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Abstract The adoption rate of electric vehicles (EVs) has been increased in
recent times, as they are more environment friendly over the conventional internal
combustion-based vehicles. Hence, upcoming years will foresee larger penetration
of EVs in the distribution network (DN) which will lead to new challenges for distri-
bution network operators (DNOs). Charging requirements for EVs depending upon
travel behavior, significantly change the load pattern in DN. This paper presents
different probability distribution functions (PDFs) to predict the uncertain travel
behavior of EVs. The Monte Carlo simulation is used to simulate EV load demand
considering important attributes of traveling patterns. The estimated load demand of
EVs over different time durations of a day has been considered at different nodes
of the standard 33-nodes radial distribution network. Time series power flow has
been carried out to assess the impact of EVs integration on the performance of DN.
Significant drops in voltage profile at all nodes and an increase in losses in DN are
observed after the EV integration which guides the distribution network operator to
take corrective actions.

Keywords Electric vehicle · Grid to vehicle (G2V) · Charging strategy · Voltage
profile · Distribution network

1 Introduction

Recently, the problems such as global warming, greenhouse gases emissions, and
depletion of fossil fuel reserves need utmost awareness for a sustainable and green
future. The rise of harmful emissions in the environment is largely caused by the
transportation sector. Therefore, electrification of the transport sector is seen as the
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best possible alternative to solve these problems. However, the electrification of
the transport sector by EV has been in existence for many years. But due to ease
in availability of non-renewable fuel resources and simple operation of an internal
combustion (IC) engine, EVswere put on hold [1, 2]. TheGlobalmarket share of PEV
is not vast due to its high costs [3]. However, with the support of government policies,
PEV can be made cost competitive, which could result in large-scale adoption of it.

The charging of EVs greatly impacts the load pattern of the distribution network
and subsequently affects its reserve capacity for carrying power through distribu-
tion lines. Uncoordinated charging of EVs in a fleet deteriorates power quality and
increases energy losses, voltage deviations, and peak loading in the distribution
network [4]. As a result, many charging strategies have been developed in the liter-
ature for effectively managing the EV load demand and minimizing its impact on
the distribution system [5, 6]. Various recorded data needs to be analyzed in order
to anticipate the impact on the grid. For example, by determining the state of charge
(SOC) at the onset of charging, the profile of charging is accurately obtained. Due to
fewer penetration of EVs into the grid, data are not easily available. This is a major
drawback of such methods. So different methodologies are needed to be developed
to estimate (forecast) the charging profiles of EVs at various time scales. More-
over, the charging needs of an EV are determined by random variables such as their
daily distance traveled, mobility, arrival time, departure time, and various driving
profiles of an EV owner. This implies that the energy of an EV cannot be determined
by deterministic methodology but a stochastic approach must be adapted for the
efficient operation of an EV. In [7–9], the effect of an EV on the distribution grid
is analyzed, from which factors such as traveling patterns, battery characteristics,
charging schedule, and EV penetration can be summarized to be playing a vital role.

The impact of the charging behaviors of electric vehicles (EVs) on the grid load
is discussed [10]. The historical data of EVs traveling pattern in residential areas
are analyzed and fitted in order to predict their probability distribution, so that the
modeling of the traveling patterns of EVs can be done. Multi-objective charging
strategy is adopted. Modeling of energy demand has been done and the Monte Carlo
(MC) simulation process is designed in order to enhance the creditability of the
model.

Different EV scenarios and charging management approaches are considered to
analyze the impact of EVs on distribution systems grid in [11], and the effect of
charging strategies on load profile pattern is described [12]. Voltage deviation and
abrupt change in various aspects of grid parameters are seen when EVs are integrated
into the actual test system. In this paper, the implementation of integration of an EV is
done in 33 bus distribution systems. Every node is assigned with EV and the voltage
profile of the system is obtained. Obtained results of the voltage profile are compared
by using two scenarios of before and after integration of EV into the grid for various
charging strategies. Grid system losses are also compared, and thus, the effect of EV
on the grid can be analyzed.

This paper is organized as follows: The statistical modeling of travel behavior is
analyzed in Sect. 2. Section 3 deals with the formulation of charging strategies. The
Monte Carlo simulation is used to calculate the solution of the model with random
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variables in Sect. 4. In Sect. 5, test system and simulation results are discussed
followed by conclusions and future work at the end of the paper.

2 Probability Distribution Functions (PDFs) to Model EV
Traveling Behavior

Traveling behavior of EVs owners obtained from traffic survey data [14] is repre-
sented in Fig. 1. It can be noticed that traveling periods of EVs are mainly distributed
over 06:00 to 09:00 and 16:00 to 19:00 and forms morning peak and evening peak,
respectively.On theother hand, approximately 40%ofEVsparking time is distributed
between 18:00 and 21:00 where EVs owners may charge their vehicles. If these EVs
are charged without any guidance, then the electric grid would be impacted by large-
scale EV charging load during this parking period. With the growing demand for
EVs in near future, the grid would face heavy power demand or even lead to failure
of the power grid. Hence, it is very important to analyze the impact of large-scale
EVs charging on the performance of the electric grid.

Electrical power requirement from the grid for EV charging at the particular time
period depends mainly on (i) battery characteristic, (ii) EV numbers, (iii) charging
piles, and (iv) travel behavior of EVs owners. The first three factors are assumed to
be known variables and listed in Appendix I. The factor describing travel behavior is
completely uncertain; therefore, different PDFs are used to model the travel behavior
of EVs.
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Fig. 1 Traveling behavior of EVs—Beijing [13]
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2.1 PDF to Model Different Traveling Variables

The major traveling variables to model EVs traveling behaviors are based on (i)
daily travel frequency, (ii) daily driving mileage per trip, (iii) duration per trip, (iv)
arrival time per trip, and (v) departure time per trip. To derive PDF for these traveling
variables, from the data obtained from GPS installed on private EVs and listed in
Table 1, PDFs are obtained for these traveling variables as given in Table 2 [10]. The
scale and shape parameters as well as expected mean and variance for the obtained
PDFs are listed in Table 3. Scale and shape parameters for PDFs are estimated
through maximum likelihood estimation. K-S, F-test, and T-test are used to ensure
a 95% of accuracy level of generated data. The comparison between the fitted curve
of traveling variables and actual data is shown in Fig. 2.

Table 1 Variables for EV traveling pattern analysis [10]

Total distance Distance per trip Travel duration Duration per trip Travel times

35.4 km 15.5 km 1.51 h 0.63 h 2.29

Table 2 Probability distribution functions to model traveling behavior [10]
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Table 3 Parameters of Probability distribution functions [10]

Traveling variables Shape parameter
(α)

Scale parameter
(β)

Expected mean (μ) Variance (σ)

Daily travel
frequency,Fd

3.71 0.64 2.39 1.24

Daily driving
mileage per trip,Md

0.97 10.57 15.52 15.09

Duration per trip,
Td

1.87 18.35 34.4 25.12

Departure time per
trip (AM),Dam

t

2.16 1.08 18.36 1.08

Departure time per

trip (PM),Dpm
t

– – 18.2 2.84
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Fig. 2 The distribution of various traveling variables

3 Charging Strategies for Electric Vehicle

In this paper, the impact of three different EV charging strategies on the performance
of RDN is addressed. Selection of charging strategy would play the different roles
to reduce EV charging load requirement and to encourage EV users to charge their
vehicles at the time of lower tariff. The general flowchart for charging strategy is
shown in Fig. 3.
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Fig. 3 Flowchart for charging procedure

3.1 Random Charging Strategy

In this charging strategy, charging of a single or large fleet of EVs occurs in an unco-
ordinated manner without considering any scheduled plan. It can also be called as
“plug-and-play” type of charging or “Direct” charging. Whenever the EV is plugged
in, the charging starts immediately. When EV gets charged up to desired SOC or
when EV is disconnected, charging stops.

Chargingpriority = R, R ∈ [0, 1] (6)

In (6), R is a random number that follows a uniform distribution. When SoCmin ≤
SoCcurrent and Chargingpriority > 0.5, EV will start charging. This random or unco-
ordinated EV charging strategy imposes negative impacts on the distribution network
as it increases the loading randomly.

3.2 Tariff Guided Charging Strategy

Tariff schemes can be divided into static pricing and dynamic pricing. In dynamic
pricing or tariff guided schemes, electricity prices at different periods of the day
vary with the load variations, availability of power, and time of use. In static pricing
schemes, electricity prices remain constant throughout the day and do not vary with
load demand. In this work, tariff guided scheme is adopted as per (7). The electricity
price during different time periods of the day is listed in Table 4 [14].

Chargingpriori t y =
(

1.5 − C̃ period

C̃day

)

(7)
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Table 4 Time-of-use electricity prices per day (unit Yuan/kWh)

Hours 0–7 7–9 9–11 11–14 14–16 16–19 19–21 21–23 23–24

Price 0.23 0.61 0.92 0.61 0.92 0.61 0.92 0.61 0.23

where C̃ period is the average charging price for a certain period and C̃day is the average
charging cost of one day. When SoCmin ≤ SoCcurrent and Chargingpriority > 0.5 in
(7), EV charging starts with the lowest tariff rate during the parking period. The
probability of charging priority to be higher than 0.5 increases if C̃period is smaller as
compared to C̃day.

Tariff guided scheme shifts the peak load toward off-peak periods and encourage
EV users to charge their vehicle during off-peak periods where electricity prices are
lower. This charging scheme can improve the performance of the grid by smartly
managing the charging load of EVs and also reduce the charging cost. However,
tariff guided charging scheme results in a sharp peak for a short duration during
night hours and may cause some adverse situations in DN.

3.3 Slack Period Charging Strategy

In this scheme, EV starts charging when it comes to a parking lot. This type of
charging scheme ensures the success of traveling plan if the EV starts charging
immediately after the arrival and when idle or slack time is greater than that of
charging time.

Chargingpriority =
(

1.5 − Tcharge
Tparking

)

(8)

where Tcharge is the estimated time interval needed byEV to fully charge its battery and
Tparking is parking time intervals. When SoCmin ≤ SoCcurrent and Chargingpriority >

0.5 in (8), EV charging starts. The probability of charging priority to be higher than
0.5 increases when EV starts charging immediately after its arrival.

4 Monte Carlo Simulation for EV Charging Model

The Monte Carlo simulation is used to simulate and form the model of the proba-
bility of different outcomes in a process that cannot easily be predicted due to the
involvement of random variables. The impact of uncertainty in prediction and fore-
casting models can be understood from this technique. MC simulation has statistical
convergence where the deviation of the fitted model converges to a certain threshold
value.
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Based on MC random sampling simulation, the charging capacity model of EV is
predicted. The battery charging capacity is calculated for each day which is divided
into 96 intervals of 15 min each. The total charging capacity (TCC) of EV for pth
time interval [10] is described as

TCCp = 1

D

D∑

d=1

⎛

⎝
N∑

q=1

tccpq(d)

⎞

⎠ (9)

where tccpq(d) represents the charging capacity of the qth EV in the pth time slot
on the dth workday, N gives the total number of EVs receiving power from the grid
in the pth time period, and D is the total number of days. Considering the condition
that the battery is always 100% charged before driving, the starting time of the EVs
battery charging can be depicted as follows

�Tq = Qcq

Wc
=

(
1 − SOCini,q

)
Cap ∗ Vol

Wc
, tq ∈ (

T0q , T1q − �Tq
)

(10)

where

T0q and T1q start and end slack status of qth EV.
�T q maximum continuous charging duration.
Qcq charging capacity of EV.
SOCini,q initial state of charge of the qth EV.
tq starting of charging moment.

MC sampling technique adopts a condition for convergence which is expressed
as follows

αp =
√
Vp(y)

yp
= σp(y)

yp
(11)

where αp is the coefficient of variance of the system at the pth moment and Vp,
yp, and σp are the variance, expectation, and standard deviation, respectively. The
variance coefficient αp is set to less than 0.5% when MC simulation is repeated
several times.

Firstly, the daily driving/traveling duration, frequency of travel, andmileage of EV
are determined by modeling users’ travel behavior, while the charging time period of
EV is dependent on the traveling situation, characteristics of the battery or SOC, and
the selected charging strategy. After the EV driving/charging period is determined,
the total driving mileage, power consumed from the grid, and required EV charging
power can be calculated for 96 time intervals per day. Finally, load modeling of an
EV for a complete whole day is simulated byMC simulation and totalcharged power
drawn by EV from grid is obtained and then it is integrated into 33-nodes RDN.
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Fig. 4 Active and reactive power load profile for RDN

5 Simulation Results and Discussion

5.1 Test System

To analyze the impact of EV charging on the performance of distribution networks,
standard 33-nodes radial distribution network is used from [15]. The test system
consists of different feeders with active and reactive power loads connected at
different nodes [15]. The total active and reactive power load for the test system
is 3.72 MW and 2.7 MVAR, respectively. The normalized active and reactive power
load profile in RDN is shown in Fig. 4. Active and reactive power loads given in [15]
have been varied as per the normalized load profile, and sample active power load
variations for Bus 3, Bus 7, and Bus 24 are shown in Fig. 4.

5.2 EV Load Variation

In this simulation study, EVs are randomly distributed to the all-load nodes of RDN
in a range from 1 to 100 EVs. Three types of charging strategies discussed in Sect. 3
are adopted to charge EVs. The charging requirement of EVs at a specific period
depends mainly on (i) battery characteristics of EVs, (ii) capacity of charging piles,
(iii) number of EVs, and (iv) traveling behavior of EV owners. The parameters used
in the simulation for EVs load are given in Appendix I. It is assumed that charging
infrastructure is available at each node of RDN. The EV load demands at each node of
RDNat different periods throughout the day are shown in Fig. 5 for different charging
strategies. In this analysis, a day is divided into 96 slots, each slot of 15min. Based on
the charging strategy and number of EVs distributed on the load nodes, the systemhas
experienced EV load in addition to the base load. Figure 6 represents the aggregate
load demand of RDN during each slot of a day. The impact of EVs load has been
analyzed for standard test systems by adopting the Time Series Power Flow method
[16].
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On the basis of the probability distribution model of the EV traveling pattern
and three types of charging strategies, the EVs operation procedure through MC
simulation gives indices like estimated peak load, the average load of grid, and
average to peak ratio (APR) as shown in Table 5. It can be observed from Table
5 that there is a huge difference in peak value and APR with different charging
strategies. The maximum peak value is observed in tariff guided scheme due to the
generation of another peak for a short duration during night hours.

Table 5 Daily EV charging
load prediction for different
strategies (W)

Charging
strategy

Average value Peak value Average to peak
ratio (APR)

Random 7591.1 31,375 0.2419

Tariff
guided

7447.9 279,500 0.0266

Parking 7526.0 49,875 0.1509
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5.3 Impact of EV Load on RDN

In order to evaluate the impact of EV on the voltage profile of RDN, base case power
flow analysis is carried out before integrating any EVs in RDN. The voltage profile
at different nodes in RDN during different time slots of the day is shown in Fig. 7
for base case analysis. It can be seen that the voltage profile of tail nodes of RDN
has resulted in comparatively low value as expected. The changes in voltage profile
with the integration of EVs at different nodes are also depicted in Fig. 7 for different
charging strategies. As it can be seen from Figs. 5 and 6, the RDN has experienced
greater EV load during 35–55 time slots of the day when randomness or parking time
charging strategies are adopted. Hence, the bus voltage profiles are affected more
during these time slots, and a dip in the bus voltage profile can be easily observed in
Fig. 7 due to these EV load demands. On the other hand, the tariff for EV charging
at night is fairly low; hence, EV owners prefer to charge their vehicle during night
hours. The peak load demand can be observed during the last few slots of a day
when a tariff-guiding charging strategy is adopted. Due to the peak demand of EV
charging during night hours, voltage profiles are reduced to a greater extent for all
tail-end nodes as shown in Fig. 7. Similarly, active and reactive power loss variations
in RDN without and with EVs are shown in Fig. 8, where changes in losses with
different charging strategies are clearly observed.

In the simulation studies, the EV loads are calculated with reference to only
100 EV; hence, impacts of EV integration on voltage profile and losses are not
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Fig. 8 The variation in active and reactive losses for different charging strategies

significant. But the obtained results clearly reveal that the choice of charging strategy
has a direct impact on the performance of RDN. The voltage profile of load nodes
will definitely result in a lower value with the increased penetration of EVs.

Hence, careful planning of RDN and decision on EV charging strategies need to
be devised by Distribution Network Operator (DNO) to allow further penetration of
EV in the distribution network. The variation of real and reactive power losses in
RDN for the base case is also depicted in Fig. 8.

6 Conclusion

This paper investigates the impact of EV integration on voltage profile and losses of
standard 33-nodes radial distribution network. The probability distribution function
of different variables which represents the travel behavior of EV is formulated to
model EV loads during different time intervals of the day. Three charging strategies
are adopted to analyze the contribution of EV charging load throughout the day.
The charging requirement of EVs for different charging intervals for each charging
strategy has been formulated using the Monte Carlo simulation. The penetration of
EV in RDN has different impacts on voltage profile and losses for each strategy.
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The charging requirement of EVs from the grid results in a lower voltage profile
and increased power losses as compared to the base case performance of RDN.
The formulation of a multi-objective charging strategy is required to overcome the
detrimental impact of EV penetration in RDN.

Appendix I

Number of EVs 100

Battery capacity 100 Ah

Voltage 230 V

Charging efficiency 75%

Energy consumption per kilometer 0.125 KW/h/km

Full charge duration 5 h

Constant power from the grid 15 KW
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