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Preface

The unprecedented accumulation of high-throughput data from genomics, transcrip-
tomics, proteomics, metabolomics, phenomics, etc., has resulted not only in new
attempts to answer traditional biological questions and solve longstanding issues in
biology but also in the formulation of novel hypotheses that arise precisely from
this wealth of data. At present, with nearly 5000 biological data resources and infor-
mation systems on the Internet, numerical bioinformatics tools, and exponential
growths of omics data (big data), the storage, processing, description, transmission,
connection, and integrative analysis of these data are still a great challenge for
bioinformatics. Addressing this situation, we need information systems which
realize the user-specific integration of data and analysis tools to help solve molecular
questions. Therefore, the implementation of integrative information systems is the
actual task, and the systems biology study by integrating different types of data at
different levels is a key point in order to understand the mechanism of life.

With this idea in mind, the first book on Integrative Bioinformatics Approaches
in Integrative Bioinformatics—Towards the Virtual Cell (ISBN: 978-3-642-41280-
6) was published in 2014. It has been viewed/downloaded over 27 k times.
Nevertheless, the past few years witnessed the rapid development of big omics
data science and practical application of artificial intelligence in life sciences. New
aspects and approaches have been emerged in the field of Integrative Bioinformatics.
We felt encouraged to re-edit a new version of Integrative Bioinformatics to review
the latest achievements and shed light on possible future development.

The initial idea of this book is based on a Symposium—Integrative Bioin-
formatics: History and Future, which took place in 2019 at Bielefeld University
(Germany) and resulted in a special issue of the Journal of Integrative Bioin-
formatics (JIB) (https://www.degruyter.com/journal/key/JIB/16/3/html). This JIB
special issue contains a unique compilation of invited and selected articles from
JIB and annual meetings of International Symposium on Integrative Bioinformatics.
Subjects covered include a summary of essential topics, basic introductions and
latest developments, biological data integration and manipulation, modeling and
simulation of networks, as well as a number of applications of Integrative Bioin-
formatics. It presents different views of Integrative Bioinformatics based on the
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vi Preface

aspect of history and future, aiming to provide a basic introduction of biological
information systems, and give guidance on the computational analysis of systems
biology, covering a range of issues and methods that unveil the multitude of omic
data integration performed and the relevance that Integrative Bioinformatics has
today.

The book is divided into five parts:
Part I starts with a brief introduction of the history of Integrative Bioinformatics

(Chap. 1). It is followed by a perspective on current developments in data man-
agement and data publication, particularly focusing on plant bioinformatics, from
genotypes to phenotypes (Chap. 2).

In Part II, Chap. 3 introduces the data landscape that enables access to data
resources for researching in the field of epidemiology. Chapter 4 describes major
problems in database integration and presents an overview of important information
systems. The information reconstruction and visualization process based on that
integrated life science data are further discussed. In Chap. 5, a potential of the fully
automated, graph-based data integration is described and a mapping tool BioDWH2
is explored. Chapter 6 introduces DaTo, a collection of published online biological
databases and tools. It integrates a graphical interaction network browser to facilitate
exploration of the relationship between different tools and databases with respect
to their ontology-based semantic similarity. Chapter 7 describes bioinformatics
approaches of using workflow-driven data integration and knowledge graphs for
plant breeding. A customized instance of the open-source Galaxy computational
platform and analyses of breeding data in a workflow-driven approach is presented.

Part III focuses on integrative analysis. Chapter 8 shows how to integrate
and make sense of this wealth of data through digital applications that leverage
knowledge graph models; as a significant use case, a genetic discovery platform,
KnetMiner, leverages knowledge graphs built from molecular biology data sources.
Chapter 9 explores plant transcription factor regulatory networks by integrating
genome-wide datasets from ChIP-Hub database, to dissect the network structure to
identify potentially important cross-regulatory loops in the control of developmental
switches in plants. Chapter 10 introduces microbiome big data and databases and
describes several microbiome applications to showcase the power of microbiome
big data integration and mining for knowledge discovery and clinical applications.
Chapter 11 presents potential applications of data integration for medical informa-
tion systems towards e-healthcare.

Visualization, modeling, and simulation of complex biological networks are
a major aspect of Integrative Bioinformatics and Systems Biology. In Part IV,
Chap. 12 discusses the past, present, and future of the visualization of metabolic
networks and pathways and provides links to several resources. One highlight
shown is by an international consortium which started developing a standard for
the graphical representation of cellular processes and biological networks including
metabolism called the Systems Biology Graphical Notation (SBGN). Chapter 13
focuses on a Petri net formalism that covers discrete, continuous, as well as
stochastic models among other features. VANESA and a Petri net library PNlib are
introduced to model and simulate metabolic pathways. Chapter 14 discusses a few
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Preface vii

promising immersive analytics and visualization-related approaches in the context
of Integrative Bioinformatics.

Science has become more and more data-driven; data and analysis tools are
available on the internet. In integrative data analysis, various tools, pipelines, and
platforms have been developed. In Part V, Chap. 15 calls for action to develop
the Internet of Science platform for scientific workflow management to facilitate
a future focus on collaborative knowledge discovery. Chapter 16 describes a
knowledge graph, AgroLD, to exploit the Semantic Web technology and some
of the relevant standard domain ontologies, to integrate knowledge on plant crop
species. Chapter 17 presents TBtools, an out-of-box solution to routine biological
data analyses. It describes the design philosophy, development objectives, and main
characteristics, and comprehensive introduction of TBtools. Chapter 18 introduces
prominent integrated bioinformatics platforms, such as Galaxy and relevant frame-
work applications.

Hangzhou, China Ming Chen
Bielefeld, Germany Ralf Hofestädt
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Chapter 1
Integrative Bioinformatics: History
and Perspective

Ming Chen, Ralf Hofestädt, and Jan Taubert

Abstract This chapter introduces the history of Integrative Bioinformatics. Particu-
larly, it outlines major events in the field from Germany who took a leading role and
from China who plays a rapid developing counterpart. The earliest bioinformatics
database resources, projects and initiatives are mentioned. We are stepping into the
biological big data era, which requires us to develop new methods, cutting-edge
technologies to deal with the vast multi-scale and multi-dimensional data. Several
directions that may lead to solve the bottleneck of Integrative Bioinformatics are
discussed. As life-sciences become more data-driven, Integrative Bioinformatics
aims to integrate various aspects together to comprehensively understand the
mechanism of life, and make the outputs available for use in the industry.

Keywords Integrative bioinformatics · History · Future · Perspective · Industry

1.1 History

The “Human Genome Project” emphasized the significance of methods and con-
cepts from applied computer science for genome analysis and biotechnology. This
focus was the key argument of the German Ministry of Science (BMBF) to support
Bioinformatics at the beginning of the 1990s (Schütt and Hofestädt, 1992). During
the same time, the German Society of Computer Science (GI) founded a working
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4 M. Chen et al.

group (GI FG Informatik in den Biowissenschaften) to coordinate national activities
(Nachrichten 1994; Hofestädt 2000). During that time, the first national conference
on Bioinformatics was organized in Bonn 1993 (Hofestädt et al. 1993). At the
same time, interdisciplinary activities started across the whole world. For example,
the first ISMB conference was organized in 1993 Washington (Hofestädt 1993).
In 1996, the German annual national conference was organized in Leipzig as
an international conference—the so-called German Conference on Bioinformatics
(GCB) (Hofestädt 1997; Hofestädt et al. 1997). In parallel, the GI working group
specified the Bioinformatics curriculum and the German Research Foundation
(DFG) offered special grants for German Universities to support faculties building
up new studies for Bioinformatics. Furthermore, the German Ministry of Science
(BMBF) offered a grant to support five Bioinformatics centers in Germany during
the same time. Therefore, Bioinformatics was established in Germany and in many
other countries, including China, at the end of the last century.

In China, Bioinformatics was initiated by several notable physicians and math-
ematicians who started bioinformatics research from the end of the 1980s (Wei
and Yu 2008; Chen 2021). Due to the limitation of bioinformatics facilities and
international collaboration at that time, Bioinformatics was not well developed
until 1997–1998, two Bioinformatics centers were established in Peking University
and Tianjin University successively (Luo 2021). In 1997, the first Xiangshan
Science Conference on Bioinformatics was held in Beijing. Later, South Center
(Shanghai) and North Center (Beijing) of China Human Genome Center (CHGC
and CHGB) were established. Beijing Genomics Institute (BGI, currently known
as the BGI group) was founded in 1999 to participate in the Human Genome
Project (Waterman 2021; Dong et al. 2021). In the same year, the first Sino-German
workshop of Bioinformatics was organized in Beijing. At the beginning of the new
century, the first Chinese national conference on Bioinformatics was launched in
Beijing in 2001. Since then, powered by returned scientists from overseas and the
young talented generation, Bioinformatics in China continues to grow, promoting
the accumulation of biological data, methods, tools, and contributing the rapid
development of Bioinformatics. Two journals: Chinese journal of Bioinformatics
and Genomics, Proteomics & Bioinformatics were launched in 2003. The Sino-
German Integrative Bioinformatics cooperation started in 2009 when we founded
the Sino-German Network supported by the German and Chinese Ministry of
Science and Technology.1

From 1995 to 2004, the GI FG Informatik in den Biowissenschaften organized
different international Dagstuhl seminars (Hofestädt et al. 1996; Collado-Vides et
al. 1999; Collado-Vides and Hofestädt 2002; Hofestädt 2005), which discussed
actual research topics of Bioinformatics. In 1995, the main topic was modeling and
simulation based on molecular data and database systems. During that time, the
internet revolution in combination with the new omics technology showed up. This
was the starting point to develop and implement new information systems, which

1 http://www.imbio.de/forschung2/

http://www.imbio.de/forschung2/


1 Integrative Bioinformatics: History and Perspective 5

allow the systematic storage and analysis of molecular data. Besides the implemen-
tation of database systems (KEGG, TRANSFAC, PDB, etc.), the development and
implementation of analysis tools became more and more important. Furthermore,
the relevant molecular data and analysis tools became available via the internet
during that time. The next step was to develop and implement software tools for the
user-specific integration of data and analysis systems. Therefore, using computer
science methods, new concepts and tools had to be developed for the integration
and fusion of molecular data and analysis tools. At the beginning of this time, the
concept of federated databases was common. The idea was/is to integrate worldwide
running and supported data and database systems. Regarding aspects of data security
and real-time access conditions, this approach failed. To eliminate these problems,
the data warehouse concept was developed and implemented (Kormeier et al.
2011). Data warehouses can integrate heterogeneous and worldwide distributed
user-specific data into one new and local organized database system (integrated
user-specific in-house solution). Until now, data warehouse architectures are in use
and still represent important and useful solutions. Overall, the main problem of this
kind of integration is to overcome the heterogeneity problem of molecular data and
database systems. One key problem is that a high percentage of these molecular
information systems is represented by flat file systems until today. This is the main
reason for the complexity of the integration process based on the implementation
of specific adapter systems. One other important integrative aspect was and is to
have access to literature information systems like for example PubMed. The access
to all published papers (abstracts) could also be realized when the internet became
available at the end of the last century. During recent years, methods of text mining
and data mining got practical relevance. Today such tools are available and able to
scan all PubMed abstracts (or papers). This mining and filtering process is useful
to extend our knowledge based on annotated database and information systems.
One more alternative integration concept was and is the specific definition and
implementation of workflows, which integrate user-specific data and analysis tools
directly.

The international journal of Nucleic Acid Research is trying to present the
overview of all available molecular database systems at the beginning of each year.
For integrative and analysis tools, we do not have this kind of service yet. The
scientific relevance of these software techniques and their applications was the key
motivation to organize the Integrative Bioinformatics Dagstuhl seminar 2004.2 One
result of this seminar was the foundation of the Journal Integrative Bioinformatics
(JIB), which is published by de Gruyter3 since 2017. Furthermore, this Dagstuhl
seminar in combination with the Journal Integrative Bioinformatics was also the
beginning for the annual international conference of Integrative Bioinformatics
(IB2022 will take place in Konstanz, Germany).

2 https://www.dagstuhl.de/de/programm/kalender/semhp/?semnr=04281
3 http://www.degruyter.com/view/j/jib
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1.2 Future Aspects

We are now increasingly in the big data era. Bioinformatics is facing much more
heterogeneous biological data with huge volumes. Genome Projects like “1+
Million Genomes” Initiative are going on, leading to more and more individual
sequences. It is not only for human but also for other species, as more and more
species have been sequenced, e.g., “The Earth BioGenome Project” and “Million
Microbial Genomes Project.” Moreover, it does not simply measure whole tissue
samples, but distinctly identify DNAs/RNAs or proteins at a cellular level. Single-
cell sequencing and single-cell proteomics are generating millions of profiling
datasets in a short time period. The multi-omics data brings us new challenges to
develop appropriate integrative bioinformatics approaches to manipulate, integrate
and model complex biological systems at spatial and temporal scales.

Since biological data are subjective and biased, often lacking standardization
and reproducibility, and some databases are not well maintained, these resources
are becoming more and more degraded. Although there are several bioinformatics
methods developed to deal with a certain problem, often only one is widely used
and highly cited, which encourages becoming a common/standard method. In
many cases, we are not well aware of the original hypothesis of such methods,
which may mislead the real problem. How to integrate the multi-omics data with
different biological/technical conditions and bias? How to share/deposit data under
an acceptable intelligence and ethic policy? Are our traditional data mining and
machine learning methods suitable for big data? More powerful tools for multiple
scale biological interactome modeling and simulation? How to uncover hidden
patterns from such a huge and heterogeneous number of omics data and allowing
the creation of predictive models for real-life applications? Nevertheless, advances
in biological technologies and computational methodologies have provided a huge
impetus. There are several directions which may lead to solve the bottleneck of
Integrative Bioinformatics.

1. Integration of multiple biological data toward systems biology. Different omics
data is reflecting different aspects of the biological problem. For instance,
previously biological networks are regarded as gene regulatory network, protein–
protein interaction network and metabolic networks. Now we know that non-
coding RNAs, including microRNAs, siRNAs, lncRNAs, ceRNAs, cirRNAs,
etc., play more important roles in regulations. Therefore, an integrative inter-
actome model (e.g., a virtual cell) of known parts and non-coding RNAs needs
to be built.

2. Integration of various bioinformatics methods and approaches. Often, to solve
a problem, there are many different methods developed by many groups. These
methods may perform differently, some good, some bad. However, individual
results are often unreliable. In particular cases, the often-used methods may be
unreliable or simply ineffective. It is suggested to depend on a variety of results
by all methods. With various methods, we can integratively develop tailored
bioinformatics pipelines to facilitate better understanding of biological problems.
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3. To integrate multiple biological data and different methods/approaches, well-
developed traditional data mining methods such as NN, SVM, HMM are
available. However, they are not good enough to deal with high dimensional
omics data and big data sets. So far, deep learning methods such as CNN,
GNN and Transformer have been efficiently used. Combined with big data, and
other approaches, artificial intelligence (AI) has been successfully applied in
bioinformatics, especially in the field of biomedical image analysis.

4. Computing infrastructure development. Integrative Bioinformatics in the big data
era requires a more advanced IT environment. To facilitate the related computing
and visualization demands, both hardware (e.g., GPU, TPU) and software (e.g.,
TensorFlow, PyTorch) have been improved. Supercomputers are used. Cloud
services are provided by more and more institutes and big companies.

1.3 Industry Aspects

During the turn of the century, the availability of the fully sequenced human
genome and other model organisms sparked a boom of bioinformatics companies
aiming to address the challenges in medicine, plant, and other life sciences using
computational methods. Despite initial success like improving genome annotations
or modeling of more complex protein structures, big promises like in silico drug
discovery were not able to be kept and even huge players like Lion Biosciences
diminished (McKelvey et al. 2004). Nevertheless, the enthusiasm and learnings
of that time led to the establishment of dedicated bioinformatics functions within
almost all of life sciences industries. These bioinformatics functions would be
placed within the Research and Development functions of life science companies.
As dedicated talent in bioinformatics was rare, biologists, computational scientists
or even physicists and others strained in the new area of bioinformatics. The demand
of industry for talent influenced the academic world and drove the creation of
more and more bioinformatics or related curricula. Even though the large initial
demand for bioinformaticians at the beginning of the century flattened, there is still
a shortage of talent, especially when existing industry experience is required. It is
almost certain that this trend will not change in the foreseeable future, as life science
data continues to grow.

When such bioinformatics functions were embedded in the overall R&D ecosys-
tem of a life science company, other surrounding data systems were and still are
in-place concerning relevant data domains. These data systems can range from sim-
ple spreadsheets used by the scientists to Microsoft Access databases and relational
database systems. Understanding the data stored in these systems and adding the
contributions of bioinformatics tools and predictions to the R&D ecosystem heavily
relies on integrative bioinformatics approaches. Breaking up data silos between
functional units within the R&D ecosystem is a prerequisite to drive not only track
and traceability of processes but also the discovery of new insights. Technologies
like semantic web (Berners-Lee et al. 2001) or linked data provide the base
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infrastructure of efficient bioinformatics functions. Ontologies (Smith et al. 2007)
either reused from public repositories or customized together with R&D scientists
establish a common language, which should also be machine interpretable. FAIR
(Wilkinson et al. 2016) (findable, accessible, interoperable, reusable) principles of
data management are increasingly being adopted in industry. This trend is supported
by advancement of many public and proprietary bioinformatics tools implementing
these principles.

Even though hesitant at first, industry is now steadily moving from on-premises
data infrastructure to (private) cloud computing. Here the bioinformatics functions
are beneath the early adopters of cloud computing (Sommer 2013) as they are
commonly exposed to an ever faster changing portfolio of public and proprietary
bioinformatics tools and services. As such they rely on the flexibility and power of
cloud computing to evaluate new approaches or tools for use in life science industry.
Such new approaches may also include artificial intelligence and machine learning
techniques (Mak and Mallikarjuna 2019). Besides the current hype around these
techniques, more and more use cases are being discovered by industry. Here the
additional challenge arises to turn a proof of concept into a production ready system
to be integrated into the R&D process. This requires not only a sound understanding
of the data and algorithms, but also of the end users. Therefore, the classical role of
business analysts in industry is supplemented by skills of user-centered design and
user experience (Ziemski et al. 2019/20). The outcomes of this interaction are then
driving either internal or external software development efforts or influence buying
decisions. Still the adaption of free and open-source software (FOSS) in industry
remains challenging due to complicated licensing and unclear legal terms (Vetter
2009).

To align pre-competitive industry efforts in common tasks of R&D data man-
agement, alliances like the Pistoia Alliance4 have been formed. Here, life sciences
industry, suppliers, academics, and start-ups discuss forthcoming challenges and
evaluate common ground. In Europe, the ELIXIR Bioinformatics Industry Forum
or the Innovation and SME Forums,5 besides others, support engagement between
ELIXIR member institutions and industry participants to exchange on services and
the ecosystem of public data resources. One ELIXIR member, EMBL-EBI, since
1996 offers an industry program6 to provide a forum for interaction and knowledge
exchange for those employed at the forefront of industrial bioinformatics. These and
many other initiatives help to disseminate cutting-edge technologies to industry at a
time when life sciences becomes more data-driven.

4 https://www.pistoiaalliance.org
5 https://elixir-europe.org/industry
6 https://www.ebi.ac.uk/industry

https://www.pistoiaalliance.org
https://elixir-europe.org/industry
https://www.ebi.ac.uk/industry
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Chapter 2
From Genotypes to Phenotypes: A Plant
Perspective on Current Developments
in Data Management and Data
Publication

Daniel Arend, Sebastian Beier, Patrick König, Matthias Lange,
Junaid A. Memon, Markus Oppermann, Uwe Scholz, and Stephan Weise

Abstract Integrative bioinformatics aims to combine information from various
sources of different data domains in such a way that a cross-domain analysis
becomes feasible. With this approach, insights may be gained, which would not
be possible with an analysis restricted to a single domain. For example, relation-
ships between genotypic characteristics (genotypes) and phenotypic characteristics
(phenotypes) in their environmental context (environment) could be made visible.
The efficient management of such data combined with the supply of corresponding
machine-readable access possibilities are essential prerequisites to achieve the
outlined goal. This awareness was the nucleus for the development of the concept
of data life cycles. In such a cycle, the stages of planning, collecting, processing,
analysing, preserving, sharing and reusing are represented. All these steps must be
considered, mapped and carried out accordingly in data management.

This chapter will discuss this data life cycle. The description of the individual
steps is always based on concrete applications of a modern plant research institution
and is therefore allocated to the field of plant bioinformatics. The focus here is
primarily on the three data categories “genotype”, “phenotype” and “environment”.
The spectrum of activities ranges from local data management to making data
available in public archives and thus includes project planning, metadata definition
and collection, database storage solutions, data curation processes, data integration
technologies, data access interfaces as well as data reusability. The ultimate goal is
to make all research results available to the public according to the FAIR principles
of Findable, Accessible, Interoperable and Reusable.
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2.1 Introduction

This chapter is based on more than 20 years of data management experiences and
activities at the Leibniz Institute of Plant Genetics and Crop Plant Research (IPK).
The IPK is a leading international research institution in the field of crop plants and
their wild relatives. Research focuses on the conservation of biodiversity and the
performance of crop plants.

The Institute’s distinguishing feature is the German Federal ex situ Genebank for
Agricultural and Horticultural Crops. This is one of the world’s largest genebanks
and the largest of its kind in the European Union (EU27). The tasks of the
genebank are the conservation of agrobiodiversity and the provision of plant genetic
resources (PGR) for research and breeding. The IPK collection comprises about
151,000 samples, so-called accessions, which cover more than 3000 different
species. The genebank represents a vault in which the biodiversity of cultivated
plants is stored. To maintain this unique collection, regular multiplication trials
have to be carried out. This involves recording a wide range of data, in particular
phenotypic observations, but also environmental data (e.g. temperature, rainfall or
UV radiation). As with all organisms, the phenotype of plants is influenced not only
by the genotype but also by the environment. During cultivation, mainly phenotypic
traits are recorded. In order to better understand the material, it also becomes useful
to use genomic data, e.g. to explain the influence of genotypic variation on the
phenotype.

While the data-side focus of the genebank has traditionally been on the passport
data of the accessions and on phenotypic observation values, the extension of digital
information services makes it possible to integrate data from other domains, e.g.
genome or genotyping data, and thus successively develop the genebank into a bio-
digital resource centre.

Concretely, in this chapter, we will discuss and include five data domains: plant
genetic resources data (1), genomic data (2), genotyping data (3), phenotyping data
(4) and environmental data (5). We will briefly explain how we define these terms
in the following paragraphs.

1. Plant genetic resources data: On the one hand, this includes for each accession
so-called passport data like country of origin, collection site, the genus/species,
the full botanical name and recently also unique identifiers like a DOI (Digital
Object Identifier). Furthermore, this includes characterization data. These data
describe the phenotype and are rather stable, e.g. the properties of organs
such as the ear in cereals (e.g. two-row or six-row in barley). The third part
is the evaluation data. These are phenotypic characteristics that are collected
during propagation cultivation. These include, for example, plant height, disease
infestation or yield data such as the 1000 kernel weight.

2. Genomic data: These are, on the one hand, sequence data such as nucleotide
sequences of entire chromosomes at pseudomolecule level, and the gene models
(genes with their localization on the chromosomes, exons, introns, as well as the
coding sequence and translated peptide sequence). Furthermore, it also includes
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descriptive annotations of the structural regions of the genome like genes and
their functions or information about non-coding regions such as repeats.

3. Genotyping data: This includes diversity information on how a specific geno-
type (e.g. one accession) or several genotypes (e.g. several accessions) differ
from a reference genotype. The methods used to determine such differences are
very diverse, e.g. SNP arrays or genotyping by sequencing (GBS). This also
results in very heterogeneous data formats. One example is the so-called variant
calling format (VCF). Here, the differences of several genotypes can be mapped
to the reference, including qualitative assessments.

4. Phenotyping data: This includes all phenotypic traits that are collected outside
the classical conservation cultivation in the genebank. This covers experiments
both in the field and under controlled conditions, e.g. in the greenhouse.

5. Environmental data: These include weather data such as temperature, precip-
itation, humidity, wind speed or UV radiation. Furthermore, this includes data
collected by environmental sensors in isolated environments, e.g. greenhouses.
The data from environmental sensors complement the existing weather data and
can therefore also be counted as part of it.

These characterized data domains are in the focus of the further described data
management processes and systems.

2.2 Data Management Concepts in Plant Science

Data management plays an important role in achieving the goal to transform the
IPK genebank into a bio-digital resource centre. In the beginning, data was managed
analogously on paper or index cards. With the availability of computers, these were
rapidly used for this purpose. In particular, database systems were identified as the
more effective tool for this task. First databases were created in which different
information could be stored and queried in a structured way. Often the results of
scientific studies were imported and certain parts could be queried and extracted
again. Unfortunately, a description and documentation of how the data acquisition
was often missing. However, this is essential in order to be able to reuse the results
and feed them as input into new studies.

In recent years, it has become clear that data management is a process that
takes place over several stages and can be accompanied and supported by the use
of databases. Ultimately, this process is transferable to all scientific fields and is
currently a topic in the new scientific discipline of Data Science. Currently, this
process is known as the Data Life Cycle (ELIXIR 2021) and is illustrated in Fig. 2.1.
Each step of the Data Life Cycle is briefly described in the following paragraphs.

The process step plan defines a strategy for managing the data and documenta-
tion generated in the research projects. Consideration should be given in advance
on how best to avoid problems associated with data management and to create the
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Fig. 2.1 Data Life Cycle
adapted from RDMkit
(ELIXIR 2021)

conditions to ensure that all research data continue to have maximum impact in
science beyond the end of the research project.

Data collection describes the process of gathering information for specific
parameters either automatically, i.e., using instruments, as well as manually. During
this process, data quality must be ensured regardless of the research field.

Data processing is the step in the cycle where data is converted into a format to
prepare it for analysis. In addition to format conversion, this stage of the process
includes quality checking and pre-processing according to standardized protocols.
Furthermore, poor- or low-quality data is discarded in order to create a cleaned
dataset that provides reliable results.

In the analysis step, the collected data is examined to identify the information
contained in a dataset. These investigations can be performed multiple times in the
process. Specifically, the data can be analysed directly or indirect analyses can be
performed by using models, for example.

Data preservation includes all activities necessary to ensure the safety, integrity
and accessibility of data for as long as it is required. Data preservation is more than
storage and backup. It prevents data from becoming unavailable and unusable over
time.

In the sharing phase, the data is made available to others. This can be sharing
with collaborative partners or publishing the data to the whole research community.
It is important to note that data sharing is not the same as making data open access.
It is the decision of the data producer how the data will be shared. Thus, restricted
access for different user groups is also possible, e.g. only for collaborative partners.

In the reuse phase, data is used for a new purpose for which it was not originally
intended. This makes it possible to generate and also publish new results based on
the same data. Reusability is an essential part of the FAIR principles.

In addition to the steps in the life cycle, the use of data standards as well as data
concepts is, of course, essential basics in data management. Furthermore, it is crucial
to manage and offer data according to the FAIR data principles. First formulated in
2016 Wilkinson et al. 2016), it is now established in more or less all data domains,

https://www.zotero.org/google-docs/?fnC8Bh
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and several funding agencies have also made FAIR their central paradigm (Mons et
al. 2017).

Behind this acronym is a guideline for handling research data in a sustainable
way.

• Findable: Research data needs to be findable by humans via search engines, but
also by machines using standardized harvesting formats.

• Accessible: A long-term stable access to research data is crucial for sharing
research data within the research community and public users and to get credit
for the data producers.

• Interoperable: Standardized metadata formats are essential for describing
research data to integrate them and find possible interconnections.

• Re-usable: In order to exploit the full value of research data, it is necessary
to provide a full technical description, which guarantees as far as possible a
repeatability of the underlying process to create the data and allow users to use
them for further investigations.

Therefore, FAIR has also been an important goal during the development
of novel standards and updating of existing formats. Some popular examples
are the MIAPPE recommendations for describing plant phenotypic experiments
(Papoutsoglou et al. 2020) and the MCPD standard for describing plant genetic
resources (Alercia et al. 2015). MIAPPE is a descriptive list of recommended
minimal attributes, which are helpful to explain and document the experimental
setup of phenotypic trials. It was originally described in 2015 and is still under active
development. On the other hand, the MCPD (Multi-Crop Passport Descriptors)
standard is relatively old and established across genebanks and plant genetic
resource providers worldwide. It provides a comprehensive list of stable and well-
defined attributes necessary to document genebank accessions.

But of course, meeting the FAIR recommendations requires not only an improve-
ment of data formats and standards but also a re-design and update of existing
infrastructures and databases. One obstacle is the homogenization of the vocab-
ularies used in these resources. It is necessary for resources that offer data for
exchange to access a standartised vocabulary established by the community. To
this end, consortia have been formed with the mission of building such ontologies.
For example, there are specialized ontologies that offer a controlled vocabulary for
describing plant structures and growth stages (Jaiswal et al. 2005) or ontologies
that describe more general concepts, like the Gene Ontology (Gene Ontology
Consortium 2004). However, as both language and methodologies continue to
evolve, this effort must be supported and sustained.

In all research areas, including the life sciences, the tasks of data management
and publication are of essential importance. Only in this way can new findings be
appropriately substantiated and are traceable. Initially, these tasks were performed
exclusively in analogue form. With the broad emergence of computers, it became
digital. Along with the triumph of the World Wide Web, these two tasks have
received a considerable boost.
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2.3 Overview of Information Systems

The general architecture of information systems can be divided into two distinct
entities: (1) the backend consisting of database management systems (DBMS)
comprising application logic, and (2) the frontend, which usually serves as the
primary interface for user interaction (graphical user interface). Other solutions have
been proposed in so-called tier approaches, where the number of different entities
is either reduced for simple applications (all-in-one approaches) or drastically
increased for complex applications (n-tier approaches) (Petersen 2001). For the
purpose of this chapter, we will focus and discuss the two-tiered approach, which is
often also referenced as the client–server architecture.

In information systems, the backend is often synonymous with the database,
which the user accesses only indirectly (note that the discussed information systems
of the IPK have a more direct access solution integrated). Primary data and metadata
are stored and managed here. The DBMS is the software layer of the backend,
and one of its tasks is to handle authorization and authentication and thus controls
the granularity of data retrieval for specific user groups. For user updates or
changes to records in the database, the DBMS is able to enforce constraints that
ensure consistency rules are followed. Databases implement different data model
and feature paradigms, and have evolved to support application scenario, with
relational databases being the dominant class overall (Harrington 2016). The data
is accessed indirectly either via application programming interfaces (API) or via
special application logic through stored procedures, the specifics of indirect accesses
are varied and going into detail here would go far beyond an overview of information
systems.

In addition to information systems per se, so-called web-based information
systems are playing an increasingly important role. In such systems, the front end
is based on web technology. This means that the user interface is a web browser or
is accessible via the WWW. Usually, the business logic of such a web application is
implemented in a programming language suitable for the use case and deployed by
assigning URLs to specific functions or methods. The programming language itself
may implement or provide the required HTTP server, or a separate HTTP server
such as Apache HTTP Server, Apache Tomcat, or Oracle WebLogic may be used
upstream. Classically, business logic often communicates with the storage layer
over an internal private network using protocols based on TCP/IP, sockets, or the
file system. In complex web information systems, different persistence technologies
are often used simultaneously in the storage layer, e.g., in web-based information
systems that combine multiple databases in a single web application (Fig. 2.2). The
data ingestion and management into the backend of scientific institutions is often
realised by a laboratory information management system (LIMS). Its main purpose
is to act as a sample management system, but recently data analysis functions and
the ability to record digital laboratory documentation (also known as an electronic
laboratory notebook or ELN) have also been integrated into some successful LIMS
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Fig. 2.2 Abstract architecture of web-based information systems

solutions. The actual LIMS implementation of the IPK Gatersleben is described in
(Ghaffar et al. 2019).

A further component of backend technology is sensorics data which is mainly
used to collect environmental data. The basic idea of sensor networks is based on
the idea of the Internet of Things (IoT) (Madakam et al. 2015). Individual sensors
are to be networked in a computational interconnected infrastructure. This concept
is based on ubiquitous computing. This in turn describes a concept that moves away
from the use of one end device to the use of many. This concept thus contrasts with
dedicated, application-specific platforms that are designed and installed to combine
data collection, storage, exchange and evaluation in one overall system. IoT goes
far beyond the original concept of the internet. It is no longer just a network of
different computers, but a network of all kinds of devices. Rather, the IoT is a
network consisting of different objects that communicate over the Internet to collect
and exchange data. This includes both actuators, as a component of a machine
that is responsible for moving and controlling a mechanism, and sensors, which
detect events or changes in its environment. Some examples of sensors are cameras,
weather stations, ground sensors or airborne remote sensing, such as drones or
satellites. Active elements are irrigation pumps, fans, lighting or even cooling or
heating elements. Usually, both types are combined, like in agricultural machinery
and greenhouse controls. These capabilities to build IoT networks are increasingly
influencing the nature of experimentation. For example, the detection of phenotypes
via sensors is being combined with targeted manipulation of the environment in
the field of high-throughput plant phenotyping and breeding research (Fiorani and
Schurr 2013; Watt et al. 2020). The concrete interaction of sensors and actors is
a practical and technical challenge in terms of system integration that is not to be
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underestimated. This is a practical hurdle, because infrastructures that span locations
and organizations sometimes use highly heterogeneous interfaces and incompatible
systems infrastructures. The homogenization of data formats is done by applying
standards as described in Sect. 2.2. The homogenization of transmission protocols
plays another central role here, as sensor data are continuous data streams. This
affects, among other things, the protocols as well as data exchange formats and
units. Application-specific network protocols are the backbone of IoT networks and
are responsible for the communication of remote sensors. One of the commonly
used network protocols is MQTT (Message Queuing Telemetry Transport). It is
a lightweight protocol used to transport data between devices mainly on TCP/IP
networks. It was jointly authored by Andy Stanford-Clark (IBM) and Arlen Nipper
(Cirrus Link, then Eurotech) in 1999 (MQTT.org 2015). MQTT is an M2M
(Machine to Machine) protocol best suited for the remote connections which require
a “small code footprint” or in cases where the network bandwidth is limited, such as
IoT devices. The publish-subscribe architecture of MQTT described in Obermaier
(2018)) and illustrated in Fig. 2.3 is extremely lightweight compared to HTTP’s
request/response paradigm.

Where MQTT broker is the central component of the paradigm that acts as a
server responsible for passing the messages between the publisher and subscribers.
In case of an event, the publisher first transmits the data to a broker with a topic, and
if a client requests data of a certain topic, the broker performs matching and then
delivers messages accordingly.

Another important layer in information systems is the frontend. It is considered
to be everything the user sees and interacts with directly. Especially in web-based

Fig. 2.3 Principle operation of the MQTT publish-subscribe architecture
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information systems, the website rendered in the browser acts as the graphical user
interface. The spectrum here ranges from the pure display of data, stored in the
storage layer, to highly interactive “Rich Internet Applications” (RIA) (Fraternali et
al. 2010), which very often also contain a large proportion of business logic in the
form of Javascript. For example, the display of interactive diagrams always requires
the use of business logic in the frontend code. In contrast, for the display of text,
tables and static images, only the use of HTML and CSS is mandatory. In the age of
mobile devices such as smartphones and tablets, the flexibility of the website layout
plays an increasingly important role. The necessary flexibility results from the many
different display sizes and page formats of mobile devices compared to traditional
PC monitors. Therefore, the development is increasingly moving away from static,
fixed layouts to so-called adaptive and responsive layouts that adjust as optimally as
possible to the different display sizes and page formats.

2.4 Selected Data Management Information Systems

The following provides a general overview of some well-known information
systems and data warehouses with a focus on plants developed and hosted at our
research institute IPK Gatersleben. The description of each system includes the
features and architecture, scope and general use cases. The web address where
the system can be accessed is stated, as well as the supported data domains. Also
explained is how data can be imported and exported and where the system fits into
the Data Life Cycle.

2.4.1 The Genebank Information System (GBIS)

Globally, genebanks play an important role in the long-term conservation of plant
genetic resources (Hoisington et al. 1999). They complement the conservation of
biodiversity in farmers’ fields and in nature. Besides the preservation of physical
samples, data management is one of the most important tasks of a genebank and at
the same time one of its greatest challenges (FAO 1997, 2010; Fowler and Hodgkin
2004; Weise et al. 2020). Well-structured documentation of all data and information
available on a genebank accession is the basic prerequisite for genebanks to be used.
A wide range of data must be taken into account.

The IPK genebank has been in existence for almost 80 years, but is partly based
on even older collections, so that material from a period of almost 100 years is
preserved. The focus of the documentation has continuously developed over this
period, as have the technologies used for this purpose. Furthermore, a number of
changes in organizational structures have taken place, and several generations of
curators and scientists have maintained the material and constantly added further



20 D. Arend et al.

parts to the collection. Continuous documentation is indispensable for both the
preservation and the exploitation of the material.

The Genebank Information System (GBIS)1 (Oppermann et al. 2015) is one of
the central instruments for documentation and management in the IPK genebank.
It was first introduced in 2006 and has been continuously developed ever since.
The core of the GBIS is formed by an OnLine Transactional Processing (OLTP)
system, which records the data produced in various genebank workflows. This data
is compiled into an overall dataset that includes the following areas:

• Pure management data for conservation of collections.

– Storage quantity and locations.
– Growth and harvest management.
– Germination rate, age of the samples, health tests.
– Reporting and labelling.

• Data of legal significance.

– Collection permits.
– Correspondence, documentation of receipt.

• Data to assess the value of the resource.

– Basic (passport) data.
– Phenotypic observations.
– Images of specimens, plants, fruits and seeds.
– Comprehensive genetic data.

GBIS consists of two areas: (1) a public information and ordering system
and (2) an internal system that serves data management and process support. An
Oracle DBMS is used for data management; the various application components are
implemented both as application server-based web applications and as standalone
solutions. Figure 2.4 shows the architecture of the overall system.

From the original idea of documenting, cataloguing and describing plant genetic
resources, genebank information systems are increasingly developing into instru-
ments for scientific work and thus reflect the transformation of genebanks into
bio-digital resource centres.

GBIS supports all steps of the data life cycle.

1 https://gbis.ipk-gatersleben.de/

https://gbis.ipk-gatersleben.de/
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Fig. 2.4 Architecture of the genebank information system

2.4.2 The European Search Catalogue for Plant Genetic
Resources (EURISCO)

Estimates put the number of genebanks worldwide at around 1800, with more
than 600 in Europe (Engels and Maggioni 2012). Many genebanks have been
in existence, in some cases for decades. Despite the introduction of IT support,
especially in the late 1960s and 1970s, most genebanks remained largely isolated
from each other. This did not change until the 1980s, when the first attempts were
made to make information available across genebanks. It was then that the idea of
Central Crop Databases (CCDB, Gass et al. 1997) was born. This idea consisted of
strengthening cooperation between genebanks by networking the collections and
also making genebank material more accessible to users as well as identifying
possible duplicates between the individual collections. However, due to the low
quality or lack of data, these goals could only be achieved to a limited extent (van
Hintum 1997). One of the biggest difficulties in this context was that for a long
time there were no uniform standards for the description and exchange of passport
data. A standard that addressed this challenge is the Multi-Crop Passport Descriptors
(MCPD). After the presentation of the first draft in 1997 (Hazekamp et al. 1997), the
MCPD successively developed into a globally accepted and used standard (Alercia
et al., Alercia et al. 2001, 2015). The emergence of MCPD as well as Darwin Core
(Endresen and Knüpffer 2012; Wieczorek et al. 2012) represented milestones for
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the development of international aggregator systems such as WIEWS,2 EURISCO3

or Genesys.4 They enable the exchange of passport data between genebanks and
these systems and thus allow a cross-genebank search for accessions of plant genetic
resources.

One of the aggregator platforms mentioned is the European Search Catalogue
for Plant Genetic Resources (EURISCO, Weise et al. 2017). This platform is
operated within the framework of the European Cooperative Programme for Plant
Genetic Resources (ECPGR)5 and has been available online since 2003. The aim
of EURISCO is to provide a central entry point for searching accession-specific
passport data and phenotypic data on plant genetic resources accessions maintained
in Europe. In addition, EURISCO assists its member countries in fulfilling national
obligations, e.g. to the FAO. The majority of European ex situ collections are
represented in EURISCO. A total of 43 countries are currently part of the EURISCO
network. Each country compiles the data of its genebanks in a National Inventory
and submits it to EURISCO on a regular basis. The MCPD standard is used for the
passport data. Currently, more than two million genebank accessions from about
400 collections are documented in this way in EURISCO, covering more than
6700 genera and 45,000 species. In recent years, work has begun on depositing
phenotypic observations collected on accessions in EURISCO in addition to the
passport data. Unfortunately, there are no really widely accepted standards for the
exchange of phenotypic data so far (Krajewski et al. 2015). This is complicated by
the fact that observation values of genebank accessions were partly collected over
long periods of time. Various initiatives to harmonize such data have existed since
the 1970s, e.g. the IPGRI/Bioversity descriptor lists (IBPGR 1990; International
Board for Plant Genetic Resources (IBPGR) and Commission of the European
Communities (CEC) 1984; IPGRI et al. 2001), but they have never achieved
general acceptance. More recent approaches aim at mapping different traits and
methods onto each other using ontology terms, e.g. CropOntology (Shrestha et al.
2010, 2012), or to put a stronger focus on the description of the material used
and the experiments conducted, e.g. MIAPPE (Ćwiek-Kupczyńska et al. 2016;
Krajewski et al. 2015; Papoutsoglou et al. 2020). Altogether, this represents a
particular challenge that has not yet been conclusively solved. EURISCO uses a
minimum consensus approach for exchanging phenotypic data, which is limited to
the absolutely necessary data fields.

The provision of data in EURISCO is done using a multi-tier system (Fig. 2.5).
The data compiled in the National Inventories is imported into a central staging area
through an upload tool. A series of data integrity checks are then performed, most of
them at syntactic level, some also at semantic level. Automatically generated error
reports help the data providers to successively correct data errors. After release by

2 http://www.fao.org/wiews/
3 http://eurisco.ecpgr.org/
4 https://www.genesys-pgr.org/
5 https://www.ecpgr.cgiar.org/

http://www.fao.org/wiews/
http://eurisco.ecpgr.org/
https://www.genesys-pgr.org/
https://www.ecpgr.cgiar.org/


2 From Genotypes to Phenotypes: A Plant Perspective on Current. . . 23

Fig. 2.5 Overview of the EURISCO architecture

the data providers, the new data is integrated into the overall EURISCO database.
A web interface is available to the users of the system, which offers a variety of
search, visualization and download options. Fuzzy searches are also supported here,
for example in the case of scientific plant names and their synonyms (Kreide et al.
2019).

In addition, EURISCO forms the European hub of the international PGR
information system Genesys. Passport data is regularly exchanged with Genesys,
so that genebank accessions documented in EURISCO can also be found via the
Genesys portal.

In terms of the Data Life Cycle, EURISCO can be assigned to the categories
Preserve, Share and Reuse.

2.4.3 BARLEX

Sequencing and subsequent steps to reassemble the underlying genome sequence
for complex plant species have been a lengthy and costly endeavour. Sequencing
efforts in the species barley (Hordeum vulgare L.) were initiated more than a decade
ago (Schulte et al. 2009). At that time, the state-of-the-art approach was to create a
comprehensive physical map of overlapping BAC clones carrying small fragments
of genome information (Ariyadasa et al. 2014; Schulte et al. 2011), sequence them
using NGS technology (Steuernagel et al. 2009; Taudien et al. 2011), and then join
the assemblies of the individual BAC clones with mate-pair reads (Beier et al. 2016).
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The Barley Explorer (or BARLEX6 for short) web application was developed to
facilitate the process of joining these BAC assemblies (Colmsee et al. 2015). It
showed interested users evidence of overlap between adjacent BAC assemblies and
all available genomic data associated with each sequence contig. This information
was presented in both tabular form and in an interactive graphical edge-node display.

Since its inception in 2015, BARLEX has evolved into the de facto hub for
barley genomic sequence information (Beier et al. 2017). With the advent and
adaptation of advanced sequencing and assembly techniques such as conforma-
tion capture sequencing (Lieberman-Aiden et al. 2009), incorporation of optical
mapping (Staňková et al. 2016) or 10X Genomics linked reads (Mostovoy et
al. 2016), the speed and accuracy of new complete pseudomolecule sequence
assemblies have increased dramatically (Jiao and Schneeberger 2017). To date,
new and updated reference barley genome assemblies have been released in 2012
(Mayer et al. 2012), 2017 (Mascher et al. 2017), 2019 (Monat et al. 2019), and
2021 (Mascher et al. 2021), with more than a dozen genotypes being sequenced at
the moment to complement pan-genome sequencing efforts (Jayakodi et al. 2020,
2021). The pseudomolecule sequence, genomic scaffold structure, and molecular
marker, repeat, and gene annotation (complemented by expression data) for these
four different versions of the reference sequence are all available in BARLEX.

BARLEX is built on an Oracle relational database backend and consists of 57
tables, 17 materialized views, 37 stored procedures and more than 95 million rows of
data. The web application is implemented with Oracle Application Express (APEX,
formerly known as Oracle HTML DB) with custom Javascript procedures. Some
of these Javascript procedures use the Cytoscape.js framework (Franz et al. 2016)
which enables a graph-based interactive visualization. Additional functionality
is supported by cytoscape-qtip, cytoscape-automove, cytoscape-cose-bilkent and
cytoscape-context-menus, which help to make the user interface more intuitive and
accessible. Tabular data within BARLEX can be exported in various predefined
formats such as CSV and HTML. Please note that the download of gene or repeat
annotations has been disabled in BARLEX and is distributed via links to long-term
stable DOIs deposited at eDAL-PGP (Arend et al. 2016). The import of new data
into BARLEX is done via semi-automatic import scripts by the BARLEX team.
After manual curation of the data and transformation into the appropriate format,
the data is fed into the database using an upload tool (Rutkowski 2005). This manual
curation step includes both syntactic and semantic verification. Although ordinary
users cannot modify the data via the web application, there is an option to leave
feedback on all features and records so that administrators can be notified on feature
requests and data inconsistency.

Many types of genomic data are represented in BARLEX, such as sequencing
contigs (various technologies and methods), exome capture data, molecular marker
data (array-based SNPs), expression data (from Iso-Seq and RNA-Seq), BLAST
results, structural information about sequence composition, and sequence order

6 https://barlex.barleysequence.org

https://barlex.barleysequence.org
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and orientation in the finished pseudomolecules. With these data domains and the
functions BARLEX supports, BARLEX covers the Analyse, Preserve, Share and
Reuse fields in the Data Life Cycle.

2.4.4 BRIDGE

Although a wide diversity of landraces and PGRs are stored in genebanks, there
has been little success in utilizing them and incorporating them into breeding
programmes. One of the challenges here is the availability of information on
molecular and phenotypic profiles of the entire seed stock. Apart from the fact that
transferring beneficial alleles from PGRs to modern elite varieties is a challenge in
itself (Wang et al. 2017), this availability is a prerequisite for incorporating PGRs
into commercial plant breeding. Therefore, genebanks have begun to systematically
categorize and catalogue their germplasm collections at both the molecular and
phenotypic levels (Mascher et al. 2019; Romay et al. 2013). An example of one
of these pioneering projects was carried out on the crop barley, where 22,626
accessions of the genebank hosted at the IPK Gatersleben were surveyed and
analysed based on genotyping-by-sequencing (Milner et al. 2019). The resulting
molecular profiles could now be combined for the first time with passport data,
historical and newly collected phenotypic data to draw conclusions about the global
barley diversity and to find interesting genes and loci for plant breeding. This
information resource was adapted into the web portal BRIDGE7 (König et al. 2020).

BRIDGE is both a data warehouse and exploratory data analysis tool for large-
scale barley genomics. Through a unified collection manager for user-defined
germplasm datasets, various analyses can be performed or visualized. One of the
core features is the quick selection of collections either using the lasso selection
tool on the provided graphical output or by setting different filters over the complete
set based on passport data, phenotypic traits or molecular markers (SNPs). In
addition, BRIDGE uses a concept known as “interactive brushing and linking”,
where changing parameters in one visualisation results in a direct response in other
visualisations that are dynamically linked (Keim 2002). All of this supports the
interactive user experience and enables rapid analyses of more than 9000 data
points of phenotype data, visualisation of genetic diversity by PCA and t-SNE, or
exploration of Manhattan plots to genome-wide association studies. Also integrated
is an intuitive variant browser for the study of SNP data based on the GBS sequence
data of 22,626 genotypes. Genotypic data can be exported in VCF files (Danecek
et al. 2011) for custom collections of genotypes and specific genomic regions of
interest, e.g. for a whole gene or single exons. The Java library “isa4j” (Psaroudakis
et al. 2020) is used to realise a customised export of phenotypic data in the ISA-
Tab format (Sansone et al. 2008, 2012). Based on the user’s custom collections

7 https://bridge.ipk-gatersleben.de

https://bridge.ipk-gatersleben.de
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of genotypes, a ZIP-archive containing ISA-Tab formatted text files and additional
phenotypic images is generated on the fly for download via the user’s web browser.

The BRIDGE web portal utilises the client–server model as general architecture
with REST-alike HTTP-APIs as the communication layer between client and
server. HTML5, CSS3 and Javascript are used for client-side development. Groovy,
Java and Python programming languages are used to implement the server-side
counterparts of the HTTP-API. The web application framework “Grails” is used to
implement all aspects except the server-side API of the integrated SNP browser.
The server-side part of the SNP browser is implemented in Python using the
Flask library. Well-established libraries like Numpy (Harris et al. 2020), Pandas
(McKinney 2010), Zarr (Miles et al. 2020) and Scikit-learn (Pedregosa et al.
2011) are used for the performant handling of large SNP data matrices and
scientific computing aspects like calculation of minor allele frequencies or principle
component analysis.

All passport and phenotypic data are provided via the IPK-LIMS through project-
specific logical relations to GBIS. Analysis result data like the outcome of GWAS
or PCA is stored in standard tables in the Oracle RDBMS (Fig. 2.6). The import
of analysis result data is performed via customised import scripts by using CSV
files. Data of genomic diversity is imported by the conversion of VCF files to Zarr
archives that are then used by the server-side part of the SNP browser. The VCF
files can be optionally annotated by SnpEff (Cingolani et al. 2012). The import of

Fig. 2.6 Overview about the general architecture and data flow in BRIDGE
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gene annotations is performed by directly using GFF38 files. Data that gets imported
into the system is checked automatically for syntax errors. The responsibility for the
general plausibility of the data belongs to the data provider who wants to present his
project data in the portal. The process of data import is managed by the administrator
of the web portal. As BRIDGE was designed to present the results of specific
genebank genomics projects, it is currently not possible, nor is it intended, for end
users to import and view their own data in the portal.

Regarding the Data Life Cycle, BRIDGE can be assigned to the categories
Collect, Process, Analyse, Preserve, Share and Reuse.

2.4.5 e!DAL-PGP

The FAIR data principles are widely accepted by the scientific community for
supporting long-term stable research data handling. Although established infrastruc-
tures such as the ELIXIR Core Data Resources and Deposition Databases provide
comprehensive and stable services and platforms, a large quantity of research data
is still inaccessible or at risk of getting lost. Currently several high-throughput
technologies, like plant genomics and phenomics are producing research data in
abundance, the storage of which is not covered by established databases.

The eDAL-PGP9 (Plant Genomics and Phenomics) research data repository is a
comprehensive infrastructure providing diverse datasets of plant-related research
data. It has no general data type or data volume limitations, and therefore, it
provides genomic sequences, phenotypic images, metabolite profiles and also
research software and scripts. It started in productive mode in 2016 (Arend et al.
2016) and based on the previously developed JAVA-based eDAL infrastructure10

(Arend et al. 2014), which follows an “infrastructure to data” (I2D) approach to
provide an on-premise data management and publication system. This approach
can in comparison to the common data publication-as-service model also feature
a FAIR data publication culture, but it differs in costs and effort for establishment
and maintaining (see Fig. 2.7).

The data publication-as-a-service model usually costs a fee, needs data property
control and provides storage capacity limits. In contrast, the data publication
premises model keeps data in-house and can use internal server and storage
hardware by installation of the e!DAL software. The fully embedded data sub-
mission and review process allows to easily store and publish research data by
using persistent DOIs. To make the data FAIRly available, e!DAL supports several
relevant features (Arend et al. 2020).

8 https://github.com/The-Sequence-Ontology/Specifications/blob/master/gff3.md
9 https://edal-pgp.ipk-gatersleben.de/
10 https://edal.ipk-gatersleben.de/

https://github.com/The-Sequence-Ontology/Specifications/blob/master/gff3.md
https://edal-pgp.ipk-gatersleben.de/
https://edal.ipk-gatersleben.de/
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Fig. 2.7 Different data publication approaches

Providing machine-readable metadata, which are based on the DublinCore
standard and are automatically embedded into the provided content pages of every
published dataset, e!DAL guarantees that the contained research data is easily
FINDABLE by common search engines. By using the well-established DOIs,
the findability is further increased due to the diverse network and interactions of
the DataCite services like ORCID or CrossRef. Furthermore, DOIs are persistent
and guarantee the long-term stable ACCESSABILITY of published datasets.
The DOI resolver provides simple access to the referenced datasets, e.g., in a
research or data publication, even if the physical location of the underlying data
changes over the time. On top of this, the e!DAL’s web server takes care that
the datasets are accessible via comprehensive content pages, which allow users to
navigate through the dataset and download certain files or metadata. The content
pages not only provide the metadata directly on the page, but also embed the
metadata in the sources to provide the INTEROPERABILITY of the datasets.
By using standardised schema (Guha et al. 2016) and format (Lanthaler and Gütl
2012) the information about relationship between datasets can be aggregated. The
DublinCore is well-established and therefore e!DAL guarantees the long-term stable
REUSABILITY of the datasets by collecting a minimal set of technical metadata,
which are crucial to open and read the data files. The support of different licences
makes it easy to clearly define by whom and how the datasets can be used.

The success of I2D Approach is shown by the constantly increasing number of
datasets, accesses and downloads of the e!DAL-PGP instance. The comprehensive
functionality of e!DAL as well as the simple installation and configuration, e.g. by
using powerful and user-friendly infrastructures such as the ELIXIR AAI, are the
reasons that in the meanwhile further institutional instances based on e!DAL were
planned or already established. Nevertheless, even if scientists are getting more
opportunities to exchange their research data within the community, the incentive
is still quite low (Cousijn et al. 2019). The procedure of data publication and
citation is in contrast to the established peer-review process for research articles
not very common (Tenopir et al. 2015), which has of course cultural reason,
but also technical limitations (Parsons et al. 2019). Beside the commercial Data
Citation Index, also some open, community-driven initiatives like Make Data Count
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(Cousijn et al. 2019) were developed to overcome these limitations and improve
the incentives for researchers. Additionally, more and more publishers demand
authors reference their research data as citations in the common reference list of
their articles (SciData Editorial 2019). All these developments will help to increase
the acceptance of research data as an important scientific asset and to establish a
FAIR research data publication culture.

2.4.6 The IPK Weather Database: Collection and Provision
of Meteorological Data

We encounter weather data every day and they often seem trivial. However, they are
essential for interpreting the results of field trials, as the expression of traits can be
weather-dependent (Philipp et al. 2018). The measurement of meteorological data
represents a special type of data collection, as the data is continuously recorded over
a very long period of time. As a result, the processes of the life cycle from the collect
to the reuse of the data take place in parallel. Another special aspect is the change
in data collection and processing methods.

The long tradition in recording meteorological data is accompanied by some
changes in measurement intervals, sensor technology and data archiving. Manual
recording of the values of analogue sensors on paper at fixed hours of the day
is now replaced by continuous recording of electronic data in databases. This
results in special requirements for statistical evaluation and error analysis (World
Meteorological Organization (WMO) 2017).

Nationally and globally defined standards exist for the design of the measuring
station and the data to be recorded, which in particular ensure the comparability
of the measured values (Löffler 2012; World Meteorological Organization (WMO)
2018).

Meteorological observations have been recorded at the IPK since 1953. It
is not difficult to conclude that these data are not primarily recorded digitally.
The measurement results have been stored in databases only since 1993. For the
period before 1993, at least the monthly values were subsequently captured and
incorporated into the database. The result is that evaluations since 1993 are possible
with a resolution accurate to the day, but analyses of the long-term measurement are
only possible with a lower resolution (Fig. 2.8).

Today, data collection is done through an acquisition pipeline that stores, pro-
cesses and aggregates the data collected by the data loggers to display and provide
it to users in an appropriate way.11 For this purpose, a series of plausibility checks
are carried out on the raw data, and the time-based aggregations are calculated and
saved from this cleansed dataset (Fig. 2.9).

11 https://wetter.ipk-gatersleben.de/

https://wetter.ipk-gatersleben.de
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Fig. 2.8 Resolution of the measurement for the IPK weather station

Fig. 2.9 Acquisition pipeline
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Fig. 2.10 Development of the growing season in Gatersleben 1993–2014

The data provided are not only used in the context of scientific experiments at
IPK, but also serve as a basis for decisions on the conservation of biodiversity in the
genebank.

Thus, the analysis of the meteorological data itself also offers insights into the
climate development at the Gatersleben site, such as the development of the growing
season (Fig. 2.10).

The above example shows the fluctuations in the start and duration of the growing
season in the period from 1993 to 2014 as calculated. The recognizable variations
from the threshold value of 1 April or 1 November influence the time at which
traits are expressed. It also becomes clear that the calculation method influences
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the result (start ≥5 ◦C or start ≥10 ◦C as dashed line). But it shows also a specific
characteristic of meteorological data: The dataset is not finalized, but represents a
daily extended data series on various meteorological parameters. This also means
that conclusions drawn at an earlier point in time may have to be supplemented or
revised for new studies.

With regard to the data life cycle, the IPK Weather Database covers the categories
Collect, Process, Analyse, Preserve and Share.

2.4.7 Plant Phenotyping Portal

In addition to the IPK Weather Database, environmental data from high-troughput
phenotyping facilitie can be collected too. This is done in greenhouses or growth
chambers. Two important plant growth facilities are the Plant Cultivation Hall and
LemnaTec greenhouses (Altmann 2020). Here, the environment can be controlled
to various degrees. For data acquisition, the MQTT protocol is used and plays a
crucial role in the communication within the interconnected sensoric infrastructure
at IPK. The Plant Cultivation Hall and LemnaTec greenhouses have 498 and
130 soil and clima sensors respectively, which generate data every 5–10 min.
Additionally, 13 environmental sensors are transferable from one facility to another.
The environmental data is essential for contextual and statistical analysis, aiding
in the improvements in the agricultural use cases when shared in standardised
formats. The idea is to store the raw sensory data in an interoperable and reusable
way (Memon 2020). Therefore, using Node-RED, a flow-based programming tool,
the MQTT protocol is implemented to communicate the data between the vendor-
specific sources and the database. The MQTT protocol transmits the data as
messages. Hence, the data is enveloped in messages (Fig. 2.11) and published to
the broker through the assigned MQTT topic. For a permanent recording the data,
an authorised client subscribes to the topics that contain the relevant data and stores
them in the database.

The topics are designed to contain the metadata related to the sensor data.
For example, in Fig. 2.11, IPK_G.1300 is determined as the building where the
sensor is located, followed by the room number, container, type of sensor (such as
temperature, humidity or moisture), sensor’s node id, and the sensor port, since a
single sensor node may have multiple ports. Whereas the message body includes
the captured sensor data.

Fig. 2.11 An example of MQTT published message (Memon 2020)
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In order to permanently record sensoric data and make them accessible for
downstream data analysis, they must be stored in databases (Stöbe 2019). Because
sensor data is streaming data, i.e. continuously delivered, its archive can only
be conducted by aggregation over windows as a discrete snapshot. Usually, the
resolution of such windows differs from seconds to hours. This depends on the
expected fluctuation rate of measured values. In respect to weather data, i.e. wind,
temperature, humidity and solar radiation, aggregation over 5 min is common. By
doing so, subscribed environmental data is averaged over 10 min and stored in a
relational database. Its metadata, like sensor placements or locations, is maintained
in LIMS. On top of the database backend, the web application “Plant Phenotyping
Portal” was developed. It integrates the aggregated sensor data, the metadata,
and the experimental setup with the goal of breaking down individual plants, the
installed sensor, and related environmental measures over time. Figure 2.12 shows
the interface of the application.

The application’s interface allows users to download and view the sensory data
between any two given time points for any available sensor(s). Furthermore, the
application supports visualising the sensory data. For example, in Fig. 2.13, the chart
above displays the temperature of different sensors, showing the sensor’s operating
status and the chart below presents the light intensity between specific durations.

The application uses the Oracle Application Express (APEX) framework for
these visualizations and covers the Collect, Preserve, Share and Reuse parts of the
Data Life Cycle.

Fig. 2.12 User interface of the Plant Phenotyping Portal



2 From Genotypes to Phenotypes: A Plant Perspective on Current. . . 33

Fig. 2.13 Visualisation of archived sensor data in a Web Information System

Table 2.1 Systems and Data Domains

Plant genetic
resources data

Genomic
data

Genotyping
data

Phenotyping
data

Environmental
data

GBIS ✔ ✔

EURISCO ✔ ✔

BARLEX ✔

BRIDGE ✔ ✔ ✔

e!DAL-PGP ✔ ✔ ✔ ✔

IPK Weather DB ✔

Plant Phenotyping Portal ✔ ✔

2.5 Summary and Outlook

Data management and the applications described here are diverse and yet serve the
purpose of preparing data under consideration of the FAIR principles and offering
it to its users. The requirements and the functions of the individual system are of
course closely coupled with the data domains covered. Table 2.1 gives an overview
of the different combinations of data domains in the information systems that have
been worked on at IPK over the last 20 years. Unsurprisingly, most of the systems
presented are focused on plant genetic resources and phenotypic data, but more
recently genomic, genotypic, and environmental data have increasingly been added.
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Table 2.2 Systems and categories in Data Life Cycle

Plan Collect Process Analyse Preserve Share Reuse

GBIS ✔ ✔ ✔ ✔ ✔ ✔ ✔

EURISCO ✔ ✔ ✔

BARLEX ✔ ✔ ✔ ✔

BRIDGE ✔ ✔ ✔ ✔ ✔ ✔

e!DAL-PGP ✔ ✔ ✔

IPK Weather DB ✔ ✔ ✔ ✔ ✔

Plant Phenotyping Portal ✔ ✔ ✔ ✔

Accordingly, the classification of the systems examined into the individual
phases of the Data Life Cycle also varies. While all systems support the later
Preserve and Share steps, the Plan phase is underrepresented (Table 2.2). This can
be explained by the fact that most systems were not designed to collect new data
and start the data collection process, but rather to document and present data in an
appealing form and manner and to exchange it with the community.

In summary, the presentation of the information systems has shown for which
data domains data management solutions have been developed at IPK in Gater-
sleben. These were developed in general independently of each other and have thus
grown historically. However, it can be stated that all steps of the data life cycle are
served by the systems.

Generally, the applications described do not stand alone, but are designed via
various interfaces in such a way that interaction between information systems is
possible. One such example is depicted here in Fig. 2.14, where the interconnections
between the IPK Genebank, GBIS, BRIDGE, BARLEX and eDAL-PGP are
illustrated. The IPK Genebank and its GBIS serve as a primary data and material
resource for genebank genomics experiments and field trials. The phenotypic and
genotypic data derived from experimental field trials is then fed into visualization
and analysis web tools like BRIDGE and BARLEX, while phenotypic observations
of regular genebank multiplication trials are directly integrated into the GBIS.
The genotypic data in the form of SNP-matrices (VCF files) is also deposited in
eDAL-PGP for FAIR-compliant long-term storage. DOI-based hyperlinks from the
SNP-browser in BRIDGE to the corresponding datasets in eDAL-PGP allow the
users to download the original VCF files to their personal computers or HPC-servers
for their own analysis. Hyperlinks from the visualised gene features in the BRIDGE
SNP-browser to BARLEX allow the users to retrieve further information about the
barley genome and genes.

Important challenges for the future are, on the one hand, the consistent semantic
interlinking of the various information systems specialised in their use cases via
unique identifiers and, on the other hand, the creation of central entry points for
data research and data analysis. Currently we are using the IPK LIMS system as a
central repository to implement a unique management of identifiers of biological
objects. To increase efficiency, it is also important to develop reusable generic
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Fig. 2.14 Visualization of interconnections between IPK Genebank and its GBIS, BRIDGE,
BARLEX and eDAL-PGP in the frame of genebank genomics experiments

software components for recurring tasks of interactive research data presentation
and visualisation.

We have presented the approach of a research institution. It is obvious that
an institute like the IPK Gatersleben does not exist autonomously. There are
connections to cooperation partners all over the world. In order for the entire
scientific community to be able to use the data, this data must be offered accordingly
and thus be reusable. The foundation for knowledge discovery and innovation is
good data management, because it allows data to be reused and new connections
to other data to be formed by the community. One challenge is to make datasets
not only understandable to humans but also readable and actionable by machines
(Mons 2019). Open (non-binary) formats and richly annotated metadata are a
prerequisite for this. However, in many areas of the life sciences, one or both of
these requirements are not met, hindering both knowledge discovery and progress
in general. The FAIR data principles (Wilkinson et al. 2016) are a start to making
such a vision of the future a reality. To properly understand the FAIR principles, it is
important to distinguish between two cases: First, FAIRification of existing data and
FAIR-by-design, data created with FAIR principles in mind (Jacobsen et al. 2020).
FAIRification of existing data is arguably the more challenging task to accomplish,
as it requires updating data and metadata.

An example of a project focused on FAIRification of data is the ELIXIR
(Crosswell and Thornton 2012) implementation study FONDUE. The task is to
link available plant genotyping and phenotyping data using stable identifiers and
to document those links in the repository metadata thus enabling search, retrieval
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and reuse of such linked data. In this study, the main focus is on the so-called
ELIXIR Core Data Resources (Drysdale et al. 2020), which are widely used in the
life sciences and include such well-known repositories like the European Nucleotide
Archive (Leinonen et al. 2011). The idea is to trigger a shift in thinking among data
producers through this top-down approach by changing policies at key (genomic)
data entry points. One obstacle to be overcome is that such further developments do
not remain isolated cases and are adapted by other data providers and repositories.
Only in this way can profound progress be made.

Many promising results have already been achieved with the approaches and
data management systems described above. However, the integration of a wide
variety of data is only at the beginning of the development. The long-term research
goal of IPK Gatersleben is to develop into a bio-digital resource centre. For this
purpose, a central entry point for accessing the IPK data needs to be established.
Furthermore, the stored information about the biological objects should be provided
with identifiers in such a way that traceability and integrability beyond the IPK
institute boundaries are possible. These challenges will be the focus of activities for
the bioinformaticians, data stewards and data scientists in the future.
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Amatriaín M, Ounit R, Wanamaker S, Schmutzer T, Aliyeva-Schnorr L, Grasso S, Tanskanen J,
Sampath D, Heavens D, Cao S, Chapman B, Dai F, Han Y, Li H, Li X, Lin C, McCooke JK, Tan
C, Wang S, Yin S, Zhou G, Poland JA, Bellgard MI, Houben A, Doležel J, Ayling S, Lonardi
S, Langridge P, Muehlbauer GJ, Kersey P, Clark MD, Caccamo M, Schulman AH, Platzer M,
Close TJ, Hansson M, Zhang G, Braumann I, Li C, Waugh R, Scholz U, Stein N, Mascher M
(2017) Construction of a map-based reference genome sequence for barley, Hordeum vulgare
L. Sci Data 4:170044. https://doi.org/10.1038/sdata.2017.44

Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM (2012) A
program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff.
Fly (Austin) 6:80–92. https://doi.org/10.4161/fly.19695

Colmsee C, Beier S, Himmelbach A, Schmutzer T, Stein N, Scholz U, Mascher M (2015)
BARLEX—the barley draft genome explorer. Mol Plant 8:964–966. https://doi.org/10.1016/
j.molp.2015.03.009

Cousijn H, Feeney P, Lowenberg D, Presani E, Simons N (2019) Bringing citations and usage
metrics together to make data count. Data Sci J 18:9. https://doi.org/10.5334/dsj-2019-009

Crosswell LC, Thornton JM (2012) ELIXIR: a distributed infrastructure for European biological
data. Trends Biotechnol 30:241–242. https://doi.org/10.1016/j.tibtech.2012.02.002

Ćwiek-Kupczyńska H, Altmann T, Arend D, Arnaud E, Chen D, Cornut G, Fiorani F, Frohmberg
W, Junker A, Klukas C, Lange M, Mazurek C, Nafissi A, Neveu P, van Oeveren J, Pommier
C, Poorter H, Rocca-Serra P, Sansone S-A, Scholz U, van Schriek M, Seren Ü, Usadel B,
Weise S, Kersey P, Krajewski P (2016) Measures for interoperability of phenotypic data:
minimum information requirements and formatting. Plant Methods 12:44. https://doi.org/
10.1186/s13007-016-0144-4

Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G,
Marth GT, Sherry ST (2011) The variant call format and VCF tools. Bioinformatics 27:2156–
2158

Drysdale R, Cook CE, Petryszak R, Baillie-Gerritsen V, Barlow M, Gasteiger E, Gruhl F, Haas
J, Lanfear J, Lopez R, Redaschi N, Stockinger H, Teixeira D, Venkatesan A, Elixir Core Data
Resource Forum, Blomberg N, Durinx C, McEntyre J (2020) The ELIXIR Core data resources:
fundamental infrastructure for the life sciences. Bioinformatics 36:2636–2642. https://doi.org/
10.1093/bioinformatics/btz959

ELIXIR (2021) Research Data Management Kit. A deliverable from the EU-funded ELIXIR-
CONVERGE project (grant agreement 871075) [WWW Document]. https://rdmkit.elixir-
europe.org. Accessed 28 May 21

Endresen DTF, Knüpffer H (2012) The Darwin Core extension for genebanks opens up new oppor-
tunities for sharing genebank datasets. Biodivers Inform 8:12–29. https://doi.org/10.17161/
bi.v8i1.4095

Engels JMM, Maggioni L (2012) AEGIS: a regionally based approach to PGR conservation. In:
Maxted N, Dulloo ME, Ford-Lloyd BV, Frese L, Iriondo JM, Pinheiro de Carvalho MAA
(eds) Agrobiodiversity conservation: securing the diversity of crop wild relatives and landraces.
CABI, Wallingford, pp 321–326

http://dx.doi.org/10.1104/pp.113.228213
http://dx.doi.org/10.1111/pbi.12511
http://dx.doi.org/10.1038/sdata.2017.44
http://dx.doi.org/10.4161/fly.19695
http://dx.doi.org/10.1016/j.molp.2015.03.009
http://dx.doi.org/10.5334/dsj-2019-009
http://dx.doi.org/10.1016/j.tibtech.2012.02.002
http://dx.doi.org/10.1186/s13007-016-0144-4
http://dx.doi.org/10.1093/bioinformatics/btz959
http://dx.doi.org/10.17161/bi.v8i1.4095


38 D. Arend et al.

FAO (1997) The State of the World’s Plant Genetic Resources for Food and Agriculture. Food and
Agriculture Organization of the United Nations, Rome

FAO (2010) The Second Report on the State of the World’s Plant Genetic Resources for Food
and Agriculture. Commission on Genetic Resources for Food and Agriculture, Food and
Agriculture Organization of the United Nations, Rome

Fiorani F, Schurr U (2013) Future scenarios for plant phenotyping. Annu Rev Plant Biol 64:267–
291. https://doi.org/10.1146/annurev-arplant-050312-120137

Fowler C, Hodgkin T (2004) Plant genetic resources for food and agriculture: assess-
ing global availability. Annu Rev Env Resour 29:143–179. https://doi.org/10.1146/
annurev.energy.29.062403.102203

Franz M, Lopes CT, Huck G, Dong Y, Sumer O, Bader GD (2016) Cytoscape.Js: a graph theory
library for visualisation and analysis. Bioinformatics 32:309–311. https://doi.org/10.1093/
bioinformatics/btv557

Fraternali P, Rossi G, Sánchez-Figueroa F (2010) Rich internet applications. IEEE Internet Comput
14:9–12. https://doi.org/10.1109/MIC.2010.76

Gass T, Lipman E, Maggioni, L (1997) The role of Central Crop Databases in the European
Cooperative Programme for Crop Genetic Resources Networks (ECP/GR). In: Lipman, E
et al. (eds) Central Crop Databases: Tools for Plant Genetic Resources Management, European
Cooperative Programme for Crop Genetic Resources Networks (ECP/GR); International Plant
Genetic Resources Institute, Rome (Italy), pp 22–29

Gene Ontology Consortium (2004) The Gene Ontology (GO) database and informatics resource.
Nucleic Acids Res 32:D258–D261. https://doi.org/10.1093/nar/gkh036

Ghaffar M, Schüler D, König P, Arend D, Junker A, Scholz U, Lange M (2019) Programmatic
access to FAIRified digital plant genetic resources. J Integr Bioinform 16:20190060. https://
doi.org/10.1515/jib-2019-0060

Guha R, Brickley D, Macbeth S (2016) Schema.org: evolution of structured data on the web.
Commun ACM 59(2):44–51. https://doi.org/10.1145/2844544

Harrington JL (2016) Relational database design and implementation. Morgan Kaufmann, London
Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cournapeau D, Wieser E, Taylor

J, Berg S, Smith NJ, Kern R, Picus M, Hoyer S, van Kerkwijk MH, Brett M, Haldane A, del Río
JF, Wiebe M, Peterson P, Gérard-Marchant P, Sheppard K, Reddy T, Weckesser W, Abbasi H,
Gohlke C, Oliphant TE (2020) Array programming with NumPy. Nature 585:357–362. https://
doi.org/10.1038/s41586-020-2649-2

Hazekamp T, Serwinski J, Alercia A (1997) Multicrop passport descriptors. In: Lipman E et
al. (eds) Central Crop Databases: Tools for Plant Genetic Resources Management, European
Cooperative Programme for Crop Genetic Resources Networks (ECP/GR); International Plant
Genetic Resources Institute, Rome (Italy), pp 40–44

Hoisington D, Khairallah M, Reeves T, Ribaut J-M, Skovmand B, Taba S, Warburton M (1999)
Plant genetic resources: what can they contribute toward increased crop productivity? Proc Natl
Acad Sci 96:5937–5943. https://doi.org/10.1073/pnas.96.11.5937

IBPGR (1990) Descriptors for Brassica and Raphanus. International Board for Plant Genetic
Resources, Rome

International Board for Plant Genetic Resources (IBPGR), Commission of the European Commu-
nities (CEC) (1984) Plum descriptors. Rome

IPGRI, ECP/GR, AVRDC (2001) Descriptors for Allium (Allium spp.). International Plant Genetic
Resources Institute, Rome; European Cooperative Programme for Crop Genetic Resources
Networks (ECP/GR), Asian Vegetable Research and Development Center, Taiwan

Jacobsen A, Kaliyaperumal R, da Silva Santos LOB, Mons B, Schultes E, Roos M, Thompson
M (2020) A generic workflow for the data FAIRification process. Data Intell 2:56–65. https://
doi.org/10.1162/dint_a_00028

Jaiswal P, Avraham S, Ilic K, Kellogg EA, McCouch S, Pujar A, Reiser L, Rhee SY, Sachs MM,
Schaeffer M, Stein L, Stevens P, Vincent L, Ware D, Zapata F (2005) Plant ontology (PO): a
controlled vocabulary of plant structures and growth stages. Comp Funct Genom 6:388–397.
https://doi.org/10.1002/cfg.496

http://dx.doi.org/10.1146/annurev-arplant-050312-120137
http://dx.doi.org/10.1146/annurev.energy.29.062403.102203
http://dx.doi.org/10.1093/bioinformatics/btv557
http://dx.doi.org/10.1109/MIC.2010.76
http://dx.doi.org/10.1093/nar/gkh036
http://dx.doi.org/10.1515/jib-2019-0060
http://dx.doi.org/10.1145/2844544
http://dx.doi.org/10.1038/s41586-020-2649-2
http://dx.doi.org/10.1073/pnas.96.11.5937
http://dx.doi.org/10.1162/dint_a_00028
http://dx.doi.org/10.1002/cfg.496


2 From Genotypes to Phenotypes: A Plant Perspective on Current. . . 39

Jayakodi M, Padmarasu S, Haberer G, Bonthala VS, Gundlach H, Monat C, Lux T, Kamal N,
Lang D, Himmelbach A, Ens J, Zhang X-Q, Angessa TT, Zhou G, Tan C, Hill C, Wang P,
Schreiber M, Boston LB, Plott C, Jenkins J, Guo Y, Fiebig A, Budak H, Xu D, Zhang J, Wang
C, Grimwood J, Schmutz J, Guo G, Zhang G, Mochida K, Hirayama T, Sato K, Chalmers KJ,
Langridge P, Waugh R, Pozniak CJ, Scholz U, Mayer KFX, Spannagl M, Li C, Mascher M,
Stein N (2020) The barley pan-genome reveals the hidden legacy of mutation breeding. Nature
588:284–289. https://doi.org/10.1038/s41586-020-2947-8

Jayakodi M, Schreiber M, Stein N, Mascher M (2021) Building pan-genome infrastructures for
crop plants and their use in association genetics. DNA Res 28. https://doi.org/10.1093/dnares/
dsaa030

Jiao W-B, Schneeberger K (2017) The impact of third generation genomic technologies
on plant genome assembly. Genome Stud Mol Genet 36:64–70. https://doi.org/10.1016/
j.pbi.2017.02.002

Keim DA (2002) Information visualization and visual data mining. IEEE Trans Vis Comput Graph
8:1–8. https://doi.org/10.1109/2945.981847

König P, Beier S, Basterrechea M, Schüler D, Arend D, Mascher M, Stein N, Scholz U, Lange M
(2020) BRIDGE—a visual analytics web tool for barley Genebank genomics. Front Plant Sci
11:701. https://doi.org/10.3389/fpls.2020.00701

Krajewski P, Chen D, Ćwiek H, van Dijk ADJ, Fiorani F, Kersey P, Klukas C, Lange M,
Markiewicz A, Nap JP, van Oeveren J, Pommier C, Scholz U, van Schriek M, Usadel B, Weise
S (2015) Towards recommendations for metadata and data handling in plant phenotyping. J
Exp Bot 66:5417–5427. https://doi.org/10.1093/jxb/erv271

Kreide S, Oppermann M, Weise S (2019) Advancement of taxonomic searches in the European
search catalogue for plant genetic resources. Plant Genet Resour Charact Util 17:559–561.
https://doi.org/10.1017/S1479262119000339

Lanthaler M, Gütl C (2012) On using JSON-LD to create evolvable RESTful services. In: WS-
REST ’12: proceedings of the third international workshop on RESTful design, April 2012. pp
25–32. https://doi.org/10.1145/2307819.2307827

Leinonen R, Akhtar R, Birney E, Bower L, Cerdeno-Tárraga A, Cheng Y, Cleland I, Faruque N,
Goodgame N, Gibson R, Hoad G, Jang M, Pakseresht N, Plaister S, Radhakrishnan R, Reddy K,
Sobhany S, Ten Hoopen P, Vaughan R, Zalunin V, Cochrane G (2011) The European nucleotide
archive. Nucleic Acids Res 39:D28–D31. https://doi.org/10.1093/nar/gkq967

Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I,
Lajoie BR, Sabo PJ, Dorschner MO, Sandstrom R, Bernstein B, Bender MA, Groudine M,
Gnirke A, Stamatoyannopoulos J, Mirny LA, Lander ES, Dekker J (2009) Comprehensive
mapping of long-range interactions reveals folding principles of the human genome. Science
326:289. https://doi.org/10.1126/science.1181369

Löffler H (2012) Meteorologische Bodenmesstechnik (vormals: Instrumentenkunde), Leitfaden für
die Ausbildung im Deutschen Wetterdienst Nr. 6. Selbstverlag des Deutschen Wetterdienstes,
Offenbach am Main (Deutschland)

Madakam S, Ramaswamy R, Tripathi S (2015) Internet of things (IoT): a literature review. J
Comput Commun 3:164–173. https://doi.org/10.4236/jcc.2015.35021

Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok SO, Wicker T, Radchuk V, Dockter
C, Hedley PE, Russell J, Bayer M, Ramsay L, Liu H, Haberer G, Zhang X-Q, Zhang Q, Barrero
RA, Li L, Taudien S, Groth M, Felder M, Hastie A, Šimková H, Staňková H, Vrána J, Chan
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3.1 Introduction

This chapter introduces the data landscape that enables access to data resources for
researching in the field of epidemiology. The chapter covers a general introduction
to methods, standards and infrastructures for curating, sharing and reusing data of
interest to health and epidemiology researchers.

By making data available and accessible for reuse, as well as offering repro-
ducibility for published findings, new potential research opportunities are opened
up. As an example, the chapter focuses on long-running cohort studies that collect
rich and unique information on specific populations, which can be reanalysed
and reworked for new analyses. It demonstrates approaches for describing and
sharing data, showing how datasets can be prepared with various ‘levels’ of access
depending on disclosure risk, and how personal data can be shared through the use
of the ‘5 Safes’ protocol, using legal gateways and safe havens. It points to some of
the challenges in data sharing and reproducibility, from ethical and confidentiality
considerations to intellectual property concerns over who should gain access. A
range of case studies of how these archived data resources have been accessed and
used are presented. Finally, it shares some of the logistical and technology barriers
around data sharing infrastructures and how cross-disciplinary interests can help
bridge differences in approaches.

3.2 History of Epidemiological Data Resources

Data collected from administrative sources, such as demographic information and
medical records, and surveys represent a rich and unique resource that can be
reanalysed and reworked for new analyses. By making data available for reuse, new
potential avenues are opened up, enabling researchers to access data that they would
not be able to collect themselves. Data archives can provide curation of precious
resources, through digitising and preserving information, and assuring appropriate
governance and access to resources.

Around the world, there are a number of well-established disciplinary-based data
services, such as the UK Data Service and the US Interuniversity Consortium for
Political and Social Research (ICPSR). These services have national remits bringing
together expertise across a number of fields to make key national and international
socio-economic datasets shareable, usable and sustainable. Organisations such as
these have established services designed to meet the data and information needs
of today’s social science researchers and data analysts. Data acquisition and
processing, quality assurance procedures; systematic resource discovery systems;
value-added support materials; and web-based interfaces for data browsing, explo-
ration and data download are all key features of successful service delivery.

As new forms of data come on stream, these present challenges for data quality
assessment, data delivery and confidentiality.
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Surveys of interest to the epidemiologist include government surveys, census
data sources, academic surveys, national and international time series. In the past
10 years, attention has also turned to administrative or register data sources and
other ‘big’ data, for example from medical devices, environmental monitoring and
financial transactions.

Reusing existing data reduces respondent burden, enables data linkage and the
creation of new datasets, informs published and provides transparency about method
and opportunities to reproduce results (US National Academy of Sciences 2005).
Furthermore, collecting and collating high-quality, reliable, representative data is
expensive and technically demanding.

3.2.1 Aggregate Statistics

Many countries’ governments publish national summary statistics on a broad range
of indicators covering aspects of economic, social and well-being. In the UK, the
Office for National Statistics (ONS) provides a range of up-to-date national statistics
on business, trade and industry, the economy, employment and the labour market,
and on people, population and community (ONS 2021). For health researchers, there
is a large range of information on births and deaths, and health and social care.
The UK’s NHS England provides additional and detailed health-related information,
used to inform debate, decision-making and research both within Government and
by the wider community (NHS Digital 2021a). Many other countries provide similar
resources on public websites.

Rich comparative global data are also collected by governments and non-
governmental organisations. Statistical indicators covering economic and other
indicators of countries’ performance permit comparisons between countries and
over time. The geographical scope is typically extensive. The World Bank, Inter-
national Monetary Fund and United Nations provide access to data on topics
covering national accounts, industrial production, employment, trade, demography,
human development and other indicators of national performance and development.
Nation state contributors follow guidance that enables data gathering which would
be difficult to achieve without this level of authority and structured international
cooperation. An example of comparable open aggregate statistics across many
dimensions of the health domain is The State of the World’s Children United Nations
Children’s Fund (UNICEF) through the UNdata Explorer (Unicef 2021).

3.2.2 Biomedical Surveys

Surveys provide both microdata (data records at the individual, household or
organisation level) and aggregate data (summary statistics such as counts reported
in tables in government publications or websites). Continuous surveys produce
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accurate population estimates about social and economic behaviour and attitudes
and offer great opportunities for time series analysis. An example of a repeated
national survey of health in the UK is the Health Survey for England (HSE) (NHS
Digital 2021b).

This survey monitors trends in the nation’s health and care, by providing
health-related information about adults and children living in private households in
England. The survey includes core questions on: smoking, alcohol, general health,
measurements such as height, weight and blood pressure, analysis of blood and
saliva samples, question modules on specific topics that vary from year to year.
Repeated surveys such as this permit comparison of groups over time, something
that is not readily achievable retrospectively for reasons of both recall and mortality.

Secondary analysis can be undertaken on longitudinal data sources, where data
are collected from the same individuals over a period of time. The research potential
of a longitudinal dataset, be it a cohort study or a panel survey, increases as the study
matures. These surveys are expensive to conduct but offer great potential to study
and understand change in individuals’ circumstance and health over time and across
the life-course (Ruspini 2002).

A growing number of well-known longitudinal studies from across the world
make data available for reuse. There also exist well-established birth cohort studies
and studies relating to specific cohorts, such as children and those in later life,
where data are available for research use. Some of the key studies are summarised
in Table 3.1.

Longitudinal studies, such as the UK Millennium Cohort Study (MCS), which
charts the conditions of social, economic and health advantages and disadvantages
facing children born at the start of the twenty-first century uses an approach to
consent that is explicit and consistent. From the outset, MCS sought informed
parental consent (Shepherd 2012). Letters and leaflets sent in advance of the surveys
summarise what participation in the survey will involve, and written consent is
sought from parents for their participation (interview) and the participation of their
child(ren) (e.g. assessments, anthropometric measurements, collection of oral fluids
and saliva, linking of administrative data on education and health, teacher surveys).
Where parents give consent to the participation of their child(ren) in one or more
elements of a survey, the inclusion of the child(ren) requires their agreement and
compliance. Parents were not asked to consent on behalf of the child, but were
asked for their permission to allow the interviewer to speak to the child and ask for
their consent to participate in each element.

Linking multiple sources of data can add power to the analytic potential of
individual sources. Microdata from surveys can be linked to other microdata files
directly through common identifiers or indirectly via probabilistic linkage. Common
identifiers need to be coded in exactly the same way in both datasets. The internet
also enables open, usually aggregate, data sources to be published through web
interfaces and linked. Increasingly anyone can gain access via the internet to updated
‘data feeds’ which are drawn from a vast number of public data sources and updated
in real-time, such as weather reports or current stock market share prices.
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3.2.3 Biomarkers

Biosocial researchers are keen to disentangle the relationship between our biology
and our behaviours and experiences. Researchers seek to understand what impact
our social and economic situation has on our biology. Experiences such as long-
term unemployment or chronic stress lead to physiological responses and biological
changes. Likewise, researchers seek to understand how our biology might predis-
pose us to certain conditions or to certain behaviours such as substance abuse,
and subsequently how this influences how we live and what inequalities we face
(Hobcraft 2016).

While many longitudinal studies collect information about participants’ physical
and mental health, these questions are often self-reported measures. These are of
great value, but are by their very nature subjective. With the rising interest in
biosocial research, the demand for more objective measures of health and biology
has grown in recent decades and increasingly a wide range of biomarkers are
collected in key longitudinal studies.

Biomarkers are an objective measure of biological or pathogenic processes
that allow us to measure health and disease much more objectively than through
the self-report of survey participants. The combination of biomarkers and social
survey data is an extremely powerful tool in health and biosocial research. A wide
range of biomarkers exist and are collected in a number of ways, through physical
measurements, saliva and blood samples and even the collection of milk teeth.

The collection of biomarkers in longitudinal studies are a particularly valuable
source of data, as biomarker measurements may be repeated on multiple occasions
within the same individual, allowing researchers to examine changes in key
measures. The longitudinal design of these studies has the additional advantage of
enabling us to establish temporal order. This is of crucial importance when looking
to examine biological or physiological changes following key life events such as
divorce or unemployment. Many of the longitudinal studies described in Table 3.1
collect biomarkers, and Table 3.2 provides a summary of key biomarkers in five UK
longitudinal studies.

Collecting these measures typically requires a more stringent set of legal and
ethics requirements. There are differences in the way that bio-medical research
ethics committees might become involved in approval, or even at what level
approval must be sought, i.e. national, regional and institutional levels. While in
most countries obtaining informed consent in a written form is obligatory before a
collection of dried blood can happen, legal and occupational restrictions in certain
countries forbid ‘unauthorised’ persons to collect capillary blood (Schmidutz 2016).
For example, in Austria, Poland and the Czech Republic in 2016, only medical
doctors and nurses under supervision were allowed to collect blood via the fairly
innocuous finger-prick method.
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3.2.4 New Forms of Data

The arrival of ‘big data’ has changed social scientists’ expectations, and the speed
at which these data are being created has prompted a sense of urgency to capture
and exploit these new sources of information. New sources of data deriving from
official registrations, commercial, financial and administrative transactions, internet
and social media, tracking and digital sensors, and aerial and satellite images have
become available as data commodities for the social scientist (OECD 2013).

While they have brought technological and infrastructure challenges for data
owners, data services and repositories, the panacea of big data has led to a focus on
developing solutions for powerful analytics, such as predictive modelling and text
mining, sometimes at the expense of questioning sustainability and reproducibility,
ethics and data protection. As these sources were not initially collected for research,
data management challenges and analysis can be complex. Laney (2001) famously
tweeted a definition of big data that has stuck, known as the 3 Vs:

‘Big data’ is high-volume, -velocity and -variety information assets that demand cost-
effective, innovative forms of information processing for enhanced insight and decision
making.

These challenges bring added complications to getting started with analysis
of data, compared to more traditional datasets. In short, scaled up strategies
and technologies for data management, data hosting and analysis need to be
employed. While these may be more recent matters for the social sciences, they
are certainly familiar within the natural sciences. GenBank, founded in 1979 as
the Los Alamos Sequence Database, was established as a repository for biological
sequences. Building on this innovation, the International Nucleotide Sequence
Database Collaboration (INSDC) actively calls for deposits of DNA sequence
data and collects and gives access to growing volumes of nucleotide and amino
acid sequence data (Blaxter et al. 2016). Next-generation sequencing technologies,
metagenomics, genome-wide association studies (GWAS), and the 1000 Genomes
Project increase the volume and complexity of these sequence data collections (Siva
2008).

When it comes to ethical protocols for collecting new forms of data for use in
research, informed consent that would be used to gather data from subjects in a
survey may not be sufficient. In countries with privacy legislation in place, access to
large-scale administrative data will have particular governance regimes and access
arrangements set out in law, usually mediated by ethical approval for new research
and adequate safeguards being put in place. In the UK, linking individual-level
administrative records to survey responses requires respondents to give their explicit
consent. In the example of the UK Millennium Cohort Study, for linking of health
records to the study data, around 92% of cohort members’ parents consented to
linking survey data with birth register and/or hospital maternity data was obtained
from 92% of the cohort mothers (Tate et al. 2006).

http://www.insdc.org/
http://www.insdc.org/
http://www.insdc.org/
https://www.nature.com/scitable/topicpage/DNA-Sequencing-Technologies-690
https://www.nature.com/scitable/topicpage/Genomes-of-Other-Organisms-DNA-Barcoding-and-662
https://www.nature.com/scitable/topicpage/Genetic-Variation-and-Disease-GWAS-682
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3.3 Curating Data for Reuse

Data archives or domain repositories are key to data access. Some of the major
survey data archives are over 50 years old and have had to evolve and develop access
services that meet the needs of today’s users.

Early data archives to support the quantitative social sciences were established
in both the United States and Europe in the 1960s. As collections of survey data
grew and the number of similar archives came on stream, collaboration developed
harmonised approaches to data storage, access and documentation. In the late 1970s,
the Council of European Social Service Data Archives (CESSDA) was founded,
which both promoted networks of data services for the social sciences and fostered
cooperation on key archival strategies, procedures and technologies (CESSDA
2021a). The fruits of this collaboration have been more consistent tools, common
standards, inter-service communication and formal structures for data sharing.

Of course, these early data archives predated the internet by decades. The gradual
development of online data services has meant that from the mid-1990s onwards,
many users interact primarily with a data service online. Online data delivery now
incorporates data discovery, delivery, online analysis, visualisation and web-based
training.

This has been in a context of a boom in online data publishing. Data sharing
policies among research funders have driven exponential growth in open and
restricted data repositories, hosting all kinds of research data. The international
re3data.org registry indexes and provides extensive information about more than
2450 research data repositories (re3data.org 2021). 438 of these repositities are in
the social and behavioural sciences.

With more institutional data repositories holding local data, comes a need for
higher level discovery portals to enable data to be located. Research Data Australia
is a one-stop shop portal for discovering hundreds of research data resources
dispersed across Australia (Australian Research Data Commons 2021). Similarly,
NARCIS in the Netherlands is a portal for the discovery of datasets and publications
(Data Archiving and Networked Services 2021).

A growing number of academic publishers also play a role in ensuring that the
data that underpins published findings in journals are available for reviewers, readers
and reproducers. In the social sciences economics, political science and psychology
have led the way. Journal policies expect research data to be made available
upon request, submitted as supplemental material, or more formally deposited in
a suitable or mandated domain or public repository. For example, Springer Nature
journals mandate specific repositories for particular disciplines. For example their
data journal, Scientific Data includes the UK Data Service ReShare and ICPSR
openICPSR self-deposit systems (Springer Nature 2021).

It is not enough, however, to simply publish data as is. First, file and data formats
may not be suited to numeric data extraction. For example, if the document has
been saved as a pdf. Second, there may be insufficient documentation available to
understand the data. Third, the published data may not be set up for longer-term

http://re3data.org
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maintenance and research access. In the next section, we describe tried and tested
curation methods for data that can be used to future proof data.

3.3.1 Curation Standards

The social data archiving community led the way in establishing and promoting
common standards and shared good practice. Global data sharing activities are now
quite mature, with fora like the Research Data Alliance (RDA) focusing on robust
data infrastructure and shared data description methods across disciplines (Research
Data Alliance 2021).

Data services with a remit to acquire, prepare and deliver data for researcher
usually have a collection strategy, a pipeline where incoming data is processed for
release, and maintenance and support activities. Data services typically select and
appraise potential data collections against criteria designed to ensure that they are
appropriate for re-use and long-term preservation. Both the UK Data Service and
ICPSR have dedicated Collections Development Policies (UK Data Service 2021c;
ICPSR 2015). Significant factors to account for when appraising and selecting data
for acquisition include significance, uniqueness, usability, volume, formats, costs,
and potential future use (UK Data Service 2021a).

Deposit or ingest is the process whereby data and related materials are transferred
from data owners to a data repository. Data deposit agreements are agreed to enable
data to be shared and establish the intellectual property and commercial ownership
rights in the data, as well as any privacy concerns concerning personal data (UK
Data Service 2021b).

Data services use bespoke in-house procedures to prepare data and documen-
tation for online access (UK Data Service 2020; ICPSR 2021d). When data are
acquired, the data service checks data integrity, missing values and anomalies or
inconsistencies in the data. File formats are also examined to ensure they are in an
optimal format for long-term preservation and dissemination. Data are then assessed
for disclosure risk. This ensures that where the data are collected from human
subjects, they have consented to data being collected on the basis of anonymity
and cannot be identified from the data. Examples of potentially disclosive variables
are geographic location, detailed occupation and industry, household size, exact age
and any other variable which alone or in combination is unique. Where this is so,
it may be necessary to group values to remove potentially identifiable values. For
example age might be banded into categories and household size may be 1, 2, 3, 4, 5
and 6+. The amount of work of this type that is done depends on the data service’s
policies and resources.

Finally, the description of and documentation about the data is examined to
ensure that there is sufficient context for onward use. Questionnaires, code books,
interviewer instructions, and technical reports are required to interpret survey data.
Original and subsequent publications resulting from use of the data are also captured
and made available to users. These useful materials are bundled into one or multiple
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user guides. Without this kind of documentation, it is difficult for potential users to
determine whether a given dataset may be appropriate for their intended research
and that they can feel confident to correctly interpret results produced. Nationally
representative repeated surveys tend to produce very high-quality documentation,
such as detailed technical reports. The Health Survey for England for example has
exemplary documentation (Natcen 2014). Data Services endeavour to work with
data creators in the early stages to ensure that good data management practices are
adhered to and that high-quality documentation is produced and kept along the way
(Corti et al. 2019).

To aid discovery of the data, a structured metadata record is created that captures
core descriptive attributes of the study and resulting data. The Data Documentation
Initiative (DDI) is a rich and detailed metadata standard for social, behavioural and
economic sciences data, used by most social science data archives in the world (DDI
Alliance 2021). A typical DDI record records mandatory and optional metadata
elements relating to:

• Study description elements: information about the context of the data collection,
scope of the study (e.g. topics, geography, time, data collection methods,
sampling and processing), access information, information on accompanying
materials, and provide a citation.

• File description elements: indicates data format, file type, file structure, missing
data, weighting variables and software used.

• Variable-level descriptions: sets out the variable labels and codes, and question
text where available.

One of the end points of the ‘data ingest’ process is converting the resulting
package of data and documentation files to suitable user-friendly formats (e.g. for
microdata, Stata, SPSS or delimited text formats) placing these on a preservation
system and publishing them online.

Depending on the level of sensitivity and risk of disclosure, data are made
available on a spectrum of access that requires different levels of safeguards. This
is described under the Accessing Data section. A significant amount of human
resource goes into preparing data in established data services. As the size or volume
of the data increases, manual processes involved in data cleaning and preparation
become unsustainable. Automated tools and QA pipelines are used to help assess
and remedy problems in data.

Making data available is not the end of the data repository’s work. Data
must be maintained over time to ensure its continued usability. Data formats are
updated as software changes and older formats become obsolete. Data updates
may also become available as data depositors make corrections either in response
to the discovery of errors, or in the light of improved estimates of population
characteristics. By carefully maintaining data, future users benefit from a growing
stock of historical data.
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3.3.2 Curating New Forms of Data

Traditional data services have played a leading role in opening up access to digital
social and economic data, new methods of access are required for more complex
forms of data, where volume, quality, validity and reliability are likely to be
challenging. Curating and hosting services must cope with incoming streams of
real-time data and enable exploration and linkage of a variety of types of data
assets. This requires adjustments to traditional practices of data management and
storage, data publishing and tools for data analysis. However, a critical look at
data provenance and trustworthiness, ethical and legal entitlements, data quality,
structure and usability is still paramount. The joint 2018 Royal Society and British
Academy report on governance for data managing and using data in the twenty-
first century recognised that these new applications require robust governance (The
Royal Society and British Academy 2018).

The provision of good metadata is useful for using administrative data sources,
such as hospital records, where possible discoverable data dictionaries, including
how derived measures have been created and quality statements (UK Statistical
Authority 2015). In the public health domain, Gilbert et al. (2018) created useful
guidance for information about linking data (GUILD) aimed at better understanding
and reducing linkage error. Linkage errors can affect disadvantaged groups, which
may, in turn, undermine evidence used for public health policy and strategy. Lack
of information for linking primarily occurs due to the different processes used by
various agencies along the ‘data linkage pathway’; for example where there is no
unique identifier across different datasets, or sometimes unreliable, quasi-identifiers,
such as name, sex, date of birth and postcode, which might be used for linking.
GUIDE advocates for information that could ideally be made available at each step
by various data providers and linkers. This includes providing future analysts with
reports on linkage accuracy and errors.

3.4 Finding Data

The internet offers huge capacity to discover useful data sources for research. An
increasing amount of rich information about the public sector is available in many
countries. By opening up their information for all to access, the innovation and
economic potential of public sector information can be better harnessed. The OECD
(2018) report on open government data noted that governments recognise that open
data is re-used as a requirement for value creation; which in turn requires both
improving data quantity and the capacity to identify high-value data to increase
re-use.

The US government open data portal (Data.gov) was launched in 2009, shortly
after President Obama launched his plans for government transparency. In April
2021 the site held just under 300,000 datasets (data.gov 2021; Madrigal 2009). In

http://data.gov
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the UK, the government’s Open Data White Paper of 2012 set out standards for
the timely release of open public sector data in standardised, machine-readable and
open formats. It outlined what citizens, the public sector and businesses could expect
from government and public services to harness the benefits of open data (Cabinet
Office 2012). The UK government data portal holds thousands of open datasets
and showcases how open government data have been used in apps and reports, and
services (data.gov.uk 2021). Open UK health data statistical sources can also be
freely accessed from the main government website (gov.uk 2021).

Other public data sources are made available via real-time data feeds, such as
current weather reports or stock market share prices. The ability to create ‘smart
cities’ relies on open data. NYC Open Data is a portal of hundreds of New York
City public datasets made available by city agencies and organisations in an effort
to improve the transparency and accountability of the city’s government. Data on
New York covers many domains that are relevant to the running of a major city . . .
Health data include hospital facilities, health insurance enrolment, air quality and
the Central Park Squirrel Census (The City of New York 2021). An example
of published Linked Open Data is DBPedia which enables linking of structured
information in Wikipedia entries to each other and beyond to other data sources
(DBPedia 2021). In 2010 it claimed to hold more than 228 million entities.

Open data tend to vary hugely in their quality. Some offer no documentation,
while others conform to approved metadata standards. Without long-term acces-
sibility, and persistence of links, data sources can be there 1 day and gone the
next. Longer term funding to maintain accessibility and timeliness of data is often
a problem, where updating may not be possible. To address the quality of open
numeric data, a number of certification systems have evolved to help establish the
quality and robustness of open data systems. An example of such an awarding
body is the Open Data Institute in the UK (Open Data Institute 2021). Certificates
require the data publisher to provide evidence (in the form of a web page) that
can demonstrate transparency for the processes and systems in place to manage
and publish data. The evidence focuses on the need for detailed machine-actionable
metadata as well as information on rights and conditions of use.

Curated data archives offer online data catalogues with links to access data,
supporting documentation and guidance on how to use these resources. These
resources have already been quality assured with good documentation provided,
so the user can trust the data sources.

Examples of searchable online data catalogues for social scientists include the
UK Data Service, in the US, ICPSR and various European countries’ social data
archives (ICPSR 2021a; UK Data Service 2021d). The Council for European Social
Science Data Archives (CESSDA) hosts a federated catalogue that enables users to
search for data collections across a range of European countries (CESSDA 2021b)
and enables discovery of over thousands of datasets from a range of European
countries. In the US, The Dataverse Project searches over around 100,000 data
collections worldwide and includes results from a federated network of ‘Dataverses’
(The Dataverse Project 2021).
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Fig. 3.1 Term search in the Discover catalogue, UK Data Service

‘Discover’ is the search tool for the UK Data Service’s catalogue. Users can
search and browse by subject, type of data, data producer and date of data collection.
An example of a catalogue search on the word ‘diabetes’ is shown in Fig. 3.1.
Catalogue records are indexed on search engines like Google, and so a Google
search will also locate datasets. In our example, we look for recent UK surveys
that hold information on diabetes.

Searching on the term ‘diabetes’ returns 14 hits, which can be filtered by facets
on the left of the display window. Facets include data type, subject, date, country
and dates. To limit our study to UK surveys, we restrict our search by selecting ‘UK
studies’ in the data type facet, which now yields 9 results.

To view the catalogue entry for any of the studies in the results, the user clicks
the linked title of the study in the results list. Figure 3.2 shows the catalogue record
for the 2015 Health Survey for England.

The record includes an abstract, key information and documentation as well as
download link where appropriate. The ease of access relates to where the data falls
in terms of the access spectrum described in Table 3.3. The 2015 Health Survey
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Fig. 3.2 Metadata record for a survey in the UK Data Service Discover catalogue

for England data files are ‘safeguarded’ and can be downloaded by all those who
register with the service and agree to basic licence conditions. All access is free,
because the UK Data Service is funded to provide free data access services and
does not seek cost recovery.

Popular studies such as this are also available to ‘Explore online’ in Nesstar.
Nesstar is the UK Data Service’s online data browsing, analysis, subsetting and
download tool that enables easy access to richly documented variables. Instant
tabulation and graphing can be done (UK Data Service 2021e). Full question text,
universe and routing information are typically displayed alongside variable name,
code values and labels, and frequencies. Using Nesstar, a user can specify subsets
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Table 3.3 Access policy: UK Data Service and ICPSR

Data
sensitivity

ICPSR
type

UK Data
Service type

UK licence/agreement
type

Access control

No
identifying
information

Open data Open data Open licence without
any registration
UK Open Government
Licence (OGL) Creative
Commons Attribution
4.0 International
Licence (CC4.0)

Open, all uses allowed.
Attribution/citation of
data required

Identifying
variables are
treated,
banded,
aggregated or
omitted

Public
use files

Safeguarded
data

End User Agreement User agreement, user
registered and
authenticated, and, where
appropriate, additional
dataset specific
conditions are agreed to

Deidentified
sensitive
data, such as
geographic
identifier or
detailed
occupational
codes

Scientific
use files

Controlled data Bespoke secure access
user agreement

User agreement, user
registered and
authenticated. User
accreditation through
training, project approval
by a data access
committee. Use within a
restricted environment
and scrutiny of research
outputs

and download data tables in a range of formats. A frequency table is shown in
Fig. 3.3 from the 2015 Health Survey for England, showing the wording and routing
for the question, as well as the distribution of the variable. We can see that this
dataset contains 8029 individuals who responded to the question.

The ability to browse data quickly is particularly useful when assessing whether a
dataset might be appropriate for a research question. A researcher seeking to explore
the characteristics of the subpopulation of those who had been made redundant in
the previous 3 months might be concerned to be starting with such a small group as
this.

In the US, a search on diabetes in the ICPSR catalogue brings up over 1316
results (ICPSR 2021a). Results can be filtered by subject, geography, data format,
time period, restriction type and recency and as shown in Fig. 3.4.

ICPSR also has dedicated topical archives that are individually supported by
government departments. Examples include the Health and Medical Care Archive
(HMCA), the National Addiction & HIV Data Archive Programme (NAHDAP) and
the Patient-Centered Outcomes Data Repository (PCODR) (ICPSR 2021b). ICPSR
restricts access to its data to a paid membership in order to raise revenue necessary
for its organisation.
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Fig. 3.3 Health Survey for England 2015 frequency table for variable ‘diabetes’, Nesstar

Fig. 3.4 Term search in the ICPSR data catalogue

3.5 Accessing Data

A robust data sharing philosophy ensures that access control measures are always
proportionate to the kind of data, the level of confidentiality involved and the
potential risk of disclosure. The guiding principle is that data are open where
possible and closed when necessary. A data owner decides how to classify their data
for appropriate access and licenses their data for onward use. Table 3.3 summarises
US and UK licensing and access control safeguards in place.
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The End User Licence has contractual force in law, in which users agree to certain
conditions, such as not to disseminate any identifying or confidential information on
individuals, households or organisations and not to use the data to attempt to obtain
information relating specifically to an identifiable individual. Users can use data for
research purposes or teaching and learning, but cannot publish or use them in a way
that would disclose people or organisations’ identities.

The 5 Safes framework is commonly used to permit trusted access to deidentified
sensitive data (Office for National Statistics 2017). The safes represent safeguards
on different dimensions:

• Safe data: data are treated to protect respondent confidentiality.
• Safe projects: researchers must justify why they need the data and demonstrate

that their project fulfils a public good. Each project must be approved by the data
owner.

• Safe people: through a signed Declaration and User Agreement researchers agree
to the confidentiality obligations owed to the data and must successfully complete
a standard face-to-face Safe Researcher Training (SRT) course.

• Safe settings: a Secure Lab (safe haven) offers remote access through a secure
virtual private network via the researcher’s own institutional desktop PC or via a
Safe Room onsite at the UK Data Archive or a safe room with equivalent security.

• Safe outputs: researchers are trained to produce safe outputs during the SRT
training and researchers must submit their outputs to trained staff to be checked
for Statistical Disclosure Control before they can be released for publication.

Safe havens that operate the 5 Safes provide a confidential, protected virtual
environment within which authorised researchers can access sensitive microdata.
Examples in the UK are the ONS Secure Research Service (SRS) and the Secure
Lab at the UK Data Service. Both the Trusted Research Environments (TRE) allow
researchers to analyse the data remotely from their institution, on a central secure
server, with access to familiar statistical software and office tools, such as Stata, R
and Microsoft Office. Controlled data stored on encrypted machines, and no data
travel over the network; instead the user’s computer becomes a remote terminal,
and outputs from the secure system are only released on approval. Remote access to
restricted social and economic data has become more common and largely replaces
the need to rely on researchers having to physically visit secure sites in person.

The formal protocols and agreements include: Data Protection Registration,
accredited to the international standard for data security, ISO27001, Depositor
Licences, and legally binding User Access Agreements. UKDA has in place
technical and organisational secure data handling procedures, and all staff sign a
non-disclosure agreement and are trained in data security.
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3.5.1 Example 1: Accessing a Birth Cohort Survey Dataset for
Research

In order to understand how a researcher might access longitudinal survey data to
study child development, the example of the Millennium Cohort Study (MCS) is
provided.

The MCS began its life in 2000 and is conducted by the Centre for Longitudinal
Studies (CLS) at University College London (UCL). It aims to chart the conditions
of social, economic and health advantages and disadvantages facing children born
at the start of the twenty-first century. Data collection is/has been funded from a
number of sources, including the Economic and Social Research Council (ESRC)
and various government departments and agencies.

The study has been tracking the ‘Millennium children’ through their childhood
years and plans to follow them into adulthood. The sample for the first MCS survey
(MCS1) was drawn from all live births in the UK over approximately 12 months
from 1 September 2000 in England and Wales and from 1 December 2000 in
Scotland and Northern Ireland. It was selected from a random sample of electoral
wards, disproportionately stratified to ensure adequate representation of all four UK
countries, deprived areas and areas with high concentrations of Black and Asian
families.

The first sweep (MCS1) interviewed both mothers and resident partners of infants
included in the sample when the babies were 9 months old, and the second sweep
(MCS2) was carried out with the same respondents when the children were 3 years
of age. The third sweep (MCS3) was conducted in 2006, when the children were
aged 5 years, the fourth sweep (MCS4) in 2008, when they were 7 years old, the
fifth sweep (MCS5) in 2012–2013 at age 11 years and the sixth sweep in 2015/16
when the cohort members were 14 years old.

All available MCS survey data can be accessed through the UK Data Service,
from the primary data collections from birth until the most recent data collection.
The longitudinal family file contains basic information on outcomes by data
collections and weights. Information on geography at the time of interview is also
available, as is linked administrative data on educational outcomes. Comprehensive
study and data documentation is freely available from the UKDS website and the
CLS website too. A series of harmonised datasets are also available which combine
key measures such as height, weight and BMI across five UK cohort studies. Use of
the data is restricted to specific purposes after a simple but effective user registration.
Use of the safeguard data requires an End User Licence to be signed. The controlled
access data, such as fine grained geographical identifiers and linked administrative
data, are restricted to use in the TRE.

DNA has been collected at age 14 years, from cohort members and resident
biological parents, and access to genotyped data will follow the NCDS model using
an independent Access Committee. CLS is not directly responsible for maintaining
and updating the archives of biological samples and genetic information, but these
are held in anonymised form by collaborating institutions.
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MCS has established linkage with various geographic data (ward level (Admin-
istrative and CAS), Lower Super Output Area and Output Areas; Index of Multiple
Deprivation Rural/Urban indicators have been linked at Lower Super Output Area)
and consented linkage of educational records from the National Pupil Database
(NPD) in England, Wales and Scotland. Work is ongoing on a variety of other
linkages, such as health records and parent’s economic records.

Collaboration with similar international studies like the ‘Growing Up’ studies
(e.g. Ireland, Australia) offers comparable questions and opportunities for creating
harmonised measures.

3.5.2 Example 2: Accessing Biomarker Data
from a Longitudinal Survey

Understanding Society is one of the largest household panel studies in the world,
collecting information annually from around 40,000 households. Biomarker data
were collected during a health assessment carried out by a registered nurse in waves
2 and 3. During the health assessment visit, a wide range of physical measurements
were taken from 20,000 eligible adults. A detailed list of the measurements taken
can be found in Table 3.4 (Benzeval et al. 2016).

Many of the physical measurements collected are also found in many of the
studies in Table 3.1, but one of the more unusual physical measurements in
Understanding Society is digit length. This measurement was collected in the
Understanding Society Innovation Panel. The Innovation Panel is a separate smaller
sample of 1500 households, where new survey questions and methodologies are
tested. In each wave, researchers can bid to have their experiments included in the
annual questionnaire. In waves 6 and 7, the lengths of participants’ index and ring

Table 3.4 Access routes for biomarker data in understanding society

Type of biomarker Accessible via Access level/application process

Physical/anthropomorphic
measures

UK Data Service End User Licence, downloadable
after registering with the UKDS

Blood analytes UK Data Service End User Licence, downloadable
after registering with the UKDS

Genetic and epigenetic
data

European Genome-phenome
Archive

Applications via EGPA, considered
by Wellcome Trust Sanger Institute
data access committee

Genetic and epigenetic
data with survey data

Understanding Society health
data team

Application and variable request
forms, considered by understanding
society

Further analysis of frozen
blood samples

Professor Meena Kumari Contact professor Kumari to discuss
research proposal

Source: Accessing the data | Understanding Society

https://www.understandingsociety.ac.uk/documentation/health-assessment/accessing-data
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fingers were measured. These measurements are considered to be an indicator of
exposure to hormones such as oestrogen and testosterone in utero (Jäckle et al.
2019). The level of hormone exposure has been linked with a number of personality
traits (Fink et al. 2004).

In addition to the physical measurements, unfasted blood samples for which at
least one biomarker was achieved were taken from 13,107 adults. Participants aged
16 and 17 years could consent to provide a blood sample although nurses were
advised to discuss this with a parent as well. Those who were pregnant, had certain
conditions or took anticoagulant medication were excluded. The blood samples
were processed and analysed by Newcastle upon Tyne Hospitals NHS Foundations
Trust (NUTH) under strict quality protocols and the data made available alongside
the physical measurements and the main survey data (Benzeval et al. 2016). In
addition to the blood analytes, genetic and epigenetic data were obtained and some
samples frozen to allow for future analysis of DNA, plasma, serum and whole blood.

Biomarker data are made available to researchers who can demonstrate that their
research is in the public interest. Similarly to social survey data, biomarker data are
subject to different levels of access based on their sensitivity and disclosiveness.
Access policies are discussed in more detail later in this chapter, but the access
routes for the different types of biomarker data in Understanding Society are
summarised in Table 3.4.

For the genetic and epigenetic data, researchers are required to complete an
application process through either the European Genome-Phenome Archive or
directly through the Understanding Society health data team. Researchers are
required to submit a detailed research proposal which is then carefully considered
by an expert panel who assess the public benefit and validity of the research as well
as considering the potential for ethical issues and incidental findings.

3.5.3 Example 3: Accessing New Forms of Data in Biomedical
Social Research

The growing availability of big data has led to a focus on developing solutions
for powerful analytics combined with sustainable and secure ways of curating and
delivering data. For research that demands large amounts of data and computa-
tionally challenging analyses, efficient storage, rapid exploration, visualisation and
data linkage solutions at scale are needed. New architectures and infrastructures are
needed as we move forward to accommodate increasing data types and volumes.

Medical records and hospital data will be updated on a regular basis, meaning
that traditional repository solutions for downloading prepackaged bundles of data
packages may no longer be useful. There are storage issues with potentially large
amounts of data, and the limits of processing on a researcher’s local PC. Access
needs to be offered by bringing the users to the data, instead of users taking away
data. This has not been the typical model for accessing survey resources, unless data
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are protected in a safe haven. Slice and dice and aggregation methods are useful for
reducing the size of data, for example, through aggregating or selecting by measures,
geographical area or time period.

Examples of big data publishing platforms include scalable frameworks. Apache
Hadoop is an open source framework that allows for the distributed processing
of large datasets across clusters of computers using simple programming models
(Apache Software Foundation 2021). Google BigQuery is Google’s serverless,
highly scalable, and cost-effective multicloud data warehouse (Google Cloud 2021).
These solutions offer security infrastructures that can accommodate authentication
(who you are), authorisation (what you’re allowed to do) and encryption, all critical
mechanisms to implement a robust data governance framework; vita for access to
biomedical data that may be sensitive. Academic data centres in the social sciences
are attempting to scale up their traditional repository services using Hadoop-type
platforms (Bell et al. 2017).

Social science archives do not yet routinely provide access to their open data via
APIs (Application Programming Interfaces). Yet, more and more public sector data
sources are, such as the World Bank (World Bank 2021). In the health domain, the
UK’s NHS Digital provides a catalogue of APIs available to access a huge range of
health indicators (NHS Digital 2021c).

When it comes to piecing together strands of data in the health field, there is
an increased tension between safeguarding the privacy of peoples’ information and
reaping the benefits of research using powerful linked and matched sources. As the
risk of identification increases so the need to enable safe and trusted access to linked
data becomes essential, such as the use of the 5 Safes, described above. The UK’s
Data Ethics Framework sets out useful high-level principles for undertaking such
data science ethically and has a useful workbook to accompany it, as set out in the
case study below (Cabinet Office 2020).

In the USA, there has been a growing interest in using artificial intelligence (AI)
to mine data from electronic health records (EHRs), and social media to predict an
incapacitated person’s preferences regarding their healthcare decisions. In the case
of patients who do not have the capacity to make healthcare decisions, Lamanna
(2018) proposes that AI can build on current tools that identify patient preferences,
such as consenting to a given treatment, and can offer a step change in the power
to predict these preferences. The computational work of his ‘autonomy algorithm’
inputs data about patients and derives as an output a confidence estimate for a
patient’s predicted healthcare-related decision. Ethical issues are raised by the use
of the algorithm. First, machine confidence in a prediction does not mean that the
person should choose the pathway. Second, as larger datasets become available
and allow higher levels of predictive accuracy, should AI replace human decision-
making, regardless of a patient’s decision-making capacity?

With many more emerging big data algorithmic trials of this nature data, time
will tell, whether this will happen or not.
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3.6 Ways of Using Data

Smith (2008) reviewed the extent of secondary data analysis and quantitative
methods more widely, in selected British education, sociology and social work
journals. She found that while secondary analysis was not widespread in social
work papers, 42% of the quantitative papers in education used secondary analysis
compared with 75% of the quantitative papers in sociology. In economics, secondary
analysis is core to most research practice. For epidemiology research, the long-term
surveys described above have huge potential for insight, but the statistical methods
of analysis require some expertise.

Types of uses of secondary data are summarised as follows (Corti and Thompson
2012).

3.6.1 Providing Description and Context

Data can help provide background for a study or contextualise a new study
and its findings. Oyebode and Mindel (2013) reviewed government documents
demonstrating the contribution of Health Survey for England data to every stage
of the policy-making process in quantifying obesity in England.

3.6.2 Comparative Research, Restudy or Follow-Up

Comparative research can be undertaken across time or place. Comparison brings
greater power to answer research questions, for example when data can be combined
with data beyond its original sample or geographical limitations. Effort needs to be
made to ensure that similar phenomena are compared when two or more separate
studies are being used.

3.6.3 New Questions and Interpretations

This is the classic secondary analysis approach to resuing data, where new questions
are asked of ‘old data’. Walters (2015) used the four waves of data from the US
National Longitudinal Study of Adolescent to Adult Health during the period 1994–
2008, to see how school problems and anti-social attitudes in adolescent years
affected adult criminal and substance abuse in early adulthood.
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3.6.4 Replication or Validation of Published Work

While the scientific method is premised on replicability, most re-studies do not
usually involve attempts to validate or undermine researchers’ previous analyses.
However, the pursuit of objective verification of results has demanded attention
following more recent well-known cases of obviously fraudulent research in
psychology, and the crisis of hidden results and publication bias in clinical trials
reporting (Enserink 2012; Goldacre 2015a). The Reproducibility Project carried
out independent replications of 100 studies in psychology, and preliminary results
suggest that only 39 of the 100 key findings could be replicated (Baker 2015). In
clinical trials, concerns about the concealment of results and publication bias have
escalated, with journals like the British Medical Journal claiming that they will only
publish trials that commit to sharing data on request (Loder and Grives 2015).

3.6.5 Research Design and Methodological Advancement

Well-documented descriptions of the research methods used in a former investi-
gation can inform the design of a new study. Sampling methods, data collection
and fieldwork strategies, and interview protocols are all used by study designers to
follow the best practice. Tried and tested question wording used in national major
surveys can be reused when designing local surveys to ensure comparability with
national results. In instances where the information is available, researchers can
exploit survey ‘paradata’ (data about how a survey was administered) to explore
methodological issues, like non-response or interviewer effects.

3.6.6 Teaching and Learning

There is a need for students to engage with ‘real’ data, to obtain results which
relate to the real world, and to tackle real data handling problems (Smith 2008).
Real data is well suited to teaching substantive social science as well as facilitating
the teaching of research methods and can really engage students. In the UK and
US, efforts to improve statistical literacy among students of social science have
created some useful resources to help students confront secondary data including
those created by data services. These include user support and self-guided training
and instructional materials, in the form of step-by-step guides, videos and short
webinars (UK Data Service 2021f; ICPSR 2021c).

In the era of data-intensive research, researchers are increasingly seeing the
benefits of working with data across disciplinary boundaries. As such, new ways
of working and appreciating different data types and methods are needed. Skills
for retrieving, assessing, manipulating, and analysing big data, as well as thinking

http://www.bmj.com/content/350/bmj.h2373
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‘algorithmically’, become important. Training offers around the world are respond-
ing to this growing demand (Belmont Forum 2017; University of Cambridge 2015).

3.7 Research Examples Using Epidemiological Data

3.7.1 Example 1: Use of Birth Cohort Survey Data: Does
Premature Birth Affect a child’s Long-Term Health
or Development?

Research question: Thanks to advances in modern medicine, the chance of babies
surviving if they are born prematurely is high. However, there is a concern that
children surviving such early births will suffer from ill-health and developmental
effects. This research investigated whether a premature birth has these negative
consequences on child development.

Data used: This research used data from the first (2001–2003), second (2003–
2005) and third (2006) surveys of the Millennium Cohort Study (MCS) as well
as a special dataset featuring birth registration and maternity hospital episode data
(University of London, Institute of Education, Centre for Longitudinal Studies,
2017a, 2017b, 2017c). The MCS is a longitudinal survey of a cohort of around
19,000 children born across the UK between September 2000 and January 2002.
Topics covered include family socio-economic background, the circumstances of
pregnancy and birth, child health, child behaviour, childcare and parenting style.

Methods used: Data on gestational age were determined from the maternal
report included in the first survey of the MCS and the data in the hospital records
dataset. Groups of children born in one of four preterm gestational ages – early term
(37–38 weeks), late preterm (34–36 weeks), moderately preterm (32–33 weeks),
very preterm (32 weeks or less) – were compared with those children born at full-
term (39–41 weeks). Logistic regression was conducted on each of the gestational
age groups listed above. The analysis took into account the clustered study design
of the survey.

Brief findings: The researchers discovered that the higher the prematurity, the
greater risk of these ill effects. However, the differences between each group were
small. Those children born late or moderately preterm were the most likely to have
a higher disease burden at ages 3 and 5 years. Compared with full-term births, those
born in late preterm or early term also had poorer health and educational outcomes
at ages 3 and 5 years.

Source: Boyle et al. 2012.
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3.7.2 Example 2: Use of Biomarker Data: The Association
Between Biological Health and Socio-Economic
Position: Blood Analytes from Understanding Society

The ability to access a combination of social survey data and biomarker data
facilitates a wide range of research questions. Examples of research carried out using
analytes from blood and saliva samples follow.

Research question: Biological health and socio-economic position are known
to be associated, via the mechanism of the body’s stress responses. Thus social
disadvantage is considered to lead to higher biological health risk when other factors
such as health behaviours and existing health conditions are controlled for. This
study examines how to measure the biological changes that are related to socio-
economic factors among different age groups.

Data used: This research used biomarker data collected via blood samples
from Understanding Society to examine the association between social position and
ageing. Understanding Society is a longitudinal household panel study that started in
2009 and has collected information on every member of around 40,000 households
in the UK annually. It is a multi-topic study that includes the collection of a wide
range of biomarkers.

Methods used: The team used key biomarkers from 9088 participants of the
study to develop a Biological Health Score (BHS) which expanded upon the
allostatic load (a long established measure of the wear and tear of key physiological
systems due to stress responses) by including measures of liver and kidney function.
Figure 3.5 shows how the BHS was created and the range of biomarkers that were
included in the measure.

The score is calculated and interpreted as the higher the score, the greater the
biological health risk. A total of 16 biomarkers were used and the study also
included a range of covariates such as marital status, education, age, comorbidities,
medication, health behaviours such as drinking and smoking, all of which were
available in the Understanding Society data.

Brief findings: Differences in BHS were found for most of the covariates,
for example smokers had higher BHS scores than non-smokers. When looking at
measures of socio-economic positions, such as education, the study found that those
in the lower education group had higher BHS scores with these associations stronger
for the inflammatory and metabolic systems. Furthermore these associations were
not explained by covariates such as health behaviours. The study concluded that
there is an association between BHS and socio-economic position, with the greatest
biological health risk found in those who were most disadvantaged.

Source: Karimi et al. 2019.
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Fig. 3.5 Definition and calculation of the Biological Health Score (BHS)

3.7.3 Example 3: Use of Biomarker Data: Second Hand
Smoking in Children: Saliva Samples from the Health
Survey for England

Saliva samples also provide biomarker data and are often collected as part of
biomarker and health surveys such as the Health Survey for England.

Research question: Second-hand tobacco smoke (passive smoking) affects
children’s lung function, subsequent lung function as adults and risk of chronic
disease as adults. Children are considered at greater risk as they have faster
respiratory rates, so take in proportionately more second-hand smoke than adults.
In addition their developing organs are at greater risk from exposure to toxins and
so exposure can lead to cancers in both childhood and adulthood, meningitis and
cardiovascular disease.

Data used: The study used saliva samples collected from children aged 4–
15 years as part of the Health Survey for England. The Health Survey for England
is a repeated, annual survey which aims to survey the health of the population in
England.

Methods used: From the saliva samples, measures of cotinine were obtained.
Cotinine is a metabolite of nicotine and its presence is an indicator of recent
exposure to tobacco and/or its smoke. It is considered the most useful biomarker in
smoking-related studies due to its sensitivity to second-hand smoke exposure. It has
a half-life in the body for 16–20 h and levels of 12 ng/mL or above indicate direct
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smoking while levels between 0.1 ng/mL and below 12 ng/mL indicate exposure to
second-hand smoke.

Brief findings: Exposure to second-hand smoke in children had decreased for
boys. In 2011–2013 HSE data, 41% of boys found to have been exposed to tobacco
smoke, by 2014–2015, this had decreased to 38%. For girls, the proportion exposed
remained consistent across this period. As would be expected, exposure was higher
among children living in households where at least one person smoked, but fewer
than 9% of children lived in such households so higher exposure to second-hand
smoke is confined to a decreasing proportion of the population.

Source: NHS Digital 2016.

3.8 Conclusion

Secondary analysis of biomedical data permits a range of valuable analyses to be
undertaken quickly, effectively, transparently and with minimal respondent burden.
Online access to data has simplified and speeded up access and digital formats
enable users to easily consult rich documentation, explore and analyse data online
and to make linkages between appropriate resources in a context of an increasingly
complex data landscape.

The number of online data outlets has grown significantly over the past 5 years,
but dedicated domain specific data services, like the UK Data Services and ICPSR
have a role in helping set the high standard for high quality data publishing. As new
and larger data types come on stream, so data services need to adapt, providing new
platforms and new tools for selecting and querying data, alongside the traditional
download of smaller datasets.

Perhaps the biggest challenge for established data services is in finding ways to
describe effectively the underlying methods used to create these records, providing
potential users with a fuller understanding of the provenance and meaning of readily
available data. Here collaboration with microdata methodologists is beneficial, some
of whom have already moved into this space.

This is a fast moving area with much to be resolved and at least as much potential
for the researcher. However, we need to ensure that researchers and data services
themselves are well equipped to deal with the challenges ahead, with a need for
statistical, methodological and computational skills.
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Chapter 4
Data Warehousing of Life Science Data

Benjamin Kormeier and Klaus Hippe

Abstract Increasingly, scientist have begun to collect biological data in different
information systems and database systems that are accessible via the internet, which
offer a wide range of molecular and medical information. Regarding the human
genome data, one important application of information systems is the reconstruction
of molecular knowledge for life science data. In this review paper, we will discuss
major problems in database integration and present an overview of important
information systems. Furthermore, we will discuss the information reconstruction
and visualization process based on that integrated life science data. These database
integration tools will allow the prediction for instance of protein–protein networks
and complex metabolic networks.

Keywords Data warehouse · Life science · Database integration

4.1 Introduction

The diverse research areas of molecular biology generate a variety of publicly
available data stored in molecular biology databases. These databases are global
via information systems and are mostly publicly available. In recent years, the
number of molecular biology databases has increased exponentially. There are
currently 1641 databases providing information from different categories (Rigden
and Fernández 2020).

The importance of data integration has been known in bioinformatics for several
years. Therefore, it is essential for scientists to analyze and process information from
different and distributed systems. The molecular biological data has a high degree
of semantic heterogeneity because the data comes from a series of experiments.
In molecular biology, complex problems are tackled that rely on an immense and

B. Kormeier (�) · K. Hippe
FH Bielefeld, University of Applied Sciences, Interaktion 1, Bielefeld, Germany
e-mail: bkormeie@techfak.uni-bielefeld.de

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
M. Chen, R. Hofestädt (eds.), Integrative Bioinformatics,
https://doi.org/10.1007/978-981-16-6795-4_4

85

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-6795-4_4&domain=pdf
mailto:bkormeie@techfak.uni-bielefeld.de
https://doi.org/10.1007/978-981-16-6795-4_4


86 B. Kormeier and K. Hippe

diverse amount of data. The number of databases and the data they contain are
increasing steadily, which means that data distribution and high redundancy cannot
be excluded. For these reasons, it is important to develop data warehouse systems
for keeping consistent and non-redundant data.

4.1.1 Aims and Scope

The integration of life science and biological data from heterogeneous, autonomous,
and distributed data sources is an important task in bioinformatics. The challenge
is to integrate huge data sets regarding the large heterogeneity of the databases on
the semantic and technical level (Kormeier 2010). Therefore, relevant integration
approaches in the field of data warehouses as well as modeling and simulation
software approaches will be introduced. We will focus on several widely used
data warehouse approaches. Furthermore, some selected tools for modeling and
visualizing of biochemical pathways will be presented in this review paper.

4.2 Molecular Database Integration

The integration of data sets from data sources with different heterogeneities is a
challenge not only in the economy but also in research and science. Especially,
in the life sciences, numerous biological datasets are experimentally generated,
which have significant heterogeneities in various domains. The storage, deployment,
and administration of these data are usually done by molecular biology databases.
Usually, these databases are freely available, distributed worldwide, and linked
together by explicit cross-references. There are also significant differences in the
structuring of data, accessibility, and copyright. One aspect of bioinformatics is
the implementation of applications with which help an effective data integration of
molecular biology databases are made possible. The goal of the data integration is
to realize a database that has a uniform data structure and provides all the necessary
data from the data sources. The data sources usually have different schemas, which
is why schema transformation and schema integration are necessary. After that, the
actual integration of the data stocks from the respective data sources takes place. The
data is analyzed and validated so that inconsistencies and duplicates are identified
and eliminated. During this data cleanup, merging and completion of incomplete
data sets can also be done. As a result of this data fusion, a complete data set is
realized to provide more information than the original data records from the data
sources. The resulting consistent and structured database enables an efficient and
global view of all data sources from the data sources. However, the merging of
databases from different data sources is linked to three basic problems that will be
described in the following sections.



4 Data Warehousing of Life Science Data 87

4.2.1 Distribution, Autonomy, and Heterogeneity

With the help of specific software solutions, the integration of data from different
data sources is realized. Such systems usually have different integration architec-
tures, which successfully overcome the three basic problems of data integration.
The distribution, autonomy and heterogeneity of a data source represent these basic
problems and are also described as an orthogonal dimension of data integration
(Leser and Naumann 2007).

One problem that needs to be addressed in data integration is the global
distribution of data sources. Usually, the databases are provided by different systems
and are geographically distributed. Because of this different localization of the data,
a distinction is made between the physical and the logical distribution. With the help
of a materialized integration architecture, the problem of physical distribution can be
overcome. The provision of metadata and data cleansing methods by the integration
system enables the removal of the logical distribution.

The autonomy of a data source is usually unavoidable, because the responsible
organization of a data source usually uses its own development strategies and
technologies. The term autonomy in connection with the data integration means that
the data source can autonomously decide on the provision, the access possibilities,
and the copyright of the data. In addition, autonomy is responsible for different
problems of heterogeneity. In Conrad (1997), the different types of autonomy are
discussed in detail.

The main problem that needs to be addressed in data integration is heterogeneity.
If two information systems do not provide identical methods, models, and structures
for accessing the database, these are called heterogeneous. Different kinds of
heterogeneity are defined according to (Leser and Naumann 2007) as follows: tech-
nical heterogeneity, syntactic heterogeneity, data model heterogeneity, structural
heterogeneity, schematic heterogeneity, semantic heterogeneity (Kormeier 2010).
Autonomy is primarily responsible for heterogeneity, but distribution can also
create heterogeneity. It is possible to force specific properties to be homogenous by
restricting autonomy of a data source. This can be achieved by standards in exchange
formats, interfaces, and protocols.

4.2.2 Approaches of Database Integration

The development of an integrated database system is a complex task, particularly,
when a large number of heterogeneous databases have to be integrated. Hence,
an elaborate blueprint of the architecture of the system is essential. However,
another non-trivial problem is the availability of databases that should be integrated.
Generally, there exists two architectures for integration. They are divided into mate-
rialized integration and virtual integration (Kormeier 2010). The main difference
between the two integration architectures is the location of the relevant databases
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during integration. A materialized integration architecture is a central and persistent
database and copies all the necessary data from the data sources into the database.
In contrast, a virtual integration architecture does not have such a database and
therefore does not copy any data. Therefore, the integrated and homogenous data set
of a virtual integration architecture only exists virtually and has to be realized again
for all requests. However, there are also hybrid architectures that have materialized
and virtual data sets.

Different approaches of database integration have been frequently discussed
and reviewed since the beginning of the millennium. The most important are the
following three approaches besides data warehouses:

• Hypertext navigation systems. HTML frontends linked to molecular biological
databases.

• Federated database systems and mediator-based systems. Virtual integration does
not store any data in a global schema. Federated systems integrate multiple
autonomous database systems into a virtual single federated database. Usually,
each database is interconnected via a computer network. The databases may
be geographically decentralized. In comparison to federated database systems,
multi-database systems do not have a global schema, rather these systems
interactively generate queries for several databases at the same time (Kormeier
2010).

4.2.3 Data Warehouses (DWH)

In this section, we want to have a closer look at data warehouses. Data warehouses
are one of the widely used architectures of materialized integration. Usually, data
warehouses are used in the field of information management. In particular data
analysis, data mining and long-term storage of business intelligence in companies
are the major advantages of data warehouse systems. In bioinformatics data,
warehouses are usually used for data integration (Kormeier 2010). There is no
consistent definition of the DWH term. While different consortia such as the OLAP
Council are trying to standardize the DWH term, the first definition was given by
Inmon (1996):

A data warehouse is a subject oriented, integrated, non-volatile, and time variant collection
of data support of management’s decision.

Only through the data warehouse process can a data warehouse system accom-
plish the various issues. This dynamic process is responsible for the acquisition,
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storage and analysis of the data. The data warehouse process can be divided into the
following four steps:

1. In the first step, the component extraction, transformation and loading are used,
which are summarized under the term ETL components (Günzel and Bauer
2009). This step is called the ETL process and is responsible for extracting the
data sets from the data sources and transforming them. Furthermore, the ETL
process is responsible for loading the structured data into the DWH.

2. The persistent storage of data in DWH will be realized in the next step. However,
some analyzes or specialized applications do not need all the data, so that can be
realized in the so-called data marts.

3. These data marts represent a specific view of the DWH and are created in the
third step.

4. The analysis and evaluation of the databases take place in the last step. The results
are then provided to the different applications.

The key benefits of the materialized integration architecture are efficient data
cleansing, unrestricted query capabilities, and good query performance. The dis-
advantage of this integration architecture may under certain circumstances be the
timeliness of the database. However, this aspect always has to be considered in the
context of the respective analysis or question, because not every topic needs up-to-
date data. The relevance of the data is particularly important for complex analyzes
of the financial markets. In the context of molecular biology research, updating the
database every quarter is sufficient. The data sources are usually molecular biology
databases and their updating is usually done every quarter.

4.3 Related Data Integration Approaches

In this chapter, relevant integration approaches in the field of data warehouses
will be introduced. Furthermore, related visualization approaches for molecular
networks and life science data will be discussed.

4.3.1 Data Integration Approaches

In the literature, data integration approaches in bioinformatics are divided into the
following classes (Leser and Naumann 2007):

• Indexing systems: SRS (Sequence Retrieval System) (Etzold et al. 1996), Entrez
(Kaps et al. 2006), and BioRS (Wheeler et al. 2004; Maglott et al. 2007).

• Multi-databases: OPM (Object Protocol Model) (Chen and Markowitz 1995),
DiscoveryLink (Haas et al. 2001), and BioKleisli (Davidson et al. 1997).
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• Ontology-based integration: TAMBIS (Transparent Access to Multiple Bioinfor-
matics Information Sources) (Stevens et al. 2000), ONDEX (Köhler et al. 2006),
and CoryneRegNet (Pauling et al. 2012).

• Data warehouse: Atlas (Shah et al. 2005), BioWarehouse (Lee et al. 2006),
Columba (Trissl et al. 2005), Biozon (Birkland and Yona 2006), Booly (Do et
al. 2010), JBioWH (Vera et al. 2013), Unison (Hart and Mukhyala 2009), and
SYSTOMONAS (Choi et al. 2007). However, under certain aspects, CoryneReg-
Net, and ONDEX can also be assigned to this category.

Due to the already mentioned advantages (e.g., performance, availability of data,
and simple conception), the data warehouse technology has become established in
bioinformatics. Most of the applications were developed for specific molecular-
biological questions, which means that they could not be used in other projects
and their questions, or only through extensive extensions of the respective software
solution. Atlas, BioWarehouse, Columba, ONDEX, and CoryneRegNet use the data
warehouse technique for data integration, whereas CoryneRegNet and ONDEX
provide a web service. Atlas, BioWarehouse, and ONDEX provide a software
infrastructure for data integration, rather Columba, CoryneRegNet. They provide a
web interface and therefore they are directly useable (Kormeier 2010). In addition,
the database of many systems is out of date or no longer available, so important
information is not available to the user. In particular, the complexity and flexibility
of the respective software as well as the attitude of the project financing are
responsible for it. In recent years, a plenty of systems have been implemented and
made available to the user.

4.4 Data Warehouse for Life Science Data Warehouse

In the previous sections of this chapter, several principles and approaches for
database integration and network visualization were introduced. A couple of the
principles of the introduced integration systems are well suited to be used within
the database integration system that will be presented. Particularly the functions of
the software toolkit BioDWH (Töpel et al. 2008) will be illustrated. Furthermore,
DAWIS-M.D. 2.0 (Hippe et al. 2011), a web-based data warehouse approaches
based on the BioDWH integration toolkit, will be described.

4.4.1 BioDWH: A General Data Warehouse Infrastructure
for Life Science Data Integration

BioDWH is an open source software toolkit, which can be used as a general
infrastructure for integrative bioinformatics research and development. The advan-
tages of the approach are realized by using a Java-based system architecture and
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Fig. 4.1 Schematic illustration of the BioDWH system architecture following the general data
warehouse design (Hippe 2014)

object-relational mapping (ORM) technology (Kormeier 2010). Figure 4.1 shows
the reference architecture of a data warehouse system. This architecture is the
foundation of the system architecture of BioDWH. Basically, the system consists
of the Data Retrieval module, the Data Warehouse Manager, and a Graphical
User Interface (GUI). The user is able to control the infrastructure via GUI and
XML configuration files. Core of the system is the Data Retrieval component that
is composed of Loading, Transformation, Extraction Component, i.e., the Parser
(ETL), Monitor component, and the Staging Area. The parser library provides
a large number of ready-to-use-parsers for biological and life science databases
which are available, such as UniProt, KEGG, OMIM, GO, Enzyme, BRENDA,
OMIM, Reactome, iProClass, and more. Using the BioDWHParser interface, it is
easy to create own tailored parser. To achieve independence from the RDBMS,
a persistence layer is necessary. Therefore, a well-engineered object-relational
mapping framework called Hibernate was used as a persistence layer. Hibernate
performs well and is independent from manufacturers like MySQL, PostgreSQL, or
Oracle. Thus, the Hibernate framework fits perfectly into the infrastructure of the
BioDWH application.
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The system is realized as a Java-based open source application that is sup-
ported on different platforms with an installed Java Runtime Environment (JRE).
Nowadays, Java is very popular and usually installed on most of the computers.
Additionally, Java is available on most platforms such as Windows, Linux, and
MacOS. Thus, Java applications have a high degree of platform independence.
Moreover, Java applications over flexible software solutions that can be provided
to a large audience. In this way the software solutions can become widely used
(Kormeier 2010).

Another feature of BioWH is an implemented easy-to-use Project Wizard that
supports the user or administrator to configure a DWH integration process in
four steps. No additional knowledge in database systems or computer science is
necessary. The whole configuration starting from database connection settings,
via parser configuration to monitor configuration, is supported by the graphical
user interface. In background the BioDWH infrastructure is running with multiple
threads which means it is possible to run several download processes, uncompress
processes, or integration processes in parallel (Kormeier 2010). Finally, a logging
mechanism watches the integration process and starts a simple recovery process to
guarantee a consistent state of the data warehouse.

4.4.2 DAWIS-M.D. 2.0: A Data Warehouse System
for Metabolic Data

One of the major challenges in bioinfomatics is the integration and management
of data from different sources and their presentation in a user-friendly format.
DAWIS-M.D. 2.0 is a platform-independent data warehouse information system
for metabolic data. The information system integrates data from 13 widely used
life science databases (KEGG, EMBL-Bank, Transfac, Transpath, SCOP, JASPAR,
EPD, UniProt, HPRD, GO, BRENDA, ENZYME, and OMIM). The information
of integrated databases is divided into 13 various biological domains (Compound,
Disease, Drug, Enzyme, Gene, Gene Ontology, Genome, Glycan, Pathway, Protein,
Reaction, Reactant Pair, and Transcription Factor), which are available via the
graphical user interface of the web application. The data warehouse architecture
(Fig. 4.2) provides a platform-independent web interface that can be used with
any common web browser. The system enables intuitive search of integrated life
science data, simple navigation to related information as well as visualization of
biological domains and their relationships. To ensure maximum up-to-dateness
of the integrated data the BioDWH data warehouse infrastructure including a
monitor component is used. The persistence layer of DAWIS-M.D. 2.0 uses the
ORM technique, whereby the application layer is independent from database layer.
Thereby, it is possible to support different database management systems. The
DAWIS-M.D. 2.0 data warehouse incorporates the advantages of a navigation and
informational system and builds a bridge to the network editor approach VANESA
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Fig. 4.2 Schematic representation of the DAWIS-M.D. n-layer system architecture from the
original heterogeneous data sources to the web application layer (Hippe 2014)

(Brinkrolf et al. 2014). Hence, it is possible to browse through the integrated
life science data and bring the information into a modeling and visualization
environment. Therefore, it is easy for the scientists to search information of interest,
find relationships and interactions between different biomedical domains and bring
them for editing, manipulation, and analyzing directly into the VANESA network
editor. Finally, the scientists gain a better understanding of complex biological
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problems and are able to develop new theoretical models for further experiments.
DAWIS-M.D. 2.0 is available at https://agbi.techfak.uni-bielefeld.de/DAWISMD/
(Hippe et al. 2011).

4.5 Summary

Different research domains of life sciences by different experimental methods
generate an immense and diverse amount of data. Usually, such data is stored
in database systems. For a comprehensive and efficient usage of the data, it is
necessary to integrate the distributed and heterogeneous data and provide them
for further analysis to the researcher. Moreover, the user needs to be supported
by applicable tools for navigation within the integrated data sets that support an
efficient and precise processing of the data. The number of molecular databases
has been continuously increasing in the last decade (Töpel et al. 2008). Today,
approximately 1641 publicly available databases and information systems for life
science data are listed in the NAR catalogue (Rigden and Fernández 2020). This is
mainly due to technological progress and computer-aided laboratory automation.

Transparency, integrity, semantic correctness, and non-redundancy are classical
requirements of integration and therefore very important. However, other require-
ments gain importance in life science data integration, such as an efficient access
to the increasing amount of data which should be, but is not always up-to-date.
Furthermore, solutions for complex and changing schemata in life science data
are required. Hence, the challenge was to combine diverse and multiple data and
to bring them into a homogenous, consistent state. The new system should be
flexible and also applicable in general for any other project. For that purpose,
BioDWH data warehouse software kit is developed as a Java-based open source
application for building life science data warehouses using common relational
database management systems. By using the object-relational mapping (ORM)
technology, it is no longer necessary to select the local database management system
based on the restrictions of the integration software. BioDWH provides a number
of ready-to-use parsers to extract data from public life science data sources and to
store the information in a data warehouse. The integration process is supported by an
easy-to-use graphical user interface that makes it possible to integrate any supported
database in a few steps into a local database (Töpel et al. 2008).

DAWIS-M.D. 2.0 is a publicly available web-based system that integrates data
from 13 different biomedical databases and divided the integrated data from the
different data sources into 13 biomedical domains (Hippe et al. 2011). This data
warehouse information system provides an integrated and consistent view of large-
scale biomedical data. Additionally, relationships and interactions between multiple
data sets and biomedical domains are identified and displayed (Janowski 2013). The
advantages of the DAWIS-M.D. 2.0 application are the usability, performance, high
level of platform independence, and wide range of life sciences information and
biological knowledge (Hippe et al. 2011). Furthermore, the system is connected by

https://agbi.techfak.uni-bielefeld.de/DAWISMD/
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a “remote-control” to the VANESA network editor to easily visualize and analyze
biological networks from data of interest.

Software solutions that provide visualization, analysis services, and an infor-
mation management framework are in high demand among scientist as already
discussed. It is not surprising that many groups over the world have contributed
to the task of developing such software frameworks. Therefore, a DWH system to
search integrated life science data and simple navigation called DAWIS-M.D. 2.0 as
a base for a modeling and visualization system called VANESA were implemented
(Hippe et al. 2011).

In conclusion, in this chapter, we presents a powerful and flexible data warehouse
infrastructure BioDWH that can be used for building project-specific information
systems, such as DAWIS-M.D. 2.0. Finally, the system was the basis for network
modeling and pathway reconstruction in different scientific projects. The presented
applications are in use since more than one decade within several projects as well as
in ongoing in-house projects.
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Chapter 5
Automation in Graph-Based Data
Integration and Mapping

Marcel Friedrichs

Abstract Data integration plays a vital role in scientific research. In biomedical
research, the OMICS fields have shown the need for increasingly larger datasets,
like proteomics, pharmacogenomics, and even newer fields like foodomics. In 2019
Nucleic Acids Research counted 1637 databases, accounting only for a fraction
of all data sources available online. Data integration efforts need to process large
amounts of heterogeneous data from different file formats ranging from simple
files to complex relational databases and increasingly graph databases. Aside
from data formats, availability is another obstacle. Whether files are available for
direct download, need a user account, or are available only through an application
programming interface (API). Keeping data sources up-to-date is important to make
use of the latest discoveries in the respective fields, retrieve error corrections,
and potentially mitigate issues with other data sources referencing newly added
entities. Finally, all data sources provide information on certain entities and in most
cases make use of specific identification systems. In the best case, data sources
provide cross-references to other data sources. In order to generate robust mappings
between all required data sources, identifiers of good quality need to be selected
forming new connections between the entities. All of these vital steps and issues
of data integration and mapping benefit from automation and are in most parts
able to be fully automated. Workflow systems and integration tools are capable
of automating different elements of the aforementioned steps and require varying
levels of computer science skills. This chapter describes these issues, and the
potential of the fully automated, graph-based data integration and mapping tool
BioDWH2 is explored.
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5.1 Introduction

Data integration plays a vital role in scientific research analyses. Advancements
in biomedical research gave rise to the OMICS fields starting with genomics,
transcriptomics, and proteomics. The list of new OMICS fields has increased
dramatically with additions such as pharmacogenomics, foodomics, and antibody-
omics. Each of these fields requires its own data, experiments, and new databases
increasing the overall complexity of available data sources and effort needed to keep
information up-to-date. In 2018 Imker conducted a survey of published databases
in the Nucleic Acids Research (NAR) database issues and concluded that 1700
databases were covered in 25 years (Imker, 2018). The 2021 NAR database issue
added 90 new resources and with updates and removals now count 1641 databases
(Rigden and Fernández, 2020). The Online Bioinformatics Resources Collection
(OBRC) contained 1542 bioinformatics databases and other resources (Chen et al.,
2007) which has grown to 2417 as of July 2021. These numbers only represent
the resources added to common registries resulting in a likely larger number of
databases available online.

For the use-case of medical information systems, multiple OMICS levels are
relevant in drug therapy safety (Kapoor et al., 2016; Qian et al., 2019). Where
previously the main focus of analyses were interaction networks of drugs, diseases,
and side effects, the growing opportunities of molecular information in the clinical
context (Krier et al., 2016; Sanderson et al., 2019) add new OMICS fields in the form
of genes, variants, pathways, RNA regulation, and many more. Examples would be
the “PharmGKB” (Whirl-Carrillo et al., 2012), “DrugCentral” (Avram et al., 2020),
“DrugBank” (Wishart, 2006), and “OMIM” (Online mendelian inheritance in man,
2021) databases. The integration and mapping of this information could provide an
in-depth understanding of individual patient cases and reduce adverse drug reactions
toward personalized medicine.

This growing complexity increases lead time of research projects as users need to
analyze data sources with heterogeneous file formats, availability, and information
schemata. Much of these issues benefit from integration pipelines and tools which
are easy to use and take care of data warehousing and mapping tasks. With the
growing adoption of graph databases and formats (Fabregat et al., 2018; Hassani-
Pak et al., 2016; Shoshi et al., 2018; Yoon et al., 2017), the transformation of
heterogeneous data sources into a common graph data structure is beneficial in
representing complex and highly connected biological information. While data
warehousing solutions provide users with all data sources in a single database,
the information is still loosely coupled. Most data sources provide identification
systems or external references for their data. However, changes in referenced data
sources are not immediately propagated and might lead to loss of information, and
data sources need to be constantly updated. Finally, automated mapping techniques
are important in building tightly coupled relationships between data sources in a
data warehouse. While these mapped relationships may never cover all available
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information, they build a starting ground for research analyses and enable the
discovery of new and potentially meaningful information.

This chapter describes the problems and solutions of data integration and
information mapping and closes with a possible solution using the open-source
BioDWH2 tools.

5.2 Data Integration and Mapping

Different data integration approaches have been developed in the past decades. As
with many architectural problems, each comes with their own set of advantages and
disadvantages (Schwinn and Schelp, 2005). The approaches differ in a multitude
of aspects, such as heterogeneity, distribution, access, redundancy, technology, and
more. This section will first look at federated databases, data warehouses, and data
lakes under the aforementioned aspects. Afterwards, the role of mapping strategies
for these approaches is explored.

5.2.1 Federated Database System

Arguably the simplest approach to implement is federated database systems
(FDBS). A FDBS consists of multiple, independent component databases which
are directly accessed by the FDBS. There are no restrictions on the location or
technology of the component databases. The only exception is that the FDBS
needs access via any means of local or remote communication. The access may
be restricted using credentials which need to be stored in the federated database
management system. FDBS can be divided into loosely and tightly coupled systems.

Loosely coupled FDBS give the user direct access to the component database
schemas. The advantage is a minimal overhead in administration of the database
system and new schema additions of the component databases are directly available
to the user. However, the users need to understand and process the schema and
heterogeneity of the component databases themselves which may result in redundant
work.

Tightly coupled FDBS mitigate this problem by introducing schema transfor-
mations and views on the component databases. Heterogeneous information from
different component databases can be normalized and provided to the user for direct
use. Additionally, selecting and filtering the raw data into qualitative subsets is
possible by providing schema views. This increases the administrative overhead of
the FDBS as changes in the components need to be updated. If a user needs specific
information from a component, the transformations and views may need to be
changed by the FDBS administrator. The main benefit is that these transformations
need to be done only once and not for each user.
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Using component databases directly has the obvious advantage that no data has
to be stored locally by the FDBS. New information is directly available and no
update strategy, except for schema changes, needs to be employed. In the early
days of FDBS one of the downsides was performance as sending queries and
results via the internet was slow. With the increasing internet speed worldwide this
problem is less relevant today. Another issue is availability. A FDBS is not protected
against component databases being unavailable due to maintenance, outages, and
more. Finally, all queries are sent directly to component databases outside of the
FDBS control. Sensible information such as patient data may be sent in the queries
and therefore need to adhere to privacy and security regulations, which may be
complicated in a FDBS setting.

Federation regained popularity in recent years in the field of plant breeding with
the BrAPI (Breeding API) project (Selby et al., 2019). Researchers worldwide can
provide plant breeding data via a standardized application programming interface
(API) which then can be used in a federated system. An advantage of the API
standard is the reduced need for schema transformation on the FDBS side.

5.2.2 Data Warehouse

Data warehouses (DWH) are in contrast to FDBS central databases of integrated
data. Heterogeneous data sources are parsed and all the information is stored in
one central database. If necessary, the information is transformed to match the
used database system or the central database schema. In case the data warehouse is
created for a specific purpose, the data may also be filtered or further processed. This
process is often referred to as ETL (extract, transform, load). Figure 5.1 visualizes
this process.

The integration in a central database has the advantage of independence from
third parties and network connections to component databases. Outages will affect
either all or no data in the central database and the data warehouse administration
can implement preventative measures. The central integration comes at a cost.

Fig. 5.1 Heterogeneous data sources A, B, and C are integrated into a central data warehouse by
means of an ETL (extract, transform, load) process. Queries are performed directly on the data
warehouse which has a single schema for all data
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Hardware for data storage needs to be available and data sources need to be
integrated on a semi-regular basis when updates are available. Data sources and their
data formats need to be understood and suitable integration pipelines developed.
Mapping the data source schema to the central database schema is comparable to
the tightly coupled FDBS approach and changes to the source schemas need to
be updated as well. Privacy and security aspects are easier with data warehouses
because sensible information can stay inside a controlled network environment like
a hospital for example.

5.2.3 Data Lake

A relative new approach is the so-called data lakes (Khine and Wang, 2018).
Originating from the field of big data and machine learning, data lakes differ from
data warehouses in several key aspects. First, all data from any data source is
dumped as-is or with as little transformation as possible into the data lake. This
can be structured data such as relational databases, documents such as PDFs, or
even raw data such as sensor readouts. The principal idea is that the use of the
data is unknown beforehand or may change in the future. Therefore, all data are
equally important and should neither be modified, nor filtered. Queries are then
performed on the data lake and the heterogeneous information transformed during
query execution. Figure 5.2 visualizes this process.

For big data applications using machine learning (ML) algorithms this approach
is of great interest, because many modern ML algorithms extract features auto-
matically from heterogeneous and large amounts of data without prior knowledge.
However, when writing traditional queries for data analysis, data lakes may impose
an even greater burden on the user, similar to loosely coupled FDBS. While the
idea of collecting all data possible and having them ready anytime is daunting,
this has several downsides. First, even as storage space is getting cheaper over
time, data lakes will require a lot of space because all the information is stored.
Secondly, different data require different storage solutions. Data lakes often consist
of a multitude of subsystems including relational, graph, and document databases

Fig. 5.2 Data lakes consist of structured, semi-structured, and raw data. Queries are performed
directly on the data lake and information are transformed in the query processing
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as well as key-value stores. The administrative overhead in maintaining all of these
systems is larger than a singular database system. Lastly, queries need to handle
all types of heterogeneous data. For example SQL queries are tailored to relational
databases, but are not well suited for graph database. Query plan optimization is a
complicated task for data lakes in order for queries to execute in a reasonable time
frame.

5.2.4 Data Mapping

Data integration and analysis require some form of data mapping to connect entities
from heterogeneous data sources. In the case of integration, FDBS and data ware-
houses can use mappings for schema transformation and linking or merging entities
together. Data lakes store data as-is and therefore mapping entities are shifted to
query execution of subsequent data analyses. Mapping helps in connecting entities
and relationships between data sources in order to gain a new data quality. New
insights can be generated if mapping connects previously disconnected information
clusters.

Mapping can be performed on a variety of information. This includes names,
synonyms, identification systems, or more specific entity properties. For example
chemical structures can be represented as IUPAC International Chemical Identifier
(InChI) identifiers. These InChI ids can then be used to map similar structures.
Name and synonym mappings in general are more error-prone than other methods.
Depending on the context names may be used for different entities or the words of
the name are ordered or cased differently than in other data sources. Additionally,
different languages may further complicate the mapping process.

One of the most common mapping methods are identification systems. Almost
all data sources define their own identifiers for entities and sometimes even
relationships. Examples are the DrugBank identifier “DB00122” for the chemical
Choline or the HGNC id “HGNC:5962” for the gene IL10. Databases can provide
cross-references to other databases using these identifiers making them especially
suited for mapping between data sources. However, not all identification systems
should be used to merge entities as being the same. Depending on the scope of
the database or identification system information may be represented as a singular
entity where other databases provide more granular entities of the same kind. A
selection of suitable identification systems can therefore drastically improve the
mapping result.

Multiple strategies exist on how mapped entities should be handled. Entities
can either be merged together destructively into a singular entity or relationships
between these entities can be created non-destructively marking them as mapped.
Here, we will explore a hybrid solution by introducing a mapping layer for entities
and relationships using only identification systems. The example uses terminology
of graph structures but can be transferred to other systems as well.
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Fig. 5.3 Node mapping example for Gene nodes from two data sources. (1) Mapping operates on
a single graph with all data sources merged. (2) Nodes of the first data source are mapped. As no
identifiers overlap, two mapping nodes are created and connected to the source nodes. (3) Nodes
from the second data source are mapped. This results in an identifier overlap between two mapping
nodes. (4) The result is a single mapping node as the two mapping nodes are merged

Nodes of interest are mapped into the mapping layer as visualized in Fig. 5.3.
This process takes each individual node and generates a node mapping description.
Identifiers from suitable identification systems as well as names and synonyms are
collected in the mapping description. If mapping nodes with overlapping identifiers
exist, they are collected and collapsed into a singular mapping node. Identifiers and
names are merged using standard sets. If none is matched, a new mapping node is
created from the mapping description. Finally, an edge is introduced from the source
node to the respective mapping node. This process is repeated for all nodes building
up the basis for the mapping layer.

Mapping of direct relationships (edges) or more complex relationship paths
across multiple nodes is handled similar to the node mapping. For each data source,
edge paths of interest need to be defined. A path is comprised of a series of node
labels which are connected by an edge label and edge direction. The edge direction
can be either forward, backward, or bidirectional and is important to prevent paths
going backward where needed. The first and last node labels of the path are required
to be used in the node mapping process before, so that their mapped nodes already
exist. These edge paths can then be mapped as an edge in the mapping layer between
the two mapping nodes. A trivial path of length one being mapped is visualized in
Fig. 5.4.

However, meaningful relationships between nodes may involve a more complex
path of edges. As paths get longer, the time a mapping process takes will increase
accordingly as all possible paths are searched for using depth-first search starting
from all existing nodes with the first node label. A path example of length three is
visualized in Fig. 5.5.
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Fig. 5.4 Trivial edge mapping between two mapped data source nodes. (1) The HGNC data source
provides two nodes Gene and Protein in blue which are connected with a CODES_FOR edge.
Both are connected to their respective mapping node in grey. (2) A new edge with the mapped
CODES_FOR label is created between the mapping nodes

Fig. 5.5 Path mapping of four data source nodes and three edges. (1) Two Structure nodes in
orange from the same data source are both associated with a respective DrugClass node. These
two DrugClass nodes are linked with an INTERACTS edge. Both Structures are connected to their
respective mapping node in grey. The path of length three is matched and provided to the path
mapping. (2) A new edge with the mapped INTERACTS label is created between the mapping
nodes

5.3 BioDWH2

As shown before, a multitude of problems and techniques exist in the field of data
integration and mapping. The BioDWH2 tool presented here solves multiple of these
issues while being as easy and automated as possible (Friedrichs, 2021). BioDWH2
is implemented as a modular open-source Java program that is easily extensible
with new data source modules. For BioDWH2 to be run, an existing installation
of the Java Runtime Environment (JRE) 8 is required. The goal is the automation
of data warehouse creation for research projects. A data warehouse solution was
chosen for its simplicity in user accessibility and better privacy and security control.
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Where data warehouses usually filter data for specific purposes, BioDWH2 uses
the unbiased approach of data lakes by integrating all information from each data
source where possible. This allows for generated databases to be usable as broadly
as possible. Graph database structures were chosen for their high flexibility in large
amounts of data and relationships.

5.3.1 BioDWH2 Workspace

As more and more heterogeneous data sources are required for a certain task,
the amount of files to be handled gets increasingly complex. Therefore, a fixed
schema of managing source, as well as intermediate files in a folder structure is
crucial. BioDWH2 takes care of this task by introducing the concept of workspaces.
Workspaces allow users to create as many physically separate data warehouse
projects as needed. A strict folder structure simplifies research data management.
With all sources and intermediate processing steps in a central location, workspaces
are easy to compress, backup, and transfer if necessary. The workspace provides a
sub-folder structure for each data source containing the source files and metadata
information stored in a JSON file. Metadata include the current source version
stored, file names, and flags whether the updater, parser, and exporter of the data
source finished successfully.

5.3.2 Architecture

BioDWH2 is developed using a modular architecture and the factory method
pattern. This allows for new data source modules to be added and maintained
without modification of the core project. An architectural overview is visualized
in Fig. 5.6.

Every modular architecture needs a core project containing the abstract base
classes for the implementing modules. The BioDWH2-Core component provides
these base classes as well as a graph data structure and many additional utilities. Net-
working utilities for example help in communication with HTTP and FTP requests.
Dependencies for popular file format libraries, as well as custom implemented file
format parsers help data source modules load common formats and simplify the
implementation process. These include Open Biological and Biomedical Ontology
(OBO), CSV, structure-data file (SDF), and many more.

Data source modules are slim java modules with the BioDWH2-Core as a
dependency. They implement the abstract ETL classes of the core for their respective
data source. This includes an updater, parser, graph exporter, and mapping describer.
This ensures a streamlined implementation process for new modules and reduces the
maintenance effort.
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Fig. 5.6 BioDWH2 is built using a modular architecture. The core provides the general program
flow and utilities. Data source modules are built on top of the core and implement the abstract
ETL process. The main module brings the core and all data source modules together for execution.
Additional server and exporter tools complement BioDWH2 for access and analysis needs. These
include a Neo4j-, GraphQL-, and OrientDB-Server as well as an SQL exporter

The third component of the architecture is BioDWH2-Main. This java module
references the core and all data source modules in the BioDWH2 project. Additional
third-party data source modules are included as jar files using the java runtime
classpath. The main component provides a simple command-line interface (CLI)
as the primary interaction point for the end-users. All tasks such as creating and
updating workspaces are performed using this CLI.

5.3.3 Program Flow

BioDWH2 follows the data warehouse paradigm as outlined in Sect. 5.2.2 with the
addition of a subsequent mapping step. This results in a strictly defined program
flow. Every BioDWH2 project will follow the steps as visualized in Fig. 5.7. As
projects are created as workspaces, the creation of a workspace and configuration
of used data sources is always the first step. Subsequently, the status of a workspace
can be queried or the integration process started as often as necessary.

The integration process itself is split into five tasks and can be repeated whenever
a new version of a data source or data source module has become available. As
data source modules need to load their respective raw data files, each respective
updater implementation checks for the newest version online and downloads them
to the workspace if necessary. Once downloaded, the raw data files need to be
parsed and exported into the BioDWH2 internal graph data structure by each data
source module. The graph data structure is a simple file-based directed property
graph model comprised of nodes and edges. Custom unique and non-unique index
structures for edge and node properties enable fast queries for existing data.
Nodes hereby represent entities such as genes or proteins. Edges represent entity
relationships such as a gene codes for a specific protein.
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Fig. 5.7 Complete overview of the BioDWH2 data flow. Heterogeneous data sources are updated,
parsed, and exported via the data source modules. The resulting intermediate graphs are then
merged and mapped into one graph. This graph may then be accessed for analysis using different
platforms

The internal graph data structure is stored in each data sources directory.
Additionally, each graph is also exported in Graph markup language (GraphML)
format (Brandes et al., 2013) for easier access. GraphML was chosen for its simple
structure and widespread adoption and interoperability. As the data sourceś graph
schema may not be known by the user beforehand, a meta graph visualization and
statistic is generated for each graph. The number of nodes and edges per label are
exported in tabular format to a text file. The visualization is generated as a static
image and interactive HTML page.

After the update, parse, and export steps for each data source the resulting
intermediate graphs are collected and merged into a single graph. To distinguish
nodes and edges from each data source, their labels are prefixed with their respective
data source moduleś ID. This supports the user in writing distinct queries during
analysis as well as the mapping process in associating nodes with data sources. The
merged graph represents the first data warehouse stage of BioDWH2 containing all
requested data sources. As described before, a meta graph and associated statistics
are generated and the graph is exported in GraphML format.

The final step of the integration process is the generation of the mapping
layer. This meta-layer creates new nodes and edges from common entities and
relationships as provided by the data source modules. The mapping itself is based on
the description in Sect. 5.2.4. Each data source module provides an implementation
of a “MappingDescriber.” This describer is able to tell the core mapping process
which node labels and edge paths in the data sourceś graph are of interest. Each of
these nodes and paths are then queried and presented to the describer individually.
Where applicable, the describer then provides a mapping description which is
used to create the meta-layer nodes and edges. If multiple entities from different
data sources were mapped to the same meta-node, these data sources are now
interconnected.
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This implementation allows for an automated mapping of data warehouses with
any number of sources and only limited by the descriptions provided by the data
source modules.

5.3.4 Database Access

The BioDWH2 tool covers the whole integration and mapping process, but provides
no analysis capabilities. Every graph in the process is exported to the workspace
in GraphML format. These files could be used directly; however, this may not
be feasible especially for large graphs. To provide users with easy-to-use analysis
capabilities multiple complementary tools are available. As every user might have
personal preferences, license restrictions, or technological restrictions, the following
database systems were selected as choices and more may be added in the future.
Each tool uses the mapped graph databases from a workspace to either provide the
data directly, or export a platform specific database. The BioDWH2-Neo4j-Server
allows for the creation of a Neo4j graph database as well as running a Neo4j server
and browser embedded in the tool itself. No setup of a Neo4j server is needed
and queries can be run using the Cypher query language directly in the user’s
web browser. This allows for a frictionless usage of BioDWH2 for users already
familiar with the Neo4j ecosystem. Analogously the BioDWH2-OrientDB-Server
tool creates an OrientDB graph database (https://www.orientdb.org) and provides
an embedded OrientDB server and browser. GraphQL (https://graphql.org) despite
the name is primarily a query language for APIs. However, it is possible to define
a schema definition for property graphs such as the BioDWH2 graph data structure.
The BioDWH2-GraphQL-Server is currently in development, to provide a GraphQL
endpoint for analysis queries, which directly operate on the workspace database.
Finally, if users may want to use their graph database on common web servers for
which only SQL databases are available, the BioDWH2-SQL-Exporter can be used
to transform a workspace graph into a relational SQL database dump. A complete
overview of the data flow is visualized in Fig. 5.7 with access to the data using the
aforementioned tools.

5.4 Summary

The integration and mapping of heterogeneous data sources is an important first
step for scientific data analyses. A multitude of integration paradigms and common
problems create a learning curve for researches new in the data integration field. This
can delay research projects and shift attention away from subsequent data analyses.
Therefore, the automation of integration and mapping tasks is important in reducing
this barrier and bringing research projects to analyses faster.

https://www.orientdb.org
https://graphql.org
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The BioDWH2 suite of tools intends to help users with these issues. As every
user has different needs or approaches to data integration and analyses, distinct
workflow steps allow for more use-cases and reach a broader audience. For newly
started research projects, the final mapping layer might be a good starting point
in interconnecting data sources of interest and getting an overview of the data.
However, it is always possible to use the merged graph of all data sources or even
individual data source graphs directly if those are more fitting for a project. In
being as broadly usable as possible and supporting multiple platforms and tools
for analysis, BioDWH2 can help in reducing time and effort needed for research
projects and prevent common data integration mistakes for inexperienced users.

5.5 Availability

The BioDWH2 tools are free to use and available at https://github.com/BioDWH2.
BioDWH2 is developed to be usable out of the box without any prerequisites except
the Java Runtime Environment (JRE) version 8.
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Chapter 6
DaTo: An Integrative Web Portal
for Biological Databases and Tools

Yincong Zhou, Ralf Hofestädt, and Ming Chen

Abstract DaTo is a collection of published online biological databases and tools,
started to offer service since 2011 and it has been continuously upgraded since
then. In the latest version, there are 36,639 resources. DaTo offers a user-friendly
interface and provides extensible URL-related comments, such as URL status, Geo
location, and the authorship. A graphical interactive web browser was embedded
into DaTo front-end to facilitate the research of ontology-based semantic similarity
relationships among tools and databases. Using DaTo, the geographic location,
health status, and journal associations were evaluated based on the historical
development of bioinformatics tools and databases in the past 20 years. Besides, a
specific collection of biological databases and tools can be generated. OverCOVID
(http://bis.zju.edu.cn/overcovid) is such a sub-database to contain SAR-Covid-
related bioinformatics resources. The updated version of DaTo is accessible via
http://bis.zju.edu.cn/dato/.

Keywords Biological database · Biological tool · Text mining · Geographic
network · Bioinformatics

6.1 Introduction

Thousands of online databases and data analysis tools have been developed for life
science research to deal with the exploration of biological datasets. Although some
of these methods have been published in special journals, such as Nucleic Acid
Research (NAR) database issues (https://www.oxfordjournals.org/nar/database/c)
or Webserver Issues (https://academic.oup.com/nar/issue/48/W1), others are still
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Table 6.1 A list of bioinformatics resource collections

Collection name Description Reference

BLD For bioinformatics research organized
within categories familiar to a biologist

Brazas et al. (2012)

BIRI A public online searchable index of
bioinformatics resources developed at
the biomedical informatics group

de la Calle et al. (2009)

OMICtools An informative directory for
multi-omic data analysis

Henry et al. (2014)

OReFiL An online resource finder for
Lifesciences

Yamamoto and Takagi (2007)

JIBtools The official bioinformatics tool list for
the Journal of Integrative
Bioinformatics

Hofestädt et al. (2013)

bio.tools Bioinformatics Tools and Services
Discovery Portal

Ison et al. (2015)

Database Commons A catalog of biological databases

scattered throughout the Internet and a large amount of literature. Internet searches
via Bing, google or similar general search engines do not exclusively index
online biological resources. Therefore, it is difficult to extract useful information.
Researchers cannot find the appropriate tools or databases for their specific purpose
due to the huge number of resources and the lack of a complete list of these resources
(Chen et al. 2007). To deal with these problems, several groups have collected
online life-science-related and bioinformatics-related resources, and provide search
function, which can be obtained through the Internet (Table 6.1).

BLD is a catalog of URIs to bioinformatics resources, including databases and
tools based on recommendations from experts in the field (Brazas et al. 2012).

BIRI uses keywords and sentence structures to identify related terms through
custom patterns (de la Calle et al. 2009).

BLD and BIRI divide the items into subcategories based on research topics,
making it impossible to return resources corresponding to specific search terms.
For example, no results will be returned for a query of the word “rRNA” in BLD as
well as BIRI.

OMICtools (https://omictools.com/) is a community-based search website
(Henry et al. 2014). It bridges the gap between researchers and developers, and
brings together an active worldwide user community, linking expert curators
who submit and classify tools, to users who enhance the interface by providing
feedback and comments. It can provide high-quality service due to the maintenance
and upgrade of its team. However, his commercialization severely restricted the
common use of users.

OReFiL (http://orefil.dbcls.jp/) is known as the only online collection that returns
latest and inquiry related online resources based on peer-reviewed publications. But
OReFiL not only focuses on the collection of online tools, but also includes all
online resources which is relevant for a certain keyword. In addition, some of the

https://omictools.com/
http://orefil.dbcls.jp/
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returned resources either lack an accurate title, description, or contain unrelated
items. Another problem is that OReFiL cannot return all resources related to the
search term. Taking “miRNA” as an example, the search results are limited to 500,
and many items not related to miRNA are returned, some of which even link to PNG
images that have nothing to do with miRNA (Yamamoto and Takagi 2007).

JIBtools (https://jib.tools) is a collection of tools lists curated by a specific editor
who is responsible for a specific expert field (Hofestädt et al. 2013). This approach
depends largely on the singleton’s motivation to provide and update the list of tools.

Bio.tools (https://bio.tools) provides a manually curated list of online resources.
Any researcher is able to register to the website and is allowed to add extra entries
(Ison et al. 2015). However, no automatic workflow of this process is included,
and the registration process is quite complex, as many different key terms must be
registered into the system.

Another biological data repository for researchers which have to be mentioned
is Re3data (Pampel et al. 2013) (http://re3data.org). Re3data is a comprehensive
collection of biological data repositories available through Internet, which lists more
than 1500 research data repositories. It also supports browsing by subject, content
type and country, and offers an API for researchers. However, the stability of the
website is insufficient, and it is easy to freeze when users search for biological
resources.

Biosharing (McQuilton et al. 2016) (https://biosharing.org) is another repository
on interconnected data standards, databases, and policies. It consists of 671 data
standards, 831 databases and 85 policies, and visualized them with different label.
On the other hand, biosharing only showed these data in static pages, which makes
user hard to analyze the trend of biological data sources because of a lack of
temporally and spatially dynamic module.

Database Commons (https://bigd.big.ac.cn/databasecommons) is a catalog only
for biological databases. It allows users to easily access a comprehensive collection
of public biological databases containing different data types and across different
organisms. However, it only collects databases and does not provide tool indexes.

Moreover, none of them provide the opportunity to visualize the geographical
locations of the database- or tool-institutes. However, a vast number of geographic
information-related methods in other fields exist nowadays, which are making use of
the underlying Google Maps API to visualize specific scientific aspects in relation to
their geographical location. One recent example: it was used to provide geographic
information concerning the health status of the Great Barrier Reef (Nim et al. 2015).
Under such considerations, we developed DaTo, an automatic approach to collect,
curate and index through a large collection of different databases and tools.

Comparing to other platform, DaTo adds a brand new dimension to the analysis
and visualization of important online biological resources. By using a Google
Maps based approach, online resources can be localized to specific countries, cities
even institutes. Therefore, it is possible to figure out which research-related online
resources are geographically close to the home institutes, along with which online
resources are well developed or maintained at a certain university and which ones
might have to be extended in the future. Also, it is possible to located cooperation

https://jib.tools/
https://bio.tools/
http://re3data.org/
https://biosharing.org
https://bigd.big.ac.cn/databasecommons
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partners in the neighborhood, providing customized services required for local
research. Depending on the research area, it might be important to cooperate with
close-by institutions. Moreover, we have analyzed the health status of their web
links, as well as the impact of the respective publications’ journals, countries, and
years.

6.2 Methodology and Implementation

6.2.1 Data Collection

We use the keyword “HTTP/FTP” to search in the PubMed database and retrieve
the MEDLINE format results from the eultis provided by PubMed. We also
integrate other related resources, such as Bioconductor, Bioconda, GitHub, as well
as subscriptions to journals such as Bioinformatics, Nucleic acids research and
Database to enlarge DaTo. Finally, there are 36,639 records in DaTo ranging from
1982 to 2020.

In-house scripts are applied to get the structured data from MEDLINE format
results. And we used Europe PMC (https://europepmc.org/) to get the text-mined
terms like chemical, organism if full text is available in Europe PMC. We got
the normalized authors and institutions from Web of Science, mapped the authors
to MAG (https://academic.microsoft.com/) to get each unique author identifier,
mapped the institutions to Global Research Identifier Database (https://www.grid.
ac/) to catalog the research organizations. The citation counts where self-citing is
removed were also retrieved from Web of Science. URL domain information was
parsed to generate sub-features; for example, IP address, location. Then keyword
matching strategy was used to tag articles as tools, databases or web-servers and we
got the language content of tools in the similar way. The final structured data are
deposited into MongoDB and we plan to update DaTo regularly.

6.2.2 Implementation

DaTo has been keeping updating with state-of-art methods and technologies to
improve the user experience. The methods and techniques that used in this version
are listed in the following table (Table 6.2).

DaTo features a user-friendly query interface, providing comprehensive annota-
tions for each result, such as the description of the resources, the abstract of the
original literature, the link to the corresponding PubMed entries and corresponding
webpage (Fig. 6.1). DaTo provides a user-friendly search interface and multilayer
annotations for each result, such as resource descriptions, original document
abstracts, corresponding PubMed entries, and links to corresponding website.

https://europepmc.org/
https://academic.microsoft.com/
https://www.grid.ac/
https://www.grid.ac/
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Table 6.2 Technologies used in each part of DaTo

Part Name Link

Web Front React
Next.js
D3.js
Vis.js
deck.gl
Leaflet
Highcharts

https://github.com/facebook/react
https://nextjs.org
https://d3js.org
https://visjs.org
https://deck.gl
https://leafletjs.com
https://www.highcharts.com/

Database MongoDB
Elasticsearch
Neo4j

https://www.mongodb.com
https://www.elastic.co
https://neo4j.com

NER bioNerDS
BERT

http://bionerds.sourceforge.net
https://github.com/google-research/bert

Fig. 6.1 DaTo web interface. On this home page, multiple quick entries like “advanced search”
are provided to facilitate users to easily find the information they are interested in

6.3 Functionality and Usage

6.3.1 Geographic Location

A graphical interaction network browser has been embedded into DaTo web front-
end, which enables researchers to explore of the connection between the tools and
databases based on the similarity of MeSH term. To facilitate effectively investigate
the international geographic distribution of the hosts and to allow users to intuitively
and accurately perceive geographic locations, we tracked the affiliation of all first

https://github.com/facebook/react
https://nextjs.org/
https://d3js.org/
https://visjs.org/
https://deck.gl/
https://leafletjs.com/
https://leafletjs.com/
https://www.mongodb.com/
https://www.elastic.co/
https://neo4j.com/
http://bionerds.sourceforge.net/
https://github.com/google-research/bert
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Fig. 6.2 Advanced search with search builder, the demo shows the search category as ncRNA,
and the abstract contains the keywords of circRNA or circular RNA

authors and website IP addresses to reveal their location: area code, city, latitude,
longitude, ISP and organization as well as country code and country name. DaTo
adopts IP2Location for the geographic location of the URLs and Google Map API
to display them. And the search results will be displayed on the leaflet map to show
the geographic location of each record (Fig. 6.2).

6.3.2 Search Builder

We provide a range of filtering features, such as time, record type or journal name.
Search results are sorted in three ways, “Highest Score,” “Recently Publicated,” and
“Best Match” in default (Fig. 6.3).
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Fig. 6.3 Search Interface

6.3.2.1 Network Section

By analyzing the connection between authors and institutes around the world, we
developed a graph database which composed of author, institute, journal, and their
relationship. As of January 1, 2021, DaTo contains 35,221 papers published by
4905 research institutes from 83 countries and regions. This allows users to easily
explore the cooperation of author–author, author–institute, institute–institute, and
global cooperation trends. A demo usage of network section Cooperation between
Bielefeld University and Zhejiang University (Fig. 6.4).

6.3.2.2 Statistics Section

Statistics consists of two parts: basic statistics and playground. We provide a series
of information, such as the change in the number of publications over time, the pub-
lication status of various countries, etc. The distribution of bioinformatics resources
globally over time can help researchers to analyze the historical development of
bioinformatics databases and tools from geographical perspective. It is September
1, 1994, the first biological host appeared in Italy (Pongor et al. 1994). By 2000, the
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Fig. 6.4 Cooperation between Bielefeld University and Zhejiang University

Fig. 6.5 Statistics review

amount of biological online resources had increased more than 800, with hosts all
over North America, Europe, and East Asia. In the new century, biological databases
and tools have developed rapidly, especially in emerging countries such as China,
Russia, India, Brazil, and South Africa. Currently, biological resource hosts are
distributed on six continents, most of which are located in the United States and
the European Union (Fig. 6.5).
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Fig. 6.6 The web portal OverCOVID

6.3.2.3 OverCOVID

The web portal OverCOVID (Ahsan et al. 2021a) is provided to share bioinformatics
resources and information that may contribute to research advances (Fig. 6.6).
Based on the collected databases, relationships and/or associations can be identified.
For instance, Virus–Host Protein Interactions, Human Protein–Protein Interactions,
ncRNA-associated Interactions, Drug–Target or Drug–Protein or Drug–Gene Inter-
actions, and Drug Side Effects (Ahsan et al. 2021b).

6.4 Conclusion

Nowadays, biological sciences are generating more data than ever. Through con-
tinuous data accumulation and technology upgrading, we have made DaTo, a
comprehensive and efficient online resource for biological researchers. As a con-
stantly updated database, DaTo not only focuses on collecting bioinformatics
resources, but also system analysis of the bioinformatics resources, which is much
valuable for both experimental biologists and computational biologists. Through the
tracking information and meta-information provided by this atlas, DaTo constructed
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a storyboard of published biological databases and tools. Besides, a specific
collection of biological databases and tools can be generated like OverCOVID due
to modularization and precise classification of DaTo, we believe this will have more
extensions in the future.
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Chapter 7
The Use of Data Integration
and Knowledge Graphs in Modern
Molecular Plant Breeding

Bjoern Oest Hansen, Jan Taubert, and Thomas Thiel

Abstract Feeding nearly ten billion people by 2050 requires a year-on-year yield
increase of major field crops of about 1–2%, while arable land will likely decrease
due to urbanization and climate change. On the other hand, developing a new
crop variety traditionally can take up to 10–12 years. To speed up molecular
breeding new ways of harnessing breeding information, including state-of-the-art
statistical methods and predicting candidate genes as targets for breeding from
massive amounts of data are required. As most of the necessary data is still buried
in thousands of public and proprietary databases, siloed in legacy systems or can
only be found in spreadsheets, novel approaches in data integration to overcome
these challenges are needed. Here we describe our approach of using workflow-
driven data integration and knowledge graphs in an industrial application at one of
the world’s leading plant breeding companies.

We adopt state-of-the-art statistical approaches for plant breeding and apply
them on public and in-house generated and expert-curated data from different data
domains that date back to more than a decade. For this we use a customized instance
of the open-source Galaxy computational platform and analyze breeding data in a
workflow-driven approach. We also shed some light on the challenges of in-house
deployment of open-source tools in an industrial application, as well as ensuring
software quality and coding standards for own developments.

We apply knowledge graphs in knowledge discovery use-cases to show some
benefits of handling ontology-enriched in-house data as a structured graph. Here it
is possible to extract information related to connections, communities in the data,
infer new edges, or look for complex patterns across the graph and to perform tasks
that would have been highly complex and time consuming on a silo-based data
information system.

Nevertheless, the challenge of ever-increasing data in breeding information
remains and necessitates the combination of different approaches to continuously
drive value from data.
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7.1 Introduction

Ensuring sustainable food supply for an increasing world population of nearly
ten billion people by 2050 (see United Nations, Department of Economic and
Social Affairs, https://www.un.org/development/desa/en/news/population/world-
population-prospects-2019.html) requires significant progress in plant breeding and
farming practices across the whole world. Climate change and the scarcity of arable
land are set to impact food production in the foreseeable future. As part of the EU
Green Deal, the Farm to Fork strategy sets out ambitious goals for agriculture in
the coming years. These goals (see European Commission, Farm to Fork Strategy
Action Plan 2020, https://ec.europa.eu/food/sites/food/files/safety/docs/f2f_action-
plan_2020_strategy-info_en.pdf) include a reduction in the use of chemical plant
protection by 50%, a reduction in the use of fertilizers by 20%, and the use of
organic farming practices on at least 30% of farmland in the EU by 2030. On the
other hand, developing a new crop variety traditionally can take up to 10–12 years.

To speed up plant breeding with the use of molecular technologies, new ways of
harnessing breeding information, including state-of-the-art statistical methods and
predicting candidate genes as targets for breeding from massive amounts of data
are required. As most of the necessary data is still buried in thousands of public and
proprietary databases, siloed in legacy systems or can only be found in spreadsheets,
novel approaches in data integration to overcome these challenges are needed. Here
we describe our approach of using workflow-driven data integration and knowledge
graphs in an industrial application at one of the world’s leading plant breeding
companies KWS (see Box 7.1).

We adopt state-of-the-art statistical approaches for plant breeding and apply
them to public and in-house generated and expert-curated data from different data
domains that date back to more than a decade. For this we use a customized instance
of the open-source Galaxy (Blankenberg et al. 2010) computational platform and
analyze breeding data in a workflow-driven approach. The use of open-source
software in the industry requires paying attention to the associated license terms and
how such software is integrated into an industry application context. Furthermore,
to ensure a high quality of own developed functionality a staged code quality and
release process has been implemented with the goal to ensure high productivity in
routine data analysis applications.

The challenges of integrating data across different types, from different years and
different domains (e.g., genotypic, and phenotypic data) can then be addressed using
workflows in Galaxy. Proprietary tools providing data from several in-house data

https://www.un.org/development/desa/en/news/population/world-population-prospects-2019.html
https://www.un.org/development/desa/en/news/population/world-population-prospects-2019.html
https://ec.europa.eu/food/sites/food/files/safety/docs/f2f_action-plan_2020_strategy-info_en.pdf
https://ec.europa.eu/food/sites/food/files/safety/docs/f2f_action-plan_2020_strategy-info_en.pdf
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silos, together with applying public analysis tools are demonstrated in a genome-
wide association study (GWAS) use case. Furthermore, the results of the GWAS
study can be embedded in a wider context using data from a knowledge graph
database.

Graphs are among the most flexible formats for a data structure. In a graph,
information is described as a network of nodes and links between them, rather than
tables with rows and columns. Both the nodes and edges can also have attributes
assigned to them. Graph-based systems are easier to expand, as their schemas are
not as strict as classical relational databases. In knowledge discovery research, this
is a huge advantage. The term Knowledge graph was coined by Google in 2012,
even though the topic itself has been around for longer. Though there is no formal
definition of a knowledge graph, it is often described as a semantically enriched
graph, supported by ontologies for standardizing the semantics. This allows for
machine-readable meaning to be integrated with the data. By handling data as a
structured graph, other benefits appear, it is possible to extract information related to
connections, communities in the data, infer new edges, or look for complex patterns
across the graph. It also becomes possible to perform tasks that would have been
highly complex and time consuming on a silo-based data information system.

This combination of highly automated workflow-driven processing of genotypic
and phenotypic data in plant breeding applications combined with a flexible
exploration of the surrounding context of such results using knowledge graphs is
supporting the decision-making of breeders at KWS. With better decision-making,
plant breeding can improve the genetic potential of all crops to tackle the challenges
of climate change, reduction of inputs, zero(low) chem ag and organic farming
practices with the goal to provide the best seeds to our customers, the farmers.

Box 7.1 About KWS
About KWS

KWS is one of the world’s leading plant breeding companies. With the
tradition of family ownership, KWS has operated independently for more than
160 years. It focuses on plant breeding and the production and sale of seed for
corn, sugar beet, cereals, potato, rapeseed, sunflowers, and vegetables. KWS
breeding programs aim to offer every farmer—whether they use conventional
or organic farming methods—targeted varieties and solutions to fit their
operational needs, while also optimally tailored to the climatic conditions and
specific geological conditions of their respective regions. This is the basis for
efficient and productive agriculture. KWS uses leading-edge plant breeding
methods. 5700 employees represent KWS in more than 70 countries.

Source: https://www.kws.com

https://www.kws.com
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7.2 Methods and Implementation

7.2.1 Deploying the Galaxy System in an Industry Application
Context

The open-source Galaxy system developed by the Galaxy Project (Blankenberg
et al. 2010, https://galaxyproject.org/) is a web-based platform for accessible,
reproducible, and transparent computational research. The software is licensed (see
https://galaxyproject.org/admin/license/) under the Academic Free License version
3.0 and images and documentation are licensed under the Creative Commons
Attribution 3.0 (CC BY 3.0) License, which in principle allows deploying the
Galaxy system in an industry application context (see Sect. 7.2.2). The Galaxy
Project is supported in part by NSF, NHGRI, The Huck Institutes of the Life Sci-
ences, The Institute for CyberScience at Penn State, and Johns Hopkins University.
According to the Galaxy Project website (accessed January 2021) the Galaxy system
is characterized by:

• Accessible: programming experience is not required to easily upload data, run
complex tools and workflows, and visualize results.

• Reproducible: Galaxy captures information so that you do not have to; any
user can repeat and understand a complete computational analysis, from tool
parameters to the dependency tree.

• Transparent: Users share and publish their histories, workflows, and visualiza-
tions via the web.

• Community centered: Our inclusive and diverse users (developers, educators,
researchers, clinicians, etc.) are empowered to share their findings.

The Galaxy system (Blankenberg et al. 2010) is publicly available at https://
usegalaxy.org. As an important free and publicly accessible resource, it cannot
offer encrypted data transfer and data storage and scalability. For most applications
in an industry context, data integrity, data security and know-how protection are
major concerns. Therefore, the preferred way would be to run your own Galaxy
instance either on-premises or in your private cloud environment. This provides
additional possibilities of closely integrating the Galaxy system with other in-house
data resources, compute environments and storage systems.

Depending on the importance of the Galaxy system for data analysis needs at
the company and resulting requirements to provide the system as a service to users,
a more sophisticated setup than a single Galaxy system instance can be chosen.
From our experience deploying the Galaxy system in an industry application context
at a major plant breeding company, we recommend a setup that involves three
Galaxy instances (Table 7.1): A test instance serves mainly for early testing by
in-house users as well as the establishment and fine-tuning of Galaxy workflows.
The productive Galaxy instance hosts tools and workflows suitable for routine
operation with respect to fault tolerance and performance optimization. A third

https://galaxyproject.org/
https://galaxyproject.org/admin/license/
https://usegalaxy.org
https://usegalaxy.org
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Table 7.1 Recommended setup with three Galaxy instances

ID Description Users Features Updates

dev Galaxy
development
system to follow
main Galaxy
branch closely and
test/develop new
Galaxy platform
features

Galaxy in-house
infrastructure team
and some script
developers

All required Galaxy
tools installed,
following the latest
tool versions,
possibly local new
tool development

Very frequently, all
Galaxy releases

test Galaxy test system
for Galaxy tools,
not for testing
Galaxy platform
features

Above and certain
Galaxy test users

All required Galaxy
tools installed via
Galaxy tool-shed,
usually latest tool
versions

Frequently, might
skip minor releases

prod Galaxy production
system for routine
high-performance
data analysis
workflows

All Galaxy users Stable versions of
required Galaxy
tools for productive
workflows installed
via tool-shed,
availability
monitoring

Only major
releases,
maintenance
window for updates

Table 7.2 Categories of development related to the Galaxy system

Category Examples Contributors Distribution

Galaxy platform Add new
authentication
mechanisms to Galaxy
(e.g., OKTA), add
more interfaces to
compute cluster (e.g.,
IBM LSF)

Galaxy in-house
infrastructure team and
community developers

Submission to main
Galaxy branch after
community review

Public tools Fixes to publicly
available Galaxy tools
(public tool-shed)

Script developers
(internal and external)

In accordance with
public tool owner

Proprietary tools Specific tools for
routine data analysis
workflows (e.g.,
genomic selection)

Internal script
developers (e.g.,
Biostatisticians)

Non-public, company
confidential

Galaxy instance (Galaxy dev) serves for testing new Galaxy releases and in-house
tool development.

As the Galaxy platform supports the management and installation of Galaxy tools
via the Galaxy tool-shed, a local tool-shed instance is used to provide proprietary
tools to the Galaxy instances. The Galaxy public tool-sheds are integrated to use
and update publicly available tools for Galaxy. This allows for the clear separation
of development in three major categories, see Table 7.2.
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Another advantage of using a local tool-shed is the integration possibility into
continuous code integration and deployment pipelines (CI/CD). Modern source
code management platforms, like GitLab (see https://about.gitlab.com/) facilitate
the setup of CI/CD pipelines which upon code submission to a tool repository
manage the assembly, testing and deployment of changes to proprietary Galaxy
tools to in-house Galaxy instances via the Galaxy tool-shed automatically. This
automation ensures a high quality of the tools by performing unit testing and
integration testing, as well as convenience for the script developers, which do
not have to manually deploy tools to the Galaxy instances anymore. Provision of
multiple Galaxy instances with different levels of productivity allows fine-tuning
of CI/CD pipelines with respect to code quality and release speed for in-house
Galaxy tool developments. Overall, this approach results in quality improvements,
time savings and faster availability of features for the users of routine data analysis
workflows (Fig. 7.1).

To be able to scale routine data analysis to multiple compute nodes beside
the main Galaxy instance, a high-performance compute cluster is used. Galaxy
schedules the jobs and submits these into different queues of the cluster. The cluster
queue is determined by which tool should be run. For new tools, this mapping will
be updated once a tool is in production usage. Factors like the number of CPUs
or memory used on average by the tool will determine which queue it will be
assigned to. For low memory consuming and quick running tools, e.g., data upload,
a queue with a high priority is used so that the user will get tool run results almost
immediately. For long running and high memory consuming tools, a lower priority
queue is chosen, so that the impact of these long analyses on the overall Galaxy
performance is mitigated. However, the users are made aware that such analysis
might not finish when expected depending on the average cluster load. To achieve
transparency, the status of the compute cluster is reported to the users on the Galaxy
starting page (Fig. 7.2).

As an open-source software, the development of Galaxy largely depends on an
active Galaxy community. To follow the latest developments timely, we also actively
participate in the development of the Galaxy platform by submitting work items
(“issues”) for the public Galaxy repository, which are then being integrated into
future Galaxy versions. Additionally, we contribute with own code submissions to
the general Galaxy platform (Afgan et al. 2018).

7.2.2 Implications of Open-Source Licenses on the Use
of Open-Source Software in the Industry

The use of free and open-source software (FOSS) in the industry is steadily increas-
ing, driven not just by in most cases the absence of a license fee, but also by the
highly innovative character of some FOSS products and packages, especially when
it comes to addressing scientific challenges. However, besides these advantages

https://about.gitlab.com/
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Fig. 7.1 Overview of components of an example on-premises Galaxy deployment
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Enough capacity

HPC Nodes available

Normal

HPC CPU capacity HPC memory available HPC GPU capacity

Enough CapacityLow Capacity

Fig. 7.2 Grafana-based reporting of HPC resources on local Galaxy starting page

there might come some pitfalls with associate open-source licenses, which need to
be looked at closely. The Open-Source Initiative (OSI, https://opensource.org/) lists
at least 104 OSI approved licenses, which might exist in different versions, qualities
or have even been already retired. An open-source license ensures not just access
to the source code, but in most cases also the free redistribution of the program,
rules concerning derived work, proper acknowledgment of the code authors, some
limitation of liability and the further distribution of the license itself. Here different
license types include different rights and duties.

As a rule of thumb, just using unmodified FOSS programs in most cases can be
seen as uncritical in industry, except for programs with licenses like GNU Affero
General Public License (AGPL) or licenses explicitly restricting commercial use.
Attention needs to be paid when modifying or further distributing FOSS programs
with certain licenses, especially those with “Copyleft” clauses. As the GNU project
supported by the Free Software Foundation states (https://www.gnu.org/licenses/
copyleft.en.html): “Copyleft is a general method for making a program (or other
work) free (in the sense of freedom, not “zero price”), and requiring all modified
and extended versions of the program to be free as well.” Such requirement can in
some cases develop a viral character on additions made to FOSS programs and in
the case of some licenses even on patents held by a company.

As know-how and intellectual property protection is a major concern in most
industry, such cases need to be dealt with great care and attention. One prominent
example is the violation of the GNU GPL license of the Linux kernel as part of
the FRITZ!Box router operation system by AVM (https://avm.de) in 2011, which
led to a lawsuit and finally to the distribution of AVM modifications under the
same license conditions (see https://fsfe.org/activities/avm-gpl-violation/avm-gpl-
violation.en.html). In this case, competitors of AVM could have benefitted from
insights gained from the released source code.

Table 7.3 gives without any warranty of correctness or liability some examples
of open-source licenses together with a “traffic light” indication of the perceived
criticality of their usage in industry. In any case, it is advisable to get an expert
opinion on the legal implications of each license in combination with the intended
use. In general, to avoid possible future complications with open-source licenses in
industry applications try avoiding strong Copyleft licenses (e.g., AGPL, GPL). If at
all necessary, use unmodified libraries and executables called via “exec” or “fork”
in the case of GPL, which are not distributed or bundled together with an industry
application. In some cases, it is also possible that FOSS is available under different

https://opensource.org/
https://www.gnu.org/licenses/copyleft.en.html
https://www.gnu.org/licenses/copyleft.en.html
https://avm.de
https://fsfe.org/activities/avm-gpl-violation/avm-gpl-violation.en.html
https://fsfe.org/activities/avm-gpl-violation/avm-gpl-violation.en.html
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Table 7.3 Examples of open-source licenses

Identifier Name Link Usage

AFL 3.0 Academic Free License https://opensource.org/
licenses/AFL-3.0

Ok

AGPL v3 GNU Affero General
Public License

https://opensource.org/
licenses/AGPL-3.0

Critical

Apache 2.0 Apache License by
Apache Software
Foundation

https://opensource.org/
licenses/Apache-2.0

Ok

BSD Berkeley Software
Distribution (3-clause)

https://opensource.org/
licenses/BSD-3-Clause

Ok

CC0 Zero/public domain https://
creativecommons.org/
share-your-work/public-
domain/cc0/

Ok

CC-BY-NC Creative Commons (CC) https://
creativecommons.org/
licenses/by-nc/3.0/de/

Check

EPL Eclipse Public License https://opensource.org/
licenses/EPL-2.0

Check

FreeBSD FreeBSD License (BSD
2-clause)

https://opensource.org/
licenses/BSD-2-Clause

Ok

GPLv2 GNU General Public
License

https://opensource.org/
licenses/GPL-2.0

Check

GPLv3 GNU General Public
License

https://opensource.org/
licenses/GPL-3.0

Check

IPL IBM Public License https://opensource.org/
licenses/IPL-1.0

Check

ISC Internet Software
Consortium

https://opensource.org/
licenses/ISC

Ok

LGPL v2 GNU Lesser General
Public License

https://opensource.org/
licenses/LGPL-2.0

Check

LGPL v3 GNU Lesser General
Public License

https://opensource.org/
licenses/LGPL-3.0

Check

MIT MIT License by
Massachusetts Institute
of Technology

https://opensource.org/
licenses/MIT

Ok

MPL Mozilla Public License https://opensource.org/
licenses/MPL-2.0

Check

Ruby Ruby License https://www.ruby-lang.
org/en/about/license.txt

Ok

licenses, here choose the less restrictive one, e.g., LGPL vs. GPL. For compliance
reasons, it is also advisable to document the use of open-source licenses in industrial
software applications. License finder tools exist (e.g., https://github.com/pivotal/
LicenseFinder), which can be integrated into a continuous software build process
to identify the licenses of the used software libraries.
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https://opensource.org/licenses/AFL-3.0
https://opensource.org/licenses/AGPL-3.0
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https://opensource.org/licenses/Apache-2.0
https://opensource.org/licenses/BSD-3-Clause
https://opensource.org/licenses/BSD-3-Clause
https://creativecommons.org/share-your-work/public-domain/cc0/
https://creativecommons.org/share-your-work/public-domain/cc0/
https://creativecommons.org/share-your-work/public-domain/cc0/
https://creativecommons.org/share-your-work/public-domain/cc0/
https://creativecommons.org/licenses/by-nc/3.0/de/
https://creativecommons.org/licenses/by-nc/3.0/de/
https://creativecommons.org/licenses/by-nc/3.0/de/
https://opensource.org/licenses/EPL-2.0
https://opensource.org/licenses/EPL-2.0
https://opensource.org/licenses/BSD-2-Clause
https://opensource.org/licenses/BSD-2-Clause
https://opensource.org/licenses/GPL-2.0
https://opensource.org/licenses/GPL-2.0
https://opensource.org/licenses/GPL-3.0
https://opensource.org/licenses/GPL-3.0
https://opensource.org/licenses/IPL-1.0
https://opensource.org/licenses/IPL-1.0
https://opensource.org/licenses/ISC
https://opensource.org/licenses/ISC
https://opensource.org/licenses/LGPL-2.0
https://opensource.org/licenses/LGPL-2.0
https://opensource.org/licenses/LGPL-3.0
https://opensource.org/licenses/LGPL-3.0
https://opensource.org/licenses/MIT
https://opensource.org/licenses/MIT
https://opensource.org/licenses/MPL-2.0
https://opensource.org/licenses/MPL-2.0
https://www.ruby-lang.org/en/about/license.txt
https://www.ruby-lang.org/en/about/license.txt
https://github.com/pivotal/LicenseFinder
https://github.com/pivotal/LicenseFinder
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Nevertheless, one of the original intentions of open-source licenses was that
contributions by other parties help to improve the software overall for every user
of the software. This principle should still be upheld even when FOSS is used in
industry applications. Also, with industry application development it is possible
to contribute to say more general features of a particular FOSS program, which
do not constitute a competitive advantage and could be released to the general
public. However, it is advisable to check the effort required and the acceptance
of industry contributions to a particular FOSS program before contributing source
code back to the original project. There are many examples of large companies like
IBM, Google, Facebook, and many others making extensive contributions to FOSS
packages. Advantages of contributing directly to FOSS packages include industry
requirements becoming part of main FOSS releases and thus updates of FOSS
packages require fewer modifications when deployed for industry applications.

7.2.3 Ensuring Software Quality and Code Standards for
In-House Galaxy Tool Development

For highly productive data analysis workflows within the Galaxy system, it is
important to ensure a high level of software quality and code standards for in-
house developed functionality. Such functionality might not always be developed
by professional software engineers, but also by biostatisticians, bioinformaticians,
researchers, or even breeders themselves. This diversity of potential sources of
customs tools to be integrated into the Galaxy system made it necessary to define a
common set of rules or guidelines to which software quality adheres to:

• Increased process security (e.g., correct interpretation of analysis results).
• Similar end-user experience across several tools.
• Easy code transition between different developers (similar code structure, docu-

mentation, examples, and tests).
• Easier and faster to extend or refactor.
• Lower technical debt.

Basically, there are three code quality levels as part of these guidelines proposed
(Table 7.4), which increase in requirements needed to be fulfilled by the respective
software tool. Only tools with code quality level 1 (in some cases) and code quality
level 2 (usually) should be considered for integration into the Galaxy system.
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Table 7.4 Proposal of three levels of code quality

Level Developers Usage Requirements

0 Only yourself Prototypic, experimental,
maybe throw-away code
for one-time use

No recommendations

1 More than one developer Tool used on a regular
basis (more than once a
week)
Used by a low number of
other users

Clear code structure and
use of version control
system
Documentation of
functions and potentially
associated files
Contains minimal working
examples
Passes Galaxy integration
tests
Preliminary performance
evaluation

2 More than one developer
and user support / software
stewardship

An integral part of
productive workflows for
many users
At least one other
application relies on the
correct operation

Standardized code
structure which adheres to
code style and/or templates
Use of version control with
CI/CD pipelines for
Galaxy integration
Documentation of the tool
in a standard format
(including external
packages)
Unit tests and integration
tests with high coverage as
part of CI/CD pipelines
Realistic performance data
for a variety of use-cases
and test data

Only tools with code quality level 2 should be deployed to Galaxy productive
instances (see Sect. 7.2.1). Tools with code quality level 1 can be deployed to Galaxy
test instances for a limited number of users.

7.2.4 Ontologies for Structuring and Representing
of Biological Knowledge

Ontologies are a framework for representing knowledge across a domain, in a format
that is shareable and reusable. The goal is to provide standardization and structure,
however standardization of terms in a domain is not enough for a successful
ontology, adaptation is as important. One popular language for defining ontologies is
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the Web Ontology Language (OWL, McGuinness and Van Harmelen 2004), which
is built upon the resource description framework (RDF, Lassila and Swick 1998).

In the life science area, the “The Open Biological and Biomedical Ontologies
(OBO) Foundry” (Smith et al. 2007) is a group of people working together to
develop and maintain ontologies related to the field. They define principles for
ontology development. More than 150 ontologies follow their guidelines.

In agribusiness, some of the important ones are the Agronomy Ontology (Jonquet
et al. 2018), Plant Ontology (Bruskiewich et al. 2002, www.plantontology.org),
Gene Ontology (Ashburner et al. 2000, www.geneontology.org), Crop Ontology
(Shrestha et al. 2012, www.cropontology.org), Environment Ontology (Buttigieg
et al. 2013, www.environmentontology.org) and Plant Trait Ontology (Arnaud et
al. 2012, www.planteome.org). It is important to understand the structure of the
ontology when working with it, for example the Gene Ontology, which is developed
to describe the function of a gene product and contains three distinct graphs,
one for functional domain: Cellular Component (where in the cell is the gene
product active), Molecular Function (what is the specific function of the gene
product), Biological Process (in what process is the gene product active). All of
them are Directed Acyclic Graphs (DAG), which means that the edges in the
graph have a direction, but there are no cycles: the direction is always one way.
Standardized schemas are recommended whenever possible. Schema.org and in this
case bioschemas.org would be a good place to start.

The relationships of ontological terms also encode knowledge, and they contain
rules on how to traverse the relationships, for example on a hieratical structure it is
possible to apply the “true path” rule, meaning that if something is annotated with a
child term, all the parent terms are also implicit assigned. This could for example be
if you have taken a sample from “vascular leaf,” then you have indirectly also taken
a sample from “leaf.” This can be utilized when integrating data on multiple levels,
for example, one dataset is measured in vascular_leaf “PO_0009025” and the other
with leaf “PO_0025034”, one can easily identify that vascular_leaf is a subterm of
leaf and you can generalize to the nearest common ancestor. The same would be
if we were to integrate non_vascular_leaf and vascular_leaf, the nearest common
also be leaf, an example of this structure can be seen in Fig 7.3.

7.2.5 Using Knowledge Graphs for Linking Information
Together

Recently another method for data integration has gained popularity, the knowledge
graph. Have you ever asked a question on Google? Or used Alexa, SIRI, or Cortana?
Then you most likely have been taking advantage of a knowledge graph, maybe
without even knowing. The concept has existed since the 1980s but got traction
when Google introduced their Knowledge Graph in a blog post in 2012. They
described it as “ . . . we’ve been working on an intelligent model — in geek-speak,
a ‘graph’ — that understands real-world entities and their relationships to one
another: things, not strings.”.

http://www.plantontology.org
http://www.geneontology.org
http://www.cropontology.org
http://www.environmentontology.org
http://www.planteome.org
http://schema.org
http://bioschemas.org
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A graph or a network as it is often called when referring to the practical use like
social networks, or information networks, is a representation of data as entities with
connections between them. In mathematical terms, an entity is a node or vertex,
and a connection is an edge. A collection of nodes or vertices V together with a
collection of edges E form a graph G = (V, E).

Graphs can be directed or undirected, for example, a network representing the co-
occurrence of proteins in a cell is undirected, whereas a social network like Twitter
is directed since the following is not reciprocal. The edges can also be unweighted
or weighted, meaning that each edge has a weight assigned based on its importance.

Graphs are often visualized by drawing a point or circle for every vertex and
drawing a line between two vertices if they are connected by an edge. If the graph
is directed, the direction is indicated by drawing an arrow. Likewise, the weight
of the edge is often represented by the thickness of the line between the vertices.
Graphs allow the mathematical field of graph theory to be used when analyzing
them. This could, for example, be looking at the number of connections for a node
also known as the degree, or finding the shortest path between two nodes. Googles
build their business around their Page Rank algorithm (Page et al. 1999), which
identifies important websites among a network of websites linking to each other,
which could also be seen as identifying the importance of a node based on its
connections.

Emerging in the area of semantic web knowledge graphs are now seen
widespread usage across many fields. There is no formal definition of a knowledge
graph, though attempts have been made, one is by Ehrlinger and Wöß (2016), which
define “A knowledge graph acquires and integrates information into an ontology
and applies a reasoner to derive new knowledge.”; others are less strict and consider
everything that is semantically connected in a graph to be a knowledge graph (Fig.
7.3).

A knowledge graph is a representation of a knowledge domain and its logic, using
a graph. It can be seen as a network of nodes of information and edges connecting
them instead of tables with rows and columns. By that, people and machines can
benefit from a dynamically growing semantic network of facts about things and can
use it for data integration, knowledge discovery, and in-depth analyses.

It allows companies and research institutes to utilize knowledge more efficiently.
In the industry, the enterprise knowledge graph is nothing more than a graph
containing a precise model of business processes, with which relevant questions,
facts, and events can be analyzed more quickly. Adding more information to
a knowledge graph increases its value. A lot of the work originated based on
the semantic web idea (Berners-Lee et al. 2001) of creating computer readable
connections between data on the internet. A human being can easily distinguish
how a hyperlink relates on page with another, and what the reason for the link
is, a computer cannot as easily do this. To deal with this a set of specifications
that are widely used also within knowledge graphs were developed, including the
Resource Description Framework (RDF) Core Model, the RDF Schema language
(RDF schema), the Web Ontology Language (OWL) and last the SPAQRL query
language to query data in RDF format.
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Fig. 7.3 Example of the direct children and ancestors of the ontological term “Leaf”

7.2.6 Representing Data in a Structured Format

Relational databases have been the de-facto industry standard for storing data since
the 1960s. They store structured data in tables with defined columns and rows
containing this data. RDBMS requires users to adhere to a schema of the data and
structure their data and applications according to this.

Graphs are among the most flexible formats for data structure. In a graph,
information is described as a network of nodes and links between them, rather than
tables with rows and columns. Both the nodes and edges can also have attributes
assigned to them. Graph-based systems are easier to expand, as they often are
schemeless. It is still recommended to adhere to a schema, but it gives the flexibility
of extending the schema when new data or connections arrive. There is usually
not an optimal way of best modeling your data, it all depends on your question.
Therefore, one should be prepared to evolve the data schema as the data and
experience evolve.

Data can be modeled as graphs in multiple ways. One approach is to use the
RDF standard. RDF stands for Resource Description Framework and it is a W3C
standard for data exchange in the Web and is built using the existing web standards
of XML and URI. It is used for describing data using relationships between objects.
RDF connects data as triples, a triple is a statement about data consisting of three
parts, the subject, predicate, and object. An example could be the Cellulose synthase
A catalytic subunit 8 from the plant Arabidopsis thaliana, it has the id Q8LPK5 in
the Uniprot (UniProt Consortium 2019) protein database. Uniprot offers API access
to their data as triples. The connection between Q8LPK5 and Arabidopsis could be
represented as
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<http://purl.uniprot.org/uniprot/Q8LPK5>
<http://purl.uniprot.org/core/organism>
<http://purl.uniprot.org/taxonomy/3702>

The predicate in this case is from the Uniprot internal schema and is of the type
organism. The definition of organism in this case is “The organism in which a
protein occurs.” The Subject is our protein of interest, and the organism is then
defined in the Object, and is a taxonomy id referring to Arabidopsis thaliana.
Another example is

<http://purl.uniprot.org/uniprot/Q8LPK5>
<http://www.w3.org/2000/01/rdf-schema#seeAlso>
<http://rdf.ebi.ac.uk/resource/ensembl.transcript/AT4G18780.1>

Where the predicate is #seeAlso from a schema provided by W3, it links
according to the specification, a resource to another “that might provide additional
information about the subject resource.” As can be seen here, it is possible to
mix URIs from different sources, one is an internal Uniprot URI, and the other is
referring to one from W3. The URI serves to standardize the context and meaning,
by creating a schema and definition for the connections. Just because a database is
schemaless, does not mean that it should be used without schemas, it just gives the
flexibility to change and expand as needed. A good place to look for public schemas
is schema.org.

The other option for storing data in a graph, is the Labeled Property Graph (LPG),
in LPG you have a set of nodes and edges. Both nodes and edges have a unique ID
and can contain key-value pairs to characterize them.

Both are valid approaches for building a knowledge graph, and which one fits
best need to be evaluated for a given use case, based on many variables, such as
what questions we want to be able to answer, which infrastructure is available, what
do we need regarding performance and analytics capabilities. It is also important to
remember that just as not all data types fit well in relational databases, so is it also
that not all fit well in graphs, there is no one-size-fits-all solution for all needs.

7.2.7 Building Your Own Knowledge Graph

When starting to think about implementing a knowledge graph in a business, it
is important first to identify a need and what questions you want to answer, and
how they add value to the business. Then start with a minimum viable product to
demonstrate the value. Always keep stakeholders closely informed to ensure that
buy-in is created.

First step is usually to gather and process relevant datasets as well as identifying
necessary taxonomies, ontologies and controlled vocabularies that would serve best
in achieving the goal. It is beneficial in the beginning to identify datasets that do not
change often, as well as keeping size in mind. This minimizes the need to spend too

http://purl.uniprot.org/uniprot/Q8LPK5
http://purl.uniprot.org/core/organism
http://purl.uniprot.org/taxonomy/3702%3e
http://purl.uniprot.org/uniprot/Q8LPK5
http://www.w3.org/2000/01/rdf-schema#seeAlso
http://rdf.ebi.ac.uk/resource/ensembl.transcript/AT4G18780.1%3e
http://schema.org
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much effort on updating data and scaling infrastructure. Generally, start small and
then grow when enough interest and buy-in has been created, and more resources
are made available.

It is important to clean the data before uploading, remove invalid entries,
adjusting dates to be in the same format etc. Then it is time to get an overview
of your data and design your semantic data model using ontologies etc. on how to
use data together. There is no best fit all model, it all depends on the questions you
want to answer. Often the data model will evolve with your knowledge graph.

Integrate data loading with Extract Transform and Load (ETL) tools to ensure
quality and consistency when moving data from one system or format to the graph,
Generate Semantic metadata to make it easier to find, and reuse data. This usually
goes hand in hand with a strategy for FAIR data (Wilkinson et al. 2016) (see Box.
7.2).

Augment your graph via reasoning analytics and text analysis. Enrich your data
by extracting new relationships from text, apply inference algorithms to the graph
to identify hidden relationships, and extend your knowledge graph with information
from the graph itself. For example, degree or betweenness of nodes. It is also
possible to train models to evaluate if a connection is missing, or if it is added
wrong, this kind of use-case for machine learning can be beneficial especially when
manual data entry has been part of the process. In the end your graph will now
have more data than the sum of its constituent datasets. Lastly, set up procedures to
maintain and continuously load data into the graph to keep it alive.

7.2.8 Identifying Use-Cases for Applying a Knowledge
Graph-Based Approach

Identifying the ideal proof of concept use case should not be difficult, a lot of
organizations have already demonstrated the effectiveness. Some inspiration for
popular use-cases across industries

• Recommender systems: discovering related data and content.
• Semantic data catalogs: agile data integration and improving FAIRness of the

data within the organization.
• 360 views of customers, products, employees, users etc.
• Knowledge discovery: intuitive search and analytics using natural language.

One important cornerstone to identify suitable use-cases is an active survey
of potential business problems among colleagues of different areas inside your
organization. Solving these business problems should generate a certain value for
the company, which exceeds the costs of implementation of such knowledge graph.
In our experience, workshops with a good mixture of domain experts and data
experts are beneficial to identify the questions to be answered on a solid data
foundation. Agile approaches, for example Event Storming (Brandolini 2013), help
to reduce the discrepancy for a common understanding between domain experts
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and data. Factors like data availability, quality and governance are other important
factors that influence this decision. Additionally, potential use-cases could be rated
by the number of people they impact. Reaching a larger audience from the beginning
can help creating buy-in from more people as well as reaching people with novel
use-cases.

Box 7.2 FAIR Principles
What is FAIR principles?

Findable
Metadata and data should be easy to find for both humans and computers.

Machine-readable metadata are essential for automatic discovery of datasets
and services, so this is an essential component of the FAIRification process.

Accessible
Once the user finds the required data, she/he needs to know how they can

be accessed, possibly including authentication and authorization.
Interoperable
The data usually need to be integrated with other data. In addition, the data

need to interoperate with applications or workflows for analysis, storage, and
processing.

Reusable
The ultimate goal of FAIR is to optimize the reuse of data. To achieve this,

metadata and data should be well-described so that they can be replicated
and/or combined in different settings.

Source: https://www.go-fair.org/fair-principles/

7.3 Use-Cases

7.3.1 Using Galaxy Workflows for Ad-Hoc Data Analysis
on Integrated Data

Over the years, Galaxy became more and more integrated into our research software
infrastructure. We utilize specific in-house developed Galaxy tools to provide input
data from different data domains such as genetic, phenotypic, OMICs data as well
as genetic and genomic map data that are analyzed in different Galaxy workflows to
support breeding decisions. The most common datatype utilized by public Galaxy
tools is the tab-separated format. In order to use the general-purpose Galaxy tools,
but also provide certain data format constraints and rule sets for specific in-house
tools and user guidance, e.g., for workflow definition, we follow the somewhat
pragmatic approach to define in-house data types based on the Galaxy tabular data
format (see Fig. 7.4).

https://www.go-fair.org/fair-principles/
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Fig. 7.4 Example of data used in Galaxy ad-hoc integration approach

More specifically, for each input data domain further analyzed in Galaxy work-
flows, we provide custom Galaxy tools (“Get Data” tools) that serve as connectors to
other systems providing interfaces to specific integrated data. Those tools typically
serve as entry points to ad-hoc analyses as part of Galaxy workflows executed in
a self-service manner by our breeders. The output file(s) of the different Get Data
tools are based purely on the tabular Galaxy data type for the reasons mentioned
before but are specific to each data domain. This allows us to implement specific
format validators on formatting and content. Additionally, this reduces errors for
other in-house developed tools that depend on this specific input data, both within
workflows but also for stand-alone tool runs inside Galaxy.

The genetic marker data is formatted as a named matrix (marker × genotype)
which contains unphased biallelic SNP chip array data (AA, AT, AC, etc.) of the
genotypes, whereas sporadic missing data is encoded as NA. Phenotypic data is
encoded similarly in a genotype x trait matrix containing quantitative trait data.
All SNP markers are cross-linked across different reference sequences within
the different crops, thus allowing a precise location of trait-reference genome
association.

Using the rich Galaxy API, we then transfer result data into downstream
applications for storage and combined analysis of historic data.

To ease integration of data across sources and minimize errors, it is important
that the data in each source accessed by our tools, follow the same standards and
utilizes the same vocabularies and ontologies. Especially when combining with
historical data, this can often be a challenge. To connect multiple heterogeneous data
sources, a knowledge graph can be an advantage in ensuring that data is aggregated
correctly. It allows heterogenous data to be connected with standardized machine-
readable links and allows computational traversal between data sources identifying
links between them and serves as a guide on where data could be aggregated.
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7.3.2 Knowledge Graphs to Enrich Genome-Wide Association
Studies (GWAS) Data

GWAS is a common approach to accelerate genomics-assisted plant breeding by
detecting the genetic basis of phenotypic variation (e.g., traits of interest) on
population scale based on many individuals (Tibbs Cortes et al. 2021). If certain
genetic variations, usually Single Nucleotide Polymorphisms (SNPs), are found to
be significantly more frequent in individuals expressing the desired trait compared
to individuals that do not, the SNPs are said to be statistically associated to the
trait of interest. These SNPs can serve as powerful pointers to genomic regions
to assist in the selection of favorable plants for breeding and further used to
support identification of candidate genes possibly involved in a certain trait. To
further streamline and automate the knowledge generation in molecular breeding,
we developed custom-made downstream web applications for specific approaches
such as GWAS and provide APIs that allow feeding expert revised GWAS data into
knowledge graphs.

In-house computed GWAS are undertaken in Galaxy on integrated genetic and
phenotypic data in a way that allows traceability of the results. We then provide
breeders a web-based platform to access computed results from Galaxy and store
GWAS results alongside additional relevant information about the genetic material
and other data in our in-house GWAS database. Finding a marker or a candidate
gene is challenging. First scientists need to inspect large amounts of heterogeneous
data to obtain a list of candidate genes, which then needs to converge to a ranked
prediction of the most likely candidate(s) involved in the trait of interest. GWAS
relies on all phenotypic data being described the same way, and accessible in the
same format.

Often the SNPs cannot explain all the phenotypic variation. One reason for this
is that GWAS relies on a strict P-value threshold of the SNPs after adjustment for
false discovery rate to avoid false positives. This can partly be overcome by larger
population sizes, however that is both costly and not always feasible. Another option
is to bring in extra data to enhance it and add evidence to weaker SNPs. This could
for example be gene co-expression networks, protein-protein interactions, gene
regulation, protein domain information, functional information from homologues
in other species, metabolic pathway information, or supporting evidence from
literature.

GWAS is often applied to analyze complex traits such as resilience to drought
(as opposed to monogenetic traits that follow strictly Mendelian inheritance).
Associated SNPs might be distributed across many genes addressing one or more
metabolic pathways. Here, trait expression can only be explained by a concerted
action of multiple genetic factors that are often to a varying degree influenced by
non-genetic factors such as environmental factors. To identify these, it can also be
beneficial to bring in auxiliary information as described before.

A knowledge graph linking this data together with the relevant identifiers and
synonyms can speed up the process of integrating this data, as well as augmenting
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the results with other data sources. Enabling our researchers to get a better overview
of relevant information and take information-based decisions. In the end the
estimates of success need to be updated for the models being used, a feedback loop
needs to be in place, for updating with experimental results on the predictions. If
we want to augment the data with external sources, we need to be able to find ways
of integrating this data. Sometimes there is no direct link between data points. For
instance, if we want to add environmental information to our analysis for identifying
candidate genes for a given trait. If the individual data points are linked, we can
traverse the graph, using a graph algorithm such as Dijkstras shortest path (Dijkstra
1959). Collected data could include temperature measured at a location, a plant with
a given mutation has been grown on that location during a specific time. That plant
shows a particular phenotype. It is then possible to find the nodes of data where
aggregation can take place to be able to connect these data and conclude about the
temperature phenotype relationship.

7.3.3 Knowledge Graphs to Augment Metabolite Analysis

Plants produce a variety of small chemicals or metabolites, this could, for example,
be stress hormones, measuring these metabolites is an essential part to understand
more of how a given variety of plant responds. Analyzing and interpreting metabo-
lite measurements can be time-consuming. This is a great example where knowledge
graphs can assist us in making sense of the information, by augmenting the data we
get out Measurement IDs, which can be matched with the corresponding metabolite,
its name, synonyms, composition. It can also be linked to previous knowledge, such
as literature and previous measurements.

This makes interpretation easier. At the same time, it can also be linked to internal
costs of measuring, how long time does a measurement take, and what is the capacity
for measuring. This can then be taken directly into context as a cost/benefit when
analyzing data and deciding which metabolites are generating the most value by
measuring. Questions like “What is the most optimal composition of measurements
we can achieve for a given price if we want to predict a certain outcome?” can be
answered. An example is seen in Fig. 7.5, a peak has been assigned with PN_10824,
This can be difficult to interpret for a scientist, since this is not directly obvious what
it refers to. Though, if that id was linked together with other information, it would
be easy to see that it was abscisic acid, and it is a hormone that has been shown to
be involved in regulating root growth. By saving the time the scientist has to spend
looking for this information, and at the same time ensuring that all scientists have
the same information available, we can increase efficiency and take better and more
informed decisions.
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Fig. 7.5 An example of how data could be related to augment measurements of metabolites

7.4 Discussion and Conclusion

Solving the many challenges related to feeding the worlds growing population will
be complex. It will involve many people and a lot of cross-disciplinary research to
understand the interplay among plants, environment, people, logistics, and many
other areas. Being able to handle and integrate large amounts of heterogeneous data
from many sources will be an integral part of solving this challenge.

Standardized and reproducible research can help us speed up this process,
by minimizing the number of errors and maximizing the utilization of the data
generated. The development of the FAIR was an important step in the right direction.
Novel analytical methods that can take advantage of larger and more complex
datasets in the analysis are being developed. This is particularly true for machine
learning, where methods such as Graph Neural Networks allow for the analysis
of complex knowledge graphs. Developing more complex models and analyses
could enable researchers to reach their conclusions faster with more precision.
Standardized workflows and data integration is an important part of this. Since the
methods are only as good as the data that goes in.

Open-source tools, standardized vocabularies and knowledge graphs are an
integral part of the processes at KWS to solve these challenges. Enabling plant
breeders and scientists to deliver better outcomes, storing information and as basis
for improved decision-making for the future, to learn from and improve upon.

7.4.1 The Challenge of Increasing Data

It has been estimated that in 2015–2016 more data were created than in the
preceding 5000 years of human history, and that amount increased so in 2017 alone,
a similar amount was created. To be able to generate value, having information is
not enough, the context for the information is important to be able to translate this
into actionable insights and knowledge.
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The data landscape in most tech businesses constantly grows more complex due
to new technologies producing new measures and new tools for analyzing data.
Some of it is structured data such as measurements from sensors or transactions in
banks, but large amounts are unstructured, such as images, documents, relationships.
A lot of knowledge is lost, due to a lack of context for the data.

One way of adding context to data is to connect it with other data. Data
integration is the process of combining data from different data sources into a single,
unified view. However, integrating data is one of the most time-consuming parts of
a data scientist’s work life.

Many enterprises suffer from data being locked in silos, making integration
difficult due to different data models, descriptors, nomenclature, or unstructured
data. This in the end prevents an optimal utilization of the accumulated knowledge
inside an organization.

7.4.2 Combination of Approaches Needed

Data silos are a trait of many larger organizations, however, silos are a big
hurdle toward many business-critical processes, for example, app development,
data science, analytics, reporting and compliance. Implementing efficient enterprise
data management can both decrease costs and increase performance and generate
additional value for organizations and customers. There is no solution that fits
all, but creating standardized pipelines and workflows, and keeping file formats as
simple as possible are good rules of thumb. Providing data integration pipelines in
a system like Galaxy, not only saves time for the user when they need to run an
analysis, it also ensures reproducibility.

It is critical to knowledge discovery to be able to integrate different sources of
data because it allows different information about the same entity to be related
in new ways. A big challenge is synonymic naming and syntactically different
identifiers. In a biological setting, this could be gathering different data that describe
the same biological entity (e.g., gene, transcript, protein, etc.). Using ontologies can
aid in the automatic integration and aggregation of data from multiple sources and
ensure that data is reusable across departments. Data by itself for example in a data
lake is not knowledge and has limited usage. Using graphs another layer of context
can be added to the data when integrating it, this, in the end, gives more information
than the sum of its parts, since the features of relationships, for example, node degree
has been shown to be highly predictive as well.

Adding semantic or self-descriptive links and features to the data allows both
computers to read it, but also makes onboarding of new staff members and
exploratory data analysis easier since it is possible to read directly what a given
piece of data represents. One way of dealing with this is to use an integration layer
between the data sources and the end view. The integration layer will then be queried
using for example Cypher or SPARQL, to then get the results from underlying data
sources, the query will be translated into the query language of each data source. The
integration layer is based on Ontologies and structured vocabularies to identify how
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data should be mapped. This allows the utilization of machine learning and enables
researchers to reach their conclusions faster with more precision. Standardized
workflows and data integration is a crucial part of this.
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Chapter 8
Integrative Data Analysis
and Exploratory Data Mining
in Biological Knowledge Graphs

Marco Brandizi, Ajit Singh, Jeremy Parsons, Christopher Rawlings,
and Keywan Hassani-Pak

Abstract Modern life sciences are based on large amounts of data in many different
formats, which model in many different ways a wide variety of interrelated species
and phenomena at multiple scales. In this chapter, we show how to integrate
and make sense of this wealth of data through digital applications that leverage
knowledge graph models, which are ideal to flexibly connect heterogeneous infor-
mation. Furthermore, we discuss the benefits of this approach when applied to data
sharing practices, which maximise the opportunities to reuse integrated data for
novel analysis and digital applications. Knetminer, a genetic discovery platform that
leverages knowledge graphs built from molecular biology data sources, will be used
as a significant use case of the described concepts.

Keywords Knowledge graph · Exploratory data mining · Network
visualisation · SPARQL · Cypher · Jupyter

8.1 Introduction

In the past 20 years, the life sciences have become increasingly data-driven. In 2001,
genomics took a leap forward with the announcement of the official completion of
the human genome sequencing project, which cost hundreds of millions of dollars
and decades of work (November 2018). By 2016, two milestones had been reached:
the cost of sequencing a human genome fell to less than one thousand dollars and
the work could be completed in just 2 days, hence more than one million human
genomes have now been sequenced worldwide (Stephens et al. 2015). Similarly,
during the same period a huge wealth of life science-related information of all
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kinds has been produced. As another significant example, the incredible speed
with which COVID-19 vaccines and therapies have recently been developed was
possible thanks to mankind’s ability to collect, share and analyse vast amounts of
data in collaborative ways (Hutson 2020). Working with data from the life sciences,
however, has multiple challenges, mainly due to the fact that life is a very complex
phenomenon, which occurs at multiple scales and spans an extensive network of
interactions (Regenmortel 2004). As a consequence, in life science, information
sharing, integration and collaboration have become paramount (Figueiredo 2017;
Check 2013; Wise et al. 2019).

In this chapter, we focus on sharing and analysing biological knowledge by
means of knowledge graphs and exploiting data standards. This is a powerful
approach that is particularly suited to explorative analysis of integrated heteroge-
neous data. Getting a quick overview of what is known about a given subject, or
making new discoveries by linking usually unrelated areas of research are two key
advantages offered by the adoption of standardised knowledge graphs.

The chapter is organised as follows. In Sect. 8.1 we give an overview of the many
digital resources that are available to address research questions in life sciences.
Section 8.2 presents an example of knowledge graph-based investigation into data
from studies of the genetic factors that influence wheat crop yields. This will
be based on the KnetMiner platform which is being developed by the authors
as part of the Designing Future Wheat (DFW) project (Designing Future Wheat
[Internet] 2021). KnetMiner provides a set of tools for building and exploring
knowledge graphs built from a wide range of data sources related to molecular and
functional genomics. In Sect. 8.3 we show how exploiting published knowledge
graphs programmatically can be an additional way to explore life science data and
we give an overview of the best practices and computational solutions for doing so.
Conclusions from the use case and related bioinformatics resources are presented in
Sect. 8.4.

8.1.1 The Landscape of Data-Driven Research in Life Science

It is useful to consider the range, types and origins of data currently driving life
sciences research. The development of high-throughput technologies, which became
increasingly affordable and hence scalable in the early 2000s, led to the production
of large amounts of measurements concerning many kinds of biological phenomena
(Lightbody et al. 2019; Yang et al. 2020). Here, we offer different axes by which the
data-driven life science research and practice can be classified. Having an overview
of the diversity of digital resources and ways to use them in the life sciences helps
understanding how such resources are integrated in integrative methods such as
those bases on knowledge graphs.

Technology-Based Axis Determining the genetic sequence of an organism has been
one of the first available high-throughput technologies (Heather and Chain 2016).
Computational methods to compare genes by their sequence similarity, such as
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BLAST, evolved together with these technologies (Altschul 1997; Chowdhury and
Garai 2017), along with statistical pattern discovery methods like data clustering,
hidden Markov models or support vector machines (Bang et al. 2010). Gene
expression research (Barah 2021) studies the quantitative changes in gene transcripts
(which encode proteins) that result from changes due to cell/tissue development
or as a result of treatments or environmental stresses. The methods used for these
studies are related to gene sequencing and are enabled by high-throughput technolo-
gies, initially using microarrays, more recently through the more modern RNA-Seq
(Mantione et al. 2014). Techniques like mass spectrometry (Watson and Sparkman
2007) allow for tracking protein abundance and activities independently from the
genome or transcriptome. Many gene sequencing technologies are based on biolu-
minescence, one of many forms of imaging techniques (Shorte and Frischknecht
2007). These technologies contribute to the production of a wealth of useful data,
which are often published in public databases. In biomedicine, significant advances
in medical informatics have been made to track a variety of patient and clinical
trial data, which are often collected from imaging, sequencing and other high-
throughput equipment (Baumgartner et al. 2016). The recent development of life
sign sensors, wearable devices and Internet of Things will generate even more data
for medical research and healthcare. In other life science fields, both these general
biomolecular technologies and more domain-specific ones are being developed.
For example, image-based plant phenotyping platforms, multi-spectral imaging
from UAVs, satellite telemetry and agricultural machine sensors are all examples
of equipment used in agronomy and ecology research (Li et al. 2014; Beluhova-
Uzunova and Dunchev 2019).

Phenomena and Scale Axis Living systems can be considered as a network
of interacting and dynamic processes, which happen at many different scales.
Molecular biology concerns mostly the molecular and chemical processes that
happen at the subcellular level. In addition to the data resources that have been
developed to capture genetic and genomic information, databases are also available
that report relevant cell lines collected for research purposes or to map the repertoire
of cells present in multicellular organisms (Forbes et al. 2017). At a higher level,
many biobanks have been developed to collect human and other animal tissues
from various organisms and conditions (Mayrhofer et al. 2016; Gostev et al. 2012).
Similarly, plant biology data resources are available and are used by academic
and industry researchers working in plant and crop genetics (Horler et al. 2018).
Studying cohorts of individuals or entire populations is another useful technique
in biological research. Software solutions are available for quick access (e.g., by
means of query federation) to multiple repositories of clinical data and clinical trials
(Murphy et al. 2007), many of which work together with standards and solutions for
digital healthcare. Statistics and AI-based methods of machine learning have been
applied to population genetics to understand gene functions by means of so-called
genome-wide associations studies (GWAS (Yang et al. 2021; Nicholls et al. 2020)).
Resources such as environment microbiology catalogues (Choi et al. 2017; Schüngel
et al. 2013) or knowledge bases to support agronomic field trials and data-driven
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ecology (Perryman et al. 2018; Arnaud et al. 2020) are examples of data-driven life
science extended to ecosystems up to the planetary scale.

Digital Paradigms and Analysis Methods Axis Depending on the phenomenon
under investigation, the data technology and the research purpose, many different
data, mathematical and computational models are available to undertake data-
driven science. Over the years, the life sciences have adopted a wide range of
approaches including chemistry-based models (Demir et al. 2010; Degtyarenko et
al. 2007), the physics of protein structures (Ausiello et al. 2008), systems theory
(Dada and Mendes 2011), interactions in cell populations (Germain et al. 2011) and
interactions in whole ecosystems (Meyer 2016). Statistics is a fundamental tool to
compute estimations in experiments like clinical trials and field trials. Advanced
synthesis methods like PCA, clustering, stochastic models and logistic models can
be used to summarise the main characteristics of large datasets (Bang et al. 2010).
In recent years, techniques from the discipline of artificial intelligence (AI), such
as neural networks and machine learning, have gained enormous popularity (Tang
et al. 2019; Liakos et al. 2018), since these techniques can be easily adapted to a
wide variety of problems, especially as ever more data were available to tune the AI
model parameters and ensure their predictive accuracy.

8.1.2 Data and Knowledge Representation in Life Science

The many approaches mentioned above both influence and are influenced by data
models and data formats used both in bioinformatics or in the wider data sciences
community. These have also changed over the history of computer science. Until the
1970s, flat data file formats were widely used in most computational applications.
Flat formats for molecular sequence data such as FASTA (Mills 2014) are still
used for particular data representations. These formats have an ad-hoc structure,
which isn’t based on any general syntax, and usually they represent uniform
entities, such as a list of persons or a list of genes. In the 1980s, the relational
model, and the SQL query language that is used to query it, have been widely
studied, developed, adopted and standardised (Polding 2018). Nowadays, relational
databases are widely used in applications where predefined data schemas can be
defined and do not change significantly over time. In such a situation, this model
can be very efficient, both in terms of space and time. Delimiter-based file formats,
such as CSV (A Comparison of Serialization Formats [Internet] 2019), can be used
to represent the relational model, when proper conventions are adopted to relate
records in these files. Data marts are views on relational databases that are used
to allow programmatic access to data. For instance, in life science, they support
applications like Ensembl, a reference repository for gene information (Kinsella et
al. 2011). Over the years, relational databases have been complemented by so-called
NoSQL solutions (Corbellini et al. 2017; Sharma et al. 2016), where one is not
constrained to predefined and rigid schemas. NoSQL systems have been developed
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together with data formats like XML and JSON (A Comparison of Serialization
Formats [Internet] 2019), which allow for the composition of trees of data items.
These data formats are often used to realise networked services to exchange and
process data in a distributed way. Application programming interfaces (API) based
on web services, are a prominent example of those services (Surwase 2016; Brito et
al. 2019).

Contemporary data management approaches are strongly influenced by seman-
tics and knowledge representation needs. In fact, since digital computers are
unrelated to the cognitive abilities of animals like humans, representing the real
world by means of data and formal representations of their meaning is a fundamental
step towards automating knowledge processing. Data semantic representations vary
in a scale of expressivity and inference power (McGuinness 2005): from simple
dictionaries of entity and relation types which are easy to use, though less practical
for automated deduction from existing data, right up to the complex disciplines for
the formalisation of knowledge by means of formal logics, abstract algebra, and
derived computational tools (McGuinness and Van Harmelen 2004).

8.1.3 The Property Graph Paradigm

This chapter focuses on integrative data analysis based on knowledge graphs. The
property graph data model, a particular way to represent knowledge graphs, is very
flexible when heterogeneous information has to be put together. It provides a simple
yet powerful knowledge representation paradigm, which, additionally, permits the
characterisation of knowledge semantics at different levels of formalisation and
expressivity (Zhang 2017). Figure 8.2 (top) clarifies what this means: nodes like
the gene GL1 or the protein P27900 and (oriented) relationships between nodes
are the basic building blocks of the model. Both nodes and relationships can have
at least one associated type (Gene, Article, encodes, mentions), which makes it
easy to characterise a given set of “instances” according to a data scheme. A
scheme can be a rich relation network of types, and property graphs can be used
to describe this as well, for the graph model is flexible enough to accommodate
either a simple schematisation such as a list of types (i.e., a vocabulary or a code
list), or a formal ontology based on first-order logic (McGuinness and Van Harmelen
2004). In the bottom diagram of Fig. 8.2, showing the RDF approach to knowledge
graph representation (see Sect. 8.3.1), common schematisation mechanisms are
used: Gene and Protein are declared as subclasses of BioMolecular Entity and the
endpoint types (domain and range) for the “encodes” are specified. Not only do
these simple schema elements allow for documenting “instance” data (e.g., how
you’re supposed to use the “encodes” relationship), they enable the inference of
new knowledge. For instance, when data are loaded in a system that declares
“GL1 encodes P27900,” the system can deduce new knowledge like: GL1 is a
Gene, P27900 is a Protein and both are biomolecular entities. While this implicit
knowledge appears trivial to imply for a human being, computers need to encode
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even the simplest logic to “understand” the meaning of data. Moreover, automated
reasoning can be much more advanced than this basic example (Description Logics
2014).

In addition to being a good base for formal knowledge representation, property
graphs can be used to report “fuzzy” information as well. For example, in the
figure at issue, “mentions” has an attached “score” attribute. This suggests that
the reported relations are not certain (as it is usually required by plain first-order
logics and ontology languages that are based on it), but an estimation computed
by some software (reported via “source”). It is possible to go much beyond this
basic example, by enriching an initial property graph with predicted links, node
and relation properties, based on AI and machine learning methods. Well-known
examples of such kind of enrichment are described in (Gabrilovich and Usunier
2016).

The term “knowledge graph” is less well-defined than “property graph”
(Ehrlinger and Wöss 2016). To summarise, it usually refers to property graphs
representing non-trivial knowledge about a particular subject, often mixing
collected data, schemas of various types, and inferred knowledge. Knowledge
graphs intended this way show the power of graph-based data models with data
integration tasks. In fact, data collected from many diverse data sources can be
merged together by adopting common identifiers (e.g., data about P27900 might
come from both Ensembl and UniProt, the merge is ensured by both sources using
the same protein ID), and can be given a semantic description by mapping data to
common schemes.

8.2 Using KnetMiner and Other Resources to Investigate
Wheat Yield

To illustrate the different aspects of modern data integrative exploration and analysis
in molecular biology, we shall consider an example of an investigation from
crop science. Similar examples of more specialised investigations can be found in
(Hassani-Pak et al. 2021; Adamski et al. 2020). Increasing agricultural productivity
in a sustainable way is one of the UN’s Sustainable Development Goals (SDG
U 2019) and it is considered fundamental to ensure the nutritional needs of an
increasing world population can be satisfied without an unbearable negative impact
on the environment. Rice and wheat are the world’s two leading food crops, together
they serve as a staple food for almost half of humanity (Yang et al. 2021; Ling et
al. 2013; Nadolska-Orczyk et al. 2017). Severe climate instability and emerging
diseases pose a major threat to crop production and yield. A large number of
research projects, pre-breeding and breeding programs are being funded to identify
novel genes and to improve crop traits such as stress tolerance and improved crop
yield. However, identification of candidate genes and experimental validation, from
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lab to greenhouse to field, is a slow process that can last from years to decades.
Following a wrong lead wastes significant effort, time and money.

With the availability of an increasing number of crop genomes, including: data
from multiple “omic” layers, high-quality phenotypic data from large replicated
field trials, in conjunction with the wealth of other information types from model
and non-model species; we should now be in a position to accelerate targeted gene
discovery to validation pipelines. However, marker and gene discovery for important
agronomic traits remains challenging. Firstly, in many research organisations and
breeding companies the expertise and software technologies to analyse the volume
and variety of un-integrated data are simply missing. The second major complexity
is the fact that most agriculturally important phenotypes are nearly “omnigenic,”
i.e., underpinned by highly complex and interconnected networks, with “core”
genes explaining only small fractions of the genetic variance (Boyle et al. 2017).
Approaches that integrate the interconnected networks within and across ‘omic
layers may be the only way to progress beyond the “stamp collecting” phase of
cataloguing single marker-trait associations.

KnetMiner is a software package developed at Rothamsted Research that can
embrace this complexity and exploit the considerable additional information that
can be obtained by integrating the complementary plant genomes, genotype,
phenotype and multi-omics data into a curated and machine mineable data model.
This integration can enable the development of systematic approaches to find
genes that are beneficial to crop performance and when perturbed through potential
interventions such as gene editing approaches, have a positive impact on the overall
biological outcome without producing negative side effects.

In the following use case, we demonstrate how an integrated approach can
support scientists to overcome some of these challenges in gene discovery and
knowledge mining. We start our investigation with a list of rice genes known to
be associated with yield (Nadolska-Orczyk et al. 2017). We have identified the
corresponding orthologs in wheat using the BioMart interface of Ensembl Plants
(Kinsella et al. 2011) and we will describe an iterative approach to search for
gene-trait linkages using KnetMiner for wheat and a knowledge graph composed of
over 40 distinct datasets (Hassani-Pak et al. 2016). The KnetMiner web application
(Hassani-Pak et al. 2021) can be searched with a list of genes derived, for example,
from a data-driven analysis or literature review. In this case, we are interested in
exploring a set of genes that have been associated with yield in rice, but their role
in wheat has not yet been well characterised. We enter the list of gene identifiers
initially found as described above into the Gene List box in KnetMiner and press
the search button to obtain knowledge that is linked to the listed genes. Using the
Evidence View resulting from this search, we can find the terms that are enriched in
our gene list.

Such a gene set enrichment analysis is usually performed for single GO or
pathway annotation datasets. In our integrated graph approach, we can test the
enrichment of any network node present in the gene network, e.g., traits, phenotypes
and diseases. Having developed a preliminary understanding of the key processes,
we now intend to zoom in and ask more specific questions about our genes of interest
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in relation to certain keywords. As the basis for the second search iteration, we
decide to use the highly enriched terms from the first search with other yield-related
keywords:

“slow growth” OR “dwarf stature” OR “SUMO Activating Enzyme Complex” OR “after
spraying mutant plants” OR “coleoptile length” OR “growth” OR “cell division” OR “cell
proliferation” OR “inflorescence” OR “carbohydrate metabolism” OR “photosynthesis”
OR “grain number” OR “grain weight” OR “grain hardness” OR “spikelets” OR “tillers”
OR “photoperiod” OR “vernalization” OR “vernalisation”

Now we can search again in KnetMiner, by using the same gene list and the
keywords above. This time, KnetMiner scores every gene based on their relevance
to the input keywords and presents the results in Gene View. The top-scoring genes
include RGL2, which is known to be involved in the plant development processes
regulated by the plant hormone gibberellin, or BRI1, which encodes a receptor of a
brassinosteroid hormone and is relevant in cell division, growth and elongation.

This can be confirmed by investigating the knowledge graph presented in the
Network View (Fig. 8.1, top) resulting from our search. Powered by the knetmaps.js
library (Singh et al. 2018), this view shows how search keywords are related to
searched genes and other relevant entities in a graph-like and intuitive visualisation.
From this, other interesting details that we can find from it are:

– The uncharacterised gene TRAESCS2A02G081900 is co-expressed (i.e., it actu-
ally produces the molecule(s) that it encodes) in WGCNA_global_module_1, a
group of genes obtained from clustering experimental data about gene expression
analysis.

– Similarly, TRAESCS5A02G238400, TRAESCS5B02G236900, TRAESCS5D02
G245300 are expressed in WGCNA_global_module_12. Both clusters
are annotated with terms like inflorescence, embryogenesis, growth, seed
development, cell division.

– TRAESCS2A02G081900 is also expressed in another cluster, Meiosis-
Study_Module_1, which is annotated with several terms about photosynthesis.

– Moreover, the transcript of this gene (i.e., the molecular entity it encodes), is in a
cluster of proteins with similar sequence, in which the Q0D3B6 UniProt protein
is annotated with ontology terms such as heading date, flowering, photoperiodism
(the plant’s ability to detect the day duration and respond with behaviours like
initiating the flowering).

– Genes like AT4G39400 (BRI1) or AT1G14920 (GAI), from the well-studied
Arabidopsis model organism, which, in addition to being named like some of
the genes mentioned above and having analogous functions, are related by many
other genes scored as relevant to the search terms.

To enable explainability of the results and support quicker decision making
for end-users, the provenance of each node and edge, along with other properties
needs to be visible to the user. KnetMiner displays this information in the Info
Box with hyperlinks to the original data sources (e.g., PubMed, UniProt, Ensembl).
By investigating the auto-generated knowledge networks by KnetMiner, expert
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Fig. 8.1 KnetMiner in use Top: a first search shows a set of information related to the list of genes
in Table 8.1. Bottom: a more specific search using the uncharacterised genes and a list of more
specific keywords identified at the previous step

users can focus on making judgements about the quality and certainty of the
presented evidence and quickly developing interesting biological stories. We may
notice that a number of genes from our gene list were not linked to any of the
keywords we provided. Nevertheless, we can open their knowledge graphs and
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Table 8.1 An integrative data analysis use case

Rice genes known to be involved in the plant yield (from Nadolska-Orczyk et al. 2017). Wheat
orthologues computed via Ensembl Plants BioMarts (Kinsella et al. 2011). Wheat genes which are
not annotated with known functions in bold

explore their functions and roles, for example, we can see links to terms such as
heading date, regulation of long day (a form of photoperiodism), development of
the plant internode (part of the plant growth process), AP2/ERF transcription factors
(involved in growth processes). Based on this, we decide to issue a new refined
search in KnetMiner: the list of uncharacterised genes, plus the keywords in which
these appear to be mostly related to them: “inflorescence” OR “embryogenesis” OR
“grain” OR “fruit formation” OR “photoperiod” OR “heading date” OR “long-
day” OR “internode”.

We find the results in Fig. 8.1 (bottom), where we can notice that
TRAESCS2A02G081900 encodes similar protein sequences from rice, which
are also mentioned in the publication PUBMED:15725670 (Murakami et al. 2005).
Significantly, this is titled: Circadian-associated rice pseudo response regulators
(OsPRRs): insight into the control of flowering time. Among these proteins, we
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find that OsPRR37 is one of the rice-orthologous genes from which we started our
search and both this protein and PRR95 are related to photoperiodism. The gene at
issue is also expressed in the experimentally-obtained cluster of co-expressed genes
WGCNA_global_module_1, which is annotated with the terms: inflorescence,
stem internode, and the Plant Ontology term: hypocotyl (PO:0020100), which is
about the plant development. The other genes are linked to inflorescence and grain
development.

In summary, by integrating many types of information in one place along with
tools to search the connected data efficiently, we can formulate sophisticated search
queries and use an exploratory approach to get insights into complex biological
mechanisms.

The richer the knowledge graph is, the more valuable it is. As an example,
by searching the EMBL-EBI’s Gene Expression Atlas (GXA (Papatheodorou et
al. 2020)), we find that the genes identified in the example above are expressed
in conditions like outer pericarp, leaf development, inflorescence, fruit formation,
pollination, which is coherent with our findings. In addition to providing further
confirmation of our findings, this suggests that integrating gene expression data
could be another important source for gene prioritisation and could be considered for
the integration in KnetMiner knowledge graphs in the future.1 In Sect. 8.3, we show
how the knowledge graph approach combined with the adoption of data standards
ease this kind of integration between different datasets and services.

8.3 The Benefits of Data Sharing Practices

In the previous example, all the applications we have used (Ensembl, KnetMiner,
and GXA) are based on “raw”, machine-readable data, which have the potential
to do much more than the software tools or use cases that they were originally
designed for. Essentially, data made available in this form can be reloaded by other
applications, especially by programs written by the bioinformaticians to realise
novel data analysis algorithms or visualisations. This allows for reusing data in
new and novel, unexpected ways, which can also reduce the cost/benefit ratio
in generating and maintaining them (The Principles of Good Data Management
[Internet] 2014; Miksa et al. 2019; Wilkinson et al. 2016). Machine-readable
formats are valuable both in the case of data with restricted access and under open-
access licences that allow for maximal dissemination and reuse (Jaakkola et al.
2014; Murray-Rust 2008). However, in several contexts, a movement for open data
has emerged in recent years, as part of a larger set of ideas for the “openness”
of knowledge and intangible intellectual productions, which include computer
software (Weber 2009) and scientific research (Bartling and Friesike 2014; Koepsell
2010). While releasing data to the public is not always possible due to issues like

1 This shortened URL can be used to see the GXA visualisation: https://tinyurl.com/ye3fq8mk

https://tinyurl.com/ye3fq8mk
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patient privacy or business confidentiality (Anderson 2007; Wiseman et al. 2019),
open data models are considered particularly important for publicly-funded research
(Schade et al. 2015; Molloy 2011) and, in general, information produced by the
public administration (Attard et al. 2015). Furthermore, open access to literature,
data and software have the potential to improve reproducibility, a crucial aspect of
evidence-based scientific research.

The KnetMiner platform itself is based on these ideas about sharing: the data
that we walked through in the use case above are mostly imported from well-known
sources, often maintained by organisations dedicated to collecting experimental
data and biological knowledge from around the world and making them available
both through end-user applications and in forms like: CSV files, JSON-based web
APIs, or knowledge graph formats (see Sect. 8.3). KnetMiner datasets leverage these
machine-readable data by means of the KnetBuilder tool (Hassani-Pak et al. 2021;
Taubert and Köhler 2014) (formerly named Ondex), a framework based on the idea
of defining data processing workflows, which use plug-ins such as data importers for
various formats, graph data transformations like identifier-based merging and data
discovery based on text mining techniques. Similar data integration and workflow
frameworks exist, both for biology and many other fields (Leipzig 2016). For
instance, Galaxy (Afgan et al. 2018) is another tool based on composing data
imports and transformations into workflows, which is mainly based on a web user
interface. In contrast, Snakemake (Köster and Rahmann 2018) and Nextflow (Di
Tommaso et al. 2017) are mainly based on a command line user interface, which
make them suitable for developers and for running data workflows in cluster and
cloud architectures, thus exploiting the high parallelism and computing performance
of such platforms.

Sharing data is much more difficult to realise than discuss or promise, due to
both technical problems and social factors. Recently, years of research and practice
on this issue have led to establishing a set of good data sharing principles, or FAIR
principles (i.e., Findable, Accessible, Interoperable, and Reusable (Wilkinson et al.
2016)), to guide data producers, publishers and other stakeholders. Here, we want to
present these principles, in the order inspired by our experience with the Knetminer
data. With datasets having the complexity that our datasets have, a first important
step is to represent data according to the Interoperability principle: ideally, it should
be possible to use data in all the needed applications without requiring changes
like format or schema conversions. To make a very simple example, minimal inter-
operability for representing genes and gene properties like international symbol,
description, position in the chromosome, could be ensured by adopting a CSV
format and establishing certain column names for such properties. In the case of
graphs, Fig. 8.2 shows examples of analogous use of standard types and properties
(e.g., bioschema:Gene, schema:description). Similarly, organisations like Ensembl
publish sets of reference identifiers for genes (e.g., the many TraesXXX identifiers
mentioned above), which are actively reused around the world, so that two data files
using the same ID can easily be merged together. Establishing shared formats, data
models, type names and identifiers is about setting data standards, a fundamental
way to realise interoperability. In Sect. 8.3, we describe how these ideas have
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Fig. 8.2 Top: a simple instance of a knowledge graph, represented by means of the property
graph model (PG). Node elements are characterised by type labels (Article, Gene) and knowledge
can flexibly be connected by means of relationships (encodes, mentions). Both nodes and
relationships can have key/value attributes. Bottom: How the RDF and Semantic Web standards
(SW) model knowledge graphs. The graph model is more granular than the PG (node properties
are additional graphs), nodes are based on resolvable web URIs (e.g., ensembl:atg27920, a
shortened URI, resolves to the graph of its outgoing direct links). The SW has explicit support
for data schematisation (upper side), including automatic reasoning features (dashed links can
be computationally inferred). PG is easier with representing relationship’s properties (non-native
mechanisms like reifications are available in RDF (Thakkar 2020))

been much extended by the linked data community. Standardised and interoperable
data can be made Accessible by using technologies that are standard themselves.
Originally designed to publish human-readable documents over the Internet, the
world wide web, and in particular, the HTTP protocol, have been enormously
successful at sharing both human-readable documents and raw data documents. In
particular, generalised forms of web addresses, the Uniform Resource Identifiers
(URIs (Antoniou 2008)), can be used to identify digital resources worldwide and, at
the same time, to provide access to machine-readable data about the entities that the
resources describe. For example, a URI can be used to identify a data file, a scientific
paper, or a protein, and data about these entities can be obtained by “resolving”
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the URI, e.g., making an HTTP request to it, which returns the CSV data file, a
JSON document of metadata descriptors about the paper, or an RDF-encoded graph
document about the protein (see Sect. 8.3). Once data are made accessible, making
them Findable is another important data sharing principle. This relies on dataset
descriptors as well, which provide us with information on the whole dataset. For
example, thanks to services like Google Dataset Search (Brickley et al. 2019) or
DataCite (Brase 2009), it is possible to search datasets based on metadata-specified
criteria such as what the data contents are about, when they were created, who are its
publishers. Finally, data that are easy to find, access and interoperate with other data,
become more Reusable. Reusability is also favoured by clear licences about their
usage conditions, independently of whether the data are open or restricted. Licence
details can be synthesised as standardised metadata, so that software applications
can automatically make decisions on how to use datasets (Rodrıguez-Doncel et al.
2013).

8.3.1 Contributions of the Linked Data Community to the Data
Sharing Principles

Before the seminal paper that popularised the FAIR acronym, many other efforts
have been made to apply one or more of the same data principles, both in life science
and other fields. A very prominent one has been the Semantic Web technologies
and the community of linked data that was born out of them (Mountantonakis and
Tzitzikas 2019). The term Semantic Web was made popular in 2001, by a seminal
paper co-authored by Tim Berners Lee, who previously invented the World Wide
Web approach (Antoniou 2008; Berners-Lee et al. 2001). Its main idea is to share
data by leveraging graphs and the existing web technology and principles. As shown
in Fig. 8.2 (bottom), the basic building block of the approach is the RDF data
model, where knowledge is organised as graphs of triples, with each triple linking
an entity to a property value or another entity, by means of a typed link. The triple
is alternatively described with the language metaphor, i.e., the outgoing node is like
the subject of a statement, the typed link is like a predicate and the destination
value or entity is like the predicate’s object. Both the (non-value) nodes and the
predicates always consist of URIs. This is a specific Semantic Web characteristic,
which extends the Web to realise universal data identifiers, which additionally offer
an accessibility mechanism to join and explore data about a given resource. Namely,
the URI uniprot:P27900 in Fig. 8.2 (a possible abbreviation of https://www.uniprot.
org/uniprot/P27900), in addition to identifying the GL1-encoded protein, can be
resolved via HTTP, resulting in a set of RDF triples, offering more data about the
protein at issue (like the RDF triples in the figure).

It is considered best practice to ensure that URIs like this one are backed by
a data publisher, who can use a proper URI prefix (usually called name space) as
a reference source for the data they maintain and share on line. In the acronym

https://www.uniprot.org/uniprot/P27900
https://www.uniprot.org/uniprot/P27900
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RDF (Resource Description Framework), this mechanism is what has originated the
name “resources” for RDF nodes and predicates. Clearly, in order to make all of
that possible, RDF needs to have a format to encode the conceptual data model and
indeed, common serialisations exist for RDF (Meindertsma 2019), including the
API-compatible JSON-LD format.

The “Semantic” part of the Semantic Web is built on top of the RDF layer, by
means of RDF representations of schema languages like RDF-Schema and OWL
(Antoniou 2008). In particular, OWL is the standard way in which formal, very
expressive and semantically-rich computational ontologies are used to characterise
the meaning in the Semantic Web and linked data world. OWL is based on
Description logic, a kind of first-order logic designed to define set membership
propositions in a way that allows for automatic reasoning. For instance, in the
OBI ontology, sophisticated OWL definitions can be used to automatically infer
the nature of a biomedical experiment and the characteristics of its components
(Bandrowski et al. 2016). Other, less formal schematisations exist in the linked
data arena. For example, the SKOS vocabulary can be used to define thesauri and
taxonomies of terms in RDF, as it has been done for the agri-food vocabulary
AGROVOC (Caracciolo et al. 2013).

Over the years, the Semantic Web has been the technological base of the linked
data community, which has promoted data sharing based on RDF, the Semantic
Web and related principles (Mountantonakis and Tzitzikas 2019). This has led to
significant projects and data publications in many fields (Avila-Garzon 2020).

8.3.2 New Directions for Linked and Graph Data

While linked data projects are still of primary importance nowadays, the approach
has clear limits, recently highlighted by new directions that the world is taking to
solve data sharing needs. The data-hungry nature of artificial intelligence requires
means to generate and collect data, no matter how good they are from the point of
view of sharing principles like the FAIR principles. The emergence of data lakes
(Che and Duan 2020) or cloud-based data management frameworks (Holmes 2015)
are examples of such trends. Similarly, artificial intelligence is influencing the idea
of automating the classification and schematisation of raw data, with fewer concerns
for more manually curated efforts (Gabrilovich and Usunier 2016). Another related
issue is that many people who have to deal with such data, like data journalists,
biodata curators or web developers, may find the graph data models difficult to
learn and use, thus, they may prefer to interact with data in more familiar ways,
such as downloadable tabular files or JSON-based APIs. Related to that, recently
GraphQL is emerging (Brito et al. 2019) as a standard for querying graph data
in a more accessible way by means of simple data object templates in the JSON
format, which return results that are very similar to the initial templates. Due to the
increasing popularity of such approaches, systems that allow for GraphQL access
to linked data (Taelman et al. 2018) and graph databases (Lyon 2021) are suitable
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for reconciling graph-encoded data to modern data access technologies. Similarly,
mapping RDF data onto property graph databases like Neo4j is another promising
approach (Thakkar 2020; Brandizi et al. 2018a).

Regarding data schematisation, while OWL-based ontologies remain an
advanced data modelling approach for specialised applications (Smith et al. 2007),
a major problem with them is that they require very specific expertise and that
it is very difficult to do OWL-based data integration across a wide content arena
which potentially could encompass the whole World Wide Web. Due to these
issues, complementary approaches are emerging to develop lightweight ontology-
like schemas, which are designed primarily for applications like improving results
from search engines or integrating very heterogeneous data generated by non-expert
end-users. A prominent example of this is schema.org (Guha et al. 2016), in the field
of life sciences, the bioschemas extension is being defined to specifically represent
data from this domain (Gray et al. 2017).

8.3.3 Applying Data Sharing Principles in KnetMiner

In this section, we show a concrete application of the topics discussed above using
data behind instances of the KnetMiner application. As already described above,
KnetMiner is a web application that can be deployed as a particular instance over
a given dataset. A dataset is generally a collection of different data resources
selected as important for research on a given organism or a given subject, such as
the interaction between an organism and its main pathogens. The data resources
in a dataset are integrated from multiple, well-known sources, into the form of
a knowledge graph, namely a property graph. For historical reasons, the current
native format that KnetMiner is using is based on XML, and an XML basic schema
that essentially encodes the main entities of a property graph. This format is called
Ondex XML, or OXL, due to Ondex (Taubert and Köhler 2014), the suite for data
integration that is used to map various data formats onto an OXL property graph. In
recent years, our group has started to publish OXL data following FAIR principles
and using the interoperable linked data technologies described above. A first step
for that consists of mapping the entities in OXL onto a simple, application-oriented
ontology based on OWL. This is the conceptual basis for converting from OXL
to RDF via a dedicated tool (Brandizi et al. 2018a, b), using a generic library for
converting Java objects to RDF (java2rdf [Internet] 2021).

The RDF obtained this way is published in multiple endpoints based on graph
databases. One graph database is Virtuoso (Brandizi et al. 2018b), which has direct
support for RDF and SPARQL, the Semantic Web standard query language for RDF.
This way, the data can be queried and explored via SPARQL either through a web
browser or from a client program (Brandizi 2020). We have decided to support
both the RDF and Neo4j endpoints due to the complementary sets of advantages
that they have (Brandizi et al. 2018b). As mentioned above, Neo4j is a property
graph system, which offers ease of use, good performance and Cypher, the property

http://schema.org
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graph query language that is particularly compact and simple to learn and apply. A
notable use of our Neo4j endpoint is in a KnetMiner component: the semantic motif
traverser, which explores known graph patterns to find entities relevant to genes
during KnetMiner queries (Fig. 8.3). A typical application of the RDF/SPARQL is
integrating data, which is eased by tools like TARQL (Tarql 2020) and paradigms
like shared URIs. In (Brandizi 2020) we discuss the use of the Jupyter framework
(Perkel 2018) to benefit from both the SPARQL and Cypher access. In order to
maximise data interoperability, we curate manual mappings from our RDF data to
equivalent or broader data types defined in standard ontologies most commonly used

Fig. 8.3 Querying and using graph data. Top: a SPARQL example, the Semantic Web standard
to query RDF data, based on a graph pattern syntax (e.g.,?study matches any study node having
an identifier and a title). The query matches data that were integrated from both KnetMiner and
EBI GXA (middle). Bottom: a simplified case of the Cypher queries (the Neo4j query language
for property graphs) that KnetMiner uses to relate a gene to relevant entities, which is at the basis
of application results described in Sect. 8.2
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in life science and other fields. This is a typical linked data approach, which, for
instance, allows for querying multiple datasets referring to the type bioschema:Gene
and seamlessly obtaining results from KnetMiner and other data using or mapping
the same OWL class.

This is part of a broader ongoing project of ours named AgriSchemas (Rotham-
sted Research, UK 2019), which mainly aims to map common data in the agri-food
domain to the Bioschemas standard, contributing to the latter with possible specific
extensions, developing reusable tools for realising the mapping-driven conversions.
In Fig. 8.3, we show how this can be exploited starting from GXA-achieved
results presented in Sect. 8.2, where a particular GXA experiment (accession E-
MTAB-3103) was found to be involved in the expression of our candidate genes.
In the figure, GXA data and KnetMiner data are queried using the SPARQL
language to compare conditions in which genes are expressed in that experiment
(GXA data) with publications that mention the same genes (KnetMiner data). The
query is against the data from the two datasets that we have integrated using the
AgriSchemas approach, the results integrate thanks to that and they can be explored
in a unified view. For the future, we plan to further extend the project with front-end
components, which will be based on the GraphQL standard and where tasks like
rendering user interfaces will be automatically driven by the common definitions
in Bioschemas types. This will maximise the reusability of such components by
relying on data standardisation.

8.4 Conclusions

Modern biology is increasingly a data-intensive science. Historically, Biology was
relatively data-poor and dominated by reductionist approaches, where phenomena
involving a very small set of actors and interactions (e.g., one or few genes and
one or few phenotypes) were considered one by one. Since the advent of high-
throughput technologies, in the early 2000s, it has been practical to take a very large
number of measurements, like the expression of tens of thousands of genes at a time
allowing for the identification of the main components affected by experimental
factors by means of statistical testing, data visualisations and data mining. More
recently, a trend has been emerging to integrate masses of data referring to multiple
phenomena at different scales, as well as multiple organisms or entire ecosystems.
Being designed mostly to flexibly unify such diversity of data, the combination of
knowledge graphs, linked data and graph databases are powerful tools to perform
integrative data exploration and analysis, in life science as well as other disciplines.
Furthermore, graph models are effective at representing data schematisation and
semantics in standardised and interoperable ways, which is a fundamental aspect of
sharing data and knowledge according to the FAIR principles. In turn, data sharing
maximises data usefulness, by feeding a virtuous cycle where new discoveries
are made by integrating existing data and new interesting data are shared from
new knowledge and its encoding in machine-readable formats. In particular, this
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is relevant to artificial intelligence, which nowadays is mostly based on machine
learning and thus is very data-demanding. In this area, semantic representation
has still to offer contributions to machine learning methods, as it is emerging, for
instance, from works regarding the use of hybrid approaches to build knowledge
graphs and predict new knowledge (Gabrilovich and Usunier 2016; Reese et al.
2021).
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Chapter 9
Exploring Plant Transcription Factor
Regulatory Networks

Ranran Yu and Dijun Chen

Abstract Transcription factors (TFs) are key nodes of gene regulatory networks
that specify plant morphogenesis and control specific pathways such as stress
responses. TFs directly interact the genome by recognizing specific DNA sequence,
in terms of a complex system to fine-tune spatiotemporal gene expression. The
combinatorial interaction among TFs determines regulatory specificity and defines
the set of target genes to orchestrate their expression during developmental switches.
In this chapter, we provide a catalog of plant-specific TFs and a comprehensive
assessment of whether genome-wide analyses have so far been used for identifying
potential direct target genes for each TFs. We further construct comprehensive
TF-associated regulatory networks in the model plant Arabidopsis thaliana using
genome-wide datasets from our ChIP-Hub database (http://www.chiphub.org/). We
discuss how to dissect the network structure to identify potentially important cross-
regulatory loops in the control of developmental switches in plants.

Keywords Transcription factor · Gene regulatory network · Genome-wide
analysis · Plant

9.1 Introduction to Plant Transcription Factors

9.1.1 Overview of Transcription Factor-Mediated Gene
Regulation

Plant evolution involves genetic responses to biotic and abiotic stresses. To react
quickly to external changes, plants have formed complex signal networks. After
receiving external information, plants can regulate target genes and their products
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on different levels (including transcriptional control, RNA processing control, RNA
transport and localization control, translation control, mRNA degradation control,
protein activity control) to make adaptive changes through these signal networks.

Transcription is the initial step, and it will affect subsequent steps. Transcription
can also regulate the tissue-specific expression of genes and the response of gene
expression to specific signals. It can thus affect the differentiation of organs and
plant adaptation to the environment.

The transcriptional control of gene expression occurs mainly through cis-acting
elements, and trans-acting factors also play an important role in response to
stresses. Cis-acting elements are DNA sequences that regulate genes along the same
nucleotide chain and usually lack the ability to encode protein. Trans-acting factors
refer to proteins that regulate gene expression on different nucleic acid chains. The
gene encoding this type of protein is not on the same chain as the nucleic acid chain
that recognizes and binds to it.

The cis-regulatory elements of gene expression in transcriptional control are
important in plant development and stress responses. Promoters and enhancers
are two kinds of such cis-regulatory elements. Gene expression in transcriptional
control is regulated by promoters, where gene transcription initiates, and more distal
enhancers, which control temporal and spatial activity (Lenhard et al. 2012). Despite
sharing some features, promoters and enhancers have historically been considered to
be distinct classes of regulatory elements (Mikhaylichenko et al. 2018). Promoters
are DNA sequences that can be recognized or bound by RNA polymerases to initiate
transcription. The most common basal promoter element is located around the
transcription start site. Enhancers are regions of the genome that can enhance the
expression of particular genes linked to them after binding to a specific protein.
Because chromatin has a special spiral structure, even if the enhancer and the gene
are located far apart in sequence, there is a chance that they will come into contact
with each other. Most enhancers are far away from the target genes and appear either
upstream or downstream of those genes.

In eukaryotes, RNA polymerases are responsible for transcription, and RNA
polymerase II is the most active (Fig. 9.1; Adcock and Caramori 2009). However,
RNA polymerases have no special affinity for the promoter and are unable to
complete transcription alone. Transcription requires the participation of numerous
transcription factors (TFs) and co-transcription factors. They form a complex with
RNA polymerase II to allow transcription to be initiated in the correct location.
TFs have a modulated structure, including a DNA-binding domain (DBD), a trans-
activating domain (TAD), and an optional signal sensing domain (SSD). Among
these, TAD contains binding sites to other proteins, and these binding sites typically
have active functions (AFs).

TFs tightly control where and when the nearby target gene is expressed by
binding to the DNA (Kummerfeld and Teichmann 2006). TFs, as trans-acting
factors, can also specifically interact with cis-regulating elements of eukaryotic
genes to control chromatin and transcription, forming a complex system that guides
expression of the genome. TFs are important in response to stresses such as insect
attack and drought (Rushton et al. 2010).
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Fig. 9.1 Schematic diagram of the work of transcription factors

The recognition of short DNA sequences by TFs is a key step in transcription.
Detailed analysis of different TFs shows that they have a modular structure in
which specific regions of the molecule are responsible for binding to DNA, while
other regions stimulate or inhibit transcription (Nuruzzaman et al. 2013). TFs
therefore contain DNA-binding domains that recognize specific sequences within
the promoter and some specific regions of the genes they regulate.

DNA-binding domains read genomic DNA sequences in three basic ways:
base readout, indirect readout, and shape readout. Base readout means that TFs
recognize a given nucleotide sequence by means of hydrogen bonding, hydrophobic
interactions, or formation of salt bridges between amino acid side chains and
accessible portions of base pairs. Indirect readout is connected with the main
interaction with TFs and the DNA phosphoric acid backbone. Shape readout means
that TF recognizes and combines the shape characteristics of DNA.

Once recognized and bound in the manner described above, TFs promote the
binding of RNA polymerase to DNA. However, they not only promote the binding
of RNA polymerase and DNA but also catalyze the modification of histones. This
function is accomplished by direct action or by recruitment of other proteins with
specific catalytic activity.

TFs regulate the amount of gene products (RNA and proteins) in cells by
controlling transcription rates, and they are also regulated. Most TFs do not work
alone. To complete gene transcription, a series of transcription factors must be
bound to the DNA regulatory sequence. This collection of transcription factors,
in turn, recruits mediating proteins, such as cofactors, for efficient recruitment of
pre-initiation complexes and RNA polymerases.

TFs with the same type of DNA-binding domain, referred to as TFs from
the same family, tend to have more similar DNA-binding specificities than TFs
belonging to different families. Variations in DNA-binding specificity do occur in
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the same family and are due to changes in specific residues of the DNA binding
domain.

9.1.2 Plant-Specific Transcription Factor Families
and Function

TFs are generally defined as proteins that directly bind to target gene promoters and
regulate the expression of target genes in a sequence-specific manner. The DNA
binding domain (DBD) in the sequence of TFs largely determines the sequence
specificity of its binding to the cis-element DNA in the upstream promoter region
of the gene (Weirauch et al. 2014).

DBDs are evolutionarily conserved and are the main basis for distinguishing
different transcription factor families. Generally, TFs can be classified into specific
families based on the types of DBDs contained in their sequence. For example,
the family of Ethylene insensitive-like (EIL) TFs regulating plant growth and
development all contain the Ein domain (Riechmann et al. 2000).

Although some transcription factor families have a one-to-one correspondence
according to DBD, there are some families with more a more complex correspon-
dence. Some TFs contain two or more DBDs. Therefore, the number of DBDs is
often used to distinguish between different transcription factor families, such as the
MYB transcription factor family. These TFs are classified according to the number
of repeats in the MYB-DNA-binding structure domain. Those with only one DBD
are in the Myb-related family, while those with two or more are in the Myb family.

Transcription factors (TFs) play crucial roles in almost all biological processes.
Most Arabidopsis TFs belong to large families with similar DBD structures. In this
chapter, we focus on some of TF families.

9.1.2.1 bZIP TF Family

The basic region/leucine zipper (bZIP) TFs family control important processes in
all eukaryotes. The bZIP TFs have a basic region (BR) that binds DNA and a
leucine zipper region (ZR). The bZIP domain consists of two structural features
located on a continuous alpha helix. Plant bZIP proteins preferentially bind to DNA
sequences with ACGT cores (Jakoby et al. 2002). Several studies have demonstrated
the interaction between the bZIP DNA-binding motif and the yeast transcriptional
activator GCN4 (Ellenberger et al. 1992).

In plants, bZIP is the primary regulator of many developmental and physiological
processes, including morphogenesis, seed formation, and abiotic and biological
stress responses. The regulation of the expression pattern of the bZIP gene and its
changes in activity often contribute to the activation of the signaling pathways and
regulatory networks of different physiological processes.
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For example, in the salicylic acid (SA)-mediated signaling pathway triggered
by attack from a biotrophic pathogen, one class of bZIP proteins that is linked
to biotic stress responses comprises the TGA (TGACGTCA cis-element-binding
proteins) and can interact with the non-expresser of pathogen-related (PR) genes
(NPR1), which is a key component in the SA defense signaling pathway activates
the expression of SA-responsive genes. BZIP transcription factors associated with
pathogen defense can also recognize a variety of cis-elements in the promoters of
their target genes (Alves et al. 2013).

9.1.2.2 bHLH TF Family

The bHLH (Basic helix-loop-helix) TFs are widely distributed in eukaryotes and
have been characterized in non-plant eukaryotes. In mammalian systems, consider-
able structural, functional, and phylogenetic analyses have been performed. This is
the second largest family in plants after the MYB family.

The bHLH TFs family is defined by the BHLH signature domain, which consists
of 60 amino acids and has two functionally distinct regions. The HLH (helix-
loop-helix) region, located at the end of the C-terminal, is a dimerized region,
which consists mainly of hydrophobic residues and forms two amphoteric helices
separated by a circular region of variable sequence and length. The core DNA
sequence motif recognized by the bHLH proteins is a consistent hexanucleotide
sequence known as the E-box (5′-CANNTG-3′). The identities of the two central
bases determine the different types of E-boxes. One of the most common is the
palindrome G-box (5′-CACGTG-3′). Certain conserved amino acids within the
basic region of the protein provide recognition of the core consensus site, while
other residues within the region dictate the specificity of specific types of E-boxes
(Toledo-Ortiz et al. 2003).

Like most transcription factors, bHLH can regulate gene expression through
interaction with specific motifs in target genes. Functionally, bHLH transcription
factors are widely involved in plant growth and metabolism, including photomor-
phogenesis, light signal transduction, and secondary metabolism. They are also
involved in plant response to adversity (Sun et al. 2018).

9.1.2.3 MYB TF Family

The MYB family of transcription factors (TFs) is named for its conserved MYB
domain and is present in all eukaryotes. The first Myb gene was an “oncogene” from
the avian myeloblastic disease virus, v-Myb. Many vertebrates contain three genes
associated with v-Myb, c-Myb, a-Myb, and b-Myb, and similar genes have been
identified in insects, plants, fungi, and slime molds. The structures and functions of
MYB transcription factors in plants are highly conserved compared with animals
and yeasts (Li et al. 2015).
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The proteins encoded are critical for controlling proliferation and differentiation
of multiple cell types and share conserved MYB DNA-binding domains. This
domain usually consists of three imperfect repeats (R), each of which forms a helix-
turn-helix structure of 53 amino acids.

MYB proteins can be classified according to the number of MYB repeats (1–4).
The three replicates in c-Myb are R1, R2, and R3, respectively. The repeats of other
MYB proteins are classified according to their similarity to R1, R2, or R3. Plant
MYB proteins are mainly divided into three categories: R2R3-MYB, which has two
adjacent repeats; R1R2R3-MYB, with three adjacent repeats; and a heterogeneous
group collectively known as MYB-associated proteins, which usually contain an
MYB repeat sequence.

Phenotypic analysis and dissection of mutants with interesting phenotypes
revealed the function of 125 R2R3-MYB genes in Arabidopsis thaliana. The R2R3
MYB gene controls many aspects of plant secondary metabolism, as well as the
characteristics and fate of plant cells (Stracke et al. 2001).

9.1.2.4 WRKY TF Family

WRKY transcription factors are a large family of transcriptional regulators in plants
and form integral parts of signaling webs that modulate many plant processes. The
defining feature of WRKY TFs is their DNA binding domain. This is named after
the nearly invariant WRKY amino acid sequence at the N-terminus (Rushton et al.
2010).

Studies on WRKY transcription factors show that members of this multigene
family play a role in transcriptional reprogramming related to plant immune
responses. WRKY TFs are also involved in many processes, including embryo-
genesis, seed coat and trichome development, anthocyanin synthesis and hormone
signaling (Pandey and Somssich 2009).

Although their DNA-binding domains are highly conserved, the overall structure
of WRKY proteins is highly diverse and can be divided into distinct groups. All
known WRKY proteins contain either one or two WRKY domains. They can be
classified according to the number of WRKY domains and the characteristics of the
zinc finger-like motif. WRKY proteins with two WRKY domains belong to group
I, while most proteins with one WRKY domain belong to group II. Generally, the
WRKY domains of group I and group II members have the same Cys2-His2 zinc-
finger motif. The single finger motif of a small subset of WRKY proteins is distinct
from that of group I and II members. Instead of a C2–H2 pattern, their WRKY
domains contain a C2–HC motif. Owing to this distinction, they have been assigned
to the newly defined group III (Eulgem et al. 2000).
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9.1.2.5 AP2/ERF Family

The APETALA 2/ethylene-responsive element-binding factor (AP2/ERF) family is
a large family of plant-specific transcription factors, which includes the following
major subfamilies: the AP2, RAV, ERF, and dehydration-responsive element-
binding protein (DREB) subfamilies (Mizoi et al. 2012).

The AP2/ERF family is a large group of transcription factors containing
AP2/ERF type DNA-binding domains, whose members are encoded by 145 loci in
Arabidopsis thaliana. This domain was first identified as a repeated motif within
the Arabidopsis homeotic gene APETALA 2 (AP2) involved in flower development
and a similar domain was found in Nicotiana tabacum ethylene-responsive element-
binding proteins (EREBPs) (Sakuma et al. 2002). The AP2/ERF superfamily is
defined by the AP2/ERF domain, which consists of about 60–70 amino acids and
is involved in DNA binding. These proteins are involved in the transcriptional
regulation of biological processes related to growth and development, as well as in
response to environmental stimuli.

Genes in the AP2 family are involved in the regulation of developmental
processes such as flower development, leaf epidermal cell properties, and embryo
development. Many proteins in the ERF family are involved in different functions of
cellular processes, such as hormonal signal transduction, abiotic stress, regulation
of metabolism and developmental processes (Nakano et al. 2006).

9.1.2.6 NAC TF Family

NAM, ATAF, and CUC (NAC) transcription factors constitute a large protein family.
NAC TFs are plant-specific TFs involved in development and abiotic and biological
stress responses (Nakashima et al. 2012). This protein family contains a highly
conserved N-terminal DNA-binding domain and a variable C-terminal domain.

NAC was originally derived from the names of three proteins, no apical meristem
(NAM), ATAF1-2, and CUC2 (cup-shaped cotyledon), that contain a similar DNA-
binding domain (Fang et al. 2008). Many of them, including Arabidopsis CUC2, are
involved in plant development. Some NAC genes are upregulated during injury and
bacterial infection, while others mediate viral resistance (Nakashima et al. 2012).

In Arabidopsis, drought induces the production of NAC transcription factors.
Overexpression of three NAC genes (ANAC019, ANAC055 and ANAC072) in
Arabidopsis thaliana (At) improved plant stress tolerance and altered the expression
of drought, salinity and low-temperature stress-induced genes (Hu et al. 2006).
Overexpression of AtNAC2 leads to altered lateral root development and increased
salt tolerance (He et al. 2005).

Individual transcription factors may be involved in more than one biological
process. Here, we only list some of the functions of transcription factors in some
families according to the literature. Note that the full function of this transcription
factor is not shown (Table 9.1).
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Table 9.1 Part of the function of some transcription factors

Function Name TF family References

Biotic
Anthocyanin
biosynthesis

GL3, TT8 bHLH Nesi et al. (2000), Zhang
et al. (2003)

PAP1 (vegetative tissues) MYB Serna and Martin (2006)
CPC (negative regulator) MYB Serna and Martin (2006)

Proanthocyanidin
biosynthesis

TT8 bHLH Baudry et al. (2004)

Iron homeostasis ORG2, ORG3 bHLH Feller et al. (2011)
Regulation of iron
uptake

FIT bHLH Feller et al. (2011)

Metal homeostasis,
auxin-conjugate
metabolism

ILR3 bHLH Feller et al. (2011)

Glucosinolate
biosynthesis

HAG2, HIG1, ATR1,
HAG3/PMG2. HAG1/PMG1

MYB Dubos et al. (2010)

Phenylpropanoide
pathway

PFG3, PFG1, PFG2, PAP2,
PAP1, TT2

MYB Feller et al. (2011)

Flavonol biosynthesis
(all tissues)

PFG2, PFG1, PFG3 MYB Feller et al. (2011)

Seed coat
differentiation

GL3, EGL3, TT8, MYC1 bHLH Gonzalez et al. (2009)

Fruit differentiation IND bHLH Feller et al. (2011)
Cell fate FLP, WER, GL1, NOK,

MIXTA
MYB Song et al. (2009)

Programmed cell
death

XND1 NAC Zhao et al. (2008)

Cell cycle,
pre-mRNA splicing
and transcriptional
regulation of cyclins

CDC5 MYB Burns et al. (1999); Lin
et al. (2007)

Cell-cycle regulation; XAL1 MADS Tapia-López et al. (2008)
Circadian clock CCA1, LHY MYB Lu et al. (2009)
Development
Fertilization UNE12, UNE10 bHLH Feller et al. (2011)
Early embryo
development

MEE8 bHLH Feller et al. (2011)

Embryo sac
development

AGL23 MADS Colombo et al. (2008)

Central cell and
endosperm
development

AGL62, AGL80 MADS Kang et al. (2008),
Portereiko et al. (2006)

(continued)
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Table 9.1 (continued)

Function Name TF family References

Root hair formation
and development

LHW, MYC1, GL3, EGL3,
RHD6, RSL1–5

bHLH Feller et al. (2011)

WER, TRY, CPC, ETC1,
ETC2, ETC3, TCL1,
MYBL2

MYB Feller et al. (2011)

NAC1 NAC Guo et al. (2005)
ANR1, FYF, XAL1 MADS Zhang and Forde (1998),

Nawy et al. (2005),
Tapia-López et al. (2008)

Fruit development ALC (dehiscence), SPT bHLH Rajani and Sundaresan
(2001)

GOA, AGL15 (maturation) MADS Prasad et al. (2010),
Harding et al. (2003)

Carpel margin
development

SPT bHLH Feller et al. (2011)

Transmitting tract and
stigma development

HEC1, HEC2, HEC3 bHLH Gremski et al. (2007)

Anther development AMS bHLH Feller et al. (2011)
TDF1, MS35 MYB Dubos et al. (2010)

Stamen development DUO1, TDF1, MS35, BOS1 MYB Dubos et al. (2010)
Axillary meristem
regulation/lateral
organ separation

AS1(leaves), LOF1, RAX3,
RAX2/BIT1, RAX1

MYB Dubos et al. (2010)

AGL6 MADS Kim et al. (2005)
Hypoctyle elongation LAF1 (far red light-mediated

phyA signaling)
MYB Yang et al. (2009a, b)

RAX2/BIT1 (blue
light-mediated CRY1
signaling)

MYB Dubos et al. (2010)

Embryogenesis/seed
maturation

PGA37 MYB Dubos et al. (2010)

AGL15 MADS Heck et al. (1995)
Petal epidermis cell
shape

MIXTA MYB Perez-Rodriguez et al.
(2005)

Seedling hypocotyl
elongation (far-red
light)

LAF1 MYB Feller et al. (2011)

Shoot morphogenesis
and leaf patterning

AS1 MYB Feller et al. (2011)

Leaf senescence NTL4, NTL9, VNI2,
OR/RD, AtNAP

NAC Nuruzzaman et al. (2013)

RAV (positive) AP2/ERF Woo et al. (2010)

(continued)
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Table 9.1 (continued)

Function Name TF family References

Pollen maturation and
tube growth

AGL65 MADS Adamczyk and
Fernandez (2009)

Carpel and ovule
development;
periodic lateral root
formation

SHP1, SHP2, STK MADS Liljegren et al. (2000),
Moreno-Risueno et al.
(2010), Pinyopich et al.
(2003)

Transition to
flowering (activator)

XAL1, FYF, AGL71,
AGL72, SOC1

MADS Tapia-López et al.
(2008), Dorca-Fornell et
al. (2011), Smaczniak et
al. (2012)

Transition to
flowering (repressor)

AGL15 (with AGL18) MADS Smaczniak et al. (2012)

AGL18 (with AGL15) MADS Smaczniak et al. (2012)
FLC, MAF1-4, SVP MADS Michaels and Amasino

(1999), Ratcliffe et al.
(2001), Hartmann et al.
(2000)

Transition to
flowering (activator)

AGL17, AGL19, AGL24,
MAF5, AGL28, AGL6, FYF

MADS Han et al. (2008),
Schönrock et al. (2006),
Michaels et al. (2003),
Ratcliffe et al. (2003),
Yoo et al. (2006, 2011),
Smaczniak et al. (2012)

Seed pigmentation
and endothelium
development

ABS MADS Smaczniak et al. (2012)

Seed development PHE1 MADS Köhler et al. (2003)
Sepal and petal
longevity

AGL15 MADS Smaczniak et al. (2012)

Flower organ
senescence and
abscission

FYF MADS Chen et al. (2011)

Positively regulate
floral organ identity

AP2 AP2/ERF Dinh et al. (2012)

Number and
distribution of
stomata

AGL16 MADS Kutter et al. (2007)

Stomata development ICE1, SCRM2 bHLH Nadeau (2009)
Meristem identity
specification

CAL, FUL, AP1 MADS Kempin et al. (1995),
Smaczniak et al. (2012)

Negatively regulate
plant development

TINY, RAP2.4, RAP2.6 AP2/ERF Sun et al. (2008), Lin et
al. (2008), Zhu et al.
(2010)

Negatively regulate
ABA signaling during
seed germination

RAV AP2/ERF Kagaya et al. (1999)

(continued)
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Table 9.1 (continued)

Function Name TF family References

Stress
Cold acclimatization
response and freezing
tolerance

ICE1, SCRM2 bHLH Feller et al. (2011)

LOV1 NAC Yoo et al. (2007)
CBF1 AP2/ERF Yang et al. (2009a, b)

ABA signaling MYC2, AtAIB bHLH Abe et al. (2003)
NTL8 NAC Kim et al. (2008)
ABI4, TINY, ORA47 AP2/ERF Bossi et al. (2009), Sun

et al. (2008)
Light signaling MYC2, PIF1/PIL5, PIF3,

PIF4, PIF5/PIL6
bHLH Abe et al. (2003), Feller

et al. (2011)
Gibberellin signaling PRE1-5, PIF1/PIL5, PIF3,

PIF4, PIF5/PIL6
bHLH Feller et al. (2011)

JA signaling MYC2 bHLH Abe et al. (2003)
BOS1 MYB Baldoni et al. (2015)
ORA47 AP2/ERF Chen et al. (2016)

GA signaling NTL8 NAC Kim et al. (2008)
Shade avoidance
response

PAR1 bHLH Carretero-Paulet et al.
(2010)

Drought-stress
response

BOS1 MYB Baldoni et al. (2015)

AhNAC2, RD29A, RD29B,
RAB18, ERD1, COR47,
COR15a, KIN1, AREB1,
CBF1, NTL6

NAC Liu et al. (2011)

ERF53, RAP2.4, RAP2.4A AP2/ERF Lin et al. (2008), Cheng
et al. (2012)

Phosphate starvation
response

PHR1 MYB Hosoda et al. (2002),
Bustos et al. (2010)

Pathogen infection BOS1 MYB Baldoni et al. (2015)
NIT2, ATAF2 NAC Huh et al. (2012)

Wounding BOS1 MYB Baldoni et al. (2015)
Salt tolerance NTL8 NAC Kim et al. (2008)
Positively regulate
hypoxia tolerance

ERF71/HRE2,
ERF72/RAP2.3,
ERF74/RAP2.12,
ERF75/RAP2.2

AP2/ERF Lee et al. (2015), Welsch
et al. (2007), Gasch et al.
(2016)

9.1.3 Bioinformatic Resources for Plant Transcription Factors

A list of bioinformatics databases for plant TFs are shown in the Table 9.2.
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Table 9.2 Database for the classification of transcription factor families

Database URL Plant species

AGRIS http://arabidopsis.med.ohio-state.
edu/AtTFDB/

Arabidopsis thaliana

RARTF http://rarge.gsc.riken.jp/rartf/ Arabidopsis thaliana

DATF http://datf.cbi.pku.edu.cn/ Arabidopsis thaliana

DRTF http://drtf.cbi.pku.edu.cn/ Rice
DPTF http://dptf.cbi.pku.edu.cn/ Poplar
TOBFAC http://compsysbio.achs.virginia.

edu/tobfac/
Tobacco

wDBTF http://wwwappli.nantes.inra.fr:
8180/wDBFT/

Wheat

soyDB http://casp.rnet.missouri.edu/
soydb/

Soybean

SoybeanTFDB http://soybeantfdb.psc.riken.jp/ Soybean
RiceSRTFDB http://www.nipgr.res.in/

RiceSRTFDB.html
Rice

STIFDB http://caps.ncbs.res.in/stifdb Arabidopsis, rice
IT3F http://jicbio.nbi.ac.uk/IT3F/ Arabidopsis, rice
GRASSIUS http://grassius.org/summary.html Corn, rice, sorghum, sugar cane
LegumeTFDB http://legumetfdb.psc.riken.jp/ Soybean, root, tribulus alfalfa
TreeTFDB http://treetfdb.bmep.riken.jp/index.

pl
Jatropha, papaya, cassava, poplar

GramineaeTFDB http://gramineaetfdb.psc.riken.jp Brachypodium, rice, sorghum, maize
PlnTFDB http://plntfdb.bio.uni-potsdam.de/

v3.0/
Multiple species

PlantTFDB http://planttfdb.cbi.pku.edu.cn/ Multiple species
DBD http://dbd.mrc-lmb.cam.ac.uk/

DBD/index.cgi?Home
Multiple species

9.2 Methods for Genome-Wide Identification
of Transcription Factor Binding Sites

From the introduction, we know that transcription factors (TFs) are sequence-
specific DNA-binding proteins that regulate gene expression in organisms. They
recognize specific sequences in the DNA and bind together to accomplish their
functions. Based on the manner of TF recognition, many methods for finding TFBS
have been developed.

9.2.1 Experimental Methods for Identifying TFBSs

Over the past decade, next-generation sequencing (NGS) technologies, such as
ChIP-Seq and DAP-Seq, have provided better technical support for exploring the

http://arabidopsis.med.ohio-state.edu/AtTFDB/
http://arabidopsis.med.ohio-state.edu/AtTFDB/
http://rarge.gsc.riken.jp/rartf/
http://datf.cbi.pku.edu.cn/
http://drtf.cbi.pku.edu.cn/
http://dptf.cbi.pku.edu.cn/
http://compsysbio.achs.virginia.edu/tobfac/
http://compsysbio.achs.virginia.edu/tobfac/
http://wwwappli.nantes.inra.fr:8180/wDBFT/
http://wwwappli.nantes.inra.fr:8180/wDBFT/
http://casp.rnet.missouri.edu/soydb/
http://casp.rnet.missouri.edu/soydb/
http://soybeantfdb.psc.riken.jp/
http://www.nipgr.res.in/RiceSRTFDB.html
http://www.nipgr.res.in/RiceSRTFDB.html
http://caps.ncbs.res.in/stifdb
http://jicbio.nbi.ac.uk/IT3F/
http://grassius.org/summary.html
http://legumetfdb.psc.riken.jp/
http://treetfdb.bmep.riken.jp/index.pl
http://treetfdb.bmep.riken.jp/index.pl
http://gramineaetfdb.psc.riken.jp
http://plntfdb.bio.uni-potsdam.de/v3.0/
http://plntfdb.bio.uni-potsdam.de/v3.0/
http://planttfdb.cbi.pku.edu.cn/
http://dbd.mrc-lmb.cam.ac.uk/DBD/index.cgi?Home
http://dbd.mrc-lmb.cam.ac.uk/DBD/index.cgi?Home
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landscape of TFs. This has led to the creation of many databases for transcription
factor binding sites (TFBS) deposition and profiling, including TRANSFAC, JAS-
PAR, UniPROBE, and SwissRegulon. Both of them have substantially boosted our
understanding of interactions between TF and TFBS.

Here, we address some experimental methods for identifying TFBSs to explain
how TFBS are identified experimentally (Lai et al. 2019).

9.2.1.1 ChIP-seq

Chromatin immunoprecipitation sequencing (ChIP-Seq) is a technique for the
profiling of genome-wide TFBSs bound by a given TF. Combined with chro-
matin immunoprecipitation and large-scale parallel sequencing, ChIP-seq can map
genome-wide TFBSs in vivo.

A standard ChIP-seq protocol is as follows. First, chromatin-containing TF–
DNA complexes are isolated from sample tissues which are treated with a crosslink-
ing reagent and subjected to nuclei purification. Then the DNA fragments associated
with a TFs are enriched and the chromatins in them are cut into smaller pieces by
sonication. In the next step, the DNA–protein complex is immunoprecipitated using
antibodies specific to the protein. Finally, the crosslinks are reversed, freeing the
DNA for analysis and ultimately determining the sequence that binds to the protein
(Park 2009).

ChIP-seq offers a number of advantages. For example, its resolution can reach
the level of a single nucleotide and is limited only by the alignability of reads to
the genome. In the process of hybridization using ChIP-chip, there may be cross
hybridization between incomplete matched sequences, resulting in false positives.
This increases the signal noise. However, ChIP-seq can be unaffected by these
noises. It generates a more accurate list of protein binding sites and transcription
factors and allows in vitro high-throughput identification of TF binding specificity,
which helps predict TFBS in genome sequences.

9.2.1.2 DAP-seq

Although many of the advantages of ChIP-seq have already been mentioned, the
main disadvantages of Chip-seq are cost and availability. DNA affinity purification
sequencing (DAP-seq) has been recently developed.

Compared to ChIP-seq and its variants, DAP-Seq can be performed at a lower
cost and in a high-throughput manner. It is an alternative to ChIP-seq and expresses
transcription factor proteins in vitro, interacts with genomic DNA and sequences
the DNA bound to the recombinant protein. It also analyzes the gene sites bound to
the protein as well as the specific DNA motif. Because there is no need for specific
antibodies and the fixation of DNA and protein, the technical requirements of the
analysis are reduced compared with ChIP-seq. DAP-seq is a high-throughput TF
binding site discovery method, using genomic DNA in vitro, which enables rapid
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identification of target genes directly bound downstream by transcription factors
(Bartlett et al. 2017).

DAP-seq has some limitations. DAP-seq lacks the chromatin background of
cells because this is an in vitro interaction experiment. Controls therefore need
to be introduced in the analysis, and DAP-seq should be combined with other
methods. In addition, the experimental design and data analysis must consider that
many transcription factors may show different DNA binding characteristics in the
presence of cofactors.

Despite these limitations, the combination of DAP-seq in vitro and ChIP-seq in
vivo is an information-rich method for modeling TFBS and predicting TF binding
in vivo.

9.2.1.3 ATAC-seq

In general, TFs preferentially bind to TFBSs in the depleted region of the nucle-
osome (NDR), where chromatin is more accessible. This has been confirmed by
large-scale studies, in which most of the active cis-elements are present in NDR in
different species. Thus, obtaining datasets of chromatin accessibility is a necessary
step in the research process. For this research, the best current methods are DNase-
seq, MNase-seq, FAIRE-seq, and ATAC-seq.

Among these, ATAC-seq is popular because it requires no sonication or phenol-
chloroform extraction like FAIRE-seq, no antibodies like ChIP-seq, and no sensitive
enzymatic digestion like MNase-seq or DNase-seq. The method needs a minimum
number of input samples, and its preparation can be completed in less than 3 h,
which is faster than the alternative methods.

The Assay for Transposase Accessible Chromatin with high-throughput sequenc-
ing (ATAC-seq) methodology relies on the use of hyperactive translocase Tn5 to
construct a library and uses DNA transposable enzyme technology to analyze chro-
matin accessibility. Tn5 is a prokaryotic transposase that endogenously functions
through a “cut and paste” mechanism.

Under normal circumstances, ATAC-seq can be divided into three independent
components: cell lysis, transposition, and amplification. Crosslinking generally
reduces library creation efficiency, and therefore, some studies recommend starting
with fresh unfixed cells for maximum sensitivity (Buenrostro et al. 2015).

9.2.2 Computational Frameworks for Modeling TFBSs

Using computer methods to find TFBS is also common. A quantitative TFBS model
representing TF-DNA-binding affinity allows accurate de novo prediction of given
TF binding sites. These models can be calculated from a set of known TFBSs. Here,
we focus on the most widely used and representative TFBS modeling algorithms
(Lai et al. 2019).
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The most commonly used representative model is the Position Weight Matrix
(PWM). To construct the PWM matrix, one first needs to obtain the Position
Frequency Matrix (PFM), which is the number of occurrence of four nucleotides
at each position (Fig. 9.2; PFM from JASPAR). As can be seen from PFM, in the
first position A appears 201 times, C 201 times, G 396 times, and T 201 times.
Similarly, the frequency of each position is converted into a frequency to obtain the
position probability matrix (PPM).

On the basis of the PPM, the PWM can be obtained using the formula
Wj, k = log2(Mj, k/bk) to obtain the correction. In the above formula, b is the
background probability, which, in this case, is 0.25 (assuming the same amounts
of ATCG in the genome), where Mj, k is the probability of base k in position j. The
PWM matrix can be visualized in the way of TFBS logo (Fig. 9.3), which indicates
the preference of TF binding at each location.

Although PWM is widely used, it is based on the assumption that each location
in the same TFBS is independent of the binding affinity of the other locations.

Fig. 9.2 Position Frequency Matrix (PFM) of HYH
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Fig. 9.3 Motif presentation of HYH
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Therefore, PWM cannot describe the dependence between bases. With these issues
in mind, newer models, such as the binding energy model (BEM), dinucleotide
weight tensor (DWT) and TF Flexible Model (TFFM), were developed.

Some studies have found that highly conserved DNA-binding domains can bind
different sequences, and this could not be explained by the base readout and indirect
readout. For example, the TF paralogs and glucocorticoid receptors share only one
third of their sequence, but they can bind similar DNA motifs through a set of
the same amino acids. The shape of the DNA helps TFs recognize TFBSs. For
this reason, some algorithms integrate Hi-C data (high-throughput/esolution idea
conformation capture), such as DeFine.

For TFBS, we typically only focus on its core motif. However, although relatively
little sequence information is provided by the flanking regions, they do work jointly
with the core motif to determine the shape feature. SelexGLM is a model that takes
flanking region data into consideration (Table 9.3).

9.3 Constructing and Dissecting Transcription
Factor-Associated Regulatory Networks

Transcription factors can help us understand some of the workings of the signaling
network—for example, which genes it is regulated by and which genes it affects.
Using data in the ChIP-Hub (a database containing ChIP-seq data for many plant
transcription factors), we analyzed previously described TF to obtain such a TFs
regulatory network map. Each node in the map represents a transcription factor, and
the line between two nodes represents the interaction between two transcription fac-
tors (Fig. 9.4; left). In this network, we also divided each transcription factor (node)
into different categories based on how closely they are connected (Fig. 9.4; right).

We identified 22 transcription factors involved in flower development and showed
their regulatory network in red (Fig. 9.5). This provided a pattern describing the
transcription factors related to flower development. Although the network appears
incomplete (perhaps because only some of the transcription factors described in the
literature have been described), we can see what other transcription factors affect
these transcription factors.

This biological process is very complex. As mentioned earlier, one transcription
factor may be involved in multiple biological processes. For example, transcription
factors such as XAL1 and FYF, which are associated with root development, are
also involved in flower development.
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Table 9.3 Some computational frameworks for modeling TFBSs

TFBS modeling
methods Description Features integrated

Web server or
source code

PWM (position
weight matrix)

PWMs are normalized
representations of the
position-specific
log-likelihoods of a
nucleotide’s probability to
occur at each position in a
sequence

NA (not applicable) NA

BEM (binding
energy model)

BEM introduces energy
parameters of adjacent
nucleotides to the binding
affinity quantification

Dependencies
(adjacent positions)
and binding affinity
data

http://stormo.
wustl.edu/TF-
BEMs/

TFFM (TF
Flexible Model)

TFFM model integrates a
Markov model to take
dependencies and
background into account

Dependencies
(adjacent position)
and background

http://cisreg.
cmmt.ubc.ca/cgi

DWT
(dinucleotide
weight tensor)

DWT is a regulatory motif
model that incorporates
arbitrary pairwise
dependencies for TFBS
prediction

Dependencies
between all positions

http://dwt.unibas.
ch/fcgi/dwt

DeFine DeFine quantifies
TF–DNA-binding affinity
and facilitate evaluation of
functional noncoding
variants in the genome
based on deep learning
algorithms

Integrate Hi-C data http://define.cbi.
pku.edu.cn

SelexGLM SelexGLM incorporates
core motif flanking region
for TFBS binding
quantification

Core motif flanking
region

https://www.
bioconductor.org

DFIM (Deep
Feature
Interaction Maps)

DFIM estimates pairwise
interactions between
features (such as
nucleotides or
subsequences) in any input
DNA sequences by a
neural network

Dependencies
between all positions,
interaction between
motifs, core motif
flanking region, and
chromatin
accessibility

https://github.
com/kundajelab/
dm.

http://stormo.wustl.edu/TF-BEMs/
http://stormo.wustl.edu/TF-BEMs/
http://stormo.wustl.edu/TF-BEMs/
http://cisreg.cmmt.ubc.ca/cgi
http://cisreg.cmmt.ubc.ca/cgi
http://dwt.unibas.ch/fcgi/dwt
http://dwt.unibas.ch/fcgi/dwt
http://define.cbi.pku.edu.cn
http://define.cbi.pku.edu.cn
https://www.bioconductor.org
https://www.bioconductor.org
https://github.com/kundajelab/dm
https://github.com/kundajelab/dm
https://github.com/kundajelab/dm
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Fig. 9.4 Transcription factor regulatory network
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Fig. 9.5 Floral-associated transcription factor regulatory networks

9.4 Concluding Remarks

Transcription factors constitute the key nodes of the gene regulatory network.
It is involved in biological processes such as plant morphological change and
stress response, and affects the final results. We can use the existing data to
build gene regulatory networks to assist research. In this chapter, we introduce
some of the major transcription factor families in plants. Some simple networks
were constructed using transcription factors and ChIP-hub data mentioned in the
literature. All these are important means to assist the study of plant.
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Chapter 10
Microbiome and Big-Data Mining

Kang Ning

Abstract Microbiome samples are accumulating at a very fast speed, representing
microbial communities from every niche (biome) of our body as well as the
environment. The fast-growing amount of microbiome samples, as well as the
diversified sources from where the samples are collected, have provided us with
an unprecedented scene from where we could obtain a better understanding of the
microbial evolution and ecology. While all of these represent profound biological
patterns and regulation principles, the understanding of them is heavily dependent
on data integration and big-data mining, including the data-driven microbiome
marker identification, non-linear relationship mining, dynamic pattern discovery,
regulation principle discovery, etc.

In this chapter, we first introduce several terminologies in microbiome research,
followed by the introduction of microbiome big-data. Then we emphasize the
microbiome databases, as well as mainstream microbiome data mining techniques.
We have provided several microbiome applications to showcase the power of micro-
biome big-data integration and mining for knowledge and clinical applications.
Finally, we have summarized the current status of microbiome big-data analysis,
pointed out several bottlenecks, and illustrated prospects in this research area.
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Microbiome samples are accumulating at a very fast speed, representing microbial
communities from every niche (biome) of our body as well as the environment
(Mitchell et al. 2020; Integrative HMP (iHMP) Research Network Consortium
2019; Thompson et al. 2017; Sunagawa et al. 2015). The fast-growing amount of
microbiome samples, as well as the diversified sources from where the samples
are collected, have provided us with an unprecedented scene from where we could
obtain a better understanding of the microbial evolution and ecology (Mitchell et
al. 2020; Segata et al. 2013; Integrative Human Microbiome Project 2019). While
all of these represent profound biological patterns and regulation principles, the
understanding of them is heavily dependent on data integration and big-data mining
(Knight et al. 2018), including the data-driven microbiome marker identification
(Segata et al. 2011), non-linear relationship mining (Surana and Kasper 2017),
dynamic pattern discovery (Halfvarson et al. 2017; Ren et al. 2017; Bashan et al.
2016; Backhed et al. 2015; Liu et al. 2019), regulation principle discovery (Han et
al. 2020), etc.

In this chapter, we will first introduce several terminologies in microbiome
research, followed by the introduction of microbiome big-data. Then we will
emphasize the microbiome databases, as well as mainstream microbiome data
mining techniques. We will provide several microbiome applications to showcase
the power of microbiome big-data integration and mining for knowledge and clinical
applications. Finally, we will summarize the current status of microbiome big-data
analysis, point out several bottlenecks, and illustrate prospects in this research area.

10.1 Microbial Communities, Metagenome, and Microbiome

As a ubiquitous and important organism in nature, microorganisms usually coexist
in the form of a “microbial community” (Thompson et al. 2017; Sunagawa et
al. 2015; Segata et al. 2013; Integrative HMP (iHMP) Research Network Con-
sortium 2014). A microbial community usually contains dozens to thousands of
different microorganisms, these species cooperate with each other to adapt to the
changes in the environment, and their life activities also have a long-term and
profound impact on the environment (Thompson et al. 2017; Integrative HMP
(iHMP) Research Network Consortium 2014). With the deepening of human
understanding of microorganisms, the basic research of microbial community and
its application in the fields of health and environment have become increasingly
important (Integrative Human Microbiome Project 2019; Biteen et al. 2016). The
main research objects of microbiome include all the genetic materials of microbial
communities, related environmental parameters and metabolites, as well as their
complex relationships and dynamic changes.

In the microbiome research area, several terms need to be explained clearly,
including microbiota, metagenome, and microbiome (Whiteside et al. 2015). A
microbial community is a mixture of microbial species living, adapting, and evolv-
ing in a certain environment. Metagenome refers to the total genetic materials in the
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(a) (b)

(c)

Microbiom metablites Host metablites

Microbiom protein Host protein

Fig. 10.1 The definitions of microbiota, metagenome, and microbiome. The same shape and color
represent the same species, while different symbols represent different entities. (a) Microbiota:
identification of all species in the microbial community using 16S rRNA sequencing. (b)
Metagenome: all genetic materials in the microbial community. (c) Microbiome: all genetic
materials, environmental factors, and metabolites in the microbial community

microbial community, while metagenome could be obtained by shotgun sequencing,
many projects are still conducted by 16 s rRNA amplicon sequencing that could
only quantitatively profile the species in the community. Microbiome refers to
all genetic and non-genetic information contained in the microbial community,
including metagenome, as well as all environmental factors and metabolites in the
community. A brief illustration of the definitions and relationships of microbial
communities, metagenome, and microbiome is provided in Fig. 10.1.

The microbiome research is mostly conducted by the omics approach (Mitchell
et al. 2020; Segata et al. 2013). Firstly, samples are collected from niches, stored
in a −20◦C tube, before DNA extraction and amplification and sequencing. Then
high-throughput sequencing is conducted, by means of 16S rRNA sequencing or
metagenomic sequencing, and sequencing data are transferred for analysis (Knight
et al. 2018).

10.1.1 The Differences Between 16S and Metagenomes

The sequencing principles: 16S rDNA contains nine hypervariable regions and ten
conserved regions. A segment of hypervariable region sequence was amplified by
PCR and sequenced. Metagenomic sequencing is similar to conventional DNA
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library in that it randomly breaks microbial genomic DNA into small fragments and
then inserts joints at both ends of the fragments for high-throughput sequencing.

Different fields of study: 16S rRNA sequencing mainly studies the species
composition, the evolutionary relationship among species, and the diversity of
communities. Besides, metagenomic sequencing can also be used for further
research at the genetic and functional levels.

Different degree of species identification: Much of the 16S sequencing results are
below species level, while metagenomic sequencing identifies microbes to species
level and even to strain level.

The advantages and disadvantages of 16S rRNA and metagenomic sequencing
methods for microbial community research have been summarized in (Knight et al.
2018), and we have provided key points in Table 10.1.

Table 10.1 Advantages and disadvantages of 16S rDNA and metagenomic sequencing methods
for microbial community research

Method Advantage Disadvantage

Marker gene
analysis

• Fast, simple, and inexpensive
sample preparation and analysis
• Closely related to genome content
• Suitable for samples with low
biomass
• Could be compared with existing
large public data sets

• Affected by amplification bias
• Selection of primers and variable
regions will amplify the deviation
• Usually need prior knowledge of
the microbial community
• Resolution is usually only to
genus
• Need for proper negative control
• Limited functional information

Metagenomic
analysis

• The relative abundance of
microbial functional genes can be
directly inferred
• For known organisms, microbial
classification and phylogenetic
identity can be achieved at the
species and strain level
• It is not assumed to understand the
microbial community
• No biases associated with PCR
• The in situ growth rate of target
organisms with sequenced genomes
can be estimated
• It is possible to assemble a
population-average microbial
genome
• Can be used for new gene families

• Relatively expensive, laborious,
and complicated sample preparation
and analysis
• The default pipeline usually does
not annotate viruses and plasmids
well
• Due to assembly artifacts,
population-average microbial
genomes are often inaccurate



10 Microbiome and Big-Data Mining 201

10.2 The Microbiome Research Is Heavily Dependent
on Big-Data

As the number of microbiome samples easily exceeds tens of thousands in a
medium-sized data collection (Mitchell et al. 2020), the efficiency and accuracy of
sample comparison and search become a critical bottleneck (Knight et al. 2018), not
to mention millions of samples from the rapidly diversified biomes from less than
a hundred to more than three hundred in public databases (Fig. 10.2). The rapidly
increasing number of samples from various niches on the planet has thus created a
difficult huddle for knowledge discovery from these samples (Mitchell et al. 2020).

Microbiome research is heavily dependent on big-data, largely due to three
reasons: (1) As traditional microbial research strategies could not identify the
species in the community, current species identification and quantification is mostly
done by sequencing techniques plus data analysis techniques. (2) As heterogeneous
microbial community samples are collected from hundreds of different niches
around the world, the comparison of these communities could only be performed
using big-data mining techniques. (3) The mining of millions to trillions of
functional genes from microbial communities is also a data-driven task nowadays.

Big-data technology and machine learning technology are very suitable for the
organization, integration, and in-depth analysis of microbiome data (Li et al. 2019;
Cheng et al. 2019; Tang et al. 2019; Microbiota meet big data 2014). First of all,
microbiome data has all the 4 V characteristics of big data (Volume, Velocity,
Variety, Veracity): large Volume, a large amount of data, including the amount of
collection, storage, and calculation. The starting measurement unit of big data is
at least p (1000 t), e (one million T), or Z (1 billion T). There are various types
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Fig. 10.2 The fast increasing number of microbiome samples, and the rapidly diversified biomes
from where they are collected. Results are based on assessment of EBI MGnify database from year
2011 to year 2020
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Fig. 10.3 The characteristics and urgent needs in multi-omics researchers

and sources (Variety). Including structured, semi-structured, and unstructured data,
multi-types of data put forward higher requirements for data-processing ability. The
Value density is low, and the data value density is relatively low. In other words, it
is valuable to wash sand in waves. Information is massive, but the value density
is low. How to mine the value of data through powerful machine algorithms is
the most important problem to be solved in the era of big data. Velocity: this is
a significant feature that big data is different from traditional data mining. Secondly,
microbiome big data needs to be deeply mined: Data mining (DM) is an emerging
interdisciplinary subject that gathers multiple disciplines. It is an extraordinary
process, that is, the process of extracting unknown, implied, and potentially valuable
information from huge data (Fig. 10.3).

10.3 Microbiome Data Integration and Databases

The development of microbiome research has profoundly boosted the data accumu-
lation as well as the output of the researches. In the past 10 years, an exponential
number of publications have been output (Fig. 10.4a), based on more than 100 TB
per year of microbiome data accumulated (Fig. 10.4b).

Currently, there are already databases dedicated to microbiome researches
(Table 10.2), including MG_RAST ((Meyer et al. 2008), http://metagenomics.anl.
gov/), CAMERA ((Seshadri et al. 2007), http://camera.calit2.net/) as specialized
databases, and NCBI SRA (http://www.ncbi.nlm.nih.gov/sra) as general databases.
Among these databases, NCBI SRA (Kodama et al. 2012), MG-RAST (Meyer

http://metagenomics.anl.gov/
http://metagenomics.anl.gov/
http://camera.calit2.net/
http://www.ncbi.nlm.nih.gov/sra
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Fig. 10.4 In the past 10 or more years, (a) an exponential number of publications have been
output, (b) based on more than 100 TB per year of microbiome data accumulated

Table 10.2 Commonly used microbiome databases (Zhang et al. 2017)

Database name Description Database website References

NCBI SRA General database that
contains microbiome
data of all kinds and
formats

http://
www.ncbi.nlm.nih.gov/
sra

Kodama et al.
(2012)

EBI MGnify Specialized
microbiome database
with a comprehensive
collection of samples,
and with a unified
analytical pipeline

www.ebi.ac.uk/
metagenomics/

Mitchell et al.
(2020)

MG-RAST Specialized
microbiome database
with a unified
analytical pipeline

Metagenomics.anl.gov Paczian et al.
(2019), Meyer et al.
(2019)

IMG/M Specialized
microbiome database
with a unified
analytical pipeline

img.jgi.doe.gov Markowitz et al.
(2008)

Qiita Specialized
microbiome database
with a unified
analytical pipeline
and comprehensive
meta-data
information

http://qiita.ucsd.edu/ Gonzalez et al.
(2018)

CAMERA Specialized
microbiome database,
data collection not
comprehensive

http://camera.calit2.net/ Seshadri et al.
(2007)

et al. 2008), and CAMERA2 (Seshadri et al. 2007) each has more than 10,000
microbiome projects, representing hundreds of thousands of samples and several
TB of sequencing data.

http://www.ncbi.nlm.nih.gov/sra%0d
http://www.ebi.ac.uk/metagenomics/
http://metagenomics.anl.gov
http://qiita.ucsd.edu/
http://camera.calit2.net/%0d
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However, the microbiome data in several major databases have not been well
sorted out, whether in terms of the unification and integration of microbiome data
format, or the matching environmental parameters (metadata). One of the key
points is that the microbiome data has not been effectively classified and organized,
resulting in a bottleneck for sample classification and comparison. Microbial
community samples and relevant sequencing data are organized according to the
biome ontology organization structure by hierarchical structures. For example: at the
end of 2019, EBI MGnify contains sub-millions samples from 491 biomes (https://
www.ebi.ac.uk/metagenomics/biomes) (Mitchell et al. 2020), in which the samples
from human fecal have the exact biome position at “root > Host-associated > Human
> Digestive system > Large intestine > Fecal.” This ontology structure is very
beneficial to the classification of samples. However, the hierarchical organization
structure of the current ontology is not completely tree-like, but has the feature that
an ontology belongs to the direct sub-ontology of multiple ontologies. For example,
“Fecal” has more than five upper level ontology information. Therefore, the relevant
living environment ontology of each microbiome data is likely to have multi-label.
On the one hand, the multi-label nature of microbiome data is not conducive to the
simple classification of samples, resulting in the bottleneck of sample classification
and comparison. On the other hand, the multi-tag attribute of microbiome data
conforms to the characteristics of big-data research, and better results are expected
to be obtained when processed by machine learning or deep learning.

10.4 Mainstream Microbiome Data Mining Techniques

As regard to microbiome data mining tools, current methods could be categorized
according to their purposes (Table 10.3):

1. Identification of microbial species based on microbiome: Based on the
metagenome sequencing data, the species contained in the metagenome can be
assigned to different taxonomic levels, such as phylum, class, order, family,
genus, etc. At present, metagenome-based microbial species identification can
be categorized into alignment-based and alignment-free sequence classification
methods, both of which are based on the assumption that similar sequences
originate from similar species. Sequence alignment identifies the species cor-
responding to the target genome sequence by comparing it with the existing
database. Alignment-free sequence classification methods use the characteristics
of the sequences themselves, such as GC content, codon usage frequency, etc.,
to classify them into the species corresponding to the most similar sequences.
Typical examples of species identification methods include Megan (Huson et al.
2007), QIIME2 (Bolyen et al. 2019), etc. However, these methods are mostly
limited to sequences of known classes and functions in databases (sequences in
databases are mostly from model organisms or culturable microorganisms), so

https://www.ebi.ac.uk/metagenomics/biomes
https://www.ebi.ac.uk/metagenomics/biomes
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the exact species of the majority of microorganisms in the microbial community
remain largely unclear.

2. Tools for microbial community structure decoding: Tools for microbial com-
munity structure decoding and comparison include those for species composition
analysis such as Phyloshop (Shah et al. 2011), Parallel-Meta (Su et al. 2012),
MEGAN (Huson et al. 2007), etc., and those for microbial community compari-
son including UniFrac (Lozupone and Knight 2005) and Fast UniFrac (Hamady
et al. 2010). However, these tools still have limitations: MEGAN (Huson et
al. 2007) and STAMP (Parks and Beiko 2010) have provided an approach for
microbial community sample comparison based on species composition, while
such method is largely limited by the ignorance of evolutionary relationships
among species (Hamady and Knight 2009). UniFrac (Lozupone and Knight
2005) and Fast UniFrac (Hamady et al. 2010) have taken phylogeny information
into consideration, yet they could hardly handle thousands of samples due to
large time cost. There is still a lack of efficient and accurate sample comparison
and search methods, especially for model-based method.

3. Microbial-based functional profiling and regulation model generation: In
terms of predicting the main functions of species, the current research is still
in its infancy. Methods such as PICRUSt (Langille et al. 2013), based on
16S rRNA data, could analyze differences between samples by inferring the
composition of functional genes in the samples. However, this prediction method
cannot fully reflect the detailed functional composition and metabolic pathways
of different species in a sample. Functional genes in microbial community
analysis level, in view of the biosynthesis gene cluster (BGC) and antibiotic
resistance gene cluster (ARG) gene functions such as group analysis, in addition
to the typical antiSMASH (Medema et al. 2011) and NaPDoS (Ziemert et al.
2012) analysis platform and IMG-ABC (Hadjithomas et al. 2015), DoBISCUIT
(Ichikawa et al. 2013), ClusterMine360 (Conway and Boddy 2013) database.
Functional annotation and enrichment analysis of microbiome genes can deepen
the understanding of microbial community functions and the analysis of key
metabolic pathways and microbiome-host metabolic regulation mechanisms.
However, the microbiome contains a large number of genes, and the functions
of most genes are unknown.

4. Microbial genemining frommetagenomics data:At present the main database
and the software including DoBISCUIT (Ichikawa et al. 2013) system (http://
www.bio.nite.go.jp/pks/) based on manual selection of data, and the databases
designed for specific types of metabolites, such as ClusterMine360 (Conway and
Boddy 2013) database system, NaPDoS (Ziemert et al. 2012) analysis system
(http://napdos.ucsd.edu/) for secondary metabolism genes, COBRA (Becker et
al. 2007) for intestinal flora metabolism modeling analysis system, as well
as antiSMASH (Medema et al. 2011) biosynthesis gene cluster (BGC) anal-
ysis system, etc. Relevant methods, however, largely depend on the reference
sequence, known species in the microbial community species reference sequence
under the condition of the lack of its completeness is not very ideal. The genes

http://www.bio.nite.go.jp/pks/
http://www.bio.nite.go.jp/pks/
http://napdos.ucsd.edu/
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around the “environment–microbial community–metabolism” chain are largely
unannotated, leaving large room for improvement.

5. Microbiome data analysis platform: There are currently several analytics
platforms that cover the main steps of microbiome data analysis, such as QIIME
(Caporaso et al. 2010), MG-RAST (Glass et al. 2010; Keegan et al. 2016),
Camera (Seshadri et al. 2007), and EBI Metagenomics (now known as EBI
Mgnify) (Mitchell et al. 2020). These sites often contain large datasets and data-
processing platforms. At present, the biggest bottleneck in this regard is that
the development of metagenomic data analysis platforms is far behind the rapid
accumulation of metagenomic data. In particular, the integration analysis and
deep mining of massive metagenomic data and other omics data are in urgent
need.

10.5 Integration of Metagenome and Pan-Genome Towards
Holistic Analysis of Microbial Communities

The microbiome data is mostly analyzed by the metagenome approach (Fig. 10.5).
Metagenomics has been utilized for the studies of changes in community organiza-
tion and microbial inhabitants, resulting in the discovery of a remarkable amount
of genomic diversity and the characterization of new bacterial members (Integrative
HMP (iHMP) Research Network Consortium 2014; Riesenfeld et al. 2004). A series
of metagenome analysis tools, such as MEGAHIT (Li et al. 2015), MEGAN (Huson
et al. 2007), and MetaPhlAn2 (Truong et al. 2015) have been proposed allowing
for metagenomics assembly, taxonomy, and functional analysis. The analyses of
microbiome composition and function in different sites of human body including
skin, oral, and gut show great differences in the microbial structure (Koren et al.
2011; Costello et al. 2009). For example, the taxonomic representation of bacteria
on the human skin includes Staphylococcus, Micrococcus, and Corynebacterium
(Fredricks 2001; Grice et al. 2009), while the dominant microorganisms in oral
are Streptococci, Lactobacillus, and Fusobacterium (Dewhirst et al. 2010; Teng
et al. 2015). In addition, the main components of microorganisms in the human
gut are Bacteroides and Prevotella (Costea et al. 2018; Wu et al. 2011). These
microbes in human body have coevolved with their hosts, which is also related
to human health and disease (Costello et al. 2009; Clemente et al. 2012). The
composition of microbes in different hosts varies greatly, and there are dynamic
changes under different environmental factors (Costello et al. 2009). For example,
Sonnenburg et al. revealed a seasonal cycle of gut microbiota corresponding to
the enrichment of functions of the Hadza hunter-gatherers, especially Bacteroides,
varies with the season, especially between the dry season and the wet season (Smits
et al. 2017). Such studies revealed the succession of microbial community that
changes with season in human gut. In addition, studies of microbial communities
in natural environments such as soil (Daniel 2004), deep-sea (Mason et al. 2014),
and wastewater (Guo et al. 2017) have uncovered hundreds of microbes, new genes,
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Fig. 10.5 Scheme of integrative pan-genome with metagenome studies on microbial community.
(a) Using pan-genome of a set of genomes from isolates as a reference to recruit reads from
metagenomes to quantify relative frequency of each gene sequence in community. (b) Binning
co-abundant genes obtained from de novo assembly across metagenomic samples to reconstitute
metagenomic species pan-genomes. Co-abundant with core or accessory genes of microbial species
co-occurrence in samples and yield co-abundance. This figure was adapted from a previous
published work [Integrating pan-genome with metagenome for microbial community profiling.
Computational and Structural Biotechnology Journal, 2021, 19:1458–1466] with permission of
authors
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and uncharacterized metabolism, revealing an incredible microbial diversity and
complexity.

10.6 Deep Learning Techniques for Microbiome Research

In recent years, more and more deep learning techniques have been developed for
mining microbiome big-data (Li et al. 2019; Tang et al. 2019; Lan et al. 2018; Min
et al. 2017; Wang and Gao 2019). These techniques essentially solved the functional
gene mining, dynamic pattern discovery, and phenotype prediction problems.

1. For sample comparison and search: In microbial community source tracking,
the traditional unsupervised learning method SourceTracker (Knights et al. 2011)
and FEAST (Shenhav et al. 2019) could achieve very high accuracy when there
are hundreds of samples and handful of biomes, while when the number of
samples and biomes increase, the running time would increase very rapidly,
preventing them from large-scale source tracking. This dilemma could be solved
by deep learning solutions: by utilizing model-based methods such as neural
network, both speed and accuracy could be achieved for the source tracking
problem.

2. For gene mining: An example is ARG gene mining, for which traditional
BLAST method could find the candidate ARG genes when they could match
to those in the database. However, such an approach is limited to known ARG
genes, and the search time could be short when faced with millions of candidates
to be screened. Again, the deep learning approach has led to the model-based
method that could mine novel ARG genes out of millions of candidates in an
efficient manner.

All of these limitations have been calling for AI techniques that could discover
more knowledge from microbiome dark matters. AI techniques are advantageous
in generation of the models from a massive amount of samples, which are
representative of the global profile of the context-dependent subjects (Kodama et al.
2012). AI techniques are therefore suitable for accurate and fast search when new
samples (either a community, a gene, or a pattern) are searched against the models
(Paczian et al. 2019; Markowitz et al. 2008; Daniel 2004). Therefore, AI techniques
are especially suitable for microbiome dark matter mining, especially when facing
the tradeoff between accuracy and efficiency.

The solutions for eliminating current methods’ tradeoffs rely on deep learning
approaches (Kodama et al. 2012; Paczian et al. 2019; Meyer et al. 2019; Markowitz
et al. 2008; Gonzalez et al. 2018). First of all, model-based methods such as neural
networks could be very fast for source tracking: once a rational model has been
built, the source tracking could be very fast, and the source tracking accuracy could
also be achieved, comparable with or even better than existing distance-based and
unsupervised methods. The same approach is suitable for the gene mining problem.
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For the spatial-temporal dynamic pattern mining, the deep learning method could
also discover the intrinsic patterns out of the cross-section or longitudinal cohorts.

10.7 Representative Microbiome Applications

10.7.1 Case Study 1: Enterotype Analysis (Costea et al. 2018)

In 2011, three sequencing technologies (Illumina, 454, and Sanger) were used to
sequence 16S rRNA genes in human fecal samples from three countries (Denmark,
Spain, and the USA), and the result was that there were three enterotypes (Costea
et al. 2018). The enterotypes were described as “a dense cluster of samples in
a multidimensional space composed of communities” and were not affected by
age, sex, cultural background, or geographical location. For each enterotype, an
indicator/driver group was found at the center of the co-existing microbial network
that was most profoundly associated with the enterotype. For example, enterotypes
1 can also be expressed as ET B, and Bacteroides is the best indicator group.
Enterotype 2, which can also be expressed as ET P, is driven by Prevotella and
its abundance is usually inversely proportional to the abundance of Bacteroides.
Enterotype 3, which can also be expressed as ET F, is distinguished by the
proportion of Firmicutes, among which the main group is Ruminococcus. All of the
above analyses are based on the classification at the genus level, because the genus
level can better reflect the ecological niche changes (Costea et al. 2018). Although
some genera show functional heterogeneity, such as Streptococci, which contains
both common symbiotic and lethal pathogens and groups that can be used for food
fermentation, genera level analysis is generally reliable.

10.7.2 Case Study 2: Gene Mining (Qin et al. 2010)

10.7.2.1 Human Intestinal Microbiome Reference Gene Set

The authors describe the assembly and characterization of 3.3 million non-
redundant microbial genes from fecal samples of 124 European individuals by
Illumina-based metagenomic sequencing. This gene set is 150 times larger than
the human gene complement, contains the vast majority of the (more common)
microbial genes in the cohort, and probably includes the majority of the human gut
microbial genes. These genes are shared to a large extent between individuals in this
cohort. More than 99% of the genes were bacterial, suggesting that the entire cohort
contained between 1000 and 1150 endemic bacterial species, with each individual
containing at least 160 such species, and that they were also largely shared. The
authors define and describe the minimum intestinal metagenome and the minimum
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intestinal bacterial genome in terms of the functions of all individuals and most
bacteria, respectively.

Most of the microbes that live in the gut have profound effects on human physiol-
ogy and nutrition and are essential to human life. The content, diversity, and function
of the gut microbiome are studied in order to understand and utilize the influence
of gut microbiome on human health. Methods based on 16S ribosomal RNA gene
(rRNA) sequences revealed that two families of bacteria, the Bacteroidaceae and the
Antimicrobiaceae, make up more than 90% of the known phylogenetic categories
and dominate the distal intestinal flora. Studies have also shown that there is great
diversity in the gut microbiome between healthy individuals.

10.7.2.2 Metagenomic Sequencing of the Intestinal Microbiome

As part of the Metahit (Human Intestinal Genomics) project, the authors collected
fecal samples from 124 healthy, overweight, and obese adult individuals and patients
with inflammatory bowel disease (IBD) in Denmark and Spain. Total DNA was
extracted from the fecal samples.

To generate an extensive catalogue of microbial genes from the human gut, the
authors first assembled short Illumina readings into longer overlapping clusters,
which could then be analyzed and annotated using standard methods. Using
SoapDeNovo, the authors assembled all Illumina GA sequence data from scratch.
Up to 42.7% of Illumina GA reads were assembled into a total of 6.58 million
overlap groups, and nearly 35% of readings from any one sample could map to
overlap groups from other samples, indicating the presence of a common sequence
core.

To accomplish the overlapping group setup, the authors combined the unassem-
bled reads from all 124 samples and repeated the de novo assembly process. Thus,
about 400,000 overlapping groups with a length of 370 Mb and N50 939 bp are
generated. Therefore, the total length of the author’s final overlap group is 10.7 GB.
Approximately 80% of the 576.7 Gb sequences of Illumina GA sequences were
able to be compared with the overlap group at a 90% identity threshold to adapt
to sequencing errors and strain variability in the gut, almost double the 42.7% of
sequences. Soap de novo assembles them into overlapping clusters because the
assembly uses more stringent criteria. This indicates that the author’s overlap group
represents the vast majority of Illumina sequences.

10.7.2.3 Genome Sets of the Human Intestinal Microbiome

To establish a non-redundant human gut microbiome genome, the authors first
used the Metagene program to predict ORFs in overlapping populations and found
14,048,045 ORFs longer than 100 bp. They accounted for 86.7% of the overlap,
comparable to the 86% found in fully sequenced genomes. Two-thirds of the ORFs
appear to be incomplete, possibly due to the size of the author overlap group (N50 is
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2.2 KB). Next, the authors remove the excess ORFs by pair comparison using very
strict criteria that 95% conformance exceeds 90% of the shorter ORF length, which
can be fused with direct homologues but can avoid dataset bloat due to possible
sequencing errors.

The authors refer to the genes in the non-redundant set as “epidemic genes”
because they are encoded on an overlapping group assembled from the richest
read segments. The authors examined the number of prevalent genes found in
all individuals, which is a function of the sequencing range and requires at
least two gene calls to support reading. An estimate of coverage richness (ICE)
based on incidence, determined by 100 people (the maximum number that can be
accommodated by the Evaluations21 program), indicates that the authors’ catalog
captured 85.3% of the prevalence genes. Although this may be an underestimate, it
still suggests that the catalogue contains the vast majority of the prevalent genes in
this cohort.

Each person carries 536,112 ± 12,167 of the prevalent genes, suggesting that
most of the 3.3 million gene pools must be shared. But most of the prevalent genes
were found in only a few individuals: 2,375,655 were found in less than 20% of
individuals, and 294,110 were found in at least 50% of individuals (these “common”
genes, as the authors call them). These values depend on the sampling depth. The
sequencing of MH0006 and MH0012 revealed more catalogue genes, which were
present in low abundance. Still, even at regular sampling depths, each person still
has 204,0566 3603 common genes, suggesting that about 38% of an individual’s
total gene pool is shared. Interestingly, patients with IBD carried, on average, 25%
fewer genes than those without the disease, which is consistent with the observation
that the former had less bacterial diversity than the latter.

10.7.3 Case Study 3: Plasticity of Intestinal Flora (Dynamic
Pattern) (Liu et al. 2019)

First of all, at the macroscopic research level of the plasticity of the intestinal
flora, the project team and the Capital Medical University have been monitoring
the dynamics of the intestinal flora of the foreign aid medical team (volunteer team
(VT)) for more than a year, aiming to study diet The influence of factor changes on
the structure of human intestinal flora.

In this study, we recruited a team of 10 Chinese volunteers who set out from
Beijing, stayed in Trinidad and Tobago (TAT) for 6 months and then returned to
Beijing. A high-density longitudinal sampling strategy (average of 19 time points
for VT members) was used to collect their stool samples (188 samples) and detailed
dietary information. We divided the entire longitudinal study into six stages: when
VT stays in TAT, T1 represents the pre-travel stage (20 samples), T2 (28 samples),
T3 (60 samples), and T4 (21 samples) represents three time slots. After VT returned
to Beijing, T5 (35 samples) and T6 (20 samples) sent two time slots, respectively.
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At the same time, we also collected samples of Beijing healthy people (BJN, 57
samples), TAT healthy people (TTN, 28 samples), TAT patients (TTP, six samples),
and TAT Chinese (TTC, eight samples) as samples control data set. Finally, we
sequenced the V4 hypervariable region of the microbial 16S rRNA gene on 287
stool samples from 41 individuals and analyzed high-quality readings using QIIME
(Caporaso et al., 2010).

We found that the microbial community in the intestine has two-way plasticity
and elasticity during long-term stay and has a variety of dietary changes. First,
BJN and TTN show different microbial community patterns (Fig. 10.6a). However,
the microbial community of VT members changed from a microbial community
similar to BJN to the TTN mode that accompanied them in TAT and returned to
the original mode within 1 month after VT returned to Beijing (Fig. 10.6b–f). In
addition, although we found that location and population have a great influence on
the differentiation of samples (Fig. 10.6g, h), the dynamic changes of each member
of VT show a specific trend (Fig. 10.6i, j), indicating that there may be the plasticity
mode depending on the intestinal type among VT members. In addition, the relative
abundance of Sclerotium and Bacteroides showed strong adaptability on the time
axis and was negatively correlated on the time axis (Fig. 10.6k, l). Similarly, the
relative abundance of Proteus and Actinomycetes also showed a plasticity pattern
(Fig. 10.6m, n). By tracking and comparing at least 10% of the common operational
taxonomic units (OTUs) shared by at least 10% of VT members, we found that
Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria have unique time
dynamics during the long-term stay of VT (Fig. 10.6o–r).

10.7.4 Case Study 4: Athletes’ Gut Microbiota (Han et al.
2020)

The gut microbiome of athletes and sedentary individuals differs in diversity and in
certain taxa; however, it is unclear to what extent the patterns of the gut microbiome
differ between the two and whether athletes’ potential can be effectively monitored
against the microbiome.

This study recruited a total of 306 fecal samples from 19 Chinese professional
female rowers and divided them into three groups according to their daily perfor-
mance: adult elite athletes (AE), young elite athletes (YE), and young non-elite
athletes (YN). The differences of intestinal microbiome in different groups were
compared to determine the correlation between intestinal microbiome and diet,
physical characteristics and sports performance (Fig. 10.7).

Firstly, the intestinal flora of elite athletes and young non-elite athletes were
stratified to find that the intestinal flora of elite athletes and young non-elite
athletes had different intestinal types. In terms of taxonomic structure and functional
composition, it was found that SCFA-producing bacteria were dominant in the
microbial community of elite athletes. Secondly, functional analysis showed that
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Fig. 10.6 Long-term human gut microbial community pattern and multiple dietary changes (Liu
et al. 2019). (Reprinted with permission from authors of Liu et al. (2019))

ATP metabolism, multiple sugar transport systems, and carbohydrate metabolism
were enriched in the microbial community of elite athletes. Furthermore, the con-
struction of accurate classifiers based on a combination of taxonomy and functional
biomarkers highlights the great potential of monitoring candidate elite athletes from
a group of athletes. Finally, it was shown that intestinal flora is closely related
to physical characteristics, dietary factors, and exercise-related characteristics.
Importantly, the versatility of the athletes’ microbiome, which may influence athlete
performance by altering the gut microbiome, is associated with dietary factors
(29%) and physical characteristics (21%). These findings highlight the complex
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Fig. 10.7 Gut enterotypes in elite and youth non-elite athletes. A total of 306 samples are
stratified into three enterotypes. The major contributor in the three enterotypes is Prevotella,
Bacteroides, and Ruminococcaceae_unclassified, respectively. (a) Relative abundances of the top
genera (Prevotella, Bacteroides, and Ruminococcaceae_unclassified) in each enterotype. (b) Three
enterotypes were visualized by PCoA of Jensen-Shannon distance at the genus level. (c) The
proportion of AE, YE, and YN samples distributed in three enterotypes. 72.3% AE, 61.9% YE, and
27.27% YN samples are found in enterotype 3. (d) Co-occurrence patterns among the dominant
genera (average relative abundance >0.01%) across the samples from enterotype 3, as determined
by the Spearman correlation analysis. (Reprinted with permission from authors of Han et al.
(2020))
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interplay of gut flora, dietary factors, and athletes’ physical characteristics and
performance, with gut flora as a key factor (Han et al. 2020).

10.8 Microbiome Research: Current Status, Bottlenecks,
and Prospects

Today, microbiome research is, from many facets, a data-driven science. Firstly,
the sequencing techniques have advanced quickly, thus enabling the fast and batch
profiling of millions of microbial community samples. Secondly, data mining
techniques have also advanced quickly, thus enabling the batch discovery of
functional genes, dynamic patterns, as well as prediction of phenotype with high
accuracy and fidelity. Thirdly, although data-driven, many discoveries are later
verified by we-lab experiments, such as several probiotics (Whiteside et al. 2015;
Routy et al. 2018), verified the power and validity of these data-driven approaches.

However, several bottlenecks remain for the microbiome big-data mining
researches. One of the most critical bottlenecks is the big-data integration bottleneck
(Integrative Human Microbiome Project 2019), and another is the lack of AI
techniques for deep mining of important species, functional genes, and community
dynamic patterns from a large amount of microbiome data (Microbiota meet big
data 2014).

Despite these bottlenecks, microbiome researches are on the sharp rise, and many
problems are on the edge of solution, while many more new frontiers are on the
horizon. It is foreseeable that with several millions of samples from thousands
of niches that have been collected, sequenced, and analyzed, a much better
understanding of the microbial community ecology and evolution patterns would be
discovered, together with hundreds of clinical or environmental applications made
possible.

10.8.1 Microbiome Research as Part of a Multi-Omics
Exploration

The multi-omics studies will continue to grow, in at least two directions: first, from
multi-omics for single organisms or single species, to single-cell level omics studies,
as well as to population and community level studies; second, the tight integration
of multi-omics with data science as well as with clinical applications.

From the aspect of expanding the scope of multi-omics for single organisms
or single species, single-cell level omics studies, as well as to population and
community level studies, we have already seen rapid progress, largely due to the
sequencing technical advances. From the aspect of integration of multi-omics with
data science as well as with clinical applications, there are very hard challenges
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still lying ahead. For example, it remains to be an open problem to determine the
concordance of multi-omics along the timeline.

10.9 Summary

Taken together, it has become clear that microbiome research, which represents
a rapidly growing omics research area, has already ensured enough high-quality
data, as well as enabled data mining techniques, for large-scale microbiome data
mining towards an in-depth understanding of microbial communities. The microbial
community niches, species, functional genes and their dynamics, have constituted
the microbial dark matter, which has been emerged as a grand challenge for
microbiome research. The fast development of microbiome data mining would
certainly boost the discovery of much more resources and regulation patterns out
of these dark matters. And the integration of microbiome and other omics data
would lead to a more complete picture of the dynamic patterns as well as regulation
principles in the microbiome world.
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Chapter 11
Data Integration Applications in Medical
Information Systems

Marcel Friedrichs

Abstract Medical information systems play a vital role in the everyday successful
treatment of patients in hospitals, general practitioners’ offices, and beyond. From
storing patient information in electronic health records to the recommendation
of treatment options, and the warning on wrong prescriptions or dosages, the
information systems provide a multitude of different features. These can be utilized
in prospective, direct, and retrospective patient care. One especially important
task is the prevention of drug interactions and their potential adverse drug reac-
tions in polypharmacy patients. All of these tasks require a solid data basis and
data integration processes to provide the latest recommendations and information
to healthcare professionals. Where historically, single large databases such as
ABDAmed on the German market provided all required information, newer systems
use a multitude of different data sources of high quality. This chapter analyzes
different examples of medical information systems, the underlying data integration,
and how a solid integration workflow can elevate the potential of old and new
healthcare information. The examples range from drug therapy safety systems using
official healthcare database, over potentially inadequate medication systems, to
molecular biological analysis tools. Finally, the chapter outlines an approach how
new data integration efforts may bring all of these systems together for the prospect
of patient treatment in a personalized manner.

11.1 Introduction

As whole economic sectors adopt new digital solutions under terms such as
“industry 4.0” and new technological paradigms like IoT (internet of things), the
healthcare sector is changing as well. Medical imaging was one of the first key areas
to adopt digital solutions for storing, processing, and distribution of patient data
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such as MRI (magnetic resonance imaging) or PET (positron emission tomography)
scans. The “picture archiving and communication system” (PACS) replaced the need
for physically stored images and allowed healthcare professionals remote access to
all present or archive scans of their patients (Duerinckx and Pisa, 1982). This greatly
reduced cost for long-term storage and time for images to be transferred from one
station to another or in the worst case from an external storage facility to the hospital.
Other medical areas followed, from medical samples being automatically processed
and analyzed by laboratory information systems (LIS), electronic health records
(EHR), to decision support systems ensuring drug therapy safety.

For the German healthcare sector, all of these individual efforts now culminate
in the construction of the teleinformatics infrastructure (“Telematikinfrastruktur”).
This infrastructure will provide a complete, fast, and safe exchange of information
between patients and healthcare professionals. This digitization may result in faster
adoption of new results and tools from research projects further improving drug
therapy safety and reducing adverse drug events (ADR).

All of these systems require data of some sort. Be it patient information for
electronic health records or medical knowledge databases for decision support
systems. Therefore, this chapter describes the need for drug therapy safety tools
and the data integration efforts of several medical information systems. The chapter
concludes with an outlook on combining all of these efforts to further improve drug
therapy safety.

11.2 Drug Therapy Safety

The safety and appropriateness of pharmacotherapy is an important topic in the field
of medicine and under extensive research. Where younger patients rarely require
more than one medication, the number of drugs taken in the elderly increases. In
aging populations, multimorbidity is increasing with a corresponding increase in
polypharmacy, which in turn is the prime risk factor for inappropriate prescribing.
The evidence is well-known by several studies that the use of certain groups of
medications in elderly and vulnerable patients is associated with falls (Fiss et al.,
2010) and an increase in mortality (Chrischilles et al., 2009). With an increasingly
older population in Germany, prognosticated to be 22% of the population aged
65 and older in 2022 (German Federal Statistical Office, 2021), the prevalence
of multimorbidity is growing. Furthermore, inappropriate medications can impair
cognitive properties (Boustani et al., 2010), reduce the quality of life, and cause
additional costs for the healthcare system (Fick, 2001). The major challenges in
gerontopharmacology are both over-treatment and undertreatment associated with
polypharmacy.

Approximately 2.7 million BARMER insured people in Germany are suffering
from five or more chronic diseases (Grandt et al., 2018). In addition, every fourth
BARMER insured person aged 65 and older received at least one potentially
inadequate medication (PIM) based on the PRISCUS list (Grandt et al., 2018; Holt
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et al., 2010). As more PIM lists have been published and new ones are emerging,
like FORTA (Pazan et al., 2019) or EU(7)-PIM (Renom-Guiteras et al., 2015) this
result would likely be even higher.

Further increasing the complexity of the prescription process is the growing num-
ber of available medications. The German Federal Institute for Drugs and Medical
Devices (BfArM) reported for April 2021 approximately 103,975 medications on
the German market. From these medications, 34,911 are freely available and 52,478
without a prescription (BfArM, 2021). Furthermore, polypharmacy increases the
risk of drug-related problems such as medication errors and adverse drug reactions.
Without the help of medical decision support systems, healthcare professionals are
likely unable to review all potential issues for every patient case.

The increased interest in molecular analyses, not only by researchers but also by
healthcare professionals, may finally lead the way toward personalized medicine.
The adoption of sequencing technologies and others in hospitals is positive, but
staff needs to be properly trained and new safety measures implemented to prevent
errors in data interpretation. Subsequent changes in a patient’s drug therapy on an
individual molecular basis need to be thoroughly tested and regulated to increase
and not reduce drug therapy safety.

11.3 Medical Information System Examples

Following, different medical information systems are analyzed for their specific use-
cases and needs in terms of data integration.

11.3.1 KALIS

KALIS is a web-based information system for checking drug-related problems in
the medication process (Alban et al., 2017). It is comprised of multiple components,
each tailored to a specific use-case. The main component is the pharmacological
risk check. Here, medications and compounds can be checked with indications,
side effects, and intolerances for interactions and other risks. Other modules help in
finding potentially inappropriate medication for elderly patients, pharmacogenetic
interactions in light of CYP enzyme defects, and guideline compliant analyses for
hypertension.

Figure 11.1 visualizes the data integration architecture of KALIS. It is divided
into integration, conception, and merging. The resulting KALIS-DWH has a uni-
form data structure and provides comprehensive information for the aforementioned
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Fig. 11.1 Overview of the KALIS data warehouse integration pipeline (Alban et al., 2017)

risk-check components. Eight different data sources are integrated into the data
warehouse:

• Pharmacological databases (gray): ABDAmed (ABDATA Pharma-Daten-
Service, 2021), ROTE LISTE® (Rote Liste® Service GmbH, 2021), and GELBE
LISTE® (Vidal MMI Germany GmbH, 2021)

• International databases with patient-related case reports of adverse drug events
(red): FAERS (FDA, 2021), ARD (Health Canada, 2021), and DPD (Health
Canada, 2021)

• Newly developed databases (green): CYP-P450 and PRISCUS-Liste (Holt et al.,
2010)

The newly developed databases are based on information sources from scientific
literature. Aggregating this knowledge into databases and merging it with pharma-
cological data enriches the risk analysis with new components.

The family of Cytochrome P450 enzymes (CYP) plays a crucial role in the
metabolism of many substances. Variabilities between patients in the metabolism
of medications by enzyme induction or inhibition and other genetic factors indicate
a significant issue of pharmacotherapy. A new database CYP-P450 was designed,
which contains information on substance-CYP enzyme interactions in the liver and
kidney. This data is primarily based on the results of the literature research of Dippl
(2011).

The PRISCUS list was created as a part of the joint project “PRISCUS” (Holt
et al., 2010), which was funded by the German Federal Ministry of Education and
Research (BMBF). The PRISCUS list includes 83 drugs available on the German
drug market. The risk of these drugs for any side effects or age-related complications
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prevails the medical benefits. A new database was derived from the published
list. For these 83 potentially inadequate drugs information such as reason, therapy
alternatives, and more were integrated into a suitable tabular data format.

Due to different exchange formats (XML, ASCII, CSV, MDB) and license
models, specific parsers were implemented in Java for each data source. These
parsers were used to extract the datasets, transform the data into the respective
MySQL database, and load it efficiently into KALIS-DWH. Additional metadata
for data analysis is stored in a separate database.

DAWIS-M.D. (Hippe et al., 2010) is a data warehouse for molecular information
including data sources such as DrugBank (Knox et al., 2010), SIDER (Kuhn et al.,
2010), and KEGG (Kanehisa, 2000). The pharmacological databases of KALIS-
DWH were fused with the biomolecular databases of DAWIS-M.D. This data can
be used for knowledge discovery of the underlying mechanism of drug action or the
potential impact on the disease. The data integration of biomolecular data sources
was performed by implementing XML parsers in Java and using the software kit
BioDWH (Töpel et al., 2008). National and international identification standards
were used for coding, mapping, and assignment of medical information such as
drugs, therapeutic indications, diseases, and side effects. These include the ATC
index (Anatomical Therapeutical Chemical classification), ICD-10 (International
Statistical Classification of Diseases and Related Health Problems), and MedDRA
(Medical Dictionary for Regulatory Activities) (International Council for Harmoni-
sation of Technical Requirements for Pharmaceuticals for Human Use ICH, 2021).
In this way, the homogeneous data warehouses KALIS-DWH and DAWIS-M.D.
provide pharmacological and biomolecular information for efficient and goal-
oriented risk analysis of drugs. The standardized codes support the accuracy of data
inputs and processing as well as a simple data exchange and uniform communication
between KALIS and the end-user.

11.3.2 GraphSAW

GraphSAW is a web-based medical information system on drug interactions and
side effects from pharmaceutical and molecular databases (Shoshi et al., 2015).
Where KALIS focused mainly on vetted and official pharmaceutical databases
such as ABDAmed (ABDATA Pharma-Daten-Service, 2021), GraphSAW provides
a visual analysis and comparison with molecular databases such as DrugBank
(Knox et al., 2010). The analyses are split into different components including
drug–drug, drug–side effects, drug–molecule, drug–disease, drug–pathway, and
pathway–disease interactions. A screenshot of the GraphSAW website is shown in
Fig. 11.2.

The data integration utilized the two commercial databases ABDAmed
(ABDATA Pharma-Daten-Service, 2021) and KEGG (Kanehisa, 2000) and the
two freely available databases SIDER (Kuhn et al., 2010) and DrugBank (Knox
et al., 2010) as visualized in Fig. 11.3.
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Fig. 11.2 Screenshot of the GraphSAW website. The analysis modules are shown on the left.
Results are listed on the right and the main visualization in the middle. Here the molecular
medication analysis is shown

Fig. 11.3 Overview of the GraphSAW data warehouse integration pipeline (Shoshi et al., 2015)

DrugBank is the largest resource that collects binding data on small molecules,
in particular those of drugs and proteins. At the time of creation 6711 approved and
experimental drugs were integrated from DrugBank. As of April 2021, DrugBank
contains more than double the number of drugs (14,460). DrugBank provides
information on drug–drug as well as drug–target interactions, including CYP
enzymes as mentioned in the KALIS section.
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Further drug interactions were obtained from the commercial database
ABDAmed that is based on approved and validated drug-related data in comparison
to DrugBank. ABDAmed contains comprehensive facts for dealing with more
than 47,000 drugs such as information about application and composition, risks,
and drug interactions. The ABDAmed database includes also the side effects of
drugs. More than 4500 side effects (3135 different; 1381 synonyms) were extracted
automatically from full-text information in German and translated manually into
English.

An additional 4192 different drug side effects were obtained from SIDER.
Information on metabolic pathways was obtained from KEGG, which already
integrates compounds from DrugBank (Knox et al., 2010), PubChem (Kim et al.,
2020), CAS (American Chemical Society, 2021), and more. Therefore, DrugBank
identifiers were used for mapping drugs between the data sources.

To map drugs between DrugBank and ABDAmed, the ATC classification system
was used. MedDRA terms (International Council for Harmonisation of Technical
Requirements for Pharmaceuticals for Human Use ICH, 2021) were used for coding
drug side effects of both SIDER and ABDAmed. The mapping between drugs of
DrugBank and SIDER was realized by drug names because these databases did not
have corresponding identifiers for compounds. By introducing mappings between
the heterogeneous databases, interaction and side effect information were assigned
to all drugs.

The data integration was implemented as parsers written in Java for the bio data
warehouse BioDWH (Töpel et al., 2008). Using the data warehouse architecture
ensures both the availability and the relevance of the data sources. Additional
metadata for data analysis is stored in a separate database such as extracted and
translated side effects from ABDAmed.

11.3.3 PIMBase

In recent years, lists, criteria, and classification systems for assessing potentially
inappropriate medication for geriatric patients were developed and published.
Besides these PIM lists of medication with a negative risk–benefit balance (i.e.
PRISCUS (Holt et al., 2010), AUSTRIAN PIM (Mann et al., 2011)), lists with a
positive balance (i.e. FORTA (Pazan et al., 2019), EU(7)-PIM (Renom-Guiteras
et al., 2015)) are also becoming the focus of interest.

However, those PIM lists are spread across scientific journals and difficult
to access for patients or health professionals in the context of treatment. The
integration of the various lists into a uniform database and subsequent merging as
well as an implementation of a unique rating scale are essential for the qualitative
improvement of the drug therapy in the elderly and offer opportunities for practical
application to identify and reduce inappropriate prescribing.
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The data integration for the PIMBase database is divided into multiple steps.
First, the original PIM lists were collected and the format analyzed. Most lists are
only accessible as tables in PDF files either as supplementary information or directly
embedded in their respective publications. Freely available tools for automatic
extraction of tables from PDF files are often unsuitable and error-prone. As a correct
data transformation could not be guaranteed, most PIM lists were transferred by
hand into a machine-readable tabular format. This step was thoroughly checked to
prevent any copy errors or loss of context.

With all lists in a machine-readable state common information such as drug
names, ratings, reasons, or alternatives were compared. A collection of different
list entries is listed below.

• Magnesium hydroxide.
• Docusate sodium (oral).
• Spironolactone >25 mg/d.
• Concomitant use of theophylline together with ciprofloxacin may increase the

risk of theophylline toxicity in the elderly.
• In the elderly, avoid doses of acetylsalicylic acid greater than 325 mg per day due

to increased risk of gastrointestinal bleeding and peptic ulcer disease.

The EU(7)-PIM list already provides annotations with the ATC index for the
different drugs. The entries of the other PIM lists were manually annotated with
ATC codes. For the first iteration of the PIMBase database, a simple relational
database schema was developed mainly consisting of textual, numerical, and
listing information. A simple python integration pipeline uses the created machine-
readable lists and generates an SQL script readily usable in MySQL database
installations.

Using the generated database, the first iteration of the PIMBase website1 allows
users to search for names and ATC codes and to see detailed information for
each PIM entry. A screenshot of the website is shown in Fig. 11.4. With the
addition of more PIM lists, multiple issues become apparent. For example, when
searching for acetylsalicylic acid (ATC B01AC06 and N02BA01), four entries exist
in the FORTA, one in the AUSTRIAN, and one in the EU(7)-PIM lists. All six
different entries are annotated with matching ATC codes but still disconnected.
The problem becomes more complex, where PIM entries are not only relevant for
a single, but multiple drugs or even whole therapeutic categories. An example is
the FORTA entry “Class I-III antiarrhythmic agents: All except Amiodarone and
Dronedarone.” Not only do different lists may use slightly different synonyms for
drugs but also use names, synonyms, or abbreviations of therapeutic categories
which are not standardized. An example for these synonyms is {“Antimuscarinics,”
“Antimuscarinic drugs,” “Muscarinic antagonists,” “Muscarinic-blocking agents,”
“Muscarinic-blocking drug”}. When a user now searches for a certain drug or drug
class, all relevant entries should be found. If a specific drug is searched for, but an

1 https://pimbase.kalis-amts.de.

https://pimbase.kalis-amts.de


11 Data Integration Applications in Medical Information Systems 231

Fig. 11.4 Screenshot of the PIMBase website with the rating scale on the left and the entries of
potentially inappropriate medication in the center

entry only provides a drug class that includes the specified drug, the entry should
still be found.

This challenge necessitates the integration of therapeutic class hierarchies.
Multiple databases provide their own categories and hierarchies such as NDF-RT,
KEGG, and DrugBank. Independent hierarchies such as the ATC index and USP
drug classification exist as well. However, each of these hierarchies has different
intentions, number of hierarchy levels and drugs listed. An excerpt comparison of
databases and hierarchies is visualized in Fig. 11.5. These hierarchies are used to
implement a better search strategy in finding entries by drugs and drug classes. Drug
entries in the leaf nodes need to be mapped to the ATC codes used for the PIMBase
entries. Additionally, mappings between drug class hierarchies improve the number
of entries found under category terms and reduce the number of duplicates in search
suggestions.

In addition to drugs and drug classes, PIM entries are in most cases specific
to certain patient conditions such as indications, age, gender, and laboratory
measurements. Providing only relevant entries for a specific patient is therefore even
more complex. Diseases, side effects, and other keywords need to be annotated for
each PIM entry. Furthermore, the logical relationship between them needs to be
encoded in a suitable data structure such as decision trees. If a user only searches
for a specific drug, but the entry is only relevant in combination with a condition, the
entry should still be shown. Vice versa, if only a condition is entered, the matching
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Fig. 11.5 Excerpt of different drug classes and therapeutic groups for antiparkinson agents from
KEGG, ABDAmed, and DrugBank. NDF-RT therapeutic categories had no categories matching
either antiparkinson or anticholinergic agents. * DrugBank has no category for antiparkinson
agents and was substituted with the sub-category of anticholinergic agents

drugs should be shown as well. This requires even more databases for disease
information and suitable ontologies for measurements such as creatinine clearance.
These challenges are currently under development.

Encoding each entry of all PIM lists with appropriate logical rulesets will result
in a powerful toolset for healthcare professionals and patients. The quick access
to relevant information for the specific patient situation will increase drug therapy
safety and hopefully reduce inappropriate prescribing without the need to manually
scan all PIM lists and a step further toward personalized medicine.

11.4 Outlook

Medical decision support and drug therapy safety are important but complex chal-
lenges. This chapter introduced several medical information systems and presented
their data integration needs. Each of these systems represents a specific area of
medical decision support and provides a piece to drug therapy safety as a whole.
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The primary issue is the adoption by healthcare professionals. While being
easily accessible and intuitive, none of the presented systems can communicate with
other software such as hospital information systems. Communication standards like
Health Level Seven (HL7) and FHIR and exchange standards for electronic health
records need to be implemented. This will allow populating information system
inputs directly from patient records and reduce the time and effort it takes to use the
systems. Implementing these standards requires an extension of the data integration
pipelines. This includes mapping relevant entities to the identification systems used
in these standards.

In a future project, the concepts of all presented systems are planned to be
merged into a single decision support system. Aside from the data integration
needs, the entities and information from all systems need to be mapped. In most
cases, this should be trivial where suitable identification systems are already
present such as ICD-10 codes for diseases and ATC codes for medications. The
development of an interaction check between KALIS and PIMBase with KATIS
requires new information on the molecular composition and mechanics of remedies.
This molecular data could then be used in the context of GraphSAW finding
interactions between drugs and remedies.

Personalized medicine needs to analyze a patient as a whole, not only what
medication he uses or which side effects are present. Allergies, diet, physical
activity, and potential use of remedies all need to be considered to provide the best
and safest treatment possible and to reduce adverse drug reactions. Therefore, the
combination of all presented tools could provide a basis for personalized medicine
in the future.
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Chapter 12
Visualising Metabolic Pathways and
Networks: Past, Present, Future

Falk Schreiber, Eva Grafahrend-Belau, Oliver Kohlbacher, and Huaiyu Mi

Abstract Visualisations of metabolites and metabolic pathways have been used
since the early years of research in biology, and pathway maps have become very
popular in biochemistry textbooks, on posters, as well as in electronic resources
and web pages about metabolism. Visualisations help to present knowledge and
support browsing through chemical structures, enzymes, reactions and pathways. In
addition, visual and immersive analytics of metabolism connects network analysis
algorithms and interactive visualisation methods to investigate structures in the
network such as centralities, motifs and paths, or to compare pathways for finding
differences between species or conditions. The graphical depiction of networks
supports the mapping and investigation of additional data such as metabolomics,
enzyme activity, flux and transcriptomics data, and the exploration of the data in the
network context. It builds a foundation for investigating the dynamics of metabolic
processes obtained either experimentally or via modelling and simulation. Here
we discuss past, present and future of the visualisation of metabolic networks and
pathways and provide links to several resources.
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12.1 Introduction

Visualisations of metabolic pathways and pathway components such as enzymes
and compounds have been used since the early years of research in biology, and
metabolic pathway maps have become very popular in biochemistry textbooks,
on posters, as well as in electronic resources and web pages. One example is
Gerhard Michal’s famous poster Biochemical Pathways (Michal, 1968, 1998)
which has been printed over a million times. The first example of computational
representation of pathways was the EcoCyc database (Karp and Mavrovouniotis,
1994; Keseler et al., 2016). Another well-known example is the KEGG pathway
database (Kanehisa and Goto, 2000; Kanehisa et al., 2012), the largest collection of
manually curated pathway maps and related metabolic information.

Visualisations are commonly used in biology (Gehlenborg et al., 2010; Kerren
et al., 2017). Metabolic pathway visualisations help to present knowledge and to
support browsing through chemical structures, enzymes, reactions and pathways.
Visual and immersive analytics of metabolism connects network analysis algorithms
and (interactive and/or immersive) visualisation methods to investigate hubs, motifs,
paths and so on in the network, or to compare pathways for finding differences
between species or conditions. In addition, network visualisation also supports
the mapping and investigation of further data such as metabolomics, proteomics,
transcriptomics, enzyme activity and flux data, and the exploration of the data in the
network context. It builds a foundation for exploring and navigating the dynamics of
metabolic processes obtained either experimentally or via modelling and simulation.
In conclusion, visualising and visually exploring metabolic pathways and networks
helps in understanding them, is important in making sense of the complex biological
data and knowledge that is being produced these days, and is an important research
area. A simple visualisation example is shown in Fig. 12.1.

Fig. 12.1 A metabolic pathway example with some time series data of metabolite concentrations
shown within the vertices representing metabolites (excerpt from a MetaCrop pathway (Schreiber
et al., 2012) rendered by the Vanted tool (Junker et al., 2006))
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12.1.1 Network Representation

A network representing metabolic processes consists of a set of elements (called
vertices or nodes) and their connections (called edges or arcs) which have a defined
appearance (e. g. size of vertices) and are placed in a specific layout (e. g. coor-
dinates of vertices). Typical representations of metabolic reactions as graphs with
different interpretations of vertices and edges are shown in Fig. 12.2. Although
initiatives for a uniform representation of metabolic pathways have been presented
earlier (Kitano, 2003; Kitano et al., 2005; Michal, 1998), no graphical representation
became a standard to represent metabolic processes. In 2006 an international
consortium started developing a standard for the graphical representation of cellular
processes and biological networks including metabolism called the Systems Biology
Graphical Notation (SBGN) (Le Novère et al., 2009). SBGN allows the visualisation
of complex biological knowledge, including metabolic networks (see also the
information in Fig. 12.3). Within this chapter, we will use SBGN for representing
metabolic pathways and networks where possible.

12.1.2 Network Layout

Metabolic pathway maps have been produced manually for a long time. These
drawings are manually created (usually with help of computer programs) long
before their actual use and provide a static view of the data defined by the creator.
They show the knowledge at the time of the map’s generation and an end-user cannot
change the visualisation. Some navigation may be supported in electronic systems
using such pre-drawn pictures, but the result of an action (the new picture) either
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Fig. 12.2 Different representations of biochemical reactions: (a) hypergraph (vertices denote
metabolites and enzymes, edges denote reactions); (b) bipartite graph with enzymes represented
within reactions (vertices denote metabolites and reactions including enzymes, edges connect
metabolites with reactions); (c) simplified representation of (b) without co-substances (as used
in KEGG), (d) bipartite graph with enzymes represented as separate entities (SBGN notation,
vertices denote metabolites, enzymes and reactions, edges connect metabolites with reactions
(consumption, production) and enzymes with reactions (catalysis)); (e) simplified metabolite
network (vertices denote metabolites, edges connect metabolites transformed by reactions). Note
that the classical representations such as the ones in Michal’s poster (Michal, 1998) and in Stryer’s
biochemistry textbook (Stryer, 1988) are similar to (a)
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The Systems Biology Graphical Notation aims at an unambiguous graphical representation
of biological networks and cellular processes. To encode levels of detail and different aspects
of the interactions, SBGN provides three orthogonal and complementary languages:
Process description (PD) focuses on temporal dependencies of transformations and inter-
actions in a network and describes them in a mechanistic way. It is used to represent
networks of events which convert biological entities into each other, change their state or
transport them to another location. Entity pool nodes represent pools of simple chemicals,
macromolecules, etc.; process nodes encode their transformation or transport. For details
see Rougny et al. (2019). SBGN PD is commonly used to graphically represent metabolic
pathways and networks.
Entity relationship (ER) focuses on the relationship and influences in which the entities
are involved or which they have onto each other. It does not consider temporal aspects but
describes relationships in a mechanistic manner and shows all possible relationships at once.
Entity nodes in ER represent entities that exist; relationships are rules that decide whether an
entity node exists. Details can be found in the technical specification (Sorokin et al., 2015).
Activity flow (AF) focuses on the biological activity. It shows the sequential influence of
activities and can be ambiguous when it comes to the underlying mechanism. Activity nodes
represent the biological activities; modulation arcs represent the influence of activities onto
other activities. For details see Mi et al. (2015).
Detailed information on SBGN is available at www.sbgn.org, as part of the yearly special
issue on standards in systems and synthetic biology (Schreiber et al., 2020) and here (Junker
et al., 2012). Software support for SBGN maps is described by van Iersel et al. (2012) and on
www.sbgn.org.
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Fig. 12.3 Box SBGN: Explanation of SBGN and SBGN languages, the image shows as example
protein phosphorylation catalysed by an enzyme and modulated by an inhibitor in all three SBGN
languages: (a) PD, (b) ER, (c) AF (image from Le Novère et al. (2009))

replaces the current image or it is visualised in a new view, and the visualisations
are not interactive.

However, the automatic computation of visualisations and interactive exploration
methods are highly desirable, due to size and complexity of biological networks, a

www.sbgn.org
www.sbgn.org
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steady growth of knowledge and the derivation of user-specific parts of networks
from databases. The computer-based generation (layout) of a network map on
demand at the time it is needed is called dynamic visualisation. These visualisations
are created by the end-user from up-to-date data with help of a layout algorithm.
They can be modified to provide specific views of the data, and several navigation
methods such as the extension of an existing drawing or map with new additional
parts are supported.

The automatic layout of networks, that is the computation of maps from a
given network, is called graph drawing. Graph drawing methods take a network
(or graph) and compute a layout consisting of coordinates for the vertices and
routings of the edges. See the books by Di Battista et al. (1999) and Kaufmann
and Wagner (2001) for general graph drawing algorithms. Although standard graph
drawing algorithms can be used for laying out metabolic networks, domain specific
network visualisations that conform to biological representational conventions are
advantageous (Bourqui et al., 2011; Schreiber, 2002).

In the following sections we will discuss major resources for metabolites, reac-
tions and pathways (Sect. 12.2); the visualisation of metabolites and enzymes, which
are the building blocks of metabolic pathways (Sect. 12.3); and the visualisation of
the pathways themselves (Sect. 12.4). We will focus on key questions which can be
addressed using visualisation, present important graph drawing algorithms in brief
(both standard and domain specific algorithms) and discuss a selection of useful
tools. Next we will discuss the exploration and analytics of pathways and data,
in particular visual analytics and immersive analytics of metabolic pathways and
related data (Sect. 12.5). We conclude with perspectives and research questions in
this field. Boxes contain additional background information regarding, for example,
standards for metabolic network representation and layout algorithms.

12.2 Resources for Metabolites, Reactions and Pathways

Large amounts of knowledge about metabolites, enzymes, metabolic reactions,
pathways and networks have been accumulated and are derived at increasing speed.
Several databases and information systems have been developed to provide a
comprehensive way to manage, explore and export this knowledge in meaningful
ways. We will concentrate on the most important primary databases and briefly
discuss their typical content and important features.

Databases in this area can be divided into metabolite/compound databases pro-
viding information about the chemical compounds used or produced in biochemical
reactions; reaction/enzyme databases containing information about enzymes and the
reactions catalysed by them; and pathway databases providing information about
metabolic pathways. See also Table 12.1 for more information and a comparison of
relevant databases.
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Table 12.1 Databases. Abbreviations: W - Web, S - Web services, F - FTP

Database
Ease Level Data Support of

URLof use of detail access exchange formats

Metabolite/compound databases

ChEBI ++ + W, S, F TSV, XML, OBO, bit.ly/zWCpYl

OWL, MOL, SDF

KEGG COM- + + W, S, F MDL/MOL, KCF, bit.ly/wxHkVi

POUND Jmol, KegDraw,

RDF

PubChem ++ ++ W, S, F ASNT, XML, CSV, bit.ly/2JsSyOm

SDF, JSON, PNG

Reaction/enzyme databases

BRENDA ++ ++ W, S SBML, Fasta, CSV bit.ly/xGVzg3

ExPASy-ENZYME + W, F bit.ly/33yii31

KEGG ENZYME W, S, F RDF bit.ly/3fSXiZE

Rhea W TSV, BioPAX, bit.ly/AfG1d4

RDF, RXN

Sabio-RK + ++ W, S SBML, BioPAX, bit.ly/zZ7Ax0

SBPAX, XLS,

MatLab, TSV

Metabolic pathway databases

MetaCyc + ++ W, S SBML, BioPAX, bit.ly/2JfJigV

DB, TSV, . . .

KEGG PATHWAY ++ + W, S, F KGML bit.ly/w2urRG

PANTHER + ++ W, S, F SBML, SBGN bit.ly/x6aQ9n

Pathway BioPAX

Reactome ++ ++ W, S SBML, BioPAX, bit.ly/9RtvaZ

DB, SBGN, PSI

PPTX, PNG, . . .

12.2.1 Metabolite/Compound Databases (Chemical Databases)

The typical content is information about metabolites (compounds) and their prop-
erties such as name, synonyms, molecular weight, molecular formula and structure.
Often associated information such as chemical reactions, metabolic pathways,
publications and various links to other databases can also be found.

Important resources are PubChem (Kim et al., 2015, 2020; Wang et al., 2009)
is a comprehensive source of compound and substance information (consisting
of the three primary databases: Compounds, Substances and BioAssay). KEGG
COMPOUND (Goto et al., 2002) is a database of small molecules, biopolymers
and other chemical substances of biological interest. ChEBI (Hastings et al., 2015)
is a database of small molecules with detailed information about nomenclature,
molecular structure, formula and mass.
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The visualisation and visual analysis of data from these databases is discussed in
Sect. 12.3.

12.2.2 Reaction/Enzyme Databases

The typical content is information about enzymes and their properties such as
nomenclature, enzyme structure, functional parameters and specificity. Often addi-
tional information about the reactions catalysed by the given enzyme, metabolic
pathways, references and links to other databases can also be found.

Important resources are: BRENDA (Chang et al., 2020; Scheer et al., 2011)
is a comprehensive enzyme information system providing detailed molecular
and biochemical information on enzymes based on primary literature. ExPASy-
ENZYME (Gasteiger et al., 2003) is an enzyme database which covers information
related to the nomenclature of enzymes. Rhea (Lombardot et al., 2018) is an
expert-curated reaction database with information about biochemical reactions and
reaction participants. The KEGG databases ENZYME and REACTION (Kanehisa
and Goto, 2000; Kanehisa et al., 2004) provide enzyme- and reaction-specific
information about chemical reactions in the KEGG metabolic pathway database.
Sabio-RK (Wittig et al., 2012, 2017) is an expert-curated biochemical reaction
kinetics database with detailed kinetic information.

The visualisation and visual analysis of data from these databases is discussed in
Sect. 12.3.

12.2.3 Metabolic Pathway Databases

The typical content is information about metabolic pathways and their single
reactions, involved enzymes and reactants and associated information such as
organism-specific information about genes, their related gene products, protein
functions and expression data. Often several types of information are provided in
the context of the graphical representation of pathways.

Major databases are: KEGG PATHWAY (Kanehisa et al., 2002, 2020), a multi-
organism pathway database which contains metabolic pathways, represented as
curated, manually drawn pathway maps consisting of links to information about
compounds, enzymes, reactions and genes. BioCyc/MetaCyc (Caspi et al., 2012,
2019; Krieger et al., 2004) is a collection of organism-specific pathway databases
including MetaCyc, a curated multiorganism pathway database, which contains
metabolic pathways curated from the literature, lists of compounds, enzymes,
reactions, genes and proteins associated with the pathways. Reactome (Croft et al.,
2014; Matthews et al., 2009) is a curated multi-organism pathway database initially
focussing on human biology. PANTHER pathway (Mi and Thomas, 2009; Mi et al.,
2020) is an expert-curated multi-organism pathway database.
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In addition to the mentioned primary databases, there are secondary pathway
databases and collaborative databases. Secondary metabolic pathway database
systems are collecting and presenting information from various sources. Exam-
ples are NCBI BioSystems (Geer et al., 2010) and Pathway Commons (Cerami
et al., 2011; Rodchenkov et al., 2019). The former is a centralised repository
for metabolic pathway information containing biological pathways from multi-
ple databases (e. g. KEGG, Human Reactome, BioCyc and the National Cancer
Institute’s Pathway Interaction database). The latter provides access to various
public metabolic pathway databases, such as Reactome, HumanCyc and IMID. A
well-known community-driven collaborative platform dedicated to the curation and
representation of biological pathways is WikiPathways (Martens et al., 2021).

There is also BioModelsDB (Chelliah et al., 2013; Malik-Sheriff et al., 2019), a
database of mathematical models representing biological processes including meta-
bolism, and the BioModelsDB part Path2Models (Büchel et al., 2013), an automatic
translation of metabolism from databases such as KEGG into biological models
using the SBML and SBGN standards. In addition, there are also special metabolic
pathway databases covering specific species or groups of species, for example, for
plants PlantCyc (Schläpfer et al., 2017; Zhang et al., 2010), MetaCrop (Grafahrend-
Belau et al., 2008; Weise et al., 2006) and Plant Reactome (Naithani et al., 2016,
2019).

The visualisation of data from these databases is discussed in Sect. 12.4.
The above mentioned databases also provide static (e. g. KEGG) or dynamic
(e. g. BioCyc) visualisations of pathways and networks. Furthermore, they often
come with integrated analysis tools to support high-throughput experimental data
analysis. For example, Reactome visualises pathways and maps expression data
using colour-coding onto pathway maps. A Cytoscape plugin enables to generate
new pathways based on database queries and to perform some graph analysis on
these networks. KegArray is a light-weight data mapping utility, good for easily
mapping expression data (csv) onto KEGG pathways to colour-code vertices and
provides also some scatter plots of the data. And PANTHER Pathways allow users
to view results in both SBGN process view and an automatically converted activity
flow view. However, these tools are specifically developed for specific databases
and often provide less functionality than the best general purpose tools presented in
Sect. 12.4.3; therefore we will not present them in detail here.

12.2.4 Exchange Formats

To represent metabolic pathway information in a unified way and to support
the exchange of pathway models between software tools, exchange formats have
been proposed. Two exchange formats which focus on the exchange of informa-
tion between software tools and databases are SBML (Hucka et al., 2003) and
BioPAX (Demir et al., 2010), see the box in Fig. 12.4. Although they also partly
support the exchange of graphical information, they are mainly relevant for software
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SBML (Systems Biology Markup Language) is a machine-readable for-
mat for representing pathway models [Keating et al., 2020]. SBML has been
developed by aninternational community of software developers and systems
biologists to provide a common format for data sharing between various
computer-modelling software applications. It is neutral with respect to soft-
ware encoding and programming languages, and oriented towards enabling
XML-encoded models. Software tools which use SBML as a format for
writing and reading models can exchange the same computable representation
of those models. Today, around 230 software packages support SBML.Detailed
documentation on the SBML format is available online at www.sbml.org.

BioPAX is a collaborative effort to create a data-exchange format for biologi-
cal pathway data [Demir et al., 2010]. The aim is to support accessing, sharing
and integrating data from multiple pathway databases. BioPAX supports the
representation of metabolic and signalling pathways, molecular and genetic
interactions as well as gene regulation. It describes relationships between
genes, small molecules, complexes and their states, including the results of
events. Detailed documentation on the BioPAX format is available online at 
www.biopax.org. BioPAX is complementary to other standard pathway
information-exchange languages, such as SBML, focusing on qualitative, large
networks and their integration rather than on mathematical modelling of
quantitative, small models.

SBML, BioPAX as well as other standards such as SBGN are part of the
COMBINE initiative [Waltemath et al., 2020] and are used from single reaction
to small pathway to larger and whole cell models [Waltemath et al., 2016].

Fig. 12.4 Box BioPAX and SBML

developers and modellers. The exchange format relevant for transferring graphical
information and most relevant for users only interested in the visual representation
of pathways is SBGN, the Systems Biology Graphical Notation (Le Novère et al.,
2009), see the box in Fig. 12.3. Exchange of metabolite structures relies on several
formats popularised in cheminformatics and drug design. MDL Molfiles are suitable
for storing individual structures; collections of these files can then be assembled
into SD Files (Dalby et al., 1992). While some pathway databases provide small
molecule structures as MOL or SD files (e. g. KEGG, ChEBI), others provide
the structures as SMILES (Weininger, 1988). SMILES, a so-called line notation,
encodes the structure as a string and thus does not provide atom coordinates, but
provides a more compact representation. A multitude of other file formats exists;
most of these formats can be easily accessed and interconverted by cheminformatics
toolkits and libraries (e. g. CDK (Steinbeck et al., 2003)) or conversion utilities
(e. g. OpenBabel (O’Boyle et al., 2011)).
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12.3 Visualising Metabolites and Enzymes

Textbook views of metabolic pathways often illustrate the underlying biochemical
mechanisms. To this end it is essential not just to provide the name of the metabo-
lites. Structural drawings are much better suited to illustrate the molecular details
of an enzymatic reaction. The example in Fig. 12.5 shows the reactions catalysed
by triosephosphate isomerase and glyceraldehyde 3-phosphate dehydrogenase, the
isomerisation of dihydroxyacetone phosphate to D-glyceraldehyde-3-phosphate to
D-glycerate 1,3-bisphosphate. Visualisation of the metabolites by their names, IDs
or abbreviation makes it hard to understand the mechanism, while the structural
drawings immediately reveal the conversion of the hydroxyl group to an aldehyde
and of the keto group to a hydroxyl group and subsequent introduction of a
phosphate group. The layout of the structural formulas has been designed to
highlight the fact that the larger part of the structure remains unchanged during the
two reactions. Only parts of the structure (highlighted by the boxes) are modified in
the reaction. Manual layouts of metabolic pathways typically found in biochemistry
textbooks are thus careful with the layout of both the structures and the pathway to
maximise the mental map preservation between adjacent structures.

While drawing structural formulas comes natural to chemists and biochemists,
the automated generation of structural formulas is a difficult task. The drawings
have to adhere to numerous conventions developed since their initial conception by
Kekulé towards the end of the 1800s. While many of these conventions have been
standardised by the International Union of Pure and Applied Chemistry (IUPAC),
there is no unique way for drawing a chemical structure; it can be adapted depending
on the context, the level of detail required, and the information that needs to be
conveyed.

Most small molecule chemical structures can be represented by planar graphs
and thus can be laid out in 2D without major issues (Rücker and Meringer, 2002).
Specific conventions have to be followed with respect to angles, representation of
stereochemistry or bond orders, to name just a few. Ring systems pose particular

Fig. 12.5 Triosephosphate isomerase (TIM) catalyses the conversion of dihydroxyacetone phos-
phate to D-glyceraldehyde-3-phosphate, which in turn can be converted to D-glycerate 1,3-
bisphosphate by glyceraldehyde 3-phosphate dehydrogenase (GAPDH). A consistent layout of
the three metabolites involved makes it easier to grasp the structural changes entailed by each
metabolic reaction (highlighted by the boxes)
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challenges, since they are typically drawn in very specific ways and more often
than not projection of the three-dimensional shape is preferred over a non-crossing
planar embedding of the final structure. It could be shown that already the drawing
of planar graphs with fixed edge lengths (as is the case for structural diagrams) is
NP-hard (Eades and Wormald, 1990), most of these algorithms have to resort to
heuristics to generate good layouts.

Several algorithms have been proposed over the years to layout structures in
an aesthetic manner (Clark et al., 2006; Helson, 1990). In addition, a number of
algorithms have been implemented in commercial tools for structure editing and
cheminformatics, for example, in the ChemDraw suite.1 in Accelrys Draw,2 or in
MOE.3 Also academic cheminformatics projects such as CACTVS (Ihlenfeld et al.,
1994) or the more recent Chemistry Development Kit, CDK, (Steinbeck et al., 2003)
permit the layout of molecular structures. Based on the structure stored in pathway
databases (see Sect. 12.2) these tools permit the rendering of the structure into a
2D image. Another option for the retrieval of structure drawings is PubChem,4

which contains pre-computed structural formulas. These can be downloaded in PNG
format.

A challenge in the visualisation of metabolic networks is currently the joint lay-
out of the metabolic network and its constituent metabolites. While it is in principle
possible to layout metabolic networks and simultaneously display the structural
formulas of its metabolites, current pathway visualisation tools do not consider this
problem (see, for example, Fig. 12.6). Not all tools are able to display structural
formulas at all. Those that do, resort to pre-rendered images of the structures. If the
structures are drawn individually, their orientation depends mostly on the algorithm
used—there is no canonical orientation of a molecular structure. The orientation,
size and general layout of any two structures adjacent in a metabolic network are
thus mostly random, and it becomes very difficult to match the conserved common
substructure between the two structures and thus to comprehend the underlying
mechanism. Mental map preservation between any two adjacent structures would
of course be preferable and clearly enhance readability of the pathway. Hand-made
pathway diagrams found in textbooks are thus so far vastly superior to automatically
drawn pathways with structural formulas. The simultaneous constrained drawing of
metabolite structures and metabolic pathways is one of the more difficult problems
in this area. Some algorithms for the constrained drawing of structures that should
be suitable to solve this problem have been suggested in the literature in different
contexts (Boissonnat et al., 2000; Fricker et al., 2004).

For small molecules (metabolites) 2D visualisation is the method of choice,
because the structures are easier to comprehend and—to the schooled eye—the
three-dimensional aspects of the structures are typically obvious. The same does

1 CambridgeSoft Corp., Cambridge, MA, USA.
2 Accelrys, Inc., San Diego, CA, USA.
3 Chemical Computing Group, Montreal, Canada.
4 pubchem.ncbi.nlm.nih.gov.

http://pubchem.ncbi.nlm.nih.gov
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Fig. 12.6 Visualisation of metabolic pathways usually relies on pre-computed metabolite struc-
tures. As a consequence, the resulting pathway layout does not match the (usually random)
orientation of the structural formulas embedded in the pathway and hampers understanding of
the pathway mechanisms; excerpt from a KEGG (Kanehisa et al., 2014) pathway rendered by
BiNA (Gerasch et al., 2014)

not apply to proteins, however. Representing proteins as structural formulas is not
only impractical, but the function of proteins can only be understood from their
three-dimensional structure.

12.4 Visualising Reactions and Pathways

12.4.1 Visualising the Structure of Metabolic Reactions and
Pathways

Visual representations of metabolic pathways are widely used in the life sciences.
They help in understanding the interconnections between metabolites, analysing the
flow of substances through the network, and identifying main and alternative paths.
Important visualisation requirements are (Schreiber, 2002):

– For parts of reactions: The level of detail shown concerning specific substances
and enzymes is very much dependent on the goal of the visualisation, see also
Sect. 12.3. Often for main substances their name and/or structural formula should
be shown, for co-substances the name or abbreviation, and for enzymes the name
or EC-number.

– For reactions: The reaction arrows should be shown from the reactants to the
products with enzymes placed on one side of the arrow and co-substances on
the opposite side. Both sides of a reaction as well as their reversibility should be
visible.

– For pathways: The main direction of reactions should be visible to show their
temporal order. Few exceptions to the main direction are used to visualise specific
pathways such as the fatty acid biosynthesis and the citric acid cycle. The
arrangement of these cyclic reaction chains should be emphasised: a repetition
of a reaction sequence in which the product of the sequence re-enters as reactant
in the next loop, either as cycle (the reactant and the product of the reaction
sequence are identical from loop to loop, e. g. citric acid cycle) or as spiral (the
reactant of the reaction sequence varies slightly from the product, e. g. fatty acid
biosynthesis).
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Besides specific visualisation requirements, reaction and pathway visualisations
should meet the usual quality criteria of network layouts such as low number of
edge crossings and a good usage of the overall area. See Fig. 12.7 for an example
which meets these requirements.

12.4.2 Layout Algorithms for Visualising Metabolic Pathways
and Networks

Metabolic networks are usually represented as directed graphs. Common
approaches to automatically layout these networks are force-directed and
hierarchical (or layered) layout methods. Although quite common as visualisation
principal, for example, in the manual KEGG maps layout, automatic orthogonal
(or grid) methods are less often used. See the box in Fig. 12.8 as well as the
images in Fig. 12.9 for these layout methods. Force-directed methods are widely
used, and several network analysis tools support such layouts. However, these
approaches do not meet common visualisation requirements. Different vertex sizes,
the special placement of co-substances and enzymes, the partitioning of substances
into reactants and products and the general direction of pathways are not considered.
A few approaches extend the force-directed layout method to deal with application
specific requirements. An example is implemented in the PATIKA system (Demir
et al., 2002; Dogrusöz et al., 2006) where the layout algorithm considers directional
and rectangular regional constraints which can be used to enforce layout directions
and sub-cellular locations.

Layered layout methods are often used as they emphasis the main direction
within a network. Tools which support such layered layout methods are often
based on existing layout libraries. These approaches show the main direction of
reactions and are sometimes able to deal with different vertex sizes. However, there
is no special placement of co-substances or specific pathways (e. g. cycles). Some
improved approaches consider cyclic structures or depict pathways of different
topology with different layouts, e. g. the algorithm by Becker and Rojas (2001)
which emphasises cyclic structures, and PathDB (Mendes, 2000; Mendes et al.,
2000) which visualises metabolic networks based on hierarchical layout allowing
co-substances to be represented in a smaller font on the side of the reaction arrow.

There are some advanced methods for the automatic layout of metabolic
pathways and networks such as the mixed, the extended layered and the constraint
layout. The mixed layout approach (Karp and Mavrovouniotis, 1994) depicts (sub-
)pathways of different topology with suitable layout algorithms such as linear,
circular, tree and hierarchical layout, and places co-substances and enzymes beside
reaction arrows. It is used in the MetaCyc/BioCyc database system. The extended
layered approach (Schreiber, 2002) extends the hierarchical layout for different
vertex sizes, consideration of co-substances and enzymes, and special layout of
open and closed cycles; it is implemented in BioPath system (Brandenburg et al.,
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Fig. 12.7 Example of metabolic pathway visualisation which meets the requirements outlined in
Section 4.1 (citric acid cycle, including reversible and irreversible reactions and circular shape of
the pathway; excerpt from a MetaCrop (Hippe et al., 2010) pathway rendered by Vanted (Colmsee
et al., 2013))
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Fig. 12.8 Box layout algorithms

2004). Finally, the constraint layout approach (Schreiber et al., 2009) allows the
expression of visualisation requirements including positions of co-substances and
specific pathways as constraints and produces a layout by solving these constraints.
This approach is particularly well suited in cases when parts of the layout are
predefined as shown in Czauderna et al. (2013).

Figure 12.10 shows examples of visualisations computed by these layout algo-
rithms.
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Fig. 12.9 The same network with three different layouts: (from left to right) force-directed,
layered (top to bottom) and orthogonal layout

12.4.3 Tools

There are more than 170 tools available, and previous reviews have already
compared a number of them. Kono et al. focus in their comparison on pathway
representation, data access, data export and exchange, mapping, editing and avail-
ability (Kono et al., 2009). Suderman and Hallett compare more than 35 tools
relevant in 2007 regarding several aspects of network and data visualisation (Sud-
erman and Hallett, 2007). Rohn et al. present a comparison of 11 non-commercial
tools for the network-centred visualisation and analysis of biological data (Rohn
et al., 2012). And Gehlenborg et al. present visualisation tools for interaction
networks and biological pathways including tools for multivariant omics data
visualisation (Gehlenborg et al., 2010). It should be noted that progress in this field
is fast, many new tools appeared and old tools obtained new features since then.
Well-known tools supporting network visualisation and analysis are:

– BiNa (Gerasch et al., 2014; Küntzer et al., 2007) (http://bit.ly/y6ix9i)
– BioUML (Kolpakov, 2002; Kolpakov et al., 2006) (http://bit.ly/yIETIt)
– CellDesigner (Funahashi et al., 2003, 2006) (http://bit.ly/A0FQiF)
– CellMicrocosmos (Sommer and Schreiber, 2017a; Sommer et al., 2010) (http://

bit.ly/WJ8cnE)
– Cytoscape (Shannon et al., 2003; Smoot et al., 2011) (http://bit.ly/wY2sbG)
– MapMan (Thimm et al., 2004; Usadel et al., 2005) (http://bit.ly/3yaa6UE)
– OMIX (Droste et al., 2011) (http://bit.ly/wY2sbG)
– Ondex (Köhler et al., 2006) (http://bit.ly/AetZjz)
– Pathway Projector (Kono et al., 2009) (http://bit.ly/zo5x2M)
– PathVisio (van Iersel et al., 2008) (http://bit.ly/zunwxW)
– SBGN-ED (Czauderna et al., 2010) (http://bit.ly/17m7KfW)
– Vanted (Junker et al., 2006; Rohn et al., 2012) (http://bit.ly/Aigr0T)
– VisAnt (Hu et al., 2004, 2009) (http://bit.ly/agZBni)

http://bit.ly/y6ix9i
http://bit.ly/yIETIt
http://bit.ly/A0FQiF
http://bit.ly/WJ8cnE
http://bit.ly/WJ8cnE
http://bit.ly/wY2sbG
http://bit.ly/3yaa6UE
http://bit.ly/wY2sbG
http://bit.ly/AetZjz
http://bit.ly/zo5x2M
http://bit.ly/zunwxW
http://bit.ly/17m7KfW
http://bit.ly/Aigr0T
http://bit.ly/agZBni
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Fig. 12.10 Example visualisations computed by layout algorithms specifically tailored to
metabolic networks: (top left) mixed layout (from the MetaCyc webpage), (top right) extended
layered layout (from BioPath) and (bottom) constraint layout (from a prototype implementing of
the constraint layout approach; note that these networks are not in SBGN notation)

These tools often provide a selection of standard and partly specific layout
algorithms for metabolic pathways, the possibility to map additional data onto
pathways as well as analysis algorithms.

Note that for a specific metabolic database or pathway collection often several
different visualisation methods exists. For example, the visualisation of KEGG
pathways can be done with tools and layout methods such as implemented in
Pathway projector (Kono et al., 2009), KEGGgraph (Zhang and Wiemann, 2009)
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and Vanted (Rohn et al., 2012), can be rebuilt and visualised as in Gerasch et al.
(2014), or can be even translated into SBML or SBGN and then layouted and
visualised (Czauderna et al., 2013; Wrzodek et al., 2011).

12.5 Visual and Immersive Analytics of Metabolic Pathways
and Related Data

For a fast and automatic production of pictures or maps of metabolic networks
layout algorithms are very useful. However, a layout is just the first step, and in
interactive systems many additional requirements exist, for example, for interactive
exploration, structural analysis of the networks, visualisation of experimental data
(transcriptomics, metabolomics, fluxes, etc.) in the network context, studying
networks in their spatial (3D) context and so on. Here we discuss some typical
examples.

12.5.1 Multiscale Representation of Metabolism and
Navigation Through Metabolic Networks

Metabolic networks can be huge, and a visualisation may become unreadable due to
the large number of objects and connections. Several abstraction and exploration
techniques have been transferred from the field of information visualisation to
navigate in metabolic networks. As metabolic pathways are hierarchically structured
(e. g. carbohydrate metabolism includes a number of sub-pathways such as TCA
cycle and glycolysis) this information can be used to help navigating through the
network. Often used navigation techniques include clickable overview maps (in
many databases and tools, e. g. KEGG (Kanehisa et al., 2002) and iPath (Letunic
et al., 2008)), maps showing increasing levels of detail (e. g. the MetaCyc web-
site (Caspi et al., 2012)), interconnected maps (e. g. in GLIEP (Jusufi et al., 2012)),
overview and detail diagrams (e. g. method by Garkov et al. (2019)) and interactive
extension of pathways within a map (e. g. the method in KGML-ED (Klukas and
Schreiber, 2007)).

It should be noted that there is a major obstacle for simple interactive visualisa-
tion methods including automatic layout: the mental map of the user (Misue et al.,
1995). When browsing through pathways the user builds a mental representation of
the objects, their relative position and connections. Basically the user’s mental map
is its understanding of the network based on the current view. However, sudden or
large changes between the current and the next view destroy the user’s mental map
and therefore hinder interactive understanding of networks. So far there are only
few approaches which address this problem.
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Fig. 12.11 Multivariate networks: Different networks are connected through shared entities
(from Kohlbacher et al. (2014))

Metabolic networks can be part of multivariate networks (Kohlbacher et al.,
2014) (see Fig. 12.11) and heterogeneous networks (Schreiber et al., 2014), both
increase the complexity for representation and navigation. The development of
interactive layout algorithms for these structures is still an open research problem,
and so far only some initial approaches exists such as the previously mentioned
constraint layout approach (Schreiber et al., 2009).

12.5.2 Visual Analytics of the Structure of Metabolic Networks

Analysing structural properties in biological networks can help in gaining new
insights, and there are several structural properties of interest in metabolic networks:
shortest paths between metabolites which may represent preferred routes, network
motifs within the network which may indicate functional properties, different
centralities of metabolites and reactions which may correspond to their importance,
and clusters or communities within the metabolic network which may structure the
network into functional modules. Many network analysis algorithms which can be
used for the investigation of structural properties in networks have been developed;
overviews can be found in the book of Brandes and Erlebach (2005) and Junker and
Schreiber (2008).

“Visual analytics is the science of analytical reasoning facilitated by interactive
visual interfaces” (Thomas and Cook, 2006). An important aspect of this field is that
data analysis is combined with interactive visualisation methods. Here, analytics
includes structural analysis of networks as well as investigating additional data as
discussed in the following Sect. 12.5.3. Also for metabolic networks interaction
plays an important role in visual analytics (Kerren and Schreiber, 2012).

Several tools implement visual analytics methods, for example, Cytoscape,
Ondex, Vanted, and VisAnt, often provided via additional Plugins/Add-ons (see also
Sect. 12.4.3 for details and references). Some tools also allow the integration of a
wide range of other data into the analysis (Rohn et al., 2012). To better understand
the analysis results, visualisation algorithms can help by highlighting the relevant
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structures such as straightening the shortest path in the map, putting central elements
in the centre of the image or laying out the same motifs in the same way. A
few specialised layout algorithms have been developed for a better visualisation
and graphical investigation of structures and connections in networks such as
coordinated perspectives for the analysis of network motifs (Klukas et al., 2006)
or visually comparing pathways, for example, to understand metabolic pathways
across organisms using two and a half dimensional layout (Brandes et al., 2004).

12.5.3 Integration and Visualisation of Omics Data in
Metabolic Networks

Data mapping deals with the integration of additional data into metabolic networks.
Examples are metabolomics, transcriptomics and fluxomics measurements, which
can be mapped on different network elements (such as metabolites, enzymes and
reaction edges), see also Figs. 12.1 and 12.12. A common problem for data mapping
and subsequent analysis such as correlation analysis and clustering is the usage
of correct identifiers, that is having the correct name in both the data and the
network. To help the user several tools support mapping tables which translate

Fig. 12.12 An example of flux visualisation showing the flux distribution in a metabolic network
under two scenarios (rendered by Vanted, data from Rolletschek et al. (2011))
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identifiers in the data into identifiers in the network, and translation services such as
BridgeDB (van Iersel et al., 2010) exist. Depending on the data different diagram
types are desired in the vertices or at the edges of the metabolic pathway. Examples
are bar charts, pie charts, line charts, box plots and heat maps.

Whereas most tools support the visualisation of data connected to vertices of
the network, only few tools provide mapping of data onto edges. Metabolomics
data, in particular the results of stable isotope tracer experiments, yield important
details on the dynamics of networks, and flux visualisation is important as it
provides insights on the integrated response of a biochemical reaction network to
environmental changes or genetic modifications. Thus, such representations are also
important tools in metabolic engineering (Wiechert, 2001). To support the analysis
and understanding of simulated or experimentally measured flux distributions, the
visualisation of flux information in the network context is essential and is mainly
performed by scaling the width of the reaction edges according to the flux data or
by displaying the flux values in the corresponding reaction vertices, see Fig. 12.12.
Tools such as FBASimViz (Grafahrend-Belau et al., 2009), MetaFluxNet (Lee et al.,
2003), Omix (Droste et al., 2011) and OptFlux (Rocha et al., 2010) support such
visualisations.

12.5.4 Immersive Analytics of Metabolic Networks

The visualisation of structures and pathways in 3D has advantages and disadvan-
tages. A good 2D visualisation may be easier to understand and is directly printable
on paper. For small molecules 2D visualisation is the method of choice, because
the structures are easier to comprehend and the three-dimensional aspects of the
structures are typically obvious to an expert. However, the same does not apply to
proteins. Visualising proteins as structural formulas is not only impractical, but the
function of proteins can only be understood from their three-dimensional structure.
This provides arguments for an integration of 2D (mainly Information Visualisation)
and 3D (mainly Scientific Visualisation) techniques (Kerren and Schreiber, 2014).

Early work of representing metabolic pathways in 3D by Qeli et al. (2004)
and Rojdestvenski et al. (2003; 2002) goes back to the early 2000. In the last
years the novel research field of immersive analytics (Chandler et al., 2015) is
developed which is concerned with “the use of engaging, embodied analysis tools
to support data understanding and decision making” with a focus on immersive
(3D) environments (Dwyer et al., 2018). It builds on and combines ideas from the
fields of data visualisation, visual analytics, virtual reality, computer graphics and
human–computer interaction. The key idea is to get immersed into the data and
employ all senses, not only vision. This area has many potential applications in
the life and health sciences (Czauderna et al., 2018). Some initial applications for
the visualisation and exploration of metabolism in immersive environments include
MinOmics, an immersive tool for multi-omics analysis (Maes et al., 2018) and
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Fig. 12.13 Exploration of metabolic pathways within the spatial context using an immersive envi-
ronment based on CAVE2 (stereoscopic 3D) and zSpace (stereoscopic fishtank 3D) (from Sommer
and Schreiber (2017b))

the integration and exploration of pathways in a cell environment (Sommer and
Schreiber, 2017b) as shown in Fig. 12.13.

12.6 Perspectives

The visual exploration and analytics of metabolic networks is a fast developing field.
Although there are already several methods and tools that help in understanding
metabolic networks, continuous development is imminent. Here we outline some
current directions of research and tool developments in this area:

– Connection to other networks: Metabolism is strongly linked to other biological
processes represented, for example, by protein interaction or gene regulatory
networks (see also Sect. 12.5). The combined visualisation and easy visual
travelling from one network to the next may help in better understanding effects
such as regulation of metabolism.

– Context for combined omics data: Although several tools support integration
and visualisation of omics data within metabolic networks, the visualisation of
complex data sets covering several domains (networks, images, sequences, omics
data, etc.) is not yet sufficiently solved. Initial solutions have been presented
(e. g. Rohn et al. (2011)), but as more and more such data sets are produced
in experiments, there is an increasing need for better analysis and visualisation
approaches.
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– Mental map preserving layouts: A mental map of a layout is a mental picture
of the structure of the layout and helps understanding changing maps (Misue
et al., 1995), see also Sect. 12.5.1. It is often used to measure the quality of a
dynamic network layout (Archambault et al., 2011), and has been shown to be
important in dynamic layouts (Purchase and Samra, 2008; Purchase et al., 2007).
Most existing layout algorithms are not mental map preserving and often the
same algorithm would produce different visualisations when applied to the same
network. Also, there are only a few studies regarding mental map preserving
network layouts in visual and immersive analytics (e. g. Kotlarek et al. 2020).
However, acceptance of visualisation and exploration methods also depends on
better support of the user’s mental map and this is an important area for future
research.

Biological network visualisation and the layout of metabolic networks is an
interesting area in graph drawing (Binucci et al., 2019). More open questions and
major problems arising in biological network visualisation are also discussed in
Albrecht et al. (2009). Metabolic network and pathway visualisation is only a
small aspect of biological data visualisation. As biology aims to provide insights
into the overall system, that is into processes on cellular, tissue, organ and even
organism levels, visualisation of metabolism has to be embedded into broader
visualisation frameworks. Beside networks and related data, other data modalities
are also important, for example, imaging data and phenotypical data.

This chapter presented history and state-of-the-art of visualisation and visual
analysis of metabolic pathways and networks, provided descriptions of important
metabolic network databases and exchange formats, gave a brief overview of
often used tools and discussed future research directions including immersive
analytics. Methods and tools presented here are a building block of such a broader
visualisation framework for biological data.
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Chapter 13
Comprehensive Open-Source Petri Net
Toolchain for Modeling and Simulation
in Systems Biology

Christoph Brinkrolf and Lennart Ochel

Abstract In systems biology, the process of modeling and the process of simulating
the biological system of interest are essential. Implementing these processes
in research marks a major difference between traditional biology and systems
biology. There are several approaches to model a system e.g., discrete, continuous,
stochastic, and hybrid modeling. Depending on the systems’s properties, a matching
modeling approach needs to be selected as well as a method or tool which offers
access to this approach. Such methods or tools could for instance be rule based,
system of ODEs, and Petri nets. In this chapter we will focus on a Petri net
formalism that covers discrete, continuous, and stochastic models among other
features. The open-source implementation of the editor used for modeling and
visualization of simulation results, as well as the open-source implementation of the
Petri net library and simulation engine makes this toolchain with all its implemented
features and supported Petri net formalism unique. The Petri net library PNlib
is written in Modelica, an equation-based modeling language for cyber-physical
systems. VANESA, the editor, is written in Java and exports the Petri net model of
the biological system for simulation to Modelica. The exported model and the PNlib
are compiled by the open-source OpenModelica Compiler (OMC), executed, and
simulation results are made available in VANESA. VANESA can be downloaded at:
http://agbi.techfak.uni-bielefeld.de/vanesa.
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13.1 Introduction to Systems Biology

Systems biology is a branch of life sciences which aims to understand a biological
system of interest on system-level in its entirety. This differs from e.g., biochemistry
where for example one particular enzyme and its kinetics is investigated solely.
For representation and further investigation of the biological system, a model is
used. Usually, different data types (kinetics, chemical and physiological parameters,
sequencing data) from literature, experiments, databases, and further data sources
are integrated. Thus, the choice of an appropriate modeling approach regarding
the integrated data and abstraction level of the model is crucial. Only the data
which can be represented by the chosen modeling approach is able to get integrated
into the model. Once the model is created, it can be analyzed (e.g., dependencies
and connectivity of components of the model) and missing parameters could be
estimated which results in a refinement of the model. The simulation of the model
and the analysis of the simulation result with e.g., existing experimental data from
wet lab could also lead to an improvement of the model. But the major advantage of
simulation is the possibility to manipulate the model, test and formulate hypotheses,
and predict future behavior of the biological system. These processes (modeling,
simulation, formulating, and testing of hypotheses) lead to a better understanding
of the biological system of interest and might reduce costly (chemicals, manpower,
time, other resources) wet lab experiments.

Choice of Modeling Approach
The choice of modeling approach depends mainly on the abstraction level of
the model, the data and its data types to describe the model, the included or
excluded process of simulation, and the availability of tools which supports the
chosen modeling approach as well as offering its simulation. There are several
classifications of modeling approaches, and some data types can be described with
several approaches. A kinetic of an enzyme for example can be modeled with a
set of rules or with a set of ordinary differential equations (ODE). Time can be
omitted, modeled as discrete time intervals, or be treated continuously. The amount
of a certain component (concentration) can be represented also as a discrete number
or continuously. It is also possible to combine discrete and continuous values as a
hybrid model. Further, the model and its simulation can be either deterministic or
influenced by probabilistic factors.

General modeling approaches could be categorized as: graphs (such as Boolean
networks, state charts, Bayesian networks, Petri nets), rule-based systems, system
of mathematical equations (set of ODE, differential-algebraic system of equations),
grammars and corresponding automata, among others. Hybrid models consist of a
combination of more than one modeling approach. A broader overview of modeling
techniques in systems biology is presented in Bartocci and Lió (2016).

In this chapter, we will focus on the modeling and simulation using Petri nets.
The basic Petri net formalism is a discrete approach omitting time to describe
parallel behavior. By time, it got extended by several modeling aspects and as of
today, different kinds of Petri net formalism exist which may combine one or more
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extensions of the basic Petri net approach. They differ in the treatment of time (no
time, discrete time, sophisticated modeling of continuous time), representation and
change of concentrations (discrete and continuous amounts), concepts of inhibition,
concepts of fuzzy logic, concept of stochastic events, and many more. Thus, Petri
nets are a versatile and powerful approach which are not limited to systems biology.

13.2 Petri Nets

In this section, an informal overview of important Petri net concepts and extensions
is given. Formal and more detailed definitions are given in David and Alla (2010).
Petri nets were introduced by Carl Adam Petri in 1962.

A discrete Petri net is a bipartite graph with two disjoint and finite sets of two
types of nodes: places and transitions. Directed arcs always connect two nodes of
different types. Arcs connecting two places or two transitions are not allowed. Each
place holds a non-negative number (integer) of tokens. The vector which assigns
each place its number of tokens is called marking. A positive integer arc weight is
assigned to each arc. The default arc weight is 1.

The change of marking is performed by the firing events of transitions. A
transition may only fire if it is enabled. Each transition has a set of pre-places with
arcs from each pre-place to the transition and a set of post-places with arcs from
the transition to each post-place. If for all pre-places the number of token in each
place is greater or equal to the arc weight of this specific place to the transition, the
transition is enabled. Transitions with an empty set of pre-places are always enabled.
When a transition fires, the number of tokens defined by the arc weight are removed
from each pre-place. For each place of the set of post-places, the number of tokens
defined by the arc weight is added. Firing of a transition often changes the marking
of the Petri net and also the sum of all tokens in the Petri net. The time when a
transition fires is not defined and thus depends on the concrete implementation.

In a graphical representation, places are shown as circles while transitions are
shown as rectangles or bars. Tokens are usually drawn inside of each place or the
number of tokens for each place is shown inside of each place. The default arc
weight of 1 is often omitted in the graphical representation. Some implementations
show which transitions are enabled and some implementations even animate the
token flow from and to places.

In Fig. 13.1 a discrete Petri net of the abstract model of the photosynthesis as a
single reaction is shown. It represents the chemical reaction of 6 CO2 + 12 H2O →
6O2 + 6 H2O + glucose. Initial number of tokens is shown in the places. Running
the simulation for 10 time steps results in an increase of glucose and a decrease of
H2O as shown in Fig. 13.2. After firing 5 times, the transition Photosynthesis is not
enabled anymore since the place H2O holds 6 tokens but 12 are required. In the
following subsections, this example will be improved and extended as new features
and concepts are introduced.
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Fig. 13.1 Discrete Petri net of the photosynthesis modeled as a single reaction
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Fig. 13.2 Selected simulation results of discrete Petri net shown in Fig. 13.1, simulated for 10
time steps

13.2.1 Continuous Petri Net

A continuous Petri net is a bipartite graph with two disjoint and finite, not empty, sets
of continuous places and continuous transitions. Each place holds a non-negative
real number of tokens. In some literature, these continuous tokens are called marks.
The nodes are connected by directed arcs, but similar to discrete Petri nets, two
nodes of the same type are not allowed to be connected. The arc weight assigned to
each arc is a positive rational number. If for each place of pre-places of a specific
transition the number of tokens is greater or equal to the arc weight, the transition is
enabled. By firing, the number of tokens indicated by the corresponding arc weight
from pre-places is subtracted and for post-places tokens are added. Continuous
transitions are able to fire a real number of times. The tokens added and deleted
are multiplied by this factor.
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Fig. 13.3 Continuous Petri net of the photosynthesis modeled as a single reaction. Firing speed of
transition Photosynthesis is set to vmax = 1.5
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Fig. 13.4 Selected simulation results of continuous Petri net shown in Fig. 13.3, simulated for 10
time steps

As graphical representation, continuous places and transitions are shown as two
nested circles and rectangles. The extension of continuous Petri nets by a concept
of time are defined as timed continuous Petri nets. The only difference is that a
maximal speed function as a rational number is associated with each transition
which is treated as an additional factor during firing (David and Alla, 2010).

In Fig. 13.3 the photosynthesis reaction from Sect. 13.2 is modeled as a timed
continuous Petri net. Initial number of tokens as well as arc weights remains the
same, but the maximal speed function of the continuous transition is set to vmax =
1.5. As selected simulation results show in Fig. 13.4, there is an increase of glucose
and a decrease of H2O. The number of tokens in each place after 10 time steps of
simulation are the same as for the discrete Petri net.
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13.2.2 Hybrid Petri Net, Hybrid Dynamic Net, and Functional
Net

A hybrid Petri (HPN) (David and Alla, 2010) net is a combination of a discrete and a
continuous Petri net. Thus, it consists of a set of discrete places, continuous places,
discrete transitions, and continuous transitions. The sets of places and transitions
are disjointed. Discrete places hold an integer number of tokens and continuous
places hold a real number of tokens. Directed arcs connect places with transitions
and vice versa. In contrast to continuous and discrete Petri nets, there are further
rules for arcs: It must be assured that only an integer number of tokens are taken
from or added to discrete places. Thus, in general, arcs from continuous transitions
to discrete places and arcs from discrete places to continuous transitions are not
allowed. There are two more arcs: inhibitory and test arcs, which only connect
a pre-place with a transition. Enabling and firing of transitions are very similarly
defined as for discrete and continuous Petri nets. Besides, an inhibitory arc enables
a transition only if the number of tokens in the place is 0. If a transition fires, no
tokens are subtracted from pre-places which are connected to the transition with a
test arc. For timed hybrid Petri nets, a positive or zero rational number is assigned
to each discrete transition as its timing and to each continuous transition as its flow
rate.

A hybrid dynamic net (HDN) (Drath et al., 1998) is very similar to HPN. The
two major differences are that HDN does not allow different number of tokens
subtracted and added by firing of a transition. Thus, the arc weights for all incoming
and outgoing arcs of a transition have to have the same value. The second difference
is the firing speed of continuous transitions. Beside a constant, the speed can be
given as a function of values in the places. The concept of functions of values in
the places is also used in functional nets (Hofestädt and Thelen, 1998) which are an
extension of discrete Petri nets. In functional nets, the arc weight is either a positive
integer or a function depending on the places and its values.

Figure 13.5 shows the photosynthesis introduced in Sect. 13.2 reaction as a
hybrid Petri net. In addition to the timed continuous Petri net shown in Fig. 13.3, the
sunlight intensity and one inhibitor are taken into account and modeled as discrete
elements. The sunlight intensity has to be greater than 100 to enable the transition
Photosynthesis. As long as the inhibitor is present, the transition Photosynthesis
is not enabled. The transition Inhibitor_decay fires with a delay of 2. Selected
simulation results are shown in Fig. 13.6. Similar to the simulation result of the
continuous Petri net, there is an increase of glucose and a decrease of H2O. The
amount of glucose and H2O after 10 time steps are the same as in the simulation
result of the continuous Petri net, but the reaction is 4 time steps delayed due to the
presence of the inhibitor. After 4 time steps, the place Inhibitor has zero tokens and
the transition Photosynthesis is enabled. Tokens from the place sunlight_intensity
are not consumed and thus modeled with a test arc. The number of tokens does not
change during the simulation and remain 500.



13 Comprehensive Open-Source Petri Net Toolchain for Modeling and. . . 275

12

100

6
6

6

CO2
O2

Inhibitor

H2

Photosynthesis
Glucose

Inhibitor_decay

sunlight_intensity

30.0
0.0

2

36.0
0.0

500

Fig. 13.5 Hybrid Petri net of the photosynthesis modeled as a single reaction. An inhibitor and its
decay are modeled as discrete entities as well as the sunlight intensity
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Fig. 13.6 Selected simulation results for HPN shown in Fig. 13.5, simulated for 10 time steps
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13.2.3 Hybrid Functional Petri Net

A hybrid functional Petri net (HFPN) (Matsuno et al., 2003) shares the same
elements as a hybrid Petri net and extends it by the features of hybrid dynamic nets
and functional nets. Broadly speaking, a HFPN is a HPN allowing maximum speed
functions of values in the places for continuous transitions. Functions of values in
the places are also allowed as arc weights, as it was proposed for functional nets. A
non-negative integer-valued delay function can be assigned to discrete transitions. A
firing condition is a property of all transitions which allows further control of firing,
since a transition may only fire if its firing condition is true.

The Petri net elements of the HFPN version of the photosynthesis model are the
same as for the HPN shown in Fig. 13.5. Only the maximal speed function of the
transition Photosynthesis is set to vmax = v ·min(H2O,CO2) · rate with parameters
v = 1.5 and rate = 0.25 as a non-linear function. Similar to the previous examples,
there is an increase of glucose and a decrease of H2O, but the gradient is not constant
due to the parameterized maximal speed function. The simulation results of the
inhibitor and sunlight intensity remain the same (Fig. 13.7).
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Fig. 13.7 Selected simulation results of HFPN, simulated for 10 time steps
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13.2.4 Further Petri Net Concepts

Capacities (Genrich and Lautenbach, 1981) can be used to define lower and an upper
limit of tokens in each place. Lower capacities of pre-places and upper capacities
of post-places need to be taken into account for the determination if a transition is
enabled. Thus, capacities have a direct influence on the definition of firing.

A conflict (David and Alla, 2010) can occur if a place is connected to more than
one transition and more than one transition are enabled, but the place does not hold
enough tokens that all enabled transitions can fire. Thus, it has to be determined
which transitions will fire. Such a conflict can be solved, for example, by assigning
priorities or probabilities to the concurrent transitions. Especially in hybrid Petri
nets and its extensions other types of conflicts need to be solved which requires
conflict solving strategies.

A stochastic transition (David and Alla, 2010) is a discrete transition with a delay
determined by a non-negative random variable, which allows modeling probabilistic
behavior.

Colored Petri nets (Jensen, 1987) extend discrete Petri nets by distinguishable
types (colored) of tokens. Each colored Petri net can be unfolded into a (much)
larger discrete Petri net. Thus, colored Petri nets can represent large discrete Petri
nets in a small and condensed way.

Uncertainty can be represented using Fuzzy logic, which is implemented in
Fuzzy Petri nets (Cardoso et al., 1996).

One concept of hierarchical Petri nets is introduced in Fehling (1993). It allows
the refinement of places and transitions. For each hierarchical node, there is a sub-
Petri net which represents the complexity of the node. Usually, the hierarchical node
is shown instead of its sub-Petri net. Nesting of hierarchical and regular Petri net
nodes is not limited to a certain level. Thus, hierarchical Petri nets allow modeling
huge systems in a structured way and give visual aid to hide and show only parts of
interest of the Petri net at a time.

13.2.5 Advantages of Petri Nets

Petri nets are widely used to model, simulate, and analyze systems, especially
in the field of biology for more than 30 years (Fuss, 2013). Recently, HFPN
and its simulation results were used for kinetic parameter estimation (Li et al.,
2021), continuous fuzzy Petri net were applied to model uncertainty and lack
of information (e.g. exact kinetic parameter) of a system (Liu et al., 2019), and
a discrete Petri net and its analysis were used to discover unknown properties
and dependencies within the modeled system (Gutowska et al., 2020). Their
basic structure that states are represented as places and actions are represented as
transitions as well as the firing rule are easy to understand. Given a graphical user
interface, Petri nets are intuitive to use even for users who do not have a strong
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background in computer science or mathematics, since all mathematical definitions
are hidden.

Sometimes, when starting the process of modeling, only little information is
available. In this case, it is already possible to start with a simple and qualitative
model using discrete Petri nets. Once more information is present, the Petri net can
be easily extended. Using hybrid (functional) Petri nets, some parts remain discrete
and other parts of the system can be modeled quantitatively using continuous
elements along with functions. Thus, the model will grow and improve with each
iteration without the need to start from scratch again.

From the scientific point of view, a lot of work and effort has been put already
into the theory of Petri nets and the definition of their extensions, which makes
their usage very reliable and its simulation result comprehensible. There are also a
lot of algorithms available to analyze (mostly discrete) Petri nets. For reachability
analysis, all possible markings of a Petri net are calculated, and it can be decided if
a certain marking is reachable. Since this algorithm requires exponential time and
space (Lipton, 1976), it should only be applied for small or bounded Petri nets (e.g.,
Petri nets with upper capacity for all places). A similar analysis is the computation
of coverability of a certain marking. It is less strict than reachability, because a
marking does not need to be matched exactly, but all elements of the marking need
to be matched by an equal or higher value. The internally computed coverability
graph still needs exponential resources in time and space depending on the size of
the Petri net, but its computation is always finite (Finkel, 1993).

There are other characteristics which describe a Petri net, for example its liveness
and boundedness. The degree of liveness describes how often each transition is at
least able to fire (never, sometimes, arbitrary times, infinite times, always) (Murata,
1989). The degree of boundedness of a Petri net gives the maximum number of
tokens of all places in all reachable markings (Murata, 1989). If all places of a
Petri net have an upper capacity, the degree of boundedness is simply the maximum
number of all upper capacities.

The property that a Petri net is a graph makes it possible to apply general graph
analysis algorithms. Beside ordinary graph algorithms, there are also algorithms
to analyze the structure of a Petri net for reduction (Ackermann et al., 2012) or
decomposition (Sackmann et al., 2006). The decomposition tries to find (mostly)
independent subnets, which can then be analyzed with fewer resources.

13.3 Requirements on Petri Nets in Systems Biology
and Available Tools

Requirements for Modeling in Systems Biology
One limitation of modeling is the selected modeling approach. If the approach only
allows a qualitative way of modeling, it will be impossible to transfer quantitative
behavior of the system of interest to the model. In systems biology, metabolic
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reactions and pathways are a great field of interest. Modeling kinetic behavior of
enzymes is not possible with discrete Petri net elements, but with continuous places
and transitions continuous enzymatic reaction can be modeled. Stoichiometry of
reactions can be modeled by arc weights of a continuous Petri net, but inhibitors
cannot be considered. With the inhibitory arc of hybrid Petri nets, there is an easy
and intuitive way to model inhibitions, but kinetic functions occurring for example
in mass action law or Michaelis–Menten equation in combination with not identical
stoichiometry of all reactants of each reaction require at least the combined concepts
of HPN, HDN, and functional nets, as they are defined in HFPN. Further offered
concepts might be very useful, but in general not as essential. With lower and upper
capacities, a minimum or maximum concentration can be easily defined. Since in
the real world an infinite concentration of a chemical does not exist, it is often useful
to set a limit of concentration for all components of the model.

In order to model and simulate sophisticated models in systems biology, only
Petri net extensions and tools are considered which offer at least the functionality as
HFPN does.

Available Tools
In the last 25 years, many tools for Petri net modeling, simulation, and analysis
were developed and published. The majority of modeling and simulation tools
focuses either on discrete, hybrid, stochastic, colored Petri nets, or other Petri net
concepts. Currently, there are two tools available which match the requirements:
Cell Illustrator (Nagasaki et al., 2010) and Snoopy (Heiner et al., 2012).

Cell Illustrator is a commercial tool to model and simulate complex biological
systems using HFPN. Its graphical user interface and representation of the Petri net
are strongly tailored to use cases from molecular and systems biology. Beside the
Petri net symbols, for each node of the Petri net, an icon of a biological entity or
relation can be chosen from a library of biological elements. Thus, the visualization
of the model is similar to other systems biology modeling tools (e.g. CellDesigner
(Funahashi et al., 2003) or tools supporting SBGN (Le Novère et al., 2009)) which
increases usability. Properties of all Petri net elements can either be modified by
selecting a specific element or by editing a table containing all model parameters.
Simulation results are visualized real time and can be exported, as well as the model,
in several file formats including images.

Snoopy is a Petri net modeling and simulation tool offering many Petri net
classes, such as discrete, continuous, hybrid, colored, and fuzzy Petri nets. Its
general purpose graphical user interface is not oriented for a specific scientific field.
Before modeling, a Petri net class for the model has to be chosen. Since a Petri
net model can be transformed to a different Petri net class, an initial discrete model
can be then extended by continuous elements after transferring it to the hybrid Petri
net class. If a firing speed function depends on the value of a specific place, this
place needs to be connected to the transition by a modifier arc. This special arc does
not have any impact on the Petri net but makes this specific variable available for
the transition. After computation of simulation finished, the simulation results are
visualized and can be exported.
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13.4 Open-Source Components for a Petri Net Toolchain

13.4.1 Motivation

Our aim is to provide a tool which assists in modeling and simulation of sophis-
ticated application cases in systems biology, using hybrid Petri nets with support
of functions. There are only two competitive tools with similar functionality
available: Cell Illustrator and Snoopy. Both tools have their strengths, but also their
weaknesses. While modeling kinetic speed functions, both tools support a syntax
check for functions avoiding structural mistakes, e.g., missing closing bracket or
function argument. Further structural mistakes and inconsistencies could be revealed
by applying physical units to each parameter, e.g., two values that are added together
must have matching units. Cell Illustrator takes physical units into account, while
Snoopy only supports the extraction of variables, which makes it easier to change a
value of a variable. Unfortunately, neither of both tools offers an intuitive rendering
of mathematical expression. Such a rendering supports a lot to comprehend the
general structure of a mathematical expression. Both tools support knock out
experiments by disabling a transition. Snoopy realizes it user-friendly by check
boxes. If the dynamics of one biological entity, e.g., a metabolite, should not be
simulated, Snoopy offers the ability to set the tokens in a place to a constant value.

For larger biological systems, some entities, e.g., ATP or ADP, are reactants
within several reactions. If for example ADP is modeled as one single place, Snoopy
improves the visualization of the overall Petri net by logical duplicates of this place.
Thus, for visualization, this single place may occur multiple times in the network to
avoid arcs crossing large parts of the model.

Cell Illustrator supports lower and upper capacities, which for instance is useful
to describe saturation processes of biological entities. It also provides user-defined
conflict handling, which means that the user may directly influence the internal
conflict resolution strategies by setting priorities to concurrent transitions.

Both tools support the visualization of simulation results for places (change
rate of tokens) and transitions (firing speed over time), but none offers the ability
to visualize the flow of tokens on the arcs. This feature would be very useful to
investigate continuous parts of a Petri net. A constant token value in a continuous
place does not imply that there is no token flow. A rather typical case for continuous
places in biological applications is an equilibrium of in and out flows, which
obscures the dynamics in this particular part of the model.

A major concern of Snoopy is that in general for continuous and hybrid Petri
nets non-negative markings and non-negative firing speed of transitions are not
assured. If a transition fires with negative speed, its pre-places and post-places are
reversed, so tokens flow in the opposite direction of the arcs. This violates one of the
fundamental properties of Petri nets. For continuous Petri nets, the use of adaptive
semantics ensures non-negative marking of pre-places, but that does not apply to
continuous parts of a hybrid Petri net.
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Since both tools are closed-source, the validation of simulation can only be
checked by comparing the simulation results of example Petri net models. The
simulation itself is a black box implementation which lacks transparency. Addi-
tionally, due to the negative number of tokens and firing speed, the simulation
results of Snoopy are difficult to compare and comprehend. Further comparison and
discussion can be found in Brinkrolf et al. (2018).

Both tools do not match the requirements, and they cannot be adapted or
improved by plug-ins to fulfill our needs, since some design choices are fundamen-
tal. This resulted in the development of a new open-source modeling and simulation
toolchain.

13.4.2 The Extended Hybrid Petri Net Formalism

The extended hybrid Petri net formalism (xHPN) (Proß, 2013; Proßet al., 2012)
combines several Petri net concepts including all of those which are supported by
HFPN. By definition, xHPN is an extension of HPN, offering hybrid modeling with
inhibitory and test arcs. It also supports functions depending not only on values in
the places as maximum firing speed of continuous transitions and as arc weights.
This includes also the arc weight of an inhibitory arc, defining its threshold to
inhibit the transition. A delay can be assigned to discrete transitions, lower and
upper capacities can be assigned to places. Stochastic transitions with a variable
hazard function are supported as well. Transitions have an additional firing condition
given as a Boolean expression. The four different types of conflicts defined in David
and Alla (2010) are defined in xHPN accordingly. For certain conflicts, resolution
strategies based on probabilities and priorities are also supported.

13.4.3 Modelica and OpenModelica

Modelica (Modelica Association, 2021) is a free equation-based modeling language
for cyber-physical systems. There are several compilers (Modelica Association,
2021) available on the market, such as the commercial tools Dymola, Wolfram
SystemModeler, JModelica, and SimulationX as well as the open-source imple-
mentation OpenModelica Compiler (OMC) (Fritzson et al., 2005) which is part of
the OpenModelica project. Development of OpenModelica started more than 20
years ago and is actively and financially supported by the Open Source Modelica
Consortium (OSMC). Its aim is to be a free implementation for academic and
industrial usage.

In a nutshell, the OMC reads a Modelica model and compiles it to an executable.
Running the executable will then compute simulation results, which are either
written to a file or directly sent via socket communication to other tools.
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13.4.4 PNlib

The PNlib (Proßand Bachmann, 2012) is an open-source implementation of the
entire xHPN formalism in Modelica. It is available as stand-alone Modelica library
and also as a part of the OpenModelica environment. The implementation comprises
all Petri net elements as well as additional definitions and algorithms including
conflict solving strategies. Thus, the PNlib is independent of further software
tools, such as the compiler. The simulation results computed by the executable are
supposed to be the same, independent of the chosen compiler. Because all aspects
of the Petri net models are implemented in this open-source library, the simulation
results are comparable, transparent, and comprehensible, which would not be the
case with (partial) black box implementation like Snoopy or Cell Illustrator. This is
a huge advantage for academic and industrial use cases.

13.4.5 VANESA

VANESA (Brinkrolf et al., 2014) is an open-source software tool written in
Java which aims to assist scientists in the processes of modeling, simulating,
and analyzing biological systems. For the process of modeling, two graph-based
approaches are supported: biological networks and Petri nets, which in contrast to
biological networks can be simulated. A biological network is a graph which nodes
represent biological entities (e.g., metabolites, enzymes, genes) and edges represent
biological relations (e.g., reaction, inhibition). Several different node and edge types
are supported, and its visualization can be manipulated by the user.

Modeling a biological network can be either done from scratch based on lab data
and data from literature, or the online data warehouse DAWIS-MD (Hippe et al.,
2010) can be requested. It provides access to KEGG pathways (Kanehisa et al.,
2012) and molecular biological databases (e.g., Mint (Licata et al., 2012), IntAct
(Kerrien et al., 2012), Brenda (Scheer et al., 2011)) which query result leads to an
initial network based on depth search. The retrieved network is fully editable.

For all graphs (biological networks and Petri nets), basic graph algorithms can
be applied (comparison, intersection, merging of graphs, shortest path calculation).
Hierarchical modeling is supported, which is convenient if models get more
complex and grow in their number of nodes.

Models are saved as a SBML Level 3 Version 1 (Chaouiya et al., 2015) file,
which was extended by VANESA-specific attributes as SBML annotations. Thus,
the model excluding VANESA-specific attributes can be opened by any other tool
supporting SBML Level 3 Version 1. This SBML export is performed by JSBML
(Rodriguez et al., 2015) library, which ensures that the saved model is a valid SBML
model.
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13.5 VANESA: Hub of the Open-Source Petri Net Toolchain

In this section, modeling and simulation of Petri nets with VANESA and its interplay
with PNlib and OpenModelica Compiler as well as unique features of this toolchain
are presented.

13.5.1 Modeling

The graphical user interface of VANESA provides an intuitive way to create a Petri
net. While creating nodes and arcs with the mouse, it is ensured that only arcs
defined in xHPN are created, which keeps the Petri net structure valid. If a non-
defined arc is created (e.g., an arc connecting two places or transitions, inhibitory
arc from transition to place), a warning is given, and the arc is deleted. Adding a
place with a name that already exists for a place in the Petri net results in adding a
logical place of the already existing place instead (Fig. 13.8).

Places, transitions, and arcs are created with default values. Default number
of tokens in places is zero, as well as their lower capacity. Upper capacity is
set to infinity. Delay of discrete transitions, maximum firing speed of continuous
transitions, and default arc weight are set to 1. After selecting an element, all
properties of this selected element can be modified easily. This includes to set the
number of tokens for places to a constant value, knock out transitions and set their
firing conditions, define conflict solution strategies for discrete places if there is a
structural conflict, and attach parameters to continuous transitions.

Since kinetic speed functions might get large and complex, VANESA supports
the extraction of parameters. Thus, the value of a parameter can be changed easily
for all its occurrences in the function. These parameters do have a physical unit
which, in combination with the syntax check, avoids and reveals structural mistakes.
While entering the function, it gets syntax checked and rendered to a Latex image
in real time. If the syntax check detects a mistake, the position of the mistake is
indicated. These features support the user significantly while dealing with complex
functions.

13.5.2 Simulation

For the simulation of the Petri net, the user can specify the duration of simulation
and the size of the result, given by the number of returned time steps of evaluation.
The time unit for the duration depends on the time unit used for modeling (e.g.,
seconds or minutes). The number of returned time steps does not influence the
accuracy of numerical calculation of simulation, but the accuracy of visualization
of simulation results.
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Fig. 13.8 Graphical user interface of VANESA. In the center, the Petri net is shown. On the left,
the simulation results and detailed information about previously selected place H2O are displayed.
On the right-hand side is the toolbar for Petri net manipulation. Simulation results are zoomed in
to show only results between 0 and 40 tokens. A warning is displayed in the lower right corner,
indicating that an illegal connection was created
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In the background, the Petri net is exported to Modelica in a way that it is
compliant with the elements defined in PNlib. When the export is finished, the
OpenModelica Compiler is called with simulation specific parameters and compiles
the Petri net model with the help of PNlib to an executable. After compilation, the
executable is run and the actual simulation is computed.

The default option is saving the simulation results in a file, and once simulation
finished, the results can be further processed and visualized. Some simulations
take several minutes to be computed, which leads to the drawback that the user
cannot stop the simulation based on visualization of the first computed steps of the
simulation result. Thus, the communication between the executable and VANESA is
realized by a TCP/IP client–server model. VANESA acts as a server and as soon as
the executable connects to VANESA, calculation of simulation starts and simulation
results of evaluated time steps are sent as byte stream to VANESA and get processed
and visualized. The communication between VANESA and OpenModelica, as well
as between VANESA and executable, forwards warnings or errors that might
occur which are shown to the user. That includes problems with physical units
within mathematical expressions, as well as numerical problems of the integrator
or inconsistencies of the Petri net formalism itself. This feedback can be very useful
to avoid mistakes and improve the quality of the model.

13.5.3 Visualization of Simulation Results

The visualization of simulation results covers places, transitions, and arcs. The lines
which are drawn in the chart based on the connected values for each time step are
interactive so that the user can zoom in and request specific values for specific time
steps by hovering the drawn value. For places, the chart shows the number of tokens
for each time step, and for transitions the actual firing speed for each time step is
shown. For arcs, two lines are drawn. One line shows the actual token flow for each
time step, and the second line shows the cumulative token flow. If multiple places
are selected, the chart shows the number of tokens for the selected places combined
in a single chart. VANESA is able to manage multiple runs of simulation of the
same Petri net which were obtained for example by varying one kinetic parameter.
Each single simulation result can be enabled or disabled for visualization. If more
than one simulation result is enabled for visualization and a single place is selected,
the chart shows all simulation results of this specific place combined with multiple
lines.

The slider allows the user to investigate the simulation result of a specific time
step. When the slider is set to a specific time step, for each place, the number of
tokens is drawn into the place and enabled transitions are colored red.

There is also a detailed view of simulation results provided. It shows all the
tokens for all places for all time steps in a table and plots the tokens of each place in
separate charts. These charts are either scaled individually or have the same scaling.
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Individual scaling focuses on the individual properties and dynamics of each place,
while a common scaling for all charts makes it possible to represent the global
behavior of change of tokens in the places.

13.5.4 Exports and Documentation

All graphs can be exported in PNG and SVG file format. Charts can be exported
in PNG, SVG, and PDF file format. Excerpts of the graphs can also be created by
zooming in on the desired area.

Storing simulation results in the SBML file would increase its file size drastically.
Thus, each single simulation result can be exported in CSV format for saving,
sharing with colleagues, and for further analysis of the raw simulation data using
external tools. This export includes all attributes of the simulation result (for all
places, transitions, and arcs) and can be also imported and mapped to the graph.

Sharing the entire model with all its elements and parameters is important for
collaborative work and for transparency. This is ensured by a Latex export for a Petri
net, which generates a Latex file which can be compiled as a PDF file. The Latex
file contains an image of the Petri net as it is visualized in VANESA at the time
of generation, all initial values of the places, all equations with their preconditions,
post-conditions, speed functions, and all parameters of each equation. Physical units
for all initial values and parameters are taken into account as well. The table of initial
values also indicates if a place is set to a constant number of tokens. If an equation
is disabled (knocked out), its speed function equals 0. Thus, this automatically
generated Latex document provides all information necessary to model or adapt
the Petri net.

13.6 Conclusion and Discussion

Petri nets are a well established method of choice for modeling, simulating, and
analyzing systems in systems biology. Since the introduction of Petri nets in 1962,
the formalism got extended by many concepts to fulfill the need to represent more
sophisticated models. Since then, lots of research focused on the mathematical
foundation of Petri nets including proofs, theorems, and Petri net properties.

Modeling sophisticated systems requires a composition of concepts such as
discrete and continuous elements, inhibitor arcs, and speed maximal functions
including parameters. There are only a very limited number of tools which offer
modeling and simulation of Petri nets combining these concepts. Due to limitations
of the existing tools, the combination of the xHPN formalism implemented in the
Modelica library PNlib, the OpenModelica Compiler, and VANESA is developed to
offer a transparent open-source environment for modeling, simulation, visualization,
and analysis of simulation results.
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Chapter 14
Immersive Exploration of Cell
Localization Scenarios Using VR,
Spatialized Video Communication,
and Integrative Bioinformatics

Bjorn Sommer, Ayn Sayuti, Chang Hee Lee, Zidong Lin, Jenny Hu,
and Ashley Hall

Abstract Integrating spatially localized molecular networks into virtual cell envi-
ronments is an approach which is only provided by a very small number of tools.
As this task requires the combination of a set of Biotechnology/Bioinformatics-
related information sources, it can be seen as an appropriate example for Integrative
Bioinformatics research. Here, we want to show new immersive perspectives for
cytological pathway integration by combining recent explorative technologies with
the software CELLmicrocosmos 4 PathwayIntegration. A mesoscopic-localized
metabolic pathway—i.e. the citrate cycle and the glycolysis—is localized based
on database entries onto an abstract cell environment of Arabidopsis thaliana. The
created cell model is used in three different contexts providing different degrees of
immersion: (1) Web-based 2D exploration of 3D Scenarios (using Gather.town), (2)
Exploration and Annotation in a VR Design Application (using Gravity Sketch),
and (3) Large-Scale VR Visualization and Navigation (using the CAVE2 and
zSpace). All these examples promise to be very useful in the context of Integrative
Bioinformatics-related education as well as communication.
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14.1 Introduction

The visualization of biochemical pathways has a long tradition. Since Michal started
to illustrate an overview of all metabolic reactions by publishing his Biochemical
Pathways maps in 1968 (Michal 1998, 2012), a variety of new approaches have
been developed to visualize and explore the structure and connectivity of metabolic
pathways (Becker and Rojas 2001; Genc and Dogrusoz 2003; Karp and Paley 1994;
Schreiber 2002; Schreiber et al. 2009). These approaches are relevant in terms of
biochemical education as well as to provide an overview of the current status quo in
research as well as to identify gaps in current biological knowledge.

Since Michal’s visualization attempt, a wide variety of databases providing
metabolic data, such as the Kyoto Encyclopaedia of Genes and Genomes (KEGG)
and Reactome, were established (Croft et al. 2011; Kanehisa et al. 2012). Maps in
those databases are visualized in two dimensions (2D). Whereas the Reactome maps
illustrate enzyme localizations inside abstract 2D cell compartments, KEGG in most
visualizations does not depict subcellular localizations of network components.

Whereas 2D visualization of biochemical networks is around since a couple
of decades, there are not many approaches which combine those networks with
3D models depicting cell environments whereby providing spatial context. The
CELLmicrocosmos 4 Pathway-Integration (CmPI) is a software which combines
2D network visualization with 3D cell environments by using protein or gene
localization data (Sommer et al. 2010a). At the mesoscopic level, it provides various
cell component models which are based on a number of microscopic visualization
techniques. The provided cell component models are ranging in size from a few
thousand nanometres down to a few nanometres (Sommer 2012). In this way, CmPI
is a good example for Integrative Bioinformatics, as it uses Bioinformatics-related
data sources to map localization information onto 3D cell models resulting from
microscopic images.

Prior to visualize genes/proteins in the context of a spatial cell environment,
they have to be assigned to cell component location(s). Doing so for 2D cell
visualization, related localization approaches are, for example, COMPARTMENTS
and CellWhere (Binder et al. 2014; Zhu et al. 2015). Both approaches provide
specific methods to predict the subcellular localization of proteins—partly only for
a single specific tissue. But they do not aim to take the spatial structure of biological
cells into account.

To the best of our knowledge, there are currently no related tools available
enabling the network mapping into virtual cell environments. Outdated projects
which were following a similar idea were, for example, MetNetVR, or The Interac-
torium which visualizes a single localization scenario (Wurtele et al. 2003; Widjaja
et al. 2009). Also, there are Cytoscape plugins available, such as the 2D graph
localization visualization Cerebral or the fragmentary subcellular visualization tool
3DScape which has never been fully functional (early prototype status) (Barsky et
al. 2007; Wang 2011). None of those tools is able to semi-automatically localize and
visualize genes/proteins in the context of a spatial cellular environment in 3D.
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14.1.1 New Ways for Interactively Exploring Cellular
Structures

Since the arrival of the Oculus Rift DK1™ in 2013, Virtual Reality (VR) headset
technologies drastically matured and the recent sale numbers of the Oculus Quest
2™ show that VR is about to become mainstream with a quickly growing number
of users (Hamish 2021; Bol 2021). In Bioinformatics, the use of VR technologies
is not completely new. Tools like the previously mentioned MetNetVR used CAVE
technology already 15 years ago (Yang et al. 2006). The prospects of recent VR
technologies for Integrative Bioinformatics were discussed in a journal special issue
(Sommer et al. 2018): For example, the HoloLens was used to explore molecular
models in Augmented Reality (AR) (Müller et al. 2018), a large tiled stereoscopic
screen was used for multi-omics analysis (Maes et al. 2018), or Head-mounted
Displays (HMDs) were used to create a game-inspired visualization of extracellular
matrix elements (Belloy et al. 2018). New tools like VRdeo can be used to explore
molecular models with HMDs and create educational narrated videos while doing
so (Brøuža et al. 2021).

During the COVID pandemic, another important development was starting: the
major daily face-to-face communication platforms quickly became video chats
like Zoom and Skype—Zoom fatigue was a common problem, especially in
teaching environments (Wiederhold 2020). Therefore, new tools were combining
video chats with dynamic group building and interactions—usually by making
use of web technologies, we call them here Spatialized Video Communication
platforms. One of these approaches is Gather.town. This web platform provides
video chats in customizable 2D spaces, enabling serendipitous interactions by
enabling users to mostly freely move between different spaces, rooms, and quickly
change communication partners. Gather.town early attracted a decent amount of
venture capital and was already used at a couple of conferences and educational
institutions bringing back some of the joy of physical meetings (Mascarenhas 2021;
Gather - Crunchbase Company Profile and Funding 2021).

Therefore, we are presenting here three scenarios which are based on either
VR technology to provide immersive exploration of created localization scenarios,
or web technology enabling dynamic video communication between multiple
participants. These three scenarios are based on a combination of an abstract
plant cell and a specific localization scenario based on Arabidopsis thaliana which
was created by using CmPI. Over the years, CmPI was already used in a couple
of scenarios. Originally intended as a tool to generate and explore cytological
localization scenarios in 3D, we started to use it also as an authoring tool to
create cell models which can be used in the next step for advanced visualization
or educational approaches in third-party tools such as Blender (Biere et al. 2018).

In particular, the following three new data exploration and visualization scenarios
will be discussed in the following sections: (1) Web-based 2D exploration of 3D
Scenarios, (2) Exploration and Annotation in a VR Design Application, and (3)
Large-Scale VR Visualization and Navigation.
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14.2 Methods

As the base for this work, the CELLmicrocosmos 4.2.1 PathwayIntegration (CmPI)
is used. This software has been developed over a number of years (Sommer et al.
2010a, 2015). The Java standalone version (requires Java 7 or 8) is accessible via
the website http://Cm4.CELLmicrocosmos.org.Those readers who are familiar with
CmPI can skip the following sections and continue with the chapter Application
Cases.

14.2.1 Mesoscopic Modelling

As the base for a cell environment, first a cell model is needed as the starting
structure which can be correlated in the next steps with biochemical pathways.
For this purpose, CmPI provides a number of preconfigured cell models which can
be used to create eukaryotic as well as prokaryotic cell models. The cell models
can be configured by using a number of different cell component models, such
as Chloroplast, Mitochondria, Nucleus, etc. They are available on three different
Cytological Abstraction Levels (CAL), see Fig. 14.1 (Sommer 2012; Spevacek
2000):

• CAL1: 3D-microscopy/−spectroscopy-based (Image),
• CAL2: interpretative (Allegory), and.
• CAL3: abstract cell visualization (Abstraction).

CAL1 and CAL2 models are based on different image resources (Flickr 2014;
The Cell 2014; Cell Press 2014). For models of CAL1, online databases such as
the Cell-Centered Database (CCDB) were used (Martone et al. 2002). Figure 14.1
CAL1 shows, for example, the tip of a mitochondrion based on a dataset containing
256 electron-microscopic images acquired from the CCDB. Amira

®
was used for

semi-automatically segmentation (FEI Visualization Sciences Group 2014). Then,
the result was optimized by using Autodesk

®
3ds max

®
(Autodesk 2012). The

Fig. 14.1 Three cytological abstraction levels (Sommer 2012). (1) 3D-microcsopy/-spectroscopy-
based cell visualization, (2) interpretative one, and (3) abstract one. (Reprinted with permission
from Sommer (2012))

http://cm4.cellmicrocosmos.org
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final CAL1 model was exported in the VRML 2.0 format and imported into CmPI.
Alternatively to commercial software like Amira

®
, Open Source software like Fiji

(IsJustImageJ) with TrakEM may be used (Cardona et al. 2012; Schindelin et al.
2012).

Using the interpretative approach (CAL2), cell models featuring a reduced visual
complexity can be created—which are more similar to those models often seen in
traditional educational textbooks. For this purpose 3D modelling programs, such
as Autodesk 3ds max

®
or Blender can be used (Autodesk 2012; Blender 2014).

Different microscopic images can be used as inspiration, e.g. light-microscopic
images to acquire the overall structure of the cell at a few thousand nanometres
as well as the colour staining, as well as electron-microscopic images which are
able to depict the granular structure of the cell.

If the internal structure is not of relevance for the intended visualization, CAL3
can be used, where cell components are substituted by simple geometrical objects,
like cubes or spheres (Wurtele et al. 2003; Widjaja et al. 2009).

Import and export of cell models is supported by using the VRML97/2.0 format,
making it compatible with many modelling packages, such as Blender or Autodesk
3ds max

®
. The CELLmicrocosmos 3.2 CellEditor (CmCE) can be used to prepare

cell models for CmPI. CmCE is able to work with different VRML97 formats and
save same in a CmCX-compatible format incl. the different cell component layers:
http://Cm3.CELLmicrocosmos.org.

14.2.2 Functional Modelling

Now that the initial cell model is created, the structure has to be combined in
the next step with a biochemical pathway. CmPI can combine structural data at
the mesoscopic level with the functional level based on gene−/protein-related
localization data.

The previously described process of generating a cell model is followed by
importing gene- or protein-related data. Figure 14.3 Centre shows the citrate cycle
which was imported from the KEGG database into CmPI—the layout is based on
the standard KGML layout. The 2D visualization in CmPI—based on the JUNG
library—depicts compounds as blue nodes and enzymes using their localization
colour, whereas the arrows depict the direction of the corresponding reaction
(O’Madadhain et al. 2003; Sommer et al. 2013).

To combine biological networks with e spatial structure of the cell model,
localization data is required. For this purpose, CmPI was connected to a number
of databases UNIPROT, BRENDA, Gene Ontology (GO), and ANDCell (Chan et
al. 2012; UniPort Consortium 2013; Chang et al. 2014; Podkolodnaya et al. 2011;
Ivanisenko et al. 2020). All these databases were integrated in the materialized
database structure DAWIS-M.D. with the purpose to enable immediate access
(Kormeier 2014; Töpel et al. 2008; Sommer et al. 2010b). A new version of

http://cm3.cellmicrocosmos.org
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BioDWH—the data warehouse system which is the base of DAWIS-M.D.—was
just recently published (Friedrichs 2021).

Moreover, CmPI provides very simple network modelling capabilities. However,
it is not intended as an advanced Systems Biology network modelling tool. For this
purpose, readers are referred to projects like VANTED, VANESA, or Cytoscape
(Brinkrolf et al. 2014; Rohn et al. 2012; Smoot et al. 2011). Alternatively, in a
previous project an early prototype was built as a bridge between VANTED and
CmPI, enabling to integrate 2D networks created in VANTED into CmPI and
localize and visualize the corresponding networks (Sommer and Schreiber 2017).

For our example here, only the UNIPROT database integration in DAWIS-M.D.
was used for localization purposes which also integrates Gene Ontology. For the
localization of proteins, the UniProt Knowledgebase (UniProtKB) is relevant with
the following categories:

• General Annotation (Comments).

– Subcellular location.

• Ontologies.

– Keywords

• Cellular component

– Gene ontology.
– Cellular component.

Figure 14.2 shows the localization layers. Database terms, such as “mitochon-
drial chromosome” or “mitochondrial pyruvate dehydrogenase complex” which
can be found in the UNIPROT database, are mapped onto the Matrix of the
mitochondrion model.

Fig. 14.2 Localization layers using the mitochondrion modelled in Fig. 14.1 CAL1. (Reprinted
with permission from Sommer (2012))



14 Immersive Exploration of Cell Localization Scenarios Using VR,. . . 297

To select the appropriate localization for a gene or protein, the Subcellular
Localization Charts are used which provide a number of different visualization
categories (Sommer et al. 2013; Mueller et al. 2016). Different selection categories
supported by the localization visualization are the amount of localization entries, the
protein-specific localization, or the protein co-localizations. These chart categories
can be used to assign specific localizations directly to all associated data entries.

Now, the mesoscopic/spatial data of the cell components can be combined
with the functional/biological network data. The network is laid out based on
the interconnections by selecting one of the available algorithms, such as the
Fruchterman–Reingold algorithm (Fruchterman and Reingold 1991), the ISOM
layout (Meyer 1998), or a 2D mapping layout. In the latter case, the corresponding
2D layout is shown in Fig. 14.3 centre (GUI right top) and will be mapped onto
a unit sphere using polar coordinates. Afterwards, the layout is mapped onto the
surface of the corresponding cell component and finally, the result can be visualized
and explored in 3D space.

14.2.3 Cell Exploration

The created cell model can already be explored with CmPI. For this purpose,
three different modes providing a 6DOF (six degrees of freedom) navigation are
integrated into CmPI, enabling the user to move around cell component models or
travelling across them (Sommer et al. 2010a): Floating, Flight, and Object-bound
mode. In Fig. 14.3 the change between different perspectives was achieved by
navigating in Floating mode.

The following basic windows are part of the application:

• CellEditor (CELLmicrocosmos 3.1): a simple interface to add new cell com-
ponent models to the cell environment which can be used to add new cell
components and manipulate their position with mouse and keyboard (Fig. 14.3
centre: GUI left bottom),

• PathwayIntegration (CELLmicrocosmos 4.2): the pathway (Fig. 14.3 centre: GUI
top) and protein localization table (Fig. 14.3 centre: GUI right bottom) which can
be used to download KEGG pathways and protein localization from DAWIS-
M.D.,

• 2DViewer: 2D network visualization using the JUNG library (Fig. 14.3 centre:
GUI right top),

• CellUniverse: 3D visualization of the cell (Fig. 14.3 centre: GUI centre-top),
• NodeDetails: information about the currently selected protein (Fig. 14.3 centre:

GUI left top).

CmPIweb is a simplified web-based version of CmPI based on three.js and D3.js
can be used as an online viewer of localization scenarios of original files from
Kovanci et al. (2016): http://Cm4web.CELLmicrocosmos.org.

http://cm4web.cellmicrocosmos.org
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Fig. 14.3 Creating the cell model in CmPI. Top: plant cell model in the cell explorer in 3D; Centre:
intracellular view of the cell components in 3D (left, mitochondrion, chloroplast, and endoplasmic
reticulum), as well as the overview of the citrate cycle in 2D (right); Bottom: 3D close-up view of
dihydrolipoamide dehydrogenase (EC 1.8.1.4) which is part of the citrate cycle (red) as well as the
glycolysis (green) (left) and citrate cycle in 2D (right)
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14.3 Application Cases

Now, we will present three application cases to explore cytological localization
scenarios using web technology and Virtual Reality (VR): (1) Web-based 2D
exploration of 3D Scenarios, (2) Exploration and Annotation in a VR Design
Application, and (3) Large-Scale VR Visualization and Navigation.

But prior to discussing these application scenarios, the generation of the cell
model and its corresponding network localization will be discussed in the following
section.

14.3.1 Creation of the Cytological Localization Scenario

An abstract plant cell model based on Arabidopsis thaliana was created using
standard 3D cell components of the CellExplorer (Plant_Cell__1_99transp.Cm3).
The KEGG pathways for the citrate cycle (ath00020) and glycolysis (ath00010)
were downloaded from the KEGG database integration of DAWIS-M.D. The local-
ization was done using the UniProt integration of DAWIS-M.D. Where localization
information were fragmentary or had to be predicted, most-recent localization
information from the online resources UniProt 2021 and BRENDA 2021 were
acquired and applied to CmPI (Chang et al. 2021; Nucleic Acids Res 2021).

To both pathways the GEM layout was applied in 2D (Frick et al. 1994). Both
pathways were then mapped onto the 3D cell components using the Sphere Mapping
layout with the parameters half-sphere and same-enzyme-same-place. The latter
parameter guarantees that the same enzyme with the same localization in both
pathways are placed onto the same position—which applies to enzymes EC 1.8.1.4,
4.1.1.49, 1.2.4.1, and 2.3.1.12.

Figure 14.3 top shows the complete plant cell from the front perspective, and
Fig. 14.3 bottom shows a detail view of the cell model with associated pathway
on the left side, as well as the detail of the 2D (GEM) layout of the metabolic
pathway/citrate cycle on the right side.

Compounds which are connected to enzymes with two different localizations
(e.g. mitochondrion and chloroplast) are mapped onto a cytosol localization.
In this cell model, the cytosol is a transparent abstract sphere surrounding the
mitochondrion.

14.3.2 Web-Based 2D Exploration of 3D Scenarios

In the beginning of this chapter, a 2D map of metabolic pathways based on the GEM
layout was mapped onto the spatial structure of an abstract plant cell. Now, we are
using the 3D model to create renderings which can be integrated into Gather.town,
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providing a new approach to present and explore cytological location scenarios
(Gather 2021).

Gather.town is a relatively new web-based Spatialized Video Communication
platform which enables dynamic communication providing a 2D game-like envi-
ronment. The big advantage is that multiple people can easily use this platform in
parallel (the authors claim that up to 2000 people can use this platform), enabling
serendipitous interactions as well as being accessible via a simple URL.

Gather.town is highly customizable by providing the option to upload a back-
ground image and defining then abstract boundaries, portals, placing furniture, and
integration of Google documents, external websites, etc. The simple square-based
navigation is possible by moving user’s avatar with the arrow keys or the AWDS
keys. Most importantly, it provides video communication for those people who are
in close proximity to each other.

A number of screenshots were created by using the previously generated CmPI
plant cell model associated with the two metabolic pathways. The screenshots
were uploaded into Gather.town by using its proprietary map editor—run in a web
browser—which is shown in Fig. 14.4 top: the screenshot shows the mitochondrion,
chloroplast, and cytosol associated with the corresponding pathways. The blue
rectangles are portals which can be used to change between different rooms. Arrows
are placed in front of the portals to indicate the entrances. Each room here represents
another perspective, usually zooming in or out: the transparent cell revealing its
internal cell components and depicted pathways. In Fig. 14.4 centre-top shows the
external opaque view of the cell. Figure 14.4 centre-bottom shows the transparent
cell revealing its internal cell components and depicted pathways. Figure 14.4
bottom shows a detail of the chloroplast with its associated glycolysis pathway.

This approach provides, e.g. university teachers, with a new way to present cell
models and its underlying functionality to students. Teachers could prepare corre-
sponding lectures covering different biochemical topics by using CmPI and enable
multiple students to explore and discuss these environments on their own or in a
guided fashion by accompanying the exploration using the video communication
functionality to narrate the journey.

This early prototype can be currently tested by using the link: https://gather.town/
app/pX2Id9BY1Y4COAJP/PlantCell1-99transp.

14.3.3 Exploration and Annotation in a VR Design Application

Whereas Virtual Reality exploration required investing into expensive computers as
well as headset hardware in the past, the advent of devices like the Oculus Quest™
enables users to enter VR by using affordable standalone devices.

We decided to use the Gravity Sketch software to explore the previously created
model of a cytological localization scenario (Gravity Sketch 2021). Early studies
using Gravity Sketch in the context of product design showed that promising results
can be achieved with this software from an educational perspective (Joundi et al.

https://gather.town/app/pX2Id9BY1Y4COAJP/PlantCell1-99transp
https://gather.town/app/pX2Id9BY1Y4COAJP/PlantCell1-99transp
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Fig. 14.4 Exploring the 3D cell model in Gather.town. Top: the map editor of Gather.town,
whereas blue rectangles indicate portals between different rooms, e.g. the left-most portals lead
towards the centre images; Centre-top: the cell view from outside, going forward, leads to; Centre-
bottom: the transparent cell view showing all cell components; Bottom: the close up of the
glycolysis pathway localized at the chloroplast and at its internal thylakoid. The arrows indicate
portals to other rooms—each of the four scenes here represents a different Gather.town room
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2020; Van Goethem et al. 2020). As compatible VR device, we used the Oculus
Quest 2 ™. The huge advantage of this device is that it can be used standalone
without connecting it to an external computer and a high-spec graphics card. Gravity
Sketch supports to explore models by zooming in and out using the Oculus Quest
controllers. Being a tool for virtual design and modelling—which is, e.g. used in
the context of architecture, car, or shoe design—Gravity Sketch provides various
sketching modes and tools which can be used to annotate the cell. In addition, the
professional version of Gravity Sketch enables a VR co-working space which allows
multiple users to explore and annotate a model in parallel. Whereas in Gather.town,
it is easily possible to have multiple rooms and to change between these rooms,
Gravity Sketch currently provides one basic large room without direct connections
to other rooms, but in parallel the user can be visually fully immersed into this space
(in contrast to Gather.town). And this is especially very useful in case 3D models
have to be explored or created.

The cell model created in CmPI was exported to a VRML 2.0 model and then
converted via Blender 2.91.2 into an OBJ file using a MacBook Pro 2015. This
OBJ file was imported to Gravity Sketch software version 5.1.58-qc by using the
Landing Pad which can be launched on the computer’s web browser. Launching
Gravity Sketch on the Oculus Quest 2 enables the user to choose the uploaded OBJ
file and place it in 3D space. Figure 14.5 shows the model imported to Gravity
Sketch which was annotated for the mitochondrion (blue circle), and two enzymes
located at the cytosol (green) and chloroplast (yellow). The annotation feature is
an important functionality of Gravity Sketch which can be used here to highlight
specific regions of interested or to indicated connections between different cell
components or proteins.

Currently, Gravity Sketch only imports OBJ files without materials. Therefore,
the imported cell model does not show colours and is depicted in grayscale, but
the transparency levels are correctly shown. However, as the intention is here to
highlight certain regions of the cell by using colours and most cells components
in reality are anyway semi-transparent, this is not a big disadvantage. Moreover,
the exploration in VR supported by 3D-stereoscopic visualization enables improved
differentiation of semi-transparent cell components.

14.3.4 Large-Scale VR Visualization and Navigation

CmPI cannot only be used to create the cell models, it also supports stereoscopic
3D exploration of cells in case the appropriate hardware is available (professional
3D monitor or 3D TVs, with, e.g. an NVIDIA Quadro graphics) including position-
based adjustment of the stereo vision (Sommer et al. 2014).

In 2015, we have introduced the SpaceMap approach which was based on a semi-
immersive 3D monitor, the zSpace 200™ (Fig. 14.6 bottom): For navigation inside
the 3D environment, (a) head-tracking is used to change the perspective/navigate
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Fig. 14.5 Exploring the Plant Cell with an Oculus Quest 2 using Gravity Sketch which enables
annotation in 3D space using the Oculus Quest 2 controllers. Blue circle highlights the mito-
chondrion, the green an enzyme localized at the cytosol, the yellow an enzyme localized at
the Chloroplast. Top: External view of the Plant Cell; Centre: intracellular view of the cell
components (mitochondrion, chloroplast, and endoplasmic reticulum); Bottom: close-up view of
the chloroplast. The background shows the factory environment of Gravity Sketch which supports
the user’s orientation in 3D space
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Fig. 14.6 Exploring the Chloroplast with the SpaceMap approach, integrating CAVE2 ™ with
the zSpace ™. The operate can use the zSpace to prepare and navigate the journey in the virtual
environment which is shown on the CAVE2. The audience can observe the journey while being
immersed using 3D glasses

around cell components and (b) a 3D stylus pen is used to grab cell components and
rotate around them (Sommer et al. 2015).

In Fig. 14.6 the zSpace is used in combination with CmPI to navigate inside the
CAVE2™—a cylindrical large-scale Virtual reality environment consisting of 80
monitors (Sommer et al. 2016; Febretti et al. 2013). For this purpose, CmPI connects
to a special CmPI implementation based on Omegalib running on the CAVE2 which
enables large-scale visualization of cytological data (Febretti et al. 2014).

The zSpace system provides the SpaceMap which is used to precisely navigate to
a specific place in 3D space. For example, it is possible to point with the 3D cursor
at a specific location where the camera position inside the CAVE2 environment
smoothly moves to. Figure 14.6 for example shows the internal structures of a
chloroplast inside a plant cell. The zSpace can also be used to find an appropriate
perspective in 3D space which is then transferred from the SpaceMap to the large
and immersive CAVE2.

Providing a large presentation space, SpaceMap enables a new lecture format,
where, e.g. a university teacher could prepare a cytological localization scenario and
present it to students by operating the zSpace shown here. By wearing 3D glasses,
the students and the teacher would be fully immersed in the virtual environment
which could be operated similarly to a spaceship. Obviously, this is the most
complex approach, as the expensive CAVE2 environment is needed which only
exist at a few locations in the world, and also the university teacher will have to
be prepared for operating the SpaceMap.
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14.4 Discussion and Outlook

Whereas CmPI is used already since a couple of years for exploring localization
scenarios in 3D, it was not often used as an authoring tool, except CmPIweb
(Kovanci et al. 2016). Here we explored three external frameworks which can be
used to explore those cell models for educative purposes:

Firstly, we presented how CmPI screenshots can be used as a simple base
to create Gather.town rooms. Different rooms can present different magnification
levels (outside and inside cell down to cell component-internal areas). The rooms
can be interconnected, so that visitors can freely explore those scenarios. Obviously,
the 3D properties are getting lost, but the big advantage is that Gather.town is run
in a web browser and it provides a very simple and intuitive navigation and video
communication interface for visitors in close proximity to each other. Moreover, the
authors claim that currently up to 2000 users can enter a space. The free version of
Gather.town enables at the moment around 25 people to explore the space (Gather
2021). Teacher could accompany the exploration process and provide a narrated
journey or they could prepare scenarios which can be explored by the students on
their own.

Secondly, Gravity Sketch was used to explore and annotate cell models in 3D
space using an Oculus Quest 2. In this way, users can explore the spatial structure
of the cell, naturally navigate in 3D space and can draw, e.g. circles around
specific positions they want to highlight and discuss. By providing an optional
collaborative environment, this exploration process can also be accompanied by
a teacher. Obviously, the big advantage over Gather is the option to explore 3D
objects using intuitive 3D navigation. Conversely, the communication is currently
not supported via video chat and there is the technological overhead requiring
HMDs and dedicated experience.

Thirdly, a large-scale cell environment was setup using the CAVE2 in conjunc-
tion with the zSpace. A plant cell was explored using the 3D stylus pen of the
zSpace in order to navigate the space. This complex approach enables a central
operator to explore a cell environment with a cohort of students in an immersive
way. While with Gravity Sketch every user explores the scenarios from a first-person
perspective, in this approach the virtual environment is explored like operating a
central spaceship—therefore, all students are in the same location. However, as the
CAVE2 provides nearly a narrow 360◦ perspective, students can walk inside the
CAVE2 and explore different perspectives.

In summary, potential target groups for these approaches are researchers dis-
cussing certain localization scenarios, educators who want to present metabolic
pathways to school or university students in, e.g. Biology or Bioinformatics, or for
conference/workshop organizers who want to use biology-related themes in, e.g.
Gather.town.

Obviously, the rate of accessibility is decreasing from the first to the third
approach. Whereas the first one can be accessed from basically everywhere using
web technologies, the second approach is compatible to all VR devices which are
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supported by Gravity Sketch. Apart from Gravity Sketch, CmPI could as well be
used to create virtual cell environments in game engines such as Unity and Unreal.
The last example is only compatible to CAVE2 environments and obviously is only
addressing a very specific audience. The big advantage of the CAVE2 is that 20–
40 people could experience the virtual journey at the same time while a central
navigator is guiding the virtual experience.

For those readers interested in related frameworks to those discussed in this chap-
ter, we would recommend our review publication on Immersive Design Engineering
(Sommer et al. 2020). For readers interested in comparing the usage of a CAVE2 vs.
HMDs we recommend the publication from Cordeil et al. (2017).

For future scenarios, we are looking into combining cell visualization-based
approaches with bio-inspired design. Based on previous studies it was found
that there is an interest in integrating biological materials in everyday products
(Sayuti and Ahmed-Kristensen 2020). In the context of this research project we are
exploring the ownership regarding biological products, e.g. research and educational
approaches (Sayuti et al. 2021, 2020).
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Chapter 15
IoS: A Needed Platform for Scientific
Workflow Management

Savas Takan, Visam Gültekin, and Jens Allmer

Abstract Data analytics, machine learning, and artificial intelligence have found
widespread application in science. They are usually employed as part of more
extensive data analysis pipelines starting with raw data processing. Unfortunately,
many tools that are not tested yet are used to support critical decision-making.
The intended internet of science platform aims to overcome this issue and lead to
sustainable, interoperable, reusable, and correct scientific workflow development.
This paper calls for action to develop the internet of science to facilitate a future
focus on collaborative knowledge discovery.

Keywords Scientific workflows · Workflow management · Data analytics · Data
integration · Internet of science · IoS

15.1 Introduction

Today science has become more and more data-driven. While physics has needed
to deal with humongous amounts of data for quite some time, biomedical sciences
started facing big data stemming from sequencing and other measurement initiatives
only in the last few decades. Unlike filtering strategies available for physics, the
biomedical community did not agree on means to immediately discard the majority
of measurements but needs to hold on to the data at this point.
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With more and more data becoming available, it is now vital to share the
data effectively so that it can be explored from different perspectives and under
different scenarios. The FAIR data initiative aims to make data findable, accessible,
interoperable, and reusable (Wilkinson et al. 2016). Findable and accessible are the
more easily achievable goals. Interoperability and reusability are, however, harder to
realize. The latter two are tied to the development and implementation of standards
for the underlying fields producing the data, such as exemplified in proteomics
via mzML (Martens et al. 2011) and MIAPE (Taylor et al. 2007). With agreed-
upon standards and minimum information criteria in place, interoperability becomes
achievable.

Data analytics workflows are becoming more and more complex. This com-
plexity is accompanied by an increase in available workflow management systems
and data analytics platforms. Popular platforms are KNIME (Berthold et al. 2008),
RapidMiner (Mierswa et al. 2006), and Galaxy (Goecks et al. 2010), to name just a
few. These platforms provide a means of creating data flows, including arbitrary
data transformations, to develop a reproducible data analytics workflow ranging
from simple formatting via statistical and advanced mathematical transformations
to machine learning. One caveat is that workflows are not easily recreated among
platforms (Beukers and Allmer n.d.). Any of these platforms are also extensible by
the user so that additional functions become available over time. Such functionality
remains largely untested but is often quickly embraced by the community. On the
workflow level, data analytics platforms also fall short when workflow testing is
considered. Thus, today, untested modules are put together into untested workflows.
The expectable result is obvious. While, therefore, the confidence in the results
should be low, this aspect remains largely unexplored.

With the internet of science (IoS), a platform to overcome such issues was
proposed (Allmer 2019). The IoS aims to create a collaborative community solution
to solve the underlying problems. Any scientist, engineer, or developer is welcome
to join the initiative (https://bitbucket.org/allmer/ios/). Here we will expand on how
scientific workflows shall be developed using the IoS in the future.

15.2 The Internet of Science

15.2.1 Platform Development

The IoS has been introduced earlier (Allmer 2019), and more information will
become available on the associated bitbucket repository as the community forms
around it. The defining purpose of the IoS is to ensure quality and correctness.
Therefore, any new tool and any significant changes to existing tools in the platform
need to pass a peer review process before making it available to the research
community. Otherwise, they are only available in the development community for
testing and development. This strict separation will ensure quality, as workflows
build on comprehensively tested modules are more trustworthy than those built with
untested modules in the development community. The tools which pass the review
process and become part of the IoS can then be used to build scientific workflows.

https://bitbucket.org/allmer/ios/
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15.2.2 Building Scientific Data Analysis Workflows

One of the principal aims of the IoS is to facilitate collaboration. Collaboration
naturally includes workflow development which is modeled as a collaborative
process within the IoS. Similar to collaborative coding integrated development
environments such as Codeanywhere and Cloud9, workflow development within
the IoS will allow simultaneous workflow design and testing for multiple users (Fig.
15.1). Here, FAIR data from the sequence read archive (Leinonen et al. 2011) on
NCBI and the gene ontology (The Gene Ontology Consortium 2009) provide the
workflow development data source. Alternatively, private or proprietary data could
be used as a data source. To the best of our knowledge, no workflow management
platform allows the simultaneous development of data analytics workflows and
combines it with a versioning system. Another novelty envisioned for IoS workflows
is a unit and integration test system (Fig. 15.1; blue user). Any part of the
workflow with at least one processing step can be tested. Tests are not part of the
production workflow but ensure correctness. In Fig. 15.1, the gray and green users
collaboratively build a workflow, while the blue user develops tests. All changes
are visible to all users immediately but will only persist if the user introducing the
changes commits them to the versioning system.

Recently, we compared three workflow management systems and implemented
RNA-seq analysis workflows. Workflow reproducibility among workflow manage-
ment systems was a major issue (Beukers and Allmer n.d.). We also identified
that creating functional sub workflows is crucial with increasing data analysis
complexity, but only one of the workflow management tools supports this (Beukers

Fig. 15.1 Overview of the workflow development process using the IoS. Based on FAIR data
(orange box), processing workflows can be developed within the IoS (gray box). Here three users
(gray, blue, and green) simultaneously access the workflow development platform. The gray user
uses the GO connector (blue circle) and a data transformation tool (enrich; blue rounded rectangle).
The green user uses the SRA connector and the map function and connects it to the enriching
process from the gray user. The blue user ensures correctness by implementing tests. All users
simultaneously see all changes. However, only changes committed via the versioning system will
remain when the respective users log out
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and Allmer n.d.). Therefore, IoS workflows will support subworkflows and nested
subworkflows. Since the IoS system will allow testing of any subpart of the work-
flow, other functionality can also be offered. One essential criterion is parameter
optimization over a subworkflow. For example, an optimization algorithm (e.g.,
genetic algorithm) can extract parameters from the subworkflow modules. The
algorithm can then determine practical ranges and optimize the parameter values.
For example, support vector machine learning depends on proper parameter settings,
and these parameters are often manually optimized. This optimization could be done
automatically with the IoS system.

Current workflow systems have large amounts of tools included directly. For
KNIME, there are more than 3000 tools available, and for Galaxy, the number is
unknown since any installation can add tools. Tool documentation is generally good
and online help is available, but with the sheer amount of tools, it is still hard to
develop workflows without proper training and experience. The IoS system will
take several measures to overcome this issue. First, many platforms have alternative
algorithms for the same purpose or even alternative algorithm implementations as
separate tools. The IoS system will never have multiple implementations of the
same algorithm. However, slight changes to algorithms may adapt them to be most
effective for a given input space. To shield the user from this, processors will be
available to encapsulate alternative algorithms for the same task and decide by the
input which particular algorithm to use. The same will be possible on a higher
level. For example, optimization is a general procedure and can be performed
using many algorithms such as the genetic algorithm or ant colony optimization.
Although these algorithms work differently, their aim is the same so that they will
be bundled in an optimization processor. The user may choose a particular approach
from the processor or ignore the choice and leave the automatic selection. This
strategy effectively reduces the number of visible tools for workflow development.
Nonetheless, many tools will be available, and it may still be hard to choose which
tools to connect to each other in the workflow system. To reduce the challenge,
the IoS provides suggestions for which nodes to connect next on three levels:
(1) any tool that can handle the input of the previous tool is listed for selection,
(2) the tools that most often follow the selected tool are highlighted, and (3) an
intelligent selection which highlights the tools which most often follow the given
tool concerning the other tools already used in the workflow. The smart system
can be based on a market basket analysis strategy. Note that smart downstream
tool suggestions depend on a larger user group that develops workflows for many
different purposes and makes their workflows publicly available.

15.2.3 Workflow Repository and Publishing Workflows

Sharing of workflows is of significant importance to avoid duplication of efforts and
provide a basis for further developing existing workflows. To effectively achieve
this, workflows need to be comprehensively tested and well documented (Fig. 15.2).



15 IoS: A Needed Platform for Scientific Workflow Management 317

Fig. 15.2 The review process for including workflows into the public repository. As in Fig. 15.1,
green and gray users developed a workflow (IF). Similarly, the blue user developed integration
tests for the workflow. For inclusion into the repository, other users (here a second blue one) need
to develop integration tests. The well-documented and comprehensively tested workflow can be
submitted for inclusion into the public workflow repository. A review committee consisting of
experts in the field and development experts reviews the workflow, the integration tests, and the
documentation. Either the workflow is then included in the repository, or the committee asks for
revisions

15.2.3.1 Workflow Documentation

Workflow documentation is needed on three levels: (1) for understanding the
workflow and its intent, (2) for further development, and (3) for having a clear
and complete output of what happened during workflow execution. The latter
should be directly usable in the materials and methods section of a scientific
manuscript. Workflow documentation for documenting the design’s intent needs to
enable grouping of nodes, highlighting of data streams with arbitrarily associated
annotations. These annotations are different from, for example, Javadoc or similar
code documentation tools. Like everything else, workflow documentation will
be developed collaboratively and will make use of the versioning system. Tests
developed for the workflows can also be documented. Thus the workflow and all
its tests can be well documented for intent.

Documentation of the actual workflow execution will be on the tool level and may
only be framed from the workflow level to ensure proper organization of information
for publication.

15.2.3.2 Workflow Testing

Workflows like tool development for the IoS need proper unit testing and integration
testing to ensure quality and correctness. Comprehensive workflow testing is also
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required for inclusion into the public repository. Workflows, just like tools and about
anything else within the IoS, will be assigned digital object identifiers (DOIs) so
that they become citable, which can help honor the effort put into development,
testing, and documentation. Comprehensive workflow testing needs to provide
synthetic data to test correctness for various scenarios and experimental data to
show functionality (DOI for both). For subworkflows, unit tests need to be provided,
and for the overall workflow, integration tests are mandatory. Tests need to be
documented for their intent in order to simplify the review process.

15.2.3.3 Workflow Sharing

Workflow sharing or publishing is an essential process because it can reduce the
duplication of efforts. Additionally, it enables others to perform data analysis
using those workflows. Currently, workflows are, for example, published alongside
manuscripts and are only peer-reviewed by a few reviewers who are typically
domain experts and not workflow experts. Additionally, workflows usually do
not include automated testing and generally are only applied to the data they
were developed for analyzing. These complications entail that it is mandatory to
comprehensively test workflows from others before applying them to one’s data.
This step is generally neglected due to time constraints. It is self-evident that this is
a dangerous strategy. Therefore, the IoS will put into effect a strict workflow testing
routine before they can enter the public repository (Fig. 15.2). Consequently, the
workflows in the repository can be used by domain experts without the need for
further scrutiny. Upon sharing the workflow in the repository, others can develop
new tests and include them into the repository following the review process. Thus,
heavily used workflows will likely have large amounts of tests that are run nightly.
Should errors be detected at one point, all users of the workflow will immediately
be notified. This level of transparency and security affords the confident application
of IoS workflows. Apart from complete workflows, subworkflows can be shared to
be put together into larger workflows. Collaborative workflow development, testing,
and documentation coupled with publishing in the public repository will lead to
community accepted workflows for different data analysis questions.

15.2.3.4 Review Committee

It is evident that comprehensively tested and effectively peer-reviewed workflows
can be used with confidence. The review process needs to be adequate for
workflow reviewing within a given scientific domain to achieve such confidence.
Therefore, the review committee will consist of workflow experts who ensure that
the workflows are adequately assembled, documented, and tested. Additionally,
experts for the specific scientific domain and statisticians will be part of each
review committee. When in doubt, the review committee can invite external peer
reviewers. In dialogue with the workflow’s submitters, an agreement will be reached
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when to resubmit a revision if the workflow was rejected inclusion in the public
repository. The assembly of the review committee is automatic. Workflow experts
can be determined according to their tool usage statistics. Domain experts can
be determined via many routes, for example, the data provider for the workflow,
application statistics of similar workflows, and contribution to manuscripts in
the research field. Additionally, workflow developers may suggest reviewers. The
review process is entirely open and transparent, and all reviews, comments, and
decisions are public and citable via DOIs. Each workflow is associated with an audit
trail for public assessment, including the review committee’s output, the developers’
rebuttals, and nightly workflow tests.

15.3 Contribution to the IoS

At this point, it may be important to ascertain that any contribution is appreciated
and measured in the IoS. The core designers and developers of the IoS framework,
the developers and testers of tools, developers and testers of workflows, users
applying workflows to data, the review committee memberships, etc., all together
will enable the IoS to bring science back to a collaborative endeavor striving for
knowledge.

The internet of science depends on a community effort involving all scientists
and engineers willing to change to put science at the forefront again and reinstate
trust in scientific findings. The IoS is by no means targeting a particular research
domain but all domains involving data analytics. While current approaches to
workflow management are manifold, an equal amount of issues is apparent. The
same is true for tool development which suffers from overworked reviewers and
increasing numbers of paper submissions. The IoS will eliminate duplications
of effort and ensure that any contribution is appreciated. Currently, workflow
development can be performed with many workflow management systems, and
cross-platform reproducibility efforts have been excerpted. An alternative approach
is given by the IoS, representing a monolithic platform not allowing the automation
of third-party tools. This approach, coupled with testing and review processes on
multiple levels, seems safer than other workflow systems. Many good workflow
development strategies have been devised, and it is time to consolidate the current
knowledge into a new development, the IoS.

15.4 Outlook

The idea of the IoS has first been published in (Allmer 2019) and is still very fresh.
Its development platform has not much to show yet (https://bitbucket.org/allmer/
ios). However, a group of interested collaborators is forming. The next step is to
agree upon aims and procedures and put them into place. In parallel, the first coding

https://bitbucket.org/allmer/ios
https://bitbucket.org/allmer/ios
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efforts will commence shortly. By the end of 2021, a working prototype can be
expected.
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Chapter 16
Revealing Genotype–Phenotype
Interactions: The AgroLD Experience
and Challenges

Pierre Larmande and Konstantin Todorov

Abstract Understanding genotype–phenotype relationships is one of the most
important areas of research in agronomy. The new challenges aim at understanding
these relationships on the level of the different molecular entities responsible for
the expression of complex phenotypic traits. Recent advances in high-throughput
technologies have resulted in tremendous increase in the amount of data in the
agronomic domain. Unfortunately, they can only partially capture these dynamics.
It is important to effectively integrate additional information and extract knowledge
to understand the biological system as a whole. To this end, the Semantic Web
offers a stack of powerful technologies for the integration of information from
diverse sources, making knowledge explicit by the help of ontologies and explicit
semantic relations between entities. In particular, knowledge graphs have gained
popularity as means to structure and semantically represent the data and knowledge
in a particular field, opening up new and enhanced ways of information retrieval
and knowledge discovery. We have developed AgroLD, a knowledge graph that
exploits the Semantic Web technology and some of the relevant standard domain
ontologies, to integrate knowledge on plant crop species and in this way facilitate the
formulation of new scientific hypotheses. This chapter provides an overview of the
AgroLD project focusing on the data integration and semantic annotation processes
which initially focused on genomics, proteomics, and phenomics. Likewise, we
present the different data exploration strategies developed to make the platform
available to a large audience. Our objective is to offer a domain specific knowledge
platform to solve complex biological and agronomical questions related to the
implication of genes in, for instance, plant disease resistance or high yield traits.

P. Larmande (�)
DIADE, IRD, University of Montpellier, Montpellier, France

French Institute of Bioinformatics (IFB)—South Green Bioinformatics Platform, Bioversity,
CIRAD, INRAE, IRD, Montpellier, France

P. Larmande · K. Todorov
LIRMM, University of Montpellier, CNRS, Montpellier, France
e-mail: pierre.larmande@ird.fr

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
M. Chen, R. Hofestädt (eds.), Integrative Bioinformatics,
https://doi.org/10.1007/978-981-16-6795-4_16

321

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-6795-4_16&domain=pdf
mailto:pierre.larmande@ird.fr
https://doi.org/10.1007/978-981-16-6795-4_16


322 P. Larmande and K. Todorov

Finally, we will present several current challenges in knowledge extraction from
heterogeneous biological data sources.

Keywords Data integration · FAIR · Knowledge graphs · Bioinformatics ·
Plant science

16.1 Introduction

The demand for food is expected to grow substantially in the next decades
(FAO n.d.). To meet the challenges of this global growth in a context of climate
change, a better understanding of genotype–phenotype relationships is crucial to
improve production capacities. Agronomic research is witnessing an unprecedented
revolution in the acquisition of various data such as phenotypic and genomic data, as
well as data related to the study of specific genes. The 3000 Rice Genomes project
(Wang et al. 2018) is an excellent illustration of this problem since it generates
terabytes of genomic data associated with the results of large-scale phenotypic
experiments carried out in environments with different conditions.

A better understanding of genotype–phenotype relationships requires the inte-
gration of biological information of various kinds. However, this information is
often dispersed in several databases on the Internet each with different data models,
scales, or distinct means of access. For biologists, it is difficult to search relevant
information in these databases as the mass of information can be incomplete and
hard to manage. These problems are particularly relevant in the context of genetic
association analyses or GWAS (Genome Wide Association Studies), which allow to
associate large regions of the genome (locus) with a phenotypic trait (trait). GWAS
loci often include several hundred genes that need to be analysed in order to identify
only a fraction of the genes associated with the trait under study. At some point, each
scientist will have to choose which genes to investigate further in the laboratory.
Often, this choice is subjective, as it is based on inferences from partial data. Today’s
major challenges are related to the development of methods to integrate these hetero-
geneous data and to enrich biological knowledge. The scientists also need methods
to dig into this mass of data and to highlight relevant information that identifies
key genes. In order to overcome the limitations posed by the heterogeneity of data,
international scientific communities encourage the dissemination of information
according to the FAIR principles (Findable, Accessible, Interoperable, Re-usable)
(Wilkinson et al. 2016), increasing the interoperability of data.

Semantic Web technologies, a concept coined by Tim Berners-Lee et al. (2001)
and standardized by the World Wide Web Consortium (W3C), offer a FAIR
solution to facilitate this integration and enable data interoperability. Among these
technologies, the Resource Description Framework (RDF) (W3C n.d.) is widely
used to publish data on the Web and interconnect it to form what we call the
Web of Data. RDF allows a resource and its relationships to other resources to
be described in the form of triples of the kind Subject-Predicate-Object. These
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triples can be combined to build large data networks (also known as RDF, or
knowledge graphs), integrated from different data sources. In recent years, many
initiatives emerged in the biomedical and bioinformatics fields aiming at providing
integrated environments to formulate scientific hypotheses about the role of genes
in the expression of phenotypes or the emergence of diseases. Among them, we
cite Bio2RDF (Belleau et al. 2008), EBI RDF (Jupp et al. 2014), or Uniprot RDF
(Redaschi and Consortium 2009). However, to the best of our knowledge, there was
no equivalent in the agronomic field before the AgroLD platform (Venkatesan et al.
2018) was launched.

16.2 Overview of the AgroLD Platform

We have developed AgroLD, a knowledge graph powered by Semantic Web
technologies as a structure to integrate data, to enable knowledge sharing and to
allow information retrieval at scale. It is designed to integrate available information
on various plant species in the agronomic domain such as rice (genus Oryza),
Arabidopsis thaliana, wheat (genus Triticum), to name a few. Table 16.1 shows
the complete list of species with the total number of related protein entities. In the
following, we describe the components of the knowledge graph and the process of
its construction.

16.2.1 Integrated Data Sources

The conceptual framework of AgroLD is based on well-established ontologies in
the field such as Gene Ontology (The Gene Ontology Consortium 2019), Plant
Ontology (The Plant Ontology Consortium 2002), Plant Trait Ontology (Cooper et
al. 2018), or Plant Environment Ontology (Buttigieg et al. 2013). Table 16.2 shows
the complete list of the used ontologies. The majority of these ontologies are hosted
by the OBO Foundry project (Smith et al. 2007). Furthermore, we decided to build
AgroLD in several phases. The current phase (second phase) covers information
on genes, proteins, predictions of homologous genes, metabolic pathways, plant
phenotypes, and genetic studies. At this stage, we have integrated data from several
resources such as Ensembl plants (Bolser et al. 2016), UniProtKB (The UniProt
Consortium 2018), Gene Ontology Annotation (Huntley et al. 2015). The choice
of these sources has been guided by the biological community. They are indeed
widely used and have a strong impact on user’s confidence. We have also integrated
resources developed by the local SouthGreen platform (South Green, Collaborators
2016) such as TropGeneDB (Hamelin et al. 2013), a tropical plant genetics database,
OryGenesDB (Droc et al. 2009) a rice genomics database, GreenPhylDB (Valentin
et al. 2021), a comparative genomics database for tropical plants, OryzaTagLine (P
Larmande et al. 2008) a rice phenotype database, and SniPlay (Dereeper et al. 2015)
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Table 16.1 List of available
species in AgroLD

Species Proteins

Arabidopsis thaliana 91,917
Coffea canephora 23,615
Manihot esculenta 20,437
Musa acuminata 47,304
Oryza barthii 36,673
Oryza brachyantha 40,639
Oryza glaberrima 47,570
Oryza glumipatula 72,546
Oryza longistaminata 11,548
Oryza meridionalis 24,651
Oryza punctata 8110
Oryza rufipogon 89,831
Oryza sativa 4519
Oryza sativa f. spontanea 11,545
Oryza sativa Indica group 191,871
Oryza sativa Japonica group 151,069
Setaria italica 16,775
Sorghum bicolor 24,226
Theobroma cacao 2273
Triticum aestivum 26,705
Triticum urartu 64,588
Vitis vinifera 6971
Zea mays 87,433

The table summarizes protein entities per
species available in AgroLD

a rice genomic variation database. These resources bring together experimental data
produced by local researchers and their partners. Table 16.3 provides an overview
of the integrated data sources.

16.2.2 Towards Automation of RDF Transformations

Our contributions focus on the development of various RDF conversion workflows
for large agronomic datasets. Although several generic tools exist within the
Semantic Web community, including Datalift (Scharffe et al. 2012), Tarql,1 RML.io
(Dimou et al. 2014), none of them was adapted to take into account the complexity
of data formats in the biological domain (e.g. VCF format) or even the complexity
of the information they could contain. A simple example illustrates this complexity

1 http://tarql.github.io

http://tarql.github.io
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Table 16.2 List of available ontologies used to link datasets in AgroLD

Ontology Website Example(s)

Gene Ontology (GO) http://geneontology.org/ http://purl.obolibrary.org/obo/
GO_0008150

Plant Ontology (PO) http://planteome.org/ http://purl.obolibrary.org/obo/
PO_0025131

Plant Trait Ontology
(TO)

http://purl.obolibrary.org/obo/
TO_0000387

Plant Environment
Ontology (EO)

http://purl.obolibrary.org/obo/
EO_0007359

Sequence Ontology
(SO)

http://www.berkeleybop.org/
ontologies/

http://purl.obolibrary.org/obo/
SO_0000104

Phenotype and
Attribute Ontology
(PATO)

http://purl.obolibrary.org/obo/
PATO_0000462

NCBI Taxonomy http://purl.obolibrary.org/obo/
NCBITaxon_4565

Evidence code
Ontology

http://purl.obolibrary.org/obo/
ECO_0000033

through the GFF (Generic Feature Format) (Sequence Ontology Consortium n.d.),
which represents genomic data in a TSV type format (file with tabs as separators). It
contains a column with key = value type information, of variable length and having
different information depending on the data source. In this case, the transformation
needs to be adapted according to the data source. Furthermore, the large volume of
data was a limiting factor for the above-mentioned tools.

In this context, we developed RDF conversion tools adapted to a large range of
genomics data standards such as GFF, Gene Ontology Annotation File (GAF) (The
Gene Ontology Consortium n.d.), Variant Call Format (VCF) (1000 Genome project
Consortium n.d.) and are currently working on packaging these tools in an API
(SouthGreenPlatform/AgroLD_ETL 2018 2020). These data standards represent a
first step, as they are indeed the most widely used in the community. We plan to
develop new models for other standards, especially for phenotypic data. For more
details, refer to Venkatesan et al. (2018).

16.2.3 Semantic Annotation with Bio-Ontologies

For this phase, each dataset was downloaded from selected sources and semantically
annotated with URIs of ontological terms. By the end of 2020, AgroLD included
around 100 million RDF triples created by transforming more than 50 datasets from
10 data sources. In Addition, when possible, we used semantic annotations already
found in datasets, such as genes or traits annotated, respectively, with GO or TO
identifiers (i.e. GO:0005524 is transformed in URI). In this case, we generated

http://geneontology.org/
http://purl.obolibrary.org/obo/GO_0008150
http://purl.obolibrary.org/obo/GO_0008150
http://planteome.org/
http://purl.obolibrary.org/obo/PO_0025131
http://purl.obolibrary.org/obo/PO_0025131
http://purl.obolibrary.org/obo/TO_0000387
http://purl.obolibrary.org/obo/TO_0000387
http://purl.obolibrary.org/obo/EO_0007359
http://purl.obolibrary.org/obo/EO_0007359
http://www.berkeleybop.org/ontologies/
http://www.berkeleybop.org/ontologies/
http://purl.obolibrary.org/obo/SO_0000104
http://purl.obolibrary.org/obo/SO_0000104
http://purl.obolibrary.org/obo/PATO_0000462
http://purl.obolibrary.org/obo/PATO_0000462
http://purl.obolibrary.org/obo/NCBITaxon_4565
http://purl.obolibrary.org/obo/NCBITaxon_4565
http://purl.obolibrary.org/obo/ECO_0000033
http://purl.obolibrary.org/obo/ECO_0000033
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Table 16.3 Overview of the Integrated Sources

Data source Information Website Species Ontologies used

Ensembl plants
(Bolser et al. 2016)

Genes,
annotations

https://plants.
ensembl.org

All GO

Oryzabase (Kurata
and Yamazaki 2006)

Genes,
ontology
associations,
publications

https://shigen.nig.ac.
jp/rice/oryzabase

R GO,PO,TO

GOA (Huntley et al.
2015)

Gene ontology
associations

https://www.ebi.ac.
uk/GOA

A,R, W GO

Rice Genome Hub Genes,
annotations,
ontology
associations

https://rice-genome-
hub.southgreen.fr

R, S, A GO, SO

Gramene (Tello-Ruiz
et al. 2018)

QTL,
pathways, and
ontology
associations

https://www.
gramene.org/

R,A, W,
S, M

GO, PO,
TO, EO

Interpro (Mitchell et
al. 2015)

Classification
of protein
families

https://www.ebi.ac.
uk/interpro

All GO

RAPDB (Sakai et al.
2013)

The rice
annotation
project

https://rapdb.dna.
affrc.go.jp

R GO

MSU RGAP MSU rice
genome
annotation
project

http://rice.
plantbiology.msu.edu

R GO

UniprotKB (The
UniProt Consortium
2018)

Protein
information

https://www.uniprot.
org

All GO

Oryza Tag Line
(Larmande et al.
2008)

Rice mutant
database

https://oryzatagline.
cirad.fr

R PO, TO

TropGeneDB
(Hamelin et al. 2013)

Genetic,
genomic, and
phenotypic
database

https://tropgenedb.
cirad.fr

R GO, TO,
PO

GreenPhylDB
(Valentin et al. 2021)

Comparative
genomics

https://www.
greenphyl.org

R,A GO

RiceNetDB (Lee et
al. 2015)

Gene
networks
database

http://bis.zju.edu.cn/
ricenetdb

R GO

StringDB
(Szklarczyk et al.
2019)

Protein–
protein
interactions
network
database

https://string-db.org R,A GO

Species and Ontologies are referenced as follows: R rice, W wheat, A Arabidopsis, S Sorghum, M
maize, All all species listed in Table 16.1. GO gene ontology, PO plant ontology, TO plant trait
ontology, EO plant environment ontology, SO sequence ontology

https://plants.ensembl.org
https://plants.ensembl.org
https://shigen.nig.ac.jp/rice/oryzabase
https://shigen.nig.ac.jp/rice/oryzabase
https://www.ebi.ac.uk/GOA
https://www.ebi.ac.uk/GOA
https://rice-genome-hub.southgreen.fr
https://rice-genome-hub.southgreen.fr
https://www.gramene.org/
https://www.gramene.org/
https://www.ebi.ac.uk/interpro
https://www.ebi.ac.uk/interpro
https://rapdb.dna.affrc.go.jp
https://rapdb.dna.affrc.go.jp
http://rice.plantbiology.msu.edu
http://rice.plantbiology.msu.edu
https://www.uniprot.org
https://www.uniprot.org
https://oryzatagline.cirad.fr
https://oryzatagline.cirad.fr
https://tropgenedb.cirad.fr
https://tropgenedb.cirad.fr
https://www.greenphyl.org
https://www.greenphyl.org
http://bis.zju.edu.cn/ricenetdb
http://bis.zju.edu.cn/ricenetdb
https://string-db.org
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additional properties with the corresponding ontologies, adding 22% more triples
(see details in Table 16.3). The OWL versions of the used ontologies have been
directly loaded in the knowledge graph, but not counted in total.

In addition, we used the AgroPortal Web Service API (Jonquet et al. 2018) to
enrich data with semantic annotations, for instance, to extract URIs corresponding
to taxons in the GFF files, but also to identify ontological concepts in the data such
as a plant organ (e.g. leaf is annotated with PO:0025034) or a phenotypic trait (e.g.
plant height is annotated with TO:0000207). Moreover, we developed a dedicated
application (Larmande and Jibril 2020) to handle semi-structured file formats (tsv,
csv, excel) and to better control semantic annotations made by AgroPortal and
manage the different annotation exceptions for an optimal result.

16.2.4 Data Linking Methods

In our knowledge graph construction pipeline, RDF graphs share a common
namespace and are named according to the corresponding data sources. Entities
in RDF graphs are linked by the common URI principle. In general, we build URIs
by referring to Identifiers.org (Laibe et al. 2014) which provides design patterns
for each registered source. For instance, genes integrated from Ensembl Plants
are identified by the base URI [http://identifiers.org/ensembl.plant/Os12g010180].
When they are not provided by Identifiers.org, new URIs are constructed and in
this case URIs take the form [http://www.southgreen.fr/agrold/resource/Entity_ID].
In addition, the properties linking the entities are constructed as from [http://
www.southgreen.fr/agrold/vocabulary/property].

In order to link identical entities from different data sources, we used the
approach based on key identification, which is the most common one. Its principle is
to scan the URIs in order to look for similar patterns in the terminal part of the URI
(i.e. {Entity_ID}). In addition, we also followed the common URI approach which
recommends to use the same URI pattern for two similar entities. Therefore, for the
same entity, this allowed us to aggregate information from different RDF graphs. In
addition, we used cross-reference links by transforming them to URIs and linking
the resource to the rdfs predicate seeAlso. This significantly increases the number
of outbound links, making AgroLD better integrated with other data sources. In the
future, we plan to implement a similarity entity profile approach to identify matches
between entities with different URIs (see Sect. 16.3 of the chapter).

In order to match the different data types and properties, we developed a
schema that associates the classes and properties identified in AgroLD with
corresponding ontologies. For instance, the Protein class [http://www.southgreen.fr/
agrold/vocabulary/Protein] is associated with the SO polypeptide class [http://purl.
obolibrary.org/obo/SO_000010] with the OWL property equivalentClass. Similar
mappings have been done for the properties. For example, the has_function property
is linked with the RO class [http://purl.obolibrary.org/obo/RO_0000085], with the
owl property: equivalentProperty. When an equivalent property did not exist,

http://identifiers.org
http://identifiers.org/ensembl.plant/Os12g010180
http://identifiers.org
http://www.southgreen.fr/agrold/resource/%7bEntity_ID%7d
http://www.southgreen.fr/agrold/vocabulary/%7bproperty%7d
http://www.southgreen.fr/agrold/vocabulary/Protein
http://www.southgreen.fr/agrold/vocabulary/Protein
http://purl.obolibrary.org/obo/SO_000010
http://purl.obolibrary.org/obo/SO_000010
http://purl.obolibrary.org/obo/RO_0000085
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we associated it with the higher level property with rdfs: subPropertyOf. For
example, the property has_trait [http://www.southgreen.fr/agrold/vocabulary/has_
trait], linking entities with TO terms is associated with a more generic property
from RO causally related to [http://purl.obolibrary.org/obo/RO_0002410]. So far,
55 mappings have been identified.

16.2.5 Facilitating Access to Linked Data

Regarding access to RDF data, although the SPARQL language is efficient to build
queries, it remains difficult to handle for our main users, which are bioinformaticians
and biologists with little or no background in formal query languages. Therefore,
we propose a web application implementing various elements of semantic search
systems (i.e. pattern-based querying, graphical visualization, information retrieval
tools—http://agrold.org). Thus the AgroLD platform provides four entry points, as
described in Venkatesan et al. (2018):

– Quick Search, a faceted search plugin provided by Virtuoso, which allows
users to perform keyword searches and to browse easily through the results
(Fig. 16.1a).

Fig. 16.1 Overview of AgroLD Web interfaces. (a) displays the Faceted search interface. (b)
Displays results from the Relfinder tool. (c) Displays results from the advanced search interface

http://www.southgreen.fr/agrold/vocabulary/has_trait
http://www.southgreen.fr/agrold/vocabulary/has_trait
http://purl.obolibrary.org/obo/RO_0002410
http://agrold.org
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Fig. 16.2 The SPARQL query editor. The Query patterns frame allows to select a query from
a natural language question. The Query text frame allows to visualize and modify the SPARQL
query. The results frame displays results returned from the query

– SPARQL Editor, a SPARQL query editor that provides an interactive environ-
ment for formulating SPARQL queries. We developed the editor based on the
YASQE and YASR (Rietveld and Hoekstra 2015) tools and adapted them for our
system. In addition, we provided several SPARQL query patterns corresponding
to search questions in order to help the users to dive into SPARQL syntax (Fig.
16.2).

– Explore Relationships is an adapted version of RelFinder (Heim et al. 2009)
that allows users to explore and visualize the relationships between entities (Fig.
16.1b).

– Advanced Search, a search interface offering specific filters such as filtering by
Gene, Protein, PathWay classes and having an aggregation engine of external web
resources such as retrieving publication summary from PubMed (Fig. 16.1c).

16.3 Challenges and Future Work

The main observation made during our first phase of AgroLD development is that
database resources remain limited to produce sufficient and relevant knowledge
in order to formulate research questions based on molecular genes functions.
Moreover, very few interactions between genes and phenotypes are explicitly
mentioned. However, improving crop production requires a better understanding
of these interaction mechanisms. More generally, we observed that biological
resources are rich and powerful, but their potential is not currently fully unlocked
due to limitations that need to be addressed and shape a set of future challenges. We
believe that these limitations can be circumvented through the development of new
methods. We propose in the following section to describe these approaches.
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16.3.1 Extraction of Biological Entities and Their
Relationships

16.3.1.1 Challenges

One of these challenges will be to enrich AgroLD with unstructured data contained
in scientific publications as well as in text fields of databases (so far we have
focused on structured data in these databases). Many of these text fields contain
molecular mechanisms and phenotypes of interest that are often described by
complex expressions associating biological entities linked by specialized semantic
relationships (e.g. “Ehd1 and Hd3a can also be downregulated by the photoperiodic
flowering genes Ghd7 and Hd1” source PMID: 20566706). In this case, the objective
will be to develop computational tools to extract biological entities and their
relationships in order to extract relevant information, here the entities Ehd1, Hd3a,
Ghd7, and Hd1 and the downregulated relationship.

16.3.1.2 State of the Art

Recently, word embedding methods have been used to improve text mining
approaches. In general, they allow representation of words as vectors in n-
dimensional space. For example, the word man could be represented by the vector
here in two dimensions [0.33 0.98]. By representing all the words in a dictionary
by the same method, it is easy to imagine that words having a semantic similarity
such as man and woman will have close values in the same vector space. Moreover,
these vector representations can be used to perform operations based on analogical
relations, such as king − man + woman = queen (Mikolov et al. 2013b).

Therefore, many representation models have been developed in order to create
word embeddings. Among them we can mention the most popular Word2Vec
(Mikolov et al. 2013a), Glove (Pennington et al. 2014), ELMo (Peters et al. 2018),
and BERT (Devlin et al. 2018). The main difference between these models is that
Word2vec and Glove do not take into account the word order in the sentence (i.e.
they are independent of the context of the sentence; in prison cell and blood cell, the
word cell will have the same vector), whereas ELMo and BERT take into account the
word order—but with two different approaches—(i.e. they will generate different
vectors for the same words depending on their context; in the previous example the
word cell will have two different vectors).

Recent advances in biological text mining tools became possible, thanks to
advances in deep learning techniques used in Natural Language Processing (NLP).
For instance, to identify named entities, recent use of neural networks approaches
showed better results than previous approaches. Among them, Bi-LSTM-CRF
(Bidirectional Long Short Term Memory model combined with Conditional Ran-
dom Fields) offered encouraging results. Habibi et al. (2017) adopted the Lample et
al. (2016) model and used word vectors from word embedding (i.e. Word2Vec) as
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input vectors in a bidirectional LSTM-CRF (Bi-LSTM-CRF) model. However, these
methods require a large amount of data in order to optimize the training phases.
More recently, improvements have been made to this method by using transfer
learning (Corbett and Boyle 2018), multi-layer learning (Yoon et al. 2019) and
multi-task learning (Wang et al. 2019). Finally, more recent approaches used more
context-sensitive representation models (i.e. ELMo and BERT). The DTranNER
application (Hong and Lee 2020) used ELMo in a Bi-LSTM-CRF architecture by
enhancing the CRF labelling step with a deep learning architecture. The BioBERT
application (Lee et al. 2020) used the BERT model to create contextualized word
vectors. In addition, BioBERT has been trained on biomedical corpora and has been
trained for relation extraction.

16.3.1.3 Planned Action

In order to compare these different approaches, we developed a corpus of rice data
that can be used as a training model to detect entities and their relationships in the
text. This corpus, OryzaGP (Larmande et al. 2019) consists of more than 15,000
titles and abstracts of published scientific papers on rice downloaded from PubMed.
In addition, we extracted and annotated 123,146 gene mentions along with RapDB
and MSU identifiers. We will use the OryzaGP as training and validation data for
both approaches to feature extraction.

16.3.2 Semantic Annotation

16.3.2.1 Challenges

Semantic annotation refers to the automatic creation of a link between an entity
and an ontological term. For example in the following sentence: the protein IAA16
is expressed in the coleoptile, Coleoptile is a biological entity referring to the
same class identified by the URI obo:PO_0020033. Thus, it is possible to link
entities from the same RDF graph or from different graphs as soon as they
share the same semantic annotations. Ontologies allow us to create semantic links
between biological entities. In our field, the conceptual framework for knowledge
management is based on well-established ontologies (see Sect. 16.2). Identifying
semantic links within data is an important part of building knowledge networks in
AgroLD. It is also an active discipline in the computer science community (Faria et
al. 2013; Otero-Cerdeira et al. 2015).
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16.3.2.2 State of the Art

Several methods have been proposed to match terms from text to concept labels from
ontologies in order to augment knowledge. However, few studies provide efficient
methods for complex phenotypic traits or phenotypes (Harrow et al. 2017). We
provide some examples describing this complexity below.

– A natural language term referring a biological entity can be represented by its
symbol or acronym: for example, the MOC1 gene refers MONOCULM 1, the
APO1 protein refers ABERRANT PANICLE ORGANIZATION 1;

– A natural language term referring a biological entity can be polysemic and
ambiguous, therefore difficult to annotate;

– A term corresponding to a phenotype can implicitly refer to several concept
labels from different ontologies. For example, the Dwarfism phenotype can be
annotated with the dwarf-like concept from the PATO (Phenotype And Trait
Ontology) ontology, but it also matches the Tillering concept from the PO (Plant
Ontology) ontology and the Tiller angle concept from the TO (Trait Ontology)
ontology;

– A term corresponding to a phenotype can be annotated using two ontologies. For
example, the wrinkled seed phenotype is composed of the wrinkled concept label
from the PATO ontology and the seed concept label from the PO ontology.

16.3.2.3 Planned Action

To meet these challenges, powerful semantic annotation tools often rely on a com-
bination of word processing, knowledge bases, semantic similarity measures, and
machine learning techniques (Jovanović and Bagheri 2017). Agroportal (Jonquet et
al. 2018) aims to develop a portal of reference ontologies for agronomy. It also aims
to provide several search and semantic annotation tools. As indicated in Jonquet
et al. (2018), we plan to develop an annotation workflow between AgroPortal
and AgroLD which will include similarity measures, word processing, and use
AgroPortal features to annotate data with ontological concepts.

16.3.3 Reasoning over Linked Data

16.3.3.1 Challenges and State of the Art

The RDF model used in AgroLD is also complemented by other structuring
languages to describe data (RDFS (RDF Schema 1.1 n.d.), OWL (OWL Web
Ontology Language Overview n.d.), and SKOS (SKOS Simple Knowledge Orga-
nization System Namespace Document 30 July 2008 ‘Last Call’ Edition n.d.))
or describe their constraints (ShEx (Shape Expression Vocabulary n.d.), SHACL
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(Shapes Constraint Language (SHACL) n.d.)). The use of schemas—also called
ontologies when their structure is more complex—on data allows to classify them
in the form of classes of entities, relationships, and instances. Thus, it is possible
to implement reasoning mechanisms, thanks to ontologies. For example, general-
ization/specialization relationships are frequently used in reasoning to propagate
information. In this case, if we define Class B subclass of Class A, if the entity E1 is
an instance of B, then it will be also classified as an instance of A. It is also possible
to use reasoning to enrich the links existing between data. For example, when
using symmetric or transitive relations. For example, in the case of protein–protein
interaction networks, defining interact_with as reflexive or for gene co-expression
networks, defining coexpress_with as transitive will allow the reasoner to enrich the
information if the data is incomplete.

Another advantage offered by Semantic Web technologies is the use of rule-based
languages to validate constraints on data. This includes the emerging languages
ShEx and SHACL. In general, few reasoning methods and tools have been
developed on real data and specifically in the agronomic field. This will open a
large field of exploration in the future.

16.3.4 Data Linking

16.3.4.1 Challenges

The Data linking process aims at establishing semantic links of equivalence
or other type between entities from different RDF graphs. Data linking is an
important part of the integration process because it allows the aggregation of various
properties to the same entity, thus enriching its overall description. For example, as
shown in Fig. 16.3, let us consider a biological entity identified by two distinct
URI ensembl:OS01G0675800 and oryzabase:11464 in two different datasets. It
is therefore not possible to determine whether they are identical. However, a

oryzabase:11464

agrold:has_rap_identifier

Equivalent class ? /
same as ?

ensembl:OS01G0675800 agrold:description

rapdb:Os01g0675800

“NAC transcription factor 14; Os01g0675800 protein; OsNAC
protein-like; Uncharacterized protein

[Source:UniProtKB/TrEMBL:Acc:Q8LQP7]”

Fig. 16.3 Data Linking issue example in AgroLD
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biologist can confirm their similarity based on their properties agrold:description
and agrold:has_rapdb_identifier. In fact, we find the presence of the identifier
“OS01G0675800” from the rapdb resource, associated with the second entity,
in the description and URI of the first entity. Example in Fig. 16.4 shows two
biological entities. These entities correspond to the APO1 protein but are considered
distinct because they have different URIs. Moreover, the linking task is even more
difficult when the properties describing them are heterogeneous. One question is to
determine the properties to be used as a basis for comparison. Another question is
to determine how the attributes are valued or structured in order to avoid creating
erroneous links or missing links. As shown in Fig. 16.4, descriptions can be
expressed in different natural languages, with different vocabularies or different
values.

16.3.4.2 State of the Art

These limits can be classified into three dimensions listed in Fig. 16.4: value
dimension, ontological dimension, and logical dimension.

The value dimension refers to properties containing literal (text) values
expressed in natural language or numerical values that can lead to binding errors.
The authors (Achichi et al. 2019) identify four levels of heterogeneity in this
dimension, also indicated in Fig. 16.4: value type, terminology, linguistics, best
practices.

– Value type heterogeneity. This heterogeneity concerns the way literal values
are encoded (e.g. string, integer, etc.). In this case, the challenge lies in the
harmonization of the value types, for example, standardizing the formats of dates,
numerical measurements, etc.

– Terminology heterogeneity. In this case the differences will concern a term
corresponding to a word or a group of words. This variation can be expressed in
different ways: (1) synonymy when different terms represent the same concept;
(2) polysemy when similar terms have different meanings; (3) acronyms and
abbreviations. As can be seen in Fig. 16.4, a name of the entities corresponds to
an abbreviation (i.e. APO1). To overcome this problem, it is possible to expand
acronyms and abbreviations.

– Linguistic heterogeneity. The terms involved come from different languages.
This is a frequent issue when working with experimental data from diverse
sources that reflect the diversity of information that can be found on the Web. In
this case, with English and Japanese, the similarity search tools are not efficient.
It is necessary to go through an automatic translation step in prior.

– Best practices heterogeneity. Knowledge representation is subject to design
pattern practices. Their transgression is a barrier in the discovery of correspon-
dences.
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The ontological dimension refers to the class or property variations associated
with the compared instances. Four levels of heterogeneity are identified: vocabulary,
structure, property depth, and descriptions.

– Vocabulary heterogeneity. Classes and properties are often described, by dif-
ferent data producers, using different vocabularies. This problem is even more
complicated in the context of the Web of Data where not all resources are
described in the same way. The use of mapping between vocabularies, such as
Agroportal in our case, can help overcome this problem.

– Structural heterogeneity. The description of an entity can be made at different
levels of granularity. In this example the term Fbox 5-25 is structured differently:
the information is embedded in the data structure for the first entity while it
is included in a literal for the second. The use of NLP methods to extract the
information can help in the linking process.

– Property depth heterogeneity. This heterogeneity is located at the resource
schema level and corresponds to property modelling variations. Here, the literal
“DNA Binding”, which is a molecular function, is modelled from a GO class for
the first entity and a property for the second. So the distance between the entity
and the elements is greater for the first one. Possible methods to solve this type
of problem could be to index the literals with their context in order to be able to
compare them.

– Descriptive heterogeneity. Entities can be described with a larger set of prop-
erties in a dataset compared to another. In Fig. 16.4, we can see that entities
contain more descriptive information (text literal fields) than the set of properties
describing them. It is obvious that comparing these resources only by their
properties will be less efficient than approaches taking into account the whole
set of information.

The logical dimension refers to the fact that the equivalence between two entities
is implicit, but can be deduced using reasoning methods. Two main heterogeneity
problems are identified:

– Class heterogeneity. This type of heterogeneity refers to the level of the class
hierarchy. This is generally the case when two resources belonging to different
classes have explicit or implicit hierarchical relationships (the concepts “Protein”
and “Enzyme”, in Fig. 16.4, illustrate this problem because the Enzyme class is
a subclass of Protein).

– Property heterogeneity. At this level, the equivalence between two values
is deduced after the completion of a property reasoning task. For example,
two resources referring to the same entity can have two properties that are
semantically inverted (i.e. the has Description and is Annotated By properties).
In this case, these two properties contain the same information, as shown in the
example in Fig. 16.4.
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16.3.4.3 Planned Action

Data linking is an active research field that developed a plethora of approaches
(Manel et al. 2016). Regarding the state of the art, we listed various software that
implement linking methods, the following are the most cited or recent ones (Silk
(Jentzsch et al. 2010), Limes (Ngomo and Auer 2011), Legato (Achichi et al. 2017)).
One of the major challenges is to manage datasets with limited overlap in terms
of the properties used to describe their resources, what we call complementary
datasets. This missing information makes it difficult for recent systems based
solely on property analysis to assess relationships between instances. The datasets
integrated in AgroLD present largely this problem.

Few methods have been developed with real life data and none in the field of
plant genomics or phenomics. We will propose to develop a method adapted to the
context of AgroLD taking into consideration the challenges outlined above.

– Text mining: We plan to exploit the textual content of RDF graphs using natural
language processing techniques to identify named entities and reconstruct their
relationships, allowing the discovery of relevant links between related RDF
graphs.

– The knowledge graph augmentation techniques add structured information to
existing RDF graphs by exploring relevant external data on the Web (e.g. markup
data, scientific articles, (social) media, other knowledge graphs). We will apply
these methods to enrich our datasets and reconstruct missing information.

– Machine learning for complementary datasets. We will explore the relevant
criteria that effectively represent inter-graph resources and classify them as
identical (or not) by machine learning. We will use vector models for pairs of
instances and train on the input–output relationships from the training data. A
training dataset on AgroLD data is currently under construction.

16.4 Discussion

We have seen that the use of a common representation format is important to
integrate many heterogeneous and distributed biological data sources. Semantic
Web technologies are well adapted to enable this integration. Indeed, they provide a
FAIR structure for sharing biological knowledge and benefit from the support of a
large computer science community. However, in order to fully unlock the potential
of these biological resources, new methods need to be developed.

– First, we need to develop methods to extract meaningful information embedded
in unstructured data such as text fields from databases or even web documents
and scientific publications. Because molecular mechanisms and phenotypes
associating biological entities are often described in natural language by human
experts. Therefore it is important to be able to process such data and create
links with database entries. In addition, related information can be extracted from
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images. We refer to Ubbens and Stavness (2017), Pound et al. (2017), Choudhury
et al. (2019) for a review of these methods.

– Second, we need to improve semantic annotation methods in order to cover
a large domain of plant science. Indeed, currently semantic methods are well
adapted to the genomic domain because they are shared with the biomedical
domain. But these methods are less advanced for the plant phenomics or other
related plant field studies. Since plant high-throughput phenotyping technologies
are gaining in popularity, consequently we are witnessing the development of
several related ontology projects such as the Agronomy ontology, the planteome
project, and Agroportal (Cooper et al. 2018; Jonquet et al. 2018; Devare et al.
n.d.). This will help to strengthen semantic annotation methods in our domain.

– Third, we need to apply more symbolic approaches such as reasoning or rule-
based constraint checking than we used to do formerly. Indeed, biology data
is often incomplete and contains implicit knowledge, reasoning approaches can
improve the pre-processing step by enriching the data. Frequently, data scientists
methods are used to clean and normalize data as a pre-processing step but
such approaches are rarely used. Combining these approaches with traditional
machine learning could be a powerful way to achieve the ultimate goal of
revealing genotype–phenotype interactions (van Harmelen and ten Teije 2019;
Marcus 2020).

– Finally, because biology data is complex, incomplete, and with low coverage
complementarity between datasets, we need to develop new data linking meth-
ods. These methods should combine both state-of-the-art techniques from the
computer science community and the specificity of the biological domain in
order to overcome these barriers. Research direction should combine (1) natural
language processing techniques to extract embedded information in unstructured
text fields, (2) knowledge augmentation by exploiting external resources, and (3)
machine learning techniques to infer new relationships.

As a perspective of this experience, applying a candidate gene prioritization
approach makes it possible to identify and classify among a large number of genes
those that are strongly associated with the phenotype. There are many approaches
to identifying candidate genes (Moreau and Tranchevent 2012). The recent success
of graph models and deep learning in bioinformatics suggests the possibility of
systematically incorporating multiple sources of information into a heterogeneous
network and learning the non-linear relationship between phenotype and candidate
genes (Alshahrani and Hoehndorf 2018). Graphs are powerful tools to represent the
interactions between entities. Thus, they are well-fitted to represent each type of
interaction that occurs in biological networks. Because AgroLD is based on RDF,
a label-oriented multi-graph representation model, the platform will be suitable for
evaluating this type of approach. Information retrieval among knowledge graphs
requires the development of methods to sort the results in a meaningful way. In the
future, we will seek to develop an approach adapted to the context of AgroLD that
takes into consideration the challenges outlined above.
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Chapter 17
Interactive Data Analyses Using TBtools

Chengjie Chen and Rui Xia

Abstract Increasing biological data provide us unprecedented ability to uncover
the mystery of life. To leverage oncoming large biological data, efficient and
effective data analysis is indispensable for biological research. However, data
analysis has become a major challenge to biologists, most of who are not skillful
in computer science, thereby limiting the utilization efficiency of biological data.
Although a lot of bioinformatics software have been developed in the community,
the majority of them require users to work under command-line environments or
even be familiar with programming languages, with few of them focusing on freeing
users from elaborate command-line-based tasks.

Here, we present TBtools, an out-of-box solution to routine biological data
analyses. The toolkit integrates ~150 practical functions for data analyses and
visualization, with a user-friendly graphical interface. In this chapter, we describe
the design philosophy, development objectives, and main characteristics of TBtools.
We also provide a comprehensive introduction of its main functions, especially
those included in the “Sequence Toolkits” and “Graphics” catalogs, and advanced
features, like R plugins that contributed by senior users. A few practical tutorials
are presented to demonstrate the superb functionalities and outstanding interactive
nature of TBtools.

Keywords TBtools · Bioinformatics · Function integration · Data analysis ·
Data visualization

17.1 Design Philosophy and Development Objectives

In recent years, high-throughput sequencing technologies have been developing
rapidly in the field of life sciences, and big data analyses have become an indispens-
able part of biological research. For the vast majority of biologists, the effective
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use of these data is not only an opportunity, but also a challenge. For instance,
through genome-wide association analysis with population resequencing and large-
scale trait surveys, we can identify key genes associated with certain important
traits efficiently. Constructing gene co-expression networks from transcriptional
expression profiles, we can screen out potential hub regulatory factors of key
traits and steer the direction of further gene function studies. Most of these
analyses often involve two stages, which we simplified as upstream and downstream
data analyses, and for both of them, researchers are required to have two major
aspects of knowledge, computer science and biology. Upstream data analyses
often require large-scale data operations, which run on high-performance servers
and consume a lot of computation resources, such as profiling whole-genome
SNP sites from resequencing data with data size of >10 TB, or calculating gene
expression levels from >100 GB transcriptome sequencing data. These analyses are
common procedure for different projects, mainly involving large data calculations
and little relevance to specific biological questions. Many powerful bioinformatics
software or tools have been developed to meet this type of common demand. Often
commercial service providers can be relied on this part of analyses, alternatively,
researchers can learn to use these tools in a project and reuse them repeatedly for
different projects. In contrast, downstream data analyses are much more complicated
and need “personalized recipe” of analyses to solve various biological questions.
Normally there is no routine way to follow for these analyses, including various
small tasks of different purposes, such as conversion of all kinds of file formats,
sorting and extraction of certain text information, representation of distinct results,
etc. To handle these small and specific analyses, researchers are often required to
search, test, and learn to use a large number of tools (commands or tools composed
in different programming languages) for different functions or to program them into
different pipelines to achieve certain analysis goals. And in most cases, this process
of searching, testing, learning is not repeatable among different projects, therefore
greatly increases the cost of simple data analyses and reduces the efficiency
of scientific research. Based on these observations, since 2015, we have been
developing a bioinformatics combo toolkit, TBtools, to integrate hundreds of data
analysis functions routinely needed from biological laboratories, for streamlined
and simplified usage. This chapter gives an overview and introduction on the
development and usage of TBtools.

17.1.1 Development Logic

“Know the tricks of the trade,” this idiom fits to the process of learning and
mastering any bioinformatics software.
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17.1.1.1 Practical First, Concise Utmost

The development of TBtools starts from the demand of daily data analyses of
the authors. The realization of bioinformatics functions is designed to fit the
needs of daily data analysis in the most practical and simplest way, for example,
the routine bulk sequence extraction from fasta sequence files and the simple
local BLAST sequence search (Altschul et al. 1997). The design of the software
interface follows the rule of “the simpler, the better,” only retaining concise prompt
message and necessary parameter settings. All the rest, including intermediate files
generated automatically are hidden without showing. And many options of certain
functions are simplified or automated, such as the automatic recognition of the
format of input data (e.g., the automatic selection of BLAST sub-programs based
on the query and subject sequence types), automatic file format conversion, and
programmed adjustments of file names (such as file names containing spaces or
special characters) (Fig. 17.1).

17.1.1.2 The Simple “IOS” Logic

The implementation of each function in TBtools strictly follows the most basic
programming logic:

Fig. 17.1 TBtools Main Interface
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Fig. 17.2 The “IOS” Logic of TBtools Interface

(a) set Input data
(b) set Output data
(c) press “Start” button to proceed

that is, “Input, Output, and Start” logic (Fig. 17.2).
When using any function of TBtools, users only need to set the input and output

files, and then click the “Start” button to start the analysis. Worthy of note is that the
“Start” button is always bright yellow, which is easy for a quick notice.

17.1.1.3 User-Driven Development

The main driving force for the development of TBtools is real data analysis
demands from hundreds of thousands of scientific researchers. Since the first
release of TBtools in 2016, there are >50,000 stable users. Users’ feedbacks
such as suggestions, comments, and new demands are the motives of our con-
tinuous development and innovation of the software. The software has a public
program repository at Github, https://github.com/CJ-Chen/TBtools/releases, where
installers of TBtools can be downloaded and users can report usage issues. We
have also established real-time user communication communities in Tencent and
Telegram (Fig. 17.3; http://118.24.17.128/TBtoolsUserGroup.png and https://t.me/

https://github.com/CJ-Chen/TBtools/releases
http://118.24.17.128/TBtoolsUserGroup.png
https://t.me/joinchat/Q6WHOhWOlHHOkMgRGoN7nw
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Fig. 17.3 TBtools Real-Time User Community

joinchat/Q6WHOhWOlHHOkMgRGoN7nw), and a TBtools user forum (http://
www.tbtools.icu:1234). These communities ensure that the development team to
communicate with software users in real time, collecting user feedbacks in time for
troubleshooting and further development of new features.

17.1.2 Development Objectives

17.1.2.1 One-Click Environment Configuration

In projects dominated by biological questions, bioinformatics is more of a powerful
technology. In actual data analyses, users are required to install different software
for different needs. For example, when plotting a genome circle map, we need
to configure the Perl language environment before installing the Circos software
package (Connors et al. 2009). During this period, a lot of source code compilation
work is involved, and different software installation problems are often encountered,
such as incompatible system platform versions. In fact, installing and configuring
software on servers is already a critical step in bioinformatics data analysis that
consumes lots of time and energy. Therefore, we have implemented almost all
functions of TBtools using pure Java code, ensuring cross-platform characteristics.
For a small number of mature software, we have gathered their cross-platform
binaries and packaged them into single software installers.

https://t.me/joinchat/Q6WHOhWOlHHOkMgRGoN7nw
http://www.tbtools.icu:1234
http://www.tbtools.icu:1234
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17.1.2.2 Graphics User Interface for Data Analysis

At present, common bioinformatics data analysis tools often require users to
be familiar with programming languages such as R language, or familiar with
command-line working environments such as DOS or Shell. The learning curve is
steep. For most researchers most of whose work is not done on computers, learning
costs are too high. It is difficult to master and easy to forget. The initial goal of
TBtools development is to enable all users to quickly master the use of the software
and start data analyses right out of the box. Although TBtools can also be run
through the command line, we focus on creating specific user-friendly interfaces
for each useful function.

17.1.2.3 Function Integration

In daily data analyses, users need to use different software in combination to
complete a simple analysis task. For instance, to “assess the similarity of two
protein sequences in a certain species,” we may need to use a text editor or
write a script to extract two protein sequences, then use BLAST (local or web)
to compare the two sequences, and finally use other software or tools to visualize
the results of the comparison. Frequent switching of software takes much time of
scientific researchers, and besides, it is easy to interrupt users’ thoughts. One of
the development goals of TBtools is to fully integrate simple analysis functions.
Users can quickly complete sequence extraction, BLAST and direct visualization in
TBtools. Covering more than 150 functions, users can integrate them according to
their needs, fully meeting other analysis scenarios.

17.1.2.4 Analysis Automation

Although downstream data analyses do not have a similar obvious pattern as
upstream data analysis, there are still many simple and repetitive tasks in some
analysis tasks. At present, the genomes of more and more species are sequenced
and published. Comparative genomics has become a research hotspot. Among them,
one common analysis is mining gene collinear blocks. Correspondingly, the most
widely used software is MCscan (Wang et al. 2012). Though the need for analysis
is common, the use of MCscan requires users to prepare rather cumbersome input
files. In short, users should obtain protein sequences of two species, invoke software
such as BLASTP for sequence comparison, integrate gene location information, and
finally run the MCscan software. During this period, identifier mismatch may be
involved, identifier naming system conflicts and file name prefixes are not unified,
all of which will cause the final operation to fail or lead to incorrect results. With
TBtools, users only need to place genome sequence and gene structure annotation
files of two species and click the Start button.
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17.1.2.5 Simplify Complex Analysis

Some data analysis tasks are not only cumbersome but also difficult to achieve. The
eFP Browser development team proposed for the first time that expression value
coloring on a cartoon vividly displays specific gene expression changes (Winter et
al. 2007). This has been applied to a few model organisms, which could be found
on the corresponding species genome website. At present, omics data is becoming
more and more abundant. Cartoon-style heatmaps can be used for research and result
display on all other species, and data analysis and result interpretation can be carried
out more intuitively. However, eFP Browser is a browser framework, involving
knowledge of computer and network configuration, which is almost impossible for
scientific researchers with a pure biological background to implement in a short
time. Based on similar ideas, TBtools implements a java-based non-dependency
eFP graph function. Users only need to prepare a cartoon template, an expression
matrix, and a color mapping relationship table to make eFP graphs. Furthermore,
compared to eFP Browser, TBtools supports the output of vector graphics to ensure
the clarity and interactivity of the final artwork. A similar advance can also be found
on the plotting of Circos. On the whole, TBtools enables biological researchers to
or even easy to complete a large number of analyses that seemed difficult before.

17.2 Overview of TBtools Functions

17.2.1 Software Acquisition, Update, and Main Interface

17.2.1.1 Software Acquisition

There are two main ways to get TBtools installation.

(a) Download it directly from the software repository at Github, https://github.com/
CJ-Chen/TBtools/releases (Fig. 17.4).

(b) Obtain the latest version of the TBtools installation from the user communities
at Tencent or Telegram.

Fig. 17.4 Overview of the TBtools Warehouse

https://github.com/CJ-Chen/TBtools/releases
https://github.com/CJ-Chen/TBtools/releases
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17.2.1.2 Software Update

TBtools has been incorporated with background update, real-time update, and
automatic update. While running, TBtools will automatically detect the current
version in the background and ask the user whether to update to the latest version,
ensuring that users can always use the latest version of the software with more
comprehensive and more stable functions.

In an unstable network environment, users can directly obtain the TBtools main
program (a jar file) elsewhere and then manually update the software in the two
following ways.

(a) Go directly to the main directory of the TBtools installation and complete the
program update by replacing the main program file (TBtools_JRE1.6.jar) with
a newer one.

(b) Enter the “About” catalog from the main menu of TBtools, click “Update via
Jar,” and select the downloaded .jar file in the pop-up dialog to complete the
update (Fig. 17.5).

Fig. 17.5 Update TBtools from Main Menu
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17.2.1.3 Main Interface of TBtools

After the TBtools software is installed, you can directly run it by a double-click on
the program icon from the Start menu. The software will launch and you can see the
main interface, which includes several main function catalogs (Fig. 17.6).

1. Version of TBtools. It can be used to check whether the current version is the
latest one. Version number should be provided when communicate with us for
troubleshooting.

2. Main menu. TBtools currently divides the main functions into six catalogs
(described in detail below).

3. About Panel. When TBtools starts, the “About Panel” function will be automat-
ically triggered, and a famous quote will be randomly displayed.

4. “!Help” button. When users are confused about a certain function, or do not
know how to use or which function to used, they can click this button to get
usage examples and related tutorials.

5. Search box for functions. There are >150 functions in TBtools. Sometimes it is
hard to quickly locate a function level by level through the main menu. A more
convenient way is to directly enter keywords for a specific function in the search
box (e.g., “Fasta”), and then TBtools will automatically show functions related to

Fig. 17.6 Overview of the Main Interface of TBtools
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the keywords (names containing “Fasta”) and users can use the function directly
by a simply click.

6. “Update” button. Users can manually click the “Update” button to force the
update of TBtools via background update.

7. “Citation” button. This button directs the users to the webpage of the official
TBtools publication, for a convenient citation of the software when preparing
manuscripts.

8. Message box. The message box is used for the users to send their feedbacks
(suggestions and comments, or even complimentaries) to developers via email.

17.2.2 Introduction to TBtools Function

17.2.2.1 Overview of Main Functions

The main functions of TBtools are divided into five main catalogs (Fig. 17.7).

1. Sequence Toolkits. This catalog mainly includes batch sequence download, bulk
sequence extraction, sequence information sorting, and other sequence handling
functions. Among them, the “GFF3 Sequence Extract” function is a powerful tool
that could be used to extract specific feature sequences based on gene structure
annotation information. Users often employ it to obtain the complete set of CDS
or gene promoter sequences.

2. BLAST. It collects a series of functions from a stand-alone BLAST wrapper, as
well as functions for format conversion, result management, and visualization.

3. GO & KEGG. This catalog hosts functions for gene set analyses, for example,
gene ontology and KEGG pathway enrichment, and for result management and
visualization as well.

4. Graphics. It covers functions most often used for data representation and
visualization, such as venn diagram, heatmap, and seqlogo, as well as a few
relatively complex graphs, for example, upset plots and circos.

5. Others. Functions that could not be clearly grouped in the previous four
catalogs are placed under this one, including functions for text manipulation and
phylogenetic analysis.

In addition to the five main catalogs, TBtools also hosts a few games for
pleasure in an extra “Games” catalog, as users may be free when use TBtools
for large data analysis which take a long time to process. There is also a
“About” catalog which includes options to manually update the software, adjust
the maximum available memory for software operation, check whether the
dependent programs are complete, view the operation information, etc. (Fig.
17.8).

TBtools currently covers more than 150 functions, and each main catalog has a
series of corresponding functions. Limited by the space, we cannot introduced all
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Fig. 17.7 Overview of TBtools Functions (Chen et al. 2020)

Fig. 17.8 TBtools Interface with Different Languages
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of them. The following are the introduction of functions typically used for sequence
manipulation and data visualization.

17.2.2.2 Functions for Sequence Manipulation

TBtools contains a large number of functions used for sequence management,
mainly for files in Fasta or GFF3/GTF formats (Fig. 17.9).

Sequence Toolkit Functions are divided into five sub-menus.

1. Fasta Tools

(a) Fasta Extract / Filter. Batch extract or filter sequence records.
(b) Fasta Stat. Summarize sequence information for a sequence file, such as

total sequence length, GC content, etc.
(c) Sequence Manipulate. Manipulate sequences, such as reverse, complement

and information sorting.
(d) ID Simplify/Rename/Prefix. Manipulate sequence identifiers, such as,

simplify or rename the identifier, or add prefix.
(e) Fasta to Table Convert. Convert sequence file between Fasta and tab-

delimited formats.

Fig. 17.9 Overview of TBtools Sequence Toolkits
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(f) Fasta Merge/Split. Merge and split Fasta sequence files.
(g) Fasta Get Representative. Extract representative Fasta sequence records.
(h) Sequence Pattern Locate. Locate sequence regions that possess specific

patterns.

2. NCBI Sequence Fetch

(a) Bulk NCBI Sequence Download. Download sequences from NCBI using
accession numbers.

(b) GenBank to Fasta. Convert files from Genbank format to Fasta format.

3. ORF Prediction

(a) Complete ORF Prediction (Single Mode). Predict complete ORFs of a
sequence in six frames.

(b) Complete ORF Prediction (Batch Mode). Batch predict the longest ORF
in a set of sequences.

(c) Batch Translate CDS to Protein.

4. Primer Check (Simple e-PCR). Detect all possible amplified fragments for
given primers in a specific sequence library.

5. GFF3/GTF Manipulate
GFF3/GTF files are standard annotation files storing gene structure informa-

tion for any give genome sequence files.

(a) GXF Sequence Extract. Extract sequences of specific feature from the
genome sequence file based on the GFF3/GTF file.

(b) GXF Gene Posi. and Info. Extract. Extract gene location and annotation
information of a species.

(c) GXF Re-build from Sequences. Reconstruct a GFF3 file from given
transcript sequences and corresponding reference genome sequences.

(d) GXF mRNA Feature Re-calc. Recalculate and add mRNA information to
GXF files.

(e) GXF ID Prefix. Add specified prefixes to chromosome ID and gene ID.
(f) GXF Representative mRNA ID Select. Obtain all representative transcript

IDs from GFF3/GTF files.
(g) Representative GXF Obtain. Generate GFF3 files containing only repre-

sentative transcript information.
(h) GXF Region Overlap. Extract the annotation information that overlaps with

specific intervals based on the GFF3/GTF file.
(i) GXF Select. Extract annotation information related to a given ID.
(j) Gene Density Profile. Calculate gene density for any given genome.
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17.2.2.3 Graphics

To facilitate users to perform more visual data analysis, we have developed a Java
plotting engine, JIGplot, from scratch. On this basis, visualization functions of a
series of bio-information data analyses are implemented.

1. Color Palette

(a) Color Picker
(b) Discrete Color Scheme Generator

2. Heatmap Illustrator

(a) HeatMap
(b) Cubic HeatMap
(c) Layout HeatMap
(d) eFP Graph

3. SeqLogo
4. Venn and Upset Plot

(a) Venn
(b) Upset Plot

5. Basic PCA Analysis
6. Volcano Plot
7. BioSequence Structure Illustrator

(a) Gene Structure View (Advanced)
(b) Basic BioSequence View
(c) Visualize Motif Pattern
(d) Visualize Domain Pattern (Batch-CDD / Pfam)
(e) Visualize Gene Structure
(f) Parse MAST XML File

8. Show Gene on Chromosome

(a) Gene Location Visualize (Advanced)
(b) Gene Location Visualize from GTF/GFF
(c) Map Genes on Genome from Sequence Files
(d) Gene Location Visualize (Basic)
(e) Circle Gene View
(f) Basic Circos

9. Advanced Circos
10. Synteny Visualization

(a) Genome Length Filter. Filter small sequence fragments from a genome
sequence file.

(b) Genome Analysis Init. Prepare files for comparative genomic analysis
(c) Quick Run MCScanX Wrapper
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(d) One Step MCScanX. Perform MCscan Analysis in One-click
(e) Dual Synteny Plot for MCScanX
(f) Text Merge for MCScanX
(g) Multiple Synteny Plot
(h) Text Transformat for Micro-Synteny View
(i) Multiple Micro-synteny View
(j) Unlimited Synteny Plot for MCScanX
(k) Find Gene Block Evolutionary Path by Gene Pairs
(l) Genome Gene Dotplot

11. Multiple AB1 File View
12. Random Item/Figure Select
13. Tree Annotation. Phylogenetic tree annotation and visualization.

17.2.3 Plugin Module

Functions included in the main program TBtools are those commonly used in daily
bioinformatics data analysis. There are still many other functions that are useful and
fit to certain needs, although not in great demand, such as the sequence conversion
from Fastq to Fasta, PubMed search result management, Excel and text format
conversion, and so on.

For these functions, we have developed the plugin module in TBtools, allowing
users to install corresponding plugins for the functions they need (without re-
installing TBtools or installing other plugins). There are currently two main
acquisition modes for plugins.

17.2.3.1 User Community

Users can download plugin files with the extension .plugin in TBtools communities.
After that, from the “Others” menu select “Plugin” and then “Install Plugin” (Fig.
17.10).

Select the corresponding .plugin file from the pop-up window and install it.
Certainly, “drag and drop” is also supported.

17.2.3.2 Plugin Store Online

To make plugin installation more convenient, we have developed a “Plugin Store,”
which deposited all the available plugins. Users can find “Plugin Store” in “Plugin”
under the “Others” catalog. After launching the plugin store, users can see a list of
plugins (Fig. 17.11).
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Fig. 17.10 Manually Install TBtools plugins

Fig. 17.11 Overview of Online Plugin Store of TBtools
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Fig. 17.12 Install a Plugin from Plugin Store

There are currently more than 30 plugins available. When the mouse hovers
over a specified plugin, users can see a brief function description of the plugin.
Select an ideal plugin item and click “Install Selected Plugin” to install it (Fig.
17.12).

17.2.3.3 Senior Users Participate in Plugin Development (R Plugin)

TBtools also supports users’ participation in software development. Recently, we
developed Rserver “plugin”, an R runtime environment plugin (windows and mac
version), to support direct running of R scripts. Based on this, we further developed
the “R Plugin Demo” plugin. As long as users have a runnable R language script, a
simple configuration can make the script into a TBtools plugin that can be used by
others.

Here is an example, assuming that users currently have a script named script.r.
Its content is
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### Parameter acquisition
argv <- commandArgs(TRUE)
expfile <- argv[1] 
title <- argv[2] 
logTran <- argv[3] 
colorSet <- argv[4]
titleColor <- argv[5]

### Dependent package detection and installation
if (!require('ggplot2')) install.packages('ggplot2', 
repos='https://mirrors.tuna.tsinghua.edu.cn/CRAN/')
if (!require('reshape2')) install.packages('reshape2', 
repos='https://mirrors.tuna.tsinghua.edu.cn/CRAN/')

### Data Processing
library(ggplot2)
library(reshape2)
expMat<-read.table(expfile,header = T,sep="\t")
head(expMat)
expMat<-melt(expMat)
if(logTran=="true") expMat$value<-log(expMat$value+1)
p<-ggplot(expMat)
p+geom_density(aes(x=value,fill=variable),alpha=I(1/4))+

labs(title=title)+
scale_fill_brewer(palette=colorSet)+
theme(plot.title=element_text(size=25, hjust=0.5, face="bold", colour=titleColor, 

vjust=-1))

The script can be invoked with the following command.

Rscript script.r “fpkm.xls” “R-ggplot2 BarPlot” “false” “Set1” “#e31a1c” “OutDir”

Users only need to prepare a few files which could be found in the “R Plugin
Demo” plugin (most of them are optional) and configure the config.txt file to
complete the plugin development (Fig. 17.13). To date, nearly ten senior users have
turned their R scripts into TBtools plugins, covering a series of functions.

1. Batch Bubble Plot (desktop and shiny version)
2. Barplot (shiny version)
3. Gene co-expression Analysis (WGCNA)
4. Sample co-relation analysis
5. Differential Gene Expression Analysis (DESeq2/edgeR)
6. Sankey Plot

Fig. 17.13 A Demo to Make a TBtools R plugin
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17.3 Demonstrations

The first step in learning swimming is getting into the water. In this section, we
select four popularly used functions to demonstrate the powerful functionality of
TBtools.

17.3.1 Genomic Feature Sequence Extraction Based
on GFF3/GTF

With the rapid development of sequencing technologies, more and more genomes
have been sequenced, which greatly promotes the scientific research on genomics.
Effectively extracting and using genomic sequences becomes a routine task. TBtools
provides a robust function, “GXF Sequence Extract,” for quick extraction of certain
sequences from genome sequences. According to the IOS logic, users only needs to
set the Input and Output:

(a) Input data. Gene structure annotation information (GFF3/GTF format) and
genome sequence (FASTA format) files of a species.

(b) Output file. Output file (FASTA format) path.

Most commonly, this function is used for extraction of coding sequences (CDS)
or regulatory sequences (e.g., promoter).

17.3.1.1 Coding Sequence (CDS) Extraction

Open the TBtools software and select the function “Sequence Toolkit” ->
“GFF3/GTF Manipulate” -> “GXF Sequence Extract” (Fig. 17.14).

1. Set the gene structure annotation information file (GFF3 or GTF format).
2. Click the “Initialize” button.
3. After that, the “Start” button will change from unavailable (gray) to available

(black).
4. Select the sequence feature tag to indicate which type of sequences to be

extracted. Here, it is “CDS”.
5. In a GFF3 file, a sequence feature record (Feature Tag, such as CDS, EXON,

mRNA) corresponds to a sequence segment of the genome and generally has
grouping information with a unique ID information tag (Feature ID, such
as Parent, transcript id, gene id). To obtain the complete CDS sequences of
a species, we need to combine multiple CDS segment records with unified
grouping information tags. Thus, we select “Parent” here.

After the initiation is finished, then go the extraction (Fig. 17.15).
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Fig. 17.14 Extraction of a Complete Set of CDS Sequences (initialization)

6. Set the genome sequence information. Please ensure that the chromosome ID is
consistent between the GFF3 and the genome sequence files.

7. Set the output file path. A complete output file name is needed.
8. Click “Start” to complete the extraction. A file containing all the sequences you

want will be generated in the Output directory.

17.3.1.2 Regulatory Sequence (Promoter) Extraction

In biological research, biologists usually are interested in the regulatory sequences
of important genes and need to grab these sequences for further analyses. Among
them, the promoter sequences of genes are the most popularly investigated. Gener-
ally, sequences of 2–3 kb upstream from the translation start site or the start codon
(for these gene loci lack of UTR information) are used as a promoter sequence for
analyses. TBtools can be used to get these sequences easily (Fig. 17.16).

1. Set the upstream 1000 bp sequence before CDS as the target region.
2. Check the box of “Retain only Upstream or Downstream Bases” to ensure only

the specified (upstream or downstream) will be obtained; otherwise, both the
upstream/downstream and CDS sequences will be extracted at the same time.

3. Set the output file path.
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Fig. 17.15 Extraction of a Complete Set of CDS Sequences (extraction)

Fig. 17.16 Extraction of a Complete Set of Regulatory Sequences (promoter)
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4. Click the “Start” button.

In addition, “GXF Sequence Extract” can also be used to extract a complete set
of transcripts (combine multiple exon sequence together) or other sequences. The
“Retain Attributes in Header” setting can be used to keep the original sequence
annotation information in the output file.

17.3.2 Heatmap

Heatmap is one of the most popular graphs used for data visualization in bioin-
formatics data analyses. Based on its home-brew plotting engine JIGplot, TBtools
provides a convenient and powerful heatmap function. Users can quickly make
personalized heatmaps by using various interactive features.

17.3.2.1 Make a Simple Heatmap in a Short Time

1. Prepare a file containing a matrix of gene expression values with row and column
names.

2. Paste or drag and drop the matrix file as the Input.
3. Click the “Start” button.

A heatmap plotting window will pop up instantly (Figs. 17.17 and 17.18).

17.3.2.2 Adjust the Heatmap Parameters

The heatmap graph can be personalized easily, such as data normalization, cluster-
ing of rows and columns, displaying numerical values and other information, etc.
(Fig. 17.19).

1. Use the built-in color pattern to choose ideal color Scheme.
2. Use 0–1 normalization methods to format the input value matrix.
3. Cluster the data in rows and columns and display the original values in the

heatmap.
4. Adjust the width of the picture (so that the number can be completely displayed

in a cell).

17.3.2.3 Make a Circular Heatmap

Compared with the existing heatmap plotting tools, TBtools heatmap supports
more flexible parameter adjustment. For example, users can “bend” (circularize)
the heatmap to make full use of a limited space to show more information (Fig.
17.20).
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Fig. 17.17 Use TBtools to Make a Simple Heatmap

To make a circular heatmap, users only need check the “Auto Polar” box on
the control panel. For further improvement, users can change the way of legend
presentation by checking “Horizontal Legend”.

17.3.3 Circos Plot

Circos plot is a widely used visualization approach to display large-scale genomic
data. It is often used to present results at the whole genome scale to provide a com-
prehensive data overview. Making a Circos plot using the original package requires
users to be proficient in Perl or R language programming, which inadvertently limits
its application in more scientific research projects. As TBtools can easily “bend”
(circularize) graphs as shown above, the Circos plotting is also supported, but in a
much easier way. Users only need to prepare a few input files for graph generation
without any programming or command-line operations.
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Fig. 17.18 Heatmap Plotting Window

17.3.3.1 Making the Chromosome Skeleton

With TBtools, users can make a Circos plot step by step, depending on the number
of datasets to show. At first, users need to prepare the innermost chromosome
skeleton track. A file containing the chromosome skeleton information (“Chro-
mosome ID\tChromosome length” or “Chromosome ID\tChromosome starting
position:Chromosome ending position”) is needed, and this file can be prepared
using the “Fasta Stat” function in TBtools (Fig. 17.21).
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Fig. 17.19 Heatmap Parameter Adjustment (Basic)
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Fig. 17.20 Heatmap Parameter Adjustment (Polar Coordinates)

1. Set the genome sequence file as input.
2. Set the output file to save the length information of the chromosome sequences.
3. Check “Keep Only Sequence Length” to save only the length information to the

output file.
4. Click the “Start” button.

Go to the function, “Graphics” -> “Advanced Circos”, set the input file (the
output file above), and “Show My Circos Plot!”. Then a simple Circos graph with
chromosome skeletons will be generated (Fig. 17.22).
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Fig. 17.21 Using “Fasta Stat” to Prepare a Chromosome Skeletons File

17.3.3.2 Display the Feature Location and Association Information
of the Genome

On this simple graph, two types of information can be added: (a) Chromosome
feature labels, such as the location of certain genes; (b) Chromosome segment
relationships (such as large segmental duplication events). The former can be
obtained through the “GXF Pos. and Info. Extract” function in TBtools; the latter
can be obtained by collinearity analysis of the genome (Fig. 17.23).

1. Set the file containing information of feature locations. The format is “Chro-
mosome ID\t Feature identifier\tChromosome starting position\tChromosome
ending position\t[optional color information, R, G, B]”.

2. Set the file containing interchromosomal association information. The for-
mat is “Chromosome ID\tChromosome starting position\tChromosome ending
position\tChromosome ID\tChromosome starting position\tChromosome ending
position\t[optional color information, R, G, B]”.

3. Click “Show My Circos Plot!”.
4. Users can see a Circos with more information.
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Fig. 17.22 Use “Advanced Circos” to Visualize the Chromosome Skeleton

17.3.3.3 Display Information at the Genome Scale

Usually Circos plot are used for the overview of genome-wide information, such as
gene density, GC content, sequencing depth, SNP frequency, etc. These information
are often recorded in a way that a chromosome region corresponds to a value. Here,
we used gene density as an example, and the density information can be easily
obtained using the “Gene Density Profile” function in TBtools. Open “TBtools”
and select the function “Sequence Toolkit” -> “GFF3/GTF Manipulate” -> “Gene
Density Profile” (Fig. 17.24).

1. Set the gene structure annotation file (GFF3/GTF) as input.
2. Set the output file path.
3. The content of the output file is formatted as “Chromosome ID\t starting

position\t Chromosome ending position\tnumber of genes”. As the length of each
genomic interval is set to be the same, so the number of genes in each interval
represents gene density.
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Fig. 17.23 Use “Advanced Circos” to Display Feature Locations and Collinear Regions

The resultant gene density information can be directly used for “Advanced
Circos” visualization (Fig. 17.25).

1. Set the input file, which is the gene density file obtained above.
2. Adjust the Track type to “Heatmap”.
3. Select the sliding window type as “None,” that is, no sliding window, as the

sliding window calculation has been accomplished in the “Gene Density Profile”
step.

4. Gene density information is now displayed.

Data in similar formats can be displayed in different plot types. In addition to
heatmap, TBtools also supports “Bar,” “Line,” “Point,” etc. Besides, it also supports
positional mark visualization, such as “Tile,” “Arrow,” “Triangle,” etc. The input
data format is “Chromosome ID\tChromosome start position\tChromosome end
position\tR,G,B”. Tracks of multiple data can be viewed synchronically (Fig. 17.26).

1. Overlapping of two types of tracks: “Heatmap” and “Line”.
2. Use “Bar” type for the second track.
3. Support different open angles.
4. Support linear display as well.
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Fig. 17.24 Use “Gene Density Profile” to Get Gene Density Information

Fig. 17.25 Use “Advanced Circos” to View Gene Density over the Whole Genome
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Fig. 17.26 Flexible Use of “Advanced Circos”

17.3.4 Quick Protein Functional Annotation (Plugin)

In daily data analysis, we may often obtain hundreds or thousands of new genes
(unannotated), which need to be functionally annotated for biological meaning. The
TBtools plugin “Quick Protein Anno” can assist users in this, which can finish the
functional annotation of ~20,000 protein sequences within a few minutes and output
the results into a table for further exploration. Users can install it through the plugin
store. Turn to the plugin store through “Others” -> “Plugin” -> “Plugin Store”.

After the installation is complete, you can run the function through the menu
“Others” -> “Plugin” -> “Quick Protein Anno” (Figs. 17.27 and 17.28).

1. Set the database used for annotation. Generally, the “Swissprot” protein sequence
library is used.

2. Users can click “DB Download” to download the “Swissprot” protein sequence
library.

3. Set the protein sequence file to be annotated or paste the sequences directly.
4. Set an output file path.
5. The output result file formatted as “Gene ID\tHigh-frequency keyword #1\tHigh-

frequency keyword #2\tOptimal comparison results”.
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Fig. 17.27 Install the “Quick Protein Anno” Plugin through the Plugin Store

Fig. 17.28 Use “Quick Protein Anno” for Function Annotation



17 Interactive Data Analyses Using TBtools 375

References

Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped
BLAST and PSI-BLAST : a new generation of protein database search programs. Nucleic Acids
Res 25:3389–3402

Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, Xia R (2020) TBtools: an integrative
toolkit developed for interactive analyses of big biological data. Mol Plant 13:1194–1202

Connors J, Krzywinski M, Schein J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos :
an information aesthetic for comparative genomics. Genome Res 19:1639–1645

Wang Y, Tang H, Debarry JD, Tan X, Li J, Wang X, Lee TH, Jin H, Marler B, Guo H et al (2012)
MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity.
Nucleic Acids Res 40:e49

Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ (2007) An ‘electronic fluorescent
pictograph’ browser for exploring and analyzing large-scale biological data sets. PLoS One
2:e718



Chapter 18
Analyzing Multi-Omic Data
with Integrative Platforms

Yan Zou

Abstract The exponential growth of molecular data put up a new challenge to
the biologists. The difficulty in data storage, processing, transmission, connection,
and the demand for multi-omic data analysis motivates scientists to set up inte-
grative platforms and workflows. Here we introduce some prominent integrated
bioinformatics platforms. Among them, Galaxy will be carefully discussed for its
development, core values, flexible workflows, and relevant framework applications.

Keywords Multi-omic · Integrative platform · Galaxy

18.1 Integrating Diverse Tools into Bioinformatics Platforms

The availability of high-throughput sequencing technologies and high-resolution
mass spectrometry in genomics, transcriptomics, proteomics, metabolomics, and
phenomics promotes a large-scale multi-omic data complex. The information
content is higher in integrated analysis, which requires connecting and comparing
data in different omics, than in any of the molecular levels studied separately.
The exponential growths of molecular data, however, put up a new challenge
for biologists. The storage, processing, transmission, connection, and analysis of
these data complex demand the use of disparate software programs and require
computational resources beyond the capacity of many biological laboratories (Chen
and Hofestädt 2014; Boekel et al. 2015). Furthermore, disparate software requires
extra training time when a new analysis is conducted and standardizing diverse data
formats into the identical one that program requests bring further inconvenience. For
these reasons, multi-omic platforms are emerged to embrace the complexity that is
associated with the exponentially increasing amounts of data.
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Some prominent software platforms have already shown their merits in coping
with these problems. Some are compatible with all data regions, and some are
specially designed for specific regions, such as cancer, plant cells, and viruses.

18.1.1 General Integrative Platforms and Workflows

Most bioinformatics tools used in genomics, transcriptomics, and proteomics are set
in programming and command-line environments, which can be time-consuming
and complex for researchers to get started. Ideal platforms and workflows such
as Galaxy, Taverna, and Snakemake are created to meet the urgent need for the
interactive analyses of big biological data.

18.1.1.1 Galaxy

Galaxy is a scientific workflow, data integration, and data and analysis publishing
web-based platform established in 2005 (Blankenberg et al. 2011). Its graphical
query interface combined with customized data storage can simplify the process
Schatz (2010). Its development, core values, and flexible workflows will be carefully
discussed in Sect. 18.2.

18.1.1.2 Snakemake

Snakemake (available in https://snakemake.readthedocs.io/en/stable/) is a Python-
based scalable bioinformatics workflow engine published in 2012. It can scale from
single-core workstations to compute clusters without modifying the workflow. It
is the first system to support the use of automatically inferred multiple named
wildcards (or variables) in input and output filenames (Köster and Rahmann 2018).
Interaction between Snakemake and those installed in local or web-based tools
is also available when both support the input and output data formats. In recent
years, some Snakemake extensions, such as RASflow (Zhang and Jonassen 2020)
and Sequanix (Desvillechabrol et al. 2018), build modular analysis workflow and
establish graphical interfaces to help Snakemake be more flexible and user-friendly.

18.1.1.3 Taverna

Taverna (available in https://incubator.apache.org/projects/taverna.html) is a tool for
the composition and enactment of bioinformatics workflows. Taverna includes a
workbench application that provides a graphical user interface for the composition
of workflows (Oinn et al. 2004). Scientists can organize their workflows in a new
language called the simple conceptual unified flow language (Scufl). It can integrate

https://snakemake.readthedocs.io/en/stable/
https://incubator.apache.org/projects/taverna.html
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with the bioinformatics resource shared as Web services among the community.
Taverna and Galaxy, two workflow systems widely accepted and applied by the
bioinformatics community, can also be integrated into a single environment, Tavaxy
(available in https://www.tavaxy.org/) (Abouelhoda et al. 2012).

18.1.2 Integrative Platforms for Specialized Data

Some integrative platforms are specially established for analyzing data from
specific regions, such as cancer, virus, plants, and fungi. Combined with gene and
protein expression with signaling pathways and cell characteristics, these platforms
contribute professional and accessible means for biologists to process data.

18.1.2.1 Combine Integrative Platforms with Clinical Data for Cancer
Research

Distinct signaling pathways and altered molecular functions in cancer cells and clus-
ters are displayed in the integrated analyses of molecular data. The platforms built
specifically for cancer cell data analysis allow cancer researchers to interactively
explore altered gene sets and signaling pathways (Gao et al. 2013). What makes the
platforms driven by cancer cell studies distinguished is their strong connection with
clinical outcomes and potential. Genomic, metabonomics, and clinical data might be
used to identify novel patient subgroups. Clinical therapy can be tailored for each
patient when statistical models are produced and treatment strategies are evaluated
based on stratified patient groups (Kristensen et al. 2014).

The cBioPortal for Cancer Genomics (cBioPortal, http://cbioportal.org) is one
of the widely used integrative platforms specialized for analyzing cancer-related
data. The cBioPortal is established for integrative analysis of cancer genomics
and clinical patient profiles. With 15 provisional TCGA (The Cancer Genome
Atlas) datasets and other open datasets contained, the web-based cBioPortal is
uniquely designed to store every single data in the gene level and combine these
data with available de-identified clinical data. The fundamental abstraction of this
platform is the concept of altered genes (Cerami et al. 2012), which is used
to help users simplify the mixed and complicated current datasets and develop
genomic hypotheses proceeding from genetic alterations across samples, genes, and
pathways.

Among other platforms targeted in cancer cell research, Web-TCGA can
uniquely provide methylation analyses (Deng et al. 2016); Firebrowse (http://
firebrowse.org/) can also characterize and identify genomic patterns in human
cancer models through visual and programmatical tools.

https://www.tavaxy.org/
http://cbioportal.org
http://firebrowse.org/
http://firebrowse.org/
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18.1.2.2 Specialized Integrative Platforms in Other Fields

Integrative platforms that focus on particular fields integrate with the other database
resources in their domains for further research convenience. Integrating bioin-
formatics resource for fungi and oomycetes, FungiDB (fungidb.org) is a free
online platform for data mining and functional genomics analysis which combines
Eukaryotic Pathogen Genomics Database Resource (Basenko et al. 2018).

Scientists also use bioinformatics platforms as a tool for international coop-
eration in urgent issues. For the pharmaceutical development and antiviral drug
prediction for the COVID-19 virus, Virus-CKB (https://www.cbligand.org/g/virus-
ckb) is developed as a viral-associated disease-specific chemogenomics knowledge-
base (Virus-CKB), which describes the chemical molecules, genes, and proteins
involved in viral-associated diseases regulation (Feng et al. 2021).

18.2 Galaxy: A Widely Accepted General Bioinformatics
System

18.2.1 Introduction

As has been mentioned in Sect. 18.1.1.1, Galaxy is a bioinformatics scientific
workflow and data analysis platform, which is created in 2005. It is developed by the
Galaxy team at Penn State, Johns Hopkins University, Oregon Health and Science
University, and the Galaxy Community using Python language.

Galaxy was initially set up for genomics and transcriptomics data analysis
from the very beginning. Nevertheless, with the maturation of proteomic and
metabolomic technologies, multi-omic applications started to emerge after a few
years since the Galaxy was created. Now it has assembled tools in multiple domains,
such as gene expression, proteomics, epigenomics, and transcriptomics. It also
contains cross-domain tools, including ecology, climate science, and computational
chemistry. More than 7500 tools (Jalili et al. 2020) have been contributed to the
Galaxy ToolShed till January 2020.

Galaxy now has a prosperous scientific community. The community keeps
organizing conferences and meetings with Galaxy-related content and sharing tool
tutorials in The Galaxy Training Network. With more than 9000 total publications,
including over 7500 journal articles, 500 books, and 400 conference papers by 2020
(Jalili et al. 2020), this free and open-source platform has created a community for
biology researchers.

http://fungidb.org
https://www.cbligand.org/g/virus-ckb
https://www.cbligand.org/g/virus-ckb
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18.2.2 How to Use Galaxy

Researchers can directly use the workspace of the Galaxy platform to conduct data
analysis. Galaxy can be operated both on the web and locally. Between them, the
webpage is more welcomed for its convenience.

As shown in Fig. 18.1, the webpage workspace of Galaxy is separated into four
parts. Right on the top of the website is the navigation bar, which provides users
with easy access to data processing, including analyzing, workflows, visualization,
and user function for sharing data and tutorials. On the left is the analysis tool panel
in which users can apply tools to their data. The component in the middle is the
detail interface, where users set up and adjust different datasets, features, and filters
for analysis. The history panel on the right of the workspace shows the status of
the generation of the datasets. Users can also search the analysis history and extract
workflows from the histories.

Users can create workflows based on their data analysis process. A workflow is a
series of tools and dataset actions that run in sequence as a batch operation (Goecks
et al. 2010). In Galaxy, workflows can be created from scratch using the workflow
editor or generated from the analysis already completed in history Blankenberg et
al. (2010). A successfully designed workflow can be continuously reused for the
future analysis, enhancing reproducibility by applying the same methods to all of
the users’ data.

Fig. 18.1 The web-based workspace of the Galaxy platform. In the left column, users can choose
the genomic tools. The detailed analysis content will be shown in the middle. The analysis history
is in the right column, and users can search datasets using the search bar at the top of the panel
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18.2.3 Key Requirements in Designing Galaxy

For most researchers, the use of disparate software programs and extra software
training demands time and effort. The required computational resources sometimes
will reach out of the capacity of most biological research laboratories. The ideal
platform should meet these scientists’ basic needs and keep the platform vibrant and
easy to use. Five characteristics are crucial for building a thriving platform, includ-
ing the flexibility to accommodate constantly evolving data types and emerging
software across omics domains, reproducibility, open and free access, and long-term
sustainability (Boekel et al. 2015).

Flexibility is the first general need that the developers plan to meet. Specifi-
cally, the platform needs to be open, extendable, and amenable to heterogeneous
computing environments. To resolve this issue, the developer group has combined
Linux-based software with Windows-based software to ensure that the platform
could function well in multiple working environments.

Another distinct requirement for the platform is that it should have the ability
to operate complex and multistep workflows automatically with different software.
The platform can use quality control methods to evaluate the tool quality and
integration efficiency.

The compatibility in high-performance computing and cloud environments
makes the platform scalable to the established sequencing databases. Its large-
memory allocation is integrated with multiple storage infrastructures.

One of the crucial characteristics for a bioinformatics platform to expand
its lifespan is its community sharing. The publication and sharing of complete
workflows not only promotes the dissemination and reproducibility of the workflows
but also enhances the transparency of the data and its processing. The attention to
data provenance also guarantees this.

The last essential requirement for building the desired platform is the wide
adaption and sustainable user-friendly interface. Its web-based graphical user inter-
face lowers the difficulty for the researchers with limited computational expertise
to operate. The platform is sustained by the scientist’s community rather than a
single developer group, and each developer can publish their software and designs
of workflows on their own.

18.2.4 Applications Based on Galaxy Platform

Some data analysis applications derived from Galaxy emerge to resolve typical
questions. Here we introduce three applications of Galaxy: Cistrome, a new
integrative platform based on Galaxy frameworks; RepeatExplorer, a computational
pipeline or component aiming at repetitive DNA; and CloudMan, a cloud resource
management system, as well as BioBlend, an automating pipeline analyses within
Galaxy and CloudMan.
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18.2.4.1 Cistrome: Galaxy-Based Integrative Platforms for
Transcriptional Regulation

Chromatin immunoprecipitation (ChIP) combined with microarrays (ChIP-chip)
and ChIP combined with NGS (ChIP-seq) are used for identifying cistromes, which
refers to the set of cis-acting targets of a trans-acting factor on a genome-wide scale.
However, the analysis of cistrome data requires both the hardware resources from
the lab and the computational skills of the researchers to achieve the analyzing
algorithms.

Under the conditions above, Cistrome (http://cistrome.org/ap/) has been built
to provide a flexible bioinformatics workbench. Cistrome, an integrative platform
for transcriptional regulation studies, is specifically designed for downstream
data analysis accompanied by ChIP-chip or ChIP-seq technologies and includes
fundamental analyses from peak calling to motif detection (Fig. 18.2).

To accomplish this, Galaxy framework provides a user-friendly, reproducible,
and transparent workbench, on which the scientists can share, incorporate, and
publish their data. Furthermore, its infrastructure makes each Cistrome tool to
remember the run-time parameters in the server (Liu et al. 2011).

Fig. 18.2 The web-based workspace of the Galaxy/Cistrome platform. In the left column, users
can choose the available tools. The messages, tool options, and detailed analysis content will be
shown in the middle. The analysis history is in the right column

http://cistrome.org/ap/
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18.2.4.2 RepeatExplorer: A Computational Pipeline for Characterization
of Repetitive Elements

Repetitive DNA makes up a large part of eukaryotic nuclear genomes. The accurate
quantification and sequence characterization of repetitive DNA is complex for
most researchers due to the restricted computational resources and the lack of
professional analyzing tools.

With the new approach for global repeat analysis developed by Novak et al.
(Novák et al. 2010) and the availability of high-throughput sequencing data, Novak
et al. developed a pipeline named RepeatExplorer (http://repeatexplorer.umbr.cas.
cz/) for genome-wide characterization of eukaryotic repetitive elements from next-
generation sequence reads (Novak et al. 2013).

The main component of RepeatExplorer is the clustering pipeline, which per-
forms all-to-all similarity comparisons of sequence reads followed by their graph-
based clustering to identify groups of reads derived from repetitive elements.

Galaxy platform provides the adaption for the tools of the RepeatExplorer
pipeline. These tools can be recombined to form specialized workflows. The Galaxy
platform also facilitates easy execution, documentation, and sharing of analysis
protocols and results.

18.2.4.3 CloudMan and BioBlend: A Cloud Resource Management
System and an Automating Pipeline Analyses within Galaxy
and CloudMan

With the availability of high-throughput sequencing data and the robust research
future of analyzing sequence data, the computational infrastructure and support
have gradually been a problem for researchers whose laboratory cannot reach the
requirement in computing. Cloud computing, a computational model, is potential in
the analysis of high-throughput sequencing data. However, the established projects
are only targeted at specialized problems and are unsuitable for various computing
circumstances.

CloudMan is an integrated solution that the researchers could create and control
fully functional compute clusters with existing tools and packages provided on cloud
resources. The intricacies of cloud computing resource acquisition, configuration,
and scaling could be conducted on Amazon’s EC2 cloud infrastructure, and a
personal computing cluster will be produced in minutes. (Afgan et al. 2010). The
researchers have embedded Galaxy CloudMan on top of the Bio-Linux workstation
machine image and integrated it with Galaxy.

BioBlend (http://bioblend.readthedocs.org/) is a unified API in a high-level
language that wraps the functionality of Galaxy and CloudMan APIs (Sloggett et al.
2013). It is easier for researchers to automate end-to-end large data analysis using
BioBlend, due to the convenient access for large datasets in the familiar Galaxy
environment and the computing infrastructure provided.

http://repeatexplorer.umbr.cas.cz/
http://repeatexplorer.umbr.cas.cz/
http://bioblend.readthedocs.org/
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