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Abstract In this paper, we propose a digital twin model for battery management
systems (BMS). We first discuss the corresponding concepts about the digital twin
model of battery management systems. Then, the state-of-charge (SoC) and state-
of-health (SoH) estimation algorithms are presented in an integrated fashion for the
monitoring and prognostics. Concretely, the extended Kalman filter algorithm (EKF)
is used in this paper for the estimation of SoC, which improves the robustness of
digital twin model, and the particle swarm optimization algorithm (PSO) is used in
this paper for the estimation of SoH. The embedded system platforms are introduced
to implement the proposed digital twin model. In the end of this paper, by using
the experimental data obtained from the actual circuit experiment and using the
Simulink module of MATLAB to simulate the digital twin model proposed in this
paper, we verified that the digital twin model proposed in this paper for BMS has
good performance in the Gaussian white noise condition.
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1 Introduction

Secondary batteries play an extremely important role in the emerging power and
energy systems, e.g., smart grid and electric vehicles, where batteries can be
discharged to support the load or charged to store the excessive energy [1]. Domi-
nated secondary batteries in the market include Lead-Acid batteries, Li-ion batteries,
and supercapacitors, where each of them has different applications, e.g., Lead-Acid
batteries have been utilized in the automotive industry for the starting, lighting and
ignition (SLI) purposes, and Li-ion batteries are popular in the electric vehicles, and
supercapacitors are mostly used in fast/discharging application scenarios [2].
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Battery management systems (BMS) are crucial for the safe and efficient oper-
ation of batteries [3]. The BMS is actually an embedded system, where various
sensors can be applied to collect the voltage, current and temperature of batteries.
The measurements are transmitted to the micro-controller, and based on which the
control signal is generated to manage battery cells. The functions of BMS include
state measurement and estimation, cell balancing, charging/discharging control [4].

The design of BMS includes two aspects: one is the hardware design and the
other is software design [5]. In the hardware design, different physical components
need to be analyzed and connected in a logical way, e.g., each cell needs to be
connected with corresponding sensors, where the sensor output is connected with
the analog-to-digital port of the micro-controller. Similarly, the control signal from
the micro-controller needs to drive the actuators (e.g., switches) of the BMS through
the electric wire. In the software design, two flows need to be considered: one is the
state estimation and the other is the state management. In the state estimation flow,
both the state-of-charge (SoC) and state-of-health (SoH) need to be estimated, which
is preferred in a collective way [6–9]. In the state management flow, different control
algorithms, e.g., cell balancing/charging control/discharging control algorithms are
designed to achieve the corresponding purposes [10–12].

Although extensive studies have been conducted on battery management systems
for the battery modeling [13], SoC estimation [6, 7], SoH estimation [8, 9], cell
balancing [10, 11], charging/discharging control [12], to name a few, existing explo-
rations are still restricted in an ad-hocway.Actually, in a batterymanagement system,
different factors are coupled together, which needs to be considered in a collective
way. For instance, the accuracy SoC estimation affects the battery balancing, and
the cell balancing control also affects SoC estimation accuracy. Thus, the battery
modeling, battery state estimation, and statemanagement ofBMSneed to be analyzed
and designed in a systematic way, which in turn, requires a systematic model to
represent the BMS.

A digital twin is digital counterpart of a physical system [14], where the digital
counterpart can be used to estimate and predicate the states of the physical system,
which can be further used to manage the physical system [15]. In the digital twin
framework, the physical part consists of the battery cells, balancing circuits, and
additional electrical components; and the digital twin consists of battery modeling,
battery state estimation, and battery state management [16–18]. In this sense, if we
can build the digital twin model of the battery management system, we can explore
the battery modeling, battery state estimation and battery state management in a
single model, which provides the insight to designing advanced BMSs.

In this paper, a digital twin model is proposed for battery management systems.
We first introduce the concepts of the BMS digital twin. Then, the battery modeling,
SoC estimation, SoH estimation algorithms are presented and analyzed in detail.
Thereafter, we introduce the digital twin platformused in the performance evaluation.
Experiment results verify that the proposed digital twin model can characterize the
BMS accurately.

The remainder of this paper is organized as follows. In Sect. 2, we introduce the
basic concept of the BMS digital twin. Section 3 presents the digital twin algorithms.
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The digital twin model is proposed in Sect. 4. Experiment results are provided in
Sect. 5. We conclude the paper in Sect. 6.

2 BMS Digital Twin Model

In this section, we introduce some basic concepts about the digital twin model of
the battery management systems. As shown in Fig. 1, the whole system consists of
three subsystems: battery cells, micro-controller, and the digital twin. The details are
introduced as follows.

2.1 Battery Cells

In a practical battery storage system, multiple battery cells are connected in series
and parallel to satisfy the voltage and power requirement of the application scenario.
Additional circuits are typically embedded in battery systems to achieve the balancing
of cells. Two categories of balancing circuits can be employed, i.e., passive balancing
circuit and active balancing circuit. In the passive balancing circuit, passive compo-
nents, e.g., resistors or diodes, are connected with cells to dissipate the excessive

Fig. 1 The digital twin model of the battery management system
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energy of high-voltage ones [19]. The energy efficiency of the passive balancing
circuit is relatively low, but the circuit benefits from the low cost and small size,
which is favored in low power applications. In the active balancing circuit, energy
storage units, e.g., inductors or DC-DC converters, are applied to transfer the energy
from the high-voltage cells to low-voltage ones [20]. The active balancing circuit
benefits from high efficiency, but both the size and cost are high, and thus is typically
applied in high power applications. Recently, the reconfigurable battery system has
emerged as a new BMS, where the configuration of the battery cells can be adjusted
dynamically according to the load requirement [21]. These balancing circuits provide
various choices for the designer when designing battery management systems.

2.2 Micro-controller

Micro-controller plays a vital role in collecting battery states and in sending
control signals to the battery cells. To do that, a correct and logical physical
connection is necessary. In the state monitoring flow, corresponding sensors, e.g.,
voltage/current/temperature sensors are connected to each cell to measure the battery
state. The output of the sensors is connected to the analog-to-digital port of micro-
controllers, and then are stored therein. With the measured states, the digital twin
algorithms can be implemented to model, estimate and control the battery states. In
the state management flow, the GPIO port of the micro-controller is connected to
the actuator of the BMS, e.g., switch, relay, or DC-DC converter. Different control
strategies including switching control, PWM control can be applied to regulate the
states of circuits and batteries.

2.3 Digital Twin

Adigital twin represents themathematical abstraction of the BMS.Micro-controllers
provide a physical platform for the digital twin to be implemented. Recently, with the
information technology development, the digital twinmodel can also be implemented
in the cloud server, where the role of micro-controllers becomes a “flow channel” to
transmit the battery state to cloud, and send cloud computing result to BMS.

A digital twin model including the algorithms: battery modeling algorithm, SoC
estimation algorithm, and SoH estimation algorithm, battery balancing algorithm,
and battery charging/discharging control algorithm. In the battery modeling algo-
rithm, the equivalent electrical model of the battery can be applied, which is further
discretized and programmed in micro-controller or cloud servers. In the SoC estima-
tion algorithm, classical observer-based approach and the emergingmachine learning
method can be applied to estimate the SoC of batteries in real time. In the SoH
estimation algorithm, different recursive methods can be adopted to estimate the
SoH in the long term. In the battery balancing algorithm, feedback control law is
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designed to balance the voltage/SoC of batteries based on the designed active or
passive balancing circuit. In the charging/discharging control algorithm, a bidirec-
tional DC-DC converter is typically adopted to achieve the energy flow between
batteries and the load.

In the following, we emphasize three digital twin algorithms, battery modeling,
battery SoC estimation, and battery SoH estimation.

3 BMS Digital Twin Algorithms

3.1 Battery Modeling

The existing battery models can be usually divided into two categories, i.e., elec-
trochemical model and equivalent circuit model. Among them, the electrochemical
model has high precision but many parameters and complex structure, which is not
suitable for SoC online estimation scenarios. Neural network model needs a large
number of experimental data for learning and training, and needs strong computing
ability. In comparison, the equivalent circuit model has fewer parameters and is easy
to identify, and has high estimation accuracy. As shown in Fig. 2, the Theveninmodel
is applied to characterize the battery dynamics:

U̇1 = − U1

R1C1
+ I

C1
(1)

U = Uoc − U1 − IR0 (2)

Thevenin model consists of a voltage source Uoc, resistance R0 and the parallel
network R1C1. U1 and U are the terminal voltage of RC circuit and the terminal
voltage of Thevenin model respectively. The structure of this model is relatively

Fig. 2 Thevenin battery
model
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simple, the parameters are less and easy to identify, and it can characterize the
dynamics of the battery, so it has good practical engineering application value.

3.2 SoC Estimation

The EKF was developed on the basis of the Kalman filter, which extends the Kalman
filter algorithm to nonlinear Gaussian systems.

Generally, the two main components of Kalman filtering are the prediction part
and the update part. As shown in Eqs. (3) and (4) are the prediction equations of the
Kalman filter, where A is the state transition matrix, B is the input control matrix, x̂−k
is a prior estimate of the state, x̂k is the posterior estimate of the state, uk is the input,
P−
k is covariance matrix of prior estimation error e−k = xk − x̂−k . Q is the covariance

matrix of process noise wk .

x̂−k = Ax̂k−1 + Buk−1 (3)

P−k = APk−1A
T + Q (4)

Correspondingly, the updated equations for Kalman filtering are (5)–(7), Where
Pk is covariancematrix of posterior estimation error ek = xk− x̂k , Q is the covariance
matrix of measurement noise vk .

Kk = P−k H
T
(
HP−k H

T + R
)−1

(5)

x̂k = x̂−k + Kk
(
yk − Hx̂−k

)
(6)

Pk = (I− KkH)P−k (7)

EKF is applicable to nonlinear systems. The space-state equations of EKF are (8)
and (9).

xk = f(xk−1, uk−1) + wk−1 (8)

yk = g(xk) + vk (9)

The primary expression of EKF can be derived by linearization of multivariate
function with the first-order expansion of Taylor series.

In summary, the I is selected as the input, SoC andU1 as the state, and the terminal
voltage U as the measurement, so the state equation and measurement equation can
be expressed as Eqs. (10) and (11):
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⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

SoC(k) = wocSoCoc(k) + wahSoCah(k)

U1(k) =
(
1+ 1

R1(SoC(k− 1))C1(SoC(k− 1))

)
U1(k− 1)

+ 1

C1(k− 1)
I (k− 1)

(10)

U(k) = Uoc(SoC(k)) − U1(k) − I(k)R0(SoC(k)) (11)

where T is the sampling period, and there are:

SoCoc(k) = U(k) + U1(k) + I(k)R0(SoC(k− 1)) − βn(k)

αn(k)
(12)

SoCah(k) = SoC(k− 1) − I(k)T

Qrated
(13)

3.3 SoH Estimation

Particle swarm optimization (PSO) can find more suitable parameters by simulating
the behavior of the group. It is widely used because of its high adaptability and
anti-interference ability. The main flow of particle swarm optimization is as follows:
Firstly, the position xi and velocity vi of all particles are randomly generated and
initialized, and the appropriate initial value is determined according to the number
of parameters. Then, in the algorithm iteration, the position and velocity are updated
according to the best solution of each particle in previous generations and the best
solution of all particles in previous generations.

The residual capacity of the battery will decrease during the operation of batteries,
resulting in the capacity attenuation of the battery. The SoH of the battery indicates
the aging level of the battery. The SoH of a battery can be defined as the ratio of the
nominal capacity to the remaining capacity.

Based on the current and voltagemeasurement data of particle swarmoptimization
algorithm, according to the fitness function f , resistance R0,1, capacitance C1 and
other parameters can be identified.

F = 1

N

N∑

i=1

(Ut,i − Ût,i )
2 (14)

where N is the number of particles, Ut,i is the voltage of the battery, and Ût,i is the
estimated battery voltage. When the estimated parameters converge, the algorithm
will stop. Then the SoH can be calculated with the identified parameters.
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4 BMS Digital Twin Platform

As shown in Fig. 3, the hardware platform is composed of four parts: main board,
switching resistance board, voltage measurement board, power supply and data
acquisition module.

1. Main Board: Considering the weight and price, Raspberry Pi was selected
as the main control module. It has a ARM Cortex-A72 CPU with 8 GB
LPDDR4 SDRAM, 5.0 Bluetooth, 2.4 GHz and 5 GHz dual-band WiFi and
other resources.

2. Switching Resistor Board: Three lithium-ion batteries are parallel connected
with the resistor through the corresponding relay channel.

3. Voltage Measurement Board: The ADS1256 chip is utilized with a 8-channel
analog-to-digital converter (ADC) and sampling rate of 30 kHz.

4. Power Sources: The power sources supply is divided into two parts. The
constant-current power supply charge batteries with a constant current. The
DC 24 V power supply provides the operating voltage for the micro-controller
and sensors.

5. Acquisition Platform: The data acquisition module includes PXI equipment,
measurement board and LabView of upper computer. The PXI platform
measures the battery voltages through the measurement board and displays
the voltage profiles in the upper computer.

The parameter settings in the circuit are as follows: the rated capacity of the battery
is 2600 mAh, the reference voltage v0 = 3.6V, the charging current ic = 3.6A,
balancing resistance R = 1�, and sampling period T = 0.001 s.

Fig. 3 Hardware setting of the digital twin platform
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We briefly discuss how the testbed operates during the charging process. As the
main control module, Raspberry Pi measures the terminal voltage of each cell by
controlling the high-precision voltage sampling module. Through measurement, the
controller adjusts the switching state according to the programming algorithm. The
measurement data of the battery is sent to the cloud server through HTTPS protocol
and stored in the database for data visualization in the Web application. HTTPS
protocol adds SSL layer on top of TCP/IP model. The client encrypts the data and
sends it to the server. The server obtains the data after decryption, which ensures the
security and privacy. On the Raspberry Pi operating system, Python development
and software programs are used to convert the cloud control signals into physical
values.

5 BMS Digital Twin Evaluation

In this section, we provide the experiment of the digital twin model of the battery
management system. The performance of the SoC estimation and SoH estimation
algorithms are evaluated.

Figure 4 shows the results of SoC estimation result based on Thevenin battery
model and OCVmethod. It is in fact an open-loop estimation method, where the SoC
is computed based on the battery mathematical model and OCV. Figure 5 shows the
results of SoC evaluation based on the extended Kalman filter approach. Using the
Thevenin battery model, the Kalman filter compares the model output with the actual
output, which is further used to update the estimation. It can be seen that the SoC
estimation method has a good estimation performance.

Figure 6 shows the state of health estimation results when the test data of different
batteries are intercepted at a shorter voltage segment. The particle optimization

Fig. 4 The SoC estimation based on Thevenin battery model and OCV method
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Fig. 5 The SoC estimation based on extended Kalman filter

Fig. 6 The SoH estimation based on the particle optimization method

method is applied to estimate the SoH of batteries. The absolute error of the esti-
mation results of most test samples is less than 5%. It can be seen that the shorter
the intercepted voltage segment, the worse the estimation accuracy of the model.
Therefore, in order to ensure the estimation accuracy of the model, a longer voltage
segment should be selected as much as possible.
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6 Summary

In this paper, a digital twin model is proposed for battery management systems. We
discuss the basic concepts of the digital twin model, including the physical layer and
the cyber layer. The digital twin model, algorithms and platforms are presented in
detail. The experiment results of the proposed digital twin model show that the SoC
and SoH can be estimated accurately. Future work will focus on the development of
digital twin model of the battery management system with the cell balancing.
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