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Abstract Feeding nearly ten billion people by 2050 requires a year-on-year yield
increase of major field crops of about 1–2%, while arable land will likely decrease
due to urbanization and climate change. On the other hand, developing a new
crop variety traditionally can take up to 10–12 years. To speed up molecular
breeding new ways of harnessing breeding information, including state-of-the-art
statistical methods and predicting candidate genes as targets for breeding from
massive amounts of data are required. As most of the necessary data is still buried
in thousands of public and proprietary databases, siloed in legacy systems or can
only be found in spreadsheets, novel approaches in data integration to overcome
these challenges are needed. Here we describe our approach of using workflow-
driven data integration and knowledge graphs in an industrial application at one of
the world’s leading plant breeding companies.

We adopt state-of-the-art statistical approaches for plant breeding and apply
them on public and in-house generated and expert-curated data from different data
domains that date back to more than a decade. For this we use a customized instance
of the open-source Galaxy computational platform and analyze breeding data in a
workflow-driven approach. We also shed some light on the challenges of in-house
deployment of open-source tools in an industrial application, as well as ensuring
software quality and coding standards for own developments.

We apply knowledge graphs in knowledge discovery use-cases to show some
benefits of handling ontology-enriched in-house data as a structured graph. Here it
is possible to extract information related to connections, communities in the data,
infer new edges, or look for complex patterns across the graph and to perform tasks
that would have been highly complex and time consuming on a silo-based data
information system.

Nevertheless, the challenge of ever-increasing data in breeding information
remains and necessitates the combination of different approaches to continuously
drive value from data.
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7.1 Introduction

Ensuring sustainable food supply for an increasing world population of nearly
ten billion people by 2050 (see United Nations, Department of Economic and
Social Affairs, https://www.un.org/development/desa/en/news/population/world-
population-prospects-2019.html) requires significant progress in plant breeding and
farming practices across the whole world. Climate change and the scarcity of arable
land are set to impact food production in the foreseeable future. As part of the EU
Green Deal, the Farm to Fork strategy sets out ambitious goals for agriculture in
the coming years. These goals (see European Commission, Farm to Fork Strategy
Action Plan 2020, https://ec.europa.eu/food/sites/food/files/safety/docs/f2f_action-
plan_2020_strategy-info_en.pdf) include a reduction in the use of chemical plant
protection by 50%, a reduction in the use of fertilizers by 20%, and the use of
organic farming practices on at least 30% of farmland in the EU by 2030. On the
other hand, developing a new crop variety traditionally can take up to 10–12 years.

To speed up plant breeding with the use of molecular technologies, new ways of
harnessing breeding information, including state-of-the-art statistical methods and
predicting candidate genes as targets for breeding from massive amounts of data
are required. As most of the necessary data is still buried in thousands of public and
proprietary databases, siloed in legacy systems or can only be found in spreadsheets,
novel approaches in data integration to overcome these challenges are needed. Here
we describe our approach of using workflow-driven data integration and knowledge
graphs in an industrial application at one of the world’s leading plant breeding
companies KWS (see Box 7.1).

We adopt state-of-the-art statistical approaches for plant breeding and apply
them to public and in-house generated and expert-curated data from different data
domains that date back to more than a decade. For this we use a customized instance
of the open-source Galaxy (Blankenberg et al. 2010) computational platform and
analyze breeding data in a workflow-driven approach. The use of open-source
software in the industry requires paying attention to the associated license terms and
how such software is integrated into an industry application context. Furthermore,
to ensure a high quality of own developed functionality a staged code quality and
release process has been implemented with the goal to ensure high productivity in
routine data analysis applications.

The challenges of integrating data across different types, from different years and
different domains (e.g., genotypic, and phenotypic data) can then be addressed using
workflows in Galaxy. Proprietary tools providing data from several in-house data

https://www.un.org/development/desa/en/news/population/world-population-prospects-2019.html
https://www.un.org/development/desa/en/news/population/world-population-prospects-2019.html
https://ec.europa.eu/food/sites/food/files/safety/docs/f2f_action-plan_2020_strategy-info_en.pdf
https://ec.europa.eu/food/sites/food/files/safety/docs/f2f_action-plan_2020_strategy-info_en.pdf
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silos, together with applying public analysis tools are demonstrated in a genome-
wide association study (GWAS) use case. Furthermore, the results of the GWAS
study can be embedded in a wider context using data from a knowledge graph
database.

Graphs are among the most flexible formats for a data structure. In a graph,
information is described as a network of nodes and links between them, rather than
tables with rows and columns. Both the nodes and edges can also have attributes
assigned to them. Graph-based systems are easier to expand, as their schemas are
not as strict as classical relational databases. In knowledge discovery research, this
is a huge advantage. The term Knowledge graph was coined by Google in 2012,
even though the topic itself has been around for longer. Though there is no formal
definition of a knowledge graph, it is often described as a semantically enriched
graph, supported by ontologies for standardizing the semantics. This allows for
machine-readable meaning to be integrated with the data. By handling data as a
structured graph, other benefits appear, it is possible to extract information related to
connections, communities in the data, infer new edges, or look for complex patterns
across the graph. It also becomes possible to perform tasks that would have been
highly complex and time consuming on a silo-based data information system.

This combination of highly automated workflow-driven processing of genotypic
and phenotypic data in plant breeding applications combined with a flexible
exploration of the surrounding context of such results using knowledge graphs is
supporting the decision-making of breeders at KWS. With better decision-making,
plant breeding can improve the genetic potential of all crops to tackle the challenges
of climate change, reduction of inputs, zero(low) chem ag and organic farming
practices with the goal to provide the best seeds to our customers, the farmers.

Box 7.1 About KWS
About KWS

KWS is one of the world’s leading plant breeding companies. With the
tradition of family ownership, KWS has operated independently for more than
160 years. It focuses on plant breeding and the production and sale of seed for
corn, sugar beet, cereals, potato, rapeseed, sunflowers, and vegetables. KWS
breeding programs aim to offer every farmer—whether they use conventional
or organic farming methods—targeted varieties and solutions to fit their
operational needs, while also optimally tailored to the climatic conditions and
specific geological conditions of their respective regions. This is the basis for
efficient and productive agriculture. KWS uses leading-edge plant breeding
methods. 5700 employees represent KWS in more than 70 countries.

Source: https://www.kws.com

https://www.kws.com
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7.2 Methods and Implementation

7.2.1 Deploying the Galaxy System in an Industry Application
Context

The open-source Galaxy system developed by the Galaxy Project (Blankenberg
et al. 2010, https://galaxyproject.org/) is a web-based platform for accessible,
reproducible, and transparent computational research. The software is licensed (see
https://galaxyproject.org/admin/license/) under the Academic Free License version
3.0 and images and documentation are licensed under the Creative Commons
Attribution 3.0 (CC BY 3.0) License, which in principle allows deploying the
Galaxy system in an industry application context (see Sect. 7.2.2). The Galaxy
Project is supported in part by NSF, NHGRI, The Huck Institutes of the Life Sci-
ences, The Institute for CyberScience at Penn State, and Johns Hopkins University.
According to the Galaxy Project website (accessed January 2021) the Galaxy system
is characterized by:

• Accessible: programming experience is not required to easily upload data, run
complex tools and workflows, and visualize results.

• Reproducible: Galaxy captures information so that you do not have to; any
user can repeat and understand a complete computational analysis, from tool
parameters to the dependency tree.

• Transparent: Users share and publish their histories, workflows, and visualiza-
tions via the web.

• Community centered: Our inclusive and diverse users (developers, educators,
researchers, clinicians, etc.) are empowered to share their findings.

The Galaxy system (Blankenberg et al. 2010) is publicly available at https://
usegalaxy.org. As an important free and publicly accessible resource, it cannot
offer encrypted data transfer and data storage and scalability. For most applications
in an industry context, data integrity, data security and know-how protection are
major concerns. Therefore, the preferred way would be to run your own Galaxy
instance either on-premises or in your private cloud environment. This provides
additional possibilities of closely integrating the Galaxy system with other in-house
data resources, compute environments and storage systems.

Depending on the importance of the Galaxy system for data analysis needs at
the company and resulting requirements to provide the system as a service to users,
a more sophisticated setup than a single Galaxy system instance can be chosen.
From our experience deploying the Galaxy system in an industry application context
at a major plant breeding company, we recommend a setup that involves three
Galaxy instances (Table 7.1): A test instance serves mainly for early testing by
in-house users as well as the establishment and fine-tuning of Galaxy workflows.
The productive Galaxy instance hosts tools and workflows suitable for routine
operation with respect to fault tolerance and performance optimization. A third

https://galaxyproject.org/
https://galaxyproject.org/admin/license/
https://usegalaxy.org
https://usegalaxy.org
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Table 7.1 Recommended setup with three Galaxy instances

ID Description Users Features Updates

dev Galaxy
development
system to follow
main Galaxy
branch closely and
test/develop new
Galaxy platform
features

Galaxy in-house
infrastructure team
and some script
developers

All required Galaxy
tools installed,
following the latest
tool versions,
possibly local new
tool development

Very frequently, all
Galaxy releases

test Galaxy test system
for Galaxy tools,
not for testing
Galaxy platform
features

Above and certain
Galaxy test users

All required Galaxy
tools installed via
Galaxy tool-shed,
usually latest tool
versions

Frequently, might
skip minor releases

prod Galaxy production
system for routine
high-performance
data analysis
workflows

All Galaxy users Stable versions of
required Galaxy
tools for productive
workflows installed
via tool-shed,
availability
monitoring

Only major
releases,
maintenance
window for updates

Table 7.2 Categories of development related to the Galaxy system

Category Examples Contributors Distribution

Galaxy platform Add new
authentication
mechanisms to Galaxy
(e.g., OKTA), add
more interfaces to
compute cluster (e.g.,
IBM LSF)

Galaxy in-house
infrastructure team and
community developers

Submission to main
Galaxy branch after
community review

Public tools Fixes to publicly
available Galaxy tools
(public tool-shed)

Script developers
(internal and external)

In accordance with
public tool owner

Proprietary tools Specific tools for
routine data analysis
workflows (e.g.,
genomic selection)

Internal script
developers (e.g.,
Biostatisticians)

Non-public, company
confidential

Galaxy instance (Galaxy dev) serves for testing new Galaxy releases and in-house
tool development.

As the Galaxy platform supports the management and installation of Galaxy tools
via the Galaxy tool-shed, a local tool-shed instance is used to provide proprietary
tools to the Galaxy instances. The Galaxy public tool-sheds are integrated to use
and update publicly available tools for Galaxy. This allows for the clear separation
of development in three major categories, see Table 7.2.
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Another advantage of using a local tool-shed is the integration possibility into
continuous code integration and deployment pipelines (CI/CD). Modern source
code management platforms, like GitLab (see https://about.gitlab.com/) facilitate
the setup of CI/CD pipelines which upon code submission to a tool repository
manage the assembly, testing and deployment of changes to proprietary Galaxy
tools to in-house Galaxy instances via the Galaxy tool-shed automatically. This
automation ensures a high quality of the tools by performing unit testing and
integration testing, as well as convenience for the script developers, which do
not have to manually deploy tools to the Galaxy instances anymore. Provision of
multiple Galaxy instances with different levels of productivity allows fine-tuning
of CI/CD pipelines with respect to code quality and release speed for in-house
Galaxy tool developments. Overall, this approach results in quality improvements,
time savings and faster availability of features for the users of routine data analysis
workflows (Fig. 7.1).

To be able to scale routine data analysis to multiple compute nodes beside
the main Galaxy instance, a high-performance compute cluster is used. Galaxy
schedules the jobs and submits these into different queues of the cluster. The cluster
queue is determined by which tool should be run. For new tools, this mapping will
be updated once a tool is in production usage. Factors like the number of CPUs
or memory used on average by the tool will determine which queue it will be
assigned to. For low memory consuming and quick running tools, e.g., data upload,
a queue with a high priority is used so that the user will get tool run results almost
immediately. For long running and high memory consuming tools, a lower priority
queue is chosen, so that the impact of these long analyses on the overall Galaxy
performance is mitigated. However, the users are made aware that such analysis
might not finish when expected depending on the average cluster load. To achieve
transparency, the status of the compute cluster is reported to the users on the Galaxy
starting page (Fig. 7.2).

As an open-source software, the development of Galaxy largely depends on an
active Galaxy community. To follow the latest developments timely, we also actively
participate in the development of the Galaxy platform by submitting work items
(“issues”) for the public Galaxy repository, which are then being integrated into
future Galaxy versions. Additionally, we contribute with own code submissions to
the general Galaxy platform (Afgan et al. 2018).

7.2.2 Implications of Open-Source Licenses on the Use
of Open-Source Software in the Industry

The use of free and open-source software (FOSS) in the industry is steadily increas-
ing, driven not just by in most cases the absence of a license fee, but also by the
highly innovative character of some FOSS products and packages, especially when
it comes to addressing scientific challenges. However, besides these advantages

https://about.gitlab.com/


7 The Use of Data Integration and Knowledge Graphs in Modern Molecular. . . 127

Fig. 7.1 Overview of components of an example on-premises Galaxy deployment
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Enough capacity

HPC Nodes available

Normal

HPC CPU capacity HPC memory available HPC GPU capacity

Enough CapacityLow Capacity

Fig. 7.2 Grafana-based reporting of HPC resources on local Galaxy starting page

there might come some pitfalls with associate open-source licenses, which need to
be looked at closely. The Open-Source Initiative (OSI, https://opensource.org/) lists
at least 104 OSI approved licenses, which might exist in different versions, qualities
or have even been already retired. An open-source license ensures not just access
to the source code, but in most cases also the free redistribution of the program,
rules concerning derived work, proper acknowledgment of the code authors, some
limitation of liability and the further distribution of the license itself. Here different
license types include different rights and duties.

As a rule of thumb, just using unmodified FOSS programs in most cases can be
seen as uncritical in industry, except for programs with licenses like GNU Affero
General Public License (AGPL) or licenses explicitly restricting commercial use.
Attention needs to be paid when modifying or further distributing FOSS programs
with certain licenses, especially those with “Copyleft” clauses. As the GNU project
supported by the Free Software Foundation states (https://www.gnu.org/licenses/
copyleft.en.html): “Copyleft is a general method for making a program (or other
work) free (in the sense of freedom, not “zero price”), and requiring all modified
and extended versions of the program to be free as well.” Such requirement can in
some cases develop a viral character on additions made to FOSS programs and in
the case of some licenses even on patents held by a company.

As know-how and intellectual property protection is a major concern in most
industry, such cases need to be dealt with great care and attention. One prominent
example is the violation of the GNU GPL license of the Linux kernel as part of
the FRITZ!Box router operation system by AVM (https://avm.de) in 2011, which
led to a lawsuit and finally to the distribution of AVM modifications under the
same license conditions (see https://fsfe.org/activities/avm-gpl-violation/avm-gpl-
violation.en.html). In this case, competitors of AVM could have benefitted from
insights gained from the released source code.

Table 7.3 gives without any warranty of correctness or liability some examples
of open-source licenses together with a “traffic light” indication of the perceived
criticality of their usage in industry. In any case, it is advisable to get an expert
opinion on the legal implications of each license in combination with the intended
use. In general, to avoid possible future complications with open-source licenses in
industry applications try avoiding strong Copyleft licenses (e.g., AGPL, GPL). If at
all necessary, use unmodified libraries and executables called via “exec” or “fork”
in the case of GPL, which are not distributed or bundled together with an industry
application. In some cases, it is also possible that FOSS is available under different

https://opensource.org/
https://www.gnu.org/licenses/copyleft.en.html
https://www.gnu.org/licenses/copyleft.en.html
https://avm.de
https://fsfe.org/activities/avm-gpl-violation/avm-gpl-violation.en.html
https://fsfe.org/activities/avm-gpl-violation/avm-gpl-violation.en.html
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Table 7.3 Examples of open-source licenses

Identifier Name Link Usage

AFL 3.0 Academic Free License https://opensource.org/
licenses/AFL-3.0

Ok

AGPL v3 GNU Affero General
Public License

https://opensource.org/
licenses/AGPL-3.0

Critical

Apache 2.0 Apache License by
Apache Software
Foundation

https://opensource.org/
licenses/Apache-2.0

Ok

BSD Berkeley Software
Distribution (3-clause)

https://opensource.org/
licenses/BSD-3-Clause

Ok

CC0 Zero/public domain https://
creativecommons.org/
share-your-work/public-
domain/cc0/

Ok

CC-BY-NC Creative Commons (CC) https://
creativecommons.org/
licenses/by-nc/3.0/de/

Check

EPL Eclipse Public License https://opensource.org/
licenses/EPL-2.0

Check

FreeBSD FreeBSD License (BSD
2-clause)

https://opensource.org/
licenses/BSD-2-Clause

Ok

GPLv2 GNU General Public
License

https://opensource.org/
licenses/GPL-2.0

Check

GPLv3 GNU General Public
License

https://opensource.org/
licenses/GPL-3.0

Check

IPL IBM Public License https://opensource.org/
licenses/IPL-1.0

Check

ISC Internet Software
Consortium

https://opensource.org/
licenses/ISC

Ok

LGPL v2 GNU Lesser General
Public License

https://opensource.org/
licenses/LGPL-2.0

Check

LGPL v3 GNU Lesser General
Public License

https://opensource.org/
licenses/LGPL-3.0

Check

MIT MIT License by
Massachusetts Institute
of Technology

https://opensource.org/
licenses/MIT

Ok

MPL Mozilla Public License https://opensource.org/
licenses/MPL-2.0

Check

Ruby Ruby License https://www.ruby-lang.
org/en/about/license.txt

Ok

licenses, here choose the less restrictive one, e.g., LGPL vs. GPL. For compliance
reasons, it is also advisable to document the use of open-source licenses in industrial
software applications. License finder tools exist (e.g., https://github.com/pivotal/
LicenseFinder), which can be integrated into a continuous software build process
to identify the licenses of the used software libraries.

https://opensource.org/licenses/AFL-3.0
https://opensource.org/licenses/AFL-3.0
https://opensource.org/licenses/AGPL-3.0
https://opensource.org/licenses/AGPL-3.0
https://opensource.org/licenses/Apache-2.0
https://opensource.org/licenses/Apache-2.0
https://opensource.org/licenses/BSD-3-Clause
https://opensource.org/licenses/BSD-3-Clause
https://creativecommons.org/share-your-work/public-domain/cc0/
https://creativecommons.org/share-your-work/public-domain/cc0/
https://creativecommons.org/share-your-work/public-domain/cc0/
https://creativecommons.org/share-your-work/public-domain/cc0/
https://creativecommons.org/licenses/by-nc/3.0/de/
https://creativecommons.org/licenses/by-nc/3.0/de/
https://creativecommons.org/licenses/by-nc/3.0/de/
https://opensource.org/licenses/EPL-2.0
https://opensource.org/licenses/EPL-2.0
https://opensource.org/licenses/BSD-2-Clause
https://opensource.org/licenses/BSD-2-Clause
https://opensource.org/licenses/GPL-2.0
https://opensource.org/licenses/GPL-2.0
https://opensource.org/licenses/GPL-3.0
https://opensource.org/licenses/GPL-3.0
https://opensource.org/licenses/IPL-1.0
https://opensource.org/licenses/IPL-1.0
https://opensource.org/licenses/ISC
https://opensource.org/licenses/ISC
https://opensource.org/licenses/LGPL-2.0
https://opensource.org/licenses/LGPL-2.0
https://opensource.org/licenses/LGPL-3.0
https://opensource.org/licenses/LGPL-3.0
https://opensource.org/licenses/MIT
https://opensource.org/licenses/MIT
https://opensource.org/licenses/MPL-2.0
https://opensource.org/licenses/MPL-2.0
https://www.ruby-lang.org/en/about/license.txt
https://www.ruby-lang.org/en/about/license.txt
https://github.com/pivotal/LicenseFinder
https://github.com/pivotal/LicenseFinder
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Nevertheless, one of the original intentions of open-source licenses was that
contributions by other parties help to improve the software overall for every user
of the software. This principle should still be upheld even when FOSS is used in
industry applications. Also, with industry application development it is possible
to contribute to say more general features of a particular FOSS program, which
do not constitute a competitive advantage and could be released to the general
public. However, it is advisable to check the effort required and the acceptance
of industry contributions to a particular FOSS program before contributing source
code back to the original project. There are many examples of large companies like
IBM, Google, Facebook, and many others making extensive contributions to FOSS
packages. Advantages of contributing directly to FOSS packages include industry
requirements becoming part of main FOSS releases and thus updates of FOSS
packages require fewer modifications when deployed for industry applications.

7.2.3 Ensuring Software Quality and Code Standards for
In-House Galaxy Tool Development

For highly productive data analysis workflows within the Galaxy system, it is
important to ensure a high level of software quality and code standards for in-
house developed functionality. Such functionality might not always be developed
by professional software engineers, but also by biostatisticians, bioinformaticians,
researchers, or even breeders themselves. This diversity of potential sources of
customs tools to be integrated into the Galaxy system made it necessary to define a
common set of rules or guidelines to which software quality adheres to:

• Increased process security (e.g., correct interpretation of analysis results).
• Similar end-user experience across several tools.
• Easy code transition between different developers (similar code structure, docu-

mentation, examples, and tests).
• Easier and faster to extend or refactor.
• Lower technical debt.

Basically, there are three code quality levels as part of these guidelines proposed
(Table 7.4), which increase in requirements needed to be fulfilled by the respective
software tool. Only tools with code quality level 1 (in some cases) and code quality
level 2 (usually) should be considered for integration into the Galaxy system.
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Table 7.4 Proposal of three levels of code quality

Level Developers Usage Requirements

0 Only yourself Prototypic, experimental,
maybe throw-away code
for one-time use

No recommendations

1 More than one developer Tool used on a regular
basis (more than once a
week)
Used by a low number of
other users

Clear code structure and
use of version control
system
Documentation of
functions and potentially
associated files
Contains minimal working
examples
Passes Galaxy integration
tests
Preliminary performance
evaluation

2 More than one developer
and user support / software
stewardship

An integral part of
productive workflows for
many users
At least one other
application relies on the
correct operation

Standardized code
structure which adheres to
code style and/or templates
Use of version control with
CI/CD pipelines for
Galaxy integration
Documentation of the tool
in a standard format
(including external
packages)
Unit tests and integration
tests with high coverage as
part of CI/CD pipelines
Realistic performance data
for a variety of use-cases
and test data

Only tools with code quality level 2 should be deployed to Galaxy productive
instances (see Sect. 7.2.1). Tools with code quality level 1 can be deployed to Galaxy
test instances for a limited number of users.

7.2.4 Ontologies for Structuring and Representing
of Biological Knowledge

Ontologies are a framework for representing knowledge across a domain, in a format
that is shareable and reusable. The goal is to provide standardization and structure,
however standardization of terms in a domain is not enough for a successful
ontology, adaptation is as important. One popular language for defining ontologies is
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the Web Ontology Language (OWL, McGuinness and Van Harmelen 2004), which
is built upon the resource description framework (RDF, Lassila and Swick 1998).

In the life science area, the “The Open Biological and Biomedical Ontologies
(OBO) Foundry” (Smith et al. 2007) is a group of people working together to
develop and maintain ontologies related to the field. They define principles for
ontology development. More than 150 ontologies follow their guidelines.

In agribusiness, some of the important ones are the AgronomyOntology (Jonquet
et al. 2018), Plant Ontology (Bruskiewich et al. 2002, www.plantontology.org),
Gene Ontology (Ashburner et al. 2000, www.geneontology.org), Crop Ontology
(Shrestha et al. 2012, www.cropontology.org), Environment Ontology (Buttigieg
et al. 2013, www.environmentontology.org) and Plant Trait Ontology (Arnaud et
al. 2012, www.planteome.org). It is important to understand the structure of the
ontology when working with it, for example the Gene Ontology, which is developed
to describe the function of a gene product and contains three distinct graphs,
one for functional domain: Cellular Component (where in the cell is the gene
product active), Molecular Function (what is the specific function of the gene
product), Biological Process (in what process is the gene product active). All of
them are Directed Acyclic Graphs (DAG), which means that the edges in the
graph have a direction, but there are no cycles: the direction is always one way.
Standardized schemas are recommended whenever possible. Schema.org and in this
case bioschemas.org would be a good place to start.

The relationships of ontological terms also encode knowledge, and they contain
rules on how to traverse the relationships, for example on a hieratical structure it is
possible to apply the “true path” rule, meaning that if something is annotated with a
child term, all the parent terms are also implicit assigned. This could for example be
if you have taken a sample from “vascular leaf,” then you have indirectly also taken
a sample from “leaf.” This can be utilized when integrating data on multiple levels,
for example, one dataset is measured in vascular_leaf “PO_0009025” and the other
with leaf “PO_0025034”, one can easily identify that vascular_leaf is a subterm of
leaf and you can generalize to the nearest common ancestor. The same would be
if we were to integrate non_vascular_leaf and vascular_leaf, the nearest common
also be leaf, an example of this structure can be seen in Fig 7.3.

7.2.5 Using Knowledge Graphs for Linking Information
Together

Recently another method for data integration has gained popularity, the knowledge
graph. Have you ever asked a question on Google? Or used Alexa, SIRI, or Cortana?
Then you most likely have been taking advantage of a knowledge graph, maybe
without even knowing. The concept has existed since the 1980s but got traction
when Google introduced their Knowledge Graph in a blog post in 2012. They
described it as “ . . . we’ve been working on an intelligent model — in geek-speak,
a ‘graph’ — that understands real-world entities and their relationships to one
another: things, not strings.”.

http://www.plantontology.org
http://www.geneontology.org
http://www.cropontology.org
http://www.environmentontology.org
http://www.planteome.org
http://schema.org
http://bioschemas.org
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A graph or a network as it is often called when referring to the practical use like
social networks, or information networks, is a representation of data as entities with
connections between them. In mathematical terms, an entity is a node or vertex,
and a connection is an edge. A collection of nodes or vertices V together with a
collection of edges E form a graph G = (V, E).

Graphs can be directed or undirected, for example, a network representing the co-
occurrence of proteins in a cell is undirected, whereas a social network like Twitter
is directed since the following is not reciprocal. The edges can also be unweighted
or weighted, meaning that each edge has a weight assigned based on its importance.

Graphs are often visualized by drawing a point or circle for every vertex and
drawing a line between two vertices if they are connected by an edge. If the graph
is directed, the direction is indicated by drawing an arrow. Likewise, the weight
of the edge is often represented by the thickness of the line between the vertices.
Graphs allow the mathematical field of graph theory to be used when analyzing
them. This could, for example, be looking at the number of connections for a node
also known as the degree, or finding the shortest path between two nodes. Googles
build their business around their Page Rank algorithm (Page et al. 1999), which
identifies important websites among a network of websites linking to each other,
which could also be seen as identifying the importance of a node based on its
connections.

Emerging in the area of semantic web knowledge graphs are now seen
widespread usage across many fields. There is no formal definition of a knowledge
graph, though attempts have been made, one is by Ehrlinger andWöß (2016), which
define “A knowledge graph acquires and integrates information into an ontology
and applies a reasoner to derive new knowledge.”; others are less strict and consider
everything that is semantically connected in a graph to be a knowledge graph (Fig.
7.3).

A knowledge graph is a representation of a knowledge domain and its logic, using
a graph. It can be seen as a network of nodes of information and edges connecting
them instead of tables with rows and columns. By that, people and machines can
benefit from a dynamically growing semantic network of facts about things and can
use it for data integration, knowledge discovery, and in-depth analyses.

It allows companies and research institutes to utilize knowledge more efficiently.
In the industry, the enterprise knowledge graph is nothing more than a graph
containing a precise model of business processes, with which relevant questions,
facts, and events can be analyzed more quickly. Adding more information to
a knowledge graph increases its value. A lot of the work originated based on
the semantic web idea (Berners-Lee et al. 2001) of creating computer readable
connections between data on the internet. A human being can easily distinguish
how a hyperlink relates on page with another, and what the reason for the link
is, a computer cannot as easily do this. To deal with this a set of specifications
that are widely used also within knowledge graphs were developed, including the
Resource Description Framework (RDF) Core Model, the RDF Schema language
(RDF schema), the Web Ontology Language (OWL) and last the SPAQRL query
language to query data in RDF format.
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Fig. 7.3 Example of the direct children and ancestors of the ontological term “Leaf”

7.2.6 Representing Data in a Structured Format

Relational databases have been the de-facto industry standard for storing data since
the 1960s. They store structured data in tables with defined columns and rows
containing this data. RDBMS requires users to adhere to a schema of the data and
structure their data and applications according to this.

Graphs are among the most flexible formats for data structure. In a graph,
information is described as a network of nodes and links between them, rather than
tables with rows and columns. Both the nodes and edges can also have attributes
assigned to them. Graph-based systems are easier to expand, as they often are
schemeless. It is still recommended to adhere to a schema, but it gives the flexibility
of extending the schema when new data or connections arrive. There is usually
not an optimal way of best modeling your data, it all depends on your question.
Therefore, one should be prepared to evolve the data schema as the data and
experience evolve.

Data can be modeled as graphs in multiple ways. One approach is to use the
RDF standard. RDF stands for Resource Description Framework and it is a W3C
standard for data exchange in the Web and is built using the existing web standards
of XML and URI. It is used for describing data using relationships between objects.
RDF connects data as triples, a triple is a statement about data consisting of three
parts, the subject, predicate, and object. An example could be the Cellulose synthase
A catalytic subunit 8 from the plant Arabidopsis thaliana, it has the id Q8LPK5 in
the Uniprot (UniProt Consortium 2019) protein database. Uniprot offers API access
to their data as triples. The connection between Q8LPK5 and Arabidopsis could be
represented as
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<http://purl.uniprot.org/uniprot/Q8LPK5>
<http://purl.uniprot.org/core/organism>
<http://purl.uniprot.org/taxonomy/3702>

The predicate in this case is from the Uniprot internal schema and is of the type
organism. The definition of organism in this case is “The organism in which a
protein occurs.” The Subject is our protein of interest, and the organism is then
defined in the Object, and is a taxonomy id referring to Arabidopsis thaliana.
Another example is

<http://purl.uniprot.org/uniprot/Q8LPK5>
<http://www.w3.org/2000/01/rdf-schema#seeAlso>
<http://rdf.ebi.ac.uk/resource/ensembl.transcript/AT4G18780.1>

Where the predicate is #seeAlso from a schema provided by W3, it links
according to the specification, a resource to another “that might provide additional
information about the subject resource.” As can be seen here, it is possible to
mix URIs from different sources, one is an internal Uniprot URI, and the other is
referring to one from W3. The URI serves to standardize the context and meaning,
by creating a schema and definition for the connections. Just because a database is
schemaless, does not mean that it should be used without schemas, it just gives the
flexibility to change and expand as needed. A good place to look for public schemas
is schema.org.

The other option for storing data in a graph, is the Labeled Property Graph (LPG),
in LPG you have a set of nodes and edges. Both nodes and edges have a unique ID
and can contain key-value pairs to characterize them.

Both are valid approaches for building a knowledge graph, and which one fits
best need to be evaluated for a given use case, based on many variables, such as
what questions we want to be able to answer, which infrastructure is available, what
do we need regarding performance and analytics capabilities. It is also important to
remember that just as not all data types fit well in relational databases, so is it also
that not all fit well in graphs, there is no one-size-fits-all solution for all needs.

7.2.7 Building Your Own Knowledge Graph

When starting to think about implementing a knowledge graph in a business, it
is important first to identify a need and what questions you want to answer, and
how they add value to the business. Then start with a minimum viable product to
demonstrate the value. Always keep stakeholders closely informed to ensure that
buy-in is created.

First step is usually to gather and process relevant datasets as well as identifying
necessary taxonomies, ontologies and controlled vocabularies that would serve best
in achieving the goal. It is beneficial in the beginning to identify datasets that do not
change often, as well as keeping size in mind. This minimizes the need to spend too

http://purl.uniprot.org/uniprot/Q8LPK5
http://purl.uniprot.org/core/organism
http://purl.uniprot.org/taxonomy/3702%3e
http://purl.uniprot.org/uniprot/Q8LPK5
http://www.w3.org/2000/01/rdf-schema#seeAlso
http://rdf.ebi.ac.uk/resource/ensembl.transcript/AT4G18780.1%3e
http://schema.org
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much effort on updating data and scaling infrastructure. Generally, start small and
then grow when enough interest and buy-in has been created, and more resources
are made available.

It is important to clean the data before uploading, remove invalid entries,
adjusting dates to be in the same format etc. Then it is time to get an overview
of your data and design your semantic data model using ontologies etc. on how to
use data together. There is no best fit all model, it all depends on the questions you
want to answer. Often the data model will evolve with your knowledge graph.

Integrate data loading with Extract Transform and Load (ETL) tools to ensure
quality and consistency when moving data from one system or format to the graph,
Generate Semantic metadata to make it easier to find, and reuse data. This usually
goes hand in hand with a strategy for FAIR data (Wilkinson et al. 2016) (see Box.
7.2).

Augment your graph via reasoning analytics and text analysis. Enrich your data
by extracting new relationships from text, apply inference algorithms to the graph
to identify hidden relationships, and extend your knowledge graph with information
from the graph itself. For example, degree or betweenness of nodes. It is also
possible to train models to evaluate if a connection is missing, or if it is added
wrong, this kind of use-case for machine learning can be beneficial especially when
manual data entry has been part of the process. In the end your graph will now
have more data than the sum of its constituent datasets. Lastly, set up procedures to
maintain and continuously load data into the graph to keep it alive.

7.2.8 Identifying Use-Cases for Applying a Knowledge
Graph-Based Approach

Identifying the ideal proof of concept use case should not be difficult, a lot of
organizations have already demonstrated the effectiveness. Some inspiration for
popular use-cases across industries

• Recommender systems: discovering related data and content.
• Semantic data catalogs: agile data integration and improving FAIRness of the

data within the organization.
• 360 views of customers, products, employees, users etc.
• Knowledge discovery: intuitive search and analytics using natural language.

One important cornerstone to identify suitable use-cases is an active survey
of potential business problems among colleagues of different areas inside your
organization. Solving these business problems should generate a certain value for
the company, which exceeds the costs of implementation of such knowledge graph.
In our experience, workshops with a good mixture of domain experts and data
experts are beneficial to identify the questions to be answered on a solid data
foundation. Agile approaches, for example Event Storming (Brandolini 2013), help
to reduce the discrepancy for a common understanding between domain experts
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and data. Factors like data availability, quality and governance are other important
factors that influence this decision. Additionally, potential use-cases could be rated
by the number of people they impact. Reaching a larger audience from the beginning
can help creating buy-in from more people as well as reaching people with novel
use-cases.

Box 7.2 FAIR Principles
What is FAIR principles?

Findable
Metadata and data should be easy to find for both humans and computers.

Machine-readable metadata are essential for automatic discovery of datasets
and services, so this is an essential component of the FAIRification process.

Accessible
Once the user finds the required data, she/he needs to know how they can

be accessed, possibly including authentication and authorization.
Interoperable
The data usually need to be integrated with other data. In addition, the data

need to interoperate with applications or workflows for analysis, storage, and
processing.

Reusable
The ultimate goal of FAIR is to optimize the reuse of data. To achieve this,

metadata and data should be well-described so that they can be replicated
and/or combined in different settings.

Source: https://www.go-fair.org/fair-principles/

7.3 Use-Cases

7.3.1 Using Galaxy Workflows for Ad-Hoc Data Analysis
on Integrated Data

Over the years, Galaxy became more and more integrated into our research software
infrastructure. We utilize specific in-house developed Galaxy tools to provide input
data from different data domains such as genetic, phenotypic, OMICs data as well
as genetic and genomic map data that are analyzed in different Galaxy workflows to
support breeding decisions. The most common datatype utilized by public Galaxy
tools is the tab-separated format. In order to use the general-purpose Galaxy tools,
but also provide certain data format constraints and rule sets for specific in-house
tools and user guidance, e.g., for workflow definition, we follow the somewhat
pragmatic approach to define in-house data types based on the Galaxy tabular data
format (see Fig. 7.4).

https://www.go-fair.org/fair-principles/
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Fig. 7.4 Example of data used in Galaxy ad-hoc integration approach

More specifically, for each input data domain further analyzed in Galaxy work-
flows, we provide customGalaxy tools (“Get Data” tools) that serve as connectors to
other systems providing interfaces to specific integrated data. Those tools typically
serve as entry points to ad-hoc analyses as part of Galaxy workflows executed in
a self-service manner by our breeders. The output file(s) of the different Get Data
tools are based purely on the tabular Galaxy data type for the reasons mentioned
before but are specific to each data domain. This allows us to implement specific
format validators on formatting and content. Additionally, this reduces errors for
other in-house developed tools that depend on this specific input data, both within
workflows but also for stand-alone tool runs inside Galaxy.

The genetic marker data is formatted as a named matrix (marker × genotype)
which contains unphased biallelic SNP chip array data (AA, AT, AC, etc.) of the
genotypes, whereas sporadic missing data is encoded as NA. Phenotypic data is
encoded similarly in a genotype x trait matrix containing quantitative trait data.
All SNP markers are cross-linked across different reference sequences within
the different crops, thus allowing a precise location of trait-reference genome
association.

Using the rich Galaxy API, we then transfer result data into downstream
applications for storage and combined analysis of historic data.

To ease integration of data across sources and minimize errors, it is important
that the data in each source accessed by our tools, follow the same standards and
utilizes the same vocabularies and ontologies. Especially when combining with
historical data, this can often be a challenge. To connect multiple heterogeneous data
sources, a knowledge graph can be an advantage in ensuring that data is aggregated
correctly. It allows heterogenous data to be connected with standardized machine-
readable links and allows computational traversal between data sources identifying
links between them and serves as a guide on where data could be aggregated.
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7.3.2 Knowledge Graphs to Enrich Genome-Wide Association
Studies (GWAS) Data

GWAS is a common approach to accelerate genomics-assisted plant breeding by
detecting the genetic basis of phenotypic variation (e.g., traits of interest) on
population scale based on many individuals (Tibbs Cortes et al. 2021). If certain
genetic variations, usually Single Nucleotide Polymorphisms (SNPs), are found to
be significantly more frequent in individuals expressing the desired trait compared
to individuals that do not, the SNPs are said to be statistically associated to the
trait of interest. These SNPs can serve as powerful pointers to genomic regions
to assist in the selection of favorable plants for breeding and further used to
support identification of candidate genes possibly involved in a certain trait. To
further streamline and automate the knowledge generation in molecular breeding,
we developed custom-made downstream web applications for specific approaches
such as GWAS and provide APIs that allow feeding expert revised GWAS data into
knowledge graphs.

In-house computed GWAS are undertaken in Galaxy on integrated genetic and
phenotypic data in a way that allows traceability of the results. We then provide
breeders a web-based platform to access computed results from Galaxy and store
GWAS results alongside additional relevant information about the genetic material
and other data in our in-house GWAS database. Finding a marker or a candidate
gene is challenging. First scientists need to inspect large amounts of heterogeneous
data to obtain a list of candidate genes, which then needs to converge to a ranked
prediction of the most likely candidate(s) involved in the trait of interest. GWAS
relies on all phenotypic data being described the same way, and accessible in the
same format.

Often the SNPs cannot explain all the phenotypic variation. One reason for this
is that GWAS relies on a strict P-value threshold of the SNPs after adjustment for
false discovery rate to avoid false positives. This can partly be overcome by larger
population sizes, however that is both costly and not always feasible. Another option
is to bring in extra data to enhance it and add evidence to weaker SNPs. This could
for example be gene co-expression networks, protein-protein interactions, gene
regulation, protein domain information, functional information from homologues
in other species, metabolic pathway information, or supporting evidence from
literature.

GWAS is often applied to analyze complex traits such as resilience to drought
(as opposed to monogenetic traits that follow strictly Mendelian inheritance).
Associated SNPs might be distributed across many genes addressing one or more
metabolic pathways. Here, trait expression can only be explained by a concerted
action of multiple genetic factors that are often to a varying degree influenced by
non-genetic factors such as environmental factors. To identify these, it can also be
beneficial to bring in auxiliary information as described before.

A knowledge graph linking this data together with the relevant identifiers and
synonyms can speed up the process of integrating this data, as well as augmenting
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the results with other data sources. Enabling our researchers to get a better overview
of relevant information and take information-based decisions. In the end the
estimates of success need to be updated for the models being used, a feedback loop
needs to be in place, for updating with experimental results on the predictions. If
we want to augment the data with external sources, we need to be able to find ways
of integrating this data. Sometimes there is no direct link between data points. For
instance, if we want to add environmental information to our analysis for identifying
candidate genes for a given trait. If the individual data points are linked, we can
traverse the graph, using a graph algorithm such as Dijkstras shortest path (Dijkstra
1959). Collected data could include temperature measured at a location, a plant with
a given mutation has been grown on that location during a specific time. That plant
shows a particular phenotype. It is then possible to find the nodes of data where
aggregation can take place to be able to connect these data and conclude about the
temperature phenotype relationship.

7.3.3 Knowledge Graphs to Augment Metabolite Analysis

Plants produce a variety of small chemicals or metabolites, this could, for example,
be stress hormones, measuring these metabolites is an essential part to understand
more of how a given variety of plant responds. Analyzing and interpreting metabo-
lite measurements can be time-consuming. This is a great examplewhere knowledge
graphs can assist us in making sense of the information, by augmenting the data we
get out Measurement IDs, which can be matched with the correspondingmetabolite,
its name, synonyms, composition. It can also be linked to previous knowledge, such
as literature and previous measurements.

This makes interpretation easier. At the same time, it can also be linked to internal
costs of measuring, how long time does a measurement take, andwhat is the capacity
for measuring. This can then be taken directly into context as a cost/benefit when
analyzing data and deciding which metabolites are generating the most value by
measuring. Questions like “What is the most optimal composition of measurements
we can achieve for a given price if we want to predict a certain outcome?” can be
answered. An example is seen in Fig. 7.5, a peak has been assigned with PN_10824,
This can be difficult to interpret for a scientist, since this is not directly obvious what
it refers to. Though, if that id was linked together with other information, it would
be easy to see that it was abscisic acid, and it is a hormone that has been shown to
be involved in regulating root growth. By saving the time the scientist has to spend
looking for this information, and at the same time ensuring that all scientists have
the same information available, we can increase efficiency and take better and more
informed decisions.
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Fig. 7.5 An example of how data could be related to augment measurements of metabolites

7.4 Discussion and Conclusion

Solving the many challenges related to feeding the worlds growing population will
be complex. It will involve many people and a lot of cross-disciplinary research to
understand the interplay among plants, environment, people, logistics, and many
other areas. Being able to handle and integrate large amounts of heterogeneous data
from many sources will be an integral part of solving this challenge.

Standardized and reproducible research can help us speed up this process,
by minimizing the number of errors and maximizing the utilization of the data
generated. The development of the FAIRwas an important step in the right direction.
Novel analytical methods that can take advantage of larger and more complex
datasets in the analysis are being developed. This is particularly true for machine
learning, where methods such as Graph Neural Networks allow for the analysis
of complex knowledge graphs. Developing more complex models and analyses
could enable researchers to reach their conclusions faster with more precision.
Standardized workflows and data integration is an important part of this. Since the
methods are only as good as the data that goes in.

Open-source tools, standardized vocabularies and knowledge graphs are an
integral part of the processes at KWS to solve these challenges. Enabling plant
breeders and scientists to deliver better outcomes, storing information and as basis
for improved decision-making for the future, to learn from and improve upon.

7.4.1 The Challenge of Increasing Data

It has been estimated that in 2015–2016 more data were created than in the
preceding 5000 years of human history, and that amount increased so in 2017 alone,
a similar amount was created. To be able to generate value, having information is
not enough, the context for the information is important to be able to translate this
into actionable insights and knowledge.
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The data landscape in most tech businesses constantly grows more complex due
to new technologies producing new measures and new tools for analyzing data.
Some of it is structured data such as measurements from sensors or transactions in
banks, but large amounts are unstructured, such as images, documents, relationships.
A lot of knowledge is lost, due to a lack of context for the data.

One way of adding context to data is to connect it with other data. Data
integration is the process of combining data from different data sources into a single,
unified view. However, integrating data is one of the most time-consuming parts of
a data scientist’s work life.

Many enterprises suffer from data being locked in silos, making integration
difficult due to different data models, descriptors, nomenclature, or unstructured
data. This in the end prevents an optimal utilization of the accumulated knowledge
inside an organization.

7.4.2 Combination of Approaches Needed

Data silos are a trait of many larger organizations, however, silos are a big
hurdle toward many business-critical processes, for example, app development,
data science, analytics, reporting and compliance. Implementing efficient enterprise
data management can both decrease costs and increase performance and generate
additional value for organizations and customers. There is no solution that fits
all, but creating standardized pipelines and workflows, and keeping file formats as
simple as possible are good rules of thumb. Providing data integration pipelines in
a system like Galaxy, not only saves time for the user when they need to run an
analysis, it also ensures reproducibility.

It is critical to knowledge discovery to be able to integrate different sources of
data because it allows different information about the same entity to be related
in new ways. A big challenge is synonymic naming and syntactically different
identifiers. In a biological setting, this could be gathering different data that describe
the same biological entity (e.g., gene, transcript, protein, etc.). Using ontologies can
aid in the automatic integration and aggregation of data from multiple sources and
ensure that data is reusable across departments. Data by itself for example in a data
lake is not knowledge and has limited usage. Using graphs another layer of context
can be added to the data when integrating it, this, in the end, gives more information
than the sum of its parts, since the features of relationships, for example, node degree
has been shown to be highly predictive as well.

Adding semantic or self-descriptive links and features to the data allows both
computers to read it, but also makes onboarding of new staff members and
exploratory data analysis easier since it is possible to read directly what a given
piece of data represents. One way of dealing with this is to use an integration layer
between the data sources and the end view. The integration layer will then be queried
using for example Cypher or SPARQL, to then get the results from underlying data
sources, the querywill be translated into the query language of each data source. The
integration layer is based on Ontologies and structured vocabularies to identify how
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data should be mapped. This allows the utilization of machine learning and enables
researchers to reach their conclusions faster with more precision. Standardized
workflows and data integration is a crucial part of this.
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