x ∈ ker(α). On the other hand, it can be written as

ϕ(x)− x =
m∑

i=1

di ⊗ (ϕ(ai )− ai ) =
m−1∑

i=1

di ⊗ (ϕ(ai )− ai ).

By our choice of x , this implies that ϕ(ai ) = ai , and therefore ai ∈ Fp for all i. But
in this case x ∈ VF (D), and x = α(x) = 0. This proves the injectivity of (47).

(c) By part (b), we have an isomorphism:

VF (D)⊗Fp F → D ⊗F F .

Taking the Galois invariants on the both sides, we obtain:

DF (VF (D)) = (VF (D)⊗Fp F)
GF

∼−→ (D ⊗F F)GF = D. (48)

From (46) and (48), it follows that the functors DF and VE are quasi-inverse to
each other. In particular, they are equivalences of categories. Other assertions can be
checked easily. �

8.1.9 Now we turn to Zp-representations. For all T ∈ RepZp
(GK ) and D ∈ Mϕ,ét

OF
,

set:
DOF (T ) = (T ⊗Zp Ô

ur
F )

GK ,

VOF (D) = (D ⊗OF Ôur
F )

ϕ=1.

The following theorem can be deduced from Theorem 8.1.8 by devissage.

Theorem 8.1.10 (Fontaine) (i) Let T ∈ RepZp
(GK ) be a Zp-representation. Then

DOF (T ) is an étale ϕ-module over OF .

(ii) Let D ∈ Mϕ,ét
OF

be an étale ϕ-module over OF . Then VOF (D) is a Zp-
representation of GK .

(iii) The functors DOF and VOF establish equivalences of categories

DOF : RepZp
(GK )→ Mϕ,ét

OF
, VOF : Mϕ,ét

OF
→ RepZp

(GK ),
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which are quasi-inverse to each other. Moreover, for all T ∈ RepZp
(GK ) and D ∈

Mϕ,ét
OF
, we have canonical and functorial isomorphisms compatible with the actions

of GK and ϕ on the both sides:

DOF (T )⊗OF Ôur
F 
 T ⊗Zp Ô

ur
F ,

VOF (D)⊗Zp Ô
ur
F 
 D ⊗OF Ôur

F .

For p-adic representations, we have the following:

Theorem 8.1.11 (i) Let V be a p-adic representation of GK of dimension n. Then
DF (V ) = (V ⊗Qp F̂

ur)GK is an étale ϕ-module of dimension n over F .

(ii) Let D ∈ Mϕ,ét
F be an étale ϕ-module of dimension n overF . Then VF (D) =

(D ⊗Qp F̂
ur)ϕ=1 is a p-adic Galois representation of GK of dimension n over Qp.

(iii) The functors
DF : RepQp

(GK )→ Mϕ,ét
F ,

VF : Mϕ,ét
F → RepQp

(GK ),

are equivalences of tannakian categories, which are quasi-inverse to each other.
Moreover, for all V ∈ RepQp

(GK ) and D ∈ Mϕ,ét
F ,we have canonical and functorial

isomorphisms compatible with the actions of GK and ϕ on the both sides:

DF (V )⊗F F̂ ur 
 V ⊗Qp F̂
ur,

VF (D)⊗Qp F̂
ur 
 D ⊗F F̂ ur.

8.2 The Case of Characteristic 0

8.2.1 In this section, K is a local field of characteristic 0 with residual char-
acteristic p. Let K∞ = K (ζp∞) denote the p-cyclotomic extension of K . Set
HK = Gal(K/K∞) and �K = Gal(K∞/K ). Then K∞/K is a deeply ramified (even
an APF) extension, and we can consider the tilt of its completion:

F := K̂ �∞.

The field F is perfect, of characteristic p, and we apply to F the contructions of
Sect. 8.1. Namely, set OF = W (F) and F = OF [1/p]. These rings are equipped
with the weak topology, defined in Sect. 5.3. By Proposition 5.4.3, the separable
closure F of F is dense in C�K and we have a natural inclusion Ôur

F ⊂ W (C�K ). The
Galois group GK acts naturally on the maximal unramified extension F ur of F
in W (C�K )[1/p] and on its p-adic completion F̂ ur. By Theorem 5.4.4, this action
induces a canonical isomorphism:
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HK 
 Gal(F ur/F ). (49)

In particular, (F̂ ur)HK = F . The cyclotomic Galois group �K acts on F and there-
fore on OF and F .

Definition Let A = F, OF , orF . A (ϕ, �K )-module over A is a ϕ-module over A
equipped with a continuous semi-linear action of �K commuting with ϕ.A (ϕ, �K )-
module is étale if it is étale as a ϕ-module.

We denote by Mϕ,�,ét
A the category of (ϕ, �K )-modules over A. It can be easily

seen thatMϕ,�,ét
A is an abelian tensor category. Moreover, if A = F orF , it is neutral

tannakian.

8.2.2 Now we are in position to introduce the main constructions of Fontaine’s
theory of (ϕ, �K )-modules. Let T be a Zp-representation of GK . Set:

DOF (T ) = (T ⊗Zp Ô
ur
F )

HK .

Thanks to the isomorphism (49) and the results of Sect. 8.1, DOF (T ) is an étale
ϕ-module. In addition, it is equipped with a natural action of �K , and therefore we
have a functor

DOF : RepZp
(GK ) → Mϕ,�,ét

OF
.

Conversely, let D be an étale (ϕ, �K )-module over OF . Set:

VOF (D) = (D ⊗Zp Ô
ur
F )

ϕ=1.

By the results of Sect. 8.1,VOF (D), is a freeZp-module of the same rank.Moreover,
it is equipped with a natural action of GK , and we have a functor

VOF : Mϕ,�,ét
OF

→ RepZp
(GK ).

Theorem 8.2.3 (Fontaine) (i) The functors DOF and VOF are equivalences of
categories, which are quasi-inverse to each other.

(ii) For all T ∈ RepZp
(GK ) and D ∈ Mϕ,ét

OF
, we have canonical and functorial

isomorphisms compatible with the actions of GK and ϕ on the both sides:

DOF (T )⊗OF Ôur
F 
 T ⊗Zp Ô

ur
F ,

VOF (D)⊗Zp Ô
ur
F 
 D ⊗OF Ôur

F .
(50)

Here GK acts on (ϕ, �K )-modules through �K .

Proof Theorem 8.1.10 provide us with the canonial and functorial isomorphisms
(50), which are compatible with the action of ϕ and HK . From construction, it
follows that they are compatible with the action of the whole Galois group GK on
the both sides. This implies that the functorsDOF andVOF are quasi-inverse to each
other, and the theorem is proved. �
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Remark 8.2.4 We invite the reader to formulate and prove the analogous statements
for the categories RepFp

(GK ) and RepQp
(GK ).

8.2.5 One can refine this theory working with the field of norms rather that with
the perfectoid field K̂ �∞. To simplify notation, let EK denote the field of norms of
K∞/K .We recall that by Theorem 6.4.3, Erad

K is dense in K̂ �∞.We want to lift EK to
characteristic 0.First,we consider themaximal unramified subextension K0 of K .Let
K0,∞/K0 denote its p-cyclotomic extension. Set �K0 = Gal(K0,∞/K0) and HK0 =
Gal(K/K0,∞). LetEK0 denote the field of norms of K0,∞/K0. ThenEK0 = kK ((x)),
where x = ε − 1 and ε = (ζpn )n�0 (see (43)). Take the Teichmüller lift [ε] ∈ OF

of ε and set X = [ε] − 1. The Galois group and the Frobenius automorphism act on
[ε] and X through �K0 as follows:

g([ε]) = [ε]χ0(g), g ∈ GK0 , ϕ([ε]) = [ε]p,
g(X) = (1 + X)χ0(g) − 1, g ∈ GK0 , ϕ(X) = (1 + X)p − 1,

where χ0 : GK0 → Z∗
p denotes the p-adic cyclotomic character for K0. The ring

of integers OK0 = W (kK ) is a subring of OF .We define the following subrings of
OF :

A+
K0

= OK0 [[X ]],
AK0 = ̂A+

K0
[1/X ] = p-adic completion ofA+

K0
[1/X ].

Note that AK0 is an unramified discrete valuation ring with residue field EK0 . It can
be described explicitely as the ring of power series of the form

∑

n∈Z
an X

n, an ∈ OK0 and lim
n→−∞ an = 0.

It is crucial that AK0 is stable under the actions of �K0 and ϕ. Set BK0 = AK0 [1/p].
Then BK0 is an unramified discrete valuation field with the ring of integers AK0 .

8.2.6 By Hensel’s lemma, for each finite separable extension E/E0, there exists
a unique complete subring A ⊂ Ôur

F containing AK0 and such that its residue field
A/pA is isomorphic to E .We denote by Aur

K0
the compositum of all such extensions

in Ôur
F and set Bur

K0
= Aur

K0
[1/p]. Then Bur

K0
is the maximal unramified extension of

BK0 and Aur
K0

is its ring of integers. Let B and A denote the p-adic completions of
Bur

K0
and Aur

K0
respectively. All these rings are stable under the natural action of GK0 .

By the theory of fields of norms, this action induces canonical isomorphisms:

HK0 
 Gal(EK0/EK0) 
 Gal(Bur
K0
/BK0).

8.2.7 Recall that K is a totally ramified extension of K0. Set:

AK = AHK , BK = AK [1/p].
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Then BK is an unramified extension of BK0 with residue field EK . One has

[BK : BK0 ] = [EK : EK0 ] = [K∞ : K0,∞].

These constructions can be summarized in the following diagram, where the hori-
zontal maps are reductions modulo p:

A E

AK EK

AK0 EK0

8.2.8 The notion of an (étale) (ϕ, �K )-module extends verbatim to the case of
modules over AK (respectively, BK ). We denote by Mϕ,ét

AK
and Mϕ,ét

BK
the resulting

categories. For any Zp-representation T of GK , set:

D(T ) = (T ⊗Zp A)
HK .

Conversely, for any étale (ϕ, �K )-module D over AK , set:

V(D) = (D ⊗Zp A)
ϕ=1.

Theorem 8.2.9 (Fontaine) The functors D and V define equivalences of categories

D : RepZp
(GK )→ Mϕ,ét

AK
, V : Mϕ,ét

AK
→ RepZp

(GK ),

which are quasi-inverse to each other.
(ii) For all T ∈ RepZp

(GK ) and D ∈ Mϕ,ét
AK
, we have canonical and functorial

isomorphisms compatible with the actions of GK and ϕ on the both sides:

D(T )⊗AK A 
 T ⊗Zp A,

V(D)⊗Zp A 
 D ⊗AK A.

Proof The theorem can be proved by the same arguments as used in the proofs of
Theorems 8.1.8 and 8.2.3 above. For details, see [69, Théorème 3.4.3]. �

Remark 8.2.10 We invite the reader to formulate and prove the analogous state-
ments for the categories RepFp

(GK ) and RepQp
(GK ).

8.2.11 We remark that for all T ∈ RepZp
(GK ), one has

DOF (T ) 
 D(T )⊗AK OF .
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Analogously, for all D ∈ Mϕ,ét
AK
, one has

V(D) 
 VOF (D ⊗AK OF ).

Contrary toDOF (T ), the moduleD(T ) is defined over a ring of formal power series.
This allows to use the tools of p-adic analysis and relate (ϕ, �K )-modules to the the-
ory p-adic differential equations (Fontaine’s program). See also Sect. 13 for further
comments.

9 B-Admissible Representations

9.1 General Approach

9.1.1 The classification of all p-adic representations of local fields of characteristic
0 in terms of (ϕ, �K )-modules is a powerful result. However, the representations
arising in algebraic geometry have very special properties and form some natural
subcategories of RepQp

(GK ). Moreover, as was first observed by Grothendieck in
the good reduction case, it should be possible to classify them in terms of some
objects of semi-linear algebra, such as filtered Dieudonné modules (Grothendieck’s
mysterious functor). In this section, we consider Fontaine’s general approach to this
problem. See [71] for a detailed exposition.

9.1.2 In this section, K is a local field. As usual, we denote by K its separable closure
and set GK = Gal(K/K ). To simplify notation, in the remainder of this paper we
will writeC instead ofCK for the p-adic completion of K . Since the field of complex
numbers will appear only occasionally, this convention should not lead to confusion.

Let B be a commutative Qp-algebra without zero divisors, equipped with a Qp-
linear action of GK . Let C denote the field of fractions of B. Set E = BGK . We
adopt the definition of a regular algebra provided by Brinon and Conrad in [32],
which differs from the original definition in [71].

Definition The algebra B is GK -regular if it satisfies the following conditions:
(i) BGK = CGK ;
(ii) Each non-zero b ∈ B such that the lineQpb, is stable under the action of GK ,

is invertible in B.

If B is a field, these conditions are satisfied automatically.

9.1.3 In the remainder of this section, we assume that B is GK -regular. From the
condition (ii), it follows that E is a field. For any p-adic representation V of GK we
consider the E-module

DB(V ) = (V ⊗Qp B)
GK .

The multiplication in B induces a natural map
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αB : DB(V )⊗E B → V ⊗Qp B.

Proposition 9.1.4 (i) The map αB is injective for all V ∈ RepQp
(GK ).

(ii) dimE D(V ) � dimQp V .

Proof See [32, Theorem 5.2.1]. Set DC(V ) = (V ⊗Qp C)
GK . Since BGK = CGK ,

DC(V ) is an E-vector space, and we have the following diagram with injective
vertical maps:

DB(V )
αB

V ⊗Qp B

DC(V )
αC

V ⊗Qp B.

Therefore, it is sufficient to prove that αC is injective. We prove it applying Artin’s
trick. Assume that ker(αC) �= 0 and choose a non-zero element

x =
m∑

i=1

di ⊗ ci ∈ ker(αC)

of the shortest length m. It is clear that in this formula, di ∈ DC(V ) are linearly
independent. Moreover, since C is a field, one can assume that cm = 1. Then for all
g ∈ GK

g(x)− x =
m−1∑

i=1

di ⊗ (g(ci )− ci ) ∈ ker(αC).

This shows that g(x) = x for all g ∈ GK , and therefore that ci ∈ CGK = E for all
1 � i � m. Thus x ∈ DC(V ). From the definition of αC , it follows that αC(x) = x,
hence x = 0. �

Definition A p-adic representation V is called B-admissible if

dimE DB(V ) = dimQp V .

Proposition 9.1.5 If V is admissible, then the map αB is an isomorphism.

Proof See [71, Proposition 1.4.2]. Let � = {�i }ni=1 and d = {di }ni=1 be arbitrary bases
of V and DB(V ) respectively. Then � = Ad for some matrix A with coefficients in
B. The bases x =∧n

i=1 di ∈∧n DB(V ) and y =∧n
i=1 vi ∈ ∧nV are related by

x = det(A)y. Since GK acts on y ∈∧n V as multiplication by a character, the Qp-
vector space generated by det(A) is stable under the action of GK . This shows that
A is invertible, and αB is an isomorphism. �

9.1.6 We denote by RepB(GK ) the category of B-admissible representations. The
following proposition summarizes some properties of this category.
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Proposition 9.1.7 The categoryRepB(GK ) is a tannakian subcategory of all p-adic
representations RepQp

(GK ). In particular, the following holds true:
(i) If in an exact sequence

0 → V ′ → V → V ′′ → 0

V is B-admissible, then V ′ and V ′′ are B-admissible.
(ii) If V ′ and V ′′ are B admissible, then V ′ ⊗Qp V

′′ is B admissible.
(iii) V is B-admissible if and only if the dual representation V ∗ is B-admissible,

and in that case DB(V ∗) = DB(V )∗.
(iv) The functor

DB : RepB(GK ) → VectE

to the category of finite dimensional E-vector spaces, is exact and faithful.

Proof The proof is formal. See [71, Proposition 1.5.2]. �

9.1.8 We can also work with the contravariant version of the functor DB :

D∗
B(V ) = HomGK (V, B).

From definitions, it is clear that

D∗
B(V ) = DB(V

∗).

In particular, if V (and therefore V ∗) is admissible, then

D∗
B(V ) = DB(V )

∗ := HomE (DB(V ), E).

The last isomorphism shows that the covariant and contravariant theories are equiv-
alent. For an admissible V , we have the canonical non-degenerate pairing

〈 , 〉 : V × D∗(V )→ B, 〈�, f 〉 = f (�),

which can be seen as an abstract p-adic version of the canonical duality between
singular homology and de Rham cohomology of a complex variety.

9.2 First Examples

9.2.1 B = K , where K is of characteristic 0. The K -admissible representations are
p-adic representations having finite image. Indeed, since the action ofGK is discrete,
each K -admissible representation has finite image. Conversely, if V has finite image,
it is K -admissible by Hilbert’s theorem 90.
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9.2.2 B = W (kK )[1/p]. The B-admissible representations are unramified p-adic
representations. This follows from Proposition 1.6.5.

9.2.3 B = F̂ ur. Let K be a local field of characteristic p, and let F̂ ur = W (K rad)

[1/p]. By Theorem 8.1.11, each p-adic representation of GK is F̂ ur-admissible.

9.2.4 B = C, where K is of characteristic 0. Sen proved ( see Corollary 10.2.12
below) that V is C-admissible if and only of IK acts on V through a finite quo-
tient. The sufficiency of this condition can be proved as follows. Set n = dimQp V .
Assume that ρ(IK ) is finite. Let U ⊂ IK be a subgroup of finite index such that
ρ(U ) = {1}. By the theorem of Ax–Sen–Tate, (V ⊗Qp C)

U = V ⊗Qp L̂, where

L = K
U
. Applying Hilbert’s Theorem 90 to the extension L̂/K̂ ur, we obtain that

(V ⊗Qp C)
IK is a n-dimensional vector space over K̂ ur equipped with a semi-linear

action of Gal(K ur/K ). Now from Proposition 1.6.5 it follows that (V ⊗Qp C)
IK has

a Gal(K ur/K )-invariant basis, and therefore dimK DC(V ) = n.
The necessity is the difficult part of Sen’s theorem, and we prove it only for

one-dimensional representations.

Proposition 9.2.5 If the one-dimensional representation Qp(η) is C-admissible,
then η(IK ) is finite.

Proof a) If η(IK ) is infinite, then from Theorem 4.3.2, it follows that C(η)GK = 0.
Hence, Qp(η) is not C-admissible. �

9.2.6 Consider the multiplicative group Gm over the field of complex numbers C.

Then Gm(C) = C

∗ is the punctured complex plane, and the Betti homology H1(Gm)

is the one-dimensional Q-vector space generated by the counter-clockwise circle
centered at 0. The de Rham cohomology H 1

dR(Gm) is generated over K by the class
of the differential form dX

X . The integration yields a non-degenerate bilinear map:

〈, 〉C : H1(Gm)× H 1
dR(Gm) → C,

〈γ, ω〉C =
∫

γ

ω.
(51)

The p-adic realization of Gm is its Tate module:

Tp(Gm) := lim←−
n

μpn 
 Zp(1).

The p-adic analog of the pairing (51) should be a non-degenerate bilinear map

〈 , 〉 : Tp(Gm)× H 1
dR(Gm)→ B,

with values in some ring B of “p-adic periods", compatible with the Galois action
on Tp(Gm) and B. Proposition 9.2.5 shows that in the field C, there doesn’t exist a
non-zero element t such that
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g(t) = χK (g)t, g ∈ GK .

Therefore, the ring of p-adic periods should be in some sense “bigger" that C.

10 Tate–Sen Theory

10.1 Hodge–Tate Representations

10.1.1 We maintain notation and conventions of Sect. 9.1. The notion of a Hodge–
Tate representation was introduced in Tate’s paper [151]. We use the formalism of
admissible representations. Let K be a local field of characteristic 0. Let

BHT = C[t, t−1]

denote the ringof polynomials in the variable t with integer exponents and coefficients
in C.We equip BHT with the action of GK given by

g
(∑

ai t
i
)

=
∑

g(ai ) χ
i
K (g) t

i , g ∈ GK ,

where χK denotes the cyclotomic character. Therefore, GK acts naturally on C, and
t can be viewed as the “p-adic 2π i"—the p-adic period of the multiplicative group
Gm . For any p-adic representation V of GK , we set:

DHT(V ) = (V ⊗Qp BHT)
GK .

Proposition 10.1.2 The ring BHT is GK -regular and BGK
HT = K .

Proof (a) The field of fractions Fr(BHT) of BHT is isomorphic to the field of rational
functions C(t). Embedding it in C((t)), we have:

BGK
HT ⊂ Fr(BHT)

GK ⊂ C((t))GK .

From Theorem 4.3.2, it follows that (Ct i )GK = K if i = 0, and (Ct i )GK = 0 other-
wise. Hence, BGK

HT = C((t))GK = K . Therefore

Fr(BHT)
GK = BGK

HT = K .

(b) Let b ∈ BHT \ {0}. Assume that Qpb is stable under the action of GK . This
means that

g(b) = η(g)b, ∀g ∈ GK (52)

for some character η : GK → Z∗
p.Write b in the form
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b =
∑

i

ai t
i .

We will prove by contradiction that all, except one monomials in this sum are zero.
From formula (52), if follows that for all i, one has

g(ai )χ
i
K (g) = aiη(g), g ∈ GK .

Assume that ai and a j are both non-zero for some i �= j. Then

g(ai )χ i
K (g)

ai
= g(a j )χ

j
K (g)

a j
, ∀g ∈ GK .

Set c = ai/a j and m = i − j �= 0. Then c is a non-zero element of C such that

g(c)χm
K (g) = c, ∀g ∈ GK .

This is in contradiction with the fact that C(m)GK = 0 if m �= 0.
Therefore, b = ai t i for some i ∈ Z and ai �= 0. This implies that b is invertible

in BHT. The proposition is proved. �

10.1.3 LetGradK denote the category offinite-dimensional graded K -vector spaces.
The morphisms in this category are linear maps preserving the grading. We remark
that DHT(V ) has a natural structure of a graded K -vector space:

DHT(V ) = ⊕
i∈Z

gri DHT(V ), gri DHT(V ) = (V ⊗Qp Ct
i
)GK

.

Therefore, we have a functor

DHT : RepQp
(GK )→ GradK .

Note that this functor is clearly left exact but not right exact (see Example 10.2.13
below).

Definition A p-adic representation V is a Hodge–Tate representation if it is BHT-
admissible.

We denote byRepHT(GK ) the category of Hodge–Tate representations. From the
general formalism of B-admissible representations, it follows that the restriction of
DHT on RepHT(GK ) is exact and faithful.

10.1.4 Set:

V (i) = {x ∈ V ⊗Qp C | g(x) = χK (g)
i x, ∀g ∈ GK }, i ∈ Z,

V {i} = V (i) ⊗K C.
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It is clear that V (i) 
 gr−iDHT(V ).Moreover, the multiplication in C induces linear
maps of C-vector spaces V {i} → V ⊗Qp C. Therefore, one has a C-linear map:

⊕
i∈Z

V {i} → V ⊗Qp C. (53)

The following proposition shows that our definition of a Hodge–Tate representation
coincides with Tate’s original definition:

Proposition 10.1.5 (i) For any representation V, the map (53) is injective.
(ii) V is a Hodge–Tate if and only if (53) is an isomorphism.

Proof (i) By Proposition 9.1.4, for any p-adic representation V, the map

αHT : DHT(V )⊗K BHT → V ⊗Qp BHT

is injective. The restriction of αHT on the homogeneous subspaces of degree 0 coin-
cides with the map (53). Therefore (53) is injective.

(ii) By Proposition 9.1.5, V is a Hodge–Tate if and only if αHT is an isomorphism.
We remark that αHT is an isomorphism if and only if the map (53) is. This proves the
proposition. �

Definition Let V be a Hodge–Tate representation. The isomorphism

V ⊗Qp C 
 ⊕
i∈Z

V {i}

is called the Hodge–Tate decomposition of V . If V {i} �= 0, one says that the integer
i is a Hodge–Tate weight of V, and that di = dimC V {i} is the multiplicity of i .

We will use the standard notation C(i) = C(χ i
K ) for the cyclotomic twists of C.

Then V {i} = C(i)di as a Galois module. The Hodge–Tate decomposition of V can
be written in the following form:

V ⊗Qp C = ⊕
i∈Z

C(i)di .

Example 10.1.6 (1) Let ψ : GK → Z∗
p be a continuous character. Then Qp(ψ) is

a Hodge–Tate of weight i if and only if

ψ |I ′
K

= χ i
K |I ′

K

for some open subgroup I ′
K of the inertia group IK . This follows from Proposi-

tion 9.2.5.
(2) Assume that E is a subextension K such that τ E ⊂ K for each conjugate of

E over Qp. Let ψ : GK → O∗
E be a continuous character. Then E(ψ) can be seen

as a p-adic representation of dimension [E : Qp] with coefficients in Qp and
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E(ψ)⊗Qp C =
⊕

τ∈HomQp (E,K )

C(τ ◦ ψ).

Therefore, E(ψ) is of Hodge–Tate if and only if for each τ

C(τ ◦ ψ) = C(χnτ
K ), for some nτ ∈ Z.

We come back to this example in Sect. 15.

10.2 Sen’s Theory

10.2.1 Let V be a Galois representation of GK . Then V ⊗Qp C can be viewed as
an object of the categoryRepC(GK ) of finite-dimensionalC-vector spaces equipped
with a semi-linear action of GK . This category was first studied by Sen [136]. Let
K∞ = K (ζp∞) denote the cyclotomic extension of K . Set �K = Gal(K∞/K ) and
HK = Gal(K/K∞). Let W ∈ RepC(GK ). Sen’s method decomposes into 3 steps:

10.2.2 Descent to K̂∞. Set Ŵ∞ = WHK . By Theorem 4.3.8 and the inflation-
restriction exact sequence, one has

H 1(�K ,GLn(K̂∞)) 
 H 1(GK ,GLn(C)).

Therefore, the natural map
Ŵ∞ ⊗K̂∞ C → W

is an isomorphism. LetRepK̂∞(�K ) be the category of finite-dimensional K̂∞-vector
spaces equipped with a semi-linear action of �K . Then the functor

RepC(GK ) → RepK̂∞(�K ), W �→ Ŵ∞

is an equivalence of categories. Its quasi-inverse is given by extension of scalars
X �→ X ⊗K̂∞ C.

10.2.3 Undoing the completion. For any K̂∞-representation X, let X f denote the
union of all finite-dimensional K -vector subspaces of X . Sen proves that the map

X f ⊗K∞ K̂∞ → X

is an isomorphism. The key tool here is the canonical isomorphism

H 1(�K ,GLn(K∞)) 
 H 1(�K ,GLn(K̂∞))

(see [136, Proposition 6]). This implies that the functors X �→ X f andU → U ⊗K∞
K̂∞ are mutually quasi-inverse equivalences betweenRepK̂∞(�K ) andRepK∞(�K ).
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10.2.4 Infinitesimal action of �K . Let U be a K∞-representation of �K . If γ ∈ �K

is close to 1, the formal power series

log(γ )

log(χK (γ ))
= 1

log(χK (γ ))

∞∑

n=1

(−1)n−1 (γ − 1)n

n

defines a K∞-linear operator � on U , which does not depend on the choice of γ .
There exists an open subgroup �′ ⊂ �K such that

γ (x) = exp
(
log(χK (γ ))�

)
(x) ∀γ ∈ �′, x ∈ U.

Let SK∞ denote the category of finite dimensional K∞-vector spaces equipped with
a linear operator. The morphisms of SK∞ are defined as K∞-linear maps which
commute with the action of underlying operators. Using Hilbert’s Theorem 90, it
can be checked that the functor

RepK∞(�K )→ SK∞ , U �→ (U,�)

is exact and fully faithful.

10.2.5 Combining previous results, one can associate to any C-representation W
the K∞-vector space W∞ = (Ŵ∞) f equipped with the operator �. The main result
of Sen’s theory states as follows:

Theorem 10.2.6 (Sen) The functor

�Sen : RepC(GK ) → SK∞ , W �→ (W∞,�)

is exact and fully faithful.

Proof See [136]. �

Remark 10.2.7 Let �C : W → W denote the linear operator obtained from � by
extension of scalars. The map

WGK ⊗K C → W

is injective and identifies WGK ⊗K C with ker(�C). In particular, WGK is a finite-
dimensional K -vector space.

10.2.8 We discuss some applications of Sen’s theory to p-adic representations. To
any p-adic representation ρ : GK → AutQp V, we associate the C-representation
W = V ⊗Qp C and set:

DSen(V ) = �Sen(W ).

Hodge-Tate representations have the following characterization in terms of the oper-
ator � :
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Proposition 10.2.9 V is a Hodge–Tate representation if and only if the operator
� : �Sen(V )→ �Sen(V ) is semi-simple and its eigenvalues belong to Z.

Proof See [136, Section 2.3]. �

10.2.10 We come back to general p-adic representations. The operator� allows to
recover the Lie algebra of the image ρ(IK ) of the inertia group:

Theorem 10.2.11 (Sen) The Lie algebra g of ρ(IK ) is the smallest of the Qp-
subspaces S of EndQp (V ) such that � ∈ S ⊗Qp C.

Proof See [136, Theorem 11]. �

The following corollary of this theorem generalizes Proposition 9.2.5.

Corollary 10.2.12 ρ(IK ) is finite if and only if � = 0.

Example 10.2.13 Let V be a two dimensional Qp-vector space with a fixed basis
{e1, e2}. Let ρ : GK → GL(V ) be the representation given by

ρ(g) =
(
1 log(χK (g))
0 1

)
in the basis{e1, e2}.

Prove that V is not Hodge–Tate. Let e2 = e2 (mod Qpe1). Since V sits in the exact
sequence

0 → Qpe1 → V → Qpe2 → 0,

we have an exact sequence:

0 → DHT(Qpe1)→ DHT(V )→ DHT(Qpe2).

Here Qpe1 and Qpe2 are trivial p-adic representations, and

DHT(Qpe1) = Ke1, DHT(Qpe2) = Ke2.

Therefore, DHT(V ) has dimension 2 if and only if e2 lifts to an element

x = e2 + λ⊗ e1 ∈ DHT(V ), λ ∈ BHT.

The condition x ∈ DHT(V ) reads:

g(λ)− λ = logχK (g), ∀g ∈ GK .

Therefore, logχK is a coboundary inC, but this contradicts to Theorem 4.3.2. Hence,
V is not Hodge–Tate. This example also shows that RepHT(GK ) is not stable under
extensions.

Note that in the same basis, the operator � reads:
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� =
(
0 1
0 0

)
.

In particular, it is not semi-simple, and the above arguments agree with Proposi-
tion 10.2.9.

11 Rings of p-Adic Periods

11.1 The Field BdR

11.1.1 In this section, we define Fontaine’s rings of p-adic periods BdR, Bst and
Bcris. For proofs and more detail, we refer the reader to [66, 68] and [70].

Let K be a local field of characteristic 0. Recall that the ring of integers of the tilt
C� of C was defined as the projective limit

O�C = lim←−
ϕ

OC/p OC, ϕ(x) = x p

(see Sect. 5.2). By Propositions 5.2.3 and 5.2.4, O�C is a complete perfect valuation
ring of characteristic p with residue field kK . The fieldC� is a complete algebraically
closed field of characteristic p.

11.1.2 We will denote by Ainf the ring of Witt vectors

Ainf(C) = W (O�C).

Recall that Ainf is equipped with the surjective ring homomorphism θ : Ainf → OC

(see Proposition 5.3.3, where it is denoted by θE ). The kernel of θ is the principal

ideal generated by any element ξ =
∞∑

n=0
[an]pn ∈ ker(θ) such that a1 is a unit in OC� .

Useful canonical choices are:

– ξ = [ p̃] − p, where p̃ = (p1/p
n
)n�0;

– ω =
p−1∑

i=0
[ε]i/p, where ε = (ζpn )n�0.

Let K0 denote the maximal unramified subextension of K . Then OK0 = W (kK ) ⊂
Ainf , and we set Ainf,K = Ainf ⊗OK0

K . Then θ extends by linearity to a sujective
homomorphism

θ ⊗ idK : Ainf(C)⊗OK0
K → C.

Again, the kernel JK := ker(θ ⊗ idK ) is a principal ideal. It is generated, for example,
by [π̃ ] − π, where π is any uniformizer of K and π̃ = (π1/pn )n�0. The action of
GK extends naturally toAinf,K , and it’s easy to see that JK is stable under this action.
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Let B+
dR,K denote the completion of Ainf,K for the JK -adic topology:

B+
dR,K = lim←−

n

Ainf,K /J
n
K .

The action of GK extends to B+
dR,K . The main properties of B+

dR,K are summarized
in the following proposition:

Proposition 11.1.3 (i) B+
dR,K is a discrete valuation ring with maximal ideal

mdR,K = JKB+
dR,K .

The residue field B+
dR,K /mdR,K is isomorphic to C as a Galois module.

(ii) The series

t = log([ε]) =
∞∑

n=1

(−1)n−1 ([ε] − 1)n

n

converges in the JK -adic topology to a uniformizer of B+
dR,K , and the Galois group

acts on t as follows:
g(t) = χK (g)t, g ∈ GK .

(iii) If L/K is a finite extension, then the natural map B+
dR,K → B+

dR,L is an

isomorphism. In particular, B+
dR,K depends only on the algebraic closure K of K .

(iv) There exists a natural GK -equivariant embedding of K in B+
dR,K , and

(
B+
dR,K

)GK = K .

11.1.4 We refer the reader to [66] and [70] for detailed proofs of these properties.
Note that if L is a finite extension of K , then one checks first that B+

dR,K ⊂ B+
dR,L .

From assertions i) and ii), it follows that this is an unramified extension of discrete
valuation rings with the same residue field. This implies that B+

dR,K = B+
dR,L . Since

L ⊂ B+
dR,L for all L/K , this proves that K ⊂ B+

dR,K .

11.1.5 The above proposition shows that B+
dR,K depends only on the residual char-

acteristic of the local field K .By this reason, we will omit K from notation and write
B+
dR := B+

dR,K .

Definition The field of p-adic periods BdR is defined to be the field of fractions of
B+
dR.

11.1.6 The fieldBdR is equipped with the canonical filtration induced by the discrete
valuation, namely

FiliBdR = t iB+
dR, i ∈ Z.

In particular, Fil0BdR = B+
dR and Fil1BdR = mdR. From Proposition 11.1.3, it follows

that
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FiliBdR/Fil
i+1BdR 
 C(i).

Therefore, for the associated graded module we have

gr•(BdR) 
 BHT.

Note that from this isomorphism it follows that BGK
dR = K as claimed in Proposi-

tion 11.1.3, iii).

11.1.7 Recall that Ainf is equipped with the canonical Frobenius operator ϕ. Set
X = [ε] − 1. Then

ϕ(ω) = ϕ(X)

X
= (1 + X)p − 1

X
= p +

(
p

2

)
X + · · · + X p−1.

From this formula it follows that ker(θ) is not stable under the action of ϕ, and
therefore ϕ can not be naturally extended to BdR.

11.1.8 The fieldBdR is equippedwith the topology induced by the discrete valuation.
Now we equip it with a coarser topology, which is better adapted to the study of BdR.

Recall that the valuation topology on C� induces a topology on Ainf , which we call
the canonical topology (see Sect. 5.3). This topology induces a topology on Ainf,K .

The canonical topology on B+
dR = lim←−n

Ainf,K /J n
K is defined as the topology of the

inverse limit, whereAinf,K /J n
K are equipped with the quotient topology. We refer the

reader to [32, Exercise 4.5.3] for further detail.

11.2 The Rings Bcris and Bmax

11.2.1 We define the ring Bcris of crystalline p-adic periods, which is a subring
of BdR equipped with a natural Frobenius structure. The map θ : Ainf → OC is the
universal formal thickening of OC in the sense of [70], and we denote byAPD

inf the PD-
envelop of ker(θ) in Ainf (see, for example, [22] for definition and basic properties
of divided powers). Recall that

ξ = [ p̃] − p ∈ Ainf

is a generator of the ker(θ). Then APD
inf can be seen as the submodule of B+

dR defined
as

APD
inf = Ainf

[
ξ 2

2! ,
ξ 3

3! , . . . ,
ξ n

n! , . . .
]
.

From the formula
ξ n

n!
ξm

m! =
(
n + m

n

)
ξ n+m

(n + m)!
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it follows that APD
inf is a subring of BdR. Let

A+
cris := ÂPD

inf = lim←−
n

APD
inf /p

nAPD
inf

denote its p-adic completion.

Proposition 11.2.2 APD
inf is stable under the action of ϕ. Moreover, the action of ϕ

extends to a continuous injective map ϕ : A+
cris → A+

cris.

Proof We have

ϕ(ξ) = [ p̃]p − p = (ξ + p)p − p = ξ p + pz

for some z ∈ Ainf . Hence,

ϕ(ξ n)

n! = pn

n!
(
1 + (p − 1)!ξ

p

p!
)n

.

Since APD
inf is a ring, and

pn

n! ∈ Zp, this implies the proposition. �

11.2.3 It can be shown that the inclusionAPD
inf ⊂ B+

dR extends to a continuous embed-
ding

A+
cris ⊂ B+

dR,

whereA+
cris andB

+
dR are equippedwith the p-adic and canonical topology respectively.

In more explicit terms, A+
cris can be viewed as the subring

A+
cris =

{ ∞∑

n=0

an
ξ n

n! | an ∈ Ainf , lim
n→+∞ an = 0

}

⊂ B+
dR.

The element t = log[ε] belongs to A+
cris, and one has

ϕ(t) = pt.

Definition Set B+
cris = A+

cris[1/p] and Bcris = B+
cris[1/t]. The ring Bcris is called the

ring of crystalline periods.

It is easy to see that the rings B+
cris and Bcris are stable under the action of GK .

The actions of GK and ϕ on Bcris commute to each other. The inclusion Bcris ⊂ BdR

induces a filtration on Bcris which we denote by FiliBcris. Note that B+
cris ⊂ Fil0Bcris

but the latter space is much bigger. Also the action of ϕ on Bcris is not compatible
with filtration i.e. ϕ(FiliBcris) �⊂ FiliBcris.We summarize some properties of Bcris in
the following proposition.

Proposition 11.2.4 The following holds true:
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(i) The map
K ⊗K0 Bcris → BdR, a ⊗ x → ax

is injective.
(ii) BGK

cris = K0.

(iii) Fil0Bϕ=1
cris = Qp.

(iv) Bcris is GK -regular.

Proof See [70], especially Theorems 4.2.4 and 5.3.7. �
11.2.5 The main information about the relationship between the filtration on Bcris

and the Frobenius map is contained in the fundamental exact sequence:

0 → Qp → Bϕ=1
cris → BdR/Fil

0BdR → 0. (54)

The exactness in the middle term is equivalent to Proposition 11.2.4, iii) above. In
addition, (54) says that and the projection Bϕ=1

cris → BdR/B+
dR is surjective. We refer

to [70] and [28] for proofs and related results.

11.2.6 The importance of the ring Bcris relies on its connection to the crystalline
cohomology [74]. On the other hand, the natural topology on Bcris is quite ugly (see
[40]). Sometimes, it is more convenient to work with the rings

A+
max =

{ ∞∑

n=0

an
ξ n

pn
| an ∈ Ainf , lim

n→+∞ an = 0

}

,

B+
max = A+

max ⊗Zp Qp,

Bmax = B+
max[1/t],

which are equipped with a natural action of ϕ and have better topological properties.
One has

ϕ(Bmax) ⊂ Bcris ⊂ Bmax.

In particular, Bϕ=1
max = Bϕ=1

cris , and in the fundamental exact sequence Bcris can be
replaced by Bmax. Note that the periods of crystalline representations (see Sect. 13)
live in the ring

B̃rig = ∞∩
i=0
ϕn(Bcris) = ∞∩

i=0
ϕn(Bmax).

We refer the reader to [40] for proofs and further results about these rings.

11.3 The Ring Bst

11.3.1 Morally Bst is the ring of p-adic periods of varieties having semi-stable
reduction modulo p. The simplest example of such a variety is provided by Tate
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elliptic curves Eq/K . Tate’s original paper dated 1959 appeared only in [152], but
an exposition of his theory can be found in [127]. See also [147] and [142]. For each
q ∈ K ∗ with |q|p < 1, Tate constructs an elliptic curve Eq with modular invariant
given by the usual formula

j (q) = 1

q
+ 744 + 196884q + . . .

and having multiplicative split reduction modulo p. If E is an elliptic curve with
modular invariant j (E) such that | j (E)|p > 1, then j (E) = j (q) for some q, and
E is isomorphic to Eq over a quadratic extension of K . The group of points Eq(K )
of Eq is isomorphic to K

∗
/qZ, and the associated p-adic representation Vp(E) is

reducible and sits in an exact sequence

0 → Qp(1) → Vp(E) → Qp → 0.

There exists a basis {e1, e2} of Vp(E) such that the action of GK is given by

g(e1) = χK (g) e1, g(e2) = e2 + ψq(g)e1, g ∈ GK ,

where ψq : GK → Zp is the cocycle defined by

g( pm
√
q) = ζ

ψq (g)
pn

pm
√
q.

11.3.2 The ring Bst is defined as the ring Bcris[u] of polynomials with coefficients
in Bcris. The Frobenius map extends to Bst by ϕ(u) = pu. One equips Bst by a

monodromy operator N defined by N = − d

du
. The operators ϕ and N are related

by the formula:
N ϕ = p ϕ N .

This formula should be compared with the formulation of the �-adic monodromy
theorem (Theorem 7.2.3). One extends the Galois action on Bst setting:

g(u) = u + ψp(g)t, g ∈ GK ,

where ψp : GK → Zp is the cocycle defined by

g([ p̃]) = [ε]ψp(g)[ p̃], g ∈ GK .

There exists a GK -equivariant embedding of Bst in BdR which sends u onto the
element

log[ p̃] = log p +
∞∑

n=1

(−1)n−1

n

( [ p̃]
p

− 1

)n

.



An Introduction to p-Adic Hodge Theory 161

We remark that this embedding is not canonical and depends on the choice of log p.
In particular, there is no canonical filtration onBst.Note that it is customary to choose
log p = 0.

Finally we remark that sometimes it is more natural to work with the ring
Bmst = Bmax[u] instead Bst, which is equipped with the same structures but has
better topological properties.

12 Filtered (ϕ, N)-Modules

12.1 Filtered Vector Spaces

12.1.1 In this section, we review the theory of filtered Dieudonné modules. The
main reference is [71]. We also refer the reader to [8] for the general formalism of
slope filtrations. Let K be an arbitrary field.

Definition A filtered vector space over K is a finite dimensional K -vector space
� equipped with an exhaustive separated decreasing filtration by K -subspaces
(Fili�)i∈Z:

. . . ⊃ Fili−1� ⊃ Fi� ⊃ Fi+1� ⊃ . . . , ∩
i∈Z

Fili� = {0}, ∪
i∈Z

Fili� = �.

A morphism of filtered spaces is a linear map f : �′ → �′′ which is compatible
with filtrations:

f (Fili�′) ⊂ Fili�′′, ∀i ∈ Z.

If �′ and �′′ are two filtered spaces, one defines the filtered space �′ ⊗K �
′′ as the

tensor product of �′ and �′′ equipped with the filtration

Fili (�′ ⊗K �
′′) =

∑

i ′+i ′′=i

Fili
′
�′ ⊗K Fili

′′
�′′.

The one-dimensional vector space 1K = K with the filtration

Fili1K =
{
K , if i � 0,

0, if i > 0

is a unit object with respect to the tensor product defined above, namely

�⊗K 1K 
 � for any filtered module�.

One defines the internal Hom in the category of filtered vector spaces as the vector
space HomK (�

′,�′′) of K -linear maps f : �′ → �′′ equipped with the filtration
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Fili
(
HomK (�

′,�′′)
) = { f ∈ HomK (�

′,�′′) | f (Fil j�′) ⊂ Fil j+i (�′′) ∀ j ∈ Z}.

In particular, we consider the dual space �∗ = HomK (�, 1K ) as a filtered vector
space.

We denote by MFK the category of filtered K -vector spaces. It is easy to check
that the categoryMFK is an additive tensor category with kernels and cokernels, but
it is not abelian.

Example 12.1.2 Let W be a non-zero K -vector space. Let �′ and �′′ denote W
equipped with the following filtrations:

Fili�′ =
{
W, if i � 0,

0, if i � 1,
Fili�′′ =

{
W, if i � 1,

0, if i � 2.

The identity map idW : W → W defines a morphism f : �′ → �′′ in MFK . It is
easy to check that ker( f ) = 0 and coker( f ) = 0. Therefore, f is both a monomor-
phism and an epimorphism, but �′ �
 �′′.

12.1.3 We adopt the following general definition:

Definition Let C be an additive category with kernels and cokernels. A sequence

0 → X ′ f−→ X
g−→ X ′′ → 0

of objects in C is exact if X ′ = ker(g) and X ′′ = coker( f ).

The following proposition describes short exact sequences in MFK :
Proposition 12.1.4 (i) Let f : �′ → �′′ be a morphism of filtered vector spaces.
The canonical isomorphism

coim( f ) = �′/ ker( f )→ Im( f )

is an isomorphism if and only if

f (Fili�′) = f (�′) ∩ Fili�′′, ∀i ∈ Z. (55)

(ii) A short sequence of filtered spaces

0 → �′ → � → �′′ → 0 (56)

is exact if and only if for each i ∈ Z the sequence

0 → Fili�′ → Fili� → Fili�′′ → 0

is exact.
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Proof The proof is left as an exercise. See also [50, Sect. 1]. �

12.1.5 For each filtered space, set:

tH(�) =
∑

i∈Z
i dimK

(
gri�

)
,

where gri� = Fili�/Fili+1�.

Proposition 12.1.6 (i) The function tH is additive, i.e. for any exact sequence of
filtetred spaces (56) one has

tH(�) = tH(�
′)+ tH(�

′′).

(ii) tH(�) = tH(∧d�), where d = dimK �.

Proof (i) From the definition of an exact sequence it follows that the sequence

0 → gri�′ → gri�→ gri�′′ → 0

is exact for all i. Therefore,

dimK (gr
i�) = dimK (gr

i�′)+ dimK (gr
i�′′).

This implies (i).
(ii) For each i , choose a base {ei j }dij=1 of gr

i� and denote by {ei j }dij=1 its arbitrary
lift in Fili�. Then e = ∧

i, j
ei j is a basis of ∧d�. This description shows that tH(�) is

the unique filtration break of ∧d�. �

12.2 ϕ-Modules

12.2.1 In this section, we study in more detail the category of ϕ-modules over the
field of fractions of Witt vectors, which was defined in Sect. 8.1. Here we change
notation slightly and denote by k a perfect field of characteristic p and by K0 the
fieldW (k)[1/p].This notation is consistent with the applications to the classification
of p-adic representations of local fields of characteristic 0 which will be discussed
in Sect. 13. As before, ϕ denotes the automorphism of Frobenius acting on K0.

Recall that a ϕ-module (or an ϕ-isocrystal) over K0 is a finite dimensional K0-vector
space D equipped with a ϕ-semi-linear bijective map ϕ : D → D. The category of
ϕ-modules Mϕ

K0
is a neutral tannakian category. In particular, it is abelian.

12.2.2 The structure of ϕ-modules is described by the theory of Dieudonné–Manin.
Let vp denote the valuation on K0. First assume that D is a ϕ-module of dimension 1
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over K0. If d is a basis of D, then ϕ(d) = λd for some non-zero λ ∈ K0, and we set
tN(D) = vp(λ). Note that vp(λ) does not depend on the choice of d. Now, if D is a
ϕ-module of arbitrary dimension n, its top exterior power ∧nD is a one-dimensional
vector space and we set

tN(D) = tN(∧nD).

More explicitly, tN(D) = vp(A),where A is the matrix of ϕ with respect to any basis
of M . The function tN is additive on short exact sequences: if

0 → D′ → D → D′′ → 0

is exact, then tN(D) = tN(D′)+ tN(D′′).

Definition (i) The slope of a non-zero ϕ-module D is the rational

s(D) = tN(D)

dimK0 D
.

(ii) A ϕ-module D is pure (or isoclinic) of slope λ if s(D′) = λ for any non-zero
submodule D′ ⊂ D.

If D is isoclinic, we will write its slope λ in the form:

λ = a

b
, (a, b) = 1, b > 0.

Theorem 12.2.3 (Dieudonné–Manin) (i) D is isoclinic of slope λ = a/b if and only
if there exists an OK0 -lattice L ⊂ D such that ϕb(L) = paL .

(ii) For all a, b ∈ Z such that b > 0 and (a, b) = 1, the ϕ-module

Dλ = K0[ϕ]/(ϕb − pa)

is isoclinic of slope λ = a/b. Moreover, if k is algebraically closed, then each iso-
clinic ϕ-module is isomorphic to a direct sum of copies of Dλ.

(iii) Each ϕ-module D over K0 has a unique decomposition into a direct sum

D = ⊕
λ∈Q∗

D(λ),

where D(λ) is isoclinic of slope λ.

Proof See [112, Section 2]. See also [56]. �

Corollary 12.2.4 If k is algebraically closed, the category of ϕ-modules over K0 is
semi-simple. Its simple objects are Dieudonné modules which are isomorphic to Dλ.

Remark 12.2.5 (1) A ϕ-module is étale in the sense of Sect. 8.1 if and only if it is
isoclinic of slope 0.
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(2) The theorem of Dieudonné–Manin allows to write tN(D) in the form

tN(D) =
∑

λ

λ dimK0 D(λ).

(3) Kedlaya [94] extended the theory of slopes to the category of ϕ-modules over
the Robba ring.

12.3 Slope Filtration

12.3.1 Slope functions appear in several theories. Important examples are provided
by the theory of vector bundles (Harder–Narasimhan theory [85]), differential mod-
ules [110, 155] and euclidian lattices [80, 148]. A unified axiomatic treatement of
the theory of slopes was proposed by Y. André [8]. In this section, we discuss this
formalism in relation with the examples seen in the previous sections. We work with
additive categories and refer to [8] for the general treatement.

Definition Let C be an additive category with kernels and cokernels.
(i) A monomorphism f : X → Y is strict if there exists g : Y → Z such that

0 → X
f−→ Y

g−→ Z → 0 is exact.
(ii) An epimorphism g : Y → Z is strict if there exists f : X → Y such that

0 → X
f−→ Y

g−→ Z → 0 is exact.
(iii) C is quasi-abelian if every pull-back of a strict epimorphism is a strict epi-

morphism and every push-out of a strict monomorphism is a strict monomorphism.

Note that in the category MFK , a monomorphism (respectively epimorphism) f :
X → Y is strict if and only if it satisfies the condition (55).

12.3.2 LetC be a quasi-abelian category. Assume thatC is essentially small, i.e. that
it is equivalent to a small category. A rank function on C is a function rk : C → N
such that:

(1) rk(X) = 0 if and only if X = 0;
(2) rk is additive, i.e. for any exact sequence

0 → X ′ f−→ X
g−→ X ′′ → 0

one has
rk(X) = rk(X ′)+ rk(X ′′).

We can now define the notion of a slope function.

Definition A slope function on C is a function μ : C \ {0} → R such that:
(1) The associated degree function
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deg = rk · μ : C → N

(taking value 0 at the zero object) is additive on short exact sequences;
(2) For any morphism f : X → Y which is both a monomorphism and an epi-

morphism, one has
μ(X) � μ(Y ).

An object Y ∈ C is called semi-stable if for any subobject X of Y, μ(X) � μ(Y ).
We can now state the main theorem of this section.

Theorem 12.3.3 (Harder–Narasimhan, André) For any X ∈ C , there exists a
unique filtration

X = X0 ⊃ X1 ⊃ . . . ⊃ Xk = {0}

such that:
(1) Xi+1 is a strict subobject of Xi for all i;
(2) The quotients Xi/Xi+1 are semi-stable, and the sequence μ(Xi/Xi+1) is

strictly increasing.

Proof The theorem was first proved for the category of vector bundles on a smooth
projective curve over C [85]. André [8] extended the proof to the case of general
quasi-abelian (and even proto-abelian) categories. �

We call the canonical filtration provided by Theorem 12.3.3 the Harder–Narasimhan
filtration.

Example 12.3.4 (1) Let C = MFK . Set rk(�) = dimK � and deg(�) = tH(�).
Then

μH(�) = tH(�)

dimK �

is a slope function. Semi-stable objects are filtered vector spaces with a unique
filtration break. The Harder–Narasimhan filtration coincides (up to enumeration)
with the canonical filtration on �.

(2) Let C = Mϕ

K0
. Set rk(D) = dimK0 D and deg(D) = −tN(D). Then

μN(D) = s(D) = tN(D)

dimK0 D

is a slope function. Semi-simple objects are isoclinic ϕ-modules. On the other hand,
it’s easy to see that −s(D) is also a slope function, which provides the opposite
filtration on M and therefore its splitting in the direct sum of isoclinic components.
This gives an interpretation of the decomposition of Dieudonné–Manin in terms of
the slope filtration.

(3) Let C = Bun(X) be the category of vector bundles on a smooth projective
curve X/C.To each object E of this category one associates its rank rk(E) and degree
deg(E) := deg(∧rk(E)E). Then
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μHN(E) = deg(E)

rk(E)

is a slope function. This is the classical setting of theHarder–Narasimhan theory [85].
The semi-stable objects of C are described in [118]. The analog of this filtration in
the setting of the curve of Fargues–Fontaine plays an important role in [60].

12.4 Filtered (ϕ, N)-Modules

12.4.1 Let K be a complete discrete valuation field of characteristic 0 with perfect
residue field k of characteristic p, and let K0 denote the maximal unramified subfield
of K .

Definition (i) A filtered ϕ-module over K is a ϕ-module D over K0 together with a
structure of filtered K -vector space on DK = D ⊗K0 K .

(Ii) A filtered (ϕ, N )-module over K is a filtered ϕ-module D over K equipped
with a K0-linear operator N : D → D such that

N ϕ = p ϕ N .

Note that the relation N ϕ = p ϕ N implies that N : D → D is nilpotent.

12.4.2 A morphism of filtered ϕ-modules (respectively, (ϕ, N )-modules) is a K0-
linear map f : D′ → D′′ which is compatible with all additional structures. Filtered
ϕ-modules (respectively (ϕ, N )-modules) form additive tensor categories which we
denote byMFϕK andMFϕ,NK respectively. Note that these categories are not abelian.

12.4.3 We define some subcategories ofMFϕK andMFϕ,NK , which play an important
role in the classification of p-adic representations. EquipMFϕK andMFϕ,NK with the
functions

rk(D) := dimK0 K , deg(D) := tH(D)− tN(D).

Proposition 12.4.4 μ(D) = deg(D)/rk(D) is a slope function.

Proof We only need to prove that if f : D′ → D′′ is both a monomorphism and an
epimorphism, thenμ(D′) � μ(D′′).We remark that such f is an isomorphism of ϕ-
modules; hence μN(D′) = μN(D′′). Set d := dimK0 D

′ = dimK0 D
′′. Then we have

a monomorphism of one-dimensional filtered spaces ∧d D′ → ∧d D′′, and therefore

tH(D
′) = tH

(∧d D′) � tH
(∧d D′′) = tH(D

′′).

Hence, μ(D′) � μ(D′′), and the proposition is proved. �

Definition A filtered ϕ-module (respectively, (ϕ, N )-module) is weakly admissible
if it is semi-stable of slope 0.
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More explicitly, D is weakly admissible if it satisfies the following conditions:

(1) tH(DK ) = tN(D);
(2) tH(D′

K ) � tN(D′) for any submodule D′ of D.

This is the classical definition of the weak admissibility [65, 71]. We denote by
MFϕ, fK and MFϕ,N , fK the resulting subcategories ofMFϕK and MFϕ,NK .

Proposition 12.4.5 (i) The categories MFϕ, fK and MFϕ,N , fK are abelian.
(ii) If D is weakly admissible, then its dual D∗ is weakly admissible.
(iii) If in a short exact sequence

0 → D′ → D → D′′ → 0

two of the three modules are weakly admissible, then so is the third.

Proof This is [65, Proposition 4.2.1]. See also [32, Proposition 8.2.10 &Theo-
rem 8.2.11] for a detailed proof. �

Remark 12.4.6 The tensor product of two weakly admissible modules is weakly
admissible. See [153] for a direct proof of this result. It also follows from the the-
orem “weakly admissible ⇒ admissible" of Colmez–Fontaine [48]. Therefore, the
categories MFϕ, fK and MFϕ,N , fK are neutral tannakian.

13 The Hierarchy of p-Adic Representations

13.1 de Rham Representations

13.1.1 In this section, we come back to classification of p-adic representations. Let
K be a local field. We apply the general formalism of Sect. 9.1 to the rings of p-adic
periods constructed in Sect. 11.

13.1.2 Recall that BdR is a field with BGK
dR = K . In particular, it is GK -regular. To

any p-adic representation V of GK we associate the finite-dimensional K -vector
space

DdR(V ) = (V ⊗Qp BdR)
GK .

We equip it with the filtration induced from BdR:

FiliDdR(V ) = (V ⊗Qp Fil
iBdR)

GK .

The mapping which assigns DdR(V ) to each V defines a functor of tensor categories

DdR : RepQp
(GK )→ MFK .
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Definition A p-adic representation V is called de Rham if it is BdR-admissible, i.e.
if

dimK DdR(V ) = dimQp (V ).

We denote by RepdR(GK ) the category of de Rham representations. By Proposi-
tion 9.1.7, it is tannakian and the restriction of DdR on RepdR(GK ) is exact and
faithful.

Proposition 13.1.3 Each de Rham representation is Hodge–Tate.

Proof Recall that we have exact sequences

0 → Fili+1BdR → FiliBdR → Ct i → 0.

Tensoring with V and taking Galois invariants we have

dimK
(
griDdR(V )

)
� dimK (V ⊗Qp Ct

i ).

From BHT = ⊕
i∈Z

Ct i it follows that

dimK DdR(V ) =
∑

ı∈Z
dimK

(
griDdR(V )

)
� dimK DHT(V ) � dimQp (V ).

The proposition is proved. �

Remark 13.1.4 The functorDdR is not fully faithful. A p-adic representation cannot
be recovered from its filtered module.

13.1.5 Using the fundamental exact sequence, one can construct Hodge–Tate rep-
resentations which are not de Rham. Fix an integer r � 1 and consider an extension
V of Qp by Qp(−r) :

0 → Qp(−r)→ V → Qp → 0.

Suchextensions are classifiedby thefirstGalois cohomologygroup H 1(GK ,Qp(−r)),
which is a one-dimensional K -vector space. Assume that V is a non-trivial exten-
sion. Since theHodge–Tateweights ofQp andQp(−r) are distinct, V is Hodge–Tate.
However it is not de Rham (see [28, Section 4] for the proof).

13.2 Crystalline and Semi-Stable Representations

13.2.1 Recall that Bcris is GK -regular with BGK
cris = K0. Therefore, for each p-adic

representation V, the K0-vector space
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Dcris(V ) = (V ⊗Qp Bcris)
GK

is finite-dimensional with dimK0 Dcris(V ) � dimQp (V ). The action on ϕ on Bcris

induces a semi-linear operator on Dcris(V ), which we denote again by ϕ. Since ϕ is
injective on Bcris, it is bijective on the finite-dimensional vector space Dcris(V ). The
embedding K ⊗K0 Bcris ↪→ BdR induces an inclusion

K ⊗K0 Dcris(V ) ↪→ DdR(V ).

This equips Dcris(V )K = K ⊗K0 Dcris(V ) with the induced filtration:

FiliDcris(V )K = Dcris(V )K ∩ FiliDdR(V ).

Thereore Dcris can be viewed as a functor

Dcris : RepQp
(GK )→ MFϕK .

Definition A p-adic representation V is crystalline if it is Bcris-admissible, i.e. if

dimK0 Dcris(V ) = dimQp V .

By Proposition 9.1.5, V is crystalline if and only if the map

αcris : Dcris(V )⊗K0 Bcris → V ⊗Qp Bcris (57)

is an isomorphism. We denote by Repcris(GK ) the category of crystalline represen-
tations. From the general formalism of B-admissible representations it follows that
Repcris(GK ) is tannakian.

13.2.2 Similar arguments show that for each p-adic representation V the K0-vector
space

Dst(V ) = (V ⊗Qp Bst)
GK

is finite-dimensional and equipped with a natural structure of filtered (ϕ, N )-module.
Since BN=0

st = Bcris, we have:

Dcris(V ) = Dst(V )
N=0.

Definition 13.2.3 A p-adic representation is called semi-stable if it isBst-admissible,
i.e. if dimK0 Dst(V ) = dimQp V .

By Proposition 9.1.5, V is semi-stable if and only if

αst : Dst(V )⊗K0 Bst → V ⊗Qp Bst (58)
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is an isomorphism. We denote by Repst(GK ) the tannakian category of semi-stable
representations. The inclusions

K ⊗K0 Bcris ↪→ K ⊗K0 Bst ↪→ BdR

show that
K ⊗K0 Dcris(V ) ↪→ K ⊗K0 Dst(V ) ↪→ DdR(V ).

Therefore, each crystalline representation is semi-stable, and each semi-stable rep-
resentation is de Rham.

Example 13.2.4 The representation Vp(E) constructed in Section 11.3 gives an
example of semi-stable representation which is not crystalline.

Definition A filtered ϕ-module (respectively, (ϕ, N )-module) D is called admissi-
ble if it belongs to the essential image of Dcris (respectively, Dst). In other words,
D is admissible if D 
 Dcris(V ) (respectively D 
 Dst(V )) for some crystalline
(respectively, semi-stable) representation V .

We denote by MFϕ,aK and MFϕ,N ,aK the resulting subcategories. The following
proposition shows that semi-stable representations can be recovered from their
(ϕ, N )-modules.

Proposition 13.2.5 The functors

Dcris : Repcris(GK ) → MFϕ,aK , Dst : Repst(GK ) → MFϕ,N ,aK

are equivalences of categories. The mappings

Vcris : D → Fil0(D ⊗K0 Bst)
ϕ=1, Vst : D → Fil0(D ⊗K0 Bst)

N=0,ϕ=1

define quasi-inverse functors of Dcris and Dst.

Proof This follows from the equalities

Fil0(Bst)
N=0,ϕ=1 = Fil0(Bcris)

ϕ=1 = Qp.

Namely, assume that V is crystalline. Then using (58), we have

Vcris(Dcris(V )) = Fil0(Dcris(V )⊗K0 Bcris)
ϕ=1 = Fil0(V ⊗Qp Bcris)

ϕ=1 = V .

The same argument applies in the semi-stable case. �

13.2.6 As in Sect. 9.1, one can also consider the contravariant functors

D∗
cris : RepQp

(GK ) → MFϕK , D∗
cris(V ) = HomGK (V,Bcris),

D∗
st : RepQp

(GK )→ MFϕ,NK , D∗
cris(V ) = HomGK (V,Bst).
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If V is crystalline (respectively, semi-stable), there is a canonical isomorphism

D∗
cris(V ) 
 Dcris(V )

∗

(respectively, D∗
st(V ) 
 Dst(V )∗). The tautological map

V ⊗Qp D
∗
�(V ) → B�, � ∈ {cris, st}

can be viewed as an abstract p-adic integration pairing.

Proposition 13.2.7 Each admissible (ϕ, N )-module is weakly admissible.

Proof This is [65, Proposition 4.4.5]. We refer the reader to [32, Theorem 9.3.4] for
a detailed proof. �

13.2.8 The converse statement is a fundamental theorem of the p-adic Hodge theory,
which was first formulated as a conjecture in [65].

Theorem 13.2.9 (Colmez–Fontaine) Each filtered weakly admissible module is
admissible, i.e. we have equivalences of categories:

MFϕ,aK 
 MFϕ, fK , MFϕ,N ,aK 
 MFϕ,N , fK .

This theorem was first proved in [48]. Further development of ideas of this proof
leads to the theory of p-adic Banach spaces [41] and almost Cp-representations
[72], [17]. Another proof, based on the theory of (ϕ, �)-modules was found by
Berger [18]. A completely new insight on this theorem is provided by the theory of
Fargues–Fontaine [60]. See [55] and [114] for an introduction to the work of Fargues
and Fontaine.

Remark 13.2.10 The theorem of Colmez–Fontaine implies that the tensor product
of two weakly admissible modules is weakly admissible. Recall that there exists a
direct proof of this result [153].

13.3 The Hierarchy of p-Adic Representations

13.3.1 Let L be a finite extension of K . If ρ : GK → AutQp V is a p-adic represen-
tation, one can consider its restriction on GL and ask for the behavior of the functors
DdR, Dst and Dcris under restriction. Set:

D�/L(V ) = (V ⊗Qp B�)
GL , � ∈ { dR, st, cris}.

Applying Hilbert’s theorem 90 (Theorem 1.6.3), we obtain that

DdR/L(V ) = DdR(V )⊗K L .
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In particular, V is a de Rham representation if and only if its restriction on GL is a
de Rham.

13.3.2 One says that a p-adic representation ρ is potentially semi-stable (respec-
tively, potentially crystalline) if there exists a finite extension L/K such that the
restriction of ρ on GL is semi-stable (respectively, crystalline). Applying Hilbert’s
theorem 90 (Theorem 1.6.3), we obtain that in the case L/K is unramified, ρ is crys-
talline (respectively semi-stable) if and only if it’s restriction onGL is. The following
proposition shows that ramified representations with finite image provide examples
of potentially semi-stable representations that are not semi-stable.

Proposition 13.3.3 A p-adic representation ρ : GK → AutQp V with finite image
is semi-stable if and only if it is unramified.

Proof Let ρ be a representation with a finite image. Let L/K be a finite extension
such that VGL = V . Then

Dst/L(V ) = V ⊗Qp B
GL
st = V ⊗Qp L0,

where L0 is the maximal unramified subfield of L . One has

Dst(V ) = (Dst/L(V ))
GK = (V ⊗Qp L0)

Gal(L/K ).

Therefore, V is semi-stable if and only if it is L0-admissible if and only if it is
unramified (see Example 9.2). �

13.3.4 Set:
Dpst(V ) = lim−→

L/K

Dst/L(V ),

where L runs all finite extensions of K . Then Dpst(V ) is a finite dimensional
K ur

0 -vector space endowed with a natural structure of filtered (ϕ, N )-module. In
addition, it is equipped with a discrete action of the Galois group GK such that
Dst(V ) = Dpst(V )GK . This Galois action allows to define on Dpst(V ) the stucture
of a Weil–Deligne representation. One can see Dpst as a functor to the category of
filtered (ϕ, N ,GK )-modules. One says that V is potentially semi-stable if and only
if dimK ur

0
Dst(V ) = dimQp (V ). The functor Dpcris can be defined by the same way.

See [71] for more detail.
The hierarchy of p-adic representations can be represented by the following dia-

gram of full subcategories of RepQp
(GK ):
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RepQp
(GK )

RepHT(GK )

RepdR(GK )

Rep pst(GK )

Rep pcris(GK ) Repst(GK )

Repcris(GK )

Finally, the categories Rep pst(GK ) and RepdR(GK ) coincide as the following
fundamental theorem shows:

Theorem 13.3.5 (p-adic monodromy conjecture) Each de Rham representation is
potentially semi-stable.

This theorem was formulated as a conjecture by Fontaine. It can be seen as a
highly non-trivial analog of Grothendieck’s �-adic monodromy theorem in the case
� = p. The first proof, found by Berger [15], uses the theory of (ϕ, �K )-modules
(see below). Colmez [43] gave a completely different proof, based on the theory of
p-adic Banach Spaces. See [60, Chap. 10] for the insight provided by the theory of
Fargues–Fontaine.

13.3.6 Recall that Theorem 8.2.9 classifies all p-adic representations in terms of
(ϕ, �K )-modules. It is natural to ask how to recover Dcris(V ), Dst(V ) and DdR(V )
from the étale (ϕ, �K )-moduleD(V ). This question is known as Fontaine’s program.
As a first step, Cherbonnier and Colmez [35] proved that each p-adic representation
is overconvergent. As a second step, Berger [15] showed how to construct Dcris(V ),
Dst(V ) and DdR(V ) in terms of the overconvergent lattice D†(V ) of D(V ) using the
Robba ring RK . Moreover, the infinitesimal action of �K on D†(V )⊗Qp RK gives
rise to a structure of a differential ϕ-module and associates to V a p-adic differential
equation. This reduces the p-adic monodromy conjecture to a conjecture of Crew on
p-adic differential equations. This last conjecture was proved by Kedlaya [94]. We
refer the reader to [42] for a survey of these results. In another direction, the theory
of (ϕ, �K )-modules is closely related to the p-adic Langlands program for GL2(Qp)

[45–47].
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13.4 Comparison Theorems

13.4.1 In [151], Tate considered the p-adic analog of the following situation. Let X
be a smooth proper schemeover the field of complex numbersC.To the analytic space
X (C) on can associate on the one hand, the singular cohomology Hn(X (C),Q) and
on the other hand, the de Rham cohomology Hn

dR(X/C) defined as the hypercoho-
mology of the complex •

X of differential forms on X . The integration of differental
forms against simplexes gives a non-degenerate pairing

Hn(X (C),Q)× Hn
dR(X/C) → C, (59)

which induces an isomorphism (comparison isomorphism):

Hn(X (C),Q)⊗Q C 
 Hn
dR(X/C)

The spectral sequence

Ei j
1 = H j (X, i

X/C)⇒ Hi+ j
dR (X/C)

defines a decreasing exhaustive filtration Fi Hn
dR(X/C) on Hn

dR(X/C) such that

gri Hn
dR(X/C) = Hn−i (X, i

X ).

By Hodge theory, this filtration splits canonically and gives the decomposition of
Hn

dR(X/C) into direct sum (Hodge decomposition):

Hn
dR(X/C) = ⊕

i+ j=n
H j (X, i

X ).

Therefore, one has the decomposition:

Hn(X (C),Q)⊗Q C 
 ⊕
i+ j=n

H j (X, i
X ).

13.4.2 Now assume that X is a smooth proper scheme over a local field K of
characteristic 0. The de Rham cohomologies Hn

dR(X/K ) are still defined as the
hypercohomologyof •

X/K . Contrary to the complex case, thefiltration Fi Hn
dR(X/K )

has no canonical splitting 2. One has

gr•Hn
dR(X/K ) = ⊕

i+ j=n
H j (X, i

X/K ).

In the p-adic situation, the singular cohomology is not defined, but it can be replaced
by the p-adic étale cohomology Hn

p (X), which has the additional structure of a

2 However, see [162].
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p-adic representation. The following result formulated by Tate as a conjecture was
proved in full generality by Faltings [57].

Theorem 13.4.3 (Faltings) There exists a functorial isomorphism

Hn
p (X)⊗Qp C 
 ⊕

i+ j=n

(
H j (X, i

X/K )⊗K C(−i)
)
.

In particular, Hn
p (X) is of Hodge–Tate, and

DHT
(
Hn

p (X)
) 
 gr•Hn

dR(X/K ).

Tate proved this conjecture for abelian varieties having good reduction using his
results about the continuous cohomology of GK (see Sect. 4.3). Faltings’ proof
relies on the higher-dimensional generalization of Tate’s method of almost étale
extensions. The theory of almost étale extensions was systematically developped in
[78]. See [130] for further generalization of Faltings’ almost purity theorems.

13.4.4 Inspired by Grothendieck’s problem of mysterious functor [83, 84], Fontaine
[66, 71] formulated more precise conjectures, relating étale cohomology to other
cohomology theories via the rings Bcris, Bst and BdR. These conjectures are actually
theorems, which can be formulated as follows:

13.4.5 Étale cohomology vs. de Rham cohomology. Recall that the ring BdR is
equipped with a canonical filtration and a continuous action of the Galois group GK .

Theorem 13.4.6 (CdR-conjecture)Let X/K bea smooth proper scheme. There exists
a functorial isomorphism

Hi
p(X)⊗Qp BdR 
 Hi

dR(X/K )⊗K BdR, (60)

which is compatible with the filtration and the Galois action. In particular, Hi
p(X)

is de Rham, and
DdR

(
Hn

p (X)
) 
 Hn

dR(X/K ).

Using the isomorphismgr•BdR 
 ⊕
i∈Z

C(i) it is easy to see that this theorem implies

Theorem 13.4.3.

13.4.7 Étale cohomology vs. crystalline cohomology. Let X/OK be a smooth proper
scheme having good reduction. The theory of crystalline cohomology [20] associates
to the special fiber of X finite-dimensional K0-vector spaces Hi

cris(X) equipped with
a semi-linear Frobenius ϕ. By a theorem of Berhtelot–Ogus [22], there exists a
canonical isomorphism

Hi
dR(X/K ) 
 Hi

cris(X)⊗K0 K ,

which equips Hi
cris(X)⊗K0 K with a canonical filtration.
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Theorem 13.4.8 (Ccris-conjecture) Let X/OK be a smooth proper scheme having
good reduction.

(i) There exists a functorial isomorphism

Hi
p(X)⊗Qp Bcris 
 Hi

cris(X)⊗K0 Bcris, (61)

which is compatible with the Galois action and the action of ϕ. In particular, Hi
p(X)

is crystalline, and
Dcris

(
Hn

p (X)
) 
 Hn

cris(X).

(ii) The isomorphism (60) can be obtained from (62) by the extension of scalars
Bcris ⊗K0 K ⊂ BdR.

13.4.9 Étale cohomology vs. log-crystalline cohomology. Let X/OK be a proper
scheme having semi-stable reduction. The theory of log-crystalline cohomology [92]
associates to X a finite-dimensional K0-vector spaces Hi

log−cris(X) equipped with a
semi-linear Frobenius ϕ and a monodromy operator N such that Nϕ = pϕN . A
theorem of Hyodo–Kato [87] shows the existence of an isomorphism

Hi
dR(X/K ) 
 Hi

log−cris(X)⊗K0 K ,

which equips Hi
log−cris(X)⊗K0 K with the induced filtration. Note that if X has

good reduction, then N = 0, and the log-crystalline cohomology coincides with the
classical crystalline cohomology of X.

Theorem 13.4.10 (Cst-conjecture of Fontaine–Jannsen) Let X/OK be a proper
scheme having semi-stable reduction.

(i) There exists a functorial isomorphism

Hi
p(X)⊗Qp Bst 
 Hi

log−cris(X)⊗K0 Bst, (62)

which is compatible with the Galois action and the actions of ϕ and N . In particular,
Hi

p(X) is semi-stable, and

Dst
(
Hn

p (X)
) 
 Hn

log−cris(X).

13.4.11 These conjectures were first proved by two completely different methods:

– The method of almost étale extensions (Faltings [58, 59]);
– The method of syntomic cohomology of Fontaine–Messing (Fontaine–Messing,
Hyodo–Kato, Tsuji [74, 154]).

Alternative proofs were found by Nizioł[120, 121] and Beilinson [26, 27]. The
theory of perfectoids gave a new impetus to this subject [24, 25, 34, 49, 131]. The
generalization of comparison theorems to cohomologywith coefficients is intimately
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related to the theory of p-adic representations of affinoid algebras [9, 31, 95, 96,
115].

13.4.12 Over the field of complex numbers, the comparison isomorphism can be
alternatively seen as the non-degenerate pairing of complex periods (59). In the p-
adic case, such an interpretation exists for abelian varieties. Namely, if A is an abelian
variety over K , then the p-adic analog of H1(A(C),Q) is the p-adic representation
Vp(A) := Tp(A)⊗Zp Qp. For the first p-adic cohomology of A, one has

H 1
p(A) 
 Vp(A)

∗.

The theory of p-adic integration [38, 39, 67] provides us with a non-degenerate
pairing

H 1
dR(A)× Tp(A)→ BdR,

which gives an explicit approach to the comparison theorems for abelian varieties.
The simplest case of p-divisible formal groups will be studied in the next section.

14 p-Divisible Groups

14.1 Formal Groups

14.1.1 In this section, we make first steps in studing p-adic representations aris-
ing from p-divisible groups. Such representations are crystalline and the associated
filtered modules have an explicit description in geometric terms. We will focus our
attention on formal groups because in this case many results can be proved by ele-
mentary methods, without using the theory of finite group schemes. We start with a
short review of the theory of formal groups.

Definition Let A be an integral domain. A one-dimensional commutative formal
group over A is a formal power series F(X,Y ) ∈ A[[X,Y ]] satisfying the following
conditions:

(i) F(F(X,Y ), Z) = F(X, F(Y, Z));
(ii) F(X,Y ) = F(Y, X);
(iii) F(X, 0) = X and F(0,Y ) = Y ;
(iv) There exists i(X) ∈ X A[[X ]] such that F(X, i(X)) = 0.

It can be proved that ii) and iv) follow from i) and iii) (see [109]). We will often write
X +F Y instead F(X,Y ).

Example 14.1.2 (1) The additive formal group Ĝa(X,Y ) = X + Y. Here i(X) =
−X.
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(2) The multiplicative formal group Ĝm(X,Y ) = X + Y + XY. Note that

Ĝm(X,Y ) = (1 + X)(1 + Y )− 1. Here i(X) = − X

1 + X
.

(3) More generally, for each a ∈ A, the power series

F(X,Y ) = X + Y + aXY

is a formal group over A. Here i(X) = − X

1 + aX
.

14.1.3 We introduce basic notions of the theory of formal groups. An homomor-
phism of formal groups F → G over A is a power series f ∈ X A[[X ]] such that
f ◦ F(X,Y ) = G( f (X), f (Y )). The set HomA(F,G) of homomorphisms F → G
is an abelian group with respect to the addition defined by the formula

f ⊕ g = G( f (X), g(X)).

Weset EndA(F) = HomA(F, F).ThenEndA(F) is a ringwith respect to the addition
defined above and the multiplication defined as the composition of power series:

f ◦ g(X) = f (g(X)).

14.1.4 The module  ̂1
A[[X ]] of formal Kähler differentials of A[[X ]] over A is the

free A[[X ]]-module generated by dX.

Definition We say that ω(X) = f (X)dX ∈  ̂1
A[[X ]] is an invariant differential form

on the formal group F if
ω(X +F Y ) = ω(X).

14.1.5 The next proposition describes invariant differential forms on one-
dimensional formal groups. We will write F ′

1(X,Y ) (respectively, F
′
2(X,Y )) for the

formal derivative of F(X,Y ) with respect to the first (respectively, second) variable.

Proposition 14.1.6 The space of invariant differential forms on a one-dimensional
formal group F(X, Y ) is the free A-module of rank one generated by

ωF (X) = dX

F ′
1(0, X)

.

Proof See, for example, [88, Section 1.1].
(a) Since F(Y, X) = Y + X + (terms of degree � 2), the series F ′

1(0, X) is
invertible in A[[X ]], and one has

ω(X) := dX

F ′
1(0, X)

∈ A[[X ]].

Differentiating the identity
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F(Z , F(X,Y )) = F(F(Z , X),Y )

with respect ot Z , one has

F ′
1(Z , F(X,Y )) = F ′

1(F(Z , X),Y ) · F ′
1(Z , X).

Setting Z = 0, we obtain that

F ′
1(X,Y )

F ′
1(0, F(X,Y ))

= 1

F ′
1(0, X)

,

or equivalently, that
dF(X,Y )

F ′
1(0, F(X,Y ))

= dX

F ′
1(0, X)

.

This shows that ω(X) is invariant.
(b) Conversely, assume that ω(X) = f (X)dX is invariant. Then

f (F(X,Y ))F ′
1(X,Y ) = f (X).

Setting X = 0, we obtain that f (Y ) = F ′
1(0,Y ) f (0). Therefore,

ω(X) = f (0)ωF (X),

and the proposition is proved. �

Remark 14.1.7 We can write ωF in the form:

ωF (X) =
( ∞∑

n=0

an X
n

)

dX, where an ∈ A and a0 = 1.

14.1.8 Let K denote the field of fractions of A.We say that a power series λ(X) ∈
K [[X ]] is a logarithm of F, if

λ(X +F Y ) = λ(X)+ λ(Y ).

Proposition 14.1.9 Assume that char(K ) = 0. Then the map

ω �→ λω(X) :=
∫ X

0
ω

establishes an isomorphism between the one-dimensional K -vector space generated
by ωF and the K -vector space of logarithms of F.
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Proof (a) Let ω(X) = g(X)dX be a non-zero invariant differential form on F. Set

g(X) =
∞∑

n=0
bn Xn. Since char(K ) = 0, the series f (X) has the formal primitive

λω(X) :=
∫ X

0
ω =

∞∑

n=1

bn−1

n
Xn ∈ K [[X ]].

The invariance of ω reads

g(F(X,Y ))F ′
1(X,Y ) = g(X),

and taking the primitives, we obtain:

λω(X +F Y ) = λω(X)+ h(Y )

for some h(Y ) ∈ K [[Y ]]. Putting X = 0 in the last formula, we have h(Y ) = λω(Y ),
and λω(X +F Y ) = λω(X)+ λω(Y ). Therefore, λω is a logarithm of F.

(b) Conversely, let λ(X) be a logarithm of F. Differentiating the identity λ(Y +F

X) = λ(Y )+ λ(X) with respect to Y and setting Y = 0, one has

λ′(X) = λ′(0)
F1(0, X)

.

Set ω = λ′(X)dX. Then ω = λ′(0)ωF , and the proposition is proved. �

Definition 14.1.10 Set

λF (X) =
∫ X

0
ωF .

Note that λF (X) is the unique logarithm of F such that

λF (X) ≡ X (mod deg 2).

From Proposition 14.1.9, it follows that over a field of characteristic 0 all formal
goups are isomorphic to the additive formal group. Indeed, λF is an isomorphism
F 
 Ĝa .

Example 14.1.11 For the multiplicative group we have

ωGm (X) = dX

1 + X
, λGm (X) = log(1 + X) =

∞∑

n=1

(−1)n−1 X
n

n
.

14.1.12 We consider formal groups over the ring of integers of a local field K of
characteristic 0 and residue caracteristic p.

For each n ∈ Z, we denote by [n] the formal multiplication by n:
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[n] =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

X +F +XF +F · · · + X︸ ︷︷ ︸
n

, if n � 0,

i([−n]), if n < 0.

This defines an injection

[ ] : Z → EndOK (F), n → [n](X) = nX + · · · .

It can be easily checked that this map can be extended by continuity to an injective
map

[ ] : Zp → EndOK (F), a → [a](X) = aX + · · · .

Proposition 14.1.13 Let F be a formal group over OK . Then either

[p](X) ≡ 0 (mod mK )

or there exists an integer h � 1 and a power series g(X) = c1X + · · · such that
c1 �≡ 0 (mod mK ) and

[p](X) ≡ g(X ph ) (mod mK ). (63)

Proof The proof is not difficult. See, for example, [76, Chap. I, § 3, Theorem 2]. �

Definition 14.1.14 If [p](X) ≡ 0 (mod mK ), we say that F has infinite height.
Otherwise, we say that F is p-divisible and call the height of F the unique h � 1
satisfying condition (63).

14.1.15 Now we can explain the connection between formal groups and p-adic
representations. Recall that we write C for the completion of K .We denote by OC

the ring of integers of C and bymC the maximal ideal of OC. Any formal group law
F(X,Y ) over OK defines a structure of Zp-module on mC of K :

α +F β := F(α, β), α, β ∈ mC,

Zp × mC → mC, (a, α) �→ [a](α).

Wewill denote by F(mC) the idealmC equipped with this Zp-module structure. The
analogous notation will be used for OK -submodules of mC.

Proposition 14.1.16 Assume that F is a formal group of finite height h. Then:
(i) The map [p] : F(mC)→ F(mC) is surjecive.
(ii) The kernel ker([p]) is a free Fp-module of rank h.

Proof (i) Consider the equation

[p](X) = α, α ∈ F(mC).
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A version of the Weierstrass preparation theorem (see, for example, the proof of
[105, Theorem 4.2]) shows that this equation can be written in the form f (X) =
g(α), where f (X) ∈ OK [X ] is a polynomial of degree ph such that f (X) ≡ X ph

(mod mK ), and g ∈ OK [[X ]]. Therefore, the roots of this equation are in mC.

(ii) To prove that ker([p]) is a freeZ/pZ-module of rank h,we only need to show
that the roots of the equation [p](X) = 0 are all of multiplicity one. Differentiating
the identity

[p](F(X,Y )) = F([p](X), [p](Y ))

with respect to Y and setting Y = 0, we get:

[p]′(X) · F ′
2(X, 0) = F ′

2([p](X), 0).

Let [p](ξ) = 0. Since F ′
2(X, 0) is invertible in OK [[X ]] and ξ ∈ mC, we have

F ′
2(ξ, 0) �= 0 and [p]′(ξ) �= 0. Therefore, ξ is a simple root. �

14.1.17 For n � 1, let TF,n denote the pn-torsion subgroup of F( f mC). From
Proposition 14.1.16 it follows that as abelian group, it is not canonically isomorphic
to (Z/pnZ)h and sits in the exact sequence

0 → TF,n → F(mC)
[pn ]−−→ F(mC)→ 0.

As in the case of abelian varieties, the Tatemodule of F is defined as the projective
limit

T (F) = lim←−
n

TF,n

with respect to the multiplication-by-p maps. Since the series [pn](X) have coef-
ficients in OK , the Galois group GK acts on EF,n, and this action gives rise to a
Zp-adic representation:

ρF : GK → AutZp (T (F)) 
 GLh(Zp).

We will denote by V (F) = T (F)⊗Zp Qp the associated p-adic representation.

Example 14.1.18 (1) F = Ĝm . One has [pn] = (1 + X)p
n − 1. Therefore,

T
Ĝm ,n = {ζ − 1 | ζ pn = 1

}
,

and the map
μpn → T

Ĝm ,n, ζ �→ ζ − 1

is an isomorphism of GK -modules. In particular, T (Ĝm) 
 Zp(1).

(2) Let E/OK be an elliptic curve having good reduction modulo mK . Writing
the group law on E in terms of a local parameter at 0, one obtains a formal power
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series F(X,Y ), which is a formal group law over OK . One can prove that F is of
height 1 if E has ordinary reduction, and of height 2 if E has supersingular reduction.
We have a canonical injection of T (F) in the Tate module Tp(E) of E, which is an
isomorphism in the supersingular case. See [146, Chap. 4] for further detail and
applications.

14.1.19 The notion of a formal group can be generalized to higher dimensions. Let
X = (X1, . . . , Xd) andY = (Y1, . . . ,Yd) be d-vectors of variables. A d-dimensional
formal group over OK is a d-tuple F(X,Y ) = (F1(X,Y ), . . . , Fd(X,Y )) with

Fi (X,Y ) ∈ OK [[X,Y ]], 1 � i � d,

which satisfies the direct analogs of conditions (i), (iii) and (iv) in the definition of
a one-dimensional formal group. We remark that contrary to the one-dimensional
case, there are non-commutative formal groups of dimension� 2.Non-commutative
formal groups appear in Lie theory. Below, without special mentioning, we consider
only commutative formal groups.

14.1.20 Propositions 14.1.6 and 14.1.9 generalize directly to the higher-dimensional
case. Namely, let I = (X1, . . . , Xd) ⊂ OK [[X ]].We set:

t∗F (OK ) = I/I 2

and call it the cotangent space of F over OK . The module of invariant differential
forms on F is canonically isomorphic to t∗F (OK ). Namely:

(1) For each a1X1 + · · · + ad Xd mod I 2 ∈ t∗F (OK ), there exists a unique invariant
differential form ω such that

ω(0) = a1dX1 + · · · + addXd .

This correspondence gives an isomorphism:

t∗F (OK ) 
 {invariant differential forms onF}.

(2) Each invariant differential form ω is closed, i.e. there exists a unique λω(X) ∈
K [X ] such that λω(0, . . . , 0) = 0 and

dλω(X) = ω.

(3) The map ω �→ λω establishes an isomorphism between the K -vector space  1
F

generated by invariant differential forms on F and the K -vector space of loga-
rithms of F.

The notion of the height of a formal group generalizes as follows:

Definition 14.1.21 A formal group F is p-divisible if the morphism
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[p]∗ : OK [[X ]] → OK [[X ]], f (X) �→ f ◦ [p](X)

makes OK [[X ]] into a free module of finite rank over itself.

If F is p-divisible, then the degree of the map [p]∗ is of the form ph for some
h � 1. This follows from the fact that any finite connected group over kK is of order
ph for some h (see, for example [64, Chapitre I, § 9]). We call h the height of F.
A formal group of dimension d defines a structure of Zp-module on md

C, which
we will denote by F(mC). The definition of the Tate module T (F) and the p-adic
representation V (F) generalizes directly to p-divisible formal groups.

14.2 p-Divisible Groups

14.2.1 The category of formal groups is too small to develop a satisfactory theory.
In particular, it is not closed under taking duals. To remedy this problem, it is more
convenient to work in the category of p-divisible groups, introduced by Tate [151].

Definition A p-divisible group of height h over OK is a system G = (Gn)n∈N of
finite group schemes Gn of order phn equipped with injective maps in : Gn → Gn+1

such that the sequences

0 → Gn
in−→ Gn+1

pn−→ Gn+1, n � 1

are exact.

From the theory of finite group schemes, it is known that each Gn sits in an exact
sequence

0 → G 0
n → Gn → G ét

n → 0, (64)

where G 0
n is a connected and G ét

n is an étale group scheme. We will say that G =
(Gn)n∈N is connected (respectively, étale) if each Gn is. The exact sequences (64)
give rise to an exact sequence of p-divisible groups

0 → G 0 → G → G ét → 0, (65)

where G 0 and G ét are connected and étale respectively.

14.2.2 To each p-divisible group G , one can naturally associate its Tate module,
setting:

T (G ) = lim←−
n

Gn(OC).

Then T (G ) is a free Zp-module of rank h equipped with a natural action of GK .We
denote by V (G ) := Qp ⊗Zp T (G ) the associated p-adic representation. From the
exact sequence (65), one has an exact sequence of p-adic representations:
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0 → V (G 0) → V (G )→ V (G ét)→ 0.

14.2.3 If F(X,Y ) is a p-divisible formal group, then the kernels F[pn] of the
isogenies [pn] : F → F form a system F(p) = (F[pn])n∈N of finite group schemes
satisfying the above definition, and we have a functor F �→ F(p) from the category
of formal groups to the category of p-divisible groups.

Proposition 14.2.4 (Tate) The functor F �→ F(p) induces an equivalence between
the category of p-divisible formal groups and the category of connected p-divisible
groups.

Proof See [151, Proposition 1] and the references in op. cit. �

14.2.5 If G is a p-divisible group, we call the dimension of G the dimension of
the formal group F corresponding to its connected component. We also define the
tangent space tG (OK ) of G as the tangent space of F.

14.2.6 The Cartier duality for finite group schemes allows to associate to G a dual
p-divisible groupG ∨.Wehave fundamental relations between the heights and dimen-
sions of G and G ∨:

ht(G ) = ht(G ∨), dim(G )+ dim(G ∨) = ht(G )

([151, Proposition 3]). Moreover, the duality induces a non-degenerate pairing on
Tate modules:

T (G )× T (G ∨)→ Zp(1).

Example 14.2.7 Let E/OK be an elliptic curve having a good reduction modulo
mK . The kernel E[pn] of the multiplication-by-pn map is a finite group scheme of
order p2n. The system (E[pn])n∈N is a p-divisible group of height 2. The connected
component of this p-divisible group corresponds to the formal group associated by
E in Example 14.1.18, 2).

14.3 Classification of p-Divisible Groups

14.3.1 In [64], Fontaine classified p-divisible groups over OK up to isogeny in terms
of filtered ϕ-modules. The idea of such classification goes back to Grothendieck
[83, 84] and relies on the following principles:

(1) One associates to any p-divisible group G of dimension d and height h a
ϕ-module M(G ) together with a d-dimensional subspace L(G ) ⊂ M(G )K .

(2) The ϕ-module M(G ) is the Dieudonné module associated to the reduction G of
G modulo mK by the theory of formal group schemes in characteristic p (see,
for example, [112]).
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(3) The subspace L(G ) ⊂ M(G )K depends on the lift of G in characteristic 0. The
filtration on M(G )K is defined as follows:

Fil0M(G )K = M(G )K , Fil1M(F)K = L(G ), Fil2M(G )K = {0}.

14.3.2 We give an interpretation of themodule (M(G ), L(G )) for formal p-divisible
groups in terms of differential forms. This description is equivalent to Fontaine’s
general construction (see [64, Chap. V] for the proofs of the results stated below).
Let F be a formal p-divisible group of dimension d and height h. Recall that a
differential form

ω =
d∑

i=1

ai (X1, . . . , Xd)dXi , ai (X1, . . . , Xd) ∈ K [[X1, . . . , Xd ]]

is closed if there exists a power series λω ∈ K [[X1, . . . , Xd ]] such that
λω(0, . . . , 0) = 0 anddλω = ω.Note that ifω is an invariant form, thenλω is the asso-
ciated logarithm of F. As before, we set X = (X1, . . . , Xd) and Y = (Y1, . . . ,Yd)
to simplify notation.

Definition A closed differential form ω is
(i) of the second kind on F , if there exists r � 0 such that

λω(X +F Y )− λω(X)− λω(Y ) ∈ p−r OK [[X,Y ]];

(ii) exact, if there exists r � 0 such that λω ∈ p−r OK [[X ]].
It is easy to see that each exact form is of the second kind. Consider the quotient:

H 1
dR(F) = {differential forms of the second kind}

{ exact forms} .

Then H 1
dR(F) is a K -vector space of dimension h, which can be viewed as the first

de Rham cohomology group of F. Let K0 denote the maximal unramified subfield
of K , and let M(F) be the K0-subspace of H 1

dR(F) generated by the forms with
coefficients in K0. Then M(F) depends only on the reduction of F modulo mK and
one has

H 1
dR(F) = M(F)K .

Moreover,M(F) is equippedwith the Frobenius operatorϕwhich acts as the absolute
Frobenius on the coefficients of power series and such that ϕ(Xi ) = X p

i :

ϕ

(
d∑

i=1

ai (X1, . . . , Xd)dXi

)

=
d∑

i=1

aϕi (X
p
1 , . . . , X

p
d )dX

p
i .
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Consider the K -vector space  1
F generated by invariant forms on F. Recall that

dimK  
1
F = d. Each invariant form is clearly of the second kind, and 1

F injects into
H 1

dR(F). Set:
L(F) := image of 1

F in H 1
dR(F).

These data define a structure of filtered module on M(F).

14.3.3 Assume that the local field K is absolutely unramified. In that case, formal
groups over OK were classified up isomorphism by Honda [88], purely in terms of
their logarithms. In this section, we review Honda’s classification. To simplify the
exposition, we restrict our discussion to the one-dimensional case.

The ring of power series K [[X ]] is equipped with the Frobenius operator ϕ :

ϕ

( ∞∑

i=0

ai X
i

)

=
∞∑

i=0

ϕ(ai )X
ip.

Assume that α1, . . . , αh−1, αh ∈ OK satisfy the following conditions:

α1, . . . , αh−1 ≡ 0 (mod p),

αh ∈ UK .
(66)

Set:

A (ϕ) :=
h∑

i=0

αiϕ
i ,

and consider the power series

λ(X) :=
(
1 − A (ϕ)

p

)−1

(X) ∈ K [[X ]].

For formal p-divisible groups of dimension one, the result of Honda states as follows:

Theorem 14.3.4 (Honda) (i) Assume that α1, . . . , αh satisfy conditions (66). Then
λ(X) = λG(X) for some one-dimensional formal group G of height h.

(ii) Let F be a one-dimensional formal group over OK of height h. Then there
exists a unique system α1, . . . , αh satisfying (66) such that

(
1 − A (ϕ)

p

)
λF (X) ∈ OK [[X ]].

Let G be the formal group associated to α1, . . . , αh by part i). Then F 
 G.

The relation between this theorem and Fontaine’s classification is given by the fol-
lowing:
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Proposition 14.3.5 Assume that K is absolutely unramified. Let F be a one-
dimensional formal group over OK of height h. Denote by bF the image of ωF

in M(F). Then the following holds true:
(i) The elements bF , ϕ(bF ), . . . , ϕh−1(bF ) form a basis of M(F) over K .
(ii) Let α1, . . . , αh be the parameters associated to F by Honda’s theorem. Then

α1ϕ(bF )+ α2ϕ(bF )+ · · · + αhϕh(bF ) = pbF .

(iii) One has an isomorphism of filtered ϕ-modules

M(F) 
 K [ϕ]/(A (ϕ)− p),

which sends L(F) = K · bF to the one-dimensional K -vector space generated by 1.

Proof See [64, Chapitre V]. �

Remark 14.3.6 In fact, Fontaine’s theory [64] gives more precise results that those
that we have stated. Namely, if the absolute ramification index of K is � p − 1, it
allows to classify p-divisible groups up to isomorphism and not only up to isogeny.
Using new ideas, Breuil [30] classified p-divisible groups up to isomorphismwithout
any restriction on ramification. See [97] and [33] for further developments.

14.4 p-Adic Integration on Formal Groups

14.4.1 We maintain assumptions and conventions of the previous section. Let F be
a formal p-divisible group of dimension d and height h.We denote by T (F) the Tate
module of F. Let ξ = (ξn)n�0 ∈ T (F), where ξn ∈ TF,n for each n � 0. Recall that
we have the canonical map θ : Ainf → OC. For each n, choose ξ̂n ∈ Ad

inf such that
θ (̂ξn) = ξn.

Theorem 14.4.2 (Colmez, Fontaine) (i) Let ω be a differential form of second kind.
Then the sequence (pnλω(̂ξn))n�0 converges in B+

cris,K = K ⊗K0 B
+
cris. Its limit does

not depend on the choice of ξ̂n and therefore defines the “p-adic integral":

∫

ξ

ω := − lim
n→+∞ pnλω(̂ξn). (67)

If ω has coefficients in K0, then
∫
ξ
ω ∈ B+

cris.

(ii) If ω is exact, then
∫
ξ
ω = 0.

(iii) The p-adic integration (67) is compatible with the actions of the Galois group
and the Frobenius ϕ. Namely, one has
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∫

ξ

ϕ(ω) = ϕ

(∫

ξ

ω

)
,

∫

g(ξ)
ω = g

(∫

ξ

ω

)
, g ∈ GK .

iv) The p-adic integration induces a non-degenerated pairing

M(F)× T (F)→ Bcris,

which is compatible with the Frobenius operator and the Galois action, and a non-
degenerated pairing

H 1
dR(F)× T (F)→ B+

dR,

which is compatible with the Galois action and filtration.

Proof See [64, Chapitre V, §1], [66, Théorème 6.2] and [38, Proposition 3.1]. We
remark that the delicate part here is the non-degeneracy of the constructed pairings.
The proof of other points is straightforward. �

Example 14.4.3 Consider the case of the multiplicative formal group Ĝm . Recall
that T (Ĝm) 
 Zp(1) is generated by any compatible system (ξn)n�0 such that ξn =
ζpn − 1 and ζp �= 1. The space H 1

dR(Ĝm) is generated over K by ω = dX
1+X , and the

formal primitive of ω is log(1 + X). Take ξ̂n = [ε]1/pn − 1. One has

∫

ξ

ω = − lim
n→+∞ pn log[ε]1/pn = −t.

This formula can be seen as the p-adic analog of the following computation. Let C
denote the unit circle on the complex plane parametrized by e2π i x , x ∈ [0, 1]. Then

∫

C

dz

z
= n log(z)

∣∣∣∣

e
2π i
n

0

= 2π i.

Corollary 14.4.4 The representation V (F) is crystalline, and there exist canonical
isomorphisms:

D∗
cris(V (F)) 
 M(F), D∗

dR(V (F)) 
 H 1
dR(F).

Corollary 14.4.5 (Tate) The representation V (F) is Hodge–Tate and there exists a
canonical isomorphism

V (F)⊗Qp C 
 (t∗F∨(K )⊗K C
)⊕ (tF (K )⊗K C(1)

)
. (68)

Proof This follows from the previous corollary and the isomorphisms
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t∗F (K ) 
  1
F , H 1

dR(F)/ 
1
F 
 tF∨(K )

(the second isomorphism is provided by duality).

Remark 14.4.6 (1) Corollary 14.4.4 holds for all p-divisible groups (see [66,
Théorème 6.2]). Conversely, Breuil [30] proved that each crystalline representation
with Hodge–Tate weights 0 and 1 arises from a p-divisible group.

(2) The Hodge–Tate decomposition (68) was first proved by Tate [151] for all p-
divisible groups. Some constructions of this paper will be revewed in Sect. 16. The
case of abelian variety with bad reduction follows from the semi-stable reduction
theorem (Raynaud). A completely different proof was found by Fontaine [67].

(3) The construction of p-adic integration in Theorem 14.4.2 generalizes to the
case of abelian varieties [38, 39].

15 Formal Complex Multiplication

15.1 Lubin–Tate Theory

15.1.1 In this section, we discuss the theory of complex multiplication in formal
groups. We start with a brief overview of Lubin–Tate theory [111]. Let K is a local
field of arbitrary characteristic. Set q = |kK | = p f . Fix an uniformizer π of K .

Theorem 15.1.2 (i) Let f (X) ∈ OK [[X ]] be a power series satisfying the following
conditions:

f (X) ≡ πX (mod deg 2),

f (X) ≡ Xq (mod mK ) .
(69)

Then the following holds true:
(i) There exists a unique formal group Ff (X,Y ) over OK such that f (X) ∈

EndOK (F).Moreover, for each a ∈ OK , there exists a unique endomorphism [a](X)
∈ EndOK (F) such that [a](X) ≡ aX (mod deg 2).

(ii) Let g(X) be another power series satisfying conditions (69) with the same
uniformizer π. Then Fg and Ff are isomorphic over OK . In the isomorphism class
of F f , there exists a formal group FLT with the logarithm

λLT(X) = X + Xq

π
+ Xq2

π2
+ · · · .

(iii) Letπ ′ be another uniformizer of OK , and let g(X) be a power series satisfying
conditions (69) with π ′ in the place of π. Then Ff and Fg are isomorphic over the
ring Ôur

K .

Proof All these statements can be proved by successive approximation in the rings
of formal power series. We refer the reader to [111] or to [140] for detailed proofs.
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Definition Ff is called the Lubin–Tate formal group associated to f.

15.1.3 Let Ff be the Lubin–Tate formal group associated to f (X) = πX + Xq .

The group of points Ff (mC) is an OK -module with the action of OK given by

(a, α) �→ [a](α), a ∈ OK , α ∈ Ff (mC).

In particular, [π ](X) = f (X), and for any n � 1, one has

[πn](X) = f ◦ f ◦ · · · ◦ f (X)
︸ ︷︷ ︸

n

.

The polynomial
[πn]/[πn−1] = π + [πn−1](X)q−1, (70)

is Eisenstein of degree qn−1(q − 1). Let T f,n denote the group of πn-torsion points
of Ff . An easy induction together with the previous remark show that T f,n is an
abelian group of order qn . The endomorphism ring EndOK (Ff ) 
 OK acts on T f,n

through the quotient OK /π
nOK , and T f,n is free of rank one over OK /π

nOK . The
generators of T f,n are the roots of the polynomial (70). Let K f,n be the field generated
over K by T f,n . Then

K f,n = K (πn),

where πn is any generator of T f,n . In particular, [K f,n : K ] = (q − 1)qn−1, and πn
is a uniformizer of K f,n .

15.1.4 Let g be another power series satisfying (69)with the sameπ.Then Fg 
 Ff ,

Tg,n 
 T f,n, and K f,n = Kg,n. Since the field generated by πn-torsion points of a
Lubin–Tate formal group depends only on the choice of the uniformizer π, we will
write Kπ,n in the place of K f,n . Set:

Kπ = ∞∪
n=1

Kπ,n .

From the explicit form of Eisenstein polynomials (70), it follows that π is a universal
norm in Kπ/K .

The following theorem gives an explicit approach to local class field theory:

Theorem 15.1.5 (Lubin–Tate) i) One has

K ab = K ur · Kπ .

(ii) Let θK : K ∗ → Gal(K ab/K ) denote the reciprocity map. For any u ∈ UK ,

the automorphism θK (u) acts on the torsion points of F f by the formula:

θK (u)(ξ) = [u−1](ξ), ∀ξ, [πn](ξ) = 0, n ∈ N.



An Introduction to p-Adic Hodge Theory 193

Proof See [111] or [140]. �

Remark 15.1.6 (1) The torsion points of a one dimensional formal group are the
roots of its logarithm (see Proposition 16.1.2 below). Therefore, K ab is generated
over K ur by the roots of the power series λLT(X). This can be seen as a solution
of Hilbert 12th problem for local fields. Theorem 15.1.5 is the local analog of the
theory of complex multiplication.

(2) Let K = Qp. The multiplicative formal group Ĝm is the Lubin–Tate group
associated to the series f (X) = (X + 1)p − 1. In that case, Theorem 15.1.5 says

that Qab
p = ∞∪

n
Qp(ζn) and that

θQp (u)(ζpn ) = ζ u
−1

pn , ∀u ∈ UQp .

This can be proved without using the theory of formal groups.
(3) Let πn be a generator of the group of πn-torsion points of Ff . Since πn is

a uniformizer of Kπ,n, and Theorem 15.1.5 describes the action of Gal(K ab/K ) on
πn, this allows to compute the ramification filtration on Gal(K ab/K ). One has

θK

(
U (�)

K

)
= Gal(K ab/K )(�), ∀� � 0.

See [140] for a detailed proof.

15.2 Hodge–Tate Decomposition for Lubin–Tate Formal
Groups

15.2.1 In this section, we assume that K has characteristic 0.We fix a uniformizer
π and write F for an unspecified Lubin–Tate formal group associated to π. Since
p = π eu with e = e(K/Qp), and u ∈ UK , we see that F is a p-divisible group of
height h = e f = [K : Qp]. Its Tate module T (F) can be written as the projective
limit of πn-torsion subgroups with respect to the multiplication-by-π map. Since
T (F) is an OK -module of rank one, the action ofGK on T (F) is given by a character

χπ : GK → UK .

The theory of Lubin–Tate (Theorem 15.1.5) says that χ−1
π ◦ θK coincides with the

projection of K ∗ onto UK under the decomposition K ∗ 
 UK × 〈π〉 .
15.2.2 Let E be a finite extension of K containing all conjugates τK of K overQp.

By local class field theory, one has a commutative diagram
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E∗ θE

NE/K

Gal(Eab/E)

K ∗ θK Gal(K ab/K ).

Therefore, GE acts on T (F) via the character ρE = χπ ◦ NE/K . Consider the vector
space V (F) = T (F)⊗OK K as a GE -module. By the previous remark, V (F) 

K (ρE ), and one has

V (F)⊗Qp C 

⊕

τ∈Hom(K ,E)
C(τ ◦ ρE ).

Compare this decomposition with the Hodge–Tate decomposition:

V (F)⊗Qp C 
 t∗F∨(C)⊕ tF (C)(1).

These decompositions are compatible with the K -module structures on the both
sides. Since K acts on tF (E) via the embedding K ↪→ E, one has

C(τ ◦ ρE ) 

{
C(1), if τ = id,

C, if τ �= id.
(71)

Proposition 15.2.3 For any continuous character ψ : GE → UK , the following
conditions are equivalent:

(a) ψ concides with
∏

τ∈Hom(K ,E)
τ−1 ◦ ρnττ E on some open subgroup of IE ;

(b) C(τ ◦ ψ) = C(χnτ
E ) for all τ ∈ Hom(K , E).

Proof See [143, Section A5]. Recall that for two continuous characters ψ1 and ψ2

wewriteψ1 ∼ ψ2 ifC(ψ1) andC(ψ2) are isomorphic as continuous Galois modules.
From (71), one has

τ ◦ σ−1 ◦ ρσK ∼ χE , if τ = σ,

τ ◦ σ−1 ◦ ρσK ∼ id, if τ �= σ.

Set:
ψ1 =

∏

τ∈Hom(K ,E)
τ−1 ◦ ρnττK .

Then the previous formula gives:

τ ◦ ψ1 ∼ χ
nτ
K , ∀τ ∈ Hom(E, K ).

Now the proposition follows from Proposition 4.3.6. �
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15.3 Formal Complex Multiplication for p-Divisible Groups

15.3.1 Using Proposition 15.2.3, we can prove a general result about formal complex
multiplication for p-divisible groups.

Definition Let G be a p-divisible group over OE of dimension d and height h.
We say that G has a formal complex multiplication by a p-adic field K ⊂ E if
[K : Qp] = h and there exists an injective ring map

K → EndOE (G )⊗Zp Qp.

If G has a complex multiplication by K , the p-adic representation V (G ) is a K -
vector space of dimension 1, andGE acts on V (G ) via a characterψG : GE → UK .

On the other hand, the tangent space tG (E) is a (E, K )-module, and themultiplication
by E in tG (E) gives rise to a map

detG : E∗ → AutK (tG (E))
det−→ K ∗.

Recall that θE : E∗ → Gal(Eab/E) denotes the reciprocity map.

Theorem 15.3.2 Let G be a p-divisible group having a formal complex multiplica-
tion by K . Assume that E contains all conjugates of K . Then one has

ψG (θE (u)) = detG (u)
−1, u ∈ U,

for some open subgroup U of UE .

Proof Compairing the decomposition

V (G )⊗Qp C 

⊕

τ∈Hom(K ,E)
C(τ ◦ ψG )

and the Hodge–Tate decomposition of V (G ), we see that there exists a subset S ⊂
Hom(K , E) such that tG (E) 
 ⊕

τ∈S
τ(K ) as a K -module and that

τ ◦ ψG ∼ χE if τ ∈ S,

τ ◦ ψG ∼ 1 if τ /∈ S.

Proposition 15.2.3 implies that ψG concides on an open subgroup of IE with the
character ∏

τ∈Hom(K ,E)
τ−1 ◦ ρτ E .

Now the theorem follows from the theory of Lubin–Tate together with the formula
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detG (u) =
∏

τ∈S
τ−1 ◦ NE/τ(K )(u).

�

Remark 15.3.3 Theorem 15.3.2 is mentioned in [144]. We remark that it implies
the main theorem of complex multiplication of abelian varieties in the global setting.

16 The Exponential Map

16.1 The Group of Points of a Formal Group

16.1.1 In this section, we study the group of points of a formal group in more detail.
Let F be a formal p-divisible group. We denote by TF,∞ the group of torsion points

of F. Note that TF,∞ = ∞∪
n=0

TF,n, and that there is a canonical isomorphism

TF,∞ 
 V (F)/T (F).

Proposition 16.1.2 (i) For any invariant differential form ω on F, the logarithm
λω(X) converges on mC.

(ii) The map
logF : F(mC)→ tF (C),

logF (α)(ω) = λω(α), ∀ω ∈  1
F

is an homomorphism.
(iii) One has an exact sequence

0 → TF,∞ → F(mC)
logF−−→ tF (C) → 0. (72)

Moreover, logF is a local isomorphism.

Proof (i) The space of invariant differential forms on F is generated by the forms
ω1, . . . , ωd such that ωi (0) = dXi . Let λ1, . . . , λd denote the logarithms of these
forms. Since ωi have coefficients in OK , the series λi can be written as

λi (X) = Xi +
∑

n�2

(
∑

n1+···nd=n

an1,...,nd X
n1
1 · . . . · Xnd

d

)

,

where
n · an1,...,nd ∈ OK , n = n1 + · · · + nd . (73)
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This implies that the series λi converge on md
C. Moreover, any logarithm can be

written as a linear combination of λi . Therefore, for any ω, the series λω converges
on md

C. This proves that the map logF is well defined.
(ii) Since λω(X +F Y ) = λω(X)+ λω(Y ), we have

logF (α +F β) = logF (α)+ logF (β).

(iii) Fix c ∈ OK such that

vK (c) >
vK (p)

p − 1
.

Then from (73) it follows that

c−1λi (cX1, . . . , cXd) = Xi +
∑

n�2

(
∑

n1+···+nd=n

bn1,...,nd X
n1
1 · . . . · Xnd

d

)

,

where bn1,...,nd ∈ OK .Applying the p-adic version of the inverse function theorem to
the function λ(X) = (λ1, . . . , λn) (see, for example, [129, Chap. 1, Proposition 5.9]),
we see that it establishes an analytic homeomorphism between F(cmC) and (cmC)

d .

This shows that logF is a local analytic homeomorphism.
We show the exactness of the short exact sequence. Assume that α ∈ TF,∞. Then

there exists n such that [pn](α) = 0, and therefore for each invariant differential form
ω one has pnλω(α) = λω([pn](α)) = 0. This shows that λω(α) = 0 for all ω; hence
α ∈ ker(logF ). Conversely, assume that α ∈ ker(logF ). Take n such that [pn](α) ∈
F(cmC). Then logF ([pn](α)) = pn logF (α) = 0. Since logF is an isomorphism on
F(cmC), this shows that α ∈ TF,n. Thus ker(logF ) = TF,∞. Finally, since logF is a
local isomorphism and F(mC) is p-divisible, logF is surjective. �

Corollary 16.1.3 For each c such that vK (c) >
vK (p)

p − 1
, the local inverse of logF

induces an isomorphism

expF : tF (cmC) 
 F(cmC).

Tensoring this local isomorphism with Qp, we obtain an isomorphism (which we
denote again by expF):

expF : tF (C) 
 F(mC)⊗Zp Qp. (74)

Definition We call logF and expF the logarithmic map and the exponential map
respectively.

Example 16.1.4 For the multiplicative formal group, the exact sequence (72) reads:

0 → μp∞ → U (1)
C

log−→ C → 0, (75)
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where U (1)
C = (1 + mC)

∗ is the multiplicative group of principal units of C.

16.1.5 Following Tate [151], we give a description of the group of points F(mC) in
terms of the Tate module of the dual p-divisible group F∨. Let F(p) = (F[pn])n�1

be the p-divisible group associated to F. Then F[pn](OC) = TF,n. Recall the injec-
tive maps in : F[pn] → F[pn+1]. It’s easy to see that for any s, one has

F(mC/p
s) = lim−→

in

F[pn](OC/p
s).

Therefore, F(mC) can be defined in terms of the p-divisible group F(p) :

F(mC) = lim←−
s

F(mC/p
s) = lim←−

s

lim−→
in

F[pn](OC/p
s).

16.1.6 By Cartier duality, for any OK -algebra R,we have a canonical isomorphism

F[pn](R) 
 HomR(F
∨[pn],Gm).

Taking R = OC/ps and passing to the limits on the both sides, we obtain amorphism

F(mC)→ Hom
(
T (F∨),U (1)

C

)
. (76)

Theorem 16.1.7 (Tate) (i) We have a commutative diagram with exact rows

0 V (F)/T (F)

=

F(mC)
logF

f

tF (C)

g

0

0 V (F)/T (F) Hom
(
T (F∨),U (1)C

)
Hom(T (F∨),C) 0,

where the morphisms are defined as follows:

– the upper row is the short exact sequence (72);
– the bottom row is induced by the short exact sequence (75) and the isomorphism
V (F)/T (F) 
 Hom(T (F∨),Qp/Zp(1));

– the middle vertical map is (76).

(ii) The maps f and g are injective.
(iii) The map g agrees with the Hodge–Tate decomposition of V (F). Namely, the

diagram

tF (C(1))
g

Hodge−Tate

Hom(T (F∨),C(1))


 duality

T (F)⊗Qp C
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commutes.
(iv) The middle vertical row of the diagram induces an isomorphism

F(mK ) 
 HomGK

(
T (F∨),U (1)

C

)
.

Proof (i) The commutativity of the diagram and the exactness of rows is clear from
construction.

We omit the proof of (ii)–(iv), which are the key assertions of the proposition. We
remark that assertions (ii) and (iv) are proved in [151, Proposition 11 and Theorem 3]
without any referring to p-adic integrationon formal groups.They imply immediately
the Hodge–Tate decomposition for V (F).Assertion (iii) says, roughly speaking, that
the Hodge–Tate decomposition arising from p-adic integration agrees with Tate’s
one. See [64, Chap. V, §1]. �

Corollary 16.1.8 The map f can be identified with the canonical injection

F(mC) ↪→ T (F)⊗Zp U
(1)
C (−1)

which gives rise to an isomorphism

F(mK ) 

(
T (F)⊗Zp U

(1)
C (−1)

)GK

.

Proof This follows from Theorem 16.1.7 and the Cartier duality. �

16.2 The Universal Covering

16.2.1 In this section, we introduce the notion of the universal covering of a formal
group, and relate it to the p-adic representation V (F).

Definition We call the universal covering of F(mC) the projective limit

CF(mC) = lim←−[p]
F(mC)

taken with respect to the multiplication-by-p map [p] : F(mC)→ F(mC).

We have an exact sequence

0 → T (F)→ CF(mC)
pr0−→ F(mC) → 0, (77)

where pr0 denotes the projection map

pr0(ξ) = ξ0, ∀ξ = (ξ0, ξ1, . . .), [p](ξn) = ξn−1.
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Combining this exact sequence with (72), we obtain an exact sequence

0 → V (F)→ CF(mC)
logF ◦pr0−−−−→ tF (C)→ 0. (78)

16.2.2 Let Fk denote the reduction of F modulo mK , and let S = mC/mK . Set:

CFk(S) = lim←−[p]
Fk(S).

Proposition 16.2.3 The canonical map F(mC)→ Fk(S) induces an isomorphism

CF(mC) 
 CFk(S).

In particular, CF(mC) depends only on the reduction of F.

Proof (a) The map F(mC) → Fk(S) is clearly an epimorphism. Let y = (yn)n�0 ∈
CFk(S). Let ŷn ∈ F(mC) be any lift of yn. It is easy to see that for each n, the
sequence [pm](ŷn+m) converges to some xn ∈ F(mC) and that [p](xn+1) = xn. This
proves the surjectivity.

(b) The injectivity follows from the fact that for any non-zero x = (xn)n�0 ∈
CF(mC), there exists N such that vK (xn) < 1 for n � N . �
16.2.4 From Corollary 16.1.8, it follows that there exists a canonical isomorphism

CF(mC) 
 T (F)⊗Zp CU
(1)
C (−1). (79)

Example 16.2.5 Consider the universal covering of Ĝm . One has

Ĝm(mC) 
 U (1)
C , U (1)

C := (1 + mC)
∗,

and
CĜm(mC) 
 CU (1)

C , CU (1)
C := lim←−

x p←x

U (1)
C .

The universal covering of the reduction of Ĝm is

CĜm,k(S) = lim←−
x p←x

(1 + S)∗ 
 (1 + mC� )
∗,

and the isomorphism CGm(mC) 
 CGm,k(S) is induced by the isomorphism (32)
for E = C:

lim←−
x p←x

OC 
 O�C.

The short exact sequence (77) reads:

0 → Zp(1) → CU (1)
C → U (1)

C → 0. (80)
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16.3 Application to Galois Cohomology

16.3.1 In this section, we consider the sequence

0 → Qp(1) → (B+
cris)

ϕ=p θ−→ C → 0, (81)

where the first map is the canonical identification ofQp(1) with the submoduleQpt
of (B+

cris)
ϕ=p. The fundamental exact sequence (54) shows that the sequence (81) is

also exact. Consider the diagram:

0 Zp(1)

=

CU (1)
C

log[·]

U (1)
C

log

0

0 Qp(1) (B+
cris)

ϕ=p θ C 0.

(82)

Here we use the isomorphism CU (1)
C 
 1 + mC� to define the middle vertical arrow

as follows:

x �→ log([x]) =
∞∑

n=1

(−1)n+1 ([x] − 1)n

n
.

We omit the proof of convergence of this series in B+
cris.

Proposition 16.3.2 The diagram (82) commutes, and the middle vertical map is an
isomorphism.

Proof (a) The proof of commutativity is straightforward.
(b) The map log[ · ] is surjective because the right vertical map log is surjective,

and CU (1)
C is a Qp-vector space. Since log[x] = 0 implies that [x] is a root of unity,

and CU (1)
C is torsion free, log[ · ] is injective. �

16.3.3 The exact sequence (81) induces a long exact sequence of continuous Galois
cohomology:

0 → H0(GK ,Qp(1))→ H0(GK , (B
+
cris)

ϕ=p) → H0(GK ,C)
∂0−→ H1(GK ,Qp(1))

→ H1(GK , (B
+
cris)

ϕ=p)→ H1(GK ,C)
∂1−→ H2(GK ,Qp(1)).

We use Proposition 16.3.2 to compute the connecting homomorphisms ∂0 and ∂1.

16.3.4 Recall that μpn denotes the group of pnth roots of unity. For each n, the
Kummer exact sequence

0 → μpn → K
∗ pn−→ K

∗ → 0
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gives rise to the connecting map

δn : K ∗ = H 0(GK , K
∗
) −→ H 1(GK , μpn ).

Passing to the projective limit on n, we obtain a map

δ : K ∗ → H 1(GK ,Zp(1)).

The following proposition gives an interpretation of the Kummer map in terms of
the fundamental exact sequence:

Proposition 16.3.5 (i) The diagram

U (1)
K

δ

log

H 1(GK ,Zp(1))

K
∂1

H 1(GK ,Qp(1))

is commutative.
(ii) The diagram

H 1(GK ,C)
∂2

H 2(GK ,Qp(1))

invK

K



−TrK Qp

is commutative. Here the left vertical isomorphism is a �→ a logχK (see Theo-
rem 4.3.2), and the right vertical map is the canonical isomorphism of local class
field theory [140, Theorem 3].

Proof (i) The commutative diagram (82) gives a commutative square:

H 0(GK ,U
(1)
C ) H 1(GK ,Zp(1))

H 0(GK ,C)
∂i

H 1(GK ,Qp(1)).

Here H 0(GK ,U
(1)
C ) = U (1)

K , and H 0(GK ,C) = K by Ax–Sen–Tate theorem. The
explicit description of the connecting map shows that in this diagram, the upper row
coincides with δ. This proves the first assertion.

(ii) Assertion (ii) is proved in [12, Proposition 1.7.2]. �
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16.4 The Bloch–Kato Exponential Map

16.4.1 We maintain previous notation and conventions. Our first goal is to extend
the definition of the Kummer map to the case of general p-divisible formal groups.
Let mK denote the maximal ideal of the ring of integers of K .

For all n � 1, we have an exact sequence

0 → TF,n → F(mK )
[pn ]−−→ F(mK )→ 0,

which can be seen as the analog of the Kummer exact sequence for formal groups.
It induces a long exact sequence of Galois cohomology:

0 → H0(GK , TF,n) → H0(GK , F(mK ))→ H0(GK , F(mK ))
δF,n−−→ H1(GK , TF,n)→ . . . .

Since H 0(K , F(mK )) = F(mK ), this exact sequence gives an injection

δF,n : F(mK )/p
nF(mK )→ H 1(GK , TF,n).

Passing to the projective limit, we obtain a map

δF : F(mK )→ H 1(K , T (F)),

which is referred to as the Kummer map for F. This map plays an important role in
the Iwasawa theory of elliptic curves (see, for example, [81] for an introduction to
this topic).

16.4.2 Bloch and Kato [28] found a remarkable description of δF in terms of p-adic
periods, which also allows to construct an analog of the Kummer map for a wide
class of p-adic representations.

Definition Let V be a de Rham representation of GK . The quotient

tV (K ) = DdR(V )/Fil
0DdR(V )

is called the tangent space of V .

Using the isomorphisms gri (BdR) 
 C(i), one can prove by devissage that the tau-
tological exact sequence

0 → Fil0BdR → BdR → BdR/Fil
0BdR → 0

induces an isomorphism

tV (K ) 
 H 0(GK , V ⊗Qp BdR/Fil
0BdR).

Consider the fundamental exact sequence (54):
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0 → Qp → Bϕ=1
cris → BdR/Fil

0BdR → 0.

Tensoring this sequence with V and taking Galois cohomology, we obtain a long
exact sequence

0 → H 0(GK , V )→ Dcris(V )
ϕ=1 → tV (K )

expV−−→ H 1(GK , V ).

Definition The connecting homomorphism

expV : tV (K )→ H 1(GK , V )

is called the exponential map of Bloch and Kato.

16.4.3 We come back to representations arising from p-divisible formal groups.
Since the Hodge–Tate weights of V (F) are 0 and 1, we have

tV (F)(K ) 
 H 0(GK , V ⊗Qp C(−1)).

The Hodge–Tate decomposition of V (F) provides us with a canonical isomorphism

tF (K ) 
 tV (F)(K ). (83)

In Proposition 16.1.2, we constructed the logarithmicmap logF : F(mK )→ tF (K ).
Taking the composition, we obtain a map F(mK ) → tV (F)(K ).

Theorem 16.4.4 (Bloch–Kato) The diagram

F(mK )
δF

H 1(GK , T (F))

tV (F)(K )
expV (F)

H 1(GK , V (F)),

where the left vertical map is the composition of the exponential map expF with the
isomorphism (83), is commutative.

Proof This is [28, Example 3.10.1].We first prove the following lemma, which gives
an interpretation of the Kummer map in terms of universal coverings. �

Lemma 16.4.5 (i) One has a commutative diagram with exact rows and injective
vertical maps:

0 T (F)




CF(mC) F(mC) 0

0 T (F) T (F)⊗Zp CU
(1)
C (−1) T (F)⊗Zp U

(1)
C (−1) 0.
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(ii) This diagram gives rise to a commutative diagram

F(mK )
δF




H 1(GK , T (F))

=

H 0
(
GK , T (F)⊗Zp U

(1)
C (−1)

)
H 1(GK , T (F)).

Proof (i) The first statement follows from the exactness of the sequence (80) and
Corollary 16.1.8.

(ii) Directly from construction, it follows that the upper connecting map is
δF . Taking into account the isomorphism from Corollary 16.1.8, we obtain the
lemma. �
16.4.6 Proof of the theorem. Consider the diagram

0 Zp CU (1)
C (−1)

log[·]

U (1)
C (−1)

log

0

0 Qp

=

(B+
cris)

ϕ=p(−1)

ε⊗t−1

C(−1)

ε⊗t−1

0,

0 Qp Bϕ=1
cris BdR/Fil0BdR 0.

The upper part of the diagram is diagram (82) twisted by χ−1
K . Therefore, the two

upper squares commute. It is easy to check that the two lower squares commute
too. Tensoring the diagram with T (F) and taking Galois cohomology, we obtain a
commutative diagram

H 0
(
GK , T (F)⊗Zp U

(1)
C (−1)

)
H 1(GK , T (F))

tV (F)(K )
expV (F)

H 1(GK , V (F)).

Combining this diagram with Lemma 16.4.5, we obtain the theorem.

16.5 Hilbert Symbols for Formal Groups

16.5.1 To illustrate the theory developed in previous sections, we sketch its appli-
cation to an explicit description of Hilbert symbols on formal groups. Fix n � 1. Let
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L/K be a finite extension containing the coordinates of all points of TF,n. Recall that
θL : L∗ → Gab

L denotes the reciprocity map.

Definition The Hilbert symbol on F is the pairing

( , )F,n : L∗ × F(mL)→ TF,n (84)

defined by the formula
(α, β)F,n = xθL (α) −F x,

where x ∈ F(mK ) is any solution of the equation [pn](x) = β.

It is easy to see that this pairing is well defined, i.e. that (α, β)F,n does not depend
on the choice of x . If F = Ĝm, and L contains the group μpn of pnth roots of unity,
it reduces to the classical Hilbert symbol:

( , )L ,n : L∗ × L∗ → μpn ,

(α, β)L ,n =
(

pn
√
β
)θL (α)

/ pn
√
β.

16.5.2 By local class field theory, there exists a canonical isomorphism

H 2(GL , μpn ) 
 Z/pnZ

(see, for example, [142, Chap. VI]). Since TF,n is a trivial GL -module, one has

H 2(GL , μpn ⊗ TF,n) 
 TF,n.

Consider the cup product

H 1(GL , μpn )× H 1(GL , TF,n)
∪−→ H 2(GL , μpn ⊗ TF,n) 
 TF,n.

Composing this pairing with the Kummer maps δF,n : F(mL)→ H 1(GL , TF,n) and
δn : L∗ → H 1(GL , μpn ), we obtain a pairing

L∗ × F(mL) → TF,n.

From the cohomological description of the reciprocity map (see for example, [142,
Chap. VI]), it follows that this pairing coincides with the Hilbert symbol (84).

16.5.3 Fix an uniformizer πL of L . Let f (X) ∈ OK [X ] denote the minimal poly-
nomial of πL over K . Writing OL as OK [X ]/( f (X)) and taking into account that
DL/K = ( f ′(πL)), we obtain an explicit description of the module of differentials
 1

OL/Zp
(see [142, Chap. III, §7]):

 1
OL/Zp


 (OL/DL/Qp

)
dπL
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(recall that DL/Qp denotes the different of L/Qp). For any α ∈ OL we write
dα

dπL
for an element a ∈ OL such that dα = a · dπL . Note that a is well defined modulo

DL/Qp . Set d log(α) = α−1 dα

dπL
.

16.5.4 Fix a base (ξi )1�i�h of TF,n over Z/pnZ and a basis (ω j )1� j�h of H 1
dR(F)

in such a way that (ω j )1� j�d is a basis of  1
F . Set:

�L ,n = pn

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

λ′
ω1
(ξ1)

dξ1
dπL

λ′
ω1
(ξ2)

dξ2
dπL

· · · λ′
ω1
(ξh)

dξh
dπL

...
...

. . .
...

λ′
ωd
(ξ1)

dξ1
dπL

λ′
ωd
(ξ2)

dξ2
dπL

· · · λ′
ωd
(ξh)

dξh
dπL

λωd+1(ξ1) λωd+1(ξ2) · · · λωd+1(ξh)
...

...
. . .

...

λωh (ξ1) λωh (ξ2) · · · λωh (ξh)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

where we adopt the notation:

λ′
ω j
(ξi )

dξi
dπL

:=
d∑

k=1

dλω j (ξi )

dXk

dξ (k)i

dπL
, if ξi =

(
ξ
(1)
i , . . . , ξ

(d)
i

)
.

Let X = (Xi j )1�i, j�h denote the inverse matrix of �L ,n. The theory of p-adic
integration together with Bloch–Kato’s interpretation of the Kummer map allow to
give the following explicit formula for this pairing:

Theorem 16.5.5 For all α ∈ L∗ and β ∈ F(mL) such that vp(β) >
2

p − 1
, one has

(α, β)F,n =
h∑

i=1

d∑

j=1

[
TrL/Qp

(
Xi jd log(α)λω j (β)

)]
(ξ j ).

Corollary 16.5.6 Applying this formula to themultiplicative formal groupwe obtain
the explicit formula of Sen [137] for the classical Hilbert symbol:

(α, β)L ,n = ζ
[α,β]n
pn , where [α, β]n := 1

pn
TrL/Qp

(
d log(α)

d log(ζpn )
log(β)

)
.

For Lubin–Tate formal groups, this formula impoves the explicit reciprocity law of
Wiles [158].

Comments on the proof (a) This formula was proved in [12] assuming that vp(β) > c
for some constant c independent of n. In [77], it was noticed that one can take
c = 2

p−1 .
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(b) Let π̂L ∈ Ainf be any lift of πL under the map θ : Ainf → OC. Note that
πL − π̂L ∈ Fil1BdR. Take u = (ui )i�0 ∈ T (F), where [p](ui+1) = ui . Let ω be a
differential form of the second kind. From the definition of the p-adic integration
in Theorem 14.4.2, it follows that the p-adic period

∫
u ω can be approximated as

follows:

∫

u
ω ≈

⎧
⎨

⎩
pnλ′

ω(un)
dun
dπL

(πL − π̂L) (mod Fil2BdR), ifω ∈  1
F ,

−pnλω(un) (mod Fil1BdR), otherwise

(see [12, Sect. 2.4] for precise statements). Therefore, the matrix �L ,n can be seen
as “the matrix of p-adic periods of F modulo pn".

(c) The Hodge–Tate decomposition gives an isomorphism

tF (L) 
 H 0(GL , T (F)⊗Zp C(−1)),

which can be described in terms of the matrix of p-adic periods. We consider an
integral mod pn version of this isomorphism. Namely, set:

m′
C =

{
x ∈ C | vK (x) > vK (p)

p − 1

}
,

and m′
L = m′

C ∩ mL . Since TF,n is a trivial GL -module, we have a map

ηn : tF (m
′
L)→ H 0(GL , TF,n ⊗Zp m

′
C(−1)) 
 H 0(GL ,m

′
C(−1))⊗Zp TF,n,

which has an explicit description in terms of the matrix �L ,n.

(c) The plan of the proof is the following. Using a mod pn version expF,n of the
Bloch–Kato exponential map, we construct a commutative diagram

L∗ × tF (m′
L)

δpn ∪ηn

(δpn ,expF,n)

H 1(GL ,m
′
C/p

n)⊗Zp TF,n

(τn ,id)

H 1(GL , μpn )× H 1(GL , TF,n)
∪

H 2(GL , μpn )⊗ TF,n
∼

TF,n.

From the cohomological interpretation of the Hilbert symbol and Theorem 16.4.4,
it follows that the Hilbert symbol (α, β)F,n can be computed as the image of
(α, logF ) under the map δpn ∪ expF,n . We compute it using the above diagram, as
the image of (α, logF ) under the composition (τn, id) ◦ (δpn ∪ ηn). From construc-
tion, τn is the integral mod pn version of the connecting map ∂2 : H 1(GL ,C) →
H 2(GL ,Qp(1)) associated to the exact sequence

0 → Qp(1) → (B+
cris)

ϕ=p → C → 0.
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Therefore, it can be computed in terms of the trace map using Proposition 16.3.5.
The computation of the cup product δpn ∪ ηn is more subtle, and we refer the reader
to [12] for further details.

Remark 16.5.7 (1)Explicit formulas of other types are proved in [3] and [150]. They
generalize the explicit reciprocity law of Vostokov [156] and also use information
about the matrix of p-adic periods.

(2) The exponential map of Bloch–Kato is closely related to special values of
L-functions and Iwasawa theory [28, 125]. For further reading, see [13, 14, 16, 40,
116, 117, 124].

17 The Weak Admissibility: The Case of Dimension One

17.1 Formal Groups of Dimension One

17.1.1 In this section, we assume that K is a finite totally ramified extension of
K0 = Q̂ur

p . Assume that M is an irreducible filtered ϕ-module over K of rank h
satisfying the following conditions:

(1) M = M1/h .
(2) Fil0MK = MK , Fil2MK = {0}, and dimK Fil1MK = 1.

The first condition means that M 
 K0[ϕ]/(ϕh − p), and by the theory of
Dieudonné–Manin,M is the unique irreducibleϕ-modulewithμN(M) = 1/h.Since
tH(M) = 1/h, we see that M is weakly admissible.

17.1.2 Let FLT denote the Lubin–Tate formal group with the logarithm

λLT(X) =
(
1 − ϕh

p

)−1

(X) = X + X ph

p
+ X p2h

p2
+ · · · .

Extending scalars, we consider FLT as a formal group over K . The filtered ϕ-module
M(FLT) has the following description. The class bLT of the canonical differential
ωLT = dλLT in M(FLT) satisfies the relation

ϕh(bLT) = pbLT,

and the vectors bLT, ϕ(bLT), . . . , ϕh−1(bLT) form a basis of M(FLT) over K0. The
filtration on M(FLT)K is given by

Fil1M(FLT)K = K · bLT.

In particular, M(FLT) and M are isomorphic as ϕ-modules. Let vp denote the valu-
ation normalized as vp(p) = 1.
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Theorem 17.1.3 (Laffaille) Assume that M is a filtered ϕ-module satisfying the
conditions (1)–(2) above. The following holds true:

(i) There exists b ∈ M such that:

(a) b is a generator of M as a ϕ-module, and ϕh(b) = pb;
(b) There exist c0 = 1, c1, . . . , ch−1 ∈ K such that

vp(ci ) � −i/h for all 1 � i � h − 1, (85)

and

� :=
h−1∑

i=0

ciϕ
i (b) ∈ Fil1MK .

(ii) For all c0 = 1, c1, . . . , ch−1 ∈ K satisfying condition (85), the series

λ(X) =
h−1∑

i=0

ciλLT(X
pih )

is the logarithm of some formal p-divisible group over OK of height h.
(iii) M is admissible. More precisely, there exists a formal group F of dimension

one over OK such that M(F) 
 M as filtered ϕ-modules.

Proof This theorem is proved in [102].
(i) By the discussion preceding the theorem, there exists a generator b′ of M

such that ϕh(b′) = pb′ and b′, ϕ(b′), . . . , ϕh−1(b′) is a K0-basis of M. Then for any
non-zero � ∈ Fil1MK , one has

�′ =
h−1∑

i=0

c′
iϕ

i (b′), for some c′
i ∈ K . (86)

Note that c′
i �= 0 for some i. Replacing, if necessary, b′ by ϕi (b′) and dividing � by

c′
i , we can assume that in (86), c′

0 = 1. Let j be such that

vp(c
′
j )+ j/h � vp(c′

i )+ i/h, ∀i = 0, . . . , h − 1.

If vp(c′
j )+ j/h � 0, then vp(c′

i ) � −i/h for all i, and we can take

ci = c′
i , � = �′.

Otherwise c′
j �= 0. In that case, set:

b = ϕ j (b′), � = �′/c′
j .

Then



An Introduction to p-Adic Hodge Theory 211

� =
h−1∑

i=0

ciϕ
i (b),

where the coefficients ci are given by

ci =
{
c′
i+ j/c

′
j , if 0 � i � h − j − 1

c′
i+ j−h/pc

′
j , if h − j � i � h − 1.

For 0 � i � h − j − 1, one has

vp(ci )+ i/h = vp(c
′
i+ j )− vp(c′

j )+ i/h = (vp(c′
i+ j )+ (i + j)/h

)− (vp(c′
j )+ j/h

)
� 0.

For h − j � i � h − 1, one has

vp(ci )+ i/h = vp(c
′
i+ j−h)− vp(c′

j )− 1 + i/h

= (vp(c′
i+ j−h)+ (i + j − h)/h

)− (vp(c′
j )+ j/h

)
� 0.

This shows that c0, c1, . . . , ch−1 satisfy (85).

(ii) By [86, §15.2], a power series of the form
∞∑

n=0
an X pn with a0 = 1 is the loga-

rithm of a formal group if and only if the sums

A1 := pa1,

A2 := pa2 − a1A
p
1 ,

· · · · · · · · · · · · · · · · · ·

An := pan −
n−1∑

i=0

ai A
pi ,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

are in OK . The verification of these conditions for the series λ(X) is quite technical
and is omitted here. See [102, proof of Proposition 2.4].

(iii) Let M be a filtered ϕ-module satisfying conditions (1)–(2). By part (i), there
exists a generator b ofM such that conditions a-b) hold for some c1, . . . , ch−1.Bypart

(ii), the formal power series λ(X) =
h−1∑

i=0
ciλLT(X pih ) is the logarithm of some formal

group F of height h. Then M(F) 
 M as filtered ϕ-modules. By Theorem 14.4.2,
one has M(F) 
 D∗

cris(V (F)). Hence, M is admissible. �

Remark 17.1.4 This theorem implies the surjectivity of the Gross–Hopkins period
map [82]. See also [103] for the case of Drinfeld spaces.
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17.2 Geometric Interpretation of (B+
cris)

ϕh= p

17.2.1 We maintain previous notation and consider the Lubin–Tate formal group
FLT of height h with the logarithm λLT(X). Note that FLT is defined over Zp. Let
FLT,k denote the reduction of FLT modulo p.We have the following interpretation of
the universal covering of FLT, which generalizes Example 16.2.5:

Proposition 17.2.2 There is a canonical isomorphism

CFLT(mC) 
 FLT,k(mC� ).

Proof Since [p](X) ≡ Xq (mod p), the multiplication by p in FLT,k is given by
ϕh . Set S = mK /(p). Then

CFLT,k(S) 
 lim←−
ϕh

FLT,k(S) 
 FLT,k(lim←−
ϕh

S) 
 FLT,k(mC� ).

Now the proposition follows from Proposition 16.2.3. �

17.2.3 Since Ainf/(p) 
 O�C, we have a well defined composition

κ : FLT,k(mC� )
∼−→ FLT,k(Ainf/(p))

∼−→ CFLT(Ainf)
pr0−→ FLT(Ainf).

Here, CFLT(Ainf) := lim←−[p] FLT(Ainf), and pr0 denotes the projection on the ground
level.

Theorem 17.2.4 (Fargues–Fontaine) The map

Log(x) := λLT(κ(x))

establishes an isomorphism FLT,k(mC� ) 
 (B+
cris)

ϕh=p.

Proof (Sketch of the proof) The proof of the convergence of the series λLT(y) in
B+
cris for y ∈ FLT(Ainf) is routine, and we omit it. Since , FLT(Ainf) does not contain

torsion points of FLT, the map Log is injective.
The series FLT(X,Y ) has coefficients in Zp. Hence, the formal group law com-

mutes with ϕ, and one has

ϕhλLT(κ(x)) = λLT(ϕ
h(κ(x))) = λLT(κ(ϕ

h(x))).

On the other hand, ϕh(x) = [p](x) in FLT,k(mC� ), and therefore

λLT(κ(ϕ
h(x))) = λLT([p](κ(x))) = pλLT(κ(x)).

This proves that Log(x) ∈ (B+
cris)

ϕh=p.
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The proof of the surjectivity ismore subtle andwe refer the reader to [60, Chap. 4],
where this map is studied in all detail and in a more general setting. �
Example 17.2.5 If h = 1, then FLT is isomorphic to Ĝm . Therefore, FLT,k(mC� ) 

(1 + mC� )

∗, and the map κ can be identified with the map log[·] introduced in Propo-
sition 16.3.2.

17.2.6 The next theorem furnishes further information about the structure of
(B+

cris)
ϕh=p.

Theorem 17.2.7 (Fargues–Fontaine) For any family of elements

α0, α1, α2, . . . , αh−1 ∈ C,

not all zero, consider the map:

f : (B+
cris)

ϕh=p → C, f (x) =
h−1∑

i=1

αiθ(ϕ
i (x)).

Then f is surjective, and ker( f ) is a Qp-vector space of dimension h.

Proof See [60, Théorème 8.1.2]. Without loss of generality, we can assume that
vp(αi ) � 0 and α0 = 1. The arguments used in the proof of Theorem 17.1.3 apply
and show that there exists a formal group F over OC such that

λF =
h−1∑

i=0

αiϕ
i (λLT).

Consider the diagram

0 V (F) CF(mC)
λF◦pr0 C 0,

(B+
cris)

ϕh=p



f

where the first line is the exact sequence (78) for F , and the vertical isomorphism is
provided by Theorem 17.2.4. Since dimQp V (F) = h, the theorem is proved. �
We refer the reader to [41] for the interpretation of this result in terms of the theory
of Banach Spaces, and to [60] and [55] for applications to the theory of Fargues–
Fontaine.

Acknowledgements The author is very grateful to Nicola Mazzari and the anonymous referee for
pointing out several inaccuracies in the first version of this text. This workwas partially supported by
the Agence National de Recherche (grant ANR-18-CE40-0029) in the framework of the ANR-FNR
project “Galois representations, automorphic forms and their L-functions.”



214 D. Benois

References

1. V.A. Abrashkin, A ramification filtration of the Galois group of a local field, Proc. St. Peters-
burg Math. Soc. III, Amer. Math. Soc. Transl., Ser.2, 166 (Amer. Math. Soc., Providence
1996) pp. 35-100

2. V.A. Abrashkin, Ramification filtration of the Galois group of a local field. Proc. Steklov
Math. Inst. 208, 15–62 (1995)

3. V.A. Abrashkin, Explicit formulas for the Hilbert symbol of a formal group over Witt vectors,
Izvestiya: Mathematics 61:3, 463-615 (1997)

4. V.A. Abrashkin,The ramification filtration of the Galois group of a local field III, Izvestiya:
Mathematics 62(5), 857–900 (1998)

5. V.A. Abrashkin, A local analogue of the Grothendieck conjecture. Int. J. Math. 11, 3–43
(2000)

6. V.A. Abrashkin, An analogue of the field-of-norms functor and the Grothendieck conjecture,
Journal of Algebraic. Geometry 16, 671–730 (2007)

7. V.A. Abrashkin, Galois groups of local fields, Lie algebras and ramification, inArithmetic and
Geometry, ed. by L. Dieulefait, G. Faltings, D.R. Heath-Brown, Yu. I. Manin, B.Z. Moroz,
J.-P. Wintenberger. London Mathematical Society Lecture Note Series, vol. 420, pp. 1–23
(2015)

8. Y. André, Slope filtrations. Confluentes Mathematici 1, 1–85 (2009)
9. F. Andreatta and A. Iovita, Comparison Isomorphisms for Smooth Formal Schemes. J. de

l’Inst. de Math. de Jussieu 12, 77–151 (2013)
10. E. Artin, Algebraic Numbers and Algebraic Functions (Gordon and Breach, NewYork, 1967)
11. J. Ax, Zeros of polynomials over local fields - The Galois action. J. Algebra 15, 417–428

(1970)
12. D. Benois, Périodes p-adiques et lois de réciprocité explicites. J. Reine Angew. Math. 493,

115–151 (1997)
13. D. Benois, On Iwasawa theory of crystalline representations. Duke Math. J. 104, 211–267

(2000)
14. D. Benois, L. Berger, Théorie d’Iwasawa des représentations cristallines. Comm. Math. Hel-

vetici 83, 603–677 (2008)
15. L. Berger, Représentations p-adiques et équations différentielles. Invent. Math. 48, 219–284

(2002)
16. L. Berger, Bloch and Kato’s exponential map: three explicit formulas, Doc. Math., Extra Vol.:

Kazuya Kato’s Fiftieth Birthday, 99–129 (2003)
17. L. Berger, Construction de (ϕ, �) -modules: représentations p-adiques et B-paires. Algebra

Num. Theo. 2, 91–120 (2008)
18. L. Berger, Équations différentielles p-adiques et (ϕ, N ) -modules filtrés. Astérisque 319,

13–38 (2008)
19. L. Berger, Presque Cp -représentations et (ϕ, �) -modules. J. Inst. Math. Jussieu 8, 653–668

(2009)
20. P. Berthelot, Cohomologie cristalline des schémas de caractéristique p>0, Lecture Notes in

Math, vol. 407 (Springer, 1974)
21. P. Berhtelot, A. Ogus, F-isocrystals and de Rham cohomology, I. Invent. Math. 72, 159–199

(1983)
22. P. Berthelot, A.Ogus,Notes onCrystallineCohomology,Mathematical Notes, vol. 21 (Prince-

ton University Press, 1978)
23. B. Bhatt, Lecture Notes for a Class on Perfectoid Spaces http://www-personal.umich.edu/

~bhattb/teaching/mat679w17/lectures.pdf
24. B. Bhatt, M. Morrow, P. Scholze, Integral p-adic Hodge theory. Publ. Math. de l’IHÉS 128,

219–397 (2018)
25. B.Bhatt,M.Morrow, P. Scholze, TopologicalHochschild homology and integralp-adicHodge

theory. Publ. Math. de l’IHÉS 129, 199–310 (2019)

http://www-personal.umich.edu/~bhattb/teaching/mat679w17/lectures.pdf
http://www-personal.umich.edu/~bhattb/teaching/mat679w17/lectures.pdf


An Introduction to p-Adic Hodge Theory 215

26. A.Beilinson, p-adic periods and derived deRhamcohomology. J.Am.Math. Soc. 25, 715–738
(2012)

27. A. Beilinson, On the crystalline period map. Cambridge J. Math. 1, 1–51 (2013)
28. S. Bloch, K. Kato, L-functions and Tamagawa numbers of motives, in The Grothendieck

Festschrift, ed. by P. Cartier, L. Illusie, N.M. Katz, G. Laumon, Y.I. Manin, K.A. Ribet, vol.
I, Progress in Math, vol. 86, (Birkhäuser, Boston 1990), pp. 333–400

29. C. Breuil, Une application de corps des normes. Compositio Math. 117, 189–203 (1999)
30. C. Breuil, Groupes p-divisibles, groupes finis et modules filtrés. Ann. Math. 152, 489–549

(2000)
31. O. Brinon, Représentations p-adiques cristallines et de de Rham dans le cas relatif. Mém.

Soc. Math. Fr. (N.S.), 112 (2008), vi+159 pages
32. O. Brinon, B. Conrad, CMI summer school notes on p-adic Hodge theory, http://math.

stanford.edu/~conrad/papers/notes.pdf
33. X. Caruso, Représentations galoisiennes p-adiques et (ϕ, τ ) -modules. Duke Math. J. 162,

2525–2607 (2013)
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Perfectoid Spaces: An Annotated
Bibliography

Kiran S. Kedlaya

This annotatedbibliographywasprepared as part of afive-lecture series at the summer
school on perfectoid spaces held at the International Centre for Theoretical Sciences
(ICTS), Bengaluru, September 9–13, 2019. It is not intended to be a freestanding
reference, although we do include a few short proofs and some sketches of longer
proofs; instead, I have attempted to give some complements to my Arizona Winter
School 2017 lecture notes [28], which provide a far more complete version of the
story.

Throughout, fix a prime number p.

1 Perfectoid Fields

Primary references: [26, §1], [44, §3], [32, §3.5].

Proposition 1.1 (Fontaine–Wintenberger theorem) The Galois groups of the fields
Qp(μp∞) and Fp((t)) are isomorphic. More precisely, this isomorphism arises from
an explicit isomorphism of Galois categories.

Proof This is a consequence of results announced in [16, 17] and proved in detail in
[51]. It is also a special case of Proposition 1.16 via Krasner’s lemma (Remark 1.10).

We expand briefly on how Proposition 1.1 is embedded in the aforementioned
papers of Fontaine–Wintenberger. By a theorem of Sen [43], the field Qp(μp∞) is
strictly arithmetically profinite in the sense of Fontaine–Wintenberger (we do not
need the exact definition here). This then implies that its norm field is a local field of
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characteristic pwith residue fieldFp (see [16, Théorème 2.4], [51, Théorème 2.1.3]),
and so may be identified with Fp((t)) via the Cohen structure theorem. The norm
field construction then defines a bijection between finite extensions ofQp(μp∞) and
finite separable extensions of its norm field [51, Théorème 3.2.2]. �

Remark 1.2 The results of Fontaine–Wintenberger cited above also imply that for
any strictly arithmetically profinite algebraic extension K of Qp, the Galois group
of K and its norm field are isomorphic. This more general statement can also be
recovered from Proposition 1.16, by showing that the completion of K is perfectoid
with tilt isomorphic to the completed perfect closure of the norm field.

Before relating the Fontaine–Wintenberger theorem to perfectoid fields, we intro-
duce some background on nonarchimedean fields.

Definition 1.3 A nonarchimedean field is a topological field whose topology is
defined by some nontrivial nonarchimedean absolute value, with respect to which
the field is complete. For K a nonarchimedean field, write

∣
∣K×∣

∣ for the value group,
oK for the valuation ring, mK for the maximal ideal, and κK for the residue field.

Proposition 1.4 Let K be a nonarchimedean field (a field complete with respect to
a nontrivial nonarchimedean absolute value). Let L/K be a finite extension.

(i) The absolute value on K extends uniquely to a nonarchimedean absolute value
on L.

(ii) There is a unique maximal subextension U of K which is unramified over K :
∣
∣U×∣

∣ = ∣
∣K×∣

∣ and κU/κK is separable of degree [U : K ]. In particular, oU can
be written as oK [λ] where λ maps to a primitive element of the residue field
extension; in particular, if we write an element x of U as

∑d−1
i=0 aiλ

i with ai ∈ K,
then x ∈ oU if and only if ai ∈ oU (or equivalently ai ∈ oK ) for all i .

(iii) If κK has characteristic p, then there is a unique maximal subextension T of
K containing U which is totally tamely ramified over U: κT = κU and [∣∣T×∣

∣ :
∣
∣U×∣

∣] = [T : U ] is coprime to p. That is, [T : U ] is coprime to p, the residue
fields of T and U coincide, and the value group extension of T/U has index
[T : U ]. Moreover, T can bewritten asU (λ1/d) in such away thatλ1/d generates
the quotient of the value groups; in particular, if we write an element x of T as
∑d−1

i=0 aiλ
i/d with ai ∈ U, then x ∈ oT if and only if aiλi/d ∈ oT for all i .

(iv) With notation as in (iii), the degree [L : U ] is a power of p. In particular, if L/K
is Galois with group G, thenGal(L/U ) admits a subnormal series in which each
successive quotient is cyclic of order p.

Proof See, for example, [6, Chapter XIII]. �

Remark 1.5 If you are used to thinking about local fields as examples of nonar-
chimedean fields, awarning is in order: for L/K a finite extension of nonarchimedean
fields, the inequality

[L : K ] ≥ [∣∣L×∣
∣ : ∣

∣K×∣
∣][κL : κK ],
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which is always an equality when K is a local field, and can be strict in general. See
[36] for a detailed discussion of this phenomenon.

Definition 1.6 For P(T ) = PnT n + · · · + P0 ∈ K [T ] a polynomial over a nonar-
chimedean field K , the Newton polygon of P is the open polygon which forms the
lower boundary of the convex hull of the set

n
⋃

i=0

{i} × [− log |Pn−i | ,∞) ⊂ R2.

For i = 1, . . . , n, the section of this polygonwith x-coordinates in the range [i − 1, i]
is a line segment. The slopes of these n line segments form the slope multiset of P .

Proposition 1.7 (Properties of Newton polygons) Let P(T ) be a polynomial over
a nonarchimedean field K .

(i) Choose an extension L of K over which P(T ) factors as
(T − α1) · · · (T − αn). Then the slope multiset of P consists of −
log |α1| , . . . ,− log |αn| in some order. In particular, the slope multiset of a
product of two polynomials is the union of the slope multisets of the two polyno-
mials.

(ii) If P is irreducible, then the Newton polygon is a straight line segment.

Proof There are many references for this material, see, for example, [23, Chapter 2].

Proposition 1.8 (Krasner’s lemma) Let L/K be a (not necessarily finite) extension
of nonarchimedean fields. Let P(T ) ∈ K [T ] be a polynomial which factors com-
pletely over L as (T − α1) · · · (T − αn). Then for any β ∈ L such that

|β − α1| < |αi − α1| (i = 2, . . . , n),

we have K (α1) ⊆ K (β).

Proof For i = 2, . . . , n, |β − αi | = |αi − α1| > |β − α1| by the non-
Archimedean triangle inequality. By Proposition 1.7, the Newton polygon of P(T −
β) includes a segment of length 1, which must correspond to an irreducible factor.
Alternatively, see [42, Theorem III.1.5.1], it is assumed therein that K is a discretely
valued field, but the proof remains unchanged in the general case. �

Proposition 1.9 Let K be a nonarchimedean field and let x be a nonzero element
of K of positive valuation. Then K is algebraically closed if and only if:

(a) the value group of K is not discrete and
(b) every polynomial over oK /(x) has a root in oK /(x).

Proof (The following argument is extracted from [26, Lemma 1.5.4], see also [44,
Proposition 3.8], [32, Lemma 3.5.5].) It is clear that both conditions are necessary. To
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check sufficiency, note first that (a) and (b) together imply that the value group of K
is in fact divisible. With this in mind, we show that every polynomial P(T ) ∈ oK [T ]
has a root in oK , by induction on the degree n of P . (This implies the same with oK
replaced by K , by rescaling in T .)

To this end,we construct a sequence z0, z1, . . . as follows. Startwith z0 = 0.Given
zi , if P(zi ) = 0 there is nothing more to check. If P(zi ) �= 0 but the polynomial
P(T + zi ) has more than one distinct slope in its slope multiset, Proposition 1.7
allows us to factor it nontrivially and proceed by induction. Otherwise, because K has
divisible value group, we can find a nonzero value ui ∈ K for which P(ui T + zi ) has
all slopes equal to 0. By hypothesis (b), there exists yi ∈ oK such that P(ui yi + zi ) ∈
xoK , put zi+1 = zi + ui yi .

To conclude the argument, it will suffice to check that if the construction of the
sequence continues infinitely, then the sequence converges to a limit z which is a
root of P . Since P(T + zi ) has only one slope in its slope multiset, we must have
|ui | = |P(zi )|1/n . Since |P(zi+1)| ≤ |x | |P(zi )|, it follows that ui → 0 as i → ∞,
so the zi do converge to a limit z satisfying |P(z)| = 0. �
Remark 1.10 From the previous discussion, we deduce that an algebraic extension
L of K is algebraically closed if and only if its completion is algebraically closed:
the “if” assertion follows from Krasner’s lemma (Proposition 1.8) while the “only
if” assertion follows from Proposition 1.9.

One consequence of this observation for the Fontaine–Wintenberger theorem is
that, on one hand, Qp(μp∞) and its completion have the same Galois group; on the
other hand, Fp((t)), its perfect closure, and the completion of its perfect closure all
have the same Galois group.

Definition 1.11 A perfectoid field is a nonarchimedean field K with residue field of
characteristic p and nondiscrete value group, for which the Frobenius map x 
→ x p

on oK /(p) is surjective. We allow the possibility that K is of characteristic p, in
which case K is forced to be perfect.

Remark 1.12 Any algebraically closed nonarchimedean field with
residue field of characteristic p is perfectoid. The completion K of Qp(pp−∞

) is
perfectoid:

oK /(p) ∼= Fp[T 1, T 2, . . . ]/(T p
1 , T

p
2 − T 1, . . . ).

The completion of Qp(μp∞) is perfectoid, and we have

oK /(p) ∼= Fp[T 1, T 2, . . . ]/(T p−1
1 + · · · + T 1 + 1.T

p
2 − T 1, . . . ).

In both cases, the tilt is isomorphic to the completion ofFp((T ))[T 1/p∞]. In particular,
one cannot recover K from K � alone; some extra data is needed which we describe
in the next lecture.

Remark 1.13 As noted in [28, Remark 2.1.8], the definition of a perfectoid field
first appeared in [39] in 1984 under the terminology hyperperfect field (in French,
corps hyperparfait), but the significance of this went unnoticed at the time.
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Proposition 1.14 (after Fontaine) Let K be a perfectoid field.

(i) The natural map
lim←−
x 
→x p

oK → lim←−
x 
→x p

oK /(p)

is an isomorphism of multiplicative monoids.
(ii) Using (i) to upgrade oK � := lim←−x 
→x p

oK to a ring, it becomes a perfect valuation

ring of characteristic p with fraction field K � := lim←−x 
→x p
K . The valuation on

K � is the restriction along the final projection � : K � → K.
(iii) The map � induces an isomorphism

∣
∣K×∣

∣ ∼= ∣
∣K �×∣

∣, in particular, both value
groups are p-divisible.

(iv) The fields κK and κK � are isomorphic, in particular, both residue fields are
perfect. Moreover, for x ∈ K � such that �(x)/p ∈ o×

K (which exists by (iii)), the
rings oK /(p) and oK �/(x) are isomorphic.

We call K � the tilt of K .

Proof See [26, Lemma 1.3.3] or [44, Lemma 3.4]. (While the basic construction
described here was known to Fontaine, the term tilt, and the notations � and �, were
introduced by Scholze in [44].) �

Proposition 1.15 Let K be a perfectoid field. Then K is algebraically closed if and
only if K � is algebraically closed.

Proof This follows from Propositions 1.9 and 1.14(iii, iv). �

We are not yet able to prove the following result; we state the proof modulo a key
construction which we will introduce in the next lecture.

Proposition 1.16 (Generalized Fontaine–Wintenberger theorem) Let K be a per-
fectoid field with tilt K �.

(i) Every finite extension of K is perfectoid.
(ii) The functor L 
→ L� defines an equivalence of Galois categories between finite

extensions of K and K �, and hence an isomorphism between the absolute Galois
groups of K and K �.

Proof We follow the proof of [26, Theorem 1.5.6]. See [44, Theorem 3.7] for a
somewhat different approach (using almost ring theory in place of Witt vectors). We
may omit the case where K is of characteristic p, as in this case K = K � and the
claim is trivial.

Wewill show in the next lecture (see Proposition 2.16) that there exists a surjective
homomorphism θ : W (oK � ) → oK with the property that for each finite extension E
of K �, there exists a perfectoid field L with

W (oE ) ⊗W (oK � ),θ oK
∼= oL;
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this isomorphismwill induce an isomorphism L� ∼= E . By inverting p in the previous
isomorphism, we will also have an identification

W (oE )[p−1] ⊗W (oK � ),θ oK
∼= L;

in case E/K � is a Galois extension with group G, it will follow that G acts on L
with invariant subring K , so by Artin’s lemma L/K is a finite Galois extension with
Galois group G. If E/K � is not necessarily Galois, we may first go up to a Galois
closure of E/K � and then come back down to deduce that [L : K ] = [E : K �].

In thisway,wewill obtain a functor fromfinite extensions of K � to finite perfectoid
extensions of K which, when followed by the tilting functor, yields an equivalence
of categories (by the degree preservation property from the previous paragraph).
In particular, this functor is fully faithful, and it remains only to check that it is
essentially surjective. For this, let E be a completed algebraic closure of K �. By
Proposition 2.14 again, we may realize E as the tilt of some extension L of K ; by
Proposition 1.15, L is algebraically closed. ByRemark 1.10(ii), the union of the finite
extensions of K arising from finite extensions of K �, or equivalently finite Galois
extensions of K �, is also algebraically closed. Hence, every finite extension L of K
is contained in a finite Galois extension of K arising from a finite Galois extension of
K �; as in the previous paragraph, we deduce that L is itself perfectoid. This proves
the claim. �

Remark 1.17 Let C be a completed algebraic closure of Qp. By Proposition 1.16;
we can identify C� with a completed algebraic closure of Fp((t)) in various ways;
for example, the two calculations from Remark 1.12 give rise to two distinct isomor-
phisms of this sort.

Suppose now that K is an arbitrary untilt of C� of characteristic 0. Since K is
algebraically closed and contains Qp, the completed algebraic closure of Qp within
K is isomorphic toC. However, the resulting inclusionC ⊆ K can be strict, see [35]
for examples.

2 Tilting, Untilting, and Witt Vectors

In the previous lecture, the proof of Proposition 1.16 hinged on being able to find
perfectoid fields with a specified tilt using Witt vectors. In order to better understand
the relationship between perfectoid fields and their tilts, we use Witt vectors to
describe all possible fields with a given tilt.

Definition 2.1 A ring R of characteristic p is perfect if the Frobenius homomor-
phism x 
→ x p is an isomorphism; note that injectivity of this map is equivalent to R
being reduced. When R is a field, this is equivalent to the Galois-theoretic condition
that every finite extension of R is separable.

Proposition 2.2 Let R be a perfect ring of characteristic p.
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(a) There exists a p-adically separated and complete ring W (R) with W (R)/(p) ∼=
R (the ring of p-typical Witt vectors with coefficients in R).

(b) The reduction map W (R) → R admits a unique multiplicative section x 
→ [x]
(called the Teichmüller map).

(c) The construction of W (R) is functorial in R. In particular, W (R) itself is unique
up to unique isomorphism.

Proof See, for example, [26, §1.1]. Note that the Teichmüller map can be charac-
terized by the formula x = limn→∞ x pn

n where xn ∈ W (R) is any element satisfying

x pn
n ≡ x (mod p); the limit exists because x pn

n ≡ x pn+1

n+1 (mod pn+1). �

Remark 2.3 The Witt vector construction was first introduced in the context where
R is a perfect field. In this case, W (R) is a complete discrete valuation ring with
maximal ideal p and residue field R. For example, W (Fp) ∼= Zp.

Remark 2.4 Onemay fancifully think ofW (R) as R�p� except with some “carries”
in the arithmetic. More precisely, every element x ∈ W (R) has a unique representa-
tion as a convergent series

∑∞
n=0[xn]pn with xn ∈ R, but the arithmetic operations

are somewhat complicated to express in terms of these coordinates. (Note that xn is
not the n-th Witt vector coefficient, but rather its pn-th root.)

Since W (R) is functorial in R, it admits a unique lift ϕ of the Frobenius map on
R. This map has the property that ϕ([x]) = [x p] for x ∈ R, that is, the elements [x]
form the kernel of the associated p-derivation

δ(x) := ϕ(x) − x p

p
,

which occurs prominently in the context of prismatic cohomology [5, 31].

Definition 2.5 For the remainder of this lecture, let F denote a perfect nonar-
chimedean field of characteristic p, and define the ring Ainf(F) := W (oF ). This
is a local ring with residue field equal to that of F .

Remark 2.6 Since Ainf(F) is to be interpreted as oF�p�, one can form a tenu-
ous analogy between Ainf(F) and a two-dimensional complete local ring such as
Fp�x, y�. On one hand, the ring Ainf(F) does not have any reasonable finiteness
properties. For starters, it is certainly not noetherian: for any x ∈ oF of positive
valuation, the ideal

([x], [x1/p], [x1/p2 ], . . . )

is not finitely generated. In fact, Ainf(F) has infinite [37] and even uncountable [13]
global dimension, and, in general, is not even coherent [30].

On the other hand, it is true that every vector bundle on the punctured spectrum
of Ainf(F) extends uniquely over the puncture. See [30].

Proposition 2.7 (after Fontaine) Let K be a perfectoid field.
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(i) There is a unique homomorphism θ : Ainf(K �) → oK whose restriction along
the Teichmüller map is the map �.

(ii) The map θ is surjective.

Proof Part (i) is a formal consequence of the basic properties of p-typical Witt
vectors, see [26, §1.1]. Part (ii) follows from Proposition 1.14(iv). �

To further analyze the kernel of θ, we make a key definition.

Definition 2.8 An element z = ∑∞
n=0[zn]pn ∈ Ainf(F) is primitive if z0 ∈ mF and

z1 ∈ o×
F . An ideal of Ainf(F) is primitive if it is principal generated by some primi-

tive element. (It will follow from the following remark that every generator is then
primitive.)

Remark 2.9 In the definition of a primitive element, the condition that z1 ∈ o×
F

may be replaced by the condition that (z − [z0])/p ∈ Ainf(F)× or the condition that
δ(z) ∈ Ainf(F)× (because δ(z) ≡ [z p1 ] (mod p)). From the latter formulation and
the identity

δ(yz) = y pδ(z) + z pδ(y) + pδ(y)δ(z),

we see that the product of a primitive element with a unit is a primitive element.

Remark 2.10 In the analogy between Ainf(F) and Fp�x, y�, primitive elements
correspond to power series

∑∞
m,n=0 am,nxm yn with a0,0 = 0, a0,1 �= 0. By the Weier-

strass preparation theorem, any such power series can be written as a unit of Fp�x, y�
times y − cx for some c ∈ Fp; consequently, the quotient by the ideal generated by
such a power series is isomorphic to Fp�x�.

Proposition 2.11 For I a primitive ideal, every class in Ainf(F)/I can be repre-
sented by some element of Ainf(F) which is a unit times a Teichmüller lift.

Proof See [26, Lemma 1.4.7]. To summarize, let z be a generator of I . Given x =
∑∞

n=0[xn]pn ∈ Ainf(F), x generates the same class in Ainf(F)/(z) as

x − (x − [x0])/p
(z − [z0])/p z = [x0] + [z0](x − [x0])/p.

By repeating this construction, we either produce a representative of the desired form,
or verify that x ∈ (z) (in which case we take the representative 0). We will take a
more detailed look at what is going on here in the third lecture. �

Remark 2.12 Amore “prismatic” version of the construction from Proposition 2.11
would be to replace x with

x − ϕ−1

(
δ(x)

δ(z)

)

z.

However, we have not checked that this has the same convergence property as the
construction given above.
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Proposition 2.13 For K a perfectoid field, the kernel of θ : Ainf(K �) → oK is a
primitive ideal.

Proof We reproduce here [26, Corollary 1.4.14]. By Proposition 1.14(iii), there
exists x ∈ oK � such that y := θ(x)/p is a unit in oK . By Proposition 2.7, there exists
w ∈ Ainf(K �) with θ(w) = y. Since w must be a unit in Ainf(K �), the element z :=
pw − [x] is a primitive element in ker(θ).

By Proposition 2.11, every nonzero class in Ainf(K �)/(z) can be represented by
an element of Ainf(K �) which is a unit times a Teichmüller lift; any such element
has nonzero image in θ. It follows that ker(θ) = (z), as claimed. �

Proposition 2.14 (Tilting correspondence) For every primitive ideal I of Ainf(F),
the quotient Ainf(F)/I can be identified with oK for some perfectoid field K . We
then have an isomorphism K � ∼= F for which I occurs as the kernel of θ : Ainf(F) ∼=
Ainf(K �) → oK . (Any such K is called an untilt of F.)

Proof See [26, Theorem 1.4.13]. To summarize, by Proposition 2.11, we can repre-
sent each class in the quotient by a unit times a Teichmüller lift, and use the latter
to define the valuation (modulo showing that this does not depend on the choice of
representative). �

Remark 2.15 Note that z = p is a primitive element, and consistently F is an untilt
of itself. Any other untilt of F is of characteristic 0.

As noted earlier, the following result completes the proof of Proposition 1.16.

Proposition 2.16 (Untilting of extensions) Let K be a perfectoid field. For any
nonarchimedean field E containing K �, the ring

oL := Ainf(E) ⊗Ainf (K �),θ oK

is the valuation ring of a perfectoid field L with L� ∼= E.

Proof By Proposition 2.7, the map θ : Ainf(K �) → oK is surjective and its kernel I
is a primitive ideal. The ideal IAinf(E) is again primitive, so by Proposition 2.14,
there is a perfectoid field L for which L� ∼= E and θ : Ainf(E) → oL has kernel
IAinf(E). This field has the desired property. �

Remark 2.17 Now that we have a reasonable way to describe the untilts of F , one
can try to construct a moduli space of these untilts. Before doing so, we must observe
that for any primitive ideal I of Ainf(F), ϕ(I ) is also a primitive ideal and ϕ induces
an isomorphism Ainf(F)/I ∼= Ainf(F)/ϕ(I ), that is, I and ϕ(I ) define “the same”
untilt of F .

In order to construct the desired moduli space, we must therefore find a way to
define a space associated to Ainf(F) and then quotient by the action of ϕ. Since ϕ
is of infinite order, there is no hope of doing this within the category of schemes,
at least not directly. We will compare two different constructions of this form in the
fourth lecture.
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Remark 2.18 The ring Ainf(K ) plays a central role in Fontaine’s construction of
p-adic period rings. We recommend [3] for a development of this point in modern
language.

3 Perfectoid Rings and Spaces

In this lecture,we describe how the tilting equivalence can be extended to certain rings
and spaces. Some detailed historical remarks, including many original references for
the following statements, can be found in [28, Remarks 2.1.8, 2.3.18, 2.4.11, 2.5.13];
we do not attempt to reproduce these here.

Remark 3.1 These lectures will not include any review of Huber’s theory of adic
spaces, as these are covered in other lectures. For the reader reading this document
in isolation, some introductory sources for the theory are [11] (in the context of rigid
analytic geometry), [28, Lecture 1], [47, Lectures I–V], and [50].

One caution is in order: we will only consider Huber rings A, and Huber pairs
(A, A+), in which A is Hausdorff, complete, and contains a topologically nilpotent
unit (also called a pseudouniformizer); this last condition is usually called Tate. In
[28, Lecture 1], the Tate condition is relaxed to the condition that the topologically
nilpotent elements of A generate the unit ideal; this condition is called analytic.

Definition 3.2 A Huber ring A is perfectoid if the following conditions hold:

(a) The ring A is uniform: its subring A◦ of power-bounded elements is bounded
(and hence a ring of definition).

(b) There exists a pseudouniformizer 	 with p ∈ 	 p A◦ such that the Frobenius
map ϕ : A◦/(	) → A◦/(	 p) is surjective.

A Huber pair (A, A+) is perfectoid if A is perfectoid. This implies an analogue of
(b) with A◦ replaced by A+, see [28, Corollary 2.3.10].

Remark 3.3 Beware that different sources use the term perfectoid at different levels
of generality. In [44], the only rings considered are perfectoid K -algebras where K
is itself a perfectoid field. In [32], only perfectoid Qp-algebras are considered. The
definition we give above was introduced by Fontaine [15] and adopted by Kedlaya–
Liu in [33] and Scholze in [47]. Even more general definitions are also possible, as
in [4].

Remark 3.4 Given a perfectoid ring A, there is not much wiggle room left in the
choice of A+; it is a subring of A◦ and the quotient A◦/A+ is an almost zero A+-
module, meaning that it is annihilated by every topologically nilpotent element of
A+.

The notion of an almost zero module is the starting point of almost commutative
algebra as introduced by Faltings and developed by Gabber–Ramero [18], in which
one systematically defines almost versions of various ring-theoretic and module-
theoretic concepts consistent with the previous definition.
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A crucial first example is given by the perfectoid analogues of Tate algebras.

Definition 3.5 For K a perfectoid field of characteristic 0, the rings

K 〈T p−∞〉 := (oK [T p−∞])∧p [p−1], K 〈T±p−∞〉 := (oK [T±p−∞])∧p [p−1]

are perfectoid rings for the p-adic topologies. More generally, if (A, A+) is a per-
fectoid Huber pair, we may similarly define perfectoid rings A〈T p−∞〉, A〈T±p−∞〉.

The following is true but not straight forward to prove.

Proposition 3.6 A perfectoid ring which is a field is a perfectoid field. That is, if
the underlying ring is a field, then the topology is induced by some nonarchimedean
absolute value.

Proof See [29, Theorem 4.2]. �

Remark 3.7 A related statement is that for A a perfectoid ring, the residue field of
any maximal ideal of A is a perfectoid field. See [28, Corollary 2.9.14].

As for perfectoid fields, there is a tilting construction that plays a pivotal role in
the theory.

Proposition 3.8 Let (A, A+) be a perfectoid Huber pair.

(i) The natural map
lim←−
x 
→x p

A+ → lim←−
x 
→x p

A+/(p)

is an isomorphism of multiplicative monoids.
(ii) Using (ii) to upgrade lim←−x 
→x p

A+ to a ring A�+, this ring occurs in a perfectoid
Huber pair (A�, A�+) of characteristic p in which the underlying multiplicative
monoid of A� is lim←−x 
→x p

A. (Moreover, A� depends only on A, not on A+.)
(iii) Let � : A → A� be the final projection. Then there exists a pseuoduniformer 	

of A� such that �(	)/	 is a unit in A+.
(iv) With notation as in (iii), the rings A+/(	) and A�+/(	) are isomorphic.

Proof See [28, Theorem 2.3.9]. �

Remark 3.9 The construction of perfectoidTate algebras (Definition 3.5) commutes
with tilting.

Definition 3.10 Let (R, R+) be a perfectoid Huber pair of characteristic p. An
element z = ∑∞

n=0[zn]pn ∈ W (R+) is primitive if z0 is topologically nilpotent and
z1 is a unit. Any associate of a primitive element is again primitive; we thus say that
an ideal of W (R+) is primitive if it is principal and some (hence any) generator is
primitive.

Proposition 3.11 Let (A, A+) be a perfectoid Huber pair.
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(i) There is a unique homomorphism θ : W (A�+) → A+ whose restriction along
the Teichmüller map is the map �.

(ii) The map θ is surjective.
(iii) The kernel of θ is primitive.

Proof See [28, Theorem 2.3.9]. �

Proposition 3.12 Let (R, R+) be a perfectoid Huber pair of characteristic p. For
every primitive ideal I of W (R+), there exist a perfectoid Huber pair (A, A+) and
an identification (A�, A�+) ∼= (R, R+) under which I corresponds to the kernel of
θ.

Proof See [28, Theorem 2.3.9]. �

Remark 3.13 For A a perfectoid ring, the categories of perfectoid rings over A
and A� are equivalent via tilting, using the primitive ideal coming from A to untilt
extensions of A�. The case where A is a perfectoid field is the form of the tilting
equivalence stated in [44].

The compatibility of tilting with finite extensions of fields has the following ana-
logue for rings.

Proposition 3.14 Let (A, A+) be a perfectoid Huber pair.

(i) Let A → B be a finite étale morphism and let B+ be the integral closure of A+
in B. Then (B, B+) is again a perfectoid Huber pair.

(ii) The categories of finite étale algebras over A and over A� are equivalent via
tilting.

Proof See [28, Theorem 2.5.9]. �

A new feature in the ring case is that we also have a compatibility of tilting with
localization.

Proposition 3.15 Let (A, A+) be a perfectoid Huber pair.

(i) Let (A, A+) → (B, B+) be a rational localization. Then (B, B+) is again a
perfectoid Huber pair. (In particular, B is again uniform.)

(ii) The categories of rational localizations of (A, A+) and of (A�, A�+) are equiv-
alent via tilting.

Proof See [28, Theorem 2.5.3]. �

This allows to construct adic spaces using the following criterion for sheafiness
of Huber rings.

Definition 3.16 A Huber pair (A, A+) is stably uniform if for every rational local-
ization (A, A+) → (B, B+), the Huber ring B is uniform. This depends only on A,
not on A+ [28, Definition 1.2.12].
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Proposition 3.17 (Buzzard–Verberkmoes, Mihara) Any stably uniform Huber pair
is sheafy.

Proof This is due independently to Buzzard–Verberkmoes [7, Theorem 7] and
Mihara [40, Theorem 4.9]. See also [32, Theorem 2.8.10] and [28, Theorem 1.2.13]
(which also covers the case where A is analytic but not Tate). �

Proposition 3.18 Every perfectoid Huber pair is sheafy.

Proof This follows by combining Proposition 3.15 with Proposition 3.17. �

Remark 3.19 In the previous statement, it is crucial that we have a criterion for
sheafiness without a noetherian hypothesis: a perfectoid ring cannot be noetherian
unless it is a finite product of perfectoid fields. See [28, Corollary 2.9.3].

Definition 3.20 For (A, A+) a perfectoid Huber pair, by Proposition 3.18 the struc-
ture presheaf on Spa(A, A+) is a sheaf. We may thus define a perfectoid space to be
a locally v-ringed space which is locally of this form.

Remark 3.21 As a first example, one can use the perfectoid Tate algebra to define
analogues of projective spaces in the category of perfectoid algebras; these play an
important role in the application to the weight-monodromy conjecture given in [44],
in which one exploits the fact that the conjecture is known in the equal-characteristic
setting to deduce certain cases of it in mixed characteristic. One can also extend both
the construction and the application to toric varieties; we leave this to the interested
reader.

Proposition 3.22 For (A, A+) a sheafy Huber pair, the structure sheaf on (A, A+)

is acyclic. In particular, by Proposition 3.18, this holds when (A, A+) is perfectoid.

Proof See [28, Theorem 1.4.16]. �

Remark 3.23 There are some further compatibilities of tilting with other algebraic
operations or properties.

• Tilting commuteswith taking completed tensor products [28, Theorem2.4.1]. This
implies the existence of fiber products in the category of perfectoid spaces.

• Certain properties of morphisms of perfectoid rings are compatible with tilting,
including injectivity [28, Corollary 2.9.13], strict injectivity [28, Theorem 2.4.2],
surjectivity [28, Theorem 2.4.4], or having dense image [28, Theorem 2.4.3].

4 Fargues–Fontaine Curves

Wenow showhow to construct “moduli spaces of untilts” in the spirit of Remark 2.17,
leading to the schematic and adic Fargues–Fargues curves.

Throughout this lecture, let F be a perfect(oid) nonarchimedean field of charac-
teristic p.
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Definition 4.1 For any element 	 of the maximal ideal of oF , the ring Ainf(F) is
complete for the (p, [	])-adic topology; we may thus view it as a Huber ring using
itself as the ring of definition, and then form the adic spectrumSpa(Ainf(F),Ainf(F)).
From this space, remove the zero locus of p[	]; we denote the resulting space by
YF .

Proposition 4.2 The action of ϕ on YF is without fixed points, and moreover is
properly discontinuous: every point admits a neighborhood whose images under the
various powers of ϕ are pairwise disjoint.

Proof For n ∈ Z, define the rational subsets Un, Vn of YF by the formulas

Un := {v ∈ YF : v([	])pn+pn−1 ≤ v(p) ≤ v([	])pn }
Vn := {v ∈ YF : v([	])pn+1 ≤ v(p) ≤ v([	])pn+pn−1}.

Then the Un are pairwise disjoint and ϕ(Un) = Un+1; the Vn are pairwise disjoint
and ϕ(Vn) = Vn+1; and the union of all of the Un and Vn is all of YF . �

Definition 4.3 By Proposition 4.2, we may form the quotient X an
F := YF/ϕ. This

quotient is the adic Fargues–Fontaine curve associated to F . (We will define later a
schematic Fargues–Fontaine curve which has XF as its “analytification”.)

In order to say anything more, we must analyze the rings that arise in the con-
struction.

Definition 4.4 Fix a normalization of the absolute value on F . For ρ ∈ (0, 1), we
define the ρ-Gauss norm on Ainf(F) as the function |•|ρ : Ainf(F) → [0,+∞)

defined by

x =
∞

∑

n=0

[xn]pn 
→ max
n

{ρn |xn|}.

Remark 4.5 Recalling thatwe think ofW (oF ) as an interpretation of the nonsensical
expression oF�p�, we keep in mind that the following facts about the ρ-Gauss norm
on Ainf(F) parallel more elementary facts about the ρ-Gauss norm on oF�T �:

x =
∞

∑

n=0

xnT
n 
→ max

n
{ρn |xn|}.

For any closed interval I ⊂ (0, 1), define also

|x |I = sup{|x |ρ : ρ ∈ I }.

Proposition 4.6 (Hadamard three circles property) For any fixed x ∈ Ainf(F), the
function ρ 
→ |x |ρ is continuous and log-convex. The latter means that for ρ1, ρ2 ∈
(0, 1) and t ∈ [0, 1], for ρ := ρt1ρ

1−t
2 we have
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|x |ρ ≤ |x |tρ1 |x |1−t
ρ2

.

In particular, for any closed interval I = [ρ1, ρ2] ⊂ (0, 1), we have

|x |I = max{|x |ρ1 , |x |ρ2}.

Proof The log-convexity inequality is an equality in case x = [xn]pn , and hence a
valid inequality, in general. This in turn implies continuity. �

Proposition 4.7 Forρ ∈ (0, 1), the function |•|ρ is a nonarchimedeanabsolute value
on Ainf(F).

Proof Modulo changes of notation, this can be found in any of [14, Lemme 1.4.2],
[22, Lemma 2.1.7], [24, Lemma 2.2], [25, Lemma 4.1], [32, Proposition 5.1.2]. To
summarize, the strong triangle inequality follows from the homogeneity of Witt
vector arithmetic, we have

∞
∑

n=0

[xn ]pn +
∞
∑

n=0

[yn ]pn =
∞
∑

n=0

[zn ]pn , zn = xn + yn + P(x0, . . . , xn−1, y0, . . . , yn−1),

where P is homogeneous of degree 1 with coefficients in Z. The multiplicative
property is easiest to derive in an indirect way. For any given x and y, the multiplica-
tivity is clear for those values of ρ for which both maxima are achieved by a unique
index; this omits a discrete set of values of ρ, which we can fill in by continuity
(Proposition 4.6). �

Definition 4.8 The Newton polygon associated to an arbitrary element x =
∑∞

n=0[xn]pn of Ainf(F) is the lower boundary of the convex hull of the set

∞
⋃

n=0

[n,∞) × [− log |xn| ,∞) ⊂ R2.

The multiplicativity of the Gauss norms implies that this Newton polygon has the
usual property: the slope multiset of a product xy is the multiset union of the slope
multisets of x and y. (See [14, Définition 1.6.18].)

Definition 4.9 For I ⊆ (0, 1) a closed interval, let BI be the completion of
Ainf(F)[p−1, [	]−1] with respect to the norm |•|I = sup{|•|ρ : ρ ∈ I } (extending
|•|ρ to Ainf(F)[p−1, [	]−1] by multiplicativity). This norm is power multiplicative
(for all x , |x |2I = ∣

∣x2
∣
∣
I ); consequently, BI is a uniform Huber ring.

In case I = [ρ1, ρ2] where ρi = |	|si for some si ∈ Q, the ring BI is the ring
associated to the rational subspace

{v ∈ YF : v([	])s2 ≤ v(p) ≤ v([	])s1}

of YF . In the analogy between Ainf(F) and oF�p�, BI corresponds to the expression
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F

〈
p

	s1
,
	s2

p

〉

.

Remark 4.10 Beware that one cannot express an arbitrary element of BI as a sum∑

n∈Z[xn]pn (see the published erratum to [22]). However, for any x ∈ BI and any
ε > 0, one can find a finite sum y = ∑

n∈Z[yn]pn such that |x − y|I < ε.

Proposition 4.11 For I ⊆ (0, 1) a closed interval, the ring BI is a principal ideal
domain.

Proof See [14, Théorème 2.5.1], [22, Proposition 2.6.8]. The key point is that the
Banach ring BI has the property that its associatedgraded ring is aLaurent polynomial
ring (generated by the image of p) over the associated graded ring of F . �

Proposition 4.12 The ring BI is strongly noetherian (every Tate algebra over it is
noetherian) and sheafy. Consequently, the structure presheaf on YF is a sheaf, so we
may view YF and X an

F as “honest” noetherian adic spaces, and consider coherent
sheaves on them.

Proof The strongly noetherian property is proved in [27], using similar ideas as in
the proof of Proposition 4.11. This implies the sheafy property by a result of Huber
[21, Theorem 2]. �

Remark 4.13 The rings BI share other properties with the usual affinoid algebras
appearing in rigid analytic geometry, in particular, they are known to be excellent
[49].

Remark 4.14 One can also define the ring BI when I is a half-open or open
interval, but not as a Banach ring. Rather, one takes the Fréchet completion of
Ainf(F)[p−1, [	]−1] with respect to the family of norms |•|ρ for ρ ∈ I , that is, one
declares a sequence to be Cauchy (and thus to have a limit) if it is Cauchy for each
Gauss norm individually, but with no uniform control on the rate of convergence.
(One can also use this definition when I is closed, by the last part of Proposition 4.6,
it gives the same definition as before.)

The rings BI correspond to the extended Robba rings of [32].

Definition 4.15 SinceYF → X an
F is a free quotient by the action ofϕ, we can specify

sheaves on X an
F by specifying ϕ-equivariant sheaves on YF . For example, for n ∈ Z,

we can define a line bundle O(n) on X an
F by taking the trivial line bundle on YF on

a generator v, then specifying that the action of ϕ takes v to p−nv.
Define the graded ring

PF :=
∞

⊕

n=0

PF,n, PF,n = �(X an
F ,O(n)) = �(YF ,O)ϕ=pn .

The scheme XF := Proj PF is the schematic Fargues–Fontaine curve associated to
F . It is a scheme over SpecQp but not over Spec F (because PF is not an F-algebra).
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Proposition 4.16 The scheme XF has the following properties:

(a) It is connected, separated, noetherian, and regular of dimension 1.
(b) For each closed point x ∈ XF, the residue field of x is a perfectoid field whose tilt

may be naturally viewed as a finite extension of F; wewrite deg(x) for the degree
of this extension. (In particular, if F is algebraically closed, then deg(x) = 1
always.)

(c) The degree map on divisors induces a morphism deg : Pic(XF ) → Z taking
O(n) to n. Moreover, if F is algebraically closed, then Pic(XF ) ∼= Z.

Proof See [14, Théorème 6.5.2] for the case where F is algebraically closed, and
[14, Théorème 7.3.3] for the general case. �

Remark 4.17 Proposition 4.16 states that XF , together with the degree function on
closed points, constitutes an abstract complete curve in the sense of [14, §5].

Definition 4.18 By construction, there is a morphism X an
F → XF of locally ringed

spaces, along which the canonical ample line bundle O(1) on XF pulls back to
the prescribed O(1) on X an

F . This morphism should be thought of as a form of
“analytification”, analogous to the morphism X an → X where X is a scheme locally
of finite type overC and X an is its associated complex analytic space [20, ExposeXII],
or similarlywithC replaced by a nonarchimedean field, using rigid analytic geometry
in place of complex analytic geometry [10, Appendix].

Proposition 4.19 (GAGA for XF )

(a) The line bundleO(1) on X an
F is ample.More precisely, for every coherent sheafF

on X an
F , there exists a positive integer N such that for each integer n ≥ N, F(n)

is generated by global sections and Hi (X an
F ,F(n)) = 0 for all i > 0. (Note that

this vanishing only has content for i = 1, because X an
F admits a covering by two

affinoids.)
(b) Pullback from XF to X an

F defines an equivalence of categories between coherent
sheaves on the two spaces. Moreover, the sheaf cohomology of a coherent sheaf
is preserved by pullback from XF to X an

F .

Proof See [14, Théoréme 11.3.1]. �

Remark 4.20 In general, the cohomology groups of a coherent sheaf on XF are
Banach spaces overQp which are typically not finite dimensional. However, they do
have a somewhat weaker finiteness property: they are Banach–Colmez spaces [9]. In
fact, the derived categories of coherent sheaves on XF and Banach–Colmez spaces
are equivalent [38].

Proposition 4.21 One consequence of Proposition 4.19 is that the category of vector
bundles on XF is equivalent to the category of ϕ-equivariant vector bundles on YF .
These can themselves be described algebraically: the space YF is a quasi-Stein space,
so vector bundles correspond to finite projective modules over �(YF ,O) = B(0,∞),
and moreover the ring B(0,∞) is a Bézout domain (every finitely generated ideal
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is principal), which implies that finite projective modules are free. Consequently,
vector bundles on XF can be equated with ϕ-modules over B(0,∞); this is the basis
for the description of (ϕ, �)-modules in the sense of Berger using vector bundles on
a Fargues–Fontaine curve.

Another description of vector bundles can be given using the Beauville–Laszlo
theorem [1] to glue them from their restriction to the completed local ring at some
point and to the complement of that point. In the case where we have a specified
untilt K of F in mind, that defines a degree-1 point of XF and the completion of
the local ring is Fontaine’s period ring B+

dR associated to K . This then leads to the
description of Berger’s (ϕ, �)-modules in terms of B-pairs [2].

5 Vector Bundles on Fargues–Fontaine Curves

We give the classification of vector bundles on Fargues–Fontaine curves, then briefly
introduce the relative version of the construction. See [28, Lecture 3] for a more
detailed discussion.

As in the previous lecture, let F be a perfect nonarchimedean field of characteristic
p.

Definition 5.1 Let V be a vector bundle on either XF or X an
F (by Proposition 4.19

these are interchangeable). Since XF is connected, the rank of V is a well-defined
nonnegative integer. The degree of V is the degree of the top exterior power∧rank(V )V
via the map deg : Pic(XF ) → Z. For V nonzero, the slope of V is the ratio μ(V ) :=
deg(V )/ rank(V ). We say that V is semistable (resp., stable) if every proper nonzero
subbundle W of V satisfies μ(W ) ≤ μ(V ) (resp., μ(W ) < μ(V )).

Remark 5.2 The definitions in Definition 5.1 are copied verbatim from the theory
of vector bundles on curves in algebraic geometry. In particular, the term semistable,
having its origins in geometric invariant theory, is quite entrenched within that sub-
ject. This creates a terminological issue in p-adic Hodge theory, where we also
consider semistableGalois representations. This may be unfortunate but is in no way
an accident; this second use of the word can be traced back to the notion of semistable
reduction of families of curves, which is named as such again because it relates to
the same phenomenon in geometric invariant theory.

Proposition 5.3 Let V, V ′ be semistable vector bundles on XF . If μ(V ) > μ(V ′),
then Hom(V, V ′) = 0.

Proof As per [28, Lemma 3.4.5], this reduces to the fact that rank-1 bundles are
stable, which in turn reduces to the case of O. This case follows by calculating that
H 0(XF ,O) = Qp. �

Proposition 5.4 Every vector bundle V on XF admits a unique filtration

0 = V0 ⊂ · · · ⊂ Vl = V
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in which each quotient Vi/Vi−1 is a vector bundle which is semistable of some slope
μi , and μ1 > · · · > μl . This is called the Harder–Narasimhan filtration of V .

Proof This is essentially a formal consequence of Proposition 4.16 and Proposi-
tion 5.3. See [14, Théorème 5.5.2] or [28, Lemma 3.4.9]. �

Definition 5.5 For V a vector bundle on XF , the Harder–Narasimhan polygon (or
HN polygon) of V is the Newton polygon associated to the Harder–Narasimhan
filtration. It has length equal to the rank of V , and for i = 1, . . . , l, the slope μi

occurs with multiplicity rank(Vi/Vi−1).

When F is algebraically closed, one can give a complete classification of vector
bundles on XF .

Definition 5.6 Let r/s be a rational number written in lowest terms, that is, r and s
are integers with gcd(r, s) = 1 and s > 0. Let O(r/s) be the vector bundle of rank
s on XF corresponding (via Proposition 4.19) to the trivial vector bundle generated
by v1, . . . , vs on YF equipped with the ϕ-action defined by

ϕ(v1) = v2, · · · ϕ(vs−1) = vs, ϕ(vs) = p−rv1.

In case s = 1, this reproduces the definition of O(r).

Proposition 5.7 (Classification of vector bundles) Suppose that F is algebraically
closed.

(ii) A vector bundle V on F of slope μ is stable if and only if it is isomorphic to
O(μ).

(ii) Every vector bundle V on F can be expressed (nonuniquely) as a direct sum of
stable subbundles (of various slopes). In particular, the HN filtration of V splits
(nonuniquely).

Proof This result has a slightly complicated history. As formulated, it is due to
Fargues–Fontaine [14, Théorème 8.2.10], who give two distinct proofs: one using
periods of p-divisible groups, and another using the theory ofBanach–Colmez spaces
(see Remark 4.20). However, using Proposition 4.19 it can also be deduced from
earlier results of Kedlaya, see [28, Theorem 3.6.13] for more discussion of this point
(and a high-level sketch of the proof). The key point is to show that any V which sits
in a nonsplit short exact sequence

0 → O(−1/n) → V → O(1) → 0

is trivial; the space of such extensions is essentially the Scholze–Weinstein moduli
space of p-divisible groups [46]. �

Remark 5.8 Proposition 5.7 is formally similar to the classification of vector bun-
dles on the projective line over a field, in which every vector bundle splits as a
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direct sum of various O(n). A more apt analogy is the classification of rational
Dieudonné modules over an algebraically closed field (Dieudonné–Manin classifi-
cation) in which some higher rank objects with fractional slopes also appear; indeed,
some of the precursor statements to Proposition 5.7 mentioned above are formu-
lated as Dieudonné–Manin classifications for ϕ-modules over the ring B(0,1) or other
related rings.

Proposition 5.9 (Analogue of Narasimhan–Seshadri) The functor

V 
→ �(X̂F
, V )

defines an equivalence of categories between semistable vector bundles of slope 0
on XF and continuous representations of the absolute Galois group GF of F on
finite-dimensional Qp-vector spaces.

Proof This follows from Proposition 5.7 and the equality �(XF ,O) = Qp. �

Remark 5.10 For line bundles, Proposition 5.9 gives rise to a canonical isomor-
phism

Pic(XF ) ∼= Z ⊕ Homcont(GF ,Q×
p ).

Remark 5.11 Proposition 5.9 is meant to evoke the Narasimhan–Seshadri theorem
[41]: for X a compact Riemann surface, and there is a canonical equivalence of
categories between stable vector bundles of slope 0 on X and irreducible finite-
dimensional unitary representations of the fundamental group of X .

In the theory of vector bundles on curves in algebraic geometry, the Narasimhan–
Seshadri theorem implies that the tensor product of two semistable vector bundles
on a curve is semistable provided that the base field is of characteristic 0. The fact
that this is a highly nonformal statement can be seen by its failure to carry over to
positive characteristic, which was first observed by Gieseker [19]. Correspondingly,
Proposition 5.9 implies that the tensor product of two semistable vector bundles on
XF is semistable.

Many applications of the theory of vector bundles on curves involvemoduli spaces
of these bundles. In order to study these for Fargues–Fontaine curves, we need to
introduce the relative form of the construction, in which the base field is replaced by
a perfectoid ring (or a space, or...).

Definition 5.12 Let (R, R+) be a perfectoid Huber pair of characteristic p. Let YR

be the complement of the zero locus of p[	] in Spa(W (R+),W (R+)), where	 ∈ R
is any pseudouniformizer (the answer does not depend on the choice).

Now fix a power-multiplicative Banach norm on R. For ρ ∈ (0, 1), we may define
the ρ-Gauss norm on W (R+) by the same formula as before. For I a closed interval
in (0, 1), we may then define a ring BI,R by completing W (R+)[p−1, [	]−1] for the
supremum of the ρ-Gauss norms for all ρ ∈ I , and again use the spectra of these
rings to cover YR .
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One cannot hope for the ring BI,R to be noetherian, in general, nor is it perfectoid
(because this was already not true when R was a field). However, it is close enough
to being perfectoid to inherit the sheafy property.

Proposition 5.13 The Huber ring BI,R is stably uniform, and hence sheafy.

Proof While BI,R is not a perfectoid ring, it turns out that it becomes perfectoid
after taking the completed tensor product overQp with any perfectoid field. This can
be used to recover the stably uniform property by a splitting construction, see [28,
Lemma 3.1.3]. �

Definition 5.14 By Proposition 5.13, YR is an adic space. Following the previous
model, we form the quotient X an

R := YR/ϕ by the totally discontinuous action of ϕ;
we define the line bundles O(n) on X an

R in terms of ϕ-equivariant line bundles on
YR ; we define the graded ring PR := ⊕∞

n=0 PR,n by taking PR,n to be the sections of
O(n); we define the scheme XR := Proj PR ; and we obtain a morphism X an

R → XR

of locally ringed spaces.

Remark 5.15 There is a natural continuous map X an
R → Spa(R, R+) of topological

spaces; however, this morphism does not promote to a morphism of locally ringed
spaces due to the mismatch of characteristics (namely, p is invertible on the source
and zero on the target). That said, any untilt (A, A+) of (R, R+) over Qp gives rise
to a section of this map which does promote to a morphism of adic spaces.

Remark 5.16 Since neither XR nor X an
R is noetherian, we cannot easily handle

coherent sheaves on these spaces. In [33] and [28, Lecture 1] one finds a theory of
pseudocoherent sheaves, which obey a stronger finiteness condition; we omit this
here and instead restrict attention to vector bundles in what follows. Before doing
so, we point out that the following discussion implicitly uses the analogue of Kiehl’s
theorem for vector bundles on affinoid adic spaces: for (A, A+) a sheafy Huber
pair, the global sections functor defines an equivalence of categories between vector
bundles on Spa(A, A+) and finite projective A-modules [28, Theorem 1.4.2].

Proposition 5.17 (GAGA revisited)

(a) For every vector bundle V on X an
R , there exists a positive integer N such that for

each integer n ≥ N, V (n) is generated by global sections and Hi (X an
R , V (n)) =

0 for all i > 0.
(b) Pullback from XR to X an

R defines an equivalence of categories between vector
bundles on the two spaces. Moreover, the sheaf cohomology of a vector bundle
is preserved by pullback from XR to X an

R .

Proof See [32, Theorem 8.7.7]. �

The following is analogue of the usual semicontinuity for families of vector bun-
dles on a curve, or more generally on a family of varieties [48].

Proposition 5.18 (Kedlaya–Liu semicontinuity theorem) Let V be a vector bundle
on XR.
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(i) The Harder–Narasimhan polygons of the fibers of V form a lower semicontinu-
ous function on Spa(R, R+).

(ii) If this function is constant, then the Harder–Narasimhan filtrations of the fibers
of V arise by specialization from a filtration of V .

Proof See [32, Theorem 4.7.5, Corollary 7.4.10]. Additional discussion found in
[28, Theorem 3.7.2]. �

There is also a relative form of the Narasimhan–Seshadri theorem.

Proposition 5.19 There is an equivalence of categories between étaleQp-local sys-
tems on Spa(R, R+) (see below) and vector bundles on XR which are fiberwise
semistable of degree 0.

Proof See [32, Theorem9.3.13]. Additional discussion found in [28, Theorem3.7.5]
�

Remark 5.20 In Proposition 5.19, one must be careful about the meaning of the
phrase “étale Qp-local system”. One way to interpret this correctly is via de Jong’s
theory of étale fundamental groups [12]; this amounts to saying that an étaleQp-local
system is étale-locally the isogeny object associated to a Zp-local system. Another
correct interpretation can be obtained by replacing the étale topology with a certain
pro-étale topology; this is the approach taken in [32] based on a construction of
Scholze [45].

Remark 5.21 The preceding discussion lies at the heart of the construction of mod-
uli spaces of vector bundles on Fargues–Fontaine curves. This of course requires a
globalization of the definition of the relative Fargues–Fontaine curve, first to per-
fectoid spaces, and second to certain stacks on the category of perfectoid spaces (in
particular to what Scholze calls diamonds). See [47] for further discussion of these
stacks and their role in the study of moduli spaces of vector bundles.

Another application of relative Fargues–Fontaine curves is to the study of coho-
mology of Qp-local systems on rigid analytic spaces over p-adic fields. See [34].
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The Fargues-Fontaine Curve and p-Adic
Hodge Theory

Ehud de Shalit

Abstract This survey paper is based, in part, on the author’s lectures at the summer
school that was held at Tata Institute’s ICTS in Bangalore in August 2019, and in part
on a web-seminar that was held at the Hebrew University in the Spring Semester of
2020. I would like to thank the organizers of the summer school and the participants
of both events for their contribution. Special thanks go to David Kazhdan for leading
the seminar at the Hebrew University.
The goal of this survey is to explain the main results of [5]. To be able to do so
in a reasonable amount of space we have sacrificed generality and omitted many
interesting topics, but we did choose to give some background, whenever we felt it
was necessary. The reader should always refer to the book by Fargues and Fontaine
for details, missing explanations, and other developments. We have also benefitted
from the excellent Bourbaki seminar by Morrow [16], which we recommend as a
starting point for anybody encountering the topic for the first time.
The informal style of the lectures, especially in their later sections,where they became
increasingly sketchy, was also kept in the printed version. Needless to say, none of
the results surveyed here are due to the author, but errors, as much as they have
escaped my attention, are all original errors.

1 Introduction

Let p be a prime. The Fargues-Fontaine curve is a fundamental geometric object
associated with p, introduced in [5]. It serves as the arena “where p-adic Hodge
theory takes place”. Historically, it was discovered rather late in the development
of the subject, but its discovery offered a new point of view on Fontaine’s rings of
periods, yielded simpler more conceptual proofs to several of the principal theorems
in the field, and gave hope for a geometrization of the classical local Langlands
correspondence (work in progress of Fargues and Scholze). As the fundamental
group of the curve is just Gal(Q̄p/Qp), from the point of view of local Galois
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representations, it may be considered as a richer substitute for Spec(Qp), over which
such representations should be studied. One cannot avoid a distant dream, that one
day, when the analogy between primes and knots will be made more precise, a global
(three-dimensional?) object will be found, into which the Fargues-Fontaine curves
for the various primes will naturally embed, linked in a way that reflects the relative
position of the various decomposition groups in Gal(Q̄/Q).

This survey will focus on the construction of the Fargues-Fontaine curve, its main
properties, and the classification of vector bundles over the curve.With the exception
of “weakly admissible equals admissible” we shall not go into any of its beautiful
applications. The readermay find several of themwell explained in the original work.

1.1 The Fargues-Fontaine Curve

1.1.1 Curves

Let X be a separated noetherian scheme.

Definition 1 (i) X is a curve if it is regular, one-dimensional, and connected. (ii) A
curve X is complete if ∑

x∈|X |
ordx ( f ) = 0 (1.1)

for every f ∈ O×
X,η.

Here |X | denotes the set of closed (i.e., codimension 1) points of X and η the
unique non-closed (i.e., generic) point; OX,η is the function field of the scheme X .
Thus X can be covered by a finite number of affine sets, each of which is of the form
Spec(A) for a Dedekind domain A. The local rings of X at x ∈ |X | are DVRs, and
ordx are the respective normalized valuations.

Example 2 (i) A smooth connected curve over an algebraically closed field k is a
curve in this definition. It is complete if it is projective. If k were not algebraically
closed, we should have allowed amore general condition instead of (1.1),multiplying
each term by the positive integer deg(x) = [k(x) : k].

(ii) Spec(Z) is a non-complete curve.
(iii) The Fargues-Fontaine curve XFF , to be discussed in these lectures.

It would be extremely interesting to discover any new class of examples. Surpris-
ingly, they are not easy to come by.

1.1.2 Some Well-Known Facts About P1
C

The Fargues-Fontaine curve will resemble the simplest curve over C, the projective
line P1

C
. To make this comparison, we recall some well-known facts.
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(1) The projective line can be constructed by either (a) dividing A2
C

− {0} by
the equivalence relation of “generating the same line”, or (b) gluing A1

C
=

Spec(C[z]) and the formal disk Spec(C[[z−1]]) along the punctured formal
disc Spec(C((z−1))).

(2) There is a fundamental exact sequence of vector spaces

0 → C → C[z] → C((z−1))/C[[z−1]] → 0. (1.2)

(3) For every f ∈ C(z) ∑

ζ∈C
ordζ ( f ) + ord∞( f ) = 0.

(4) The function deg( f ) = −ord∞( f )makesC[z] into a Euclidean domain. Recall
the definition.

Definition 3 AEuclidean domain is a commutative ring R, equippedwith a function
deg : R → N ∪ {−∞} satisfying:
• (E1) deg( f ) = −∞ iff f = 0; deg(1) = 0.
• (E2) If g �= 0 then deg( f ) ≤ deg( f g)
• (E3) If g �= 0 then for any f there are q and r with deg(r) < deg(g) such that

f = qg + r.

It follows from the axioms that R is a domain and (E3′) deg(g) = 0 if and only
if g ∈ R×. We let (E3′′) be the same condition as in (E3) where we only demand
deg(r) ≤ deg(g). Anticipating later developments, we make the following defini-
tion, unmotivated at present. A semi-Euclidean domain is a pair (R, deg) satisfying
(E1), (E2), and (E3′) and (E3′′) instead of (E3).

(5) There are line bundles O(n) = O(n∞) (n ∈ Z), and every vector bundle is
isomorphic to a unique direct sum

k⊕

i=1

O(ni )

(up to permutation of the factors).
(6) We have

H 0(P1
C
,O(n)) = 0 (n < 0)

H 1(P1
C
,O(n)) = 0 (n ≥ −1).

The last vanishing of H 1 comes from Serre duality, H 1(P1
C
,O(n))∨ �

H 0(P1
C
,O(−n − 2)) and reflects the fact that P1

C
has genus 0.
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Point 5 is a theorem of Grothendieck. Let us recall its proof. Cover P1
C
with

U = Spec(C[z]) and V = Spec(C[z−1]). Then U ∩ V = Spec(C[z, z−1]). Since
any rank k vector bundle is trivial when restricted to U or V, which are spectra of
PIDs, we may trivialize it by specifying global bases on each of the two affine pieces.
What completely determines the vector bundle is then the transition matrix between
the bases over U ∩ V, which is a matrix from GLk(C[z, z−1]). Taking into account
the freedom to change bases in each piece separately,we see that isomorphism classes
of rank k vector bundles are classified by the double coset space

GLk(C[z−1])\GLk(C[z, z−1])/GLk(C[z]).

The claim that we have to prove is that any double coset in this space is represented
by a unique diagonal matrix with entries zni where n1 ≥ n2 ≥ · · · ≥ nk . This is
done by induction on k, where the key ingredient is the Euclidean algorithm in C[z]
and C[z−1], applied in column and row operations to reduce the given matrix to its
standard form. We leave the details to the reader as an exercise, but emphasize the
close connection between Point 4 and Point 5: it is not enough to know that C[z]
and C[z−1] are PIDs to deduce Grothendieck’s theorem. Essential use is made of
them being Euclidean. As we shall see later, Point 6 is also closely connected to the
Euclidean property.

Finally, we caution the reader that the category of vector bundles over P1
C
, as a

full subcategory of the abelian category of coherent sheaves, is not abelian. Point
5 sheds only little light on its structure. Even if we restrict our attention to short
exact sequences, where the morphisms are morphisms of vector bundles (the image
is locally a direct summand), one encounters non-split short exact sequences such as

0 → O(−1) → O2 → O(1) → 0.

Here we may identify O(1) with the line bundle O(∞); the first morphism is f 
→
(z f, f ) and the second is (g1, g2) 
→ g1 − zg2. On the other hand, there does not
exist a short exact sequence as above with the roles ofO(1) andO(−1) interchanged
(why?).

1.1.3 Comparison with the Fargues-Fontaine Curve

The Fargues-Fontaine curve X = XFF (in its simplest form, there are relative ver-
sions nowadays) will be a complete curve over Spec(Qp). Nevertheless, it will not
be of finite type over Qp. To stress howmuch not of finite type it will be, we mention
that at one of its closed points, denoted ∞, the residue field will be Cp, the comple-
tion of a fixed algebraic closure of Qp. In contrast, residue fields at closed points of
curves of finite type over Qp are finite extensions of Qp!

The curve X will have a distinguished point ∞ whose complement will be affine,
Spec(Be) for a huge ring Be that will be constructed explicitly. The completion of the
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local ring at ∞ will be one of Fontaine’s rings B+
dR . As expected, this is a complete

DVR, whose field of fractions is denoted by BdR . The associated valuation (analogue
of ord∞) is denoted by νdR .

Points 1–3 will have good analogues. We shall construct X (at least the set |X |
of its closed points with an appropriate analytic topology) as the set of Frobenius
equivalence classes of |Y |, “the space of untilts” of a certain characteristic p field
F . We will also have, in retrospect, a second construction, by gluing Spec(Be) and
Spec(B+

dR) along Spec(BdR).

The analogue of point 2 will become the fundamental exact sequence of p-adic
Hodge theory

0 → Qp → Bϕ=1
cris → BdR/B

+
dR → 0. (1.3)

Here we encounter for the first time another one of Fontaine’s rings, the ring Bcris .

Both the field BdR and its subring Bcris carry an action of GQp = Gal(Q̄p/Qp). The
field BdR is a discrete valuation field, hence it carries a natural decreasing filtration
Fil•. The subring Bcris carries a Frobenius endomorphism ϕ (that does not extend
to BdR) and

Be = H 0(X − {∞},OX ) = Bϕ=1
cris .

The exact sequence (1.3), tensored with a p-adic Galois representation V of GQp ,
and the long exact sequence in Galois cohomology that ensues, is the starting point in
any application of p-adic Hodge theory to the study of local Galois representations. It
is of utmost importance. The Fargues-Fontaine curve allows us to give it a geometric
interpretation.

The analogue of point 3 is (1.1); it rephrases the fact that X is complete.
Points 4–6 exhibit subtle differences between X and the projective line that make

the theory of vector bundles over X much richer.
As already hinted above, the ring Be, while a PID,will only be an almost Euclidean

domain with respect to deg = −νdR (the negative of the valuation at ∞). Given
the important role played by the Euclidean property in the proof of Grothendieck’s
theorem on vector bundles onP1

C
, it is not surprising that being only almost Euclidean

results in a different classification theorem. For each rational number λ = d/h (in
reduced terms) there will be an non-decomposable vector bundleO(λ) of rank h and
degree d (thus slope λ), and every vector bundle on X will be a direct sum of such.
The Harder-Narasimhan formalism of slopes will apply, and the only semi-stable
vector bundles will be, as in the case of P1

C
, the isoclinic ones, vector bundles of the

form O(λ)n for some n.
This structure theorem for vector bundles over X is the most difficult part of [5].

Thewhole theory of p-divisible groups, the crystals associated with them, and period
maps enters in its proof. Is there a simpler proof that avoids this, and instead only
uses Point 2 (the fundamental exact sequence) and the almost Euclidean structure of
Be, as in the proof of Grothendieck’s theorem sketched above?

A closely related difference between X andP1
C
is in Point 6. The H 1 cohomologies

of the O(λ) will only vanish for λ ≥ 0, not for λ ≥ −1. While H 1(X,O) = 0 is
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often regarded as evidence for “genus 0”, this deviation is sometimes summarized
by saying that the Fargues-Fontaine curve has “genus 0 + ε”.

1.2 Applications

The construction of X and the study of its properties intrinsically belong to p-adic
Hodge theory. They provide a geometric set-up for Fontaine’s rings of periods and
the relations between them.

The classification of vector bundles over X is related to the classification of
isocrystals over F̄p, or, almost equivalently, to the classification of p-divisible groups
up to isogeny (Manin-Dieudonné theory). The finer study of modifications of vector
bundles at the point ∞ (injective maps between vector bundles whose cokernels are
skyscraper sheaves supported at ∞) is related to deformations of p-divisible groups
to p-adically complete rings such as OCp .

There are several deep theorems for which the Fargues-Fontaine curve supplied
new more transparent proofs. The list below is far from complete.

(a) Fontaine’s conjecture that weakly admissible (i.e., semi-stable of slope 0)
filtered ϕ-modules are admissible (i.e., are of the form Dcris(V ) for a crystalline
Galois representation V ). This was proved by Colmez and Fontaine, and later a
different proof was found by Berger, but the proof using the Fargues-Fontaine curve
is remarkably short (once all the prerequisites are in place)! The direction “admissible
implies weakly admissible” is an old, easier, result of Fontaine.

(b) Faltings’ theorem on the “isomorphism between the Lubin-Tate and Drinfeld
towers” (towers of generic fibers of certain moduli spaces of p-divisible groups
with level structures added). Understanding this theorem was the subject of a full-
size book by Fargues (Genestier and V. Lafforgue contributing to the function-field
case). Again, the Fargues-Fontaine curve presents a new perspective and a much
shorter proof, as well as a far-reaching generalization, due to Weinstein and Scholze
(last section of [18]).

(c) Geometrization of the local Langlands correspondence—ongoing work of
Fargues and Scholze.
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2 Construction of XFF

2.1 Tilting and the Space |Y |

2.1.1 Perfectoid Fields and Tilts

Let L be a complete non-Archimedean field of residual characteristic p, and denote
νL the associated valuation normalized by1

|x | = p−νL (x).

Definition 4 The field L is called perfectoid if νL is non-discrete, and the p-power
map φ : OL/pOL → OL/pOL is surjective.

The non-discreteness of νL is imposed to exclude “small” fields such as Qp. If L
has characteristic p then it is perfectoid if and only if it is perfect. In characteristic
0 the field Cp (the completion of a fixed algebraic closure of Qp) is perfectoid, but
there are much smaller examples, e.g., Q

cycl
p = Qp(μp∞)∧ (exercise!).

If L is perfectoid we define an Fp-algebra

O	

L = lim← (OL/pOL)

where the inverse limit is taken with respect to iterations of the homomorphism
φ. Thus an element of O	

L is a sequence x = (x0, x1, . . . ) with xi ∈ OL/pOL and
x p
i+1 = xi . If the characteristic of L is p, projection to x0 is an isomorphismO	

L � OL ,
so from now on we assume that L has characteristic 0. Let x̃i be a representative of
xi in OL . It is easy to check that

x (i) = lim
j→∞ x̃ p j

i+ j ∈ OL

exist, depending only on x (and not on the chosen representatives) and satisfy
x (i+1)p = x (i). Conversely, starting with such a sequence and defining xi = x (i)

mod p we get a point x ∈ O	

L . We may therefore identify O	

L , as a set, with the
sequences ξ = (ξ0, ξ1, . . . ) of elements ofOL satisfying ξ

p
i+1 = ξi .With this identi-

fication, the ring operations of O	

L have the following description. Multiplication is
done component-wise. For the addition, ξ + η = ζ where

ζi = lim
j→∞(ξi+ j + ηi+ j )

p j
.

1 By definition, νL is non-trivial.
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For x ∈ O	

L let

x� = x (0), νL	 (x) = νL(x
�), |x |L	 = |x�|.

It is easily checked that x 
→ x� is a multiplicative map and that νL	 is a complete
valuation on O	

L . The residue fields of O	

L and OL are canonically identified.
We let L	 be the fraction field ofO	

L and we extend the valuation νL	 and the map
x 
→ x� to L	. Then F = L	 is a perfectoid field in characteristic p. We remark that
the association L � L	 is functorial: a field homomorphism α : L1 → L2 yields a
homomorphism α	 : L	

1 → L	
2. The field L	 is called the tilt of L .

Example 5 Let L = Q
cycl
p . Then, fixing a basis ε of the Tate module Tpμ =

lim← μpn (L), there is a unique identification of L	 with the completed perfect closure
of Fp((
)), taking ε − 1 to 
 . Starting, instead, with M = Qab

p (the completion of
the maximal abelian extension of Qp) and making the same choice, M	 is identified
with the completed perfect closure of F̄p((
)). An element of this completed perfect
closure is a formal power series

∑

i∈Z[1/p]
ai


i

with the provision that for any T, only finitely many i < T have ai �= 0. The denom-
inators of the i’s in the support of such an element need not be bounded.

2.1.2 Untilts

Definition 6 (i) Starting with a perfectoid field F in characteristic p we define an
untilt of F to be a pair (L , ι) where L is a perfectoid field of characteristic 0, and

ι : L	 � F

is an isomorphism of valued fields.
(ii) A homomorphism of untilts is a map α : L1 → L2 of valued fields, satisfying

ι2 ◦ α	 = ι1. It can be shown that α must then be an isomorphism, in which case
the two untilts are called (surprise!) isomorphic. (If L2 is algebraic over α(L1) this
follows from Theorem 7 below.)

(iii) If (L , ι) is an untilt of F, any untilt which is isomorphic to (L , φn ◦ ι) for
some n ∈ Z is said to be Frobenius equivalent to (L , ι).

Theorem 7 Fix analgebraic closure Lalg of L .Every finite extension L ⊂ M ⊂ Lalg

is perfectoid and
lim→ M	
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is an algebraic (separable) closure of L	. We have [M	 : L	] = [M : L], M/L is
Galois if and only if M	/L	 is Galois, and in this case their Galois groups are
canonically identified.

The proof is not difficult, and we refer to the literature. What is not evident,
perhaps, is that starting with F , there are many non-isomorphic2 untilts (L , ι). But
this will become evident soon.

We are now able to make our first shot at XFF .

Definition 8 Denote by |YF | the set of isomorphism classes of untilts of F , and by

|XF | = |YF |/φZ

the set of Frobenius equivalence classes of such untilts.

Exercise 9 Show that (L , ι) ∈ |YF |and (L , φn ◦ ι) ∈ |YF |are distinct, unless n = 0.

It turns out that there are adic spaces (a p-adic analytic notion not defined in these
lecture notes) YF and XF , of which |XF | and |YF | are the sets of closed points, φ
acts discretely on YF and XF = YF/φ

Z. Moreover, there will be a curve XF (in
the sense of the definition given in the introduction) whose associated adic space is
Xad

F = XF . We can then identify |XF |with the set of closed points of XF .However,
there does not exist a curve “YF”. The space YF and the action of φ exist only in the
analytic category. This situation is vaguely analogous to the construction of the Tate
elliptic curve as a quotient, in the analytic category, of the analytic multiplicative
group by an infinite cyclic group acting discretely.

Although it is possible to give the definition of XF as a scheme, independently
of the adic spaceXF , for the “relative theory”, making the same construction over a
large base, rather than over the point Spec(Qp), it is essential to work in the analytic
category. We shall not touch upon the relative theory at all in our lectures.

2.2 Rings of Functions on |YF|

Let F be a perfectoid field in characteristic p. Our goal is to introduce certain “rings
of functions” on the set |YF | and a topology in which they will be continuous. The
Witt vector construction, which we review briefly, becomes an indispensible tool.

2.2.1 Witt Vectors

We recall the main facts about Witt vectors. Fix a prime p and let, for n ≥ 0

2 In fact, even the isomorphism type of L , disregarding ι,might be different, but this is more difficult
and not needed below.



254 E. de Shalit

Wn(x0, x1, ...) = x pn

0 + px pn−1

1 + · · · + pnxn.

If R is any Z(p)-algebra and xi , yi ∈ R satisfy xi ≡ yi mod ps R for s ≥ 1 then
Wn(x0, x1, . . . ) ≡ Wn(y0, y1 . . . ) mod ps+n R.

Proposition 10 There exists a unique affine ring scheme W overZ(p),whose under-
lying scheme is Spec(Z(p)[X0, X1, . . . ]) such that

W = (W0,W1, ...) : W → AN

is a ring homomorphism.

The ring structure in AN is by component-wise addition and multiplication.
What this means is that there are polynomials S0(X,Y ), S1(X,Y ), ... and P0(X,Y ),

P1(X,Y ), ... with coefficients in Z(p) such that

Wn(S0, S1, ...) = Wn(X0, X1, ...) + Wn(Y0,Y1, ...)

Wn(P0, P1, ...) = Wn(X0, X1, ...) · Wn(Y0,Y1, ...).

The polynomials Sn and Pn will involve, in fact, only X0, . . . , Xn,Y0, . . . , Yn . This
has the following consequence: if we denote by Wn the truncated Witt vectors of
length n + 1 they also form an affine ring scheme and

W = lim← Wn.

For the proofs, see [20], II.6. Check that

S0 = X0 + Y0, S1 = X1 + Y1 + 1

p

(
X p
0 + Y p

0 − (X0 + Y0)
p
)

P0 = X0Y0, P1 = X1Y
p
0 + X p

0 Y1 + pX1Y1.

The polynomialsWn are called the ghost components of theWitt vector (x0, x1, . . . ).
If p = 0 in R thenWn(x) = x pn

0 and the higher xi do not show up. Although we are
primarily interested inW (R)where R is an Fp-algebra, to prove the proposition one
must work over Z(p).

Themap V : W (R) → W (R), V (x0, x1, ...) = (0, x0, x1, ...) is an additive group
homomorphism.

Over an Fp-algebra we also have the Frobenius3 F : W (R) → W (R), raising
the coordinates to power p, which is a ring endomorphism (automorphism if R is
perfect). We have F ◦ V = V ◦ F = p (multiplication by p). We shall sometimes
denote F also by ϕ. It should be said that F always exists (even if R is not an
Fp-algebra), but it is in general not given by raising the coordinates to pth powers,

3 This notation is standard, and there should be no confusion with the field F .
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and while F ◦ V = p, instead of V ◦ F = p we only get the “projection formula”
V (Fx · y) = x · V y.

The construction of Witt vectors W (R) is clearly functorial in R. The previous
remark about F is a special case of this functoriality.

Example: W (Fp) = Zp, W (F̄p) = Znr
p .

A strict p-ring is a ring Awhich is complete and separated in the p-adic topology,
without p-torsion. Recall that the first assumptionmeans that the naturalmap induces
an isomorphism

A � lim← A/pn A.

If R is a perfect Fp-algebra (i.e., φ(x) = x p is bijective) then W (R) is, up to an
isomorphism, the unique strict p-ring A with A/pA = R. ([20], II, Theorems 5 and
8). In this case we define the Teichmüller representative of a ∈ R to be

[a] = (a, 0, 0, ...) ∈ W (R).

If ã denotes any lifting of a to W (R), then

[a] = lim(̃a p−n
)p

n
.

We clearly have [ab] = [a][b]. Any element x ∈ W (R) has a unique representation

x = (x0, x
p
1 , x

p2

2 , . . . ) =
∞∑

n=0

pn[xn].

We caution the reader that these results all fail if R is non-perfect. While Witt rings
of non-perfect Fp-algebras do appear in p-adic Hodge theory, they are not as well-
behaved.

One concludes that the functor

W : {perfect Fp algebras} → {strict p rings}

is the left adjoint of the functor “reduction modulo p”.
In the computations below we shall need the following lemma.

Lemma 11 Let R be a perfect Fp-algebra equipped with a non-Archimedean abso-
lute value . Assume that |xn| ≤ ρ and |yn| ≤ ρ. If

∞∑

n=0

pn[xn] +
∞∑

n=0

pn[yn] =
∞∑

n=0

pn[zn]

then |zn| ≤ ρ too. If the assumption holds for n ≤ k only, the conclusion also holds
for n ≤ k.



256 E. de Shalit

Proof If we give the variables Xi and Yi weight pi then the universal polynomi-
als Sn(X0, X1, ...,Y0,Y1, ...) describing the addition law in the Witt group scheme
become isobaric-homogeneous of weight pn. This means that Sn is a polynomial, all
of whose monomials have weight pn. Its coefficients lie in Z(p). Since

z p
n

n = Sn(x0, x
p
1 , x

p2

2 , ..., y0, y
p
1 , y

p2

2 , ...)

the lemma follows at once. �

2.2.2 The Ring Ainf

Recall that F is a perfectoid field of characteristic p. The ringOF is perfect (φ(x) =
x p is an automorphism) and we define

Ain f = W (OF ).

As we remarked above, this ring is characterized by the unique4 p-adically com-
plete and torsion-free ring A with A/pA � OF . It is local with maximal ideal
pW (OF ) + W (mF ), but of course it is not noetherian. An element of Ain f has a
unique “Teichmüller expansion”

a = (α0, α
p
1 , α

p2

2 , . . . ) =
∞∑

n=0

pn[αn] (2.1)

where
[α] = (α, 0, . . . ) = lim(α̃ p− j

)p
j

is the Teichmüller representative of α. Here x̃ denotes any lift of x ∈ OF toW (OF ).

The Frobenius ϕ is the automorphism

ϕ(a) =
∞∑

n=0

pn[α p
n ].

Remark 12 Suppose that F = (Q
cycl
p )	.We have noted that this field is isomorphic

to the field of all power series

∑

−∞<<m∈Z[1/p]
am


m

4 up to unique isomorphism
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where 
 = ε − 1, ε = (1, ζ1, ζ2, . . . ), ζi a primitive pi th root of unity. Here the
am ∈ Fp and for any T , am �= 0 for only finitely many m < T . The power series in
OF are those with am = 0 for m < 0. It follows that W (OF ) is isomorphic to the
ring A of all power series ∑

0≤m∈Z[1/p]
am X

m

with am ∈ Zp such that for any T there are only finitely manym < T with vp(am) <

T . To prove this claim, note that thisA is a strict p-ring and that the mapA → OF

sending am to am mod p and X to 
 is a surjective homomorphism.
In the earlier days of p-adic Hodge theory, this presentation ofW (OF )was being

used. The power series expansion in p used in (2.1) goes in the opposite direction.
If Qp were replaced by k((π)), this is similar to considering (k[[
 ]])[[π ]] instead
of (k[[π ]])[[
 ]]. In this purely characteristic p analogue, the symmetry between π

and 
 can be exploited further.

2.2.3 The Rings Bb,+ ⊂ Bb and Their Gauss Norms

Elements of Ain f will be viewed, in analogy with the ring Zp[[X ]], as “analytic
functions of the variable p with coefficients inOF , convergent in the punctured unit
disk” (we say “punctured” because we will soon want to invert p). This point of view
works very well, and allows to use tools such as the Newton polygon, Weierstrass
preparation, andWeierstrass division, much as they are used in the classical function
theory of Zp[[X ]]. Unlike Zp[[X ]], arithmetic in Ain f involves “carrying” between
the coefficients of the pn’s, but thanks to Lemma 11, the analogues of the above-
mentioned tools are still valid.

Let 
 be any element of OF with 0 < |
 | < 1. Define

Bb,+ = Ain f [ 1
p
], Bb = Bb,+[ 1

[
 ] ].

Both are subrings of the very large field E = W (F)[1/p] ⊃ OE = W (F). (The ring
OE plays a fundamental role in the theory of (ϕ, �)-modules.) We have

Bb =
{
x =

∑

n>>−∞
pn[xn]| xn ∈ F bounded

}

and Bb,+ is the subring where xn ∈ OF .

The Frobenius ϕ extends to an automorphism of these rings.
If x =∑ pn[xn] ∈ Bb and 0 < ρ = p−r ≤ 1 (thus 0 ≤ r < ∞) we let

|x |ρ = sup
n

|xn|ρn, νr (x) = inf
n
(ν(xn) + nr).
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You should think of p as a variable and x as an analytic function on the open unit
disk, and then |x |ρ is like the sup norm on the open disk of radius ρ. This analogy
will become precise once we interpret elements of Bb as functions on |YF |, the set
of untilts of F .

Proposition 13 The νr is a non-Archimedean valuation and |.|ρ is the associated
absolute value.

Proof It suffices to work in Ain f instead of Bb. Let x ∈ Ain f . Define Nk(x) =
sup0≤n≤k |xn|. Since ρ ≤ 1,

|x |ρ = sup
k≥0

Nk(x)ρ
k .

If α ∈ OF , then |Nk(x)| ≤ |α| if and only if x ∈ [α]Ain f + pk+1Ain f . Using this it
is easy to see that

Nk(x + y) ≤ max(Nk(x), Nk(y)),

the essential point being that if α, β ∈ a ⊂ OF (an ideal) and [α] + [β] =∑
n≥0 p

n[γn] then all the γn ∈ a. See Lemma 11. The two displayed formulae imply

|x + y|ρ ≤ max{|x |ρ, |y|ρ}.

To show |xy|ρ = |x |ρ |y|ρ we may assume (by the continuity of the norm in ρ) that
ρ < 1. In this case

|x |ρ = maxn|xn|ρn.

If the |xn|ρn , |yn|ρn different from 0 are all distinct, then the multiplicativity of |.|ρ
follows from the strong triangle inequality, since in each of the expressions

x =
∑

n≥0

pn[xn], y =
∑

m≥0

pm[xm], xy =
∑

n,m≥0

pn+m[xn ym]

there will be precisely one term of maximal ρ-norm. For given x, y the set of ρ’s for
which this happens is dense in (0, 1), so by the continuity of the norm in ρ we get
the multiplicativity everywhere. �

Note that ν0 is the “Gauss norm” infn ν(xn). Note also that if r > 0 the equivalent
valuation r−1νr (x) = infn(r−1ν(xn) + n) is such that its limit, as r → ∞ is

ν∞(x) = inf{n| xn �= 0}.

This is the valuation inherited from the p-adic valuation of E . The corresponding
absolute value is |x |0 = p−ν∞(x).

The weak topology of Ain f is the (p, [
 ])-adic topology. The following propo-
sition is easy and left as an exercise.
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Proposition 14 Let 0 ≤ ρ ≤ 1. Then Ain f is complete for |.|ρ. The resulting topol-
ogy on Ain f is the p-adic topology if ρ = 0, the weak topology if 0 < ρ < 1, and the
[
 ]-adic topology if ρ = 1. If ρ < 1 then Zp ⊂ Ain f inherits the p-adic topology,
but if ρ = 1 then Zp is discrete.

Fix x ∈ Bb. Since r 
→ νr (x) is the infimum of the linear functions ν(xn) + nr it
is concave for 0 ≤ r < ∞ (analogue ofHadamard’s three circles theorem in complex
variables). Themaximumprinciple is easily seen to be valid: if 0 < ρ1 ≤ ρ ≤ ρ2 ≤ 1,
then

|x |ρ ≤ max{|x |ρ1 , |x |ρ2}.

2.2.4 An Interlude: The Legendre Transform

Let ϕ(x) : R → R ∪ {+∞} be any function. We define its Legendre transform ψ =
L (ϕ)

ψ(r) : R → R ∪ {−∞}, ψ(r) = inf
x

{ϕ(x) + xr}.

The inverse Legendre transform is ϕ = L ∨(ψ) where

ϕ(x) = sup
r

{ψ(r) − xr}.

These two transforms are “tropical” analogues of the Fourier transform and its
inverse. The function L (ϕ) is always concave, L ∨(ψ) is always convex, and if
ϕ were convex to begin with,L ∨(L (ϕ)) = ϕ. In general, we obtain the convex hull
of the function ϕ. If ϕ is piecewise linear and convex, then we can talk about its
slopes. To conform with the conventions used in the theory of Newton polygons,
these are the negatives of the slopes of the graph of ϕ. The break points of the graph
of ϕ are the points where left and right derivatives aren’t the same.

A left shift of ϕ by x0 results in the subtraction of the linear function x0r from its
Legendre transform. Adding a linear function xr0 to ϕ(x) results in a left shift of its
Legendre transform. Dual statements hold for the inverse Legendre transform.

If ϕ(x) is convex decreasing and asymptotic to a horizontal line when x → ∞
then its Legendre transform is finite for r ≥ 0 and −∞ elsewhere.

In general, the Legendre transform of a piecewise linear function interchanges
slopes and break points. The slopes (resp. break points) ofL (ϕ) are the break points
(resp. slopes) of ϕ.Note that for a convex (dually, concave) piecewise linear function,
the slopes and the break points determine the function up to an additive constant.

Although not necessary for our purposes, it is clear that these notions have ana-
logues where the two copies of R (with coordinates x, r ) are replaced by a finite-
dimensional real vector space and its dual.

In the discussion of the previous section, given f ∈ Bb, f =∑n>>−∞ pn[xn],
its Newton polygonN f (x) is the largest non-increasing convex function lying on or
below the points (n, νF (xn)). Since xn are bounded elements of F , N f is asymp-
totic to the horizontal line at height ν0( f ) = inf νF (xn). Its Legendre transform is



260 E. de Shalit

the function r 
→ νr ( f ) if r ≥ 0, r 
→ −∞ if r < 0. (The fact that the Legendre
transform lives only in the first quadrant reflects the fact that N f was defined to be
non-increasing.)

2.2.5 The Rings BI

Let I ⊂ [0, 1] be a non-empty interval (closed, open, or half-closed). Pushing the
analogy with Zp[[X ]] we now define rings that represent functions “converging in
the annulus of radii in I” (if 0 ∈ I this is a disk).

Definition 15 Let BI be the completion of Bb in the family of norms |.|ρ, ρ ∈ I .

Here are some properties of these rings.

• Ain f ⊂ BI is closed (since it is complete in any |.|ρ).
• If J ⊂ I there is a continuous map BI → BJ (it is injective, but this is non-trivial:
[5], 1.6.15).

• B[0,1] = Bb (i.e., Bb is already complete in the family of all norms).
• If I = [ρ1, ρ2] where 0 < ρ1 ≤ ρ2 ≤ 1 then BI is a Banach algebra in the norm

||.||I = max{|.|ρ1 , |.|ρ2}. If ρ2 = 1 this norm is trivial on Zp (gives 1 to any non-
zero element). If ρ2 < 1 it induces on Zp the p-adic topology.

• If I = [ρ1, ρ2] where 0 < ρ1 = |a| ≤ |b| = ρ2 < 1 for some a, b ∈ OF then

BI = ̂
Ain f [ [a]

p
,

p

[b] ][
1

p
]

where the completion isw.r.t. the p-adic topology.Note |p−1[a]|ρ2 ≤ |p−1[a]|ρ1 =
1 and |p[b]−1|ρ1 ≤ |p[b]−1|ρ2 = 1.

• B{0} = E = W (F)[ 1p ].
• In general, if I =⋃[ρn, ρ

′
n] is an increasing union then letting In = [ρn, ρ

′
n], BI

is Fréchet (its topology is defined by a countable family of norms) and in fact is
equal to lim← BIn , an inverse limit of Banach algebras.

• If 0 ∈ I but 1 /∈ I then

BI =
{
∑

n>>−∞
pn[xn] ∈ E | lim

n→∞ |xn|ρn → 0 ∀ρ ∈ I }
}

⊂ B{0} = E .

Definition 16 Let BF = B(0,1). If the reference to F is clear, we shall write simply
B for this ring.

Remark 17 Consider formal expressions
∑∞

n=−∞ pn[xn]where xn ∈ F and for any
0 < ρ < 1we have |xn|ρn → 0 when n → ±∞.They converge in BF . Surprisingly,
it is not known (?) if any element of BF admits such a “Laurent expansion” in p, and
if distinct Laurent expansions represent distinct elements of BF . The same question
arises with the BI for any interval I such that 0 /∈ I .
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For anyρ letϕ(ρ) = ρ p.Since |ϕ(x)|ϕ(ρ) = |x |pρ , it is immediate thatϕ : Bb � Bb

extends to an isomorphism ϕ : BI � Bϕ(I ). In particular, ϕ is a continuous automor-
phism of BF .

The ring
∞⊕

k=0

Bϕ=pk

F

is a graded ring. Its structure is so far unclear. But we can at least give the scheme-
theoretic definition of the Fargues-Fontaine curve

XF = Proj

( ∞⊕

k=0

Bϕ=pk

F

)
.

At this point this is still a useless definition.

2.2.6 The Robba Ring

Using the rings BI we can define two of the most important rings of p-adic Hodge
theory:

E † = lim→ B[0,ρ] =
{
∑

n>>−∞
pn[xn] ∈ E | ∃ρ > 0, sup |xn|ρn < ∞

}
⊂ B{0} = E .

(the limit over ρ > 0). This is the ring of “overconvergent” elements of E .

Proposition 18 E † with the p-adic valuation ν∞ is a henselian discretely valued
field, whose completion is E .

Proof [5], 1.8.2. �

The Robba ring is
R = lim→ B(0,ρ].

This is a much larger ring, but nevertheless any unit ofR appears already in E †.

Proposition 19 The inclusion E † ⊂ R induces (E †)× � R×.

Proof [5] 1.8.6. �

We shall not use these rings, but we remark that they play an important role in the
theory of p-adic representations and (ϕ, �)-modules. Here we take (in the simplest
example) F = (Q

cycl
p )	. In addition to the Frobenius ϕ the perfect field F has a

commuting action of � = Gal(Qp(μp∞)/Qp) � Z×
p . These actions induce actions

on E and E †. A (ϕ, �)-module is a finite-dimensional vector space M over E , with
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semi-linear commuting actions of ϕ and �. The matrix of ϕ in any basis should,
furthermore, be invertible. M is “overconvergent” if it comes, via base change, from
a similar objectM† over E †. Overconvergent (ϕ, �)-modules can be base-changed to
R. The big advantage of the Robba ring is that one can perform hard p-adic analysis
(p-adic differential equations) over it, a tool that is missing over the “formal” E .

Basic theorems of Katz and Fontaine connect p-adic local Galois representations
to étale (ϕ, �)-modules (albeit over a smaller E ...).Here a (ϕ, �)-module M is étale
if with respect to a suitable basis the matrix of ϕ is in GLn(OE ). Luckily, by a
theorem of Cherbonnier and Colmez, étale (ϕ, �)-modules are overconvergent, so
the procedure described above applies to them.

We make one final remark. The reader might have seen, when F = (Q
cycl
p )	, a

description of the Robba ring as a ring of germs of functions converging in some
annulus R < |X | < 1, when R → 1. Here we look at germs of functions in the
punctured disk 0 < |p| < ρ (regarding p as a variable), when ρ → 0. This is not a
mistake. It is related to the dual points of view discussed in Remark 12.

2.2.7 The Map θ y

From now on we assume, to simplify things, that F is algebraically closed. By
Theorem7, any untilt of F would then be algebraically closed too. Let y = (Cy, ιy) ∈
|YF | be an untilt of F . The multiplicative map sending x ∈ OF to x� ∈ OCy extends
to x ∈ W (OF ) = Ain f as follows:

θy(

∞∑

n=0

pn[xn]) =
∞∑

n=0

pnx�
n.

Lemma 20 This map is a surjective homomorphism θy : Ain f → OCy . Its kernel is
principal

ker(θy) = (ξy) = (p − [
y]),

where
y = ιy(p, p1/p, p1/p
2
, . . . ) = ιy(p	) (p	 is unique only up to multiplication

by an element of Tpμ).

Proof Write C = Cy . The “ghost component” homomorphism

Wn : Wn(OC/p
n) → OC/p

n

Wn(a0, a1, . . . , an−1) = a pn−1

0 + pa pn−2

1 + · · · + pn−1an−1

depends only on ai mod p, so factors through a homomorphism θn : Wn(OC/p) →
OC/pn. We have the commutative diagram
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Wn+1(OC/p)
θn+1→ OC/pn+1

↓ φ ↓
Wn(OC/p)

θn→ OC/pn

where φ(a0, . . . , an) = (a p
0 , . . . , a

p
n−1). Taking the inverse limit gives a homomor-

phism θ : W (OF ) → OC . Since it sends [x] to x� it agrees with the map defined
above. To check the surjectivity, it is enough to check it modulo p, but then we
recover the surjectivity of x 
→ x�. Finally, the element p − [
y] is evidently in the
kernel. Any element of Ain f may be written as a = [x] + (p − [
y])b (“division
with remainder”, see Appendix 7).We then have x� = θ(a) = 0 if and only if x = 0,
if and only if a ∈ (p − [
y]). �

2.2.8 Primitive Elements of Ainf and the Perfectoid Correspondence
for Algebraically Closed Fields

The element a =∑ pn[αn] ∈ Ain f is called primitive of degree n if α0 �= 0, αn ∈
O×

F and αi ∈ mF for i < n. For example, “primitive of degree 0” is equivalent to
being a unit. An element is primitive of degree 1 if it is of the form

[α] − pu,

where 0 �= α ∈ mF and u ∈ A×
in f . The element p − [
y] encountered before is such

an element.
It turns out that a primitive element of degree n is a product of n primitive elements

of degree 1, much as a polynomial over an algebraically closed field factors into a
product of linear terms.

We claim that ideals generated by primitive elements of degree 1 are in a bijection
with the untilts (L , ι) ∈ |YF | of F . We have already seen one direction, starting with
an untilt and finding that the kernel of θy is such an ideal. In the converse direction,
let ξ be a primitive element of degree 1. LetOC = Ain f /(ξ) and let θ : Ain f → OC

be the canonical projection. By “division with remainder”, since ξ is primitive of
degree 1, any element of Ain f is of the form [x] + ξb, so every element of OC is of
the form θ([x]). One proves that if θ([x]) = θ([y]) then νF (x) = νF (y) and that if
we set νC(θ([x])) = νF (x) the ringOC becomes a complete valuation ring untilting
OF . Admitting these unchecked details, we have proved the following theorem.

Theorem 21 (Perfectoid correspondence for algebraically closed fields) The maps
described above establish a bijection between ideals in Ain f = W (OF ) generated
by primitive elements of degree 1, and untilts (C, ι) ∈ |YF | of F.
Corollary 22 Every primitive element of degree 1 is of the form u(p − [
 ]) for
some 
 ∈ mF and u ∈ A×

in f .
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Proof If ξ is a primitive element of degree 1 consider the corresponding untilt
OC = Ain f /(ξ) and the correspondingmap θ.Wehave seen that ker(θ) = (p − [
 ])
for a suitable 
. It follows that ξ = u(p − [
 ]) for u ∈ A×

in f . �

Remark 23 In Lemma 20 we seemed to have answered the question: when do (p −
[
 ]) and (p − [
 ′]) generate the same ideal of Ain f , i.e., when do they give the same
untilt? Indeed, if the untilt is (Cy, ιy) then
y = ιy(p	)where p	 = (p, p1/p, . . . ) ∈
C	

y is unique precisely up tomultiplication by a generator of Tμ(Cy), theTatemodule
of p-power roots of unity in Cy . This answer is not satisfactory, as it depends on
knowing the untilt (Cy, ιy). One may wonder if, intrinsically in F , we can find a
criterion telling us when 
 and 
 ′ give rise to the same untilt. This is possible via
a different approach to primitive ideals of degree 1, which we do not describe here.
See [5], 2.3.2, and Sect. 2.2.12.

2.2.9 The Ring BF as a Ring of Functions on |YF|

We keep our assumption that F is an algebraically closed complete valued field in
characteristic p. The perfectoid correspondence, which identifies primitive ideals of
degree 1 in Ain f with untilts of F, has two consequences. It allows us to interpret Ain f ,
Bb, and its completion BF = B(0,1), as rings of functions on |YF |. These functions
take values in changing fields, but we are accustomed to this already in algebraic
geometry, or (say, Berkovich) analytic geometry. It also allows us to put a topology
on |YF | in which these functions become continuous.

To achieve the first goal, if y = (Cy, ιy) ∈ |YF | and f ∈ Ain f define

f (y) = θy( f ) ∈ Cy .

Since p and [
 ] map under θy to p and 
�, which are both non-zero, this extends
to f ∈ Bb. We shall write

| f (y)| = | f (y)|Cy .

If f ≡ [x] mod ξy, x ∈ OF , then | f (y)| = |x�|Cy = |x |F . In particular, |[x](y)| =
|x |F is constant on |YF |. In contrast

|p(y)| = |θy(p)|Cy = |θy([
y])|Cy = |
�
y |Cy = |
y|F

can get any value in (0, 1). Thus elements of the form [x] should be regarded as
“constants” and p as a “variable”. This explains our previous remark that the Teich-
müller expansion

∑
n>>−∞ pn[xn] of an element from Bb should be regarded as a

Laurent power series in the variable p with coefficients from OF .
For ρ ∈ (0, 1) let aρ = {x =∑∞

n=0 p
n[xn] ∈ Ain f | ∀n |xn|F ≤ ρ}.ByLemma 11,

this is an ideal. If I, J ⊂ Ain f are two ideals define

d(I, J ) = inf{ρ| I + aρ = J + aρ}.
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If y1, y2 ∈ |YF | define
d(y1, y2) = d((ξy1), (ξy2)).

Warning: As we have seen, it may well happen that 
1 �= 
2, but nevertheless
(p − [
1]) = (p − [
2]). However, with our standard notation, it can be easily
shown that

d(y1, y2) = |ξy1(y2)| = |ξy2(y1)|.

This is intuitively pleasing: the function ξy1 is a local parameter at y1 and the absolute
value at y2 (an element of Cy2 ) measures the distance of y2 from y1.

We also warn the reader that Fargues and Fontaine denote by d the logarithmic
distance function, i.e., − logp of our d(−,−).

The metric d(−,−) is an ultrametric distance function on |YF |. Via this distance
function |YF | resembles the punctured unit disk. If we define “distance to the origin”

r(y) = d((ξy), (p)) = |
y|F = |p(y)|

then r : |YF | → (0, 1) is continuous and r−1([ρ, 1)) is complete for any ρ > 0 (the
proof of completeness is straightforward, see [5], Proposition 2.3.4).

For a fixed y, the function
θy : Bb → Cy

is continuous with respect to the Gauss norm |.|r(y) on Bb, as can be seen from
(ρ = r(y))

| f (y)| = |
∑

pnx�
n|Cy ≤ sup |pnx�

n|Cy = sup ρn|xn|F = | f |ρ,

so extends to the completion of Bb with respect to this norm. This way we can
consider BF as a ring of continuous functions on |YF |. Continuity means that for any
ε > 0 and any f ∈ BF the set

{y ∈ |YF || | f (y)| < ε}

is open in |YF |, where we remember that | f (y)| = | f (y)|Cy . More generally, if
I ⊂ (0, 1) is an interval then BI is a ring of continuous functions on the “annulus”
r−1(I ).

Recall that φ acted on |YF | and it is straightforward to check that

r(φ(y)) = r(y)1/p.

The action of φ is therefore discrete.
At this point it is natural to ask whether |YF | is the set of closed points of a

certain (Huber, adic, or Berkovich)-analytic space YF (justifying, in retrospect, the
cumbersome notation |YF | that we have been carrying all along). This is indeed so,
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and the rings BI play an important role in defining this analytic structure. To construct
YF as an adic space we would have to review adic geometry first. The adic approach
is indispensible when one develops the Fargues-Fontaine curve in the relative set-up,
but as we do it here, it can be postponed.

2.2.10 Weierstrass Factorization for Ainf

Theorem 24 Let f ∈ Ain f be a primitive element of degree k ≥ 1. Then there are

i ∈ mF (1 ≤ i ≤ k) and u ∈ A×

in f such that

f = u(p − [
1]) · · · (p − [
k]).

Proof In viewofCorollary 22 it is enough to prove that f = ξ1 · · · ξk with ξi primitive
of degree 1.We do it by induction on k. The key step is the next lemma, asserting that
f has a zero at some y ∈ |YF |. Applying division with remainder (see Appendix),
f = [x] + ξyg and f (y) = 0 implies x = 0. It is easy to see that g is primitive of
degree k − 1, and we may apply the induction hypothesis. �

Lemma 25 Let f be as above. Then f (y) = 0 for some y ∈ |YF |.
Proof If f =∑∞

n=0 p
n[xn] ∈ Ain f its Newton polygon N f (x) is the largest non-

increasing convex functionR→R∪{+∞} lying below (or on) the points (n, νF (xn)).
We haveN f (x) = +∞ for x < ν∞( f ) (the p-adic valuation of f , or the first n with
xn �= 0) and

lim
x→∞N f (x) = ν0( f ) = inf νF (xn).

The slopes ofN f are by definition the negatives of the slopes of the graph. They are
non-negative. The definitions extend naturally to f ∈ Bb.

If f ∈ Ain f is primitive of degree k then νF (x0) < ∞ and νF (xk) = 0, soN f (x) =
0 for x ≥ k and N f has k positive slopes. If f is in the form of the theorem then its
positive slopes are the νF (
i ), 1 ≤ i ≤ k (with multiplicities). This would be well-
known if p were replaced by a variable X , but holds true also in Ain f , in view of
what might be called the “arithmetic of carrying”. For example, suppose that k = 2,
u = 1, and |
1| ≤ |
2|. Then

f = [
1
2] − ([
1] + [
2])p + p2.

Let
[
1] + [
2] = [
1 + 
2] + p[s1] + p2[s2] + · · ·

where by Lemma 11 νF (si ) ≥ min{νF (
1), νF (
2)} > 0. It follows that in the
expression for f

νF (x0) = νF (
1) + νF (
2), νF (x1) ≥ min{νF (
1), νF (
2)},
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with equality if νF (
1) > νF (
2), νF (x2) = 0, and of course νF (xn) ≥ 0 for n ≥ 3.
Thus the claim follows in this case, and the proof of the general case is similar.

To prove the lemma, let λ be the smallest positive slope ofN f . We have to show
that f has a zero y ∈ |YF | with r(y) = p−λ (this will be the largest zero, i.e., “the
one farthest from the origin”). In other words, f will be divisible by

ξy = p − [
y]

with νF (
y) = λ. This is done by successive approximations. Start with z ∈ OF

with νF (z) = λ solving
k∑

n=0

znxn = 0

(which exists since F is algebraically closed). Since λ was the smallest slope of
N f , it is the smallest valuation of a root of the polynomial

∑k
n=0 Z

nxn , so νF (xn) ≥
(k − n)λ. It follows that we can write (for 0 ≤ n ≤ k)

znxn = zkwn

with wn ∈ OF , and
∑k

n=0 wn = 0. Letting y1 correspond to the primitive element
ξ = (p − [z]) we have θy1([z]) = p, so (θ = θy1 )

f (y1) = θ(

∞∑

n=0

pn[xn]) ≡ θ(

k∑

n=0

[znxn]) ≡ pk
k∑

n=0

θ([wn]) ≡ 0 mod pk+1OCy .

The last congruence follows from the fact that
∑k

n=0[wn] ∈ pAin f .

We have already remarked that applying “division with remainder” we can write
f = [a0] + f1ξ. Applying this remark inductively we obtain an expression

f =
∞∑

n=0

[an]ξ n,

expressing f as a power series in ξ instead of p. As before, an ∈ mF for 0 ≤ n <

k, and ak ∈ O×
F . Furthermore, θy1([a0]) = f (y1) ≡ 0 mod pk+1, or νCy1

( f (y1)) =
νF (a0) ≥ (k + 1)λ.

We now improve y1. Let y2 be the point corresponding to ξ − [u], where u is the
smallest root (i.e., root of largest valuation) solving

k∑

n=0

unan = 0.
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Note that since νF (a0) is the sumof the valuations of the k roots, νF (u) ≥ νF (a0)/k ≥
(k + 1)λ/k. This νF (u) gives us the bound

d(y1, y2) = p−νF (u) ≤ p−(k+1)λ/k,

so in passing we see that r(y2) = r(y1) = p−λ. We now compute f (y2) and show
that it is smaller (in absolute value; it lies in a different field!) than f (y1). Since u
was a root of largest valuation, νF (an) ≥ νF (a0) − nνF (u), so there are bn ∈ OF

such that unan = bna0. As before,
∑k

n=0 bn = 0. We get (θ = θy2)

θ( f ) =
∞∑

n=0

θ([an][un]) = θ(

k∑

n=0

[bn])θ([a0]) + θ(

∞∑

n=k+1

[an][un]).

The first sum has valuation at least (k + 2)λ, (k + 1)λ coming from a0 and one
extra λ coming from

∑k
n=0[bn] ≡ 0 mod p. The second term has valuation at least

(k + 1)νF (u) ≥ (k + 1)2λ/k ≥ (k + 2)λ. Thus νCy2
( f (y2)) ≥ (k + 2)λ.

Repeating this procedure we improve y1 successively to obtain a sequence of
points yi ∈ |YF | such that f (yi ) → 0, and {yi } is a Cauchy sequence. By the com-
pleteness of |YF | “away from 0” (all the yi have the same r(yi ) = p−λ), the yi
converge to a zero y of f. For more details, see [5], Theorem 2.4.1. �

Let I ⊂ [0, 1) be an interval not containing 1. It can be open, closed, or half-open.
To extend the Newton polygon from f ∈ Bb to f ∈ BI , we must have a version of
the Newton polygon that “sees” only the slopes of f that belong to the interval I.
Start with f ∈ Bb. Using the Legendre transform Fargues and Fontaine define a
“partial” Newton polygon N I

f (x) which is “the part of N f with slopes in I”. Its
domain is therefore limited to an interval. If there are no slopes ofN f in I we write
N I

f = ∅. (We say, by abuse of language, that a slope λ > 0 belongs to I if p−λ ∈ I .)
By continuity, N I

f can be defined now for f ∈ BI . Note however that if I is not
compact and f /∈ Bb N I

f may have infinitely many positive slopes (accumulating at
the missing end-points of I ).

Corollary 26 Let I ⊂ [0, 1) be a compact interval. If I = {ρ}withρ = 0 orρ /∈ |F |
then B{ρ} is a field. In any other case, BI is a PID, and its maximal ideals are in
bijection with |YI | = r−1(I ).

Proof (Sketch). We have already seen that B{0} = E is a field. Assume that I =
[ρ1, ρ2] with 0 ≤ ρ1 < ρ2 < 1 or ρ1 = ρ2 ∈ |F×|. Since I is compact, for each
non-zero f ∈ BI its Newton polygon N I

f contains only finitely many slopes λ with
p−λ ∈ I . If this set of slopes (with multiplicities), call it SlopesI ( f ), is empty, one
proves that f ∈ B×

I . The proof of this fact is essentially identical to the proof of
the statement that a power series in Zp[[X ]] not having λ as a slope is invertible
on the annulus of radius p−λ. See [5], 1.6.25. On the other hand, any time a slope
λ ∈ SlopesI ( f ) occurs, we can, by the previous theorem (extended from Ain f to
BI—this needs justification, and of course relies on p−λ ∈ I ), find a factor ξy =
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p − [
y] of f , r(y) = p−λ, the quotient by which has one less I -slope. Here the
assumption that ρ2 < 1 is being used to apply a change of variable p 
→ p[z] for
some z ∈ mF (multiplying the radii by |z|F ), after which we may assume that f is
primitive (extracting a certain pn[
 ] from all the coefficients).

It follows that any element of BI can be written as uξ1 . . . ξn , with u a unit, and
the ξi primitive of degree 1, hence irreducible (since they generate a maximal ideal
in BI ). This factorization is unique up to order and multiplication by a unit. The
corollary follows from the well-known fact that a unique factorization domain is a
PID if and only if the ideals (ξ) generated by its irreducible elements are maximal.

The remaining case where I = {ρ} but ρ /∈ |F | is treated similarly, noting that in
this case SlopesI ( f ) = ∅, so every non-zero f is invertible and B{ρ} is a field. �

If J ⊂ I ⊂ (0, 1) are two compact intervals the map BI → BJ is a “localization
and completion”. The irreducibles ξy for y ∈ I − J are inverted. Since B = BF is
the projective limit of the BI where I ⊂ (0, 1) is a compact interval, we deduce that
the maximal ideals of B are in bijection with |YF |.

The ring B is not principal, nor is BI if I is not compact. However, similar to
the classical (complex or p-adic) situation, a function 0 �= f ∈ B admits an infinite
“Weierstrass product” decomposition “near 0”. See [5], Theorem 2.6.1.

Passing from maximal ideals to arbitrary closed ideals allows to identify them
with Div+(YF ), the monoid of formal expressions

∑
y∈|YF | ny[y], ny ≥ 0, where

for any compact I ⊂ (0, 1), only finitely many y ∈ |YI | have ny �= 0. This follows
formally from the fact that if a is a closed ideal in B = lim← BI (inverse limit over
compact intervals in (0, 1)) then

a = lim← aBI ,

while
Div+(YF ) = lim← Div+(YI ).

Corollary 27 The correspondence

D =
∑

y∈|YF |
ny[y] 
→ aD = { f ∈ B| ordy( f ) ≥ ny ∀y ∈ |YF |}

is an isomorphism of monoids between Div+(YF ) and the monoid of closed ideals
of B.

There is an obvious notion of a divisor div( f ) associated to f ∈ B (or BI in
general), and f |g if and only if div(g) ≥ div( f ). The closed ideal aD is principal
if and only if D is a principal divisor.

The nature of the rings BI for non-compact I is not easily determined. If I = (0, ρ]
with ρ < 1 then it can be proved that BI is Bézout, and the principal ideals, the
finitely generated ideals, and the closed ideals are all the same. Equivalently, every
D ∈ Div+(YI ) is principal, D = div( f ) for some f ∈ BI . As a result, the Robba



270 E. de Shalit

ring
R = lim→ B(0,ρ]

is also Bézout.
To summarize what we have seen so far, |YF | is exhausted by an increasing union

of the |YI |, for compact intervals I. These indeed look like curves–|YI | is identified
with the maximal spectrum of a PID BI .

2.2.11 Dividing by the Action of Frobenius

It is now time to divide |Y | = |YF | by the action of φ.As usual, the ring isomorphism
ϕ : BI � Bφ(I ) induces a map in the opposite direction on maximal spectra φ = ϕ∗ :
|Yφ(I )| → |YI |, so if y ↔ (ξy) = (p − [
y]) we have
φ(y) = 


1/p
y and r(φ(y)) =

r(y)1/p. Similarly, d(φ(y1), φ(y2)) = d(y1, y2)1/p. As already noted, the action of
φ is discrete, and we define a topological space

|X | = |XF | = |Y |/φZ.

We identify
Div(X) = Div(Y )φ=1

and similarly for the monoid of effective divisors Div+(X).

There is a homomorphism

deg : Div(X) → Z

taking
∑

ny[y] to∑y mod φ ny .

The ring Bϕ=1 is too small; in fact, it will be shown to coincide withQp.However,
if f ∈ Bϕ=pk then div( f ) is φ-invariant and effective (these functions should be
regarded as analogues of theta functions in the classical theory of elliptic curves).

Denote by
∐

k≥0(BF − {0})ϕ=pk the monoid which is the disjoint union of (BF −
{0})ϕ=pk , with multiplication as the monoid operation.

Theorem 28 ([5], Theorem 6.2.1.) The homomorphism of monoids

div :
(
∐

k≥0

(BF − {0})ϕ=pk

)
/Q×

p → Div+(XF )

is an isomorphism. It respects degrees: if ϕh = pkh then deg(div(h)) = k. In par-
ticular, Bϕ=1

F = Qp.

Proof (sketch) Before we prove the theorem, let us make some remarks on Newton
polygons. Let h ∈ B. Its Newton polygon, N (0,1)

h will be denoted for simplicity by
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Nh . If h ∈ Bb, this is the Newton polygon of h, with the slope 0 part removed (if
slope 0 occurs, corresponding to ρ = 1). In general, for I a compact sub-interval
of (0, 1) and h ∈ BI the Newton polygon N I

h is the limit of N I
hn

for a sequence hn
converging to h in the Banach norm of BI . These Newton polygons are the same
for n >> 0, so Nh has finitely many slopes. For I non-compact, like (0, 1), N I

h is
the union of N J

h for J ⊂ I a compact sub-interval, and may have infinitely many
slopes. Going back to h ∈ B andNh = N (0,1)

h , it follows from the definitions that it
is defined for all x sufficiently small and that limx→−∞ Nh(x) = +∞. For f /∈ Bb,

the Newton polygon may or may not attain the value +∞ for some x .
Finally, Nϕ(h)(x) = pNh(x) and Npmh(x) = Nh(x − m) (shift to the left if m <

0). This is readily proved for h ∈ Bb and extends by continuity to h ∈ B.
Injectivity: Suppose two non-zero functions f ∈ Bϕ=pk and g ∈ Bϕ=p�

with k ≥ �

have the same divisor. Then h = g f −1 ∈ B×
I for every compact I (BI being a PID).

It therefore belongs to B = lim← BI . It even belongs to Bϕ=pm where m = � − k. It
suffices to show that Bϕ=pm = 0 if m < 0 and Qp if m = 0. This is again a Newton
polygon argument.

If m < 0 and h �= 0 pNh(x) = Nh(x − m) implies that Nh must be increasing,
while by definition it is non-increasing, a contradiction (note that it cannot get only
the two values 0, +∞ in this case). If m = 0 Nh(x) can get only the values 0 or
∞ and for x << 0 Nh(x) = +∞. This implies ([5], Proposition 1.9.1, the proof
seems to contain a gap, but can be fixed) that h lies in B[0,1) ⊂ B(0,1) = B. But
B[0,1) ⊂ B{0} = E = W (F)[1/p] and

W (F)[1/p]ϕ=1 = W (Fp)[1/p] = Qp.

Surjectivity: It is enough to show that if y ∈ |Y | then there exists a function
ty ∈ Bϕ=p with

div(ty) =
∑

n∈Z
[φn(y)].

Let ξy = p − [
y] be a primitive element of degree 1 corresponding to y. Consider
the product

t+y =
∞∏

n=0

ϕn(ξy/p) =
∞∏

n=0

(1 − [
 pn ]/p).

The product converges in B and satisfies ξyϕ(t+y )=pt+y , and div(t+y )=∑n≤0[φn(y)].
On the other hand, the equation

ϕ(T ) = ξyT

can be shown to have a solution t−y ∈ Ain f . This is easy and done by successive
approximations modulo pn , using the fact that F , being algebraically closed, admits
p − 1 roots and solutions of Artin-Schreier equations, see [5], Proposition 6.2.10.
Its divisor satisfies
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φ−1(div(t−y )) = [y] + div(t−y ),

so div(t−y ) =∑n>0[φn(y)], and is supported on Y[ρ1/p,1) where ρ = r(y).
It follows that ty = t+y t−y is the desired element. Note that this element cannot

belong to Bb as its Newton polygon satisfies Nty (x + 1) = Nty (x)/p, so it has
infinitely many slopes (in both directions). �
Remark 29 The space Bϕh=pd is a Qp-vector space and is in fact a closed Banach
subspace of B[ρ p,ρ] if we choose any ρ ∈ (0, 1). This is because if a sequence of
functions fn ∈ Bϕh=pd converges in B[ρ p,ρ] one may use the action of Frobenius to
show that they converge in any B[ρ pN ,ρ p−N ] and the limit function clearly also satisfies
ϕh( f ) = pdh.When N → ∞ these compact intervals exhaust (0, 1).While thenorm
induced on this space depends on the choice of ρ, the Banach topology does not. We
shall always consider it with this Banach space topology.

2.2.12 An Alternative Parametrization of |Y | via the Multiplicative
Formal Group

Let ε ∈ mF − {0} and

uε = [1 + ε] − 1

[1 + ε1/p] − 1
=

p−1∑

i=0

[1 + ε1/p]i ∈ Ain f .

Modulo p, uε ≡ ε(p−1)/p �= 0, and under W (OF ) → W (κF ) (κF = OF/mF ) the
second expression shows that it maps to p. Thus uε is a primitive element of degree
1. Let yε be the point of |Y | corresponding to (uε) ⊂ Ain f . If a ∈ Zp we can look at5

{a}(ε) = (1 + ε)a − 1 =
∞∑

n=1

(
a

n

)
εn ∈ mF

and then

u{a}(ε) = [(1 + ε)a] − 1

[(1 + ε1/p)a] − 1
.

If a ∈ Z×
p then [(1 + ε)a] − 1 and [1 + ε] − 1 divide each other in Ain f so u{a}(ε)

and uε differ by a unit, and yε = y{a}(ε). If a = p the two points differ by Frobenius
φ. Since F is perfect the notation {a}(ε) can be extended to a ∈ Qp.

Proposition 30 The association ε 
→ yε gives bijections

(mF − {0})/Z×
p � |YF |, (mF − {0})/Q×

p � |XF |.

5 Endomorphisms of formal groups are usually denoted by [a]. In order not to conflict with the
notation for Teichmüller representatives, we use {a}.
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Proof It is enough to prove the first claim. To prove injectivity, let C = Cyε , and
suppose that y = yε = yε′ . First note that since θy(uε) = 0 we must have (1 + ε)� =
1 in C , so if 1 + ε = ζ ∈ F = C	 then

ζ = (1, ζ1, ζ2, ...)

where ζi is a pi root of unity in C . In fact, (1 + ε1/p)� �= 1, or else θy(uε) = p, so
ζi should be a primitive pi root of unity. The same holds for ε′, so ζ ′ = ζ a for some
a ∈ Z×

p and ε′ = {a}(ε).
To prove surjectivity, given y ∈ |YF | let C = Cy and choose ε ∈ C	 = F in such

a way that ζ = 1 + ε is a basis of the Tate module of Tμ(C). Then working the
above arguments backward we see that uε is a primitive element of degree 1, and is
in the kernel of θy , so must generate it, and y = yε. �

Corollary 31 Up to a Qp-multiple, the element ty constructed before by means of
Weierstrass products is also given by

ty = log([1 + ε]) =
∞∑

n=1

(−1)n−1 ([1 + ε] − 1)n

n

for ε such that y = yε. (We denote this element also by tε.)

Proof It is easy to check that the power series converges in BF , so it represents an
element there (that does not belong, of course, to Bb!). Clearly ϕ(ty) ∈ Bϕ=p, but
the elements in this space vanishing at y form a one-dimensional space over Qp, as
we have seen. �

Remark 32 We shall see later that the spaces Bϕ=1 and Bϕ=p are related to periods
of the p-divisible groups Qp/Zp and μp∞ . More generally, the “Banach-Colmez”
space Bϕh=pd for 0 ≤ d ≤ h relatively prime will be related to the periods of p-
divisible groups of dimension d and height h. Here we are only considering, for the
construction of XF , the case h = 1, so the relation to p-divisible groups occurs only
for d = 0, 1. For the study of vector bundles over XF we shall have to consider all
values of h.

Banach-Colmez spaces is one of the topics completely absent from these notes,
for reasons of space. They are intimately woven into the fabric; however, the reader
can learn more about them from the original book by Fargues and Fontaine, or from
Colmez’ original paper.
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2.3 The Schematic Fargues-Fontaine Curve and Its Main
Properties

2.3.1 The Definition of the Curve

Having studied the ring B = B(0,1) and its completions BI for I ⊂ (0, 1) a compact
interval (PIDs !), we can finally define the curve X and get its main properties.

Let

P =
∞⊕

k=0

Bϕ=pk .

This is a graded ring and we let

XF = Proj (P).

A graded ring P =⊕∞
k=0 Pk is called graded factorial with irreducible elements

in degree 1 if P0 is a field E and the multiplicative monoid

∞∐

k=0

(Pk − {0})/E×

is free and generated by (P1 − {0})/E×. Theorem 28 yields the following:

Corollary 33 The ring P is graded factorial with irreducible elements in degree 1,
and P0 = Qp.

2.3.2 The Fundamental Exact Sequence

Besides the last corollary, there is another important ingredient needed to prove that
XF is a “curve”. It is an exact sequencewhich yields the “fundamental exact sequence
of p-adic Hodge theory”. In this sub-section we explain what it is and how to derive
it.

Lemma 34 Let y ∈ |Y |. Let ξy ∈ Ain f be a corresponding primitive element of
degree 1, andmy = ξy B = ker(θy) the correspondingmaximal ideal of B.The homo-
morphism θy : B → B/my = Cy is surjective when restricted to Bϕ=p.

Proof We have seen that every element h ∈ Bϕ=p is associated with div(h) =∑
n∈Z[φn y′] for some y′, and that div(h) determines h up to a Q×

p -multiple. Since
every element of |Y | is of the form yε, every element of Bϕ=p is tε = log([1 + ε])
for a unique ε ∈ mF . Replacing ε by {a}(ε) for a ∈ Q×

p (the freedom allowed
keeping the Frobenius orbit of y unchanged) results in multiplying tε by a. But
θy(tε) = log((1 + ε)�) and (1 + ε)� can be an arbitrary element of 1 + mCy . The
lemma follows from the fact that log : 1 + mC → C is surjective. Recall that by the



The Fargues-Fontaine Curve and p-Adic Hodge Theory 275

convergence of exp on pOC (4OC if p = 2) its image contains a neighborhood of 0.
But since 1 + mC is p-divisible, so is the image of log; hence it is all of C . �

Proposition 35 The sequence

0 → Qpty → Bϕ=p θy→ B/my = Cy → 0

is an exact sequence of Qp-Banach spaces.

Proof We have checked that θy is onto, and that ker(θy) = Qpty . �

Theorem 36 Let y1, . . . , yr be pairwise φ-inequivalent and ei ≥ 1. Let ti = tyi . Let
d =∑ ei . Then the sequence

0 → Qpt
e1
1 · · · t err → Bϕ=pd → B/me1

y1 · · ·mer
yr → 0

is exact.

Proof The sequence is clearly a 0-sequence. If h ∈ Bϕ=pd maps to 0 then div(h) ≥∑
ei [yi ]. Since it is φ-invariant and the yi are Frobenius inequivalent,

div(h) ≥ div(t e11 · · · t err ).

Since both divisors are of degree d, they are equal. This means that h ∈ Qpt
e1
1 · · · t err .

The surjectivity of the map from Bϕ=pd is proved by induction on d. The case
d = 1 was already done. The map Bϕ=pd → B/my1 = Cy1 is surjective since we can
multiply any element from Bϕ=p by td−1

y′ where y′ �= y1 and θy1(ty′) �= 0. It remains
therefore to show that we can get any element in my1/m

e1
y1 · · ·mer

yr . By induction we

can get any element in B/me1−1
y1 · · ·mer

yr as the image of an element from Bϕ=pd−1
.

Multiplying by ty1 gives the desired result. �

Remark 37 The B-module B/m2
y has a non-split filtration

0 → my/m
2
y → B/m2

y → B/my → 0

where the two terms at the extremes are isomorphic to Cy . This suffices to show that
multiplication by ty′ for y′ /∈ φZy is bijective on B/m2

y . Similar claims hold for any
B/me1

y1 · · ·mer
yr .

Corollary 38 Let 0 �= t ∈ P1 = Bϕ=p and choose y ∈ |Y | so that div(t) =∑
n∈Z[φn y]. Then there is a canonical isomorphism of graded algebras

P/t P = P0 ⊕
∞⊕

k=1

Pk/t Pk−1 � { f ∈ Cy[T ]| f (0) ∈ Qp}.

Proof Send a ∈ Pk/t Pk−1 to θy(a)T k (here P−1 = 0). �
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2.3.3 The Ring B+
dR, y and the Field BdR, y

Let y ∈ |Y |. We denote the completion of Bb at the maximal ideal my = (ξy) =
ker(θy) by B+

dR,y . Thus

B+
dR,y = lim← Bb/(ξ ny ).

By abuse of language we denote by my the kernel of θy in any of the rings Bb, BI ,
and B.

Proposition 39 B+
dR,y is a complete DVR, and ξy is a uniformizer. The homomor-

phisms
Bb ↪→ B � BI

(I a compact interval in (0, 1) containing r(y)) induce isomorphisms on the com-
pletions of their localizations at y.

Proof It is enough to prove the second claim because BI is a PID and ξy is a generator
of my ⊂ BI . Recall that B and BI were obtained as certain topological completions
of Bb in the family of norms |.|ρ, while B+

dR,y is the formal completion at my . The
proposition follows from the fact that the kernel of θy in B or BI is still principal and
generated by ξy , in itself proven via approximations, and from the identity

BI /ξy BI = B/ξy B = Bb/ξy B
b = Cy .

The proof should be compared to the proof that the formal completion of the ring of
germs of holomorphic functions at 0 is the same as the formal completion of C[z]
at 0. In this classical example one argues with Taylor expansions. In our case, such
expansions do not exist, as B+

dR,y is not a vector space over Cy . Instead, one has to
argue with filtrations and graded objects. Except for this, the proof is the same. �

Viewing B+
dR,y as a completion of the localization of B at y we can also consider

(the image of) ty as a uniformizer. We denote by BdR,y the field of fractions of B
+
dR,y,

i.e., B+
dR,y[1/ty].

Remark 40 We have started from an arbitrary perfectoid field F in characteristic
p and looked at all its untilts, parametrized by |YF |. Had we started with Cp and
tilted it to get F := C

	
p,we would have a distinguished untilt (namely Cp with the

canonical identification of C
	
p with F), i.e., a point ∞ ∈ |YF | and a corresponding

point in |XF |. Originally, Fontaine called the resulting BdR,∞ simply BdR . It was
only later realized that such a field exists for every untilt y.

We make another remark about notation.

Remark 41 The use of the superscript + might be occasionally confusing. In the
context of BdR it is used to denote the valuation ring before t is inverted. However,
in the context of the ring Bb it was used to denote an intermediate ring
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Ain f ⊂ Bb,+ ⊂ Bb = Ain f [1/p, 1/[
 ]]

in which p was inverted, but [
 ] not yet. The convergent power series

1

[
 ] = 1

p

∞∑

n=0

(
ξ

p
)n

(ξ = p − [
 ]) shows that

Bb,+/(ξ n) = Bb/(ξ n),

hence B+
dR = lim← Bb,+/(ξ n) as well. But beware: B+

dR contains B
b and B, not only

Bb,+.

There is also the ring B+ ⊂ B, which is the closure of Bb,+ in B. It can be shown
that it coincides with the f ∈ B = B(0,1) for which N f (x) ≥ 0 for all x . Note that
in passing from Ain f to Bb = Ain f (

1
p ,

1
[
 ] ) division by p moves Newton polygons

horizontally to the left, invading the second quadrant, while further division by [
 ]
moves them vertically downwards, thus invading the third and fourth quadrants.
Using this characterization it is easy to see that for d, h ≥ 0

Bϕh=pd = (B+)ϕ
h=pd .

We shall later discuss also divided power completions of Ain f and the ring

B+
cris = ̂Ain f [ξ n/n!; n ≥ 1][1/p]

(the big hat signifying p-adic completion). It will then be true also that

B+ϕh=pd = B+ϕh=pd

cris .

The fundamental exact sequence (associated with the point ∞) will take the more
familiar form

0 → Qpt
d → (B+

cris)
ϕ=pd → B+

dR/t
d B+

dR → 0.

2.3.4 The Main Theorem ([5], Théorème 6.5.2)

Theorem 42 (i) The scheme X is a complete curve, whose field of definition
H 0(X,OX ) = Qp. All the closed points have degree 1.

(ii) For t ∈ P1 = Bϕ=p the locus V+(t) ⊂ Proj (P) = X consists of a single
point∞t . The residue field Ct at∞t is a complete valued field, algebraically closed,
whose tilt is canonically identified with F.

(iii) The map Q×
p t 
→ ∞t is a bijection (P1 − {0})/Q×

p ↔ |X |.
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(iv) The ring OX,∞t is a DVR, whose completion is canonically identified with
B+
dR,y where y ∈ |Y | is any point such that div(t) =∑n∈Z φn([y]).
(v) Let Be = B[1/t]ϕ=1 = B+[1/t]ϕ=1. Then Be is a PID and Spec(Be) =

D+(t) = X − {∞t }.Furthermore, if ord∞t is the valuation on Frac(Be) ⊂ BdR,∞t ,

then the couple (Be,−ord∞t ) is an almost Euclidean domain.
(vi) The degree homomorphism induces Pic(X) � Z.

(vii) We have H 1(X,OX ) = 0.

The proof of the theorem rests on a general construction of complete curves. The
next section is motivated by the application we have in mind, but is set in a general
axiomatic framework.

2.4 Construction of Curves ([5], Chap. 5)

2.4.1 Curves

We recall the definition from the introduction. A separated noetherian scheme X is
called a curve if it is regular, one-dimensional, and connected. We denote by η its
generic point, by E(X) = OX,η its function field, and by ordx : E(X) → Z ∪ {∞}
the normalized valuation associated with a closed point x ∈ |X |.

Let deg(x) ∈ N be given for every x ∈ |X |. For a divisor D ∈ Div(X) we define
deg(D) as usual. The group Div(X) is identified with the group of Cartier divisors,
hence with the group of pairs (L, s) where L is a line bundle and s is a rational
section. The sequence

0 → �(X,OX )
× → E(X)× div→ Div(X) → Pic(X) → 0

is exact.
A curve X, equipped with a degree function, is called complete, if

deg(div( f )) =
∑

ordx ( f )deg(x) = 0

for any f ∈ E(X)×. If X is complete and 0 �= f ∈ �(X,OX ) then div( f ) ≥ 0, but
since deg(div( f )) = 0, div( f ) = 0 and f is invertible. Thus E = �(X,OX ) is a
field, called the field of definition of X.

2.4.2 Almost Euclidean Rings

A ring B equipped with a degree function deg : B → N ∪ {−∞} satisfying
(1) deg(a) = −∞ iff a = 0, deg(1) = 0
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(2) deg(a) ≤ deg(ab) for b �= 0
is called almost Euclidean if in addition

(3) deg(a) = 0 iff a ∈ B×
(4) For any x, y �= 0 there exist a, b with x = ay + b and deg(b) ≤ deg(y).

Note that (B, deg) is Euclidean if in the last property we have a strict inequality.
Suppose B is an integral domain with fraction field K . Let ord∞ : K → Z ∪ {∞}

be a normalized discrete valuation with valuation ring A. Suppose that

• ord∞(b) ≤ 0 for every 0 �= b ∈ B and ord∞(b) = 0 iff b ∈ B× (i.e., A ∩ B =
B× ∪ {0}).

Note that in this case E = A ∩ B is a field, and the function deg = −ord∞ : B →
{−∞} ∪ N satisfies 1. and 2. above. It even satisfies

deg(ab) = deg(a) + deg(b).

Let Fili B = {b ∈ B| deg(b) ≤ i}. This is an increasing filtration on B, Fil0B = E .

Proposition 43 Suppose that for i ≥ 1 the map Fili B/Fili−1B → m−i
A /m−i+1

A is
surjective. Then (B, deg) is almost Euclidean.

Proof Point 3. is satisfied by assumption. Let us prove “weak division with remain-
der” by induction on deg(x) − deg(y). If deg(x) ≤ deg(y) let a = 0, b = x .
Assume that deg(x) = i > j = deg(y). Then xy−1 ∈ m

j−i
A and there exists an

α ∈ Fili− j B mapping to it modulom j−i+1
A . It follows that β = x − αy = y(xy−1 −

α) ∈ B satisfies deg(β) ≤ j + (i − j − 1) < i.Thus deg(β) − deg(y) < deg(x)−
deg(y) and by the induction hypothesis we canwrite β = ay + b, deg(b) ≤ deg(y).
But then

x = (α + a)y + b

as desired. �

Example 44 Fix t ∈ P1 where Pk = Bϕ=pk

F . Let ∞t ∈ |X | be the corresponding
point and y ∈ |Y | a point mapping to it. Let BdR = BdR,y, and B+

dR its valuation ring.
Observe that B+

dR = lim← BF/(ξ
n
y ) contains BF . In the role of B of the Proposition

we take
Be = BF [1/t]ϕ=1 ⊂ K = Frac(Be).

Clearly Be =⋃∞
k=1 t

−k Bϕ=pk

F and since t−kb = t−k−1(tb) this is an increasing union.
The discrete valuation on BdR induces a discrete valuation on K . Its valuation ring
is

A = B+
dR ∩ K ,

and A ∩ Be = B+
dR ∩ Be = Qp. In fact
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Filk Be = t−k B+
dR ∩ Be = t−k Bϕ=pk

F

precisely. The fundamental exact sequence implies that for k ≥ 1

t−k Bϕ=pk

F /t−k+1Bϕ=pk−1

F � t−kCy � m−k
A /m−k+1

A

so the condition of the Proposition is satisfied. We conclude that (Be,−ord∞) is an
almost Euclidean ring. We shall see later that it is even a PID.

2.4.3 Construction of Complete Curves

Let P =⊕k≥0 Pk be a graded integral domain in which P0 = E is a field. Assume
dimE P1 ≥ 2. Let

X = Proj (P),

a scheme over E .

Theorem 45 ([5], Théorème 5.2.7) Assume

(1) The multiplicative monoid
∐

k≥0(Pk − {0})/E× is free on (P1 − {0})/E× as
generators.

(2) For every t ∈ P1 − {0} there exists a field E ⊂ C such that

P/Pt � D = { f ∈ C[T ]| f (0) ∈ E}

as a graded E-algebra.

Then:
(a) For every t ∈ P1 − {0}, the locus V+(t) = {∞t } is a single (necessarily

closed) point.
(b) The association t 
→ ∞t induces a bijection

(P1 − {0})/E× � |X |

with the closed points of X.
(c) Letting deg(x) = 1 for every x ∈ |X |, X is a complete curve.
(d) For any ∞ ∈ |X |, X − {∞} is affine open of the form Spec(B) for a PID B,

i.e., Pic(X − {∞}) = 0. Moreover, (B,−ord∞) is almost Euclidean.

Proof (1) Let t ∈ P1 − {0}. Using 2. for the structure of P/Pt we get that

V+(t) = Proj (P/Pt)

is a closed point∞t , as any non-zero homogenous prime ideal of D contains TC[T ]
(exercise: note that C � D, so a little argument is needed!). This proves (a).
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(2) We have
X − {∞t } = Spec(B), B = P[1/t]0.

Every non-zero element of B is of the form xt−k with x ∈ Pk . By 1. it can be written
uniquely up to an E×-multiple as

∏k
i=1(si/t)with si ∈ P1 − Et. Thus B is a unique

factorization domain with irreducible elements of the form s/t for s ∈ P1 − Et. To
show that it is a PID it is enough to verify that for any such s, (s/t) is a maximal
ideal. But

B/(s/t) = (P/sP)[1/t]0.

By assumption 2., now for s, P/sP maps isomorphically onto another ring D′ con-
structed from another field extensionC ′ of E . The element t is homogenous of degree
1 so must map to cT for some c ∈ C ′. But D′[1/cT ]0 � C ′ is a field, so (s/t) is a
maximal ideal of B. This proves the first part of (d). Furthermore, the closed points
of X − {∞t } are in bijection with the irreducible s as above (up to E×), and this
proves (b). If s, t are in P1 − {0} as above then div(s/t) = {∞s} − {∞t }, so is of
degree 0. As any element of the function field of X is a finite product of such s/t , X
is a complete curve and (c) is proved.

(3) It remains to check that6 B = P[1/t]0 is almost Euclidean with respect to
deg = −ord∞ (∞ = ∞t ).Here deg( f ) for f ∈ B is the usual degree of the divisor
div( f ) (recall B is a PID). It is checked immediately that ord∞ is a discrete valuation
on K = Frac(B) (the function field of X ) and that t is a uniformizer. For “almost
Euclidean” we use the criterion from Proposition 43. Since every element of B is

f = u
k∏

i=1

si
t

(si ∈ P1 − Et, u ∈ E×), ord∞( f ) = −k ≤ 0 and if it is 0, we must have k = 0 so
f = u ∈ E× is invertible. Let i ≥ 1. An element of m−i

K is of the form

u
s1 · · · si+ j

s ′
1 · · · s ′

j t
i

where u ∈ E×, the s ′
� ∈ P1 − Et and s� ∈ P1 − {0}. Fili B consists of the same

elements with j = 0. We claim that

Fili B/Fili−1B � m−i
K /m1−i

K

(an isomorphism of modules over P/t P). Let S be the multiplicative subset of P
generated by P1 − Et. Then K = (S−1P[1/t])0 and as Fili B = t−i Pi after multi-
plication by t i the claim becomes the claim that for i ≥ 1

6 In the application to the Fargues-Fontane curve, this will be the ring Be, not the much larger BF !
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Pi/t Pi−1 � [S−1(P/t P)]i .

But identifying P/t P = E ⊕⊕∞
i=1 CT i we get S−1(P/t P) =⊕i∈Z CT i (Laurent

polynomials), hence the desired isomorphism. �

2.5 Vector Bundles on Curves

2.5.1 Beauville-Laszlo Gluing

Let X be a complete curve with a field of definition E = H 0(X,OX ). Let K =
E(X) = OX,η be the function field of X . Let ∞ ∈ |X | be a closed point and U =
X \ {∞}. Consider the category C of triples (E, N , u) consisting of a vector bundle
E on U , a free finite rank module N over OX,∞ and an isomorphism

u : N ⊗OX,∞ K � Eη.

Similarly, let Ĉ be the category of triples (E, N̂ , û) where E is as above, N̂ is a free
finite rank module over ÔX,∞ and

û : N̂ ⊗ÔX,∞ K̂∞ � Êη := Eη ⊗K K̂∞.

Let V BX be the category of vector bundles of finite rank on X .

Proposition 46 The functors V BX → C and V BX → Ĉ given by

E 
→ (E |U , E∞, can), (E |U , Ê∞, can)

are both equivalences of categories.

Proof Call these functors α∞ and α̂∞. For any open V containing ∞ there is a
similar functor αV built from the cover {U, V } of X , which is a usual Zariski gluing,
hence an equivalence of categories. Thus α∞ = lim→ αV is also an equivalence. To
show that α̂∞ is an equivalence one uses an approximation argument, based on the
fact that

GLn(K )/GLn(OX,∞) � GLn(K̂∞)/GLn(ÔX,∞).

�

Remark. (i) IfU = Spec(B) is affine and B is a PID, then the isomorphism classes
of rank n vector bundles over X are given by

GLn(B) \ GLn(K̂∞)/GLn(ÔX,∞).
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(ii) There is an obvious generalization to the situation where X \U is a finite
number of points.

2.5.2 Cohomology and Twisting

Assume now that U = X \ {∞} is affine, U = Spec(B) where B is a PID (equiv-
alently Pic(U ) = 0) and let E |U correspond to the B-module M, N = E∞ and
N̂ = Ê∞. Let t be a uniformizer at ∞. We want to describe the cohomology of E
in terms of (M, N , u) where u : M ⊗B K � N ⊗OX,∞ K (we follow the notation of
[5] which for some reason switch in the middle between u and u−1) and similarly in
terms of (M, N̂ , û).

Proposition 47 The complex of abelian groups R�(X, E) is canonically isomorphic
to the complex

M ⊕ N → N ⊗OX,∞ K

(x, y) 
→ u(x) − y

and similarly to the same complex where N , u are replaced by N̂ , û and K by K̂∞.

In particular
H 0(X, E) = u(M) ∩ N = û(M) ∩ N̂

H 1(X, E) = N ⊗OX,∞ K/(u(M) + N ) = N̂ ⊗ÔX,∞ K̂∞/(̂u(M) + N̂ ).

Proof Once again, if X is covered by U = Spec(B) and V = Spec(A) with both
rings PIDs, the analogous statement is the familiar comparison between derived
functor cohomology and Čech cohomology. The Proposition follows from this case
in the same way as the previous proposition. �

We let E(k∞) denote the twist of the vector bundle E by the line bundle O(k∞)

associated with the divisor k[∞]. We leave the proof of the next proposition to the
reader.

Proposition 48 Suppose that E is represented by a triple (M, N , u) (or (M, N̂ , û)).
Then E(k∞) is represented by

(M, t−k N , u), (M, t−k N̂ , û).

2.5.3 The Relation with the (Almost) Euclidean Property

We assume that X is a complete curve such that deg(∞) = 1 and X \ {∞} = U =
Spec(B) with B a PID, i.e., Pic(U ) = 0. It is then easily verified that via deg,
Pic(X) � Z. We let E = H 0(X,OX ) be the field of definition and K = E(X) =
OX,η the functions field, A = OX,∞ and K̂ = K̂∞. We let t ∈ K be a uniformizer at
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∞. Note A ∩ B = E . We write deg = −ord∞ : B → N ∪ {−∞}. The line bundle
O(1) is endowed with a canonical section “1′′ with a simple zero at ∞ and nowhere
else. Tensoring with it gives

E = H 0(X,O) ⊂ H 0(X,O(1)) ⊂ · · ·

which corresponds to the filtration by deg on B

E = Bdeg≤0 ⊂ Bdeg≤1 ⊂ · · ·

(via Proposition 47). For k < 0 H 0(X,O(k)) = 0. For k ∈ Z cupping with “1′′ is a
surjection

H 1(X,O(k)) � H 1(X,O(k + 1))

K/(B + t−k A) � K/(B + t−k−1A).

It follows that if H 1(X,O(k)) = 0 then H 1 vanishes for all larger ks.
Let i : {∞} ↪→ X . Then there is an exact sequence of sheaves

0 → O(k − 1) → O(k) → i∗(m−k
A /m−k+1

A ) → 0.

It follows that if H 1(X,O) = 0 then for all k ≥ 1 the map

Bdeg≤k/Bdeg≤k−1 → m−k
A /m−k+1

A

is surjective (in fact an isomorphism). Recall that this was our criterion for (B, deg)
to be almost Euclidean. If P is as in theorem 45 and t ∈ P×

1 an element such that
∞ = ∞t then for k ≥ 0 we have

Pk � Bdeg≤k = H 0(X,O(k))

b 
→ b

tk

so X = Proj
(⊕∞

k=0�(X,O(k))
)
. The sequence of inclusions of the H 0(X,O(k))’s

becomes the sequence

P0
×t→ P1

×t→ P2 → · · ·

Proposition 49 The following equivalences hold:
(i) (B, deg) is almost Euclidean ⇔ H 1(X,O) = 0
(ii) (B, deg) is Euclidean ⇔ H 1(X,O(−1)) = 0.

Proof Denote by t ∈ K a uniformizer at ∞ (if t ∈ P1 as above then this t is the
previous t/s for some s ∈ P1 \ Et). Recall that
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H 1(X,O) = K/(B + A), H 1(X,O(−1)) = K/(B + t A).

We prove (ii). The proof of (i) is identical, replacing < by ≤ at one place. If K =
B + t A then given x, y ∈ B with y �= 0 we write

x

y
= b + ta

with b ∈ B and a ∈ A. Then x = yb + tay where yb ∈ B and hence tay ∈ B but
since ord∞(ta) ≥ 1, deg(tay) < deg(y). In the converse direction one reverses the
argument to show that if x = by + r with deg(r) < deg(y) one can write r = tay
with a ∈ A (i.e., ord∞(a) ≥ 0) so x/y ∈ B + t A. �

2.6 Conclusion of the Proof of Theorem 42

2.6.1 Putting Everything Together

All the ingredients are now in place.We have checked the two conditions in Theorem
45: the structure of the monoid

∐
P×
k /E× and the fundamental exact sequence,

leading to the description

P/Pt � { f ∈ C[T ]| f (0) ∈ E},

where t ∈ P×
1 and C = Ct . We have also checked that K = B + A, in example 44.

Here K = E(X) = Frac(P)ϕ=1,

B = Be = BF [1/t]ϕ=1 = P[1/t]ϕ=1, A = K ∩ B+
dR,∞.

Theorem 42 follows now at once from its abstract version, Theorem 45, and Propo-
sition 49.

2.6.2 The Field of Meromorphic Functions on |Y |/φZ

Wewant towrap up everything by relating the field E(X), derived from the schematic
point of view, with the “analytically constructed” field of meromorphic functions on
|X | = |Y |/φZ. Here we define the latter in an ad hoc fashion, as we have not defined
the adic (Huber) spaces underlying |Y | or |X |.

Recall that
BF = lim← BI

(over compact intervals I ⊂ (0, 1)). The BI are PIDs. We define
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M (Y ) = lim← Frac(BI ).

It can be shown ([5], Proposition 3.5.10) that M (Y ) = Frac(BF ). Define the field
of meromorphic functions on X to be

M (X) = M (Y )ϕ=1.

Proposition 50 We have E(X) � M (X).

Proof We have E(X) = {x/y| x, y ∈ P homogenous of the same degree} ⊂
Frac(P) ⊂ Frac(BF ) = M (Y ). Clearly E(X) lands in the ϕ-invariant part. Sup-
pose f ∈ M (Y )ϕ=1. Then by the description of the monoid Div(Y/φZ)+ �∐∞

k=0 P
×
k /E× (where Pk = Bϕ=pk

F ) we can write

div( f ) = div(g) − div(h),

where g ∈ P×
k and h ∈ P×

� . It follows that

f = u
g

h
,

where u ∈ M (Y ) has neither poles nor zeros. From

M (Y ) = lim← Frac(BI )

and the fact that the BI are PIDs we get that u ∈ lim← B×
I = B×

F . Now ϕu = p�−ku
so u ∈ P�−k and u−1 ∈ Pk−�. But we have seen that Pd = 0 if d < 0. This forces
k = � and u ∈ P×

0 = E×. Thus f ∈ E(X). �

3 Vector Bundles on XF

The classification of vector bundles on the Fargues-Fontaine curve brings into the
picture the theory of p-divisible groups, their moduli spaces, and the two period
morphisms, πGM (the Grothendieck-Messing, or de-Rham period morphism) and
πHT , the Hodge-Tate period morphism.

We shall start with generalities about vector bundles on curves, but at a certain
point we shall need to take a long detour into the theory of p-divisible groups. We
shall therefore try, following Morrow’s Bourbaki talk, to present the theory of vector
bundles on XF in a self-contained manner, “blackboxing” the necessary input from
p-divisible groups. We shall then return to that theory and fill in the details as much
as time will permit us.

Let us stress that for the most spectacular applications of the Fargues-Fontaine
curve, to p-adic Hodge theory and local Galois representations (“weakly admissible
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= admissible”), to moduli spaces of p-divisible groups (“Drinfeld tower = Lubin
Tate tower”), and to local Langlands (geometrizing it via analogues of Drinfeld’s
Shtukas), it is the theory of vector bundles on it, and not its bare structure, that we
have been studying so far, that plays the crucial role.

3.1 Harder-Narasimhan Categories

3.1.1 Vector Bundles on Curves

Let X be a compact Riemann surface, or more generally a smooth projective curve
over an algebraically closed field. To every vector bundle E on X one associates

• Its rank rk(E) ∈ N

• Its degree deg(E) = deg(
∧rk(E) E) ∈ Z (the degree of a line bundle L is the

degree of the divisor D such that L � O(D))
• Its slope μ(E) = deg(E)/rk(E).

If 0 → E ′ → E → E ′′ → 0 is an exact sequence of vector bundles then

μ(E) = rk(E ′)
rk(E)

μ(E ′) + rk(E ′′)
rk(E)

μ(E ′′)

is a convex combination of the slopes of E ′ and E ′′.
The vector bundle E is said to be semi-stable if for every E ′ ⊂ E a sub-vector bun-

dle (locally a direct summand) μ(E ′) ≤ μ(E). Equivalently, for every quotient bun-
dle E ′′ μ(E) ≤ μ(E ′′). The following key theorem is due to Harder and Narasimhan
(1974).

Theorem 51 For every vector bundle E there exists a unique filtration

0 = E0 ⊂ E1 ⊂ · · · ⊂ Em = E

by vector sub-bundles such that (i) Ei/Ei−1 is semi-stable (ii)μ(Ei/Ei−1) are strictly
decreasing.

The proof is not difficult. If E is semi-stable take m = 1 and E = E1. Otherwise
let E1 be a sub-bundle of highest slope, and if there are several such, take among
them one of highest rank. It is clearly semi-stable. Apply induction to E/E1. One
only has to show that μ(E2/E1) < μ(E1). But if we had μ(E2/E1) ≥ μ(E1) then
μ(E2) ≥ μ(E1), contradicting the choice of E1.

It turns out that there are many categories in which one can define rank and degree
for which the slope satisfies the same formalism. Yves André axiomatized it, and
here we take a slightly more restrictive axiomatization, that is nevertheless sufficient
for our purposes.
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3.1.2 A Generalization

Let C be a category and assume that for any object E ∈ C we can associate rk(E) ∈ N

and deg(E) ∈ Z such that:
(HN1) C is an exact category (a full additive subcategory of an abelian category

closed under extensions7), and rk and deg are additive on exact sequences.
(HN2) There exists an exact faithful functor F (“generic fiber”) F : C → Awhere

A is an abelian category, satisfying:
(i) The functor F induces a bijection between strict subobjects of X ∈ C and

subobjects of F(X) ∈ A. Here a strict subobject is a subobject X ′ of X sitting in an
exact sequence 0 → X ′ → X → X ′′ → 0. One should think of the inverse of this
bijection as an operation of taking “schematic closure”.

(ii) The rank function on C factors through a rank function rk : A → N satisfying
rk(X) = 0 iff X = 0.

(iii) If u : X ′ → X is a morphism in C such that F(u) : F(X ′) → F(X) is an
isomorphism then deg(X ′) ≤ deg(X) with an equality iff u is an isomorphism.

Example 52 Let C be a smooth complete curve over an algebraically closed field,
C the category of vector bundles on C , the exact sequences being exact sequences in
the category of sheaves. A strict subobject is a vector sub-bundle. The category A
is the category of vector spaces over K , the function field of C , and F(E) = Eη is
the generic fiber. Note that if E ′ ⊂ E is a strict subobject, then E ′ = E ′

η ∩ E (inside
Eη), giving (i). Point (ii) is clear and (iii) stems from the fact that if E ′ ⊂ E and they
have the same rank, then deg(E ′) ≤ deg(E) with equality iff E ′ = E . In fact, it is
enough to treat the case of a line bundle.

It turns out that the Harder-Narasimhan theorem holds in C, if one defines slope
and semi-stability in the same way. To be precise, X is semi-stable if for any strict
subobject X ′ ↪→ X we have μ(X ′) ≤ μ(X).

3.1.3 More Examples

(1) In the special case of vector bundles over P1 the category can be described, via
Beauville-Laszlo gluing, also as the category of triples (M, N , u) where M is a free
module over C[z], N is a free module over C[[1/z]], and u : M ⊗C[z] C((1/z)) �
N ⊗C[[1/z]] C((1/z)).Here the rank is the usual rank, and the degree can be computed
as follows. Letmi be a basis of M over C[z] and ni a basis of N over C[[1/z]]. Then
ni =∑ ai jm j and

7 The notion of an exact category can be defined intrinsically: one starts with an additive category
and defines a notion of exact structure. The embedding theorem says that such a category is always
a full subcategory of an abelian category closed under extensions. Some examples (such as the
category of vector bundles on a curve) are better conceived as subcategories of abelian categories
(of all modules on the curve), while other examples (e.g., the category of filtered objects in an
abelian category) are more naturally described as an additive category with an exact structure, i.e.,
a class of exact sequences satisfying some axioms.
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deg(M, N , u) = ord∞(det (ai j )).

The functor F of (HN2) takes (M, N , u) to the vector space M ⊗C[z] C((1/z))
over C((1/z)).

(2) Let C be the category of B-pairs introduced by Laurent Berger. Here we take
Be and B+

dR (having fixed ∞ ∈ XF ) and consider triples (M, N , u) where M is a
finite free module over the PID Be, N is a finite free module over B+

dR , and u is an
isomorphism

u : M ⊗Be BdR � N ⊗B+
dR

BdR .

The rank and degree are defined as in example (1). We have seen that this category
is identified with the category of vector bundles on XF .

(3) Filtered vector spaces. Let L/F be a field extension. Let C be the category of
pairs (V, Fil•VL) where V is a finite-dimensional vector space over F and Fil• is a
separated exhaustive decreasing filtration on VL . Rank is the dimension. The degree
is given by

deg(V, Fil•VL) =
∑

i

i dim(gr i VL).

Here a strict subobject is a subspace of V whose filtration is induced by the one on VL

(not only compatible with it). The map F simply forgets the filtration and remembers
only the vector space V . Verifying the axioms is elementary linear algebra.

(4) Isocrystals (ϕ-modules). Let k be a perfect field in characteristic p, K0 =
Frac(W (k)). Denote by ϕ the Frobenius of K0. An isocrystal over k is a finite-
dimensional K0-vector space D with a ϕ-semi-linear bijective map ϕD : D → D.

Its rank rk(D, ϕD) = dimK0 D. Its degree is

deg(D, ϕD) = −νK0(det(�))

where � is the matrix of ϕD on the basis of D. Note that since a change in basis
changes� to ϕ(P)�P−1, the determinant is not independent of the basis, but its val-
uation is. We remark that −deg is also a valid degree function, and the choice of the
minus sign is a matter of convention. This is because the only condition that distin-
guishes deg from −deg is (HN2)(iii). But if (D′, ϕ′

D) → (D, ϕD) is “generically an
isomorphism”, i.e., is an isomorphism as K0-vector spaces, we must have ϕD = ϕ′

D
and the degrees are equal. With this convention, effective isocrystals (having a ϕD-
invariant W (k)-lattice) have a non-positive degree.

In passing we remark that the fact that both deg and −deg are valid degree func-
tions, togetherwith theHarder-Narasimhan theorem, that has the following corollary.
Every isocrystal over a perfect field in characteristic p has a unique direct sumdecom-
position into isoclinic isocrystals, i.e., isocrystals all of whose subisocrystals have
the same slope.

Example 53 Let D be spanned by e1, . . . , eh and ϕD(ei )=ei+1 (1≤i<h) ϕD(eh) =
p−de1. Then (D, ϕD) has rank h and degree d. If d ≤ 0 then the W (k)-span of the
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ei is an invariant lattice M . The following non-isomorphic M (due to Oort) leads to
an isomorphic D. Let ei (i ∈ Z) be subject to the identification ei+h = p−1ei . Let
ϕD(ei ) = ei+d . Note that ϕh

Dei = p−dei . If d ≤ 0 we let M be the module spanned
by e1, . . . , eh . Note also that if 0 ≤ −d ≤ h then pM ⊂ ϕD(M) ⊂ M. Such an M
(but not the previous one) will turn out to be the Dieudonné module associated with
a p-divisible group of dimension −d and height h.

If λ = d/h ∈ Q in reduced terms we denote the isocrystal (D, ϕD) by (Dλ, ϕλ).

The following theorem is classical. For the proof see [3, 13]. We denote by I sock
the category of isocrystals over k.

Theorem 54 (Dieudonné-Manin) Let k be algebraically closed of characteristic p.
The category of isocrystals over k is semi-simple and the (Dλ, ϕλ) are its simple
objects. The endomorphism algebra of (Dλ, ϕλ) is the central division algebra over
Qp with invariant λ.

If k is any perfect field of char. p (not necessarily algebraically closed), Dieudonné
showed that I sock is anti-equivalent, via a functor called the Dieudonné module, to
the category of p-divisible groups over k up to isogeny.

(5) Filtered isocrystals (filtered ϕ-modules). This example combines the previous
two. Let K/K0 be a totally ramified extension and consider triples (D, ϕD, Fil•DK )

where (D, ϕD) is as in (4), (D, Fil•) is as in (3). There need not be any relation
between ϕD and the filtration. Setting

deg(D, ϕD, Fil
•) =

∑

i

i dim(gr i DK ) − νK0(det�)

gives the notion of a filtered isocrystal. Note that (D, ϕD, Fil•) is semi-stable of
slope 0 iff ∑

i

i dim(gr i DK ) = νK0(det�)

and for any strict subobject (D′, ϕD′ , Fil•) (meaning that the filtration is induced
from the one of D and Frobenius leaves D′ stable) there is an inequality

∑

i

i dim(gr i D′
K ) ≤ νK0(det�

′).

3.1.4 Semi-stable Objects of Slope 0

Let C be a Harder-Narasimhan category. We denote by C ss
λ the full subcategory

whose objects are semi-stable of slope λ. It is clearly an additive subcategory closed
under extensions.

Proposition 55 The category C ss
λ is an abelian category.

We do not prove the proposition. Our interest lies in λ = 0. In many examples the
proposition will then be self-evident.
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3.2 Classification of Vector Bundles—Statement of the
Results

3.2.1 Recall of Fontaine’s Rings

Fix a point ∞ on X = XF corresponding to t ∈ Bϕ=p
F (and recall that ∞ determines

t up to Q×
p ). Recall that B

+
dR = ÔX,∞ and

Be = �(X \ {∞},O) = BF [1/t]ϕ=1 =
∞⋃

i=0

t−i Pi

where Pi = Bϕ=pi

F (Be is a PID). Recall that we also had Pi = B+,ϕ=pi

F where B+
F

is the closure of Bb,+ = W (OF )[1/p] in BF , or alternatively the set of f ∈ BF

whose Newton polygon satisfies N f (x) ≥ 0 for all x ∈ R. This was an immediate
consequence of the relation

N f (x − i) = pN f (x)

which holds for any f satisfying ϕ f = pi f, because this relation and the fact that
N f (x) → ∞ as x → −∞ force N f (x) ≥ 0. Thus in the definition of Be we can
replace BF by B+

F .

3.2.2 Relation with Bcri s

One can show that Pi = B+,ϕ=pi

cris as well, hence Be = Bϕ=1
cris (Bcris = B+

cris[1/t]).
Here, while B+

F is the completion of Bb,+ = W (OF )[1/p] in the family of norms
|.|ρ (0 < ρ < 1), B+

cris = Acris[1/p] where Acris is the divided power completion
in the ideal (ξ) corresponding to any point of |YF | (any untilt) above ∞ (in the
Frobenius orbit of untilts corresponding to ∞). Thus

B+
cris = ̂W (OF )[ξ n/n!][1/p].

The relation between the two rings B+
F and B+

cris is

B+
F ⊂ B+

cris, B+
F =

∞⋂

n=0

ϕn(B+
cris).

(We do not prove this—it boils down to computations with divided powers and the
norms |.|ρ .) In other words, B+

F is the largest subring of B+
cris onwhich ϕ is bijective.8

It is this characterization which is responsible for

8 In some older papers B+
F was called Brig .
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B+,ϕ=pi

F = B+,ϕ=pi

cris .

Indeed, the LHS is clearly contained in the RHS. But if an element x ∈ B+
cris satisfies

ϕx = pi x then
x = p−iϕ(x) = p−2iϕ2(x) = · · ·

so x ∈⋂∞
n=0 ϕ

n(B+
cris) = B+

F . From here one gets the desired identity

BF [1/t]ϕ=1 =
⋃

t−i Bϕ=pi

F =
⋃

t−i B+,ϕ=pi

F =
⋃

t−i B+,ϕ=pi

cris = Bϕ=1
cris .

Although classically B-pairswere defined byBerger using Bcris we shall use BF [1/t]
instead. Thanks to the above computations, it gives the same modules.

3.2.3 Construction of the Vector Bundles E(D, ϕ)

Let k = Fp, L = W (k)[1/p] = Q̂nr
p . Since we assumed F was algebraically closed,

W (OF )[1/p] and hence BF is an L-algebra. If (D, ϕD) ∈ I sock , define a graded

P = ⊕∞
i=0B

ϕ=pi

F -module

M(D, ϕD) = ⊕∞
i=0(D ⊗L BF )

ϕ=pi ,

where the ϕ on D ⊗L BF is ϕD ⊗ ϕ. If D is the trivial isocrystal we get P itself.

Definition 56 E(D, ϕD) is the associated OX -module ˜M(D, ϕD).

Proposition 57 (i) The module E(D, ϕD) is a vector bundle.
(ii) Its rank and degree as a vector bundle are the rank and degree of (D, ϕD) as

an isocrystal.
(iii) It is associated to the (Be, B

+
dR)-pair (M, N , u)

M = (D ⊗L BF [1/t])ϕ=1, N = D ⊗L B+
dR, u = ucan,

where
ucan : M ⊗Be BdR � N ⊗B+

dR
BdR

is the canonical map (which turns out to be an isomorphism).
(iv) The functor

E(−) : I sock � V BXF

is compatible with tensor products and duals.

When (D, ϕD) = (Dλ, ϕλ) λ = d/h in reduced terms, we shall denote this vector
bundle O(λ) or O(d, h). It has rank h, degree d, and slope λ. We shall show below
that it is semi-stable.



The Fargues-Fontaine Curve and p-Adic Hodge Theory 293

The proof of the proposition, due to Berger (and in another form to Kedlaya), is
not very difficult. The crucial point for proving (i) and (iii) is to show that themodules
M, N have the same rank h = rk(D, ϕD) over Be and B+

dR , respectively. Since k is
algebraically closed, it is enough to do it with D = Dd,h , the explicit model given in
example 53. To complete the proof of (ii) we have to show that the resulting vector
bundle has then degree d. Finally, (iv) is more or less automatic.

We shall prove the Proposition below, after we have given an alternative definition
of theO(d, h) that does not single out the point ∞ and is therefore more symmetric.

In any case, the Dieudonné-Manin theorem has the following corollary.

Corollary 58 The vector bundle E(D, ϕD) is a direct sum of O(λ)’s.

3.2.4 The Classification Theorem

The next theorem is deep and its proof will be long.

Theorem 59 (Classification Theorem) Every vector bundle on XF is E(D, ϕD) for
a unique isocrystal (D, ϕD). In other words, every vector bundle is of the form

E � ⊕O(λi )
ni

where the slopes λi and their multiplicities ni are uniquely determined.

Corollary 60 (i) The functor E(−) is essentially surjective. (ii) A vector bundle is
semi-stable iff it is isoclinic, i.e., of the formO(λ)n.(iii) The abelian category of semi-
stable slope 0 vector bundles on XF is equivalent to the category of finite-dimensional
vector spaces over Qp under V � V ⊗ OX , E � H 0(X, E).

We stress that E(−) is far from being an equivalence of categories!

3.3 The Curves XF,Eh for h ≥ 1

3.3.1 The Unramified Coverings XF,Eh

To give a more symmetric construction of the vector bundles O(d, h), it is time
to construct a family of unramified cyclic coverings of the Fargues-Fontaine curve.
They will be denoted as XF,Eh → XF , their Galois group will be cyclic of order h,
and their field of definition will be Eh , the unramified extension of Qp of degree h.

From an analytic (adic) point of view, not worked out in these notes, the XF,Eh

are very easy to construct. Just as |XF | = |YF |/φZ, we let

|XF,Eh | = |YF |/φhZ.
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This already gives a working definition of the closed points of the would-be XF,Eh

and hints that Gal(XF,Eh → XF ) should be cyclic with a canonical generator φ.
We therefore put

PEh =
∞⊕

d=0

Bϕh=pd

F =
∞⊕

d=0

B+,ϕh=pd

F ,

XF,Eh = Proj (PEh ).

Lemma 61 We have XF,Eh � XF ×E Eh .

Proof For any graded algebra ⊕i≥0Ri and any h ≥ 1 we have Proj (⊕i≥0Ri ) �
Proj (⊕i≥0Rhi ). We therefore have

XF,Eh = Proj (
∞⊕

d=0

Bϕh=pdh

F ).

The Eh-vector space Bϕh=pdh

F has the semi-linear automorphism ψ = p−dϕ, whose

invariants are Bϕ=pd

F . Although it is infinite dimensional, the action of ψ is locally
finite (since ψh is the identity), so Hilbert’s theorem 90 implies that

Bϕh=pdh

F = Bϕ=pd

F ⊗E Eh .

The lemma follows. �

3.3.2 Properties of XF,Eh

All the good properties of XF hold also for XF,Eh , either with the same proof, or
because it is a base change of XF .Let y ∈ |YF | and let∞h ∈ |XF,Eh | be the φhZ-orbit
of y, mapping to ∞ ∈ |XF |, which is its φZ-orbit. The points of XF,Eh above ∞ are
φi (∞h), 0 ≤ i ≤ h − 1.

Just as we constructed a t ∈ Bϕ=p
F whose divisor (in |YF |) was∑i∈Z φi [y], we

can construct a th ∈ Bϕh=p
F whose divisor is

∑
i∈Z φih[y]. It will then be unique up

to an Eh-multiple and will satisfy

h−1∏

i=0

ϕi (th) = t

(up to aQp-multiple). Recall how t was constructed. First, we found an ε ∈ mF such
that

uε = [1 + ε] − 1

[1 + ε1/p] − 1
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was a primitive element of degree 1 inW (OF ) vanishing to the first order at y. Then
we let

t = tε = log([1 + ε]).

In our casewe let q = ph and consider the Lubin-Tate formal group law FQ(X,Y )

over Eh attached (e.g., the choice of a model of this formal group will change things
by an isomorphism) to the endomorphism

{p}Q(X) = Q(x) = pX + Xq .

We let Qn = Q ◦ · · · ◦ Q (n times) and define the Q-twisted Teichmüller represen-
tative to be

[ε]Q = lim
n→∞ Qn([ε1/qn ]).

Here we should think of Qn as a lifting of the n-th power of Frobenius of order q to
characteristic 0. Note that if Q = Xq we would get [.]Q = [.], while if q = p and
Q = (1 + X)p − 1, we would get [ε]Q = [1 + ε] − 1. In general, the limit exists
and satisfies

Q([ε]Q) = [εq ]Q .

If we put

uε,Q = [ε]Q
[ε1/q ]Q

then as before we get a primitive element of degree 1 of W (OF ), every primitive
ideal of degree 1 is of the form (uε,Q), and ε is unique up to ε 
→ {a}Q(ε), where
a ∈ O×

Eh
. We may therefore select ε so that uε,Q vanishes at a given y. Furthermore,

{p}Q(ε) = Q(ε) = εq .

If logQ(X) = X + · · · ∈ XEh[[X ]] is the logarithm of the Lubin-Tate group and
we put

th = tε,Q = logQ([ε]Q)

then we get
ϕh(th) = logQ([εq ]Q) = logQ({p}Q([ε]Q)) = pth

as desired. The divisor of th on |YF | is∑i∈Z φih[y].
Remark 62 More generally, Fargues and Fontaine make similar constructions for
any [E ′ : E] < ∞, not necessarily unramified. Lubin Tate groups over E ′ play a
similar role.
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3.4 Construction of Vector Bundles on XF

3.4.1 Operations on Vector Bundles

Quite generally, if π : Y → X is a finite étale covering of complete curves (in the
sense discussed in the introduction) andE,F are vector bundles on X,Y , respectively,
deg(π) = h, then we have the vector bundles π∗E and π∗F and they satisfy

rk(π∗E) = rk(E), deg(π∗E) = h · deg(E)

rk(π∗F) = h · rk(F), deg(π∗F) = deg(F).

The first two equalities are clear: for the rank there is nothing to prove, and for the
degree it is enough to consider the case of the line bundleO(D), where D is a divisor
of degree d on X. Then π∗(O(D)) = O(π−1(D)) and π−1(D) is of degree hd. The
second pair of equations follows from the first if we note, say in the Galois case, that

π∗π∗F = ⊕σ∈Gal(Y/X)Fσ

and all theFσ have the same degree. The general case is reduced as usual to theGalois
case, but we shall actually be only concerned with the cyclic cover XF,Eh → XF .

3.4.2 The Vector Bundles O(d, h)

In this subsection we do not assume that d and h are relatively prime. As before, we
have on XF,Eh the line bundle O(d), whose global sections may be identified with

Bϕh=pd

F .We define the vector bundleO(d, h) to be π∗O(d), where π : XF,Eh → XF

is the degree h cyclic étale covering the constructed above. The advantage of this
construction, besides being symmetrical and not requiring the distinguished point
∞, is that it comes out automatically to be a vector bundle of degree d and rank h.

Claim 63 This definition agrees with the sheaf E(D, ϕD) defined before, where
D = Dd,h .

Proof Starting with the identification

XF,Eh = Proj

( ∞⊕

k=0

Bϕh=pk

F

)
= Proj

( ∞⊕

k=0

Bϕh=pkh

F

)
,

the line bundle O(d) on XF,Eh corresponds to the graded module

∞⊕

k=0

Bϕh=pk+d

F
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for the graded algebra on the left, or, for the graded algebra on the right, to the graded
module

M =
∞⊕

k=0

Bϕh=pkh+d

F .

Since π : XF,Eh → XF corresponds to the graded homomorphism

P =
∞⊕

k=0

Bϕ=pk

F ↪→
∞⊕

k=0

Bϕh=pkh

F ,

the vector bundle O(d, h) = π∗O(d) corresponds to the same module M , regarded
as a gradedmodule over P.On the other hand, E(D, ϕD)was associated to the graded
P-module

M ′ =
∞⊕

k=0

(D ⊗ BF )
ϕ=pk .

We therefore have to identify M ′
k with Mk, i.e.,

(Dd,h ⊗E BF )
ϕ=pk � Bϕh=pkh+d

F .

Recall that Dd,h had a basis e1, . . . , eh with ϕ(ei ) = ei+1 for i < h and ϕ(eh) =
p−de1.We see that x =∑h

i=1 biei satisfiesϕ(x) = pkx if and only ifϕ(bi ) = pkbi+1

for 1 ≤ i < h and ϕ(bh) = pk+db1. The coefficient b1 ∈ BF determines the remain-
ing bi uniquely, and the only condition imposed on it is ϕh(b1) = pkh+db1. The
homomorphism associating to x the coefficient b1 is therefore the desired isomor-
phism. �

This proves (i) and (ii) of Proposition 57. Part (iii) follows from the dictionary
between vector bundles and B-pairs. Part (iv) will be checked below for theO(d, h).
Note the consequence that

BF [1/t]ϕh=pd

is free of rank h over Be = BF [1/t]ϕ=1. Indeed, it is free of rank 1, with tdh as a
generator, over BF [1/t]ϕh=1 = Be ⊗E Eh .

3.4.3 Basic Properties of the O(d, h)

Proposition 64 (i) If δ = (d, h) then O(d, h) = O(d/h)⊕δ.

(ii) Write Xn for XF,En and X for XF . Then πn∗(OXn (d, h)) = OX (d, nh) and
π∗
n (OX (d, h)) = OXn (nd, h).
(iii) The vector bundle OX (d, h) is semi-stable of slope d/h.
(iv) We have OX (d1, h1) ⊗ OX (d2, h2) � OX (d1h2 + d2h1, h1h2) and

OX (d, h)∨ � OX (−d, h).
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(v) For λ > μ we have Hom(OX (λ),OX (μ)) = 0. For λ ≤ μ we have

Ext1(OX (λ),OX (μ)) = 0.

Proof (i) and (ii) follow from the definitions and standard facts (the projection for-
mula). For example, if d = d1h then

OX (d, h) = πh∗(OXh (d)) = πh∗(π∗
hOX (d1)) = OX (d1) ⊗ πh∗π∗

hOXh

= OX (d1) ⊗ Oh
Xh

= OX (d1)
h .

We next show how (iii) is deduced from (i) and (ii). Since π∗
h multiplies the slope

of any vector bundle by h, it is enough to show that π∗
hOX (d, h) is semi-stable on

Xh . But
π∗
hOX (d, h) = OXh (dh, h) = OXh (d)

⊕h .

For any line bundle O(d), the vector bundle OX (d)⊕h is semi-stable. In fact, on
any curve an extension of semi-stable vector bundles of the same slope is again
semi-stable.

For (iv) it is enough to assume, by (i), that (h1, h2) = 1. Consider then the cov-
erings

Xh1h2
↙ ↘

Xh1 Xh2
↘ ↙

X

.

We have

OX (d1, h1) ⊗ OX (d2, h2) = πh1∗(OXh1
(d1)) ⊗ πh2∗(OXh2

(d2))

= πh1h2∗(π
∗
h1h2,h1OXh1

(d1) ⊗ π∗
h1h2,h2OXh2

(d2))

= πh1h2∗(OXh1h2
(h2d1 + h1d2)) = OX (d1h2 + d2h1, h1h2).

Here the passage from first to second line comes from the fact that for A-algebras
B1 and B2, and modules Mi over Bi there is a canonical isomorphism

M1 ⊗A M2 � (B2 ⊗A M1) ⊗B2⊗A B1 (B1 ⊗A M2).

For (v) the claim about Hom follows from the fact that OX (μ) is semi-stable of
slope μ, and from the fact that if E ′ → E is an injective homomorphism of vector
bundles of the same rank then deg(E ′) ≤ deg(E). This last fact is property HN2(iii)
of the abstract Harder-Narasimhan formalism, whose verification boils down to the
case of line-bundles, where it becomes obvious.
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For Ext note that

Ext1(OX (λ),OX (μ)) � H 1(X,OX (−λ) ⊗ OX (μ))

� H 1(X,OX (μ − λ))m

for some natural number m (see (i)). If μ − λ = d/h ≥ 0 then

H 1(X,OX (d/h)) = H 1(X, πh∗(OXh (d))) = H 1(Xh,OXh (d)) = 0

by what we already know about the cohomology of line bundles. �

Corollary 65 If (D, ϕD) is a semi-stable isocrystal over k = F̄p, then E(D, ϕD) is
a semi-stable vector bundle on XF .

4 An Application to Galois Representations: Weakly
Admissible Equals Admissible

We still have to complete the proof of the classification theorem (Theorem 59). But
before we dive into it, we want to give an application to a deep theorem of p-adic
Hodge theory, which for the first time brings in Galois representations.

4.1 Fontaine’s Formalism of B-Admissible Galois
Representations

4.1.1 Galois Representations and the General Strategy

Let E = Qp (more generally, we could take E to be any finite extension of
Qp). Let GE = Gal(Ē/E). By a “Galois representation” we shall understand a
finite-dimensional Qp-vector space V with a continuous GE action. Let RepE =
RepE (Qp) be the Tannakian category of all such representations.

So far, our theory of the Fargues-Fontaine curve was functorially built from a
given algebraically closed complete valued field F . If we fix an algebraic closure Ē ,
its completion ̂̄E = Cp inherits a GE -action, hence so do F = C

	
p and all the rings

built from it:W (OF ), Bb,+ ⊂ Bb, the completions BI and in particular BF = B(0,1),

the rings Be, B
+
dR,∞ ⊂ BdR,∞ and Bcris,∞. Here we implicitly use the fact that the

GE -action commutes with ϕ, and that the distinguished point ∞ (corresponding to
the choice of (Cp, ιcan) as an untilt) is fixed by GE . We shall drop the subscript ∞
from BdR and Bcris .

Lemma 66 BGE
dR = BGE

cris = E.
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Proof Since Bcris ⊂ BdR it is enough to prove that BGE
dR = E, or B+GE

dR = E . This
follows from the fact that

Fili B+
dR/Fil

i+1B+
dR � Cp(i)

and from Tate’s basic theorem that

H 0(GE ,Cp(i)) = 0

if i > 0 and H 0(GE ,Cp) = E . �

Fontaine’s strategy for studying the category RepE was to associate to a Galois
representation V and some “rings of periods” B, carrying a GE action, the group

DB(V ) = (B ⊗E V )GE ,

where GE acts on the tensor product diagonally. Assuming also that BGE = E (this
fixed subring should be a field in general, but it need not be E , a simplifying assump-
tion that we make here), DB(V ) becomes an E-vector space, and under a fairly
general assumption, which holds for BdR and Bcris , for example, we have

dim DB(V ) ≤ dim V .

The representation V is called “B-admissible” (or de-Rham, resp. crystalline,
if B = BdR resp. Bcris) if equality holds here. The full subcategory RepE,B of B-
admissible Galois representations is mapped via DB faithfully to the category of E-
vector spaces and the functor DB is exact. In general, it is impossible to reconstruct
V from DB(V ), even if V is B-admissible, as the functor DB is not fully faithful.

The “game” is to endow B with “extra structure” that commutes with GE , so is
inherited by DB(V ), which can now be considered as an object of a more refined
category than just vector spaces. This category will still be considerably simpler
than the category of B-admissible Galois representations. The hope is that if enough
“extra structure” is imposed, (a) the functor DB will become fully faithful, (b) its
essential image will be describable in terms of the extra structure, and (c) a formula
will be given to retrieve V from D, if D is in the image of DB .

Two such examples of extra structure come to mind: BdR is equipped with a
filtration Fil• and Bcris with a Frobenius ϕ. It turns out that each of these extra
structures alone is not sufficient to answer our hopes and retrieve V , but both together
do. If we use both we get an object in the category of filtered ϕ-modules (filtered
isocrystals), and it can be shown rather easily that this object must be semi-stable of
slope 0, or equivalently, weakly admissible. Fontaine conjectured that the category
of weakly admissible filtered ϕ-modules, as a full subcategory of the category of all
filteredϕ-modules, is an abelian tensor category, and in fact isomorphic, under Dcris ,
to the category of crystalline representations. It should be mentioned that a Bcris-
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admissible representation is also BdR-admissible, so although the filtration comes
from BdR, the functor to be studied is Dcris .

Rather than develop the general formalism of B-admissibility, we focus from
now on these two examples, and let B = BdR or Bcris . It should be mentioned that
Galois representations coming from (geometric) p-adic (étale) cohomology of proper
smooth varieties over Qp with good reduction are crystalline. There is a richer ring
of periods, Bst , that carries another piece of structure—a monodromy operator N—
which enables to detect and reconstruct “semi-stable” representations, typically those
coming from p-adic cohomology of proper smooth varieties with semi-stable reduc-
tion. We do not discuss the semi-stable case in these lectures.

Fontaine’s conjecture has the non-trivial consequence that the category of weakly
admissible filtered ϕ-modules is closed under tensor products, an analogue of the
Faltings-Totaro theorem. Fontaine’s conjecture was proved in 2000 by Colmez and
Fontaine. A second proof was given by Berger. The Fargues-Fontaine curve, and the
classification of vector bundles over it, enables us to give a short and elegant proof,
which we describe in this section.

4.1.2 de-Rham and Crystalline Representations

Let V be a p-adic representation, B = BdR or Bcris , and D = DB(V ) = (B ⊗E

V )GE . Recall that Bcris ⊂ BdR and that BdR is a complete discrete valuation field.

Proposition 67 (i) dim D ≤ dim V .
(ii) If equality holds (i.e., V is B-admissible), then the natural map αB : B ⊗E

D → B ⊗E V is an isomorphism

B ⊗E D � B ⊗E V .

(iii) If equality holds for D = Dcris (i.e., V is crystalline) then equality also holds
for D = DdR (i.e., V is de Rham) and D = Dcris(V ) = DdR(V ).

(iv) If V is crystalline, then endowing D with a structure of a filtered ϕ-module
(possible in view of (iii)),

V = Vcris(D) = (Bcris ⊗E D)ϕ=1 ∩ Fil0(BdR ⊗E D).

Here ϕ acts diagonally, the filtration is the tensor product filtration, and the resulting
Galois action on V comes from the GE action on Bcris or BdR.

Proof We start with B = BdR , which is a field, and prove first that αB is injective.
Assume that 0 �=∑r

i=1 bi ⊗ di is an element in ker(αB) and r is minimal. Without
loss of generality, b1 = 1. Let σ ∈ GE . Applying σ and subtracting we get

r∑

i=2

(σbi − bi ) ⊗ di ∈ ker(αB),
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so from the minimality of r all bi ∈ BGE
dR = E , which implies r = 1, and d1 = 0,

a contradiction. The injectivity of αB immediately proves (i), and (ii) is a formal
consequence, counting dimensions over BdR .

Now take B = Bcris ⊂ BdR . Since Dcris(V ) ⊂ DdR(V ) (i) is clear. It is also clear
that if V is crystalline, it is de Rham, and Dcris(V ) = DdR(V ), hence (iii). To prove
(ii) for Bcris we need the following property of Bcris (incorporated in Fontaine’s
axioms for a “regular” ring of periods B; Bcris is hence regular):

• If 0 �= b ∈ Bcris and the line Eb is GE -stable, then b ∈ B×
cris .

Assume this property for the moment, let V be crystalline, let v1, . . . , vr be a basis
of V and d1, . . . , dr a basis of D = Dcris(V ) = DdR(V ). Write

di =
∑

bi j ⊗ v j , bi j ∈ Bcris .

The injectivity of αB implies that b = det(bi j ) �= 0. Since

d1 ∧ · · · ∧ dr = b(v1 ∧ · · · ∧ vr )

the left-hand side is GE -invariant. As Ev1 ∧ · · · ∧ vr is GE -stable, we see that Eb
is GE -stable, hence b = det(αB) is invertible and αB is an isomorphism.

To prove the property of Bcris used above let

Ĕ = W (F̄p)[1/p] = Q̂nr
p .

We claim that if b ∈ Bcris is such that Ĕb is GE -stable, then Ĕb = Ĕ t i for some i .
This will imply of course our property. Going over to BdR and twisting by a suitable
power of t we may assume that b ∈ B+

dR, and its image θ(b) modulo Fil1 = mdR is
non-zero. We get an element θ(b) ∈ Cp such that Ĕθ(b) is GE -stable. A theorem of
Sen [19] (answering a question of Serre) implies then that θ(b) is algebraic over Ĕ .
It follows that the action of GĔ = IE ⊂ GE (the inertia subgroup) on θ(b) factors
through a finite quotient. But the Ĕ-line Ĕb ⊂ Bcris is also IE -stable and θ is injective
on it. Thus the action of IE on b factors through a finite quotient as well and b is
algebraic over Ĕ . It follows that Ĕ[b] is a field and b−1 belongs to it (in fact, it can
be shown that b ∈ Ĕ).

(iv) Using (ii), assuming V is crystalline and letting D = Dcris(V ),

(Bcris ⊗E D)ϕ=1 ∩ Fil0(BdR ⊗E D) = (Bcris ⊗E V )ϕ=1 ∩ Fil0(BdR ⊗E V )

= (Bϕ=1
cris ⊗E V ) ∩ (B+

dR ⊗E V ) = (Bϕ=1
cris ∩ B+

dR) ⊗E V = V

since, by the fundamental exact sequence of p-adic Hodge theory, Bϕ=1
cris ∩ B+

dR = E .

�
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Corollary 68 If V is one-dimensional and crystalline, then Ĕ ⊗E V � Ĕ(i) for
some i (a Tate twist). Consequently, the inertia group Ip ⊂ GE acts on V via a
power of the cyclotomic character.

Proof If v is a basis of V and b ∈ Bcris is such that d = b ⊗ v is GE -invariant, then
GE preserves the line Eb, and the proof of the Proposition shows that IE acts on b
via a power of the cyclotomic character (as it acts on t i ). �
Remark 69 If E is a finite extension of Qp and V is a one-dimensional crystalline
Qp-representation ofGE then the same stays true.However, ifV is a one-dimensional
crystalline E-representation then there are more possibilities: for example, IE can
act on V via a Lubin-Tate character associated with E , χLT : GE → O×

E . In general,
p-adic Hodge theory over bases Qp � E has “cyclotomic analogues” or “Lubin-
Tate analogues” of the results over Qp, depending on the coefficients. Similarly,
there are (at least) two natural candidates for � in the theory of (ϕ, �)-modules:
�cycl = Gal(E(μp∞)/E), or �LT,π . The latter is much larger and depends on the
prime π.

4.1.3 Admissible Is Weakly Admissible

We consider the functor

Dcris : RepE,cris → ϕModFilE

from the category of crystalline Galois representations into the category of filtered
ϕ-modules over E . Notice that this is essentially the category of filtered isocrystals
discussed before, except that we consider filtered isocrystals over Fp (i.e., E-vector
spaces) and not over F̄p (i.e., Ĕ-vector spaces). As we have seen in the Proposition,
the functor is fully faithful. In fact, a quasi-inverse was found in part (iv) of the
Proposition: it takes D ∈ ϕModFilE to

Vcris(D) = (Bcris ⊗E D)ϕ=1 ∩ Fil0(BdR ⊗E D).

It remains to identify the essential image of Dcris .

Definition 70 A D ∈ ϕModFilE is called admissible if it is in the essential image
of Dcris . It is called weakly admissible if it is semi-stable of slope 0.

Recall that semi-stable of slope 0 means that

tH (D) :=
∑

i dim gr i D = νE (det(�)) =: tN (D),

where � is a matrix representing ϕ in some basis, and for every strict subobject
D′ ⊂ D (strict = with the induced filtration) there is an inequality ≤ in the above
equation. (The symbols tH and tN refer to the end points of the Hodge and Newton
polygons.)
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Proposition 71 If D is admissible, then it is weakly admissible.

Proof Assume D = Dcris(V ) and let r = dim V . Then
∧r D = Dcris(

∧r V ) and
so
∧r V is crystalline. We have tH (

∧r D) = tH (D) and similarly for tN . This is
tautological for tN and an easy exercise in filtered vector spaces for tH , which we
leave to the reader. Thus to prove that tH (D) = tN (D)wemay assume that D is one-
dimensional. But V is then a one-dimensional representation on which Ip acts via
χ i , where χ is the cyclotomic character. In this case both tH and tN can be computed
directly and come out to be−i . Exercise: compute them forQp(i) and show that they
are unchanged by an unramified twist. In fact, the filtration is not affected by such
a twist, so tH is clearly unchanged. As for tN , since we assumed that E = Qp for
simplicity, ϕ is linear and is given by� ∈ Q×

p . An unramified twist of V is reflected
in D in a change of � by u ∈ Z×

p . Over OĔ , u = σ(v)/v where σ is the arithmetic

Frobenius, so all such D′s become isomorphic over Ĕ .
Next, we have to show that for D′ a strict subobject of D = Dcris(V ), we have

tH (D′) ≤ tN (D
′)

(“The Hodge polygon lies below the Newton polygon”). For this we follow [1],
Theorem 9.3.4.9 Let s = dim D′ ≤ r = dim D. Replacing D′ and D by

s∧
D′ ⊂

s∧
D

we may assume, without loss of generality, that s = 1, i.e., D′ is a ϕ-stable line in
D with the induced filtration.

Assume therefore that D′ = Ee′ ⊂ D = Dcris(V ). Applying a Tate twist to V
results in a Tate twist of all the objects, so we may assume that tH (D′) = 0 and show
that tN (D′) ≥ 0. Let ϕ(e′) = λe′ where tN (D′) = n = ordp(λ). Let v1, . . . , vr be a
basis of V and write

e′ =
r∑

i=1

bi ⊗ vi ∈ Bcris ⊗E V .

By the assumption that tH (D′) = 0 all the bi ∈ B+
dR, and one of them, say b1 /∈ m+

dR .

Since

λe′ = ϕ(e′) =
r∑

i=1

ϕ(bi ) ⊗ vi

we have ϕ(b1) = λb1. It is enough to prove that if ordp(λ) = n < 0 then

Bϕ=λ

cris ∩ B+
dR = 0.

9 Although Fontainemust have known the proof, the one given in “Périodes p-adiques”, Proposition
5.4.2 is flawed!
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Write λ = upn where u ∈ Z×
p . Twisting by t−n we have to show that

Bϕ=u
cris ∩ t−n B+

dR = 0.

Let b belong to this group. Let v ∈ Ĕ be a unit such that ϕ(v)/v = u. Replacing b by
v−1b we may assume that u = 1. But then the fundamental exact sequence implies
that Bϕ=1

cris ∩ m+
dR = 0, contradicting n < 0. �

4.2 Weak Admissibility Implies Admissibility

4.2.1 Vector Bundles Associated with Filtered ϕ-Modules Over E.

If (D̆, ϕD̆)was aϕ-module (over Ĕ, i.e., an isocrystal over F̄p), we associated to it the
vector bundle E(D̆, ϕD̆) on the Fargues-Fontaine curve XF . In terms of (Be, B

+
dR)-

pairs, it was given by the pair ((BF [1/t] ⊗Ĕ D̆)ϕ=1, B+
dR ⊗Ĕ D̆).

Suppose (D, ϕD, Fil•) is a filtered ϕ-module over (K0, K ) = (E, E). We let
E(D, ϕD, Fil•) be the vector bundle associated with the pair ((BF [1/t] ⊗E D)ϕ=1,

Fil0(BdR ⊗E D)).

Note that if Fil0D = D, Fil1D = 0, then we recover E(D̆, ϕD̆), where D̆ =
Ĕ ⊗E D. Clearly E is a functor from the category of filtered ϕ-modules to V BX .
As a particular example, consider a homomorphism

(D, ϕD, Fil
•
1) → (D, ϕD, Fil

•
2).

This amounts to the identity on D and two filtrations satisfying Fili1 ⊂ Fili2. The
inducedmap on (BF [1/t] ⊗E D)ϕ=1 is the identity, sowe get thatE(D, ϕD, Fil•1) →
E(D, ϕD, Fil•2) is a modification at ∞, i.e., an injective homomorphism of vector
bundles which is an isomorphism away from ∞. The cokernel is a skyscraper sheaf
at ∞. We record even a more special case in the next Proposition.

Proposition 72 Let (D, ϕD, Fil•) be a filtered ϕ-module such that Fil0D = D.

Then there is an exact sequence of sheaves on XF

0 → E(D, ϕD) → E(D, ϕD, Fil
•) → i∞∗(Fil0(BdR ⊗E D)/B+

dR ⊗E D)) → 0.

We recall that if Fili0D = 0 then

Fil0(BdR ⊗E D) =
i0−1∑

i=0

t−i B+
dR ⊗E Fili D.
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In particular, if Fil2D = 0, the last term in the exact sequence (the skyscraper sheaf)
isCp(−1) ⊗ Fil1D. Such amodification of E(D, ϕD), in which the skyscraper sheaf
at ∞ is killed by t , hence is a B+

dR/(t) = Cp-vector space, is called minuscule.
By the main classification theorem (yet to be proved!)

E(D, ϕD, Fil
•) � E(D′, ϕD′)

for some ϕ-module (D′, ϕD′). Which one we get is a subtle question, and depends
on the relative position of the filtration w.r.t ϕ.

4.2.2 GE-Equivariant Vector Bundles

There is an extra structure we can impose on the vector bundles E(D, ϕD, Fil•) for
(D, ϕD, Fil•) ∈ ϕModFilE .Recall that previously, whenwe constructed the vector
bundles O(λ), we started with the category of isocrystals over F̄p, i.e., the category
ϕModĔ . Now, even if we ignore the filtration (i.e., put the trivial filtration), we are
using the category of isocrystals over Fp, which is richer: every isocrystal over the
algebraic closure has an Fp-structure, but this structure is not unique. In addition,
our F and all the resulting rings now carry a GE -action (something that did not exist
for a general F).

The Galois action allows us, as usual, to put on E(D, ϕD, Fil•) a structure of an
GE -equivariant vector bundle, i.e., for every σ ∈ GE an isomorphism

cσ : σ ∗E � E

where σ ∗ denotes the pull-back w.r.t. the map induced by σ on XF , such that the
cocycle condition

cστ = cτ ◦ τ ∗(cσ )

holds. In terms of B-pairs, cσ is induced by the action of σ on ((BF [1/t] ⊗E

D)ϕ=1, Fil0(BdR ⊗ D)) arising from its action on BF [1/t] and BdR . The fact that
this action is semi-linear over (Be, B

+
dR), exactly means that it translates to an OX -

linear isomorphism between σ ∗E and E .
The GE -equivariant vector bundles on XF form a category10 V BGE

XF
. We have

therefore constructed a functor

E : ϕModFilE � V BGE
XF

.

If E is aGE -equivariant vector bundle, then V = H 0(XF , E) inherits aGE -action
and is therefore an (infinite dimensional in general) Galois representation over E .

10 The GE -orbit of every point of XE other than ∞ is infinite. The quotient of XF under GE
therefore does not exist as a scheme. If we wanted to “descend” an equivariant vector bundle we
would have to do it in some stacky sense.
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Similarly, H 0(XF \ {∞}, E) is a semi-linear Galois representation, free over Be of
rank equal to rk(E).

Finally, we remark that there is another “cheap” way to get Galois equivariant
vector bundles, associating to V ∈ RepE the equivariant vector bundle V ⊗E OX ,

which will be semi-stable of slope 0. In fact, every semi-stable slope 0 equivariant
vector bundle is of this sort and the functors

V � V ⊗E OX = E, E � H 0(XF , E) = V

are easily seen to define an equivalence of categories

RepE ≈ {Semi-stable slope 0 equivariant vector bundles}.

The proof of this is the same as the proof of the equivalence

VectE ≈ {Semi-stable slope 0 vector bundles}

(resulting from the basic classification theorem for vector bundles), enriching both
categories with Galois action. For the details, see [5].

The intersection of the two families, i.e., the semi-stable, slope 0 equivariant vector
bundles of the formE(D, ϕD, Fil•),will correspond to the full subcategory RepE,cris

of crystalline representations. But this is non-trivial, and is an equivalent formulation
of the Colmez-Fontaine theorem that “admissible equals weakly admissible”.

The following diagram summarizes the situation:

RepE # V 
→ E = V ⊗E OX 
→ H 0(XF , E) = V
∪ || || || || .

RepE,cris # V 
→ E(Dcris(V )) 
→ Vcris(Dcris(V )) = V

4.2.3 Slopes and Semi-stability

The next theorem generalizes what we have proved before, without the filtration.

Theorem 73 (i) The functor E : ϕModFil � V BGE
XF

preserves rank and degree.
(ii) (D, ϕD, Fil•) is semi-stable if and only if so is E(D, ϕD, Fil•).

Recall that

deg(D, ϕD, Fil
•) =

∑

i

i dim(gr i D) − ordp(det�).

In the example given above of a minuscule modification, the graded pieces are non-
zero for i = 0, 1 only, so this is dim Fil1D − ordp(det�), while the degree of
(D, ϕD) is just −ordp(det�). Thus the increase in slope due to the filtration is
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μ(E(D, ϕD, Fil
•)) − μ(E(D, ϕD)) = dim Fil1D

dim D
.

Proof (i) The statement about the rank is obvious. The statement about the degree
follows from the case of the trivial filtration proved already, and from the fact that if
α : E ↪→ E ′ is a modification at ∞, deg(E ′) − deg(E) = lengthB+

dR
(coker(α)).

(ii) This follows from a more precise (and more general) statement, that if

0 ⊂ D1 ⊂ · · · ⊂ Dr = D

is the Harder-Narasimhan filtration of the filtered ϕ-module D = (D, ϕD, Fil•),
then

0 ⊂ E(D1) ⊂ · · · ⊂ E(Dr ) = E(D)

is the Harder-Narasimhan filtration of the vector bundle E(D). Now the Harder-
Narasimhan filtration of a GE -equivariant vector bundle is clearly a filtration by
equivariant sub-bundles (by its uniqueness). Therefore, in conjunction with (i), it
suffices to show that any equivariant vector sub-bundle E ′ of E = E(D) is E(D′) for
a (strict) ϕ- sub-module D′ ⊂ D.

Let M = Me(D) = (BF [1/t] ⊗E D)ϕ=1 = H 0(X \ {∞}, E), a free Be-module
of rank r = dim D. By the Galois equivariance of E it carries a GE -action, which
is of course compatible with the the Galois action on BF [1/t] and the trivial action
on D. Let M ′ = H 0(X \ {∞}, E ′) and M ′′ = M/M ′. Since E ′ is locally a direct
summand and Be is a PID, M ′ and M ′′ are free over Be. Put

D′ = (BF [1/t] ⊗Be M
′)GE

(here we use the fact that since E ′ is Galois equivariant GE preserves M ′) and define
D′′ similarly. These are ϕ-modules where the action of ϕ comes from its action on
BF [1/t].

By Galois cohomology, we have an exact sequence of ϕ-modules

0 → D′ → D → D′′.

We have dimE D′ ≤ rkBe M
′ = rk(E ′), dimE D′′ ≤ rkBe M

′′ = rk(E ′′) (where E ′′ =
E/E ′). The proof of this is the same as the proof that dimE Dcris(V ) ≤ dimE V . (It is
easier to prove the stronger claim with BdR replacing BF [1/t], since BdR is a field.)
Clearly, rk(E) = rk(E ′) + rk(E ′′). It follows, by dimension counting, that the short
exact sequence is also exact on the right and that the inequalities are equalities. In
particular

dimE D′ = rkBe M
′.

Now
BF [1/t] ⊗E D′ ⊂ BF [1/t] ⊗Be M

′
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and if dimE D′ = rkBe M
′ we must have an equality. The proof of this is the same

as the proof of (i) and (ii) in Proposition 67. Taking ϕ-invariants and recalling that
BF [1/t]ϕ=1 = Be we get

(BF [1/t] ⊗E D′)ϕ=1 = M ′ = H 0(X \ {∞}, E ′).

Similarly for M ′′. Finally, we put on D′ and D′′ the filtration induced from the one of
D and verify that the completion of the stalk of E ′ at∞ is given by Fil0(BdR ⊗E D′)
and similarly for E ′′. This completes the proof that E ′ = E(D′) for a strict ϕ-sub-
module D′ ⊂ D, hence, in view of (i), that the Harder-Narasimhan filtration of E is
obtained from the one of D. �

4.2.4 The Functor E(V )

We can now compose the functor E(−) with the functor Dcris to get a functor

RepE,cris � V BGE
XF

,

that we denote also by
V 
→ E(V ) := E(Dcris(V )).

Since a crystalline representation may be reproduced from D = Dcris(V ) as

V = Vcris(Dcris(V )) = (Bcris ⊗E D)ϕ=1 ∩ Fil0(BdR ⊗E D),

and since, as mentioned before, (Bcris ⊗E D)ϕ=1 = (BF [1/t] ⊗E D)ϕ=1, we con-
clude that if V is crystalline,

V = H 0(XF , E(V )).

As we have seen, if V is crystalline then Dcris(V ) is weakly admissible, i.e.,
semi-stable of slope 0. This implies that E(V ) is also semi-stable of slope 0, and by
the corollary of the classification theorem

E(V ) � V ⊗ OX .

4.2.5 The Main Theorem

Theorem 74 (Colmez-Fontaine) Let D = (D, ϕD, Fil•) be a weakly admissible
filtered ϕ-module over E of dimension r. Then

V = Vcris(D)
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is an r-dimensional crystalline representation, and D = Dcris(V ), i.e., D is admis-
sible.

Proof As we have seen, slope and semi-stability are preserved by the functor E(−),

so E(D) is an equivariant semi-stable vector bundle of slope 0. Being semi-stable
of slope 0, the classification theorem shows that E is a trivial vector bundle, so
V = Vcris(D) = H 0(XF , E) is also r -dimensional and E � V ⊗E OX (with Galois
action). This was the crucial step. �

We will show that the equality of dimensions dimE Vcris(D) = dimE D forces

Dcris(V ) = D.

Thus V is crystalline (because Dcris(V ) is of maximal possible dimension) and D
is admissible (because it is Dcris of a crystalline representation).

We need a lemma, which settles the 1-dimensional case.

Lemma 75 Let D be a 1-dimensional filtered ϕ-module. Then:
i) If tH (D) < tN (D) then Vcris(D) = 0.
(ii) If tH (D) = tN (D) then Vcris(D) is one-dimensional and crystalline and

Dcris(Vcris(D)) = D. Furthermore if d is a basis of D and v = bd (b ∈ Bcris ) is
a basis of V then b ∈ B×

cris .

(iii) If tH (D) > tN (D) then Vcris(D) is infinite dimensional.

Let us assume the validity of the lemma for themoment, and finish the proof of the
theorem. Let Ccris be the field of fractions of Bcris . Since Ccris ⊂ BdR , C

GE
cris = E .

Consider the canonical map

α : Ccris ⊗E V → Ccris ⊗E D

(recall V ⊂ Bcris ⊗E D). Since its image is a Ccris-subspace stable under GE , it is
of the form Ccris ⊗E D′ for a subspace D′ ⊂ D. Since Im(α) is ϕ-stable, so is D′.
Equipping D′ with the filtration induced from the filtration of D, it becomes a strict
sub-filtered ϕ-module. Let s = dim D′ ≤ r . We have

V ⊂ Vcris(D
′) ⊂ Vcris(D) = V

so they are all equal. Let v1, . . . , vs be elements of V such that α(1 ⊗ vi ) is a basis
of Ccris ⊗ D′. Let d1, . . . , ds be a basis of D′. Write

α(1 ⊗ vi ) =
∑

bi j ⊗ d j

with bi j ∈ Bcris . Then b = det(bi j ) �= 0. Let

0 �= W =
s∧
V = Vcris(

s∧
D′).
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By the assumption that D is weakly admissible, tH (
∧s D′) = tH (D′) ≤ tN (D′) =

tN (
∧s D′). Since W does not vanish, the lemma implies that tH (D′) = tN (D′), that

W is 1-dimensional, hence r = s, D′ = D, and α is an isomorphism. Furthermore,
b ∈ B×

cris by part (ii) of the lemma, so α is an isomorphism also over Bcris :

α : Bcris ⊗E V � Bcris ⊗E D.

But this isomorphism respects the Galois action so D = Dcris(V ), showing that V
is crystalline and that D is admissible.

To conclude, we prove the lemma.

Proof Let D = Ed,where ϕ(d) = λd and the filtration of d is tH (D). Tate-twisting
we may assume that tH (D) = 0. Then n = tN (D) = ordp(λ). We have

Vcris(D) � Bϕ=λ−1

cris ∩ B+
dR .

Applying an unramified twist we may assume that

Vcris(D) � Bϕ=p−n

cris ∩ B+
dR = t−n(Bϕ=1

cris ∩ mn
dR).

The lemma is now clear. �

5 The Classification Theorem

5.1 Preparations

5.1.1 A Lemma on Harder-Narasimhan Filtrations in Finite étale
Galois Coverings

Lemma 76 Let f : X → Y be a finite étale Galois morphism of complete curves
(in the sense discussed in these notes). Let E be a vector bundle on Y and

0 = E0 ⊂ E1 ⊂ · · · ⊂ Er = E

its Harder-Narasimhan filtration. Then

0 = f ∗E0 ⊂ f ∗E1 ⊂ · · · ⊂ f ∗Er = f ∗E

is the Harder-Narasimhan filtration of f ∗E . In particular f ∗E is semi-stable if and
only if E is.

Proof By uniqueness, the Harder-Narasimhan filtration of f ∗E is Galois-stable, so
since f is finite étale it is pulled back from some filtration of E . The lemma is an
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immediate consequence of the fact that pulling back by f multiplies the slope by
d = deg( f ). �

5.1.2 Equivariant Structures on a Vector Bundle

Let X be a scheme, equipped with an action of a finite group �. Let (E, (cσ )σ∈�) be
a �-equivariant vector bundle. Thus

cσ : σ ∗E � E, cτ ◦ τ ∗cσ = cστ .

Then � acts on the group Aut (E) of automorphisms of E on the right via

f 
→ f σ = cσ ◦ σ ∗ f ◦ c−1
σ .

If (c′
σ ) is another structure of an equivariant vector bundle on E then

dσ = cσ ◦ (c′
σ )

−1 ∈ Aut (E)

and (dσ ) ∈ Z1(�, Aut (E)) is a 1-cocycle, i.e.,

dστ = τ(dσ ) ◦ dτ .

Conversely, if (dσ ) satisfies this condition, c′
σ = d−1

σ ◦ cσ is another structure of an
equivariant vector bundle. The following proposition is standard.

Proposition 77 Two equivariant structures on E are isomorphic (i.e., there is an
automorphism of E carrying one structure to the other) if and only if the cocycles
(cσ ) and (c′

σ ) differ by a coboundary (i.e., are cohomologous). The set of equivariant
structures on a given E , up to isomorphism, is either empty or a (set-theoretic) torsor
for H 1(�, Aut (E)).

5.1.3 Pure Vector Bundles on the Fargues-Fontaine Curve

Recall the vector bundles OX (λ) (λ ∈ Q) that were constructed on the Fargues-
Fontaine curve X . We call a vector bundle E pure if it is isomorphic to OX (λ)

a for
some a.

Corollary 78 Let πh : Xh → X be the cyclic degree h covering of the Fargues-
Fontaine curve associated with the unramified field extension Eh/E of degree h.
Then a vector bundle E on X is pure if and only if π∗

h E is pure on Xh .

Proof We have seen the “only if” before. Assume that π∗
h E is pure. Enlarging h if

necessary we may assume that
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π∗
h E � OXh (d)

a

where d ∈ Z. Since the degree of π∗
h E must be a multiple of h, we get h|ad. We

therefore have

π∗
h E � OXh (d)

a � OXh (ad, a) = π∗
hOX (

ad

h
, a) =: F .

The isomorphism classes of equivariant vector bundle structures onF are, according
to the last Proposition, in a bijection with

H 1(Z/hZ, Aut (F)).

But Aut (F) = GLa(Eh), so by Hilbert’s theorem 90 the last pointed set is a point,
and the equivariant structure is unique. This implies that F can be descended in a
unique way, so E � OX (

ad
h , a). �

5.2 An Abstract Classification Theorem

The following criterion, leading to the conclusion that every vector bundle on the
Fargues-Fontaine curve is a direct sumofO(λ)’s,was inspired by theworkofKedlaya
on slope filtrations.

Theorem 79 Consider the following statement. Criterion(X): for every vector bun-
dle E on X and for every n ≥ 1, if we have a short exact sequence

0 → OX (−1

n
) → E → OX (1) → 0,

then H 0(X, E) �= 0.
Suppose we prove Criterion(X), and that the same is true if X is replaced by its

cyclic unramified covering Xh of degree h for every h ≥ 1, i.e., Criterion(Xh) also
holds. Then:

(i) The semi-stable vector bundles on X are the pure ones.
(ii) The Harder-Narasimhan filtration of X is split.
(iii) Every vector bundle on X is isomorphic to

n⊕

i=1

OX (λi )

for unique rational numbers λ1 ≥ λ2 ≥ · · · ≥ λn.

Furthermore, if we proveCriterion(Xh) only for vector bundles E of rank≤r (and
every h), then (i)-(iii) hold for vector bundles of rank ≤ r.
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Proof Observe first that (i) implies (ii) and (iii). To deduce (ii) from (i) use
Ext1(O(λ),O(μ)) = 0 if μ ≥ λ. Then (iii) is a formal consequence of (i) and (ii).
Furthermore, if we prove (i) for ranks≤ r, then the same argument gives (ii) and (iii)
for ranks ≤ r.

The proof of (i) will be by induction on the rank n of the semi-stable vector
bundle E . When n = 1 (i) is obvious. We assume that (i) is proved up to rank n and
let rk(E) = n + 1.

Step 1. Since E is semi-stable (resp. pure) if and only if π∗
h E is, we may pull back

to Xh and assume that μ(E) ∈ Z. Since twisting by a line bundle does not change
the conclusion, we may assume now that μ(E) = 0. Replacing X by Xh we may
therefore, without loss of generality, assume that E is semi-stable of slope 0 and
prove that it is trivial. This is therefore the key case, and also, incidentally, the only
case of the classification theorem that was needed in the proof of “weakly admissible
is admissible”.

Step 2. Let n + 1 = rk(E) and consider π∗
n E . Let L ⊂ π∗

n E be a line sub-bundle
of maximal degree d and consider the short exact sequence

0 → L → π∗
n E → E ′ → 0.

By the semi-stability of π∗
n E we have d ≤ 0 ≤ μ(E ′).

Step 4. Assume d = 0. In this case L is semi-stable of slope 0. But the category
of semi-stable vector bundles of slope 0 (or such objects in any Harder-Narasimhan
category) is an abelian category closed under kernels, quotients, and extensions, so
E ′ is also such. Applying the induction hypothesis on the rank, E ′ is trivial. Since
Ext1(On

Xn
,OXn ) = 0, π∗

n E is trivial, hence so is E .
Step 5. It is impossible to have d ≤ −2. Since μ(E ′) ≥ 0, applying induction

on the rank we know that there exists a λ ≥ 0 withOXn (λ) a sub-bundle of E ′. Since
d ≤ −2

Hom(OXn (d + 2),OXn (λ)) = H 0(Xn,OXn (λ − d − 2)) �= 0

so there exists a non-zero homomorphism

u : OXn (d + 2) → OXn (λ) ⊂ E ′.

Pulling back the short exact sequence which defined E ′ we get a short exact sequence

0 → L → E ′′ → OXn (d + 2) → 0

or, after twisting

0 → L(−d − 1) → E ′′(−d − 1) → OXn (1) → 1.

Since L(−d − 1) � OXn (−1), by our assumption the vector bundle in the middle
has a global section, i.e., a non-zero homomorphism
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OXn (d + 1) → E ′′.

Themorphism E ′′ → π∗
n E is a monomorphism, sowe get a non-zero homomorphism

v : OXn (d + 1) → π∗
n E .

The image of v spans a line sub-bundle whose degree is ≥ d + 1 (the inequality
comes from the fact that v need not be a local direct factor, but then taking the line
sub-bundle spanned by the image of ν, the degree only grows). This contradicts the
maximality of d.

Step 6. It is impossible to have d = −1. Since πn is finite étale, πn∗ is the left
adjoint of π∗

n (on modules), if R → R′ is a finite étale ring extension

HomR′(L ′, R′ ⊗R M) = HomR(L
′, M),

themap from the LHS to the RHS uses properties of TrR′/R in finite étale extensions).
Thus we have a non-zero

u ∈ HomXn (L, π∗
n E) = HomX (πn∗L, E) = HomX (OX (−1

n
), E).

Denote by Im(u) the vector sub-bundle spanned by the image of u in E . Since
OX (− 1

n ) is semi-stable of slope −1/n and

OX (−1

n
)/ker(u) → Im(u)

is an isomorphism in the generic fiber (i.e., up to a torsion module), we get that
μ(Im(u)) ≥ −1/n. Since E was assumed to be semi-stable of slope 0 we must have

−1

n
≤ μ(Im(u)) ≤ 0.

Since the rank of Im(u) is at most n we can have only two possibilities

μ(Im(u)) = 0,−1

n
.

(i) If μ(Im(u)) = 0 then its slope is 0, it is semi-stable as a sub-bundle of E,
and so is E/Im(u), so by induction they are both trivial, and so is E (no non-trivial
extensions of trivial modules!).

(ii) If μ(Im(u)) = −1/n, rk(Im(u)) = n and u is a monomorphism. But since

u : OX (−1

n
) → Im(u)
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is an isomorphism on the generic fiber and both vector bundles have degree −1, it is
an isomorphism. We have

0 → OX (−1

n
) → E → L′ → 0

and L′ is a line bundle of degree 1. But by our assumption this implies that there is a
non-zero homomorphism OX → E, whose image would be a line-bundle of degree
≥ 0, pulling back to a similar line bundle in π∗

n E, contradicting d = −1. �

5.3 Some Constructions Related to p-Divisible Groups

For the proof of the classification theorem on the Fargues-Fontaine curve we need
to understand the relation between modification of vector bundles on X and period
maps of p-divisible groups. We take now a rather long detour to review some aspects
of the crystalline theory of p-divisible groups. It is due to Grothendieck, Messing,
Katz, Mazur and later developments by Kottwitz, Rapoport, and Zink.

The pace will be quick, compared to the rest of the notes, and we will assume
some familiaritywith formal groups and p-divisible groups. For basics on p-divisible
groups see [3, 7, 13, 15, 22, 23]. For the crystalline theory, see [9, 14]. For moduli
and period maps, see [4, 6, 12, 17]. Much of what we do below is explained, besides
the book by Fargues and Fontaine, also in the paper [18]. These lists are far from
complete, of course, and notation and approach vary from one reference to another.
We warn the reader that it is often a non-trivial exercise to reconcile the explicit
power-series-based approach of Hazewinkel with the sheaf-theoretic point of view
of Messing, or the Lubin-Tate and the Rapoport-Zink formalisms of moduli (when
they both apply).

5.3.1 Adic Rings

We work over an adic ring R over Zp. Recall that an adic ring is a topological ring
which is complete and separated in the I -adic topology for some ideal I ⊂ R, i.e.,

R � lim← R/I n .

The ideal I is not part of the data, only the topology induced by it. Any ideal J
satisfying J n ⊂ I, I m ⊂ J for some m, n gives the same topology, and is called an
ideal of definition.

Caution: If R is noetherian and I is any ideal, then the completion R̂ = lim← R/I n

is an adic ring with Î = I R̂ as an ideal of definition. But in an arbitrary ring R, if I
is not finitely generated, funny things can happen.
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Adic ringswith continuous homomorphisms form a category. The category of adic
rings over Zp is, as usual, the relative category of continuous morphisms Zp → R
in the category of adic rings. Note that if R is an adic ring over Zp we may always
assume that p belongs to the ideal of definition of R (in any case, a power of p will
belong to any ideal of definition).

Any discrete ring in which pN = 0 is trivially an adic ring over Zp.
In this section we write C for a complete algebraically closed valued field of

characteristic 0 and residual characteristic p, such as Cp, and C	 for its tilt.

5.3.2 The Universal Covering of a p-Divisible Group

Let R ∈ AdicZp and let G/R be a p-divisible group. For S ∈ AdicR we re-define the
notion of points of G by

G(S) = lim← G(S/I mS )

where IS is any ideal of definition for S. If G = (Gn) (i.e., Gn = G[pn]) then

G(S) = lim←m
G(S/I mS ) = lim←m

lim→n
Gn(S/I

m
S ).

For example, if G = μp∞ we get

G(OC) = lim←m
lim→n

μpn (OC/p
m) = 1 + mC = Ĝm(OC).

One cannot change the order of the limit and the colimit! This example is typical. If
G is the p-divisible group associated to a p-divisible formal group law Ĝ over R,
then

G(S) = Ĝ(S).

On the other hand, if S is discrete (so some I mS = 0) then G(S) is the usual notion
of points of an ind-scheme. Note that, with our modified definition of G(S), we still
have

G(S)[pn] = G[pn](S).

If S is discrete this is so by definition, and, in general, it follows from

G[pn](S) = lim←m
G[pn](S/I mS ).

We let Ab be the category of abelian groups.

Definition 80 The universal covering G̃ of G is the functor AdicR � Ab

G̃(S) = lim←×p
G(S) = {(x0, x1, . . . )| xi ∈ G(S), [p]G(xi+1) = xi }.
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Here are the main (easy) points about this definition.

(1) This is a presheaf of Qp-vector spaces. Multiplication by p−1 is left shift.
(2) If G = Qp/Zp then G̃ = Qp. If G = μp∞ then G̃(OC) = 1 + mC	 .

(3) If G and G ′ are isogenous then any isogeny between them induces an isomor-
phism on the universal coverings.

The next property is not difficult either but is of fundamental importance, so we
single it out as a lemma.

Lemma 81 (Crystalline nature of the universal covering) Let S ∈ AdicR . If I is a
closed topologically nilpotent ideal of S (in particular if it is an ideal of definition)
reduction modulo I induces a bijection

G̃(S) = G̃(S/I ).

Proof (sketch) Let y = (y0, y1, . . . ) ∈ G̃(S/I ). Let zi ∈ G(S) lift yi .Defining xi =
lim[p j ](zi+ j ), the limit exists, is independent of the lifting, and defines the unique
G̃(S) # x 
→ y. In the case of μp∞ this goes back to the computations we did when
we gave the two equivalent definitions of the tilt. �
Corollary 82 Let T � S ∈ AdicR be a pro-nilpotent thickening (i.e., the kernel of
T → S is pro-nilpotent, or equivalently, contained in some ideal of definition of T ).
Let G ′ be a lifting of G to T . Then

G̃ ′(T ) = G̃ ′(S) = G̃(S),

hence depends functorially only on G and not on the lifting G ′.

Proposition 83 Assume that R is a perfect Fp-algebra. Let Ĝ be a commuta-
tive formal group law in d variables, and assume that the resulting formal group
functor11 is p-divisible (this is equivalent to R[X1, . . . , Xd ] being finite flat over
[p]∗̂

G
(R[X1, . . . , Xd ])). Let

G = (Ĝ[pn])∞n=1

be the associated p-divisible group (such a p-divisible group is called formal or
connected). Then (locally on R) the functor G̃ is represented by a formal scheme

G̃ = Sp f (R[[X1/p∞
1 , . . . , X1/p∞

d ]]).

Proof See [18]. The key idea is to replace the lim×p with lim×F where F is the
Frobenius morphism. For this we need to consider

G
F← G(p−1) F← G(p−2) F← · · ·

11 For S ∈ AdicR Ĝ(S) is the set of d-tuples of topologically nilpotent elements of S, with addition
given by Ĝ.
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and this is why we need R to be perfect. �

Let H be a p-divisible group over OC . Let k = OC/mC (an algebraically closed
field of characteristic p). Since k = OL/p where L = Q̆p = W (k)[1/p], there is a
canonical section toOC/p � k,which allows us to viewOC/p as a k-vector space.
Suppose there exists a p-divisible group H over k and a quasi-isogeny

ρ : H ×OC OC/p ��� H ×k OC/p

(this means that the reduction modulo p of H is isotrivial: is isogenous to a trivial
p-divisible group, i.e., one that is extended from k by base change; by a deep theorem
of Scholze andWeinstein, using the fact that C is perfectoid, this is always the case.)

Corollary 84 Under the above assumptions

H̃ � Sp f (OC [[X1/p∞
1 , . . . , X1/p∞

d ]]).

Proof We can take
H = H ×OC k,

because ρ would anyhow specialize to a quasi-isogeny between the two, so we are
allowed to replace H in our assumption by H ×OC k.

By the crystalline nature of H̃ we have for any S ∈ AdicOC , H̃(S) = H̃(S/p).
By the invariance of H̃ under isogeny and our assumption the given quasi-isogeny

ρS : H ×OC S/p ��� H ×k S/p

induces H̃(S/p) � H̃(S/p). Since k is perfect and H = H ×OC k the corollary fol-
lows from the last Proposition. Note that to give a sequence of p-power compatible
elements in S is the same as giving a similar sequence in S/p, by the usual tilting
argument. �

5.3.3 The Tate Module

Let G = (Gn), Gn = G[pn] be a p-divisible group over R ∈ AdicZp . Define the
functor AdicR � Ab

TpG(S) = lim←×p
G[pn](S), VpG(S) = TpG(S) ⊗Zp Qp.

Clearly, TpG(S) is a sub-module of G̃(S), consisting of the sequences (x0, x1, . . . )
with x0 = 0. Since the latter is a Qp-vector space, so is VpG(S).
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Caution: IfG ′ is a lifting ofGS to a pro-nilpotent thickening T � S then we have
seen that G̃ ′(T ) = G̃(S) depends only on G. But the subspace VpG ′(T ) very much
depends on the lifting G ′ and on T .

Goal: Let G be a p-divisible group over OC . Denote by G0 its special fiber over
k. Assume that G ×OC OC/p and G0 ×k OC/p are isogenous (as mentioned above,
this is the case by a theorem of Scholze and Weinstein). As we have seen, any such
quasi-igoney ρ between them induces

ρ : G̃(OC) = G̃(OC/p) � G̃0(OC/p),

where we emphasize that the RHS depends functorially only on G0. We would like
to construct a long exact sequence (LOG)

0 → VpG(OC) → G̃(OC)
θ→ Lie(G)[1/p] → 0

||ρ
G̃0(OC/p)

and later on recover it as the global sections of an exact sequence of a modification
of vector bundles on the Fargues-Fontaine curve. Observe that Lie(G)[1/p] is a d-
dimensionalC-vector space,whileVpG(OC) is the usual rational Tatemodule,which
is a Qp-vector space of dimension h = ht (G), so the term in the middle is likely
to be again one of these Banach-Colmez spaces mentioned before (and deliberately
avoided in our notes).

5.3.4 Logarithms

The construction of the exact sequence we want is based on the logarithm of the
p-divisible group. This is standard and we briefly describe it when G is formal (G
obtained from a p-divisible formal group Ĝ as before). By means of the connected-
étale exact sequence, the case of a general G can be reduced to the case of a formal
one.

Thus let G/R be a formal p -divisible group, and denote by Ĝ = Sp f (A), A =
R[[X1. . . . , Xd ]] the corresponding formal group so that Gn = Ĝ[pn].

The cotangent space of G at the origin may be identified, as usual, with the
translation invariant differentials, and these are all closed:

ωG/R = ⊕d
i=1RdXi |0 � {ω ∈ �A/R|m∗(ω) = ω ⊗ 1 + 1 ⊗ ω}.

Assume that R is flat over Zp (i.e., contains no p-torsion). The formal Poincaré
lemma, whose proof on the level of formal power series is elementary, says that
any translation invariant ω as above admits a unique primitive λω ∈ A[1/p] without
constant term so that dλω = ω; furthermore, λω ∈ HomR[1/p](G, Ĝa).

Consider themapω 
→ λω.This canonicalmap is a homomorphism (over R[1/p])
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(ω 
→ λω) ∈ Hom(ωG/R, Hom(G, Ĝa)) = Hom(G, Hom(ωG/R, Ĝa)).

Recalling that Lie(G) = Hom(ωG/R, Ĝa), we have defined the logarithm of G

logG ∈ HomR[1/p](G, Lie(G)).

Let θ = logG ◦pr0 where pr0 : G̃ → G is x 
→ x0. Then it is easily verified that
(LOG) is exact. If pr0 : G̃(S) → G(S) is surjective, θ is surjective too. This is the
case for S = OC . We shall soon see that θ is related to the “θ” of Fontaine’s rings.

5.3.5 The Universal Vectorial Extension

Let G/R be a p-divisible group, and assume for the moment that pN = 0 in R. The
sequence of fppf sheaves on the category AlgR of R-algebras

0 → G[pn] → G
pn→ G → 0

is exact. Applying RHom(−,Ga) we get a short exact sequence (SES)

0 → Hom(G,Ga)/p
n → Hom(G[pn],Ga) → Ext (G,Ga)[pn] → 0.

Observe first that Hom(G,Ga) = 0 since G is p-divisible but pNGa = 0. Next,
if n ≥ N then

Ext (G,Ga) = Ext (G,Ga)[pn] = Hom(G[pn],Ga) = {a ∈ An |m∗
G(a) = a ⊗ 1 + 1 ⊗ a}

= Lie(G∨[pn]) = Lie(G∨) = Hom(ωG∨ , R).

Here we have used Cartier duality, and wrote G[pn] = Spec(An). The primitive
elements of An = Hom(A∨

n , R) (i.e., the elements satisfyingm∗
G(a) = a ⊗ 1 + 1 ⊗

a), when regarded as linear functionals from A∨
n to R, define ring homomorphisms

A∨
n → R[ε]/(ε2)

reducingmodulo ε to the co-unit homomorphism (the dual of the structure homomor-
phism R → An). This is the same as defining an R[ε]/(ε2)-valued point of G∨[pn]
reducing to the identity, and this, by definition, is a point of the Lie algebra.

Similarly, for any R-module M and the associated vector group scheme M, we
have

Ext (G, M) � Hom(ωG∨/R, M).
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Taking M = ωG∨/R and the identity homomorphism on the right-hand side yields
a “universal” extension

0 → ωG∨/R → EG → G → 0

from which any (fppf sheaf) extension of G by a vector-group M is gotten by a
unique push-out.

This construction is functorial, covariant inG. Finally, passing to the limit over N
gives the same thing over a p-adic base R, i.e., a base satisfying R � lim← R/pN R.

5.4 The Crystal of a p-Divisible Group

5.4.1 Rigidified Extensions of G

Apply the functor Lie(−) to the universal vectorial extension. Since Lie of a vector
group is the vector group itself, we get a SES of vector groups (MG = Lie(EG))

0 → ωG∨/R → MG → Lie(G) → 0.

In [14] Messing shows that ∀S ∈ AlgR, MG(S) is a locally free module, and that
rk(MG) = ht (G).

Our goal is to enhance MG to a crystal of modules on the crystalline site of R.
What we need is an interpretation whereby MG classifies rigidified extensions of
G∨ by Ga . This is not a mistake: The Lie algebra of the universal vectorial extension
of G classifies rigidified extensions of the dual p-divisible group G∨ by Ga . Here is
the definition.

Definition 85 A rigidification of an (fppf) extension E of G∨ by Ga is a splitting
(of a SES of sheaves)

0 → Ga → Lie(E)
���→ Lie(G∨) → 0.

Rigidifications always exist, locally for the fppf topology. Any two rigidifications
differ by a homomorphism from Lie(G∨) to Ga , i.e., by an element of ωG∨/R . The
group of rigidified extensions Ext  (G∨,Ga) therefore sits in an exact sequence of
sheaves as in the top row of the following diagram:

0 → ωG∨/R → Ext  (G∨,Ga) → Ext (G∨,Ga) → 0
|| || ||

0 → ωG∨/R → MG(R) → Lie(G) → 0.

We have already commented on the identification Ext (G,Ga) � Lie(G∨) (except
that we have now reversed the roles of G and G∨). It is not surprising, and in fact
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proved in [14], that the middle terms are canonically identified as well, in a way that
makes this whole diagram commutative.

5.4.2 The Crystalline Site

The big crystalline site over R ∈ AlgZp
is based on the following category. Objects

are diagrams

T
pd
� S

↑
R

where S ∈ AlgR , and T is a nilpotent divided powers thickening of S. If S is Zp-
flat this means that x ∈ I = ker(T � S) ⇒ xn/n! ∈ I , and ∃N s.t. (xn11 /n1!) · · ·
(xnrr /nr !) = 0 if xi ∈ I,

∑
ni ≥ N .

If S is not Zp-flat the notion of a divided power (pd) thickening is more compli-
cated, as the divided powers γn(x) = "xn/n!" are part of the structure that one has
to give on I . This structure is subject to a list of axioms that guarantee that all the
good consequences that we would like to draw from divided powers (e.g., standard
results on exponentials) hold.

Morphisms are maps between such diagrams that “preserve the pd structure”.
To complete the definition of the crystalline site we need to say which collections

of morphisms are singled out as coverings (checking that they satisfy the axioms for
coverings is easy). To simplify the notation we drop the reference to the ground ring

R. Coverings of T
pd
� S will be, just as in the Zariski topology, collections {(Ti

pd
�

Si ) ← (T
pd
� S)} s.t. Spec(T ) =⋃ Spec(Ti ) is a Zariski cover, and Si = S ⊗T Ti .

Note that the arrows go backwards since we consider rings, not the associated affine
schemes.

Finally, the structure sheaf is the sheaf O(T
pd
� S) = O(T ).

5.4.3 The Grothendieck-Messing Crystal

The key theorem, and the reason for introducing the crystalline site, at least in the
context of p-divisible groups, is the following.

Theorem 86 (Grothendieck-Messing) If (T
pd
� S) is as above and G ′

T is a lifting of
GS to T then MG ′

T depends functorially only on G. Denote it by MG(T � S).
We shall follow Katz in sketching a proof in a favorable case, that highlights the

relevance of divided powers, and at the same time indicates an important relation
between MG and de Rham cohomology. First, we make two remarks.

• Liftings G ′
T of GS to any (not necessarily pd-) thickening T � S always exist by

an old (1955) theorem of Lazard, see [7]. But there are many, and the whole point
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is that MG ′
T is canonically independent of the lifting if the thickening is endowed

with a pd structure.
• MG(T � S) is a locally free coherent sheaf of rank equal to ht (G), and we shall
denote MG(S � S) by MG(S) = M(GS).

Explanation (after Katz [9]): Start with R ∈ AdicZp , Zp-flat (so no p-torsion). Let
F/R a p-divisible formal group,

F = Sp f (R[[X1, . . . , Xd ]]).

Consider

H 1
dR(F/R) = {[η]| η closed 1-form, m∗

F (η) − η ⊗ 1 − 1 ⊗ η exact}/{exact η}.

These are the translation invariant cohomology classes. Notice that it is the coho-
mology class [η], and not the form η itself, that is required to be translation invariant.
However, the translation-invariant forms (which are all closed) definitely define such
classes. In fact, they inject into H 1

dR :

ωF/R = {η|m∗
F (η) = η ⊗ 1 + 1 ⊗ η} ↪→ H 1

dR(F/R),

because R is p-adic, and F is p-divisible, so if η is both exact and translation
invariant ⇒ η = 0. (Logarithms “need” R[1/p].)
Proposition 87 There is a commutative diagram with exact rows (whose terms are
explained below):

0 → ωF/R → H 1
dR(F/R)

∂→ H 2(F; Ga)s → 0
|| || ||

0 → ωF/R → Ext  (F; Ga) → Ext (F; Ga) → 0

Recall that Ext  (F; Ga) is the group of rigidified extensions, and that the bottom
row has been identified, when G∨ � F , with

0 → ωG∨/R → MG(R) → Lie(G) → 0.

Proof (Sketch) We first explain the map ∂ (to ease the notation only when d =
dimF = 1). The formal group law F gives rise to cohomology groups based on
power-series manipulations. Specifically, in degree 2 we have

H 2(F; Ga)s = {"(X,Y ) ∈ R[[X,Y ]]+| symm., δ(") = 0}
{δ( f ) = f (X [+]Y ) − f (X) − f (Y )| f ∈ R[[X ]]+}

δ(") = "(Y, Z) − "(X [+]Y, Z) + "(X,Y [+]Z) − "(X,Y )
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R[[X,Y ]]+ = XR[[X,Y ]] + Y R[[X,Y ]].

The map from H 1
dR(F/R) is the following: given [η], find a primitive f (X) ∈

R[1/p][[X ]]+ for η, and let " = δ( f ). Then [η] is translation invariant ⇒ " is
integral: we have

δ(η) = δ(d f ) = d(δ( f )) = d".

But we know that δ(η) is exact over R, hence, by the uniqueness of the primitive,
" is integral. If we add to η an exact form, say dh with h ∈ R[[X ]]+, then we end
up adding to " the power series δ(h). This means that we may define ∂ by setting
∂([η]) = ["].

The identification H 2(F; Ga)s � Ext (F; Ga) is standard, and that of
H 1

dR(F/R) � Ext  (F; Ga) requires only a little more work. The key to the crys-
talline nature of MG is the following lemma. �

Lemma 88 Let F ′,F ′′ be liftings of F to T
pd
� R. Let ϕ : F ′ → F ′′ be a morphism

of pointed Lie varieties reducing to the identity on R. Then (i) ϕ∗ : H 1
dR(F ′′/T ) �

H 1
dR(F ′/T ) (preserving the invariance under the group law). (ii) ϕ∗ is independent

of ϕ. (iii) Similarly, if ϕ reduces to an endomorphism ϕ0 ofF , ϕ∗ is a homomorphism
that depends only on ϕ0.

Proof (d = 1, see Katz for more variables). Let η = d f, f ∈ T [1/p][[X ]], repre-
sent [η] ∈ H 1

dR(F ′′/T ). Let I = ker(T
pd
� R), ϕ1, ϕ2 ∈ T [[Y ]], ϕi (0) = 0, ϕ1 ≡ ϕ2

mod I . Then by Taylor

ϕ∗
2 (η) − ϕ∗

1 (η) = d

( ∞∑

n=1

f (n)(ϕ1) · (ϕ2 − ϕ1)
n

n!

)

and (· · · ) ∈ T [[Y ]] since I has divided powers and f (1) is already integral. This
shows (ii) ϕ∗

2 ([η]) = ϕ∗
1 ([η]). A similar argument proves (i) and (iii). �

We remark that in the situation of the Lemma, it is blatantly false that ϕ∗ maps
ωF ′′/T to ωF ′/T . The proof highlights the use of divided powers, explains the phrase:
“MG ′

T (T ) depends functorially only onG”, and also the relation between crystalline
and de Rham cohomology. For a proof when R is not Zp-flat see, Messing’s thesis
[14].

5.4.4 Dieudonné Modules

The Grothendieck-Messing crystal is a powerful tool. Let us explain how it captures
the classical Dieudonné module of a p-divisible group over a perfect field of char-
acteristic p. Let k be such a field, W = W (k) its ring of Witt vectors, and σ the
Frobenius automorphism of W .
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Let G/k be a p-divisible group. Its Dieudonné module can be defined as

D(G) := M(G∨)(W � k).

Here are its main features:

• It is a contravariant, free W -module of rank h = ht (G).
• M(G∨)(k) = D(G)/pD(G). If G = A[p∞] for an abelian varietyA over k then

D(G)/pD(G) � H 1
dR(A/k).

• If (−)(p) denotes base-change with respect to σ, then D(G(p)) = D(G)(p).

• Let FG : G → G(p) be the (relative) Frobenius isogeny, and let Verschiebung (of
G∨) be the dual isogeny VG∨ : G∨(p) → G∨. By functoriality of M(−)we get F :
D(G)(p) → D(G), i.e., a σ -linear map D(G) → D(G). Similarly, VG : G(p) →
G � σ−1-linear V . The relation VG ◦ FG = pG that holds for the two isogenies
implies, on the level of semi-linear algebra,

F ◦ V = V ◦ F = p.

• ωG/k � V D(G)(p
−1)/pD(G) � D(G)(p

−1)/FD(G).

Weconclude that (D(G), F, V ) is an F-crystal over k. These objects form an additive
category Fcrystk . The Manin-Dieudonné theory yields a complete classification of
p-divisible groups over k in terms of their Dieudonné modules. In fact:

Theorem 89 (Dieudonné-Manin ) D(−) is an anti-equivalence between pdivgpk
and Fcrystk .

For the proof, see [3, 13].
For completeness we remark that the original definition was

D(G) := Homk(G,CW ),

where CW is the group of co-Witt vectors. The actions of F and V resulted, in this
approach, from their action on CW.

5.4.5 F-Isocrystals

Recall that an F-isocrystal (N , F, V ) is a finite-dim. W [1/p]-vector space N ,
equipped with a σ -linear bijective endomorphism F.We define V = pF−1. Such an
N may or may not contain aW -lattice stable under both F and V (i.e., an F-crystal),
and if it contains one, its isomorphism type is not unique, in general.

The Dieudonné-Manin theorem yields an equivalence of categories between the
categories of “p-divisible groups up to isogeny” and “F-isocrystals containing an
invariant F-crystal”.
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Example 90 Let (r, s) = 1, s > 0, λ = r/s.Let Nλ =∑s
i=1 W [1/p]ei , Fei = ei+1

(i < s), Fes = pre1. Call λ the (Frobenius) slope of Nλ.

Theorem 91 Let k be algebraically closed. The category of F-isocrystals over k is
semi-simple. Its simple objects are the Nλ. An F-isocrystal contains an F-crystal iff
all its slopes are contained in [0, 1].

Consider in particular λ = 1/h. In this case it is not difficult to see that N1/h con-
tains auniqueunderlying F-crystal (up to isomorphism).Bymeans of theDieudonné-
Manin theorem, this implies that there is a unique one-dimensional p-divisible group
over k of height h which is not isogenous to a product of two p-divisible groups of
smaller heights. Explicitly, it can be obtained as follows. Start with a Lubin-Tate
formal group over the ring of integers of Qph (the unramified extension of degree h
ofQp), see [11], reduce it modulo p, and extend scalars fromFph to the algebraically
closed k. Honda has a different approach to the same groups, see [7].

5.4.6 Endomorphisms of F-Isocrystals

The algebra of endomorphisms (up to isogeny) of a p-divisible group over an alge-
braically closed field k can be calculated as the endomorphism algebra of its isocrys-
tal. This is a pleasant exercise in semi-linear algebra whose outcome is the following.

Proposition 92 End(Nλ) = D−λ, the division ring over Qp with invariant −λ

mod 1.

If N = D(G)[1/p] this means qEnd(G) � Dλ. Note the change in invariant,
from −λ to λ. This results from the fact that D(−) is a contravariant functor, so
End(D(G)) = End(G)opp and not End(G).

• Exercise: If 0 ≤ r ≤ s extend e′
i by e′

i+ms = pme′
i , define the F-crystal

Mλ =
s∑

i=1

We′
i , Fe

′
i = e′

i+r , Ve′
i = e′

i+s−r .

Then Nλ has a lattice isomorphic to Mλ (but there are others).

Over a non-algebraically closed perfect field k of characteristic p, the category of
isocrystals is not semi-simple anymore. However, one still has a direct sum decom-
position with respect to slopes.

Definition 93 Let k be perfect. Call an isocrystal N isoclinic of slope λ if N ⊗k k̄ �
Nn

λ .

Proposition 94 (Slope decomposition) Let k be perfect and N an F-isocrystal over
k. Then N = ⊕λ∈QN (λ) where N (λ) is isoclinic of slope λ.
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Let λ1 < λ2 < · · · < λn be the slopes of N . Then the Newton polygon N P(N )

is the convex polygon starting at (0, 0), and having slopes λi with horizontal length
rk(N (λi )). Its break points are in Z2.

5.5 The Grothendieck-Messing Period Map

5.5.1 The Quasi-Logarithm and a Big Diagram

Let R, S ∈ AdicZp , π : S pd
� R a divided power thickening, and S �

lim← S/(ker π)n. Assume S to be flat over Zp, e.g., (S
pd
� R) = (OC � OC/p).

Start with a p-divisible group G0 over R and let G/S lift G0/R . Both the universal
covering G̃ and the Grothendieck-Messing crystal MG have a “crystalline nature”,
and our goal is to relate them. We do so via a big commutative diagram. The “top
floor”maps to the “bottom floor” via canonical maps or via log’s (to keep the diagram
readable, not all the “logarithms” are shown). Its rows are exact.

ωG∨/S ↪→ EG(S) · · · → G(S)
↗ αG ↗ sG ↗ |

TpG(S) ↪→ ˜G(S) →
pr0

G(S) logG

| ↓
... ωG∨/S,Q ↪→ MG(S)Q · · · → Lie(G)Q
↓ ↗ ↗ qlog ↗

VpG(S) ↪→ ˜G(S) →
θ

Lie(G)Q

(5.1)

The groups appearing in the diagram have all been defined. Let us explain the various
maps starting at the top.

• sG(x0, x1, . . . ) = lim[pn]EG(ξn), if EG(S) # ξn 
→ xn ∈ G(S).The convergence
follows from the fact that

⋂
n≥0 p

nωG∨/S = 0. Since pn(xn) = x0 the right square
of the top floor commutes. This defines then αG between the two kernels.

• αG = sG |TpG(S) has the following interpretation (check directly from the defini-
tions!):

x ∈ TpG(S) � xn ∈ G(S)[pn] = HomS(G
∨[pn], Ĝm)

compatible w.r.t. G∨[pn] ↪→ G∨[pn+1], so take its differential "Lie(x)" :

� αG(x) = Lie(x) ∈ Hom(Lie(G∨), Ĝa) = ωG∨/S.

• qlogG = logEG ◦sG . If G � G (a formal group), fix coordinates on EG, let x =
(x0, x1, . . . ) and ξn be as above, then (check!)
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qlogG(x) = lim
m

lim
n

1

pm
[pn+m]EG(ξn).

• θ = logG ◦pr0 = prMG
Lie(G) ◦ qlogG .

We emphasize that the maps sG, qlogG are morphisms of crystals, hence depend, like
their source and target, only on G0/R; θ, αG depend on G/S and will be related to
the GM (Grothendieck-Messing) / HT (Hodge-Tate) period maps, respectively.

5.5.2 Rapoport-Zink Deformation Spaces

To define the period maps we have to discuss deformation spaces of p-divisible
groups. Although the first such spaces were studied by Lubin and Tate [12] and
Drinfeld [4], we shall follow the more general, and somewhat different, set-up of
Rapoport and Zink [17]. The latter differs from the former, both in technical details
(the category of test objects is different), and in more substantial matters (allowing
quasi-isogenies at the special fiber), as well as in allowing polarization, endomor-
phisms, and level structures. Needless to say, this is a quick survey, leading to the
notions necessary for the study of vector bundles on the Fargues-Fontaine curve, and
all proofs are omitted.

Let k be an algebraically closed field of char. p, W = W (k), and H0/k a fixed
p-divisible group, of height h and dimension d. Set

M0 = MH0(W � k) = D(H∨
0 ) � Wh .

As our test objects we take rings S from the category NilpW of W -algebras in which
p is locally nilpotent, e.g., OC/pN . Note that S need not be noetherian or local and
if it is local noetherian, it need not be complete. With such an S we associate the set

D(S) = {(G, ι)|G/S p div gp, ι : G ×S S/p
q.i.��� H0 ×k S/p}.

Next, if S is a p-adic W -algebra, we let D(S) = lim← D(S/pN ). If S is also flat
overW, ι induces, as we have seen, an isomorphismMG(S)Q � M0 ⊗W SQ. Indeed,
the ideal pS having canonical divided powers, we know that

MG(S) = MG0(S � S/p)

where G0 is the reduction of G modulo p. The quasi-isogeny ι induces an isomor-
phism

MG0(S � S/p)Q � M(H0 ×k S/p)(S � S/p)Q = M0 ⊗W SQ.
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5.5.3 Examples and Representability

Let us first compare with the more classical treatment in [12], followed also in [6]. In
theLubin-Tate case d = 1, and H0/k is the uniqueone-dimensional formal p-divisible
group of height h (see the discussion following Theorem 91). As test objects Lubin
and Tate take R ∈ Ck , the category of complete local noetherian rings with residue
field k. For such an R, S = R/mN

R ∈ NilpW.As their deformation functor, Lubin and
Tate take the functor

M : Ck � Sets

M(R) = {(H, ι)| H formal gp/R, ι : H ×R k
q.i.��� H0}.

Note that by the uniqueness of H0, H ×R k and H0 must be isomorphic (though not
necessarily via ι). The endomorphism algebra of H0 is the skew-field D1/h and

D×
1/h = 〈#〉 · O×

D1/h

where# is the Frobenius isogeny of degree p. This shows that the functorM breaks
up, in the Lubin-Tate case, to a disjoint union indexed by ht (ι) ∈ Z of copies of the
sub-functor M0, in which ι is required to be an isomorphism between H ×R k and
H0. The paper [12] indeed concerns M0 and not M, but the difference is minor.

We claim that for S = R/pN ∈ NilpW we haveD(S) = M(S). This follows from
rigidity of quasi-isogenies (see [10], Lemma 1.1.3)

qHomS/p(H ×S S/p, H0 ×k S/p) � qHomR/mR (H ×S S/mRS, H0).

In general, outside theLubin-Tate case, a quasi-isogenyG0 → H0 of height 0 need

not be an isomorphism, so cannot replace
q.i.��� by �, even on D0 (the sub-functor of

D where ht (ι) = 0).
The deformation problems, whether in the Rapoport-Zink language, or in the one

of Lubin-Tate orDrinfeld, are easy to pose. Their description can be subtle, especially
if one adds PEL structure (which we have not, so far). Here are some examples.

Example 95 1) d = 1, h = 2, H0 = Qp/Zp × μp∞ . Since Qp/Zp andμp∞ do not
deform (the first since it is étale, the second since it is the Cartier dual of an étale
group)

D0(S) = ExtS(Qp/Zp, μp∞) � Ĝm(S)

(“Serre-Tate canonical coordinate”). Note D0(k) is a point.
2) d = 2, h = 4, H0 = H1/2 × H1/2 where H1/2 is the one-dimensional formal

group of height 2 (the formal group of a supersingular elliptic curve). D0(k) will
be infinite because there are P1(k)’s of pairwise non-isomorphic G isogenous to H0

(Moret-Bailly families).
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3) Lubin-Tate case: H0 the unique one-dimensional ht h formal p-divisible group
over k. Then the main result of [12] is that D0 = M0 is represented by “the open
unit disk in h − 1 variables” Sp f (W [[X1, . . . , Xh−1]]) and again D0(k) is a point.

These examples are typical. The main representability theorem is the following.

Theorem 96 (Drinfeld, Rapoport-Zink) The functor D is pro-representable by a
formal scheme over W whose ideal of definition is locally finitely generated. Every
irreducible component of its (reduced) special fiber is proper over k.

5.5.4 The Grothendieck-Messing Period Map

To the formal schemeD (we use the same letter to denote the functor and the formal
scheme representing it) one can associate an analytic space. In the old days this was a
rigid analytic space that was called “the generic fiber ofD in the sense of Raynaud”.
The suffix “in the sense of Raynaud” meant to remind the reader that formal schemes
over Sp f (W ) do not have a generic fiber, as they are simply a compatible system of
schemes over W/pnW for all n ≥ 1. Nevertheless, Raynaud had a round-about way
to attach to D a rigid analytic space. One of the advantages of Huber’s adic spaces
is that we can truly speak of generic fibers. While the intuition is clear (at least in
examples 1 and 3 above), we skip in these notes the foundational aspects of adic
spaces completely, and refer to the literature.

Let Dad
η therefore denote the analytic space associated to D (over W [1/p]). The

period map πGM will be a map of analytic spaces (over W [1/p]) from Dad
η to

Gr(d, M0)
ad
η . For simplicity we only describe it on (C,OC)-points.

Take S = OC . For (G, ι) ∈ D(OC) we have a quotient map

M0 ⊗W C
ι−1

� MG(OC)Q � Lie(GC )

from our fixed M0 ⊗W C � Ch onto a d-dimensional vector space.
This defines a “period map” from the moduli space to a Grassmanian

πGM(G, ι) ∈ Gr(d, M0)(C) � Gr(d, h)(C).

Once again, the definition, at least on C-points, is straightforward and intuitively
clear. The basic features of the definition are more subtle:

• Fact: The period map πGM : Dad
η → Gr(d, M0)

ad
η is an étale analytic map.

• Example (Dwork): d = 1, h = 2, H0 = Qp/Zp × μp∞ . Then D = Ĝm, Dad
η is

the open unit disk " around 1, and πGM :" → A1 ⊂ P1 is q 
→ log(q). This is
typical: (a) log is analytic étale, but (b) it is not algebraic, (c) its kernel inOC -points
is discrete but infinite (roots of unity) and (d) log(1 + mC) = C (it is surjective
on closed points). Nevertheless (e) log is an isomorphism on W -valued points,
log : 1 + pW � pW (p > 2), and in fact will continue to be an isomorphism
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on OK -points as long as the absolute ramification index of K is < p − 1. It is
not an accident that this is also the estimate needed to insure that mK has divided
powers.Quite generally, if (G, ι) ∈ D(W ) (unramified) theGrothendieck-Messing
theorem allows to identify the deformation with its period:

Theorem 97 (Grothendieck-Messing) The assignment G 
→ Lie(G) is a bijection
between the liftings G of H0 to W (up to strict isomorphism) and the liftings of
MH0(k) � Lie(H0) to a free quotient M0 � L over W.

5.5.5 The Period Map in the Lubin-Tate Case

To analyze what happens to the period morphism when the ramification in K grows,
let us examine once again the Lubin-Tate case.

• In the Lubin-Tate case, the map sending (G, ι) ∈ M0(W ) to πGM(G, ι) ∈
Gr(1, M0)(W ) � Ph−1(W ) is one-to-one, and its image is the W -points of the
residue disk Rx in Ph−1(W ) reducing to x = [MH0(k) � Lie(H0)]. However:

• The relation between the Lubin-Tate coordinates (u1, . . . , uh−1) ∈ mh−1
W and the

projective-space coordinates on the residue disk Rx is the period morphism and is
highly transcendental. Look up the appendix to [6], where formulae are worked
out when h = 2.

• If K is a finite ramified extension of W [1/p], OK � k is in general no longer a
pd thickening, so the Grothendieck-Messing theorem does not apply. We still have
D0(OK ) � M0(OK ) ≈ mh−1

K , but a quasi-isogeny of height 0 over OK /p (unlike
over k!) is not necessarily an isomorphism, so (G, ι) ∈ D0(OK ) only provides a
map

M0 ⊗W K � MG(OK )Q → Lie(GK ),

i.e., a point of Gr(1, M0)(K ) � Ph−1(K ). Since it is not defined integrally, we
cannot talk about its reduction.

• The resulting period map fromD0(OK ) to Ph−1(K ) is not 1 : 1 in general, and its
image is not confined anymore to a residue disk. In the Lubin-Tate case (but not in
general), when K is replaced by C , it is even surjective, and its fibers are infinite.

The period morphismπGM : M(OC) → Ph−1(C) was studied further in [6]. Part (i)
of the following theorem is natural and expected. The action of D× on Ph−1(C)

is via the (projective) regular representation. The element # acts (in appropriate
coordinates) like ⎛

⎜⎜⎜⎜⎝

0 p
1 0
1 0

· · · · · ·
1 0

⎞

⎟⎟⎟⎟⎠
.
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Part (ii) describes the fibers of the period morphism; two deformations of H0 to R
are in the same fiber if and only if the given quasi-isogeny between their reductions
modulo p lifts to R.

Point (iii) is the afore-mentioned surjectivity on closed points, special to this
case, which is eventually an explicit computation (nowadays embedded in the more
general question of characterizing the image by conditions of weak admissibility,
see below).

In (iv) we consider, for the first time, level structure. Over the Lubin-Tate moduli
space lies the Lubin-Tate tower, whose n-th layer is a formal scheme parametrizing
deformations of H0 together with a full pn-level structure, i.e., a trivialization of
the group H(R)[pn]. This turns out to be a finite Galois covering with Galois group
GLh(Z/pnZ),whose associated coveringof analytic spaces (“genericfibers”) is even
étale (the special fibers are highly ramified though). Letting M∞,η be the analytic
space associated with the full tower (properly defined!) and Mη = M0,ad

η the one
associated with M0 (nothing but the h − 1 dimensional open polydisk), we get

Mη � M∞,η/GLh(Zp).

Point (iv) is very pleasing: it re-interprets (ii) and (iii) as saying that projecting Mη

further down to Ph−1
C by the period morphism is the same as dividing M∞,η all the

way by GLh(Qp). This is as close as we can get to saying that the period morphism
is “like dividing by a group action”; had GLh(Zp) been normal in GLh(Qp) this
would have been the case!

Theorem 98 (Gross-Hopkins) (i) πGM is D×-equivariant (D = D1/h the endomor-
phism algebra).

(ii) πGM(G, ι) = πGM(G ′, ι′) ⇔ ∃ f : G q.i.→ G ′, ι′ ◦ f̄ = ι.
(iii) π0

GM : M0(OC) → Ph−1(C) is surjective.
(iv) M∞,η → Mη → Ph−1

C gives Ph−1
C = M∞,η/GLh(Qp).

In general, the image of πGM is restricted by the notion of “weak admissibil-
ity”. Given an exact sequence (recall M0 = MH0(W � k) = D(H∨

0 ) � Wh)

0 → Fil → M0,C → M0,C/Fil → 0

with associatedfiltration Fil0 = M0,C ⊃ Fil1 = Fil ⊃ Fil2 = 0, N = (N , Fil) =
(M0,C , Fil) becomes a filtered F-isocrystal. We recall the definitions from §4.2.

• If N ′ is a sub-F-isocrystal let Fil ′ = Fil ∩ (N ′ ⊗W [1/p] C), N ′ = (N ′, Fil ′).
• For any filtered F-isocrystal N define

tNewton(N ) = vp(det(�))

(independent of the matrix representing �, since this matrix is unique up to σ -
conjugation),

tHodge(N ) =
∑

i dim gr iFil• = dim Fil.
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• Call N = (N , Fil) weakly admissible if for any sub F-isocrystal N ′ ⊂ N

tHodge(N
′) ≤ tNewton(N

′)

with equality for N ′ = N .

• Given H0/k , the weakly admissible period domain is an open subspace Fwa ⊂
Gr(d, M0)

ad
η such that Fwa(C) consists of all d-dimensional quotients

M0,C → U = M0,C/Fil

for which N is weakly admissible.

Theorem 99 (i) The image of πGM : Dad
η → Gr(d, M0)

ad
η factors through Fwa.

(ii) The image contains all the classical points of Fwa (points whose residue field
is a finite extension of K0 = W [1/p]).

Remarks: (i) is relatively easy. (ii) is a variant of “weakly admissible filtered
isocrystals are admissible”. However, in contrast to what we did in §4.2, we consider
p-divisible groups over C , not only over finite extensions K of Qp. As a result,
the Galois representation “evaporates” and we cannot argue anymore directly via
the functor Dcris as we did there. We shall later relate (ii) to the geometry of the
Fargues-Fontaine curve. Finally, we mention that Hartl described the non-classical
points in Fa = Im(πGM). In general, Fa �= Fwa .

5.6 The Hodge-Tate Decomposition and the HT Period Map

Besides the Grothendieck-Messing period map, the Big Diagram (5.1) contains the
seeds for the other periodmorphism, the Hodge-Tate periodmap. There is a beautiful
duality between the two (see [5], §8.1 and the last chapter of [18]), on which we can
not comment here for lack of space. However, since we already touched on it, let us
at least give the definition, which goes back to Tate’s fundamental paper [23].

5.6.1 The HT Exact Sequence

Recall the map αG : TpG(R) → ωG∨/R . Let R = OC and let−(1) denote Tate twist.
The following theorem was the beginning of p-adic Hodge theory, 50 years ago. It
holds in the generality stated here, although, strictly speaking, at the time Tate proved
it only if G is defined over OK for a finite extension K of Qp.

Theorem 100 (Tate) (i) There is an exact sequence

0 → Lie(GC )(1)
α∨
G∨ (1)→ TpG(OC) ⊗Zp C

αG→ ωG∨/C → 0.
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(ii) (Hodge-Tate decomposition) If G is defined over OK where K ⊂ C is a
complete discrete valuation field, then the sequence splits canonically (respecting
�K = Gal(K̄/K ) action)

TpG(OC) ⊗Zp C � ωG∨/C ⊕ Lie(GC )(1).

Remark 101 A few remarks are in order.
(i) The map α∨

G∨(1) is constructed from αG∨ by duality. It sends Lie(GC)(1) =
Hom(ωG/C , Tpμp∞ ⊗ C) to

Hom(TpG
∨ ⊗ C, Tpμp∞ ⊗ C) � TpG ⊗ C.

The last equality comes from Cartier duality, and is the reason we needed not only
to dualize, but also to twist by Zp(1) = Tpμp∞ .

(ii) To get (ii) from (i) invoke Tate’s theorems in Galois cohomology, that
H 0(�K ,C(i)) = H 1(�K ,C(i)) = 0 if i �= 0 and both cohomology groups are 1-
dimensional if i = 0. In the absence of a Galois action, there is no canonical splitting
of (i).

(iii) Let G = A [p∞] where A is an abelian scheme over OC . Dualizing, (i) is
equivalent to the existence, and degeneration, of a spectral sequence (Faltings: the
Hodge-Tate spectral sequence)

E2
i, j = Hi (A ,�

j
A /C)(− j) ⇒ Hi+ j

et (A ,Qp) ⊗Qp C.

Compare with the Hodge spectral sequence that starts with E1
i, j = H j (A ,�i

A /C).
This applies to any proper smooth variety overC (Faltings), and in fact to any proper
and smooth rigid analytic variety, even if not algebraic, by recent work of Scholze.

(iv) The fact that the Hodge-Tate decomposition is not valid in families, only the
HT filtration, leads to the HT period map, just as over C the fact that only the Hodge
filtration varies holomorphically in families lies behind the classical period map to
classify spaces of Hodge structures.

5.6.2 The Hodge-Tate Period Map

Let us put ourselves once again in the Lubin-Tate case. Consider the full Lubin-Tate
tower and take

(G, ι, α∞) ∈ M∞(OC).

Use α∞ : Zh
p � TpG(OC) to construct the linear map (αG ⊗ 1) ◦ (α∞ ⊗ 1) :

Ch → ωG∨/C , whose kernel is a line (because G∨ is h − 1 dimensional). Mapping
(G, ι, α∞) to this line is

πHT : M∞(OC) → Ph−1(C).
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Unlike πGM , πHT is defined only onM∞. It goes canonically to Ph−1(C) while
πGM landed in P(M0)(C) � Ph−1(C).

• Fact: πHT comes from an analytic map M∞,η → (Ph−1)adη . In our “basic” case
(but not always), it is also étale.

• For δ ∈ D×, πHT ◦ δ = πHT (obvious).
• πHT intertwines the actions of GLh(Qp) on M∞,η and Ph−1 (obvious).

A global detour (h = 2): modular curves at the infinite level. Let Yn be the (open)
modular curve of full level pn over Qp and Y∞ the scheme lim← Yn . A point of
Y∞(C) is an elliptic curve E/C equipped with an isomorphism α∞ : Z2

p � TpE .

As above, we get πHT : Y∞(C) → P1(C). Let X = P1(C) \ P1(Qp) (the Drinfeld
p-adic upper half plane).

Theorem 102 The map πHT : Y∞(C) → P1(C) is surjective. We have
π−1
HT (P

1(Qp)) = Y∞(C)ord (the pairs (E, α∞) where E has bad, or good ordi-
nary reduction) and π−1

HT (X) = Y∞(C)ss (the pairs where E has good supersingular
reduction).

Note the anomaly: at infinite level the “fat” set Y∞(C)ord gets mapped to the
“meager” P1(Qp) and the meager Y∞(C)ss fills up its complement X.

If E has goodordinary or badmultiplicative reduction andG = E[p∞] then TpG0,

the Tate module of the “kernel of reduction” is a line in TpG, and spans ker(αG ⊗ 1).
This proves πHT (E, α∞) ∈ P1(Qp). Conversely, if E is defined over a CDVF K and
πHT (E, α∞) ∈ P1(Qp) then �K � TpG is potentially reducible, so E is ordinary.
This proves the theorem, except for the surjectivity. In general, for the Lubin-Tate
tower, we have the following.

Theorem 103 (i) The image ofπHT : M∞,η → (Ph−1)adη is theDrinfeld p-adic sym-
metric domain

X(C) = Ph−1(C) \
⋃

a∈(Ph−1)∗(Qp)

Ha .

(ii) πHT induces M∞,η/D
×
1/h � X(C) (on the level of C-points, so far).

6 Conclusion of the Classification Theorem

6.1 What We Have to Prove and a Reduction Theorem

Recall that we have to prove the following criterion, an almost formal consequence
of which was the classification theorem for vector bundles (Theorem 79).

Criterion. For every vector bundle E on X and for every n ≥ 1, if we have a short
exact sequence

0 → OX (−1

n
) → E → OX (1) → 0,
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of vector bundles, then H 0(X, E) �= 0, and the same is true if X is replaced by Xh ,
its cyclic unramified covering of degree h, for every h ≥ 1.

In what follows we shall only check things for X , but it should be understood that
the same proofs go over to every Xh, with the necessary modifications.

We first replace this criterion with two similar-looking criteria, which are together
equivalent to it. Aswill turn out at the end, and asmight be implied by the formulation,
there is a certain duality underlying the relation between (i) and (ii) below. Note that
the exact sequences in the newcriteria are not short exact sequences of vector bundles,
but modifications of vector bundles.

Theorem 104 ([5], 5.6.29, p.233-236) Suppose: (i) Whenever there is a short exact
sequence

0 → E → OX (1/n) → F → 0

with F a torsion sheaf of degree 1, then E � On
X .

(ii) If n ≥ 1 and there is an exact sequence

0 → On
X → E → F → 0

where E is a vector bundle and F is a torsion sheaf of degree 1, then for some
1 ≤ m ≤ n

E � On−m
X ⊕ OX (1/m).

Suppose further (i) and (ii) hold with Xh instead of X for every h ≥ 1. Then the
Criterion holds.

Exercise. Prove (i) and (ii) assuming the classification theorem, by the arithmetic
of degrees and ranks.

Proof We skip the proof. It involves arguments on vector bundles on curves, in the
style of the proof of Theorem 79. In particular, p-divisible groups and period maps
do not show up (yet) in this reduction step. �

6.2 Modification of Vector Bundles Associated with
p-Divisible Groups

6.2.1 The Modification

Let (D, ϕ) be an isocrystal (ϕ-module) over F̄p.Thus D is a finite dimensional vector
space over

L = Q̆p = W (F̄p)[1/p].

Fix ∞ ∈ X as before, with residue field C , so that B+
dR = ÔX,∞. Let t = log[ε] be

the usual uniformizer. Giving a modification
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0 → E ′ → E(D, ϕ) → F → 0

with F coherent torsion module supported at ∞ is the same as giving a B+
dR-lattice

$ ⊂ D ⊗L B+
dR, F = i∞∗(D ⊗L B+

dR/$).

Recall that the modification is called minuscule if F is killed by t, i.e., is a C =
B+
dR/(t) -vector space. Giving a minuscule modification is therefore the same as

giving a filtration
FilDC

in DC = D ⊗L C = D ⊗L B+
dR/D ⊗L t B+

dR .

Definition 105 A triple (D, ϕ, FilDC ) is admissible if

E(D, ϕ, FilDC ) = ker(E(D, ϕ) → i∞∗(DC/FilDC) → 0

is the trivial vector bundle.

Remark. In the proof of weakly admissible = admissible we considered vector
bundles E(D, ϕ, Fil) where Fil was a filtration defined over E (or over a finite
extension K of E , although for simplicity of the presentation we took it to be E =
Qp). But in principle we can take the filtered ϕ-module to have its filtration defined
overC , and nowwe need to consider all of these. Of course, we lose the Galois action
on the Tate module of the p-divisible group, if the latter is only defined over OC ,
and we can not use Tate’s theorems in Galois cohomology the way we did before.
The geometry of the Fargues-Fontaine curve, in a sense, replaces these arguments.

6.2.2 The p-Divisible Group H and Its Grothendieck-Messing Period

Fix a p-divisible group H over k = F̄p (the “model p-divisible group”) and a defor-
mation H , in the sense of Rapoport and Zink, to OC . This means that we are given
a quasi-isogeny

ρ : H ⊗k OC/p ��� H ⊗OC OC/p

(previously we took it in the opposite direction; we changed direction to adhere to
the notation of [5]). We let

D = MH(W � k)[1/p]

be the rational covariant Dieudonné module of H, so that (D, ϕ) is an isocrystal as
above (with slope in [0, 1]). Here MG signifies the Grothendieck-Messing crystal,
i.e., the Lie algebra of the universal vectorial extension ofG,W = W (k), andW � k
has the standard pd structure on pW . The quasi-isogeny ρ induces, as we have seen,
an isomorphism
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MH(OC)[1/p] = MH(OC � OC/p)[1/p] ρ� MH(OC � OC/p)[1/p] b.c.= DC .

The Hodge filtration exact sequence

0 → ωH∨/C → MH(OC)[1/p] → Lie(H/C) → 0

induces therefore a filtration FilDC ⊂ DC in theC-points of our “model isocrystal”.
As the deformation (H, ρ) changes, this filtration changes too.We record the fact that
if H is of height h and dimension d then FilDC is of dimension h − d = dimH∨.
Thus

πGM(H, ρ) = (DC , FilDC) ∈ F = Grd,h(C) = Grd(DC).

This is the Grothendieck-Messing (or Hodge-de Rham) period of the point (H, ρ) ∈
D(OC) = Dad

η (C) (theOC -points of the Rapoport-Zink deformation space, regarded
as a formal scheme, or theC-points of the associated analytic space). F is the “period
domain”, a Grassmanian in this case (again, regarded as an analytic space).

In particular, if d = 1 and H is connected we are in the “Lubin-Tate case”. In
this case, as we have remarked, H is unique. Furthermore, F = Ph−1 and D, the
Rapoport-Zink (= Lubin-Tate) deformation space, consists of Z copies (indexed
by the height of the quasi-isogeny ρ) of Sp f (W [[X1, . . . , Xh−1]]), the open unit
polydisk of dimension h − 1 over W .

In this Lubin-Tate case the map

πGM : D → F = Ph−1

has been analyzed by Gross and Hopkins, and was shown to be onto. This fact will
play a crucial role in the proof.

6.2.3 Admissibility of (D, p−1ϕ, Fi l DC)

In general, as we have seen, the image of πGM lies in Fwa, the weakly admissible
period domain. However, we are able now to prove that (D, p−1ϕ, FilDC) is admis-
sible in the sense defined above (which is a priori stronger than weakly admissible).
The p−1 in front of ϕ is an artifact having to do with the fact that we are using now
the covariant D. Passing from contravariant to covariant involves taking the Cartier
dual, hence a Tate twist (otherwise the slope would end up in [−1, 0] instead of
[0, 1]).

Note that since H is defined only over C , VpH does not carry a Galois action.
Thus admissibility can not be defined now as being in the image of the functor Dcris ,
as we had before. But as we shall see, admissibility will still bring back to the picture
VpH.

Proposition 106 The filtered ϕ-module (D, p−1ϕ, FilDC) is admissible, and we
have a natural map



340 E. de Shalit

E(D, p−1ϕ, FilDC) � VpH ⊗E OX .

Proof (sketch) Step 1. Recall the diagram (5.1). We first remark that we have, for
the universal covering,

H̃(OC) = H̃(OC/a) = H̃k(OC/a)
ρ� H̃(OC/a).

where a is an ideal of definition of OC containing p, modulo which ρ induces an
isomorphism

Hk ⊗k OC/a � H ⊗OC OC/a

(such an a can be shown to exist; in fact, its existence is equivalent to the existence
of the quasi-isogeny ρ, but the further ρ is from an isomorphism, the closer a would
have to be to mC ; note that mC itself is not an ideal of definition).

By Proposition 83, since H is defined over a perfect Fp-algebra (namely, the field
k),

H̃(OC/a) � H((OC/a)
	) = H(OF ).

We therefore get
VpH(OC) ⊂ H̃(OC) � H(OF ).

Step 2. From the definition of the contravariant Dieudonné module D∗ using
homomorphisms from H to the ind-scheme of co-Witt vectors one gets the isomor-
phism

H(OF ) � HomW (k)(D
∗, B+

F )ϕ=1

(see [5], Corollaire 4.4.4). Since here we have been using the rational covariant
Dieudonné module, which is the rational Dieudonné module of the Cartier dual H∨,
we get

H(OF ) � (D ⊗L B+
F )ϕ=p = (D ⊗L BF )

ϕ=p.

Under this homomorphism, the E-subspace VpH(OC) gets mapped isomorphically
to

Fil(D ⊗L BF )
ϕ=p = θ−1(FilDC)

(see [5], Proposition 4.5.14). This follows essentially from the fact that the quasi-
logarithm map in the big diagram (5.1) maps VpH to the Hodge filtration ωH∨/OC .
We thus get an exact sequence

0 → VpH(OC) → H̃(OC)
log→ Lie(H/C) → 0

|| || ||
0 → Fil(D ⊗L BF )

ϕ=p → (D ⊗L BF )
ϕ=p θ∗→ DC/FilDC → 0

.

Step 3. This means that the induced homomorphism of vector bundles
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VpH(OC) ⊗E OX → E(D, p−1ϕ)

(expressed for example in termsof B-pairs) factors through the sub-bundleE(D, p−1ϕ,

FilDC). The upshot is that we have used the period morphism for (H, ρ) and the
“big diagram” to construct a homomorphism of vector bundles

u : VpH(OC) ⊗E OX → E(D, p−1ϕ, FilDC).

When we tensor over E = Bϕ=1
F with BF [1/t] we get an isomorphism

VpH(OC) ⊗E BF [1/t] � D ⊗L BF [1/t]

(ifwe used Bcris instead thiswould have recovered the old Fontaine-Messing compar-
ison isomorphism).Thus, remembering thatH 0(X \ {∞},OX ) = Be = BF [1/t]ϕ=1,

u is generically an isomorphism, so it is injective. To show that u is an isomorphism
all that remains is to compare degrees on both sides. On the left the degree is 0 (a
trivial vector bundle). On the right it comes out to be

dimH − dim H = 0

as well. We conclude that u is an isomorphism, and the Proposition is proved. �

6.3 Conclusion of the Proof

We sketch the main steps.

6.3.1 Proof of Point (i)

We have to show that if

0 → E → OX (1/n) → F → 0

is an exact sequence, and F is a degree 1 torsion sheaf supported at ∞, then E is
trivial. But thisO(1/n) is just E(D, ϕ) where D is the Dieudonné module of H, the
unique one-dimensional formal group of height n over k. By the theorem of Gross-
Hopkins, on the surjectivity of the Grothendieck-Messing period map on C-points
in the Lubin-Tate case, there exists a deformation (H, ρ) of H over OC as above,
such that F = i∞,∗(D ⊗ B+

dR/$) where

$/(D ⊗ t B+
dR) = FilDC = ker(MH(OC)[1/p] → Lie(H/C)).
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This puts us in the situation considered above, where the modification is the one
associated with a deformation H of H, and the triviality of E = E(D, ϕ, FilDC )

follows from the last Proposition.

6.3.2 Proof of Point (ii)

Theproof of (i)was the key step, and theway p-divisible groups and their periodmaps
enter the classification of vector bundles. In away, it was again theweak admissibility
= admissibility that played a role, but we could not use the Colmez-Fontaine theorem
of course, because that theorem was only about Galois representations, and we had
to consider deformations of H over OC , and not only over OK for a finite extension
K of E = Qp. (Anyhow, our short proof of Colmez-Fontaine in §4.2 relied on the
classification theorem, so the argument would have been circuitous.)

The proof of point (ii) is somewhat similar, in principle, even if the technical
details are different. Recall that we start with a modification

0 → On
X → E → F → 0 (6.1)

where F is a torsion sheaf of degree 1 supported at ∞, and we must show that for
some 1 ≤ m ≤ n

E � On−m
X ⊕ OX (1/m).

After a reduction Lemma, which rules out the possibility of factoring an On−m
X

from E, thereby replacing n by a smaller m, one applies a duality principle, taking
(derived) H om(−,OX (1/n)) of coherent sheaves. We get a new modification of
vector bundles

0 → G ′ → G → H → 0 (6.2)

where

G ′ = H om(E,OX (1/n)), G = OX (1/n)
n, H = E xt1(F ,OX (1/n)).

Since End(OX (1/n)) = "1/n , the division algebra over E = Qp of invariant 1/n
(commonly denoted D1/n and sometimes B1/n, but we have too many D′s and B ′s),
this new modification lies in a category of modifications of sheaves with "1/n-
structure, that are related to filtered ϕ-modules with "1/n-structure, in the same
way we had before. Note that H om(F ,OX (1/n)) = 0 if F is torsion, while H =
E xt1(F ,OX (1/n)) is easily computable, sinceF is a sky-scraper sheaf supported at
∞, so we are talking about extensions as B+

dR-modules, and B+
dR is a DVR. It leads

of course, again, to a torsion sheaf supported at ∞, and if F was killed by t (the
modification was minuscule), so is H.

In fact, taking H om"1/n (−,OX (1/n)) back recovers the original modification
(6.1), so one obtains an anti-equivalence between two similar categories of modifi-
cations.
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What we have to prove is that G ′ is trivial. This is analogous to what we did in
point (i), and is done in the same way, essentially. What replaces the surjectivity
of the period map on Lubin-Tate groups (the Gross-Hopkins theorem) is a similar
argument on the period map into the Drinfeld symmetric domain, which is the period
domain for the kind of formal groups with "1/n action that show up here. In fact, in
the Drinfeld case, unlike the Lubin-Tate case, the period map

πGM : Dad
η → Fwa = Ph−1 \

⋃

a∈(Ph−1)∗(E)

Ha

is an isomorphism of analytic (adic, or rigid analytic) spaces.
For the details, see [5], 8.3.2.

7 Appendix: Weierstrass Division in Ainf

7.1 Notation

Let F be an algebraically closed perfectoid field of characteristic p. Let 
 ∈ mF ,
u ∈ W (OF )

× and
ξ = p − [
 ]u ∈ W (OF ),

primitive of degree 1 (every primitive element of degree 1 is of this form). Let

θ : W (OF ) → W (OF )/(ξ) =: D

denote the canonical projection. The key to proving that D = OC for a complete
valued field C , for which F � C	, is the “Weierstrass division theorem” below. In
[5], Corollaire 2.2.10, the authors prove it in an indirect way, first showing that every
element of D has roots of any order in D, and then deducing it from this fact. We give
a variation on this proof that is a little more direct, in the sense that it first proves a
Weierstrass division theorem in Wn(OF ) and then uses this theorem to deduce what
we want along the lines of the Fargues-Fontaine proof.

7.2 Weierstrass Division in Wn(OF)

We have Wn(OF ) = W (OF )/(pn+1). Fix f ∈ W (OF ).

Proposition 107 There exists a z ∈ OF such that f ≡ [z] mod (ξ, pn+1).

Proof We work in Wn(OF ). Write f = (b0, . . . , bn) with bi ∈ OF . Write u =
(u0, . . . , un) with ui ∈ OF and u0 ∈ O×

F . We need to solve
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(b0, . . . , bn) = (z, 0, . . . , 0) + (p − [
 ](u0, . . . , un))(x0, . . . , xn).

Replacing 
 by 
u0 we may assume that u0 = 1. Reducing modulo p we see that
z = b0 + 
 x0. The equation can be written as

(b0, b1, . . . , bn) = (b0 + 
 x0, x
p
0 , . . . , x p

n−1) − (1, u1, . . . , un)(
 x0,

px1, . . . ,


pn xn).

Recall that
(x0, . . . , xn) + (y0, . . . , yn) = (S0, . . . , Sn)

(u0, . . . , un)(x0, . . . , xn) = (P0, . . . , Pn)

where the Si and Pi are isobaric of weight pi in the variables x j and y j (0 ≤ j ≤ i).
Here x j and y j are given weight p j and the u j are treated as scalars of weight 0. We
therefore have to solve the n equations

Hi (x0, . . . , xi ) = x p
i−1 + 
Qi (x0, x1, . . . , xi−1) − 
 pi xi − bi = 0

(1 ≤ i ≤ n) where the Qi (x0, . . . , xi−1) are polynomials of weight pi (i.e., all their
monomial have weight ≤ pi ) with integral coefficients.

We claim that
An = OF [x0, . . . , xn]/(H1, . . . , Hn)

is finite overOF [xn], and in fact generated over it as a module by x j0
0 x j1

1 . . . x jn−1
n−1 with

0 ≤ ji ≤ p − 1. Observe that Hi has weight pi , contains a term λx p
i−1 with λ ∈ O×

F ,
but also a linear term in xi . If not for this linear term in xi , the finiteness of An over
OF [xn] would be trivial. That linear term complicates things a little bit.

Let M be theOF [xn]-submodule of An spanned by x j0
0 x j1

1 . . . x jn−1
n−1 with 0 ≤ ji ≤

p − 1. For an integer w we denote by Mw and Aw
n theOF -submodules of M and An

spanned by monomials x j = x j0
0 x j1

1 . . . x jn−1
n−1x

jn
n of weight

w( j) = j0 + pj1 + · · · + pn jn ≤ w

(and in the case of M, ji ≤ p − 1 for i ≤ n − 1). These areOF -submodules of finite
rank, so it is enough to prove that

Aw
n = Mw + 
 Aw

n .

This is clear sincemodulo
 Aw
n we have Hi ≡ x p

i−1 − bi , so these equations may be
used to reduce the exponents of x0, . . . , xn−1 in anymonomial to the range [0, p − 1].

Thus An is finite over OF [xn]. We claim that the map OF [xn] → An is injective.
Suppose 0 �= h ∈ OF [xn] were in the kernel. If h ∈ mF then tensoring with F we
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would get F ⊗OF An = 0, but F ⊗OF An � F[x0] because over F the equation Hi

can be used to solve for xi in terms of the lower x j . If h were not a scalar, we
would still get that F ⊗OF An is finite over F[xn]/(h), hence finite over F, again a
contradiction.

By the going-up theorem, for every homomorphism ψ : OF [xn] → OF corre-
sponding to a prime ideal ker(ψ) = p ⊂ OF [xn], there exists a prime idealP ⊂ An

lying above p. The integral domain An/P is a finite extension of OF = OF [xn]/p.
But since F is algebraically closed we must have An/P = OF . This means that ψ
extends to a homomorphism An → OF , hence the equations Hi have a common zero
in OF , as desired. �

7.3 Weierstrass Division in W(OF)

To go further we need a few lemmas.

Lemma 108 Let R be a p-adically complete ring. If p �= 2, any element of 1 + p2R
(if p = 2, any element of 1 + 8R) has a p-th root.

Proof Since ordp(k!) ≤ k/(p − 1) we find easily that

(1 + p2x)1/p =
∞∑

k=0

(
1/p

k

)
p2k xk

converges p-adically. If p = 2 we need to work modulo p3 but the argument is the
same. �

Lemma 109 The ideal (ξ) is closed in the weak topology of W (OF ). In particular

⋂

n≥2

(ξ, pn, [
 ]n) = (ξ).

Proof Suppose f = ξgn + hn where hn ∈ (pn, [
 n]). Then ξgn converges to f in
the weak topology. We must show that gn converges in the weak topology. Write
gn =∑∞

k=0[yn,k]pk . Since convergence in the weak topology is convergence of each{yn,k}n separately, we may assume that k0 is the first index for which this sequence
does not converge in OF . Subtracting the limit of

∑k0−1
k=0 [yn,k]pk and dividing by

pk0 we may assume, without loss of generality, that k0 = 0. But then reducing ξgn
modulo p we see that u0
 yn,0 is a Cauchy sequence, which forces yn,0 to be Cauchy
as well, hence to converge. �

Lemma 111 Any element of D has a p-th root in D.

Proof We must show that for any f ∈ W (OF ) there exists a g ∈ W (OF ) such that
f ≡ g p mod (ξ). By the Proposition, for every n ≥ 1 we may write
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f ≡ [zn] + pn+2hn mod (ξ).

For n sufficiently large νF (

n) > νF (zn) or else by Lemma 109 f ≡ 0 mod (ξ)

and there is nothing to prove. But p ≡ [
 ]u mod (ξ) so

f ≡ [zn](1 + p2[
 nz−1
n ]unhn) mod (ξ).

The factor [zn] has a p-th root of course, and the second factor also has a p-th root
by Lemma 108. �

Theorem 112 (Weierstrass division) Let ξ ∈ W (OF ) be a primitive element of
degree 1. Then for every f ∈ W (OF ) there exist z ∈ OF and g ∈ W (OF ) such that

f = [z] + ξg.

In other words, θ( f ) = θ([z]). Note that, contrary to Weierstrass division in
Zp[[X ]], z and g are not unique.

Proof The ring D = W (OF )/(ξ) is p-adically complete and separated and has no
p-torsion. The first assertion follows from the same fact for W (OF ) and the fact
that (ξ) is p-adically closed. The second is immediate: if p f = (p − [
 ]u)g then
reducing modulo p we see that g is divisible by p, so f ≡ 0 mod (ξ).

Wemay therefore tilt D to form D	 = lim←(D/pD), the inverse limit taken with
respect to Frobenius, and identify it with sequences (α(0), α(1), . . . ) of elements of D
in which α(i+1)p = α(i). Furthermore, Lemma 111 shows that α(0) may be arbitrary.
We have

D/pD = W (OF )/(ξ, p) = OF/(
)

and its perfection D	 is therefore canonically identified with OF . The map sending
z ∈ OF = D	 to z� ∈ D is the map z 
→ θ([z]), as can be seen in the diagram.

OF
z 
→[z]−→ W (OF )

ι|| ↓ θ

D	 �−→ D

Here ι(z) = (z1/p
n

mod 
OF ), and ι(z)� = lim θ([z1/pn ])pn = θ([z]) because
θ([z1/pn ]) ∈ D is a lift of z1/p

n
mod 
OF ∈ D/pD.

But we have just remarked that any element of D is of the form z� for some z.
This is what we had to show. �

Corollary 113 D is an integral domain.

Proof This follows from θ([z1])θ([z2]) = θ([z1z2]). �
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Simplicial Galois Deformation Functors

Yichang Cai and Jacques Tilouine

Abstract In [13], the authors showed the importance of studying simplicial gener-
alizations of Galois deformation functors. They established a precise link between
the simplicial universal deformation ring R pro-representing such a deformation
problem (with local conditions) and a derived Hecke algebra. Here we focus on the
algebraic part of their study which we complete in two directions. First, we introduce
the notion of simplicial pseudo-characters and prove relations between the (derived)
deformation functors of simplicial pseudo-characters and that of simplicial Galois
representations. Secondly, we define the relative cotangent complex of a simplicial
deformation functor and, in the ordinary case, we relate it to the relative complex of
ordinary Galois cochains. Finally, we recall how the latter can be used to relate the
fundamental group of R to the ordinary dual adjoint Selmer group, by a homomor-
phism already introduced in [13] and studied in greater generality in [26].

1 Introduction

Let p be an odd prime. Let K be a p-adic field, let O be its valuation ring, � be
a uniformizing parameter, and k = O/(�) be the residue field. Let � be a profinite
group satisfying

(�p) the p-Frattini quotient �/� p(�, �) is finite.
For instance, � could be Gal(FS/F), the Galois group of the maximal S-ramified

extension of a number field F with S finite. LetG be a split connected reductive group
scheme overO. Let ρ : � → G(k) be a continuous Galois representation. Assume it
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is absolutely G-irreducible, which means its image is not contained in P(k) for any
proper parabolic subgroup P of G. The goal of this paper is to present and develop
some aspects of the fundamental work [13] and the subsequent papers [26] and [2],
by putting emphasis on the algebraic notion of simplicial deformation over simplicial
Artin local O-algebras of ρ.

In the papers mentioned above, it is assumed that the given residual Galois repre-
sentation is automorphic: ρ = ρπ for a cohomological cuspidal automorphic repre-
sentation on the dual group ofG over a number field F , then the (classical and simpli-
cial) deformation problems considered impose certain local deformation conditions
satisfied by ρ at primes above p and at ramification primes for π. The fundamental
insight of [13] is to relate the corresponding universal simplicial deformation ring to
a derived version of the Hecke algebra acting on the graded cohomology of a locally
symmetric space. Actually, the main result [13, Theorem 14.1] (slightly generalized
in [2]) is that after localization at the non-Eisenstein maximal ideal m of the Hecke
algebra corresponding to ρ, the integral graded cohomology in which π occurs is free
over the graded homotopy ring of the universal simplicial deformation ring (and the
degree zero part of this ring is isomorphic to the top degree integral Hecke algebra).
This is therefore a result of automorphic nature.

Here, on the other hand, we want to focus on the purely algebraic machinery of
simplicial deformations and pseudo-deformations and their (co)tangent complex for
a general profinite group � satisfying (�p).

In [16, Sect. 11], V. Lafforgue introduced the notion of a pseudo-character for a
split connected reductive group G. He proved that this notion coincides with that of
G-conjugacy classes ofG-valuedGalois representations over an algebraically closed
field E . The main ingredient of his proof is a criterion of semisimplicity for elements
in G(E)n in terms of closed conjugacy class; it is due to Richardson in characteristic
zero. It has been generalized to the case of an algebraically closed field of arbitrary
characteristic by [5] replacing semisimplicity by G-complete reducibility (see also
[23] and [4, Theorem 3.4]). Note that absolute G-irreducibility implies G-complete
reducibility.

Using this (and a variant for Artin rings), Boeckle-Khare-Harris-Thorne [4, The-
orem 4.10] proved a generalization of Carayol’s result for any split reductive group
G: any pseudo-deformation over G of an absolutely G-irreducible representation ρ
is a G-deformation.

In Sect. 3.2.2,we reformulate the theory of [4, Sect. 4] in the language of simplicial
deformation. Our main results are Theorem 3.16 and Theorem 3.20. In Sect. 3.3, we
propose a generalization of this theory for derived deformations. Unfortunately, the
result in this context is only partial, but still instructive.

In Sect. 4, after recalling the definition of the tangent and cotangent complexes
and its calculation for a Galois deformation functor, we introduce a relative version
of the cotangent complex. In order to relate the cotangent complex of the universal
simplicial ringR pro-representing a deformation functor to a Selmer group, we shall
take � = GF,S for a number field F and for S equal to the set of places above p and
∞, and we shall deal with the simplest sort of local conditions, namely, unramified
outside p and ordinary at each place above p. We show that the cotangent complex
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LR/O ⊗R T is related to the ordinary Galois cochain complex. Note that here the
base T is arbitrary, whereas in [13] and [2] it was mostly the case T = k.

Finally, in Sect. 5, we recall how this is used to define a homomorphism, first
constructed in [13, Lemma 15.1] and generalized and studied in [26], which relates
the fundamental group of the simplicial ordinary universal deformation ring and the
ordinary dual adjoint Selmer group.

This work started during the conference on p-adic automorphic forms and Per-
fectoids held in Bangalore in September 2019. The authors greatly appreciated the
excellent working atmosphere during their stay.

2 Classical and Simplicial Galois Deformation Functors

2.1 Classical Deformations

Let� be a profinite groupwhich satisfies (�p).When necessary,we view� as projec-
tive limit of finite groups �i . Let ArtO be the category of Artinian local O-algebras
with residuefield k. Recall that the frameddeformation functorD� : ArtO → Setsof
ρ is defined by associating A ∈ ArtO to the set of continuous liftings ρ : � → G(A)

which make the following diagram commute:

�
ρ

ρ̄

G(A)

G(k).

(1)

Let Z be the center of G overO. We assume throughout it is a smooth group scheme
over O. Let ̂G(A) = Ker(G(A) → G(k)), resp., ̂Z(A) = Ker(Z(A) → Z(k)). Let
g = Lie(G/O), resp., z = Lie(Z/O) be theO-Lie algebra ofG, resp., Z , and let gk =
g ⊗O k, resp., zk = z ⊗O k. The universal deformation functorD = Defρ : ArtO →
Sets is defined by associating A ∈ ArtO to the set of ̂G(A)-conjugacy classes of
D�(A). As an application of Schlessinger’s criterion (see [21, Theorem 2.11]), the
functorD� is pro-representable, and when ρ̄ satisfies H 0(�, gk) = zk , the functorD
is pro-representable (see [25, Theorem 3.3]).

We shall consider (nearly) ordinary deformations. In this case, we always suppose
� = GF,S ,where F is a numberfield and S = Sp ∪ S∞ is the set of places above p and
∞. Note that � is profinite and satisfies (�p). For any v ∈ Sp, let �v = Gal(Fv/Fv).
Let B = T N ⊂ G be a Borel subgroup scheme (T is a maximal split torus and N
is the unipotent radical of B); all these groups are defined over O. Let � be the
root system associated to (G, T ) and �+ the subset of positive roots associated to
(G, B, T ). Assume that for any place v ∈ Sp, we have

(Ordv) there exists gv ∈ G(k) such that ρ|�v
takes values in g−1

v · B(k) · gv .
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Letχv : �v → T (k)be the reductionmodulo N (k)of gv · ρ|�v
· g−1

v .Letω : �v →
k× be the mod. p cyclotomic character. We shall need the following conditions for
v ∈ Sp:

(Regv) for any α ∈ �+, α ◦ χv 	= 1, and
(Reg∗

v ) for any α ∈ �+, α ◦ χv 	= ω.
We can define the subfunctor D�,n.o ⊂ D� of nearly ordinary liftings by the

condition that ρ ∈ D�,n.o if and only if for any place v ∈ Sp there exists gv ∈ G(A)

which lifts ḡv such that ρ|�v
takes values in g−1

v · B(A) · gv . Note that this implies
that the homomorphism χρ,v : �v → T (A) given by gv · ρ|�v

· g−1
v lifts χv .

We define the subfunctorDn.o ⊂ D of nearly ordinary deformations byDn.o(A) =
D�,n.o(A)/̂G(A).

Recall [25, Proposition 6.2]:

Proposition 2.1 Assume that H0(�, gk) = zk and that (Ordv) and (Regv) hold for
all places v ∈ Sp. Then Dn.o is pro-representable, say by the complete noetherian
local O-algebra Rn.o.

Note that the condition (Reg∗
v ) will occur later in the study of the cotangent

complex in terms of the (nearly) ordinary Selmer complex.

Remark 2.2 As noted in [25, Chapter 8], under the assumption (Regv) (∀v ∈ Sp),
the morphism of functors Dn.o → ∏

v∈Sp Defχv
given by [ρ] �→ (χρ,v)v∈Sp provides

a structure of �-algebra on Rn.o for an Iwasawa algebra � called the Hida-Iwasawa
algebra.

Remark 2.3 A lifting ρ : � → G(A) of ρ̄ is called ordinary of weight μ if for any
v ∈ Sp, after conjugation by gv , the cocharacter ρ|Iv : Iv → T (A) = B(A)/N (A) is
given (via the Artin reciprocity map recv) by μ ◦ rec−1

v : Iv → O×
Fv

→ T (A).
If we assume that ρ̄ admits a lifting ρ0 : � → G(O) which is ordinary of weight

μ, we can also consider the weight μ ordinary deformation problem, defined as
the subfunctorDn.o,μ ⊂ Dn.o where we impose the extra condition to [ρ] that for any
v ∈ Sp, after conjugation by some gv , ρ|Iv : Iv → T (A) = B(A)/N (A) is given (via
the Artin reciprocity map recv) by μ ◦ rec−1

v : Iv → O×
Fv

→ T (O) → T (A). This
problem is pro-representable as well, say by Rn.o

μ . The difference is that Rn.o has a
natural structure of algebra over an Iwasawa algebra, while, if ρ0 is automorphic,
Rn.o

μ is often proven to be a finite O-algebra (see [29] or [9], for instance).

These functors have natural simplicial interpretations.

2.2 Simplicial Reformulation of Classical Deformations

In this section, we’ll try to introduce the basic notions of simplicial homotopy theory
and proceed at the same time to give a simplicial definition of the deformation functor
of ρ̄.
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Recall that a groupoid is a category such that all homomorphisms between two
objects are isomorphisms. Let Gpd be the category of small groupoids. We have a
functor Gp → Gpd from the category Gp of groups to Gpd sending a group G to
the groupoid with one object • and such that End(•) = G.

A model category is a category with three classes of morphisms called weak
equivalences, cofibrations, and fibrations, satisfying five axioms, see [15, Definition
7.1.3]. The category of groups is not a model category. But it is known (see [24,
Theorem 6.7]) that the category of groupoids Gpd is a model category, where a
morphism f : G → H is

(1) a weak equivalence if it is an equivalence of categories;
(2) a cofibration if it is injective on objects; and
(3) a fibration if for all a ∈ G, b ∈ H and h : f (a) → b there exists g : a → a′ such

that f (a′) = b and f (g) = h.

If C is a model category, its homotopy category Ho(C) is the localization of C at
weak equivalences. It comes with a functor C → Ho(C) universal for the property
of sending weak equivalences to isomorphisms.

In Gpd, the empty groupoid is the initial object and the unit groupoid consisting
in a unique object with a unique isomorphism is the final object. In a model category,
a fibration, resp., cofibration, over the final object, resp., from the initial object, is
called a fibrant, resp., cofibrant object. Note that every object ofGpd is both cofibrant
and fibrant, and the homotopy category Ho(Gpd) is the quotient category of Gpd
modding out natural isomorphisms. If we regard a group G as a one point groupoid,
the functorGp → Ho(Gpd) so obtained has the effect of modding out conjugations,
so, for any finite group �i , we have

HomGp(�i ,G(A))/Gad(A) ∼= HomHo(Gpd)(�i ,G(A)). (2)

To construct the deformation functor, we first need to recall the construction of
the classifying simplicial set BG associated to a groupoid G.

Let � be the category whose objects are sets [n] = {0, . . . , n} and morphisms
are non-decreasing maps. It is called the cosimplicial indexing category (see [15,
Definition 15.1.8]). Given a category C, the category sC of simplicial objects of C is
the category of contravariant functors F : � → C. In particular, sSets is the category
of simplicial sets. For any n ≥ 0, let �[n] be the simplicial set

[k] �→ Hom�([k], [n]).

Note that the category sSets admits enriched homomorphisms: if X,Y are two sim-
plicial sets, there is a natural simplicial set sHom(X,Y ) whose degree zero term is
HomsSets(X,Y ). Actually,

sHom(X,Y )n = HomsSets(X × �[n],Y ).
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For X ∈ sSets, the morphism (d1, d0) : X1 → X0 × X0 generates an equivalence
relation ˜X1. The zeroth homotopy set π0X is defined as the quotient set X0/˜X1. Let
X be fibrant and let x ∈ X0; one can define for i ≥ 1, the i-th homotopy set πi (X, x)
as the quotient of the set of pointed morphisms HomsSets∗(�[n], X) (morphisms
sending the boundary ∂�[n] to x) by the homotopy relation (see [27, Sect. 8.3]).
Then πi (X, x) is naturally a group which is Abelian when i ≥ 2 (see [11, Theorem
I.7.2]).

For X ∈ sSets, let�X be the category whose objects are pairs (n,σ)where n ≥ 0
and σ : �[n] → X is a morphism of simplicial sets, andmorphisms (n,σ) → (m, τ )

are given by a non-decreasing map ϕ : [n] → [m] such that σ = τ ◦ ϕ. The category
�X is called the category of simplices of X (see [15, Definition 15.1.16]).

The following lemma is well known:

Lemma 2.4 Suppose C is a category admitting colimits; let F : � → C be a covari-
ant functor. Let F∗ : C → sSets be the functor which sends A ∈ C to the simplicial
set X = (Xn)n≥0 given by Xn = HomC(F([n]), A) at n-th simplicial degree, and let
F∗ : sSets → C be the functor which sends X ∈ sSets to lim−→

(n,σ)∈�X

F(σ). Then F∗ is

left adjoint to F∗.

Proof It’s clear that F∗ is well defined, and F∗ is well defined since every simplicial
set morphism f : X → Y induces a functor �X → �Y . For X ∈ sSets and A ∈ C,
we have

HomC(F∗(X), A) ∼= lim←−
(�[n]→X)∈(�X)op

HomC(F([n]), A)

∼= lim←−
(�[n]→X)∈(�X)op

HomsSets(�[n], F∗(A))

∼= HomsSets( lim−→
(�[n]→X)∈�X

�[n], F∗(A))

∼= HomsSets(X, F∗(A)),

where the last equation follows from [15, Proposition 15.1.20]. So F∗ is left adjoint
to F∗. �

Example 2.5 (1) Let� → Cat be the functor defined by regarding [n] as a posetal
category: its objects are 0, 1, . . . n andHom[n](k, �) has atmost one element, and
is non-empty if and only if k ≤ �. We write P : sSets → Cat and B : Cat →
sSets for the associate left adjoint functor and right adjoint functor, respectively.
The functor B is called the nerve functor. The simplicial set BC = (Xn) is
defined by sets Xn ⊂ Ob(C)[n] of (n + 1)-tuples (C0, . . . ,Cn) of objects of C
with morphisms Ck → C� when k ≤ �, which are compatible when n varies;
it is a fibrant simplicial set if and only if C ∈ Gpd (see [11, Lemma I.3.5]). In
a word, for BC to be fibrant, it must have the extension property with respect
to inclusions of horns in �[n] (∀n ≥ 1). For n = 2, it amounts to saying that
all homomorphisms in C are invertible; for n > 2, the extension condition is
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automatic (details in the reference above). For C ∈ Cat, we have PBC ∼= C, so
HomCat(C,D) ∼= HomsSets(BC, BD) (∀C,D ∈ Cat). Note that B(C × [1]) ∼=
BC × �[1] (product is the degreewise product); in consequence, when C ∈ Cat
and D ∈ Gpd, two functors f, g : C → D are naturally isomorphic if and only
if B f and Bg are homotopic.

(2) As a corollary of (1), we have HomGpd(GPX, H) ∼= HomsSets(X, BH) for
X ∈ sSets and H ∈ Gpd, where GPX is the free groupoid associated to PX .
We remark that GPX and π1|X | (the fundamental groupoid of the geometric
realization) are isomorphic in Ho(Gpd) (see [11, Theorem III.1.1]).

Recall that a functor between twomodel categories is called right Quillen if it pre-
serves fibrations and trivial fibrations (i.e., fibrations which are weak equivalences).

Lemma 2.6 The nerve functor B : Gpd → sSets is fully faithful and takes fibrant
values (Kan-valued). Moreover, it is right Quillen.

Proof For the first statement, we know by Example 2.2 that: HomCat(C,D) ∼=
HomsSets(BC, BD) (∀C,D ∈ Cat, hence the fully faithfulness. Moreover BC is
fibrant for a groupoid C.

For the second statement, note that B obviously preserves weak equivalences;
moreover, by definition, B f : BG → BH is a fibration if and only if it has the right
lifting property with respect to inclusions of horns in �[n], ∀n ≥ 1 (see [11, page
10]). For n = 1 this means exactly that f is a fibration, while for n ≥ 2 it’s automatic
(see the proof of [11, Lemma I.3.5]). �

Let A ∈ ArtO. Consider the group G(A) of A-points of our reductive group
scheme G. Passing to homotopy categories, we get the isomorphism

HomHo(Gpd)(�i ,G(A)) ∼= HomHo(sSets)(B�i , BG(A))

∼= π0 sHomsSets(B�i , BG(A)).

Let X = (B�i )i be the pro-simplicial set associated to the profinite group �. We
define

HomsSets(X,−) = lim−→
i

HomsSets(B�i ,−).

Then the Galois representation ρ̄ : � → G(k) gives rise to an element of
HomsSets(X, BG(k)), which we also denote by ρ̄. In order to take into account the
deformations of ρ̄, we introduce the overcategory M = sSets/BG(k) of pairs (Y,π)

where Y is a simplicial set and π : Y → BG(k) is a morphism of simplicial sets. The
categoryM has a natural simplicial model category structure: the cofibrations, fibra-
tions, weak equivalences, and tensor products are those of sSets (see [11, Lemma
II.2.4] for the only non-trivial part of the statement). When we consider X ∈ M, we
specify the morphism ρ̄ : X → BG(k); similarly, when we consider BG(A) ∈ M
for A ∈ ArtO, we specify the natural projection BG(A) → BG(k). For X,Y ∈ M,
we can define an object ofM of enriched homomorphisms sHomM(X,Y ) forwhich
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sHomM(X,Y )n consists in the morphisms X × �[n] → Y compatible to the pro-
jections to BG(k). Since BG(A) → BG(k) is a fibration, BG(A) ∈ M is fibrant.
Similar to the discussion of the preceding paragraph, we have

D(A) ∼= HomHo(M)(X, BG(A)) ∼= π0 sHomM(X, BG(A)) (3)

for A ∈ ArtO. Note that sHomM(X, BG(A)) is the fiber over ρ̄ of the fibration map

sHomsSets(X, BG(A)) → sHomsSets(X, BG(k)),

so it actually calculates the homotopyfiber (see [15, Theorem13.1.13 andProposition
13.4.6]).

When � = GF,S , S = Sp ∪ S∞ and ρ̄ satisfies (Ordv) for v ∈ Sp, we reformulate
the definition of the nearly ordinary deformation subfunctorDn.o ⊂ D as follows. For
each v ∈ Sp, we form �v = lim←−i

�i,v where �v → � induces morphisms �i,v → �i

of finite groups. Let Xv = (B�i,v)i be the pro-simplicial set associated. For the fixed
Borel subgroup B of G, we have a natural cofibration BB(A) ⊂ BG(A). Recall that
ḡv · ρ̄|�v

· ḡ−1
v takes values in B(k). Let Dv(A) be π0 of the fiber over ρ̄|�v

of the
fibration map

sHomsSets(Xv, BG(A)) → sHomsSets(Xv, BG(k)),

and let Dn.o
v (A) be π0 of the fiber over ḡv · ρ̄|�v

· ḡ−1
v of the fibration map

sHomsSets(Xv, BB(A)) → sHomsSets(Xv, BB(k)).

Then there is a natural functorial inclusion iv ofDn.o
v (A) intoDv(A). LetDloc(A) =

∏

v∈Sp Dv(A) and Dn.o
loc (A) = ∏

v∈Sp Dn.o
v (A). There is a natural functorial map

D(A) → Dloc(A), resp., Dn.o
loc (A) → Dloc(A), induced by ρ �→ (ρ|�v

)v∈Sp , resp., by
∏

v∈Sp iv .
We define Dn.o(A) as the fiber product

Dn.o(A) = D(A) ×Dloc(A) Dn.o
loc (A).

Lemma 2.7 Suppose (Regv) holds for each place v ∈ Sp. Then the functor Dn.o is
isomorphic to the classical nearly ordinary deformation functor.

Proof It follows easily from what precedes. See [2] or [26]. �
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2.3 Simplicial Reformulation of Classical Framed
Deformations

LetGpd∗ and sSets∗ be themodel categories of based groupoids and based simplicial
sets (in other words, under categories ∗\Gpd and ∗\sSets), respectively. Then we
have

HomGp(�i ,G(A)) ∼= HomHo(Gpd∗)(�i ,G(A)). (4)

Let M∗ be the over and under category ∗\sSets/BG(k). Note that X and BG(A) for
A ∈ AlgO are naturally objects ofM∗. Proceeding as the unframed case, we see that

D�(A) ∼= HomHo(M∗)(X, BG(A)) ∼= π0 sHomM∗(X, BG(A)). (5)

We remark that sHomM∗(X, BG(A)) is weakly equivalent to
hofib∗(sHomM(X, BG(A)) → sHomM(∗, BG(A))), since sHomM(X, BG
(A)) → sHomM(∗, BG(A)) is a fibration.

2.4 Derived Deformation Functors

We have defined the functor sHomM(X, BG(−)) from ArtO to sSets. Our next
goal is to extend this functor to simplicial Artinian O-algebras over k, which we
define below.

Let sCR be the category of simplicial commutative rings (these are simplicial
sets which are rings in all degrees and for which all face and degeneracy maps are
ring homomorphisms). A usual commutative ring A can be regarded as an element of
sCR, which consists of A on each simplicial degreewith identity face and degeneracy
maps. In this way, we regard O and k as objects of sCR. With the natural reduction
mapO → k, the over and under category O\sCR/k has a simplicial model category
structure, such that the cofibrations, fibrations, and weak equivalences are those of
sCR, and the tensor product of A ∈ O\sCR/k and K ∈ sSets is the pushout of
O ← O ⊗ K → A ⊗ K . Note that degreewise surjective morphisms A → B are
fibrations.

Since sCR is cofibrantly generated, any A ∈ O\sCR admits a functorial cofibrant
replacement c(A):

O ↪→ c(A)
∼
� A.

Concretely, for any n ≥ 0 the O-algebra c(A)n is a suitable polynomial O-algebra
mapping surjectively onto An . The key property of the cofibrant replacement is that

-c(A) is a cofibrant object and
-c(A) → A is a trivial fibration (i.e., a fibration which is a weak equivalence).



358 Y. Cai and J. Tilouine

Note that the functor B �→ sHom(c(A), B) commutes to weak equivalence (this
is called homotopy invariance), while it is not necessarily the case of the functor
B �→ sHom(A, B).

For A ∈ O\sCR, for any i ≥ 0, πi A is a commutative group and
⊕

i πi A is
naturally a graded O-algebra, hence a π0A-algebra (see [10, Lemma 8.3.2]).

Definition 2.8 The simplicial Artinian O-algebras over k, which we denote by
O\sArt/k , is the full subcategory of O\sCR/k consisting of objects A ∈ O\sCR/k
such that:

(1) π0A is Artinian local in the usual sense.
(2) π∗A = ⊕i≥0πi A is finitely generated as a module over π0A.

Note that O\sArt/k is not a model category, and cofibrations, fibrations, and
weak equivalences in O\sArt/k are used to indicate those in O\sCR/k . Neverthe-
less, O\sArt/k is closed under weak equivalences since the definition only involves
homotopy groups. We also remark that every A ∈ O\sArt/k is fibrant since A → k
is degreewise surjective.

We define ON•G ∈ Alg�
O (i.e., a functor � → AlgO, also called a cosimplicial

object in AlgO) as follows: in codegree p we have ONpG = O⊗p
G , and the coface

and codegeneracy maps are induced from the comultiplication and the coidentity of
the Hopf algebraOG , respectively. Then for A ∈ AlgO, the nerve BG(A) is nothing
but HomAlgO (ON•G, A), with face and degeneracy maps induced by the coface and
codegeneracy maps in ON•G . When A ∈ O\sCR, the naïve analogy is the diagonal
of the bisimplicial set ([p], [q]) �→ HomAlgO (ONpG, Aq) (recall that the diagonal of
a bisimplicial set is a simplicial set model for its geometric realization). However,
we need to make some modifications using cofibrant replacements to ensure the
homotopy invariance.

Definition 2.9 (1) For A ∈ O\sCR, we define Bi(A) to be the bisimplicial set

([p], [q]) �→ HomO\sCR(c(ONpG), A�[q]),

with face and degeneracy maps induced by the coface and codegeneracy maps
in ON•G and the face and degeneracy maps in A�[•].

(2) The diagonal of Bi(A), which is denoted by diagBi(A), is the simplicial set

induced from the diagonal embedding �op → �op × �op Bi(A)−−−→ Sets.

When A is an O-algebra regarded as a constant object in O\sCR, we have

Bi(A)p,q = HomO\sCR(c(ONpG), A�[q]) ∼= HomAlgO (ONpG, A),

where the latter isomorphism is because the constant embedding functor is right
adjoint to π0 : O\sCR → AlgO. Hence, Bi(A) is just a disjoint union of copies of
BG(A) in indexq. In particular, for A ∈ O\sArt/k there is a naturalmapBi(A)•,q →
BG(k) for each q ≥ 0, so we may regard Bi(A) ∈ M�op

via the association [q] �→
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Bi(A)•,q (recall thatM is the overcategory sSets/BG(k)), and diagBi(A) is an object
ofM). Recall that any morphism X → Y in sSets admits a functorial factorization

X
∼

↪→ ˜X � Y

into a trivial cofibration and a fibration.

Definition 2.10 For A ∈ O\sArt/k , the simplicial setBG(A) is defined by the func-

torial trivial cofibration-fibration factorization diagBi(A)
∼

↪→ BG(A) � BG(k).

It’s clear that BG : O\sArt/k → M defines a functor. If A ∈ ArtO is regarded
as a constant simplicial ring, then diagBi(A) = BG(A) � BG(k) is a fibration, so
BG(A) is a strong deformation retract of BG(A) inM (see [15, Definition 7.6.10]).
In particular, these two are indistinguishable in our applications.

Remark 2.11 OurBG(A) is weakly equivalent to the simplicial set Ex∞ diagBi(A)

which is the definition chosen in [13, Definition 5.1]. There is a slight difference:
we want to emphasize the fibration BG(A) � BG(k), so that it’s more convenient
to handle the homotopy pullbacks.

As mentioned above, the reason for taking cofibrant replacements is

Lemma 2.12 If A → B is a weak equivalence, then so is BG(A) → BG(B).

Proof If A → B is a weak equivalence, then sHomO\sCR(c(ONpG), A) →
sHomO\sCR(c(ONpG), B) is a weak equivalence for each p ≥ 0, so is diagBi(A) →
diagBi(B) (see [15, Theorem 15.11.11]), and so is BG(A) → BG(B). �

Definition 2.13 (1) The derived universal deformation functor sD : O\sArt/k →
sSets is defined by

sD(A) = sHomM(X,BG(A)).

(2) The derived universal framed deformation functor sD� : O\sArt/k → sSets is
defined by

sD�(A) = hofib∗(sD(A) → sHomM(∗,BG(A))).

Remark 2.14 In [13, Definition 5.4], the derived universal deformation functor is
defined by

sD(A) = hofibρ̄(sHomsSets(X,Ex∞ diagBi(A)) → sHomsSets(X, BG(k))).

Since Ex∞ diagBi(A)) and BG(A) are weakly equivalent fibrant simplicial sets,
sHomsSets(X,Ex∞ diagBi(A)) is weakly equivalent to sHomsSets(X,BG(A)). But
sHomsSets(X,BG(A)) → sHomsSets(X, BG(k)) is a fibration, so sHomM
(X,BG(A)) is weakly equivalent to the homotopy fiber.
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When �=GF,S , S=Sp ∪ S∞ and ρ̄ satisfies (Ordv) for v ∈ Sp, we can define for
each v ∈ Sp a functor sDv : O\sArt/k → sSets as A �→ sHomsSets/BG(k) (Xv,

BG(A)), and a functor sDn.o
v : O\sArt/k → sSets as A �→ sHomsSets/BB(k) (Xv,

BB(A)). Let sDloc = ∏

v∈Sp sDv and let sDn.o
loc = ∏

v∈Sp sDn.o
v . Define sDn.o as the

homotopy fiber product
sDn.o = sD ×h

sDloc
sDn.o

loc .

Definition 2.15 Let F : O\sArt/k → sSets be a functor. We say F is formally
cohesive if it satisfies the following conditions:

(1) F is homotopy invariant (i.e., preserves weak equivalences).
(2) Suppose that

A B

C D

(6)

is a homotopy pullback square with at least one of B → D and C → D degree-
wise surjective, then

F(A) F(B)

F(C) F(D)

(7)

is a homotopy pullback square.
(3) F(k) is contractible.

We summarize our preceding discussions:

Proposition 2.16 The functors sD, sD�, sD?
v (here ? = ∅ or n. o) and sDn.o are all

formally cohesive.

Proof We first verify three conditions in the above definition for sD:

(1) If A → B is a weak equivalence, then BG(A) → BG(B) is a weak equivalence
betweenfibrant objects inM, so sHomM(X,BG(A)) → sHomM(X,BG(B))

is also a weak equivalence.
(2) First we show that

BG(A) BG(B)

BG(C) BG(D)

(8)



Simplicial Galois Deformation Functors 361

is a homotopy pullback square inM. Note that regarding the above diagram as
a diagram in sSets doesn’t affect the homotopy pullback nature. By [13, Lemma
4.31], it suffices to check:

(1) the functor �BG : O\sArt/k → sSets preserves homotopy pullbacks and
(2) π1BG(C) → π1BG(D) is surjective whenever C → D is degreewise sur-

jective.

Part (a) follows from [13, Lemma 5.2], and part (b) follows from [13, Corollary
5.3].
Since small filtered colimits of simplicial sets preserve homotopy pullbacks, we
may suppose the pro-object X lies inM. Then sHomM(X,−) : M → sSets is
a right Quillen functor, hence its right derived functor commutes with homotopy
pullbacks in the homotopy categories. But we are dealing with fibrant objects,
so in the homotopy category sHomM(X,−) is isomorphic to its right derived
functor. The conclusion follows:

(3) It’s clear that sD(k) is contractible.

The same argument applies for A → sHomM(∗,BG(A)). So sD� is formally
cohesive because it is the homotopy pullback of formally cohesive functors.

In the nearly ordinary case, we may replace X by Xv and replace G by B and the
same argument applies. Hence sD?

v (? = ∅ or n. o) is formally cohesive. Since sDn.o

is the homotopy limits of formally cohesive functors, it is also formally cohesive.
�

2.4.1 Modifying the Center

None of these functors cannot be pro-representable unless G is of adjoint type. If
G has a non-trivial center Z , we need a variant sDZ , resp., sDn.o

Z , of the functor
sD, resp., of sDn.o, in order to allow pro-representability. For this modification, we
follow [13, Section 5.4]. For a classical ring A ∈ Art, we have a short exact sequence

1 → Z(A) → G(A) → PG(A) → 1.

It yields a fibration sequence BG(A) → BPG(A) → B2Z(A). Indeed, given a sim-
plicial group H and a simplicial sets X with a left H -action, we can form the
bar construction N•(∗, H, X) at each simplicial degree (see [10, Example 3.2.4]),
which gives the bisimplicial set ([p], [q]) �→ Hq

p × X p =: Nq(∗, Hp, X p). Con-
sider the action Z(A) × G(A) → G(A), and the corresponding simplicial action
NpZ(A) × NpG(A) → NpG(A) (note that N•Z(A) is a simplicial group because
Z(A) is Abelian). We identify for each p ≥ 0,

BG(A)p = Np(∗, ∗, NpG(A)),

BPG(A)p = Np(∗, NpZ(A), NpG(A)),
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and we put
B2Z(A)p = Np(∗, NpZ(A), ∗)

(with diagonal face and degeneracy maps). The desired fibration is given by the
canonical morphisms of simplicial sets which in degree p are

Np(∗, ∗, NpG(A)) → Np(∗, NpZ(A), NpG(A)) → Np(∗, NpZ(A), ∗).

Let us generalize this to A ∈ O\sArt/k . For this, we note first that BPG(A)

can also be defined as the functorial fibrant replacement of diag(N ) where N is the
trisimplicial set associated to (p, q, r) �→ Nq(∗, NpZ(Ar ), Np(G(Ar )) (replacing
ONpG(Ar ) by its functorial cofibrant replacement as above).

Then, we define B2Z(A) as the functorial fibrant replacement of diag(N ′) where
N ′ is the trisimplicial set associated to (p, q, r) �→ Nq(∗, NpZ(Ar ), ∗) (replacing
ONpG(Ar ) by its functorial cofibrant replacement as above). The obvious system of
maps Nq(∗, NpZ(Ar ), NpG(Ar )) → Nq(∗, NpZ(Ar ), ∗) gives the desired map

BPG(A) → B2Z(A).

The functor sDZ : O\sArt/k → sSets is defined by the homotopy pullback square
(here for simplicity we useM, but the base maps are those induced from BG(k) →
BPG(k) → B2Z(k))

sDZ (A) sHomM(∗, B2Z(A))

sHomM(X,BPG(A)) HomM(X, B2Z(A)).

Then sDZ is formally cohesive because it is the homotopy pullback of formally
cohesive functors. Observe that sDZ and sD coincide when Z is trivial.

Remark 2.17 (1) We’ll see later that sDZ is pro-representable, under the assump-
tion H 0(�, gk) = zk .

(2) In the nearly ordinary case, one defines similarly sDloc,Z = ∏

v∈Sp sDv,Z and
sDn.o

loc,Z = ∏

v∈Sp sDn.o
v,Z . Note that the construction for sDZ is functorial in X

and G, we can form the homotopy pullback

sDn.o
Z = sDZ ×h

sDloc,Z
sDn.o

loc,Z .

All these functors are formally cohesive. We’ll see later that sDn.o
Z is pro-

representable, under the assumption H 0(�, gk) = zk .

Proposition 2.18 When A is homotopy discrete, we haveπ0sDZ (A) ∼= D(π0A) and
π0sD?

v,Z (A) ∼= D?
v(π0A) (here ? = ∅ or n. o). If in addition (Regv) holds for each

v ∈ Sp, then π0sDn.o
Z (A) ∼= Dn.o(π0A).
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Proof We may suppose A ∈ ArtO by the formal cohesiveness.
From the definition of sDZ , it follows that we have a natural fibration sequence

sD(A) → sDZ (A) → sHomM(∗, B2Z(A)).

Since πi sHomM(∗, B2Z(A)) vanishes for i 	= 2, we have π0sDZ (A) = π0sD(A).
By Equation 3 of Sect. 2.2, we have π0sD(A) = D(A), hence also π0sDZ (A) =
D(A).

By applying the same argument with X replaced by Xv and G replaced by B
when necessary, we obtain π0sD?

v,Z (A) ∼= D?
v(A) (? = ∅ or n. o).

We have the exact sequence

π1sDZ (A) ⊕ (
⊕

v∈Sp
π1sDn.o

v,Z (A)) →
⊕

v∈Sp
π1sDv,Z (A)

→ π0sDn.o
Z (A) → π0sDZ (A) ⊕ (

⊕

v∈Sp
π0sDn.o

v,Z (A)) →
⊕

v∈Sp
π0sDv,Z (A).

We will see later (Lemma 4.20) that sDv(A) is weakly equivalent to holim�Xhofib∗
(BG(A) → BG(k)), and (by Lemma 4.22) π1sDv(A) ∼= H 0(�v, ̂G(A)). Similarly
π1sDn.o

v (A) ∼= H 0(�v, ̂B(A)).
By the assumption (Regv) and Artinian induction, the map π1sDn.o

v (A) →
π1sDv(A) is an isomorphism, and so is π1sDn.o

v,Z (A) → π1sDv,Z (A). We deduce
that π0sDn.o

Z (A) is the kernel of D(A) ⊕ (
⊕

v∈Sp Dn.o
v (A)) → ⊕

v∈Sp Dv(A), which
is isomorphic to Dn.o(A) by Lemma 2.7. �

3 Pseudo-Deformation Functors

3.1 Classical Pseudo-Characters and Functors on FFS

Recall the notion of a (classical) G-pseudo-character due to V. Lafforgue (see [16,
Définition-Proposition 11.3] and [4, Definition 4.1]):

Definition 3.1 Let A be an O-algebra. A G-pseudo-character 	 on � over A is
a collection of O-algebra morphisms 	n : OadG

NnG
→ Map(�n, A) for each n ≥ 1,

satisfying the following conditions:

(1) For each n,m ≥ 1 and for each map ζ : {1, . . . , n} → {1, . . . ,m}, f ∈ OadG
NmG

,
and γ1, . . . , γm ∈ �, we have

	m( f ζ)(γ1, . . . , γm) = 	n( f )(γζ(1), . . . , γζ(n)),

where f ζ(g1, . . . , gm) = f (gζ(1), . . . , gζ(n)).
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(2) For each n ≥ 1, for each γ1, . . . , γn+1 ∈ �, and for each f ∈ OadG
NnG

, we have

	n+1( f̂ )(γ1, . . . , γn+1) = 	n( f )(γ1, . . . , γn−1, γnγn+1),

where f̂ (g1, . . . , gn+1) = f (g1, . . . , gn−1, gngn+1).

We denote by PsCh(A) the set of pseudo-characters over A.

We want to give a simplicial reformulation of this notion. As a first step, following
[28], let us consider FS the category of finite sets and FFS be the category of finite
free semigroups. For any finite set X , let MX be the finite free semigroup generated
by X ; we have�X = HomsemGp(MX , �) andGX = HomsemGp(MX ,G). For a semi-
group M ∈ FFS, note that HomsemGp(MX ,G) is a group scheme, so we can define
a covariant functor FFS → AlgO, M �→ OHomsemGp(M,G). We can also define the
covariant functor M �→ Map(HomsemGp(M, �), A). These functors on FFS extend
canonically those defined on the category FS by X �→ OGX and X �→ Map(�X , A).
Moreover, the natural transformation

OadG
GX → Map(�X , A)

extends uniquely to a natural transformation of functors on FFS. Actually, there
are several useful functors on FFS; by the canonical extension from FS to FFS
mentioned above, it is enough to define them on the objects [n], as in [28, Example
2.4 and Example 2.5]:

(1) The association [n] �→ �n defines an object �• ∈ SetsFFS
op
.

(2) For A ∈ AlgO, the association [n] �→ Map(�n, A) defines an object
Map(�•, A) ∈ AlgFFSO .

(3) The association [n] �→ OadG
NnG

defines an object OadG
N•G ∈ AlgFFSO .

(4) Let Gn//G = Spec(OadG
NnG

). Then for A ∈ AlgO, the association [n] �→
(Gn//G)(A) defines an object (G•//G)(A) ∈ SetsFFS

op
.

As noted in [28, Theorem 2.12], one sees that a G-pseudo-character 	 of � over
A is exactly a natural transformation fromOadG

N•G toMap(�•, A) (we call these natural
transformations AlgFFSO -morphisms).

Lemma 3.2 For A ∈ AlgO, there is a bijection between PsCh(A) and HomSetsFFS
op

(�•, (G•//G)(A)).

Proof It suffices to note that there is a bijection between SetsFFS
op
-morphisms�• →

(G•//G)(A) and AlgFFSO -morphisms OadG
N•G → Map(�•, A).

For an algebraically closed field A and a (continuous) homomorphism ρ : � →
G(A), we say that ρ is G-completely reducible if any parabolic subgroup con-
taining ρ(�) has a Levi subgroup containing ρ(�). Recall the following results in
[4, Sect. 4]:
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Theorem 3.3 (1) [4, Theorem 4.5] Suppose that A ∈ AlgO is an algebraically
closed field. Then we have a bijection between the following two sets:

(a) The set of G(A)-conjugacy classes of G-completely reducible group homo-
morphisms ρ : � → G(A).

(b) The set of pseudo-characters over A.

(2) [4, Theorem 4.10] Fix an absolutely G-completely reducible representation
ρ̄ : � → G(k), and suppose further that the centralizer of ρ̄ in Gad

k is scheme-
theoretically trivial. Let 	̄ be the pseudo-character, which regarded as an ele-
ment of HomSetsFFS

op (�•, (G•//G)(k)) is induced from (γ1, . . . , γn) �→ (ρ̄(γ1),
. . . , ρ̄(γn)). Let A ∈ ArtO. Then we have a bijection between the following two
sets:

(a) The set of ̂G(A)-conjugacy classes of group homomorphisms ρ :
� → G(A) which lift ρ̄.

(b) The set of pseudo-characters over A which reduce to 	̄ modulo mA.

Note that there are similarities between SetsFFS
op
and Sets�

op = sSets. In the
following, we shall prove similar results with SetsFFS

op
replaced by sSets.

3.2 Classical Pseudo-Characters and Simplicial Objects

Recall that on ON•G there are natural coface and codegeneracy maps, and we can
regardON•G as an object inAlg�

O (i.e., a cosimplicialO-algebra). The adjoint action
of G on G• induces an action of G on ON•G , which obviously commutes with the
coface and codegeneracy maps. In consequence, OadG

N•G is well defined in Alg�
O.

Definition 3.4 Wedefine the functor B̄G : AlgO → sSets by associating A ∈ AlgO
to HomAlgO (OadG

N•G, A) with face and degeneracy maps induced from the coface and
codegeneracy maps in OadG

N•G .

Note that the inclusionOadG
N•G → ON•G gives a natural transformation BG → B̄G.

3.2.1 Algebraically Closed Field

Let A ∈ AlgO be an algebraically closed field. We would like to characterize the
elements ofHomsSets(B�, B̄G(A)). They correspond to the quasi-homomorphisms,
which we define below.

Definition 3.5 Let � and G be two groups. We say a map ρ : � → G is a
quasi-homomorphism if there exists a map φ : � → G such that ρ(x)−1ρ(xy) =
φ(x)ρ(y) φ(x)−1 for any x, y ∈ �.
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Obviously a group homomorphism is a quasi-homomorphism. Note that every
quasi-homomorphism preserves the identity, and the set of quasi-homomorphisms
is closed under G-conjugations.

Remark 3.6 A quasi-homomorphism can fail to be a group homomorphism. We
can construct a quasi-homomorphism as follows: let σ : � → G be a group homo-
morphism, let φ : � → Z(σ(�)) be a group homomorphism and let g ∈ G, then
ρ(x) = g−1σ(x)φ(x)gφ(x)−1 is a quasi-homomorphism. Such ρ is not necessarily
a group homomorphism, an example could be the following: take G = H × H ,
σ : � → H × {e} and φ : � → {e} × H , and choose g such that g /∈ Z(φ(�)).

Lemma 3.7 Let ρ be a quasi-homomorphism and let φ as above. Then the map
φ induces a group homomorphism � → G/Z(ρ(�)) which doesn’t depend on the
choice of φ.

Proof For x, y, z ∈ �, we have

φ(xy)ρ(z)φ(xy)−1 = ρ(xy)−1ρ(xyz)

= (φ(x)ρ(y)φ(x)−1)−1(φ(x)ρ(yz)φ(x)−1)

= φ(x)ρ(y)−1ρ(yz)φ(x)−1

= φ(x)φ(y)ρ(z)φ(y)−1φ(x)−1.

Hence φ(xy)−1φ(x)φ(y) ∈ Z(ρ(�)) for any x, y ∈ �, and φ induces a group homo-
morphism � → G/Z(ρ(�)). For any other choice φ1 such that ρ(x)−1ρ(xy) =
φ1(x)ρ(y)φ1(x)−1, we see φ−1

1 (x)φ(x) ∈ Z(ρ(�)), and the conclusion follows. �

Lemma 3.8 Suppose that A ∈ AlgO is an algebraically closed field. Let f ∈
HomsSets(B�, B̄G(A)). Then we can associate a quasi-homomorphism ρ : � →
G(A) to f such that f sends (γ1, . . . , γn) ∈ B�n to the class in B̄G(A)n repre-
sented by (ρ(

∏i−1
j=1 γ j )

−1ρ(
∏i

j=1 γ j ))i=1,...,n.

Proof For each n ≥ 1 and γ = (γ1, . . . , γn) ∈ �n , we choose a representative
T (γ) = (g1, . . . , gn) ∈ G(A)n of f (γ) with closed orbit, note that any other rep-
resentative with closed orbit is conjugated to (g1, . . . , gn). Let H(γ) be the Zariski
closure of the subgroup of G(A) generated by the entries of T (γ). Let n(γ) be the
dimension of a parabolic P ⊆ GA minimal among those containing H(γ), we see
n(γ) is independent of the choice of P . Let N = supn≥1,γ∈�n n(γ). We fix a choice
of δ = (δ1, . . . , δn) satisfying the following conditions:

(1) n(δ) = N .
(2) For any δ′ ∈ �n′

satisfying (1), we have dim ZGA(H(δ)) ≤ dim ZGA(H(δ′)).
(3) For any δ′ ∈ �n′

satisfying (1) and (2), we have #π0(ZGA(H(δ))) ≤
#π0(ZGA(H(δ′))).

Write T (δ) = (h1, . . . , hn). As in the proof of [4, Theorem 4.5], we have the follow-
ing facts:
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(1) For any (γ1, . . . , γm) ∈ �m , there exists a unique tuple (g1, . . . , gm) ∈ G(A)m

such that (h1, . . . , hn, g1, . . . , gm) is conjugated to T (δ1, . . . , δn, γ1, . . . , γm).
(2) Let (h1, . . . , hn, g1, . . . , gm)be as above.Anyfinite subset of the groupgenerated

by (h1, . . . , hn, g1, . . . , gm) which contains (h1, . . . , hn) has a closed orbit.

We define ρ(γ) to be the unique element such that (h1, . . . , hn, ρ(γ)) is conjugated
to T (δ1, . . . , δn, γ).

Suppose for γ1, . . . , γm ∈ �, the unique tuple conjugated to T (δ1, . . . , δn, γ1, . . . ,
γm) is (h1, . . . , hn, g1, . . . , gm). Consider the following diagram, where the horizon-
tal arrows are compositions of face maps:

(δ1, . . . , δn, γ1, . . . , γm) (h1, . . . , hn, g1, . . . , gm)

(δ1, . . . , δn,
∏i

j=1 γ j ) (h1, . . . , hn,
∏i

j=1 g j ).

Since (h1, . . . , hn,
∏i

j=1 g j ) has a closed orbit and is a pre-image of f (δ1, . . . ,

δn,
∏i

j=1 γ j ), we have
∏i

j=1 g j = ρ(
∏i

j=1 γ j ), and gi = ρ(
∏i−1

j=1 γ j )
−1ρ(

∏i
j=1 γ j )

(∀i = 1, . . . ,m).
Let x, y ∈ �. Then the element in G(A)2n+2 associated to (δ1, . . . , δn, x, δ1,

. . . , δn, y) is

(h1, . . . , hn , ρ(x), ρ(x)−1ρ(xδ1), . . . , ρ(x
n−1
∏

j=1

δ j )
−1ρ(x

n
∏

j=1

δ j ), ρ(x
n

∏

j=1

δ j )
−1ρ(x

n
∏

j=1

δ j · y)),

and the element in G(A)2n+1 associated to (δ1, . . . , δn, δ1, . . . , δn, y) is

(h1, . . . , hn, ρ(δ1), . . . , ρ(

n−1
∏

j=1

δ j )
−1ρ(

n
∏

j=1

δ j ), ρ(

n
∏

j=1

δ j )
−1ρ(

n
∏

j=1

δ j · y)).

We see both (ρ(x
∏i−1

j=1 δ j )
−1ρ(x

∏i
j=1 δ j ))i=1,...,n and (ρ(

∏i−1
j=1 δ j )

−1

ρ(
∏i

j=1 δ j ))i=1,...,n have a closed orbit and are pre-images of f (δ1, . . . , δn), so they
are conjugated by some φ(x) ∈ G(A). Since ZGA(H(δ)) is minimal by the defin-
ing property, φ(x) must conjugate ρ(

∏n
j=1 δ j )

−1ρ(
∏n

j=1 δ j · y) to ρ(x
∏n

j=1 δ j )
−1

ρ(x
∏n

j=1 δ j · y). We deduce that ∀x, y ∈ �, ρ(x)−1ρ(xy) = φ(x)ρ(y)φ(x)−1,
and ρ is a quasi-homomorphism. It’s obvious that for any (γ1, . . . , γn) ∈ �n ,
(ρ(

∏i−1
j=1 γ j )

−1ρ(
∏i

j=1 γ j ))i=1,...,n is a pre-image of f (γ1, . . . , γn). �
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3.2.2 Artinian Coefficients

Let ρ̄ : � → G(k) be an absolutely G-completely reducible representation, and sup-
pose that H 0(�, g) = z. We write f̄ ∈ HomsSets(B�, B̄G(k)) for the map induced
from (γ1, . . . , γn) �→ (ρ̄(γ1), . . . , ρ̄(γn)).

Definition 3.9 For A ∈ ArtO, the set aDef f̄ (A) is the fiber over f̄ of the map

HomsSets(B�, B̄G(A)) → HomsSets(B�, B̄G(k)).

Definition 3.10 Let A ∈ ArtO. We say a map ρ : � → G(A) is a quasi-lift of ρ̄ if
ρ mod mA = ρ̄ and ρ is a quasi-homomorphism.

Remark 3.11 In general, a quasi-lift may not be a group homomorphism. Let 0 →
I → A1 � A0 be an infinitesimal extension inArtO. Letρ0 : � → G(A0)be a group
homomorphism, let σ : G(A0) → G(A1) be a set-theoretic section of G(A1) →
G(A0) and let ρ̃ = σ ◦ ρ0. Let’s construct a quasi-lift ρ1 = exp(Xα)ρ̃where X : � →
g ⊗k I is a cochain to be determined.

For α,β ∈ �, there exists cα,β ∈ g ⊗k I such that ρ̃(α)ρ̃(β) = exp(cα,β)ρ̃(αβ)

since ρ0 : � → G(A0) is a group homomorphism. It’s easy to check that c ∈
Z2(�, g ⊗k I ). Let φ(α) = exp(Yα) where Y : � → g ⊗k I is a group homomor-
phism also to be determined. We require ρ1(αβ) = ρ1(α)φ(α)ρ1(β)φ(α)−1 for all
α,β ∈ �. Note that ρ1(αβ) = exp(Xαβ)ρ̃(αβ) and

ρ1(α)φ(α)ρ1(β)φ(α)−1 = exp(Xα)ρ̃(α) exp(Yα) exp(Xβ)ρ̃(β) exp(Yα)−1

= exp(Xα)ρ̃(α) exp(Xβ + Yα − Ad ρ̃(β)Yα)ρ̃(β)

= exp(Xα + Ad ρ̃(α)Xβ) exp(Ad ρ̃(α)(1 − Ad ρ̃(β))Yα)ρ̃(α)ρ̃(β)

= exp(Xα + Ad ρ̃(α)Xβ) exp(Ad ρ̃(α)(1 − Ad ρ̃(β))Yα) exp(cα,β)ρ̃(αβ),

so we need to find a group homomorphism Y : � → g ⊗k I such that Ad ρ̃(α)(1 −
Ad ρ̃(β))Yα) + cα,β is a coboundary. In particular, in the case H 2(�, g) = 0, we
can take an arbitrary group homomorphism Y : � → g. Note that ρ1 is a group
homomorphism if and only if φ(α) = exp(Yα) ∈ Z(A) for any α ∈ �.

Lemma 3.12 Let A ∈ ArtO and let ρ : � → G(A) be a quasi-lift of ρ̄. Then
Z(ρ(�)) = Z(A).

Proof See [25, Lemma 3.1] (note that the condition that ρ is a group homomorphism
is not used in the proof).

Corollary 3.13 Let A ∈ ArtO and let ρ : � → G(A) be a quasi-lift of ρ̄. Then
ρ induces a uniquely determined group homomorphism φ : � → Ker(Gad(A) →
Gad(k)) such that ρ(x)−1ρ(xy) = φ(x)ρ(y)φ(x)−1 for any x, y ∈ �.

Proof By combining the above lemma with Lemma 3.7, we see φ : � → Gad(A)

is uniquely determined. Since ρ̄ is a group homomorphism, φ mod mA commutes
with ρ̄(�), and hence φ mod mA is trivial. �
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Now we can characterize aDef f̄ (A) in terms of quasi-lifts. The following propo-
sition owing to [4] plays a crucial role (see also its use in the proof of [4, Theorem
4.10]):

Proposition 3.14 Suppose that X is an integral affine smoothO-scheme onwhichG
acts. Let x = (x1, . . . , xn) ∈ X (k) be a point withGk · x closed, and ZGk (x) scheme-
theoretically trivial. We write X∧,x for the functor ArtO → Sets which sends A
to the set of pre-images of x under X (A) → X (k), and write G∧ for the functor
ArtO → Sets which sends A to Ker(G(A) → G(k)). Then

1. The G∧-action on X∧,x is free on A-points for any A ∈ ArtO.
2. Let X//G = SpecO[X ]G , let π : X → X//G be the natural map, and let

(X//G)∧,π(x) be the functorArtO → Setswhich sends A to the set of pre-images
of π(x) under (X//G)(A) → (X//G)(k). Then π : X → X//G induces an iso-
morphism X∧,x/G ∼= (X//G)∧,π(x).

Proof See [4, Proposition 3.13]. �

Corollary 3.15 If (γ1, . . . , γm) is a tuple in �m such that (ρ̄(γ1), . . . , ρ̄(γm))

has a closed orbit and a scheme-theoretically trivial centralizer in Gad
k , then

(ρ̄(γ1), . . . , ρ̄(γm)) has a lift (g1, . . . , gm) ∈ G(A)m which is a pre-image of
f (γ1, . . . , γm) ∈ B̄G(A)m, and any other choice is conjugated to this one by a unique
element of Gad(A).

Theorem 3.16 Let A ∈ ArtO. Then aDef f̄ (A) is isomorphic to the set of ̂G(A)-
conjugacy classes of quasi-lifts of ρ̄.

Proof Given a quasi-lift ρ : � → G(A), then the association (γ1, . . . , γm) �→
(ρ(

∏i−1
j=1 γ j )

−1ρ(
∏i

j=1 γ j ))i=1,...,m defines an element of aDef f̄ (A).
In the following, we will construct a quasi-lift from a given f ∈ aDef f̄ (A).
Let n ≥ 1 be sufficiently large and choose δ1, . . . , δn ∈ � such that (h̄1 =

ρ̄(δ1), . . . , h̄n = ρ̄(δn)) is a system of generators of ρ̄(�), then the tuple (h̄1, . . . , h̄n)
has a scheme-theoretically trivial centralizer in Gad

k . By [5, Corollary 3.7], the abso-
lutelyG-completely reducibility implies that the tuple (h̄1, . . . , h̄n) has a closed orbit.
By the above corollary, we can choose a lift (h1, . . . , hn) ∈ G(A)n of (h̄1, . . . , h̄n)
which is at the same time a pre-image of f (δ1, . . . , δn).

For any γ ∈ �, the tuple (h̄1, . . . , h̄n, ρ̄(γ)) obviously has a closed orbit and
a trivial centralizer in Gad

k , so we can choose a tuple in G(A)n+1 which lifts
(h̄1, . . . , h̄n, ρ̄(γ)) and is a pre-image of f (δ1, . . . , δn, γ). For this tuple, the first
n elements are conjugated to (h1, . . . , hn) by a unique element of Gad(A), so there
is a unique g ∈ G(A) such that the tuple is conjugated to (h1, . . . , hn, g). We define
ρ(γ) to be this g. It follows immediately that ρ mod mA = ρ̄.

Now suppose γ1, . . . , γm ∈ �. As above, let (g1, . . . , gm) be the unique tuple such
that (h1, . . . , hn, g1, . . . , gm) lifts (h̄1, . . . , h̄n, ρ̄(γ1), . . . , ρ̄(γm)) and is a pre-image
of f (δ1, . . . , δn, γ1, . . . , γm), consider the following diagram, where the horizontal
arrows are compositions of face maps:
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(δ1, . . . , δn, γ1, . . . , γm) (h1, . . . , hn, g1, . . . , gm)

(δ1, . . . , δn,
∏i

j=1 γ j ) (h1, . . . , hn,
∏i

j=1 g j ).

Then (h1, . . . , hn,
∏i

j=1 g j ) lifts (h̄1, . . . , h̄n, ρ̄(
∏i

j=1 γ j )) and is a

pre-image of f (δ1, . . . , δn,
∏i

j=1 γ j ). Hence
∏i

j=1 g j = ρ(
∏i

j=1 γ j ), and gi =
ρ(

∏i−1
j=1 γ j )

−1ρ(
∏i

j=1 γ j ) (∀i = 1, . . . ,m).
Let x, y ∈ �. Then the element in G(A)2n+2 associated to (δ1, . . . , δn, x, δ1, . . . ,

δn, y) is

(h1, . . . , hn, ρ(x), ρ(x)−1ρ(xδ1), . . . , ρ(x
n−1
∏

j=1

δ j )
−1ρ(x

n
∏

j=1

δ j ), ρ(x
n

∏

j=1

δ j )
−1ρ(x

n
∏

j=1

δ j · y)),

and the element in G(A)2n+1 associated to (δ1, . . . , δn, δ1, . . . , δn, y) is

(h1, . . . , hn, ρ(δ1), . . . , ρ(

n−1
∏

j=1

δ j )
−1ρ(

n
∏

j=1

δ j ), ρ(

n
∏

j=1

δ j )
−1ρ(

n
∏

j=1

δ j · y)).

We see both (ρ(x
∏i−1

j=1 δ j )
−1ρ(x

∏i
j=1 δ j ))i=1,...,n and (ρ(

∏i−1
j=1 δ j )

−1

ρ(
∏i

j=1 δ j ))i=1,...,n are lifts of (h̄1, . . . , h̄n) and pre-images of f (δ1, . . . , δn), so they
are conjugated by some φ(x) ∈ G(A). We can even suppose φ(x) ∈ Ker(G(A) →
G(k)) because the centralizer of (h̄1, . . . , h̄n) is Z . Sinceφ(x) is uniquely determined
modulo Z(A), it must conjugate ρ(

∏n
j=1 δ j )

−1ρ(
∏n

j=1 δ j · y) to ρ(x
∏n

j=1 δ j )
−1

ρ(x
∏n

j=1 δ j · y). We deduce that ∀x, y ∈ �, ρ(x)−1ρ(xy) = φ(x)ρ(y)φ(x)−1, and
ρ is a quasi-lift.

For theρ constructed as above,we can recover f from the formula (γ1, . . . , γm) �→
(ρ(

∏i−1
j=1 γ j )

−1ρ(
∏i

j=1 γ j ))i=1,...,m .
So it remains to prove that if ρ1 and ρ2 have the same image in aDef f̄ (A),

then they are equal modulo Ker(G(A) → G(k))-conjugation. Since
(ρ1(

∏i−1
j=1 δ j )

−1ρ1(
∏i

j=1 δ j ))i=1,...,n and (ρ2(
∏i−1

j=1 δ j )
−1ρ2(

∏i
j=1 δ j ))i=1,...,n are both

lifts of (h̄1, . . . , h̄n) and pre-images of f (δ1, . . . , δn), they are conjugated by some
g ∈ G(A), and we may choose g ∈ Ker(G(A) → G(k)) because the centralizer
of (h̄1, . . . , h̄n) is Z . After conjugation by g, we may suppose (ρ1(

∏i−1
j=1 δ j )

−1

ρ1(
∏i

j=1 δ j ))i=1,...,n = (ρ2(
∏i−1

j=1 δ j )
−1ρ2(

∏i
j=1 δ j ))i=1,...,n = (h′

1, . . . , h
′
n). Then for

γ ∈ �, ρk(
∏n

j=1 δ j )
−1ρk(

∏n
j=1 δ j · γ) (k = 1, 2) is uniquely determined by the con-

dition: (h′
1, . . . , h

′
n, ρk(

∏n
j=1 δ j )

−1ρk(
∏n

j=1 δ j · γ)) lifts (h̄1, . . . , h̄n, ρ̄(γ)) and is a
pre-image of f (δ1, . . . , δn, γ). In consequence, we have ρ1 = ρ2.
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For A ∈ ArtO, let aDef f̄ ,c(A) be the subset of aDef f̄ (A) consisting of f : B� →
B̄G(A) which factorizes through some finite quotient of �. In fact, we have
aDef f̄ ,c(A) = HomsSets/B̄G(k)

(X, B̄G(A)) (recall that X is the pro-simplicial set
(B�i )i ). The following corollary is obvious:

Corollary 3.17 Let A ∈ ArtO. Then aDef f̄ ,c(A) is isomorphic to the set of ̂G-
conjugacy classes of continuous quasi-lifts of ρ̄.

As a by-product of the proof of Theorem 3.16, we also have

Corollary 3.18 For A ∈ ArtO, the set aDef f̄ (A) (resp., aDef f̄ ,c(A)) is isomorphic
to HomM(B�, BG(A)/G∧(A)) (resp., HomM(X, BG(A)/G∧(A))).

But unfortunately, the simplicial set BG(A)/G∧(A) isn’t generally fibrant.
We attempt to compare the difference between aDef f̄ ,c(A) and D(A). Motivated

by the front-to-back duality in [27, 8.2.10], we make the following definition. Let
the reflection action r act on B� and B̄G(A) as follows:

(1) r acts on B�n
∼= � × · · · × � by r(γ1, . . . , γn) = (γn, . . . , γ1).

(2) r acts on ONnG by r( f )(g1, . . . , gn) = f (gn, . . . , g1). We see that r preserves
OadG

NnG
, hence r acts on B̄G(A)n .

Definition 3.19 For A ∈ ArtO, we define bDef f̄ (A) (resp., bDef f̄ ,c(A)) to be the
subset of aDef f̄ (A) (resp., aDef f̄ ,c(A)) consisting of f : B� → B̄G(A)which com-
mutes with r .

Theorem 3.20 Let A ∈ ArtO. Suppose the characteristic of k is not 2. Then
bDef f̄ (A) is in bijection with the set of group homomorphisms � → G(A) which
lift ρ̄, and bDef f̄ ,c(A) is in bijection with D(A).

Proof Let f ∈ bDef f̄ (A). It suffices to prove that the quasi-lift ρ obtained in
Theorem 3.16 is a group homomorphism. We choose the tuple (δ1, . . . , δn) such
that δi = δn+1−i and

∏n
j=1 δ j = e. Write ρ for the quasi-lift constructed from this

tuple as in Theorem 3.16, note that the choice of (δ1, . . . , δn) only affects ρ by
some conjugation. Let φ : � → G(A)/Z(A) be the group homomorphism such
that ρ(xy) = ρ(x)φ(x)ρ(y)φ(x)−1 for any x, y ∈ �. Note that φ(x) mod mA = 1
because ρ̄ is a group homomorphism.

Since f commutes with r , we have

(1) ρ(x) = ρ(x−1)−1, ∀x ∈ �.
(2) ρ(x)−1ρ(xy) = ρ(yx)ρ(x)−1, ∀x, y ∈ �.

By substituting (1) into ρ(xy) = ρ(x)φ(x)ρ(y)φ(x)−1, we get ρ(y−1x−1)−1 =
ρ(x−1)−1φ(x)ρ(y−1)−1φ(x)−1, then consider (x, y) �→ (x−1, y−1) and take the
inverse,wegetρ(yx) = φ(x)−1ρ(y)φ(x)ρ(x).Now(2) impliesρ(xy)ρ(x) = ρ(x)ρ(yx),
which in turn gives

ρ(x)φ(x)ρ(y)φ(x)−1ρ(x) = ρ(x)φ(x)−1ρ(y)φ(x)ρ(x).
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So φ(x)2 commutes with ρ(�) for any x ∈ �, and φ2 = 1. Since the characteristic of
k is not 2 and φ(x) mod mA = 1 ∈ G(k)/Z(k), we deduce φ = 1 and ρ is a group
homomorphism. �

3.3 Derived Deformations of Pseudo-Characters

The functor aDef f̄ ,c = HomsSets/B̄G(k)
(X, B̄G(−)) is analogous to the functorD� =

HomsSets/BG(k) (X, BG(−)), so it’s natural to consider the function complex
sHomsSets/B̄G(k)

(X, B̄G(−)) and then to extend the domain of definition toO\sArt/k ,
as constructing the functor sD : O\sArt/k → sSets.

Definition 3.21 For A ∈ O\sArt/k , we define B̄G(A) to be the Ex∞ of the diagonal
of the bisimplicial set

([p], [q]) �→ HomO\sCR(c(OadG
NpG), A�[q]),

and define saD(A) = hofib f̄ (HomsSets(X, B̄G(A)) → HomsSets(X, B̄G(k))).

If A ∈ ArtO, then the bisimplicial set ([p], [q]) �→ HomO\sCR(c(OadG
NpG

), A�[q])
doesn’t depend on the index q, and each of its lines is isomorphic to Ex∞ B̄G(A).
Hence f̄ can be regarded as an element of HomsSets(X, B̄G(k)). As the derived
deformation functors sD, we see that saD : O\sArt/k → sSets is homotopy invari-
ant.

Note that the inclusion OadG
N•G ↪→ ON•G induces a natural transformation sD →

saD.
We would like to understand π0saD(A). Let’s first analyze the case A ∈ ArtO.

For simplicity, we don’t take the Ex∞ here. Since BG(A) → BG(k) is a fibra-
tion, sHomsSets/B̄G(k)

(X, B̄G(A)) is a good model for sD(A). However, if B̄G(A) →
B̄G(k) is a not fibration, then sHomsSets/B̄G(k)

(X, B̄G(A)) is not weakly equivalent
to saD(A).

We have the commutative diagram

sHomsSets/B̄G(k)
(X, BG(A))0 sHomsSets/B̄G(k)

(X, B̄G(A))0

π0 sHomsSets/BG(k) (X, BG(A)) π0 sHomsSets/B̄G(k)
(X, B̄G(A)).

Note that π0saD(A) is the coequalizer of saD(A)1 ⇒ saD(A)0 = aDef f̄ ,c(A) by
definition.

Proposition 3.22 The above diagram is naturally isomorphic to
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D�(A) aDef f̄ ,c(A)

D(A) π0 sHomsSets/B̄G(k)
(X, B̄G(A)).

And there is a dotted arrow which makes the diagram commutative, whose image is
bDef f̄ ,c(A) ⊆ aDef f̄ ,c(A).

Proof We have sHomsSets/BG(k) (X, BG(A))0 = HomM(X, BG(A)), which is
exactly D�(A), since B : Gpd → sSets is fully faithful. The other isomorphisms
follow by definition.

The dotted arrow signifies the inclusion of usual deformations into pseudo-
deformations, whose image is bDef f̄ ,c(A) by Theorem 3.20. �
Remark 3.23 Note however that the functor saD : O\sArt/k → sSets remains
quite mysterious. It may be asked whether there is a more adequate derived defor-
mation functor for pseudo-characters.

4 (Co)tangent Complexes and Pro-Representability

4.1 Dold-Kan Correspondence

Let’s briefly review the Dold-Kan correspondence. Let R be a commutative ring.
Our goal here is to recall an equivalence (of model categories) between the category
of simplicial R-modules sModR and the category of chain complexes of R-modules
concentrated on non-negative degreesCh≥0(R). Recall themodel category structures
on sModR and Ch≥0(R):

(1) For sModR , the fibrations andweak equivalences are linearmorphismswhich are
in sSets, and the cofibrations are linear morphisms satisfying a lifting property
(see [15, Proposition 7.2.3]).

(2) ForCh≥0(R), the cofibrations, fibrations, and weak equivalences are linear mor-
phisms satisfying the following:

(a) f : C• → D• is a cofibration if Cn → Dn is injective with projective coker-
nel for n ≥ 0.

(b) f : C• → D• is a fibration if Cn → Dn is surjective for n ≥ 1.
(c) f : C• → D• is aweak equivalence if themorphism H∗ f induced on homol-

ogy is an isomorphism.

We write M ∈ sModR for the simplicial R-module with Mn on n-th simpli-
cial degree. Let N (M) be the chain complexes of R-modules such that N (M)n =
n−1
⋂

i=0
Ker(di ) ⊆ Mn with differential maps
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(−1)ndn :
n−1
⋂

i=0

Ker(di ) ⊆ Mn →
n−2
⋂

i=0

Ker(di ) ⊆ Mn−1.

Obviously M �→ N (M) is functorial. We call N (M) ∈ Ch≥0(R) the normalized
complex of M .

The Dold-Kan functor DK : Ch≥0(R) → sModR is the quasi-inverse of N .
Explicitly, for a chain of R-modules C• = (C0 ← C1 ← C2 ← . . . ), we define
DK(C•) ∈ sModR as follows:

(1) DK(C•)n = ⊕

[n]�[k]
Ck .

(2) For θ : [m] → [n], we define the corresponding DK(C•)n → DK(C•)m on each

component of DK(C•)n indexed by [n] σ� [k] as follows: suppose [m] t� [s] d
↪→

[k] is the epi-monic factorization of the composition [m] θ→ [n] σ
� [k], then the

map on component [n] σ
� [k] is

Ck
d∗→ Cs ↪→

⊕

[m]�[r ]
Cr .

Theorem 4.1 (1) (Dold-Kan) The functors DK and N are quasi-inverse and
hence form an equivalence of categories. Moreover, two morphisms f, g ∈
HomsModR (M, N ) are simplicially homotopic if and only if N ( f ) and N (g)

are chain homotopic.
(2) The functorsDK and N preserve the model category structures ofCh≥0(R) and

sModR defined above.

Proof See [27, Theorem 8.4.1] and [11, Lemma 2.11]. Note that (1) is valid for any
Abelian category instead of sModR .

Remark 4.2 Let Ch(R) be the category of complexes (Ci )i∈Z of R-modules and
Ch≥0(R) the subcategory of complexes for which Ci = 0 for i < 0. The category
Ch≥0(R) is naturally enriched over simplicial R-modules, and we have

sHomCh≥0(R)(C•, D•) ∼= sHomsModR (DK(C•),DK(D•)).

Given C•, D• ∈ Ch≥0(R). Let [C•, D•] ∈ Ch(R) be the mapping complex, more
precisely, [C•, D•]n = ∏

m HomR(Cm, Dm+n) and the differential maps are natural
ones. Let τ≥0 be the functorwhich sends a chain complex X• to the truncated complex

0 ← Ker(X0 → X−1) ← X1 ← . . .
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Then there is a weak equivalence

sHomCh≥0(R)(C•, D•) � DK(τ≥0[C•, D•])

(see [18, Remark 11.1]).
It’s clear that πi sHomCh≥0(R)(C•, D•) is isomorphic to the chain homotopy

classes of maps from C• to D•+n .

4.2 (Co)tangent Complexes of Simplicial Commutative Rings

We recall Quillen’s cotangent and tangent complexes of simplicial commutative
rings.

Let A be a commutative ring. For R an A-algebra, let �R/A be the module of
differentials with the canonical R-derivation d : R → �R/A. Let DerA(R,−) be the
covariant functor which sends an R-module M to the R-module

DerA(R, M) = {D : R → M | D is A-linear and D(xy) = xD(y) + yD(x), ∀x, y ∈ R}.

It’s well known that HomR(�R/A,−) is naturally isomorphic to DerA(R,−) via
φ �→ φ ◦ d.

Let T be an A-algebra, and let A\CR/T be the category of commutative rings
R over T and under A. Then for any T -module M and any R ∈ A\CR/T , we have
natural isomorphisms

HomT (�R/A ⊗R T, M) ∼= DerA(R, M) ∼= HomA\CR/T (R, T ⊕ M),

where T ⊕ M is the T -algebra with square-zero ideal M . So the functor R �→
�R/A ⊗R T is left adjoint to the functor M �→ T ⊕ M .

The above isomorphisms have level-wise extensions to simplicial categories (see
[11] Lemma II.2.9 and Example II.2.10). For R ∈ A\sCR, we can form �R/A ⊗R

T ∈ sModT .
We have

sHomsModT (�R/A ⊗R T, M) ∼= sHomA\sCR/T (R, T ⊕ M).

The functor M �→ T ⊕ M from sModT to A\sCR/T preserves fibrations and weak
equivalences (we may see this via the Dold-Kan correspondence), so the left adjoint
functor R �→ �R/A ⊗R T is left Quillen and it admits a total left derived functor. We
introduce the cotangent complex LR/A in the following definition, so that the total
left derived functor has the form R �→ LR/A⊗RT . Note that given two simplicial
modules M, N over a simplicial ring S, one can form (degreewise) a tensor product,
denoted M⊗SN , which is a simplicial S-module.
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Definition 4.3 For R ∈ A\sCR,wedefine LR/A = �c(R)/A⊗c(R)
R ∈ sModR ,where

c(R) is the middle object of some cofibration-trivial fibration factorization A ↪→
c(R)

∼
� R, and we call LR/A the cotangent complex of R.

Note that it is an abuse of language, as it should be called cotangent simplicial
R-module, because for R simplicial, LR/A ∈ sModR but there is no notion of com-
plexes of R-modules.

By construction, LR/A⊗RT is cofibrant as it’s the image of the cofibrant object
c(R)under a total left derived functor, and it is fibrant in sModR (all objects are fibrant
there). Note also that the weak equivalence class of LR/A⊗RT is independent of the
choice of c(R). It follows from these two observations that LR/A is determined up
to homotopy equivalence (by the Whitehead theorem [15, Theorem 7.5.10]). Using
the Dold-Kan equivalence, we can form the normalized complex (determined up to
homotopy equivalence)

N (LR/A⊗RT ) ∈ Ch≥0(T ).

From now on, we keep the functor N understood and simply write

LR/A ⊗R T ∈ Ch≥0(T ).

Recall that for M, N ∈ Ch(T ), the internal Hom [M, N ] ∈ Ch(T ) is defined as

[M, N ]n =
∏

m

HomT (Mm, Nm+n).

Note that if M ∈ Ch≥0(T ), then [M, T ] ∈ Ch≤0(T ). For C ∈ Ch≤0(T ), we write
Ci = C−i for i ≥ 0; we thus identify Ch≤0(T ) = Ch≥0(T ).

For R ∈ A\sCR/T and C• ∈ Ch≥0(T ), we have (by Remark 4.2)

sHomA\sCR/T (c(R), T ⊕ DK(C•)) ∼= sHomsModT (LR/A⊗RT,DK(C•))
� DK(τ≥0[LR/A ⊗R T,C•]).

Definition 4.4 The T -tangent complex tRT of R → T is the internal hom complex

[LR/A ⊗R T, T ] ∈ Ch≥0(T ).

Note that tRT is well defined up to chain homotopy equivalence since it is the
case for LR/A ⊗R T .
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4.3 Tangent Complexes of Formally Cohesive Functors
and Lurie’s Criterion

In [13, Sect. 4], the authors define the tangent complexes of formally cohesive func-
tors. To summarize, we have the following proposition:

Proposition 4.5 Let F : O\sArt/k → sSets be a formally cohesive functor.
Then there exists LF ∈ Ch(k) such that F(k ⊕ DK(C•)) is weakly equivalent to
DK(τ≥0[LF ,C•]) for every C• ∈ Ch≥0(k) with H∗(C•) finite over k. �
Proof See [13, Lemma 4.25].

Definition 4.6 Let F : O\sArt/k → sSets be a formally cohesive functor.

(1) We call LF the cotangent complex of F .
(2) The tangent complex tF of F is the chain complex defined by the internal hom

complex [LF , k].
Note that LF and tF are uniquely determined up to quasi-isomorphism. We shall

use tiF to abbreviate the homology groups H−i tF .

Remark 4.7 If R ∈ O\sCR/k is cofibrant, then the functor FR =
sHomO\sCR/k (R,−) : O\sArt/k → sSets is formally cohesive. Since
DK(τ≥0[LFR , k[n]]) � sHomO\sCR/k (R, k ⊕ k[n]) � DK(τ≥0[LR/O ⊗R k, k[n]]),
the cotangent complexes LFR and LR/O ⊗R k are quasi-isomorphic.

Definition 4.8 We say a functor F : O\sArt/k → sSets is pro-representable, if
there exists a projective system R = (Rn)n∈N with each Rn ∈ O\sArt/k cofibrant,
such that F is weakly equivalent to lim−→

n

sHomO\sArt/k (Rn,−). In this case, we say

R = (Rn)n∈N is a representing ring for F . We shall write sHomO\sArt/k (R,−) for
lim−→
n

sHomO\sArt/k (Rn,−).

Remark 4.9 The pro-representability defined above is called sequential
pro-representability in [13], but we will only deal with this case.

Theorem 4.10 (Lurie’s criterion) Let F be a formally cohesive functor. If dimk t
iF

is finite for every i ∈ Z, and tiF = 0 for every i < 0, then F is (sequentially) pro-
representable.

Proof See [17, Corollary 6.2.14] and [13, Theorem 4.33]. �
The following lemma illustrates the conservativity of the tangent complex functor:

Lemma 4.11 Suppose F1,F2 : O\sArt/k → sSets are formally cohesive functors.
Then a natural transformation F1 → F2 is a weak equivalence if and only if it
induces isomorphisms tiF1 → tiF2 for all i .

Proof If the natural transformation induces isomorphisms tiF1 → tiF2, thenF1(k ⊕
k[n]) → F2(k ⊕ k[n]) is a weak equivalence. So by simplicial Artinian induction
[13, Sect. 4], it induces a weak equivalence F1(A) → F2(A) for A ∈ O\sArt/k . �
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4.4 Pro-Representability of Derived Deformation Functors

In the following, we suppose p > 2, and � = GF,S for S = Sp ∪ S∞. Suppose fur-
ther that ρ̄ satisfies (Ordv) and (Regv) for v ∈ Sp, and H 0(�, gk) = zk . Recall
that we’ve introduced derived deformation functors sD and sDn.o, as well as the
modifying-center variants sDZ and sDn.o

Z . These functors are all formally cohesive.
Their tangent complexes are related to the Galois cohomology groups Hi∗(�, gk) of
adjoint representations, where ∗ = ∅ or n. o.

4.4.1 Galois Cohomology

We briefly review the Galois cohomology theory. To define the nearly ordinary coho-
mology, we fix the standard Levi decomposition B = T N of the standard Borel ofG;
it induces a decomposition of Lie algebras over k: bk = tk ⊕ nk . Recall the definition
of the Greenberg-Wiles nearly ordinary Selmer group

˜H 1
n.o(�, gk) = Ker

⎛

⎝H 1(�, gk) →
∏

v∈Sp

H 1(�v, gk)

Lv

⎞

⎠ ,

where Lv = im(H 1(�v, bk) → H 1(�v, gk)).
For v ∈ Sp, let L̃v ⊆ Z1(�v, gk) be the pre-image of Lv . Let C•

n.o(�, gk) be the
mapping cone of the natural cochain morphism

0 C0(�, gk ) C1(�, gk ) C2(�, gk ) . . .

0 0
⊕

v∈Sp C1(�v, gk )/L̃v
⊕

v∈Sp C2(�v, gk ) . . .

Then we define the nearly ordinary cohomology groups H∗
n.o(�, gk) as the cohomol-

ogy of the complex C•
n.o(�, gk). They fit into the exact sequence (�):

0 →H 0
n.o(�, gk) → H 0(�, gk) → 0

→H 1
n.o(�, gk) → H 1(�, gk) →

⊕

v∈Sp
H 1(�v, gk)/Lv

→H 2
n.o(�, gk) → H 2(�, gk) →

⊕

v∈Sp
H 1(�v, gk)

→H 3
n.o(�, gk) → 0.

In particular, ˜H 1
n.o(�, gk) = H 1

n.o(�, gk).
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Definition 4.12 For a finite O[�]-module M , we write M∨ = HomO(M, K/O)

and M∗ = HomO(M, K/O(1)). In particular, if M is a k-vector space, M∨ =
Homk(M, k) and M∗ = Homk(M, k(1)).

Recall the local Tate duality H 1(�v, gk) × H 1(�v, g
∗
k) → k. Let L⊥

v ⊆H 1(�v, g
∗
k)

be the dual of Lv . We define similarly the cohomology groups H∗
n.o,⊥(�, g∗

k). In
particular,

⊕

v∈Sp
Lv → H 1(�, g∗

k)
∨ → H 1

n.o,⊥(�, g∗
k)

∨ → 0

is exact. Byfitting this into the Poitou-Tate exact sequence (see [20, Theorem I.4.10]),
we obtain the exact sequence (��):

H 1(�, gk) →
⊕

v∈Sp
H 1(�v, gk)/Lv

→ H 1
n.o,⊥(�, g∗

k)
∨ →H 2(�, gk) →

⊕

v∈Sp
H 2(�v, gk)

→ H 0(�, g∗
k)

∨ →0.

We deduce the Poitou-Tate duality:

Theorem 4.13 For each i ∈ {0, 1, 2, 3}, there is a perfect pairing

Hi
n.o,⊥(�, g∗

k) × H 3−i
n.o (�, gk) → k.

Proof For i ∈ {0, 1}, it suffices to compare the exact sequences (�) and (��). The
cases i ∈ {2, 3} follow by duality. �

4.4.2 Tangent Complex

Lemma 4.14 (1) We have ti sD ∼= Hi+1(�, gk) for all i ∈ Z. On the other hand,
ti sDZ

∼= ti sD when i 	= −1, and t−1sDZ = 0.
(2) Let v ∈ Sp. Then we have ti sDv

∼= Hi+1(�v, gk) for all i ∈ Z. On the other
hand, ti sDv,Z

∼= ti sDv when i 	= −1, and t−1sDv,Z
∼= H 0(�v, gk)/zk .

(3) Let v ∈ Sp. Then we have ti sDn.o
v

∼= Hi+1(�v, bk) for all i ∈ Z. On the other
hand, ti sDn.o

v,Z
∼= ti sDn.o

v when i 	= −1, and t−1sDn.o
v,Z

∼= H 0(�v, bk)/zk . More-
over, t1sDn.o

v = 0 if (Reg∗
v ) holds.

Proof Note that t j−iF ∼= πiF(k ⊕ k[ j]) for any formally cohesive functor F and
any i, j ≥ 0. Later in Sect. 4.5 we shall give a slightly generalized version of the
lemma. See also [13, Sect. 7.3].

In particular, by Lurie’s criterion (Theorem 4.10), this lemma together with the
finiteness of the cohomology groups implies
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Corollary 4.15 The center-modified functor sDZ is pro-representable.

Now we treat the nearly ordinary case sDn.o
Z . Let’s recall that sDloc,Z =

∏

v∈Sp sDv,Z , sDn.o
loc,Z = ∏

v∈Sp sDn.o
v,Z , and sDn.o

Z = sDZ ×h
sDloc,Z

sDn.o
loc,Z . Recall that

ρ̄ satisfies (Ordv) and (Regv) for v ∈ Sp, so sDn.o
Z is indeed the derived general-

ization ofDn.o, i.e., π0sDn.o
Z (A) ∼= Dn.o(π0A) for homotopy discrete A ∈ O\sArt/k

(see Proposition 2.18).

Lemma 4.16 Suppose furthermore (Reg∗
v ) for v ∈ Sp. Then ti sDn.o

Z
∼= Hi+1

n.o (�, g)
when i ≥ 0, and ti sDn.o

Z = 0 when i < 0.

Proof We have the Mayer-Vietoris exact sequence (see [13, Lemma 4.30 (iv)] and
[27, Sect. 1.5])

ti sDn.o
Z → ti sDZ ⊕ ti sDn.o

loc,Z → ti sDloc,Z
[1]→ . . . .

By Lemma 4.14, we obtain an exact sequence

0 → t−1sDn.o
Z →

⊕

v∈Sp
H 0(�v, bk)/zk →

⊕

v∈Sp
H 0(�v, gk)/zk

→ t0sDn.o
Z → H 1(�, gk) ⊕ (

⊕

v∈Sp
H 1(�v, bk)) →

⊕

v∈Sp
H 1(�v, gk)

→ t1sDn.o
Z → H 2(�, gk) →

⊕

v∈Sp
H 2(�v, bk)

→ t2sDn.o
Z → 0.

Byassumption (Regv), themap H 0(�v, bk)/zk → H 0(�v, gk)/zk is an isomorphism.
The conclusion follows from comparing the above exact sequence with (�). �

In particular t−1sDn.o
Z = 0 (note that for this we don’t need (Reg∗

v )). By Lurie’s
criterion (Theorem 4.10) and the finiteness of the cohomology groups, we have the
following corollary:

Corollary 4.17 The functor sDn.o
Z is pro-representable.

Let Rs,n.o be a representing (pro-)simplicial ring. Since π0sDn.o
Z (A) ∼= Dn.o(A)

for A ∈ ArtO, the ring π0Rs,n.o represents the classical nearly ordinary deformation
functor Dn.o.

4.5 Relative Derived Deformations and Relative Tangent
Complexes

Let T ∈ ArtO and let ρT : � → G(T ) be a nearly ordinary representation. For v ∈
Sp, we write ρT,v for the restriction of ρT on �v and we suppose the image of
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ρT,v lies in B(T ) (more precisely, we should say the image of some conjugation
of ρT,v lies in B(T ), but there is no crucial difference). Let X and Xv be the pro-
simplicial sets associated to the profinite groups � and �v . We identify ρT as a
map of (pro-)simplicial sets X → BG(T ) → BG(T ) (here BG(T ) is the classical
classifying space of the finite group G(T ) and BG(T ) is a fibrant replacement, see
Definition 2.10) and identify ρT,v as Xv → BB(T ) → BB(T ) → BG(T ).

Let’s consider the derived deformation functors over ρT .

Definition 4.18 (1) Let sDρT : O\sArt/T → sSets be the functor

A �→ hofibρT (sHomsSets(X,BG(A)) → sHomsSets(X,BG(T ))).

(2) For v ∈ Sp, let sDρT,v
: O\sArt/T → sSets be the functor

A �→ hofibρT,v
(sHomsSets(Xv,BG(A)) → sHomsSets(Xv,BG(T ))).

(3) For v ∈ Sp, let sDn.o
ρT,v

: O\sArt/T → sSets be the functor

A �→ hofibρT,v
(sHomsSets(Xv,BB(A)) → sHomsSets(Xv,BB(T ))).

Our goal is to prove the following proposition (see also [13, Example 4.38 and
Lemma 5.10]):

Proposition 4.19 Let M be a finite module over an arbitrary Artin ring T . Then for
i, j ≥ 0 we have

πi sDρT (T ⊕ M[ j]) ∼= H 1+ j−i (�, gT ⊗T M).

Note that sHomsSets(X,−) is defined by the filtered colimit
lim−→i

sHomsSets(B�i ,−), which commutes with homotopy pullbacks. So it suffices
to prove the proposition with � replaced by �i and X replaced by B�i . To simplify
the notations, we suppose � is a finite group during the proof.

Lemma 4.20 Let A ∈ O\sArt/T . Then sDρT (A) is weakly equivalent to

holim�Xhofib∗(BG(A) → BG(T )).

Proof By [15, Proposition 18.9.2], X is weakly equivalent to hocolim(�X)op∗ (i.e.,
the homotopy colimit of the single-point simplicial set indexed by (�X)op). Hence
(see [15, Theorem 18.1.10])

sHomsSets(X,BG(A)) � holim�X sHomsSets(∗,BG(A)) � holim�XBG(A),

and

sHomsSets(X,BG(T )) � holim�X sHomsSets(∗,BG(T )) � holim�XBG(T ).
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Note that ρT , as the single-point simplicial subset of sHomsSets(X,BG(T )), is iden-
tified with holim�X∗ → holim�XBG(T ). Since homotopy limits commute with
homotopy pullbacks, we conclude that

sDρT (A) � holim�Xhofib∗(BG(A) → BG(T )). �

Let’s first analyze hofib∗(BG(T ⊕ M[ j]) → BG(T )).

Lemma 4.21 The homotopy groups of hofib∗(BG(T ⊕ M[ j]) → BG(T )) are triv-
ial except at degree j + 1, where it is gT ⊗T M.

Proof Note that A �→ hofib∗(BG(A) → BG(T )) preserves weak equivalences and
homotopy pullbacks.

Since T ⊕ M[ j] → T is j-connected, the map BG(T ⊕ M[ j]) → BG(T ) is
( j + 1)-connected (see [13, Corollary 5.3]), and the homotopy groups of the homo-
topy fiber vanish up to degree j . Since the functor A �→ hofib∗(BG(A) → BG(T ))

maps the homotopy pullback square

T ⊕ M[ j − 1] T

T T ⊕ M[ j]

to a homotopy pullback square, we get

π j+khofib∗(BG(T ⊕ M[ j]) → BG(T )) ∼= π j+k−1hofib∗(BG(T ⊕ M[ j − 1]) → BG(T ))

for any k ≥ 0. Consequently

π j+khofib∗(BG(T ⊕ M[ j]) → BG(T )) ∼= πkhofib∗(BG(T ⊕ M[0]) → BG(T )),

and hofib∗(BG(T ⊕ M[ j]) → BG(T )) has homotopy groups concentrated on
degree j + 1, where it is gT ⊗T M . �

Let Y be the �X -diagram in sSets (i.e., functor �X → sSets) which takes the
value hofib∗(BG(A) → BG(T )). Then Y is a local system (see [13, Definition 4.34],
it’s called the cohomological coefficient system in [12, Page 28]) on X . There is hence
aπ1(X, ∗)-action on the homotopy group gT ⊗T M . By unwinding the constructions,
we see this is the conjugacy action of ρT on gT ⊗T M .

It suffices to calculate holimY . Under theDold-Kan correspondence,wemay iden-
tify hofib∗(BG(A) → BG(T )) with the chain complex with homology gT ⊗T M
concentrated on degree j + 1. But in fact it’s more convenient to regard hofib∗
(BG(A) → BG(T )) as a cochain complexwith cohomology gT ⊗T M concentrated
on degree−( j + 1), because the homotopy limit of cochain complexes is drastically
simple (see [8, Sect. 19.8]). By shifting degrees, it suffices to suppose that the coho-
mology is concentrated on degree 0.
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Lemma 4.22 Let N be a T [�]-module, and we regard N as a cochain complex
concentrated on degree 0. Let Y be the�X-diagram inCh≥0(T ) (i.e., functor�X →
Ch≥0(T )) which takes the value N. Then holimY � C•(�, N ).Here C•(�, N ) is the
cochain which computes the usual group cohomology.

Proof By [15, Lemma 18.9.1], holimY is naturally isomorphic to the homotopy limit
of the cosimplicial object Z in Ch≥0(T ) whose codegree [n] term is

∏

σ∈Xn
Yσ =

∏

σ∈Xn
N . We have to explain the coface maps of Z . For this purpose, we describe

Z = (Zn)n as follows:
The T [�]-module N defines a functor D from the one-object groupoid • with

End(•) = � toCh≥0(T ), such that D(•) = N , and D(�) acts on N by the �-action.
Then Zn is

∏

i0→···→in

D(in) (all ik’s are equal to the object • here, but keeping the

difference helps to clarify the process). Let dk be the k-th face map from �n+1 to �n ,
in other words, dk maps (i0 → · · · → in+1) to ( j0 → · · · → jn) by “covering up”
ik . Then the corresponding D( jn) → D(in+1) is the identity map if k 	= n + 1 and
is D(in → in+1) if k = n + 1.

By [8, Proposition 19.10], holimZ is quasi-isomorphic to the total complex of the
alternating double complex defined by Z . Since each Zn is concentrated on degree
0, the total complex is simply

· · · →
∏

�n

N →
∏

�n+1

N → . . .

and the alternating sum
∏

�n
N → ∏

�n+1

N is exactly the one which occurs in computing

group cohomology. We conclude that holimY � holimZ � C•(�, N ). �
Now we can prove Proposition 4.19:

Proof From the above discussions, sDρT (T ⊕ M[ j]) corresponds to τ≤0C•+ j+1

(�, gT ⊗T M) under the Dold-Kan correspondence (with Ch≥0(T ) replaced by
Ch≤0(T )). Hence πi sDρT (T ⊕ M[ j]) ∼= H 1+ j−i (�, gT ⊗T M). �

We can define the modifying-center version sDρT ,Z as in Sect. 2.4.1. Note
the fibration sequence (see [13, (5.7)]) hofib(sHomsSets(X,BZ(A)) → sHomsSets

(X, BZ(T ))) → sDρT (A) → sDρT ,Z (A). From this, we deduce that πi sDρT ,Z (T ⊕
M[ j]) ∼= πi sDρT (T ⊕ M[ j]) when i 	= j + 1, and πi+1sDρT ,Z (T ⊕ M[i]) = 0.

For each v ∈ Sp, there is also a modifying-center version sDρT,v ,Z , resp., sDn.o
ρT,v ,Z

of sDρT,v
, resp., sDn.o

ρT,v
. Similar to the global situation, we have

πi sDρT,v ,Z (T ⊕ M[ j]) ∼=
{

H 1+ j−i (�v, gT ⊗T M) when i 	= j + 1;
H 0(�v, gT ⊗T M)/(zT ⊗T M) when i = j + 1.

And

πi sDn.o
ρT,v ,Z (T ⊕ M[ j]) ∼=

{

H 1+ j−i (�v, bT ⊗T M) when i 	= j + 1;
H 0(�v, bT ⊗T M)/(zT ⊗T M) when i = j + 1.
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The global nearly ordinary derived deformation functor over ρT is defined as
follows:

sDn.o
ρT ,Z = sDρT ,Z ×h

∏

v∈Sp sDρT,v ,Z

∏

v∈Sp
sDn.o

ρT,v ,Z .

Then πi sD?
ρT ,Z (T ⊕ M[ j]) (? = n. o or ∅) depends only on j − i . We denote

t
j−i
T,MsD?

ρT ,Z = πi sD?
ρT ,Z (T ⊕ M[ j]).

Proposition 4.23 Suppose (Regv) and (Reg∗
v ). Let j ≥ i ≥ 0 and letM be a finitely

generated (classical) T -module. Then πi sDn.o
ρT ,Z (T ⊕ M[ j]) ∼= H 1+ j−i

n.o (�, gT ⊗T

M).

Proof By preceding discussions, we have the exact sequence

0 → t−1
T,MsDn.o

ρT ,Z →
⊕

v∈Sp
H0(�v, bT ⊗T M)/(zT ⊗T M) →

⊕

v∈Sp
H0(�v, gT ⊗T M)/(zT ⊗T M)

→ t0T,MsDn.o
ρT ,Z → H1(�, gT ⊗T M) ⊕ (

⊕

v∈Sp
H1(�v, bT ⊗T M)) →

⊕

v∈Sp
H1(�v, gT ⊗T M)

→ t1T,MsDn.o
ρT ,Z → H2(�, gT ⊗T M) →

⊕

v∈Sp
H2(�v, bT ⊗T M)

→ t2T,MsDn.o
ρT ,Z → 0.

Note that we have used H 2(�v, bT ⊗T M) = 0 for v ∈ Sp. To see this, it suffices to
show H 2(�v, bk) = 0 byArtinian induction. By local Tate duality, it suffices to prove
H 0(�v, b

∗
k) = 0. But we have a Galois-equivariant isomorphism b∗

k
∼= gk/nk(1), so

the result follows from the assumption (Reg∗
v ).

Under the condition (Regv), the map H 0(�v, bT ⊗T M) → H 0(�v, gT ⊗T M) is
an isomorphism. Let Lv,T,M = im(H 1(�v, bT ⊗T M) → H 1(�v, gT ⊗T M)), then
we have the following exact sequence similar to (�):

0 →H 0
n.o(�, gT ⊗T M) → H 0(�, gT ⊗T M) → 0

→H 1
n.o(�, gT ⊗T M) → H 1(�, gT ⊗T M) →

⊕

v∈Sp
H 1(�v, gT ⊗T M)/Lv,T,M

→H 2
n.o(�, gT ⊗T M) → H 2(�, gT ⊗T M) →

⊕

v∈Sp
H 1(�v, gT ⊗T M)

→H 3
n.o(�, gT ⊗T M) → 0.

By comparing the two exact sequences above, we get tiT,MsDn.o
ρT ,Z

∼=
Hi+1

n.o (�, gT ⊗T M). �

Recall that we have a pro-simplicial ring Rs,n.o which represents sDn.o
Z . Then ρT

defines a map
Rs,n.o → π0R

s,n.o → T .
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With this specified map, we regard Rs,n.o ∈ pro−O\sArt/T , and it’s easy to see
that Rs,n.o represents sDn.o

ρT ,Z . Write Rs,n.o = (Rk) for a projective system (Rk) in
O\sArt/T . Then

πi sDn.o
Z (T ⊕ M[ j]) ∼= πi lim−→

k

sHomO\sArt/T (Rk, T ⊕ M[ j])
∼= πi lim−→

k

DK(τ≥0[LRk ⊗Rk T, M[ j]])
∼= Hi lim−→

k

[LRk ⊗Rk T, M[ j]].

Let’s define [LR/O ⊗R T, M] = lim−→k
[LRk/O ⊗Rk T, M] for R = (Rk) ∈

pro−O\sArt/T . Then [LRs,n.o/O ⊗Rs,n.o T, M], when regarded as a cochain complex,
has the same cohomology groups as the complex τ≥0C•+1

n.o (�, gT ⊗T M). We thus
obtain the following corollary:

Corollary 4.24 For every finite T -module M, there is a quasi-isomorphism

[LRs,n.o/O ⊗Rs,n.o T, M] � τ≥0C•+1
n.o (�, gT ⊗T M).

Remark 4.25 Recall that there is a natural transformationDn.o → ∏

v∈Sp Defχv
(see

Remark 2.2). We can construct the derived analogue sDn.o
ρT ,Z → ∏

v∈Sp s Defχv,T , so
it’s natural to ask if Rs,n.o is a �-simplicial ring. Indeed, this is the case when
O∗,p−ab

Fv
has no torsion for every v ∈ Sp. In general, let O∗,p−ab

Fv
= �v × Wv be a

decomposition of O∗,p−ab
Fv

into a finite group �v and a pro-p group Wv , and let
ϕv : �v → O be a fixed character, we can modify sDn.o

ρT ,Z by taking into account
ϕ = (ϕv)v∈Sp , the resulting sDn.o,ϕ

ρT ,Z is then pro-represented by a simplicial Artinian
�-algebra Rs,n.o,ϕ, andwecan relate [LRs,n.o,ϕ/� ⊗Rs,n.o,ϕ T, M] to the ordinary cochain
complex as Corollary 4.24. See [2] for details.

Comments:Let ρT : � → G(T ) be an ordinary representation ofweightμ, which
satisfies (Regv) for all v ∈ Sp. This means that the cocharacter given by ρT |Iv : Iv →
B(T )/N (T ) is given (via Artin reciprocity) by μ ◦ rec−1

v : Iv → O×
v → 	(T ) (here

	 = B/N is the standard maximal split torus of B). In this whole section, if ρT is
ordinary of weight μ, we could consider instead of the functor sDn.o

ρT
the subfunctor

sDn.o,μ
ρT

of ordinary deformations of fixed weight μ. This means we impose as local
condition at v ∈ Sp that

sDn.o,μ
ρT,v

(A) = hofibμ◦rec−1
v

(

sDn.o
ρT,v

(A) → sHom(BIv, B	(A))
)

.

Then, sDn.o,μ
ρT

is pro-representable by a simplicial pro-Artinian ring Rs,n.o
μ and we

have an analogue of Proposition 4.23:

Proposition 4.26 Suppose (Regv) and (Reg∗
v ). Let j ≥ i ≥ 0 and let M be a

finitely generated (classical) T -module. Then πi sDn.o,μ
ρT ,Z (T ⊕ M[ j])

∼= H 1+ j−i
n.o,str (�, gT ⊗T M).
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Here H 1+ j−i
n.o,str (�, gT ⊗T M) is the cohomologyof the subcomplexC•

n.o,μ(�, gT ⊗T

M) defined as in Sect. 4.4.1, replacing (Lv, ˜Lv) by (L ′
v,

˜L ′
v)where L

′
v is the image in

H 1(�v, gT ⊗ M) of the kernel of H 1(�v, bT ⊗ M) → H 1(Iv, (bT /nT ) ⊗ M), and
˜L ′

v is the inverse image of L ′
v in Z1(�v, gT ⊗ M).

The proof is identical to Proposition 4.23. As a corollary, we get

Corollary 4.27 For every finite T -module M, there is a quasi-isomorphism

[LRs,n.o
μ /O ⊗Rs,n.o

μ
T, M] � τ≥0C•+1

n.o,μ(�, gT ⊗T M).

In the next section, we shall use these objects with a fixed weight μ.

5 Application to the Galatius-Venkatesh Homomorphism

Let � = Gal(FS/F) for S = Sp ∪ S∞. Let ρ̄ : � → G(k) be an ordinary repre-
sentation of weight μ, which satisfies (Regv) for all v ∈ Sp. Let T be a finite
local O-algebra and ρT : � → G(T ) be an ordinary lifting of weight μ of ρ̄. Let
M be a T -module which is of O-cofinite type, that is, whose Pontryagin dual
HomO(M, K/O) is finitely generated over O. We use the notations of Defini-
tion 4.12. Recall that if ρ̄ : � → G(k) is ordinary automorphic, it is proven under
certain assumptions (see [6, Th.5.11] and [26, Lemma 11]) that H 1

n.o(�, gT ⊗T M)

is finite and H 1
n.o⊥(�, g∗

T ⊗T M)∨ is of O-cofinite type. Let Tn = T/(�n); it is a
finite algebra over On = O/(�n). Let R = Rs,n.o

μ , which pro-represents simplicial
ordinary deformations of weight μ. We consider the simplicial ring homomorphism

φn : R → Tn

given by the universal property for the deformation ρn = ρm (mod (�n)). Let Tn =
T/(�n); it is a finite algebra over On = O/(�n). We consider the simplicial ring
homomorphism

φn : R → Tn

given by the universal property for the deformation ρn = ρm (mod (�n)). Let Mn

be a finite Tn-module. Consider the simplicial ring 	n = Tn ⊕ Mn[1] concentrated
in degrees 0 and 1 up to homotopy. It is endowed with a simplicial ring homomor-
phism prn : 	n → Tn given by the first projection. Let Ln(R) be the set of homo-
topy equivalence classes of simplicial ring homomorphisms � : R → 	n such that
prn ◦� = φn . By Proposition 4.26, there is a canonical bijection

Ln(R) ∼= H 2
n.o,str (�, gTn ⊗Tn Mn).

Moreover, as noticed in [13, Lemma 15.1], there is a natural map
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π(n,R) : Ln(R) → HomT (π1(R), Mn)

defined as follows. Let [�] be the homotopy class of � ∈ HomT (R,	n); then
π(R)(�) is the homomorphism which sends the homotopy class [γ] of a loop γ
to � ◦ γ ∈ HomsSets(�[1], Mn[1]) = Mn . Recall a loop γ is a morphism of sSets

γ : �[1] → 	n

from the simplicial interval �[1] to the simplicial set 	n which sends the boundary
∂�[1] to 0. For G = GLN and F a CM field (assuming Calegari-Geraghty assump-
tions), it is proven in [26] that

Proposition 5.1 For any n ≥ 1, the map π(n,R) is surjective.

Then, we choose Mn = Hom(T,�−nO/O); we take the Pontryagin dual
π(n,R)∨ and apply Poitou-Tate duality

H 2
n.o,str (�, gTn ⊗Tn Mn) ∼= H 1

n.o,str (�, (gTn ⊗Tn Mn)
∗).

We obtain a T -linear homomorphism called the mod.�n Galatius-Venkatesh homo-
morphism:

GVn : HomT (π1(R), Mn)
∨ ↪→ H 1

n.o,str (�, (gTn ⊗Tn Mn)
∗).

The left-hand side is π1(R) ⊗ �−n/O and the right-hand side is Seln.o,str
(Ad(ρn)(1)). Taking inductive limit on both sides, we obtain

Proposition 5.2 There is a canonical T -linear injection

GVT : π1(R
s,n.o) ⊗O K/O ↪→ Sel(Ad(ρT )∨(1)).

For G = GLN , F CM, and under Calegary-Geraghty assumptions, and for T
the non-Eisenstein localization of the Hecke algebra acting faithfully on the Betti
cohomology, it follows from [6, Theorem 5.11] that the left-hand side is �-divisible
of corank rk(T ) and it is proven in [26, Lemma 11] that the right-hand side has
corank rk(T ). For any O-finitely generated ordinary �-module M such that the
Selmer group H 1

n.o,str (�, M ⊗ Q/Z) is O-cofinitely generated, we define its Tate-
Shafarevich module as

III(M) = H 1
n.o,str (�, M ⊗ Q/Z)/H 1

n.o,str (�, M ⊗ Q/Z)�−div.

It is the torsion quotient of H1
n.o,str (�, M ⊗ Q/Z). For any O-algebra homomor-

phism λ : T → O, let ρλ = ρT ⊗λ O. For M = Ad(ρλ)
∨(1)), one shows in [26,

Lemma 11], using Poitou-Tate duality, that III(Ad(ρλ)
∨(1))) is Pontryagin dual to

Seln.o,str (Ad(ρλ)).
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It follows from [26, Lemma 11] that the cokernel of GVλ can be identified to the
Tate-Shafarevich group III(Ad(ρλ)

∨(1)) in the sense of Bloch-Kato. So that

Coker GVλ
∼= Seln.o,str (Ad(ρλ))

∨.
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