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Abstract

Foods from animal and plant origin may represent vehicles of different
contaminants (chemical and microbiological) which are responsible for many
foodborne diseases. Foods can be contaminated during all stages of the food
chain by pathogenic bacteria or chemical compounds originated by environmen-
tal pollution or uncorrected use of crop protection products. Food safety is
therefore a very important issue in the actual context of the intensive development
of the food products. Nutrient monitoring and fast screening of contaminants
represent some of the key issues in the agri-food field for assessment of food
quality and safety. Conventional methods in food safety analysis are laborious,
time-consuming, and require skilled technicians. The demand for the develop-
ment of simple, fast, accurate, low-cost, and portable analytical instruments is
growing and biosensors appear to meet these requirements. A biosensor is an
analytical device used to quantify the target of interest in a sample. Generally, it
comprises a biorecognition element which is specific toward the target. Molecular
recognition events between the recognition element and the target compound
elicit a physiochemical or biological signal, which is converted into a measurable
quantity by the transducer. The choice of biological element and the optimum
transducer depends on the properties of the sample of interest and the type of
physical magnitude to be measured. The application of biosensors in food safety
analysis sheds new light on the efficient and rapid detection of foodborne toxins,
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allergens, pathogens, toxic chemicals, heavy metals, and other contaminants. In
particular, among the variously reported biosensors, electrochemical biosensors
have been very popular and widely used due to their simple and well-understood
bio-interaction and detection process. Electrochemical biosensors are based on
the measurement of the electrical properties of the sample due to the chemical
reaction between immobilized biomolecules and the analyte of interest; they use a
transducer where electrochemical signals are generated during biochemical
reactions and are monitored using suitable potentiometric, amperometric, con-
ductimetric, impedimetric systems of analysis. Therefore, electrochemical
biosensors represent a promising tool for food analysis due to the possibility of
satisfying specific demands that the classic methods of analysis do not attain:
advantages as high selectivity and specificity, which allows the detection of a
broad spectrum of analytes in complex samples with minimum sample
pretreatment, relatively low cost of construction, the potential for miniaturization,
easier automation, and simple and portable equipment construction. Based on the
above, this chapter wants to provide general information about biosensors and to
highlight the current situation in the literature on electrochemical biosensors for
the detection of some microbiological and chemical hazards in food processing.
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2.1 Introduction

Illnesses resulting from foodborne diseases have become one of the most widespread
public health problems in the world today. Internationally, foodborne diseases
associated with microbial pathogens, toxins, and chemical contaminants in food
present a serious threat to the health of millions of individuals (Redmond and Griffith
2003). Therefore, the assessment of food safety is one key area for the modern food
industry. Food from animal and plant origin may represent vehicles of chemical and
microbiological contaminants which are responsible for many foodborne diseases.
Foods can be contaminated during all stages of the food chain by pathogenic bacteria
or chemical compounds originated by environmental pollution or uncorrected use of
crop protection products. Food safety is therefore a very important issue in the actual
context of the intensive development of food products. The monitoring and fast
screening of contaminants represent some of the key issues in the agri-food field for
assessment of food quality and safety. Conventional methods in food safety analysis
are expensive, laborious, time-consuming, and require skilled technicians
(Campuzano et al. 2017). The demand for the development of simple, fast, accurate,
low-cost, and portable analytical instruments able to monitor the presence of food
hazards is a primary need in the food industry and the biosensors appear to meet
these requirements. International Union of Pure and Applied Chemistry (IUPAC)
proposed a very stringent definition of a biosensor: “A biosensor is a self-confident
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integrated device which is capable of providing specific quantitative or semi-
quantitative analytical information using a biological recognition element (bio-
chemical receptor) which is in direct spatial contact with a transducer element. A
biosensor should be clearly distinguished from a bioanalytical system which
requires additional steps, such as reagents addition” (Thevenot et al. 2001). Briefly,
a biosensor can be defined as an analytical device characterized by a biological
recognition element in close or integrated with a detector to identify the presence of
one or more specific analytes and their concentrations in a sample (Fig. 2.1). A
biosensor aims to provide rapid, real-time, and reliable information about the
biochemical composition of its surrounding environment; ideally, it is a device
that is capable of responding continuously, reversibly without perturbing the sample
(Chandra et al. 2012; Choudhary et al. 2016; Deka et al. 2018; Mahato et al. 2018;
Verma et al. 2019).

Biosensors can be classified in agreement with the type of recognition element or
the type of signal transduction. As regards the first classification, biosensors are
divided into two main groups: catalytic and affinity biosensors. In the first case, the
recognition element can be characterized by enzymes, whole cells (bacteria, fungi,
cells, yeast), cell organelles, and plant or animal tissue slices. The catalytic sensors
have the longest tradition in the field of biosensors: historically, glucose sensing has
dominated the biosensor literature and has delivered huge commercial successes to
the field. As concerns the affinity biosensors, the biomolecule can be represented by
chemoreceptors, antibodies, nucleic acids; they provide selective interactions with a
ligand to form a thermodynamically stable complex. The most developed examples
of biosensors using complexing receptors are immunosensors, based on the interac-
tion process between an antigen with its specific antibody.

Related to the classification based on transducers, a wide variety of transduction
techniques have been developed in biosensing technology; in particular, the most

Fig. 2.1 Schematic diagram of a biosensor
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common are optical, piezoelectric, calorimetric and electrochemical (Thakur and
Ragavan 2012).

It is fair to support that most biosensors reported in the literature are based on
electrochemical transducers: recent studies have shown that electrochemical-based
sensors are the most common and, in particular, electrochemical affinity biosensors
are particularly interesting in food analysis (Campuzano et al. 2017; Roariu et al.
2016). This may not be surprising considering that the electrochemical transduction
shows, more than others, many advantages including low instrumentation costs, high
sensitivity, ease of miniaturization, and relatively simple instrumentation; all these
features are highly compatible with portable devices (Malvano et al. 2020).

Furthermore, is worth highlighting that, among electrochemical transducers, the
impedimetric ones are optimal for label-free detection of bio-interaction, which is
based on the direct measurement of phenomena occurring during the biochemical
reactions on a transducer surface, concerning a “labeled” detection which relies on
the investigation of a specific label (fluorophores, magnetic beads, active enzyme,
etc.) (Daniels and Pourmand 2007).

Electrochemical Impedance Spectroscopy is, in fact, a powerful, non-destructive
and informative technique, which can be used to study the electrical properties of the
sensing device interface and tracing the reaction occurring on it. The application of
impedance as a transduction technique, based on the direct monitoring of the
interaction between the bioreceptor and its target, enables the production of label-
free biosensors for food analysis with significant advantages over labeled ones. By
avoiding the laborious and expensive labeling steps, which can cause loss of affinity
between the labeled receptor and its target and decrease reproducibility, sensitivity,
and selectivity of the biosensor, the use of label-free monitoring reduces biosensor
costs and allows analysis in a short time (Rhouati et al. 2016). Thanks to the EIS
transduction technique, food biosensor analysis is performed in real-time by study-
ing the change in electrical properties of the electrode surface which depends only on
the binding interaction between the analyte and its receptor.

Thus, to respond to the need for food safety control, label-free affinity biosensors
can be considered as the most relevant devices for fast measurements of food hazards
in food processes, being able to detect a wide range of chemical and microbiological
risks through the use of appropriate biomolecules.

In this regard, the last decade has observed phenomenal growth in the field of
electrochemical affinity biosensors for analyses of food and beverage, in particular
for food safety monitoring.

2.2 Electrochemical Biosensor for Food Safety

This chapter provides an overview of the potential application of electrochemical
biosensors for the analysis of chemicals and microorganisms that affect food safety,
discussing some examples of the latest advances in this field. A focus on the most
commonly responsible for food contaminations, including toxins and mycotoxins,
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pesticides, pathogenic bacteria will be presented, pointing out the advantages of
electrochemical transduction techniques applied on affinity biosensors.

2.2.1 Mycotoxins

Mycotoxins are a varied group of toxic secondary metabolites produced by molds.
They are thermally stable and notoriously toxic, teratogenic, mutagenic, and carci-
nogenic, which can enter into the human food chain causing severe impact on human
health. The risk of mycotoxins are well-recognized worldwide and also the incidence
of these compounds is a universal problem: they affect a broad range of agricultural
products including cereals, cereal-based foods, dried fruits, wine, milk, coffee beans,
cocoa, bakery and meat products, which are the basis of the economies of many
developing countries (Evtugyn and Hianik 2019).

The most relevant mycotoxins under a toxicological and legislative point of view
are the ochratoxins and aflatoxins; their chemical structures are represented in
Fig. 2.2.

In the latest years, there has been a significant effort to improve analytical
approaches for the effective determination of mycotoxins: common analytical
methods like capillary electrophoresis, and chromatography techniques linked to
mass spectrometry (LC-MS, GC-MS), reliable but characterized by sophisticated
and expensive instruments and not suitable for real-time and on-site application, try
to be replaced with innovative biosensor technologies to obtain reliable, fast, and
sensitive measurements with high selectivity and reduced cost.

Among mycotoxins, Ochratoxin A (OTA) is one of the most abundant in a wide
range of agricultural commodities, ranging from cereals grains to dried fruits to wine
and coffee, in a few micrograms per kilogram amounts. In the European Union, the

Fig. 2.2 Chemical structures
of the main aflatoxins and
ochratoxins
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maximum limits established for OTA in different food products are fixed in Com-
mission Regulation (EC) N� 1881/2006 and ranged from 10 μg/kg for instant coffee
and dried fruits to 0.5 μg/kg for dietary foods intended specifically for infants.

Different electrochemical immunosensors have been reported in the literature for
the detection of OTA amount in food matrices at least equal to the acceptable limits
of OTA allowed by regulation.

Badea et al. (2016) immobilized monoclonal antibody on screen-printed gold
electrodes through bovine serum albumin used as “anchor” for the covalent immo-
bilization of the anti-OTA antibodies: all the steps of the immunosensor construction
and also the immunochemical reaction between surface-bound antibody and OTA
were analyzed using cyclic voltammetry and electrochemical impedance spectros-
copy. The specific interaction between antibody and OTA induces an increase in
electron transfer resistance at the interface sensor/solution that is correlated with the
concentration of OTA in the sample: the detection of OTA was achieved by EIS in
the linear range 2.5–100 ng/mL. The developed immunosensor was also used to
detect OTA amounts in licorice extracts samples.

Malvano et al. (2016a) proposed two different antibody immobilization
techniques on gold electrodes: oriented and not oriented. The comparison between
the two monoclonal anti-OTA immobilization procedures underlined the advantages
of oriented one, which showed a more ordered and homogeneous antibody layer that
guarantees a higher number of molecules effectively exposed to antigen interaction.
The linear range (0.05–25 μg/kg), the very low detection limit (0.05 μg/kg), and high
sensitivity (26.45 kΩ mL/ng) showed the potential of the immunosensor as a highly
capable analytical device for fast measurement of OTA traces. Tests with cocoa
beans were also performed by the authors to study the feasibility of applying the
immunosensor for the detection of OTA in food samples.

To exploit the advantages of cheap electrodes, characterized by low-cost fabrica-
tion and mass production, Malvano et al. (2016b) proposed a capacitive OTA
immunosensor on screen-printed carbon electrode modified with electrodeposited
gold nanoparticles. Using the electrochemical impedance spectroscopy it was
observed that the capacitance was the best parameter that described the reproducible
change in electrical properties of the electrode surface at different OTA
concentrations, and it was used to investigate the analytical performances of the
developed immunosensor. Under optimized conditions of monoclonal antibody
amount, the immunosensor showed a wide linear range between 0.3 and 20 ng/mL
with a limit of detection of 0.34 ng/mL, making it suitable for the analytical
determination of OTA in food matrices.

Despite the high selectivity guaranteed by the use of antibodies, the main
drawback for the development of immunosensors is due to the high cost of specific
monoclonal antibodies used for the biorecognition process. Nucleic acid aptamers,
obtained by the in vitro selection process SELEX, represent an alternative approach
of receptors for affinity biosensors production. The use of aptamers as biomolecular
recognition is justified by their low-cost synthesis, high reproducibility, and higher
stability due to their nucleic-acid chemical nature. Additionally, they can be easily
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combined with different chemical labels/groups that provide flexibility for adapta-
tion to different platforms (Miranda-Castro et al. 2016).

In addition to the choice of aptamers as alternative biorecognition molecules,
nanostructured platforms based on conductive materials, including conducting
polymers, gold nanoparticles (AuNPs), quantum dots (QDs), magnetic beads and
carbon nanomaterials, represented, in the latest years, an interesting approach for
electrochemical signal enhancement, to improve sensitivity and the stability of
biomolecules activity (Campuzano et al. 2017).

To improve the electrical conductivity of the non-homogeneous electrode
surfaces, Rivas et al. (2015) developed an impedimetric biosensor using a 3-
0-aminated aptamer selective to OTA recognition. The immobilization of the aptamer
was carried out, on screen-printed carbon electrodes modified with an
electropolymerized film of polythionine and iridium oxide nanoparticles (IrO2
NPs). The aptasensor showed the lowest limits of detection reported so far label-
free impedimetric detection of OTA, equal to 5.65 ng/kg.

Mejri-Omrani et al. (2016) covered the surface of a gold electrode with a
conductive polypyrrole layer and used fourth-generation polyamide amine
dendrimers for the covalent immobilization of an aptamer for OTA detection formed
by 36 nucleotides with the sequence NH2-(CH2)6–-
50GATCGGGTGTGGGTGGCGTAAAGGGAGCATCGGACA-30.

The aptasensor showed a range of up to 5 μg/L and a detection limit of 2 ng/L of
OTA, and no matrix effects were observed during the analysis of OTA in red wine.

In more recent years, metallic nanomaterials advantage was exploited for the
development of electrochemical label-free aptasensors. Gold nanoparticles com-
bined with carboxylic porous carbon represented an excellent carrier for both the
immobilization of DNA-aptamers and the amplification of the impedimetric signal
(Wei and Zhang 2017). Under optimized conditions, the change in the charge
transfer resistance of the electrode showed a log-linear relationship to OTA concen-
tration in the range 10�8

–0.1 ng/mL, with the limit of detection equal to 10�8 ng/mL.
Recovery studies were performed in soybean samples by spiking 10�6 ng/mL and
recoveries ranged from 95% to 108%.

A more complex structure based on bimetallic (Cu–Co) Prussian Blue analogs
(PBAs) coupled to gold nanoparticles was used to develop an impedimetric
aptasensor (Gu et al. 2019). The chemical composition and crystal structure of the
bimetallic matrix guaranteed excellent electrochemical conductivity and strong
aptamer binding interaction, achieving a very low limit of detection equal to
5.2 fg/mL.

In addition to Ochratoxins, Aflatoxins are a group of mycotoxins characterized by
a great carcinogenic power. Coupling the advantages and the effectiveness of
monoclonal antibodies with different strategies for signal enhancement, a lot of
electrochemical label-free immunosensors were proposed in literature characterized
by satisfactory performances.

Li et al. (2017) constructed a label-free impedimetric immunosensor based on
gold three-dimensional nanotube ensembles: AFB1 monoclonal antibodies were
immobilized on the surface using a staphylococcus protein A layer, obtaining a
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limit of detection equal to 1 pg/mL. In another example, Costa’s group reported an
impedimetric immunosensor based on carbon nanotubes and an Au electrode for
monitoring AFB1 (Costa et al. 2017): in this immunosensor, the carbon nanotubes
exhibited an exceptional surface/volume ratio and excellent electrical properties.

Bhardwaj et al. (2019) showed an immunosensor in which anti-AFB1 was
immobilized on the surface of an ITO glass electrode coated with graphene QDs
and AuNPs: the electrocatalytic activity of the AuNPs improved the electronic
properties of the composite GQDs-AuNPs, reaching a linear range from 0.1 to
3.0 ng/mL. Yagati’s group reported an impedimetric immunosensor that selectively
detects AFB1 at the lowest level by utilizing polyaniline nanofibers (PANI) coated
with gold (Au) nanoparticles composite-based indium tin oxide (ITO) disk
electrodes. The Au-PANI acted as an effective sensing platform having high surface
area, electrochemical conductivity, and biocompatibility which enabled greater
loading deposits of capture antibodies. As a result, the presence of AFB1 has
screened in a linear range 0.1–100 ng/mL with a detection limit of 0.05 ng/mL
(Yagati et al. 2018).

A platform of Poly(3,4-ethylenedioxythiophene) (PEDOT) and graphene oxide
(GO) composite decorated with spherical gold nanoparticles (AuNPs) has been used
for the immobilization of anti-aflatoxin B1 covalently immobilized using EDC/NHS
coupling. The proposed amperometric immunosensor exhibits a very high sensitivity
within two linear range of 0.5–20 ng/mL and 20–60 ng/mL, respectively (Sharma
et al. 2018).

A ferrocene-modified gold electrode was proposed by Malvano et al. (2019) as a
platform for the immobilization of monoclonal anti-AFB1. In this work, the authors
developed a label-free immunosensor, using the impedimetric technique,
characterized by linearity in the range 0.01–10 ng/mL and a limit of detection of
0.01 ng/mL.

In more recent years, different electrochemical aptasensors with optimum
performances were developed in alternatives to immunosensors. A very novel
magnetically assembled aptasensing device has been designed for label-free deter-
mination of AFB1 by employing a disposable screen-printed carbon electrode
covered with a polydimethylsiloxane (PDMS) film (Wang et al. 2018a, b). The
bio-probes were firstly prepared by immobilization of the thiolated aptamers on the
Fe3O4Au magnetic beads, which were rapidly assembled on the working electrode
of SPCE, by using a magnet placed at the opposite side. The developed method
allowed the construction of an impedimetric aptasensor with a wide linear range
between 20 pg/mL and 50 ng/mL with a low detection limit of 15 pg/mL,
opportunely used in peanuts samples.

Aptamer against AFM1 was immobilized on a glassy carbon electrode covered
with polymeric neutral red (NR) dye obtained by electropolymerization. In the
presence of AFM1, the cathodic peak current related to the NR conversion decreases
and an increase of the charge transfer resistance measured by electrochemical
impedance spectroscopy was observed. In optimal conditions, this makes it possible
to determine AFM1 from 5 to 120 ng/L in standard solutions with a limit of detection
of 0.5 ng/L. The aptasensor was validated on the spiked samples of cow and sheep
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milk, reaching a reliable detection of the 40–160 ng/kg of mycotoxin (Smolko et al.
2018).

Ochratoxins and Aflatoxins are the most common mycotoxins present in the food
sample, but there are other substances, less common but not with less harmful effects
on human health. The following table (Table 2.1) summarizes some recent example
of electrochemical affinity biosensors developed for the detection of different toxins
and mycotoxins.

Table 2.1 Electrochemical affinity biosensors for mycotoxins detection

Analyte Interface
Transduction
technique Range LOD Reference

Patulin AuE/ZnONRs/
AuNPs/Apt

DPV 0.5–
50 ng/mL

0.27 pg/
mL

He and
Dong
(2018)

Zearalenone SPCE/BSA/MAb DPV 0.25–
256 ng/
mL

0.25 ng/
mL

Yugender
Goud et al.
(2017)

Zearalenone AuE/p-PtNTs/
AuNPs/thionin
labeled GO

AMP 0.5 pg/
mL–
0.5 μg/
mL

0.17 pg/
mL

He and Yan
(2019)

Fumonisin
F1

GCE/AuNPs/Apt EIS 0.1–
100 nM

2 pM Chen et al.
(2015)

Zearalenone GCE/Au-Pt
NPs/MAb

DPV 0.005–
50 ng/mL

0.5 pg/
mL

Liu et al.
(2017)

Zearalenone GCE/chitosan/
conjugate of
zearalenone with
BSA

DPV 10 pg/
mL–
1000 ng/
mL

4.7 pg/
mL

Xu et al.
(2017a, b)

Zearalenone SPCE/Fe2O3/HRP DPV 1.88–
45 ng/mL

0.57 ng/
mL,

Regiart
et al. (2018)

DON GCE/AuNPs/
4nitrophenylazo

EIS 6–30 ng/
mL

0.3 ng/
mL

Sunday
et al. (2015)

DON SPCE/AuNPs/
Polypyrrole/Ab

DPV 0.05–
1 ppm

8.6 ppb Lu et al.
(2016)

Fumonisin
B1

SPCE/AuNPs/
Polypyrrole/Ab

DPV 0.2–
4.5 ppm

4.2 ppb Lu et al.
(2016)

Fumonisin
B1

GCE/chitosan/DON-
BSA

DPV 0.01–
1000 ng/
mL

5 pg/
mL

Qing et al.
(2016)

T-2 Toxin GCE/chitosan/DON-
BSA

DPV 0.01–
100 μg/
mL

0.13 μg/
mL,

Wang et al.
(2018a, b)

AuE:gold electrode; SPCE: screen-printed carbon electrode; ZnONRs: ZnO nanorods; Apt:
aptamer; BSA: bovine serum albumin; MAb: monoclonal antibody; p-PtNTs: porous platinum
nanotubes; AuNPs: Gold nanoparticles; GCE: glassy carbon electrode; Au-Pt NPs: gold-platinum
nanoparticles; HRP: Horseradish peroxidase
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2.2.2 Pathogenic Bacteria

Foodborne illnesses caused by pathogenic bacteria represent an important threat to
the health of people. Pathogens are infectious agents that cause disease; they include
microorganisms such as fungi, bacteria, and molecular scale infectious agents
including viruses and prions. Among these, Escherichia coli O157:H7, Salmonella,
Listeria monocytogenes, Campylobacter, Helicobacter, Staphylococcus aureus, and
Bacillus cereus are the most common and are responsible for approximately 90% of
all foodborne diseases (Dye 2014).

Conventional methods for pathogenic bacterial identification involve various
culturing techniques and different biochemical tests which are very time-consuming,
requiring 2–4 days. Analysis time and sensitivity are the most important limitations
related to the usefulness of bacterial testing. An extremely selective detection
methodology was also required because low numbers of pathogenic bacteria are
often present in a complex biological sample along with many other nonpathogenic
bacteria. Tedious and time-consuming detection methods have prompted several
groups in recent years to develop other techniques to reduce the detection time like
Polymerase Chain Reaction (PCR) and Enzyme-Linked Immunosorbent Assay
(ELISA). However, both techniques have limitations that exclude their extensive
implementation. These limitations include accurate primer designing, the require-
ment of specific labeled secondary antibodies, and their failure to distinguish spore
viability (Cesewski and Johnson 2020).

Recently, numerous electrochemical biosensors have been developed using
impedimetric, potentiometric, and voltammetric techniques for the detection of
several bacteria and parasites: a lot of novel approaches of working modification
were carried out to develop very sensitive electrochemical biosensors.

E. coli are bacteria that naturally occur in the intestinal tracts of humans and
warm-blooded animals to help the body synthesize vitamins. One pathogenic strain,
E. coli O157:H7, produces toxins that damage the lining of the intestine, causes
anemia, stomach cramps and bloody diarrhea, and serious complications called
hemolytic uremic syndrome (HUS) and thrombotic thrombocytopenic purpura
(TTP). Several electrochemical biosensors have been developed for the detection
of this pathogenic bacteria in food products (Doyle 1991).

An electrochemical immunosensor for rapid detection of E. coli O157:H7 have
been proposed by Xu et al. (2017a, b): the immunosensor was prepared by layer-by-
layer assembly involving the formation of 11-amino-1-undecanethiol self-assembled
monolayer onto a gold electrode and the immobilization of AuNPs followed by the
incorporation of Chitosan-MWCNTs–SiO2/thionine nanocomposites and AuNPs
multilayer films. Finally, anti-E.coli O157:H7 antibodies were covalently bound
and electrochemical impedance spectroscopy was used to obtain a calibration
curve for heat-killed E. coli O157:H7, by measuring the increase in the charge
transfer resistance as the antigen concentration increased. The working range was
4.12 � 102–4.12 � 105 CFU/mL.

Gold microelectrodes modified with maleic anhydride/(hycroxyethyl)-
methacrylate polymer film were used to immobilize anti-E.coli and to develop a
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capacitive label-free immunosensor able to detect E.Coli cells at least equal to
70 CFU/mL (Idil et al. 2017). Graphene electrodes were modified with chitosan/
polypyrrole/carbon nanotubes/gold nanoparticles layer (Guner et al. 2017) and
CuO/cysteine (Pandey et al. 2017) for the immobilization of monoclonal antibodies
to detect E. Coli O157:H7 at least equal to 30 CFU/mL and 3.8 CFU/mL,
respectively.

Malvano et al. proposed two different impedimetric immunosensors for the
sensitive detection of E. coli O157:H7: in the first one, monoclonal antibodies
were immobilized on a strontium titanate perovskite layer (SrTiO3) synthesized on
a platinum electrode. Under optimized conditions, the capacitive immunosensor
showed a detection range from 101 to 107 CFU/mL and an LOD of 10 CFU/mL
(Malvano et al. 2018a). A lower limit of detection (3 CFU/mL) was found afterward
exploiting the high conductive properties of ferrocene-modified gold electrodes use
as a platform for the antibodies immobilization. The immunosensor was used to
analyze milk and meat samples obtaining a good agreement with the results of
ELISA analysis (Malvano et al. 2018b).

More recently, Jafari et al. (2019) used a TEOS/MTMS sol-gel on gold
microelectrodes to immobilize monoclonal antibodies for E. Coli O157:H7 detec-
tion. Through electrochemical impedance spectroscopy transduction technique, the
immunosensor was able to detect the microorganism with a limit of detection equal
to 1 CFU/mL. The same limit of detection was reached by Wilson et al. (2019) using
an Ag-interdigitated microelectrode array through the immobilization of a peptide as
a biorecognition element.

As regards other pathogenic bacteria responsible for foodborne diseases,
Sheikhzadeh et al. (2016) reported the combination of poly[pyrrole-co-3-carboxyl-
pyrrole] copolymer and aptamer for the development of a label-free electrochemical
biosensor suitable for the detection of S. Typhimurium. Impedimetric measurements
were facilitated by the effect of the aptamer/target interaction on the intrinsic
conjugation of the copolymer and subsequently on its electrical properties. The
aptasensor detected S. Typhimurium in the concentration range 102–108 CFU/mL
with high selectivity and with a limit of quantification of 100 CFU/mL and a limit of
detection of 3 CFU/mL. The suitability of the aptasensor for real sample detection
was demonstrated via recovery studies performed in spiked apple juice samples.

A label-free impedimetric aptamer-based biosensor for S. typhimurium was also
fabricated by grafting a diazonium-supporting layer onto SPCEs followed by the
immobilization of an aminated-aptamer. This strategy allowed obtaining a dense
aptamer layer, which resulted in high sensitivity with a limit of detection of 8 CFU/
mL (Bagheryan et al. 2016). Also, a novel outer membrane antigen (OmpD) was
used for the first time as a surface biomarker for detecting S. typhimurium. Anti-
OmpD antibody was used as detector probe in an impedimetric immunosensor using
graphene-graphene oxide-modified SPCEs. The developed method was able to
selectively detect S. typhimurium in spiked water and juice samples with a sensitivity
up to 10 CFU/mL (Mutreja et al. 2016).

2 Electrochemical Biosensors for Food Safety Control in Food Processing 55



Izadi et al. (2016) proposed an electrochemical DNA-based biosensor for Bacillus
cereus in milk and infant formula. They explored AuNPs to prepare a modified
pencil graphite electrode that could detect Bacillus cereus as low as 100 CFU/mL.

Gold-interdigitated electrode arrays were realized for the detection of
L. monocytogenes, using polyclonal antibodies: the devices were able to detect
until 160 CFU/mL (Chen et al. 2016) and 39 CFU/mL of bacteria (Wang et al.
2017a, b), using different antibodies immobilization techniques.

Other electrochemical biosensing platforms have also been reported for the
determination of S.aureus. CNT-coated Au-tungsten microwire electrodes (Yamada
et al. 2016) and PEI/CNT composite on Au microwire electrode (Lee and Jun 2016)
were used as a platform for the immobilization of polyclonal antibodies. Both the
biosensors were able to show the same LOD of 100 CFU/mL. Higher performance in
the detection limit was reached by Primiceri et al. (2016) who proposed a biochip
based on an interdigitated microelectrode array able to quantitatively detect two of
the most common food-associated pathogens, Listeria monocytogenes and Staphy-
lococcus aureus, with a detection limit as low as 5.00 CFU/mL for L. monocytogenes
and 1.26 CFU/mL for S. aureus.

2.2.3 Pesticides

According to the US Environmental Protection Agency (EPA), pesticides are
defined as any substance or mixture of substances intended for repelling, destroying,
or controlling any pest. Due to their high insecticidal activity, they are widely used in
agriculture to protect crops and seeds by destroying insects, bacteria, and rodents and
other weed animals (World Health Organization 2016).

However, the presence of pesticide residue in food, water, and soil has become a
very critical problem in environmental chemistry.

Pesticides are classified in several ways, according to their toxicity (dangerous,
highly dangerous, moderately dangerous, and slightly dangerous) and their lifetime
(permanent, persistent, moderately persistent, and not persistent). Often, they are
classified according to the use as insecticides, miticides, herbicides, nematicides,
fungicides, molluscicides, and rodenticides. Referring to the chemical structure, the
commonly reported main classes are organochlorines, organophosphates,
carbamates, and pyrethroids. In addition to these common classes of pesticides,
there are other chemical classes employed as herbicides, hormonal, amides, nitro
compounds, benzimidazoles, bipyridyl compounds, ethylene dibromide, sulfur-
containing compounds, copper, or mercury, among others. (Garcia et al. 2012).

The monitoring and the fast quantification of pesticides and their residues have
become extremely important to ensure compliance with legal limits. The analysis of
these compounds is an important issue due to their potential bioaccumulation, high
toxicity, and their long-term damage risk, also for the use at low concentration. Food
safety assurance requires fast and easy analytical tools to work alongside confirma-
tory methods such as chromatography coupled to mass spectrometry that require
very expensive equipment, long analysis times, high reagent sample volumes, and
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qualified personnel (Kumar et al. 2015). Due to these limits, alternative
methodologies for pesticide detection have been recommended in the last few
years: the most relevant ones are those based on electrochemical methods.
Table 2.2 summarizes the strategies and features of the electrochemical
immunosensors developed for the quantification of different kinds of pesticides in
food products.

The most used approach for the electrochemical label-free biosensors based on
non-competitive pesticides detection was Electrochemical Impedance Spectroscopy
but also voltammetry technologies were adopted.

In 2017, a very innovative enzyme inhibition-based biosensor, immobilizing
AChE enzyme on cysteamine-modified electrode, was proposed to sensitively detect
carbamate and organophosphate compounds with an extremely fast response. The
working principle of the biosensor is based on the high-affinity interaction between
the investigated pesticides (Carbaryl, Paraquat, Kresomix–Methyl, Dichlorvos,
Chlorpyrifos–Methyl Pestanal, Phosmet) and the active site of the enzyme. The
capability of CBs and OPs compound to form a very stable complex with the enzyme
causes an impedimetric change, allowing to go up very fast to the presence of the
toxic compounds in food matrices. The proposed biosensor showed linearity
between 5 and 170 ppb for carbamates and 2.5–170 ppb for organophosphate
compounds (Malvano et al. 2017).

As highlighted above, also for pesticide detection nucleic acid aptamers have
represented an alternative approach in the biosensor field. Novel aptasensors based
on the impedimetric and voltammetric transduction techniques were developed in
the last years; strategies and features are summarized in Table 2.3.

Detection limits at the picomolar level are reported for a lot of the developed
assays and the proposed sensors show that the combination of novel transduction
materials and strategies with improved recognition elements can push toward lower
and lower achievable detection limits.

2.3 Future Perspectives

Ensuring food safety is the main interest both for the food industry and for
consumers. The guarantee of food safety requires fast and specific controls for all
contaminants, chemicals, and bacteria, which are harmful to human health.

Despite common analytical techniques that are time-consuming, require highly
trained personnel, are expensive and require steps of sample pretreatment, increasing
the time of analysis, among food and beverage industries exists a growing demand in
biosensing technologies as simple, rapid, cheap, low-cost, and portable analytical
devices for the monitoring of chemical and microbiological contaminants (toxins,
mycotoxins, pathogenic bacteria, pesticides, and allergens) that endanger the food
safety. In particular, the electrochemical biosensors systems have been demonstrated
to have advantages like portability, shortened analysis time, ease of operation,
novice-friendly, and direct analysis with no sample preparation procedures. Thus,
the electrochemical sensing arrays have been acknowledged as reliable tools for
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automated on-site analysis of mycotoxins in food processing and manufacturing
industries.

Moreover, research results achieved in recent years confirm that nanomaterial
usage had been rapidly growing in the development of electrochemical biosensors.
Analytical performances of the biosensors.

systems increased enormously with the incorporation of nanomaterials: low
detection limits up to sub/picomolar and sub/femtomolar levels and wide linear
analytical ranges were achieved with nanomaterials and nanocomposites of syner-
getic combinations.

Therefore, the development of new materials and the application of
nanostructures to biosensor systems could lead to the development of highly sophis-
ticated analytical systems.

The speed of analysis and the low cost of the transduction instrumentation makes
the electrochemical biosensors the most promising devices, for routine applications
by common users, ensuring high analytical performance in terms of sensitivity and
low detection limits.
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