
Chapter 10
Microbiome and Big-Data Mining

Kang Ning

Abstract Microbiome samples are accumulating at a very fast speed, representing
microbial communities from every niche (biome) of our body as well as the
environment. The fast-growing amount of microbiome samples, as well as the
diversified sources from where the samples are collected, have provided us with
an unprecedented scene from where we could obtain a better understanding of the
microbial evolution and ecology. While all of these represent profound biological
patterns and regulation principles, the understanding of them is heavily dependent
on data integration and big-data mining, including the data-driven microbiome
marker identification, non-linear relationship mining, dynamic pattern discovery,
regulation principle discovery, etc.

In this chapter, we first introduce several terminologies in microbiome research,
followed by the introduction of microbiome big-data. Then we emphasize the
microbiome databases, as well as mainstream microbiome data mining techniques.
We have provided several microbiome applications to showcase the power of micro-
biome big-data integration and mining for knowledge and clinical applications.
Finally, we have summarized the current status of microbiome big-data analysis,
pointed out several bottlenecks, and illustrated prospects in this research area.
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Microbiome samples are accumulating at a very fast speed, representing microbial
communities from every niche (biome) of our body as well as the environment
(Mitchell et al. 2020; Integrative HMP (iHMP) Research Network Consortium
2019; Thompson et al. 2017; Sunagawa et al. 2015). The fast-growing amount of
microbiome samples, as well as the diversified sources from where the samples
are collected, have provided us with an unprecedented scene from where we could
obtain a better understanding of the microbial evolution and ecology (Mitchell et
al. 2020; Segata et al. 2013; Integrative Human Microbiome Project 2019). While
all of these represent profound biological patterns and regulation principles, the
understanding of them is heavily dependent on data integration and big-data mining
(Knight et al. 2018), including the data-driven microbiome marker identification
(Segata et al. 2011), non-linear relationship mining (Surana and Kasper 2017),
dynamic pattern discovery (Halfvarson et al. 2017; Ren et al. 2017; Bashan et al.
2016; Backhed et al. 2015; Liu et al. 2019), regulation principle discovery (Han et
al. 2020), etc.

In this chapter, we will first introduce several terminologies in microbiome
research, followed by the introduction of microbiome big-data. Then we will
emphasize the microbiome databases, as well as mainstream microbiome data
mining techniques. We will provide several microbiome applications to showcase
the power of microbiome big-data integration andmining for knowledge and clinical
applications. Finally, we will summarize the current status of microbiome big-data
analysis, point out several bottlenecks, and illustrate prospects in this research area.

10.1 Microbial Communities, Metagenome, and Microbiome

As a ubiquitous and important organism in nature, microorganisms usually coexist
in the form of a “microbial community” (Thompson et al. 2017; Sunagawa et
al. 2015; Segata et al. 2013; Integrative HMP (iHMP) Research Network Con-
sortium 2014). A microbial community usually contains dozens to thousands of
different microorganisms, these species cooperate with each other to adapt to the
changes in the environment, and their life activities also have a long-term and
profound impact on the environment (Thompson et al. 2017; Integrative HMP
(iHMP) Research Network Consortium 2014). With the deepening of human
understanding of microorganisms, the basic research of microbial community and
its application in the fields of health and environment have become increasingly
important (Integrative Human Microbiome Project 2019; Biteen et al. 2016). The
main research objects of microbiome include all the genetic materials of microbial
communities, related environmental parameters and metabolites, as well as their
complex relationships and dynamic changes.

In the microbiome research area, several terms need to be explained clearly,
including microbiota, metagenome, and microbiome (Whiteside et al. 2015). A
microbial community is a mixture of microbial species living, adapting, and evolv-
ing in a certain environment. Metagenome refers to the total genetic materials in the
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Fig. 10.1 The definitions of microbiota, metagenome, and microbiome. The same shape and color
represent the same species, while different symbols represent different entities. (a) Microbiota:
identification of all species in the microbial community using 16S rRNA sequencing. (b)
Metagenome: all genetic materials in the microbial community. (c) Microbiome: all genetic
materials, environmental factors, and metabolites in the microbial community

microbial community, while metagenome could be obtained by shotgun sequencing,
many projects are still conducted by 16 s rRNA amplicon sequencing that could
only quantitatively profile the species in the community. Microbiome refers to
all genetic and non-genetic information contained in the microbial community,
including metagenome, as well as all environmental factors and metabolites in the
community. A brief illustration of the definitions and relationships of microbial
communities, metagenome, and microbiome is provided in Fig. 10.1.

The microbiome research is mostly conducted by the omics approach (Mitchell
et al. 2020; Segata et al. 2013). Firstly, samples are collected from niches, stored
in a −20◦C tube, before DNA extraction and amplification and sequencing. Then
high-throughput sequencing is conducted, by means of 16S rRNA sequencing or
metagenomic sequencing, and sequencing data are transferred for analysis (Knight
et al. 2018).

10.1.1 The Differences Between 16S and Metagenomes

The sequencing principles: 16S rDNA contains nine hypervariable regions and ten
conserved regions. A segment of hypervariable region sequence was amplified by
PCR and sequenced. Metagenomic sequencing is similar to conventional DNA
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library in that it randomly breaks microbial genomic DNA into small fragments and
then inserts joints at both ends of the fragments for high-throughput sequencing.

Different fields of study: 16S rRNA sequencing mainly studies the species
composition, the evolutionary relationship among species, and the diversity of
communities. Besides, metagenomic sequencing can also be used for further
research at the genetic and functional levels.

Different degree of species identification: Much of the 16S sequencing results are
below species level, while metagenomic sequencing identifies microbes to species
level and even to strain level.

The advantages and disadvantages of 16S rRNA and metagenomic sequencing
methods for microbial community research have been summarized in (Knight et al.
2018), and we have provided key points in Table 10.1.

Table 10.1 Advantages and disadvantages of 16S rDNA and metagenomic sequencing methods
for microbial community research

Method Advantage Disadvantage

Marker gene
analysis

• Fast, simple, and inexpensive
sample preparation and analysis
• Closely related to genome content
• Suitable for samples with low
biomass
• Could be compared with existing
large public data sets

• Affected by amplification bias
• Selection of primers and variable
regions will amplify the deviation
• Usually need prior knowledge of
the microbial community
• Resolution is usually only to
genus
• Need for proper negative control
• Limited functional information

Metagenomic
analysis

• The relative abundance of
microbial functional genes can be
directly inferred
• For known organisms, microbial
classification and phylogenetic
identity can be achieved at the
species and strain level
• It is not assumed to understand the
microbial community
• No biases associated with PCR
• The in situ growth rate of target
organisms with sequenced genomes
can be estimated
• It is possible to assemble a
population-average microbial
genome
• Can be used for new gene families

• Relatively expensive, laborious,
and complicated sample preparation
and analysis
• The default pipeline usually does
not annotate viruses and plasmids
well
• Due to assembly artifacts,
population-average microbial
genomes are often inaccurate
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10.2 The Microbiome Research Is Heavily Dependent
on Big-Data

As the number of microbiome samples easily exceeds tens of thousands in a
medium-sized data collection (Mitchell et al. 2020), the efficiency and accuracy of
sample comparison and search become a critical bottleneck (Knight et al. 2018), not
to mention millions of samples from the rapidly diversified biomes from less than
a hundred to more than three hundred in public databases (Fig. 10.2). The rapidly
increasing number of samples from various niches on the planet has thus created a
difficult huddle for knowledge discovery from these samples (Mitchell et al. 2020).

Microbiome research is heavily dependent on big-data, largely due to three
reasons: (1) As traditional microbial research strategies could not identify the
species in the community, current species identification and quantification is mostly
done by sequencing techniques plus data analysis techniques. (2) As heterogeneous
microbial community samples are collected from hundreds of different niches
around the world, the comparison of these communities could only be performed
using big-data mining techniques. (3) The mining of millions to trillions of
functional genes from microbial communities is also a data-driven task nowadays.

Big-data technology and machine learning technology are very suitable for the
organization, integration, and in-depth analysis of microbiome data (Li et al. 2019;
Cheng et al. 2019; Tang et al. 2019; Microbiota meet big data 2014). First of all,
microbiome data has all the 4 V characteristics of big data (Volume, Velocity,
Variety, Veracity): large Volume, a large amount of data, including the amount of
collection, storage, and calculation. The starting measurement unit of big data is
at least p (1000 t), e (one million T), or Z (1 billion T). There are various types
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Fig. 10.2 The fast increasing number of microbiome samples, and the rapidly diversified biomes
from where they are collected. Results are based on assessment of EBI MGnify database from year
2011 to year 2020
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Fig. 10.3 The characteristics and urgent needs in multi-omics researchers

and sources (Variety). Including structured, semi-structured, and unstructured data,
multi-types of data put forward higher requirements for data-processing ability. The
Value density is low, and the data value density is relatively low. In other words, it
is valuable to wash sand in waves. Information is massive, but the value density
is low. How to mine the value of data through powerful machine algorithms is
the most important problem to be solved in the era of big data. Velocity: this is
a significant feature that big data is different from traditional data mining. Secondly,
microbiome big data needs to be deeply mined: Data mining (DM) is an emerging
interdisciplinary subject that gathers multiple disciplines. It is an extraordinary
process, that is, the process of extracting unknown, implied, and potentially valuable
information from huge data (Fig. 10.3).

10.3 Microbiome Data Integration and Databases

The development of microbiome research has profoundly boosted the data accumu-
lation as well as the output of the researches. In the past 10 years, an exponential
number of publications have been output (Fig. 10.4a), based on more than 100 TB
per year of microbiome data accumulated (Fig. 10.4b).

Currently, there are already databases dedicated to microbiome researches
(Table 10.2), including MG_RAST ((Meyer et al. 2008), http://metagenomics.anl.
gov/), CAMERA ((Seshadri et al. 2007), http://camera.calit2.net/) as specialized
databases, and NCBI SRA (http://www.ncbi.nlm.nih.gov/sra) as general databases.
Among these databases, NCBI SRA (Kodama et al. 2012), MG-RAST (Meyer

http://metagenomics.anl.gov/
http://metagenomics.anl.gov/
http://camera.calit2.net/
http://www.ncbi.nlm.nih.gov/sra
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Fig. 10.4 In the past 10 or more years, (a) an exponential number of publications have been
output, (b) based on more than 100 TB per year of microbiome data accumulated

Table 10.2 Commonly used microbiome databases (Zhang et al. 2017)

Database name Description Database website References

NCBI SRA General database that
contains microbiome
data of all kinds and
formats

http://
www.ncbi.nlm.nih.gov/
sra

Kodama et al.
(2012)

EBI MGnify Specialized
microbiome database
with a comprehensive
collection of samples,
and with a unified
analytical pipeline

www.ebi.ac.uk/
metagenomics/

Mitchell et al.
(2020)

MG-RAST Specialized
microbiome database
with a unified
analytical pipeline

Metagenomics.anl.gov Paczian et al.
(2019), Meyer et al.
(2019)

IMG/M Specialized
microbiome database
with a unified
analytical pipeline

img.jgi.doe.gov Markowitz et al.
(2008)

Qiita Specialized
microbiome database
with a unified
analytical pipeline
and comprehensive
meta-data
information

http://qiita.ucsd.edu/ Gonzalez et al.
(2018)

CAMERA Specialized
microbiome database,
data collection not
comprehensive

http://camera.calit2.net/ Seshadri et al.
(2007)

et al. 2008), and CAMERA2 (Seshadri et al. 2007) each has more than 10,000
microbiome projects, representing hundreds of thousands of samples and several
TB of sequencing data.

http://www.ncbi.nlm.nih.gov/sra%0d
http://www.ebi.ac.uk/metagenomics/
http://metagenomics.anl.gov
http://qiita.ucsd.edu/
http://camera.calit2.net/%0d
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However, the microbiome data in several major databases have not been well
sorted out, whether in terms of the unification and integration of microbiome data
format, or the matching environmental parameters (metadata). One of the key
points is that the microbiome data has not been effectively classified and organized,
resulting in a bottleneck for sample classification and comparison. Microbial
community samples and relevant sequencing data are organized according to the
biome ontology organization structure by hierarchical structures. For example: at the
end of 2019, EBI MGnify contains sub-millions samples from 491 biomes (https://
www.ebi.ac.uk/metagenomics/biomes) (Mitchell et al. 2020), in which the samples
from human fecal have the exact biome position at “root > Host-associated > Human
> Digestive system > Large intestine > Fecal.” This ontology structure is very
beneficial to the classification of samples. However, the hierarchical organization
structure of the current ontology is not completely tree-like, but has the feature that
an ontology belongs to the direct sub-ontology of multiple ontologies. For example,
“Fecal” has more than five upper level ontology information. Therefore, the relevant
living environment ontology of each microbiome data is likely to have multi-label.
On the one hand, the multi-label nature of microbiome data is not conducive to the
simple classification of samples, resulting in the bottleneck of sample classification
and comparison. On the other hand, the multi-tag attribute of microbiome data
conforms to the characteristics of big-data research, and better results are expected
to be obtained when processed by machine learning or deep learning.

10.4 Mainstream Microbiome Data Mining Techniques

As regard to microbiome data mining tools, current methods could be categorized
according to their purposes (Table 10.3):

1. Identification of microbial species based on microbiome: Based on the
metagenome sequencing data, the species contained in the metagenome can be
assigned to different taxonomic levels, such as phylum, class, order, family,
genus, etc. At present, metagenome-based microbial species identification can
be categorized into alignment-based and alignment-free sequence classification
methods, both of which are based on the assumption that similar sequences
originate from similar species. Sequence alignment identifies the species cor-
responding to the target genome sequence by comparing it with the existing
database. Alignment-free sequence classification methods use the characteristics
of the sequences themselves, such as GC content, codon usage frequency, etc.,
to classify them into the species corresponding to the most similar sequences.
Typical examples of species identification methods include Megan (Huson et al.
2007), QIIME2 (Bolyen et al. 2019), etc. However, these methods are mostly
limited to sequences of known classes and functions in databases (sequences in
databases are mostly from model organisms or culturable microorganisms), so

https://www.ebi.ac.uk/metagenomics/biomes
https://www.ebi.ac.uk/metagenomics/biomes


10 Microbiome and Big-Data Mining 205

the exact species of the majority of microorganisms in the microbial community
remain largely unclear.

2. Tools for microbial community structure decoding: Tools for microbial com-
munity structure decoding and comparison include those for species composition
analysis such as Phyloshop (Shah et al. 2011), Parallel-Meta (Su et al. 2012),
MEGAN (Huson et al. 2007), etc., and those for microbial community compari-
son including UniFrac (Lozupone and Knight 2005) and Fast UniFrac (Hamady
et al. 2010). However, these tools still have limitations: MEGAN (Huson et
al. 2007) and STAMP (Parks and Beiko 2010) have provided an approach for
microbial community sample comparison based on species composition, while
such method is largely limited by the ignorance of evolutionary relationships
among species (Hamady and Knight 2009). UniFrac (Lozupone and Knight
2005) and Fast UniFrac (Hamady et al. 2010) have taken phylogeny information
into consideration, yet they could hardly handle thousands of samples due to
large time cost. There is still a lack of efficient and accurate sample comparison
and search methods, especially for model-based method.

3. Microbial-based functional profiling and regulation model generation: In
terms of predicting the main functions of species, the current research is still
in its infancy. Methods such as PICRUSt (Langille et al. 2013), based on
16S rRNA data, could analyze differences between samples by inferring the
composition of functional genes in the samples. However, this prediction method
cannot fully reflect the detailed functional composition and metabolic pathways
of different species in a sample. Functional genes in microbial community
analysis level, in view of the biosynthesis gene cluster (BGC) and antibiotic
resistance gene cluster (ARG) gene functions such as group analysis, in addition
to the typical antiSMASH (Medema et al. 2011) and NaPDoS (Ziemert et al.
2012) analysis platform and IMG-ABC (Hadjithomas et al. 2015), DoBISCUIT
(Ichikawa et al. 2013), ClusterMine360 (Conway and Boddy 2013) database.
Functional annotation and enrichment analysis of microbiome genes can deepen
the understanding of microbial community functions and the analysis of key
metabolic pathways and microbiome-host metabolic regulation mechanisms.
However, the microbiome contains a large number of genes, and the functions
of most genes are unknown.

4. Microbial genemining frommetagenomics data:At present the main database
and the software including DoBISCUIT (Ichikawa et al. 2013) system (http://
www.bio.nite.go.jp/pks/) based on manual selection of data, and the databases
designed for specific types of metabolites, such as ClusterMine360 (Conway and
Boddy 2013) database system, NaPDoS (Ziemert et al. 2012) analysis system
(http://napdos.ucsd.edu/) for secondary metabolism genes, COBRA (Becker et
al. 2007) for intestinal flora metabolism modeling analysis system, as well
as antiSMASH (Medema et al. 2011) biosynthesis gene cluster (BGC) anal-
ysis system, etc. Relevant methods, however, largely depend on the reference
sequence, known species in the microbial community species reference sequence
under the condition of the lack of its completeness is not very ideal. The genes

http://www.bio.nite.go.jp/pks/
http://www.bio.nite.go.jp/pks/
http://napdos.ucsd.edu/
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around the “environment–microbial community–metabolism” chain are largely
unannotated, leaving large room for improvement.

5. Microbiome data analysis platform: There are currently several analytics
platforms that cover the main steps of microbiome data analysis, such as QIIME
(Caporaso et al. 2010), MG-RAST (Glass et al. 2010; Keegan et al. 2016),
Camera (Seshadri et al. 2007), and EBI Metagenomics (now known as EBI
Mgnify) (Mitchell et al. 2020). These sites often contain large datasets and data-
processing platforms. At present, the biggest bottleneck in this regard is that
the development of metagenomic data analysis platforms is far behind the rapid
accumulation of metagenomic data. In particular, the integration analysis and
deep mining of massive metagenomic data and other omics data are in urgent
need.

10.5 Integration of Metagenome and Pan-Genome Towards
Holistic Analysis of Microbial Communities

The microbiome data is mostly analyzed by the metagenome approach (Fig. 10.5).
Metagenomics has been utilized for the studies of changes in community organiza-
tion and microbial inhabitants, resulting in the discovery of a remarkable amount
of genomic diversity and the characterization of new bacterial members (Integrative
HMP (iHMP) Research Network Consortium 2014; Riesenfeld et al. 2004). A series
of metagenome analysis tools, such as MEGAHIT (Li et al. 2015), MEGAN (Huson
et al. 2007), and MetaPhlAn2 (Truong et al. 2015) have been proposed allowing
for metagenomics assembly, taxonomy, and functional analysis. The analyses of
microbiome composition and function in different sites of human body including
skin, oral, and gut show great differences in the microbial structure (Koren et al.
2011; Costello et al. 2009). For example, the taxonomic representation of bacteria
on the human skin includes Staphylococcus, Micrococcus, and Corynebacterium
(Fredricks 2001; Grice et al. 2009), while the dominant microorganisms in oral
are Streptococci, Lactobacillus, and Fusobacterium (Dewhirst et al. 2010; Teng
et al. 2015). In addition, the main components of microorganisms in the human
gut are Bacteroides and Prevotella (Costea et al. 2018; Wu et al. 2011). These
microbes in human body have coevolved with their hosts, which is also related
to human health and disease (Costello et al. 2009; Clemente et al. 2012). The
composition of microbes in different hosts varies greatly, and there are dynamic
changes under different environmental factors (Costello et al. 2009). For example,
Sonnenburg et al. revealed a seasonal cycle of gut microbiota corresponding to
the enrichment of functions of the Hadza hunter-gatherers, especially Bacteroides,
varies with the season, especially between the dry season and the wet season (Smits
et al. 2017). Such studies revealed the succession of microbial community that
changes with season in human gut. In addition, studies of microbial communities
in natural environments such as soil (Daniel 2004), deep-sea (Mason et al. 2014),
and wastewater (Guo et al. 2017) have uncovered hundreds of microbes, new genes,
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Fig. 10.5 Scheme of integrative pan-genome with metagenome studies on microbial community.
(a) Using pan-genome of a set of genomes from isolates as a reference to recruit reads from
metagenomes to quantify relative frequency of each gene sequence in community. (b) Binning
co-abundant genes obtained from de novo assembly across metagenomic samples to reconstitute
metagenomic species pan-genomes. Co-abundant with core or accessory genes of microbial species
co-occurrence in samples and yield co-abundance. This figure was adapted from a previous
published work [Integrating pan-genome with metagenome for microbial community profiling.
Computational and Structural Biotechnology Journal, 2021, 19:1458–1466] with permission of
authors
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and uncharacterized metabolism, revealing an incredible microbial diversity and
complexity.

10.6 Deep Learning Techniques for Microbiome Research

In recent years, more and more deep learning techniques have been developed for
mining microbiome big-data (Li et al. 2019; Tang et al. 2019; Lan et al. 2018; Min
et al. 2017;Wang and Gao 2019). These techniques essentially solved the functional
gene mining, dynamic pattern discovery, and phenotype prediction problems.

1. For sample comparison and search: In microbial community source tracking,
the traditional unsupervised learning method SourceTracker (Knights et al. 2011)
and FEAST (Shenhav et al. 2019) could achieve very high accuracy when there
are hundreds of samples and handful of biomes, while when the number of
samples and biomes increase, the running time would increase very rapidly,
preventing them from large-scale source tracking. This dilemma could be solved
by deep learning solutions: by utilizing model-based methods such as neural
network, both speed and accuracy could be achieved for the source tracking
problem.

2. For gene mining: An example is ARG gene mining, for which traditional
BLAST method could find the candidate ARG genes when they could match
to those in the database. However, such an approach is limited to known ARG
genes, and the search time could be short when faced with millions of candidates
to be screened. Again, the deep learning approach has led to the model-based
method that could mine novel ARG genes out of millions of candidates in an
efficient manner.

All of these limitations have been calling for AI techniques that could discover
more knowledge from microbiome dark matters. AI techniques are advantageous
in generation of the models from a massive amount of samples, which are
representative of the global profile of the context-dependent subjects (Kodama et al.
2012). AI techniques are therefore suitable for accurate and fast search when new
samples (either a community, a gene, or a pattern) are searched against the models
(Paczian et al. 2019; Markowitz et al. 2008; Daniel 2004). Therefore, AI techniques
are especially suitable for microbiome dark matter mining, especially when facing
the tradeoff between accuracy and efficiency.

The solutions for eliminating current methods’ tradeoffs rely on deep learning
approaches (Kodama et al. 2012; Paczian et al. 2019; Meyer et al. 2019; Markowitz
et al. 2008; Gonzalez et al. 2018). First of all, model-based methods such as neural
networks could be very fast for source tracking: once a rational model has been
built, the source tracking could be very fast, and the source tracking accuracy could
also be achieved, comparable with or even better than existing distance-based and
unsupervised methods. The same approach is suitable for the gene mining problem.
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For the spatial-temporal dynamic pattern mining, the deep learning method could
also discover the intrinsic patterns out of the cross-section or longitudinal cohorts.

10.7 Representative Microbiome Applications

10.7.1 Case Study 1: Enterotype Analysis (Costea et al. 2018)

In 2011, three sequencing technologies (Illumina, 454, and Sanger) were used to
sequence 16S rRNA genes in human fecal samples from three countries (Denmark,
Spain, and the USA), and the result was that there were three enterotypes (Costea
et al. 2018). The enterotypes were described as “a dense cluster of samples in
a multidimensional space composed of communities” and were not affected by
age, sex, cultural background, or geographical location. For each enterotype, an
indicator/driver group was found at the center of the co-existing microbial network
that was most profoundly associated with the enterotype. For example, enterotypes
1 can also be expressed as ET B, and Bacteroides is the best indicator group.
Enterotype 2, which can also be expressed as ET P, is driven by Prevotella and
its abundance is usually inversely proportional to the abundance of Bacteroides.
Enterotype 3, which can also be expressed as ET F, is distinguished by the
proportion of Firmicutes, among which the main group is Ruminococcus. All of the
above analyses are based on the classification at the genus level, because the genus
level can better reflect the ecological niche changes (Costea et al. 2018). Although
some genera show functional heterogeneity, such as Streptococci, which contains
both common symbiotic and lethal pathogens and groups that can be used for food
fermentation, genera level analysis is generally reliable.

10.7.2 Case Study 2: Gene Mining (Qin et al. 2010)

10.7.2.1 Human Intestinal Microbiome Reference Gene Set

The authors describe the assembly and characterization of 3.3 million non-
redundant microbial genes from fecal samples of 124 European individuals by
Illumina-based metagenomic sequencing. This gene set is 150 times larger than
the human gene complement, contains the vast majority of the (more common)
microbial genes in the cohort, and probably includes the majority of the human gut
microbial genes. These genes are shared to a large extent between individuals in this
cohort. More than 99% of the genes were bacterial, suggesting that the entire cohort
contained between 1000 and 1150 endemic bacterial species, with each individual
containing at least 160 such species, and that they were also largely shared. The
authors define and describe the minimum intestinal metagenome and the minimum
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intestinal bacterial genome in terms of the functions of all individuals and most
bacteria, respectively.

Most of the microbes that live in the gut have profound effects on human physiol-
ogy and nutrition and are essential to human life. The content, diversity, and function
of the gut microbiome are studied in order to understand and utilize the influence
of gut microbiome on human health. Methods based on 16S ribosomal RNA gene
(rRNA) sequences revealed that two families of bacteria, the Bacteroidaceae and the
Antimicrobiaceae, make up more than 90% of the known phylogenetic categories
and dominate the distal intestinal flora. Studies have also shown that there is great
diversity in the gut microbiome between healthy individuals.

10.7.2.2 Metagenomic Sequencing of the Intestinal Microbiome

As part of the Metahit (Human Intestinal Genomics) project, the authors collected
fecal samples from 124 healthy, overweight, and obese adult individuals and patients
with inflammatory bowel disease (IBD) in Denmark and Spain. Total DNA was
extracted from the fecal samples.

To generate an extensive catalogue of microbial genes from the human gut, the
authors first assembled short Illumina readings into longer overlapping clusters,
which could then be analyzed and annotated using standard methods. Using
SoapDeNovo, the authors assembled all Illumina GA sequence data from scratch.
Up to 42.7% of Illumina GA reads were assembled into a total of 6.58 million
overlap groups, and nearly 35% of readings from any one sample could map to
overlap groups from other samples, indicating the presence of a common sequence
core.

To accomplish the overlapping group setup, the authors combined the unassem-
bled reads from all 124 samples and repeated the de novo assembly process. Thus,
about 400,000 overlapping groups with a length of 370 Mb and N50 939 bp are
generated. Therefore, the total length of the author’s final overlap group is 10.7 GB.
Approximately 80% of the 576.7 Gb sequences of Illumina GA sequences were
able to be compared with the overlap group at a 90% identity threshold to adapt
to sequencing errors and strain variability in the gut, almost double the 42.7% of
sequences. Soap de novo assembles them into overlapping clusters because the
assembly uses more stringent criteria. This indicates that the author’s overlap group
represents the vast majority of Illumina sequences.

10.7.2.3 Genome Sets of the Human Intestinal Microbiome

To establish a non-redundant human gut microbiome genome, the authors first
used the Metagene program to predict ORFs in overlapping populations and found
14,048,045 ORFs longer than 100 bp. They accounted for 86.7% of the overlap,
comparable to the 86% found in fully sequenced genomes. Two-thirds of the ORFs
appear to be incomplete, possibly due to the size of the author overlap group (N50 is
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2.2 KB). Next, the authors remove the excess ORFs by pair comparison using very
strict criteria that 95% conformance exceeds 90% of the shorter ORF length, which
can be fused with direct homologues but can avoid dataset bloat due to possible
sequencing errors.

The authors refer to the genes in the non-redundant set as “epidemic genes”
because they are encoded on an overlapping group assembled from the richest
read segments. The authors examined the number of prevalent genes found in
all individuals, which is a function of the sequencing range and requires at
least two gene calls to support reading. An estimate of coverage richness (ICE)
based on incidence, determined by 100 people (the maximum number that can be
accommodated by the Evaluations21 program), indicates that the authors’ catalog
captured 85.3% of the prevalence genes. Although this may be an underestimate, it
still suggests that the catalogue contains the vast majority of the prevalent genes in
this cohort.

Each person carries 536,112 ± 12,167 of the prevalent genes, suggesting that
most of the 3.3 million gene pools must be shared. But most of the prevalent genes
were found in only a few individuals: 2,375,655 were found in less than 20% of
individuals, and 294,110were found in at least 50% of individuals (these “common”
genes, as the authors call them). These values depend on the sampling depth. The
sequencing of MH0006 and MH0012 revealed more catalogue genes, which were
present in low abundance. Still, even at regular sampling depths, each person still
has 204,0566 3603 common genes, suggesting that about 38% of an individual’s
total gene pool is shared. Interestingly, patients with IBD carried, on average, 25%
fewer genes than those without the disease, which is consistent with the observation
that the former had less bacterial diversity than the latter.

10.7.3 Case Study 3: Plasticity of Intestinal Flora (Dynamic
Pattern) (Liu et al. 2019)

First of all, at the macroscopic research level of the plasticity of the intestinal
flora, the project team and the Capital Medical University have been monitoring
the dynamics of the intestinal flora of the foreign aid medical team (volunteer team
(VT)) for more than a year, aiming to study diet The influence of factor changes on
the structure of human intestinal flora.

In this study, we recruited a team of 10 Chinese volunteers who set out from
Beijing, stayed in Trinidad and Tobago (TAT) for 6 months and then returned to
Beijing. A high-density longitudinal sampling strategy (average of 19 time points
for VT members) was used to collect their stool samples (188 samples) and detailed
dietary information. We divided the entire longitudinal study into six stages: when
VT stays in TAT, T1 represents the pre-travel stage (20 samples), T2 (28 samples),
T3 (60 samples), and T4 (21 samples) represents three time slots. After VT returned
to Beijing, T5 (35 samples) and T6 (20 samples) sent two time slots, respectively.
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At the same time, we also collected samples of Beijing healthy people (BJN, 57
samples), TAT healthy people (TTN, 28 samples), TAT patients (TTP, six samples),
and TAT Chinese (TTC, eight samples) as samples control data set. Finally, we
sequenced the V4 hypervariable region of the microbial 16S rRNA gene on 287
stool samples from 41 individuals and analyzed high-quality readings using QIIME
(Caporaso et al., 2010).

We found that the microbial community in the intestine has two-way plasticity
and elasticity during long-term stay and has a variety of dietary changes. First,
BJN and TTN show different microbial community patterns (Fig. 10.6a). However,
the microbial community of VT members changed from a microbial community
similar to BJN to the TTN mode that accompanied them in TAT and returned to
the original mode within 1 month after VT returned to Beijing (Fig. 10.6b–f). In
addition, although we found that location and population have a great influence on
the differentiation of samples (Fig. 10.6g, h), the dynamic changes of each member
of VT show a specific trend (Fig. 10.6i, j), indicating that there may be the plasticity
mode depending on the intestinal type among VT members. In addition, the relative
abundance of Sclerotium and Bacteroides showed strong adaptability on the time
axis and was negatively correlated on the time axis (Fig. 10.6k, l). Similarly, the
relative abundance of Proteus and Actinomycetes also showed a plasticity pattern
(Fig. 10.6m, n). By tracking and comparing at least 10% of the common operational
taxonomic units (OTUs) shared by at least 10% of VT members, we found that
Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria have unique time
dynamics during the long-term stay of VT (Fig. 10.6o–r).

10.7.4 Case Study 4: Athletes’ Gut Microbiota (Han et al.
2020)

The gut microbiome of athletes and sedentary individuals differs in diversity and in
certain taxa; however, it is unclear to what extent the patterns of the gut microbiome
differ between the two and whether athletes’ potential can be effectively monitored
against the microbiome.

This study recruited a total of 306 fecal samples from 19 Chinese professional
female rowers and divided them into three groups according to their daily perfor-
mance: adult elite athletes (AE), young elite athletes (YE), and young non-elite
athletes (YN). The differences of intestinal microbiome in different groups were
compared to determine the correlation between intestinal microbiome and diet,
physical characteristics and sports performance (Fig. 10.7).

Firstly, the intestinal flora of elite athletes and young non-elite athletes were
stratified to find that the intestinal flora of elite athletes and young non-elite
athletes had different intestinal types. In terms of taxonomic structure and functional
composition, it was found that SCFA-producing bacteria were dominant in the
microbial community of elite athletes. Secondly, functional analysis showed that
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Fig. 10.6 Long-term human gut microbial community pattern and multiple dietary changes (Liu
et al. 2019). (Reprinted with permission from authors of Liu et al. (2019))

ATP metabolism, multiple sugar transport systems, and carbohydrate metabolism
were enriched in the microbial community of elite athletes. Furthermore, the con-
struction of accurate classifiers based on a combination of taxonomy and functional
biomarkers highlights the great potential of monitoring candidate elite athletes from
a group of athletes. Finally, it was shown that intestinal flora is closely related
to physical characteristics, dietary factors, and exercise-related characteristics.
Importantly, the versatility of the athletes’ microbiome, which may influence athlete
performance by altering the gut microbiome, is associated with dietary factors
(29%) and physical characteristics (21%). These findings highlight the complex
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Fig. 10.7 Gut enterotypes in elite and youth non-elite athletes. A total of 306 samples are
stratified into three enterotypes. The major contributor in the three enterotypes is Prevotella,
Bacteroides, and Ruminococcaceae_unclassified, respectively. (a) Relative abundances of the top
genera (Prevotella, Bacteroides, and Ruminococcaceae_unclassified) in each enterotype. (b) Three
enterotypes were visualized by PCoA of Jensen-Shannon distance at the genus level. (c) The
proportion of AE, YE, and YN samples distributed in three enterotypes. 72.3% AE, 61.9% YE, and
27.27% YN samples are found in enterotype 3. (d) Co-occurrence patterns among the dominant
genera (average relative abundance >0.01%) across the samples from enterotype 3, as determined
by the Spearman correlation analysis. (Reprinted with permission from authors of Han et al.
(2020))
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interplay of gut flora, dietary factors, and athletes’ physical characteristics and
performance, with gut flora as a key factor (Han et al. 2020).

10.8 Microbiome Research: Current Status, Bottlenecks,
and Prospects

Today, microbiome research is, from many facets, a data-driven science. Firstly,
the sequencing techniques have advanced quickly, thus enabling the fast and batch
profiling of millions of microbial community samples. Secondly, data mining
techniques have also advanced quickly, thus enabling the batch discovery of
functional genes, dynamic patterns, as well as prediction of phenotype with high
accuracy and fidelity. Thirdly, although data-driven, many discoveries are later
verified by we-lab experiments, such as several probiotics (Whiteside et al. 2015;
Routy et al. 2018), verified the power and validity of these data-driven approaches.

However, several bottlenecks remain for the microbiome big-data mining
researches. One of the most critical bottlenecks is the big-data integration bottleneck
(Integrative Human Microbiome Project 2019), and another is the lack of AI
techniques for deep mining of important species, functional genes, and community
dynamic patterns from a large amount of microbiome data (Microbiota meet big
data 2014).

Despite these bottlenecks, microbiome researches are on the sharp rise, andmany
problems are on the edge of solution, while many more new frontiers are on the
horizon. It is foreseeable that with several millions of samples from thousands
of niches that have been collected, sequenced, and analyzed, a much better
understanding of the microbial community ecology and evolution patterns would be
discovered, together with hundreds of clinical or environmental applications made
possible.

10.8.1 Microbiome Research as Part of a Multi-Omics
Exploration

The multi-omics studies will continue to grow, in at least two directions: first, from
multi-omics for single organisms or single species, to single-cell level omics studies,
as well as to population and community level studies; second, the tight integration
of multi-omics with data science as well as with clinical applications.

From the aspect of expanding the scope of multi-omics for single organisms
or single species, single-cell level omics studies, as well as to population and
community level studies, we have already seen rapid progress, largely due to the
sequencing technical advances. From the aspect of integration of multi-omics with
data science as well as with clinical applications, there are very hard challenges
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still lying ahead. For example, it remains to be an open problem to determine the
concordance of multi-omics along the timeline.

10.9 Summary

Taken together, it has become clear that microbiome research, which represents
a rapidly growing omics research area, has already ensured enough high-quality
data, as well as enabled data mining techniques, for large-scale microbiome data
mining towards an in-depth understanding of microbial communities. The microbial
community niches, species, functional genes and their dynamics, have constituted
the microbial dark matter, which has been emerged as a grand challenge for
microbiome research. The fast development of microbiome data mining would
certainly boost the discovery of much more resources and regulation patterns out
of these dark matters. And the integration of microbiome and other omics data
would lead to a more complete picture of the dynamic patterns as well as regulation
principles in the microbiome world.
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