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Abstract 3D point cloud registration is an important step in a variety of computer-
assisted surgeries and particularly critical for their success. Such registration is tradi-
tionally carried out using the Iterative Closest Point (ICP) algorithm although more
recent and promising algorithms have been reported in the literature. In this paper, we
provide a comparative analysis of several rigid registration algorithms for 3D point
clouds including point-to-point ICP, point-to-plane ICP, Go-ICP and Super4PCS, in
the difficult context of bone registration. In particular, we study the case in which a
point cloud of femoral condyles is to be registered at the distal extremity of a human
femoral bone. The condyles can typically be acquired during surgery using 3D sen-
sors (e.g. intraoperative CT-scans, time-of-flight cameras, structured-light scanners)
while the bone can be scanned preoperatively. The algorithms have been tested for
speed, accuracy and robustness using both real and simulated data.
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1 Introduction

In computer-assisted surgery, imaging modalities (e.g. CT-scans, MRI, X-Ray) and
computer technologies provide the surgeon with a 3D representation of the surgical
region of interest. This not only allows for a precise navigation during surgery, but
also for the preoperative planning of the surgical procedure. However, for planning to
be any useful intraoperatively, proper registration of the patient and the preoperative
surgical data in a single reference frame is required. In essence, such registration
consists in aligning a partial and noisy intraoperative 3D source point cloud on the
complete and precise preoperative 3D model point cloud.

When the navigation system or the surgical robotic device is rigidly attached to
the patient, registration may only be needed once, as an initial step. This is generally
achieved using bone fiducials or inserts [6]. In this case the registration time, though
important to reduce the overall duration of surgery, is not critical. However, when
the patient moves during surgery, registration is to be renewed, in real time, of the
order of a few tens of milliseconds, as to keep the patient and the planning (hence
the preoperative 3D model) reference frames aligned at all times.

Most available commercial robotic and navigation systems use optical trackers
that are rigidly fixed (e.g. with pins or screws) to the patient’s bones so as to track
their movements using an optical device [3, 19, 20, 22, 23]. This makes the tracking
problem quite straightforward. Unfortunately, attaching the trackers to the bones is
quite invasive and may lead to infections and/or fractures in addition to longer sur-
gical procedures and healing time. RGB-D cameras offer a promising noninvasive
alternative to the existing optical tracking systems. Indeed, such cameras are inex-
pensive and provide a relatively accurate 3D shape that may facilitate tracking and
avoid using markers altogether. As a result, several works in progress investigate the
use of RGB-D cameras for tracking [7–10, 17] in order to overcome the drawbacks
of existing systems. Tracking then boils down to registering the 3D intraoperatively
scanned bone portions on a preoperative 3D bone model. However, this requires the
registration process to be fast as to allow real-time tracking. Furthermore, registra-
tion accuracy, robustness to noise as well as to different amounts of bone motion
are also required for a safe and precise surgical act. The context of femoral bone
surgery, which is the subject of the current study, is particularly difficult and chal-
lenging for such registration because only a small portion of the bone is visible during
surgery [7].

This paper provides a comparative analysis study of 3D-3D rigid registration
algorithms of bones in the context of knee surgery. In particular, we focus on the
application described by Liu and Baena in [10] and in which femoral condyles are
scanned with a RGB-D camera and require intraoperative registration on a preopera-
tively scanned femoral bone point cloud. This is a challenging registration procedure
with real-time requirement and in which only a portion of the bone is visible during
surgery. In this regard, we compare the viability and efficiency of the well-known
and widely used Iterative Closest Point Algorithm (ICP) in its point-to-point [2]
and point-to-plane [11] variants against two more recent and promising algorithms:
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Super 4-Points Congruent Sets (Super4PCS) [12] and Globally Optimized ICP (Go-
ICP) [21]. Super4PCS is based on the 4PCSprocedure: it computes the best alignment
in the least squares sense by finding coplanar bases of 4 congruents pointsets within
a RANSAC (RAndom SAmple Consensus) procedure. In contrast, Go-ICP is based
on a branch-and-bound search using ICP as a subroutine. To test these algorithms in
the context of the chosen application, we propose a workflow to simulate bonemove-
ment and evaluate the registration accuracy, while applying increasing perturbations
to the scanned femoral condyles.

Our paper is organized as follows: the targeted registration algorithms are pre-
sented in Sect. 2. Section3 describes the material and methods used to compare the
registration algorithms. The results of our experiments along with our analysis are
given in Sect. 4. Section5 concludes this work and provides future works.

2 Registration Algorithms

This section provides a review of the four 3D-3D rigid point cloud registration algo-
rithms considered in our comparative analysis study: namely, point-to-point ICP,
point-to-plane ICP, Super4PCS and Go-ICP.

Point-to-Point ICP: The ICP algorithm from Besl and McKay [2] is the most com-
monly used algorithm for solving the 3D-3D registration problem and has many
variants [16]. The algorithm attempts to register the two point clouds by iteratively
considering the closest points (in the Euclidean sense) in the source and model point
clouds as corresponding ones. For S a source point cloud containing N points with
si = (six , siy, siz, 1)T a source point, andmi = (mix ,miy,miz, 1)T the closest model
point, at each iteration, the ICP algorithm estimates the optimal 4 × 4 rigid transfor-
mation matrixMopt by solving

Mopt = argmin
M

N−1∑

i=0

‖mi − Msi‖2. (1)

The estimated transformation is then applied to the source points and the process of
solving (1) is repeated.

Point-to-Plane ICP:While the point-to-plane variant of the ICPproceeds in the same
iterative way as its point-to-point counterpart, it differs from it in that it considers, as
a minimization metric, the distance between each source point and the tangent plane
at its closest corresponding model point [11]. This allows one to take advantage of
the surface normal information and was observed to generally lead to more robust
and accurate registration results. Using the same notation as for the point-to-point
ICP, and with ni = (nix , niy, niz, 0)T the unit normal vector at point mi from the
model, the optimal transformation is obtained by solving:
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Mopt = argmin
M

N−1∑

i=0

((mi − Msi )Tni )2. (2)

Super4PCS: The 4PCS procedure consists in three steps [1]: creating some wide
4-points coplanar base, searching for all congruent bases and finding the most appro-
priate one. First, to create a coplanar base, three points, say p1, p2 and p3, are ran-
domly selected and a fourth point, p4, is selected on the plane defined by the first
three points. The size of this wide base is conditioned by the overlap value, set by
the user. This value defines the proportion of common points in the point clouds.
Then, congruent base points are extracted. For a rigid alignment, two distances are
computed from the base as invariants. As it is always possible to find two intersecting
lines between the four coplanar points, let set p1 p2 and p3 p4 the lines intersecting
in a point p5. The two invariants are defined by the ratios:

r1 = ‖ p1 − p5‖ /‖ p1 − p2‖ (3a)

r2 = ‖ p3 − p5‖ /‖ p3 − p4‖ (3b)

All the bases having the same invariants, up to a user-defined approximation level
δ, are selected. Finally, the best aligning transformation is sought within a RANSAC
procedure. The chosen base is the one having the largest number of points within
δ distance from model points. In order to deal with the quadratic time complex-
ity, Super4PCS removes the redundant 4-points candidates by using a rasterization
approach.

Go-ICP: Go-ICP uses a nested branch-and-bound (BnB) structure together with the
point-to-point ICP minimization problem (1). The BnB structure consists in split-
ting the search intervals using a tree structure, and evaluating candidate solutions by
comparison with lower and upper estimated bounds. In this case, the outer BnB loop
explores the rotation space, whereas the inner one explores the translational compo-
nent of the rigid transformation. The algorithm is based on defining a progressively
tight underestimator of the globally optimal registration error within a parameter
space interval. While this corresponds to the most optimistic registration cost, the
most pessimistic one is provided by the traditional local point-to-point ICP. Clearly,
when an optimistic cost is worse than the pessimistic one, its corresponding param-
eter interval may be safely dropped. This makes the algorithm globally convergent
and guarantees global optimality (up to a predefined optimality threshold).

Three main parameters of Go-ICP can be set by the user: the MSE threshold
defining the convergence threshold based on themean of squared errors, the trimming
factor used tomanage outliers, and the size of the distance transform used to compute
the closest distances for bound evaluation.
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3 Material and Methods

3.1 Material and Preprocessing

For this study, we use one right femur 3Dmodel extracted from the database provided
by Nolte et al. [14]. A preprocessing of this 3D bone model is applied. It consists in
placing the bone in a well-defined femoral coordinate system, in defining a region
of interest (ROI) and in upsampling the point cloud.

First, some studies proposemethods to determine the anatomical axis of the femur
and the tibia [4, 13]. For our purpose, we use the following definition (see Fig. 1):

• The X axis is defined as the epicondylar axis, going through both epicondylar
points and oriented towards the right side of the patient, i.e. laterally for the right
femur and medially for the left femur.

• The Y axis is placed on the antero-posterior axis, also named Whiteside line. It is
oriented from the posterior to the anterior side.

• The Z axis is oriented from the intersection between X and Y axis towards the
center of the femoral head.

Then, in order to decrease the computation time, a ROI is defined by keeping only
the 10cm femoral distal part of the point cloud. This is realistic since the part of the
bone that is scanned during surgery is on the incision site.

Finally, point clouds are upsampled to increase and uniformize the point cloud
density of the model. This is necessary because the fitness score computed by the

Fig. 1 Femoral coordinate
system and femoral condyles
point cloud generation
process. Only a half matrix
of transducers with low
density (d = 10mm) is
presented for visualization
ease
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ICP algorithms depends on the point cloud density. For this purpose we use the
Poisson-disk sampling algorithm presented by Corsini et al. [5] and implemented
in Meshlab to create a Poisson density with a mean distance of 0.4mm. After this
preprocessing, the model point cloud contains 63,641 points.

3.2 Simulation Workflow

We propose an implementation of a simulation workflow. It aims at quantifying
the registration error of the point cloud of the condyles on the preprocessed bone
model point cloud during bone movement in real time. It consists of 4 steps: leg
movement simulation, femoral condyles point cloud generation, registration and
error quantification (see Fig. 2).

LegMovement Simulation: The movement of the leg (Fig. 2a) is simulated through
random transformations of the preprocessed bone model. These random transfor-
mations are generated with a Gaussian distribution of μr mean Euler angle with σr
standard deviation, and μt mean translation with σt standard deviation. We denote
by Mapplied the resulting 4 × 4 rigid transformation matrix. Different leg movement
speeds are simulated by varying the mean value of these transformations. Note that,
at each trial, the algorithms are fed the same data set obtained by applying a generated
transformation.

Femoral Condyles Point cloud Generation: The point cloud of the femoral
condyles is modeled by the following method (see Fig. 1). Each sensor is represented
by a matrix of n × m transducers. A raycast is generated from each transducer. All
the intersections between the raycasts and the bone model mesh are collected and
account for the condyle point cloud. Each condyle point belongs to the bone mesh,
but is not necessarily included in the bone point set.

We propose to simulate different point cloud densities to account for various
resolutions. This is done by varying the distance d (in mm) between two transducers
(e.g. between two rays).Wealso addperturbation to this point cloud throughGaussian
noise of mean value μnoise and standard deviation σnoise. After this step, the source

Fig. 2 Simulation workflow to compare registration error for different registration algorithms
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point cloud is composed of 691 points for d = 2mm, 110 points for d = 5mm and
2747 points for d = 1mm.

Registration: The generated femoral condyle point cloud is registered (Fig. 2c) on
the bone model point cloud using one of the registration algorithms described in
Sect. 2.

Error Quantification: In order to quantify the registration error (Fig. 2d), we use a
RMSE with the following definition.

For S a source point cloud containing N points,with si = (six , siy, siz, 1)T a source
point and Mest the 4 × 4 rigid transformation matrix estimated by the registration
algorithm as the inverse of Mapplied to align the transformed source on the model,
the RMSE is obtained by:

RMSE =
√√√√ 1

N

N−1∑

i=0

‖si − MestMapplied si‖2 (4)

This value differs from the standardRMSE error internally used by the registration
algorithms and also named fitness score [2]. In fact, the fitness score compares the
distance from each point of the registered source to its nearest neighbor in the model.
The RMSE instead compares the position of each point of the registered source
(after a transformation has been applied) MestMapplied si to the same point si from
the initially well-aligned source.

This metric has two advantages: it is not influenced by the quality of the matching
between both model and registered source point clouds and it does not depend on
the model point cloud density. But the metric can only be used if the initially applied
transformation is known, which is the case in our experiments.

3.3 Preprocessing

A point cloud preprocessing is applied before registration. First the model and the
source point clouds are centered. For both point-to-point and point-to plane ICP, the
parameters are computed so that the model is centered at the origin, and the same
parameters are applied to the source point cloud. For Super4PCS and Go-ICP, we
use an independent centralization: both source and model point clouds are centered
at their respective origins. In all cases, a normalization is then applied such that the
model lies within the unit-radius sphere. Both model and source point clouds are
scaled with the same scale factor. Finally, the point indices in the model and source
point clouds are randomized.
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4 Experiments and Results

The simulations were carried out on a laptop with an Intel i7-11850H 2.50GHz CPU,
Ubuntu 20.04, Oracle VM VirtualBox.

4.1 Parametrization of the Registration Algorithms

Point-to-Point andPoint-to-Plane ICP: Point-to-Point andPoint-to-plane ICPwere
tested using their respective Point Cloud Library’s (PCL v1.12 [18]) implementa-
tions. These are based on solving (1) and (2) using Singular Value Decomposition.

Parametrization of Super4PCS: Super4PCS was tested using its OpenGR library
implementation [15]. Particular attention was paid to the setting of following param-
eters:

• The overlap parameter defines the overlap ratio between the source and the model
point clouds, with respect to surface area of the smallest point cloud. The number
of trials of different 4-point sets bases is directly linked to this value: the larger
overlap, the less trials. The femoral condyles being totally included in the bone
point cloud, the real overlap value is 1. In our experiments, the overlap was set
to 0.9 because in practice some points may not necessarily belong to the bone. As
a consequence, the number of RANSAC iterations naturally increases.

• The parameter δ has an influence on the process of extraction of the pairs of points
and in the search of congruent bases. With a larger δ, more pairs of points are
considered to have the same invariants andmore congruent bases are evaluated. For
δ too small, the number of retrieved potential correspondences may be insufficient
and the algorithm fails to converge. With a much bigger δ than it ought to be, many
more possibilities are evaluated and the algorithm may take prohibitively longer
to terminate. In our experiments δ was set to 1mm and then normalized with the
same scale factor used during the normalization process described in Sect. 3.3.

• Super4PCS relies on a sparse matching of points across point clouds. It is hence
essential, as it is also recommended in the OpenGR library documentation, to use
a reasonable sample size limited to a few thousands of points. We used a sample
size of 3000 points.

• We set 60 s as a time limit as it has been proposed for some test data provided by
Mellado et al. [12] along with their software.

As suggested by the authors, the registration output of Super4PCS is fed into an ICP
refinement.

Parametrization of Go-ICP: Some parameters require proper setting by the user
for the Go-ICP algorithm.

• The tr imming factor is meant to manage outliers by excluding extreme values.
We set it to 0.
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• Go-ICP’s runtime depends on the convergence threshold (global optimality gap).
A compromise is hence needed between time and accuracy. We set the optimality
threshold to 0.001mm. A smaller value slows the algorithm down but increases
the registration accuracy.

• The number of nodes per dimension of the distance transform is used to compute
the closest distances for fast bound evaluation. We set this value to 30.

Description of the experiments: We conducted four experiments. For each of them,
we were interested in the mean registration time (Fig. 3), in the convergence (Fig. 4)
and in the mean of the RMSE value (Fig. 6) over 100 trials.

Both point clouds were initially aligned. For the two first experiments, we were
interested in the ability of the algorithms to converge while increasing the bone
movement amplitude for a fixed time difference. This movement is defined as a
transformation composed of a rotation and a translation. Except for the third exper-
iment, the matrix of transducers used to generate the femoral condyle points is of
size of 100 × 120 boxes, with d = 2mm. All the distances, for applied translations
and distance between transducers, are defined in mm before being normalized with
the same scale factor used during the normalization process described in Sect. 3.3.

• First, we increased the translation while not applying any rotation. μt was taken
in the range between −55 and 55mm with a step of 10mm along the three axes
X, Y and Z, with a fixed δt = 5mm.

• We then assessed the robustness of the algorithms while increasing the rotation
with a small realistic Gaussian translation (μt = 5mm, σt = 5mm).

• In the third experiment, we focused on the influence of the dimensions of the
matrix of transducers on the registration convergence. We increased d to change
the density of the source point cloud. Gaussian rotations (μr = 10◦, σr = 5◦) and
translations (μt = 10mm, σt = 5mm) were applied.

• Finally, we assessed the impact of noise on each registration algorithm. For this
purpose, we increased σnoise while keeping μnoise = 0mm. Gaussian rotations
(μr = 10◦, σr = 5◦) and translations (μt = 10mm, σt = 5mm) were applied.

4.2 Registration Time

Figure3a shows that Go-ICP and Super4PCS were quite slow (between 15 and 25s)
in comparison to the local algorithms point-to-point and point-to-plane ICP (less than
4s) in case of variation of translations. For translation values between −15mm and
15mm (resp. −5mm and 5mm), point-to-point ICP converged on average in 0.26 s
(resp. 0.18 s), and point-to-plane ICP converged on average in 0.13 s (resp. 0.08 s).

It can be seen in Fig. 3b that, by reducing the distance d between the center of
each transducer (i.e. by increasing the source point cloud density), the registration
time increased exponentially for Go-ICP, while it did not increase much for both
local ICP variants.
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Fig. 3 Registration time for: a a variation of the translation applied to the source point cloud,
b a variation of the distance between each transducer, c a variation in the applied noise standard
deviation

While applying increasing noise to the source point cloud (see Fig. 3c), the regis-
tration time did not increased much for point-to-point ICP: typically 0.24 s of mean
time in the absence of noise and 0.58 s in the presence of noise with a standard devi-
ation of 10mm. Point-to-plane ICP registration time increased from 0.17 s with no
noise to 4.61 s for noise with 10mm standard deviation. Super4PCS was a lot slower
with a mean registration time of 17.2 s without noise and 642s for noise with 10mm
standard deviation. The simulations with Go-ICP were not carried out to the end
because, for each trial, the time exceeded 95s for a noise standard deviation of 2mm
and to more than 2h for noise with 5mm standard deviation.

4.3 Convergence

We are interested in the convergence of the different algorithms. We consider that
a run converges if the RMSE value is less than 5mm. This value has been chosen
by considering the histograms from Fig. 4, with a bin size of 5mm. It separates the
cluster of points with a RMSE close to 0 from the rest of the clusters of points with
high RMSE values, representing point clouds that have been wrongly registered.
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Fig. 4 Histogram of RMSE for: a a variation in the rotation, b a variation in the translation

Fig. 5 Convergence percentage for: a a variation in the rotation, b a variation in the translation

In both cases of rotation variation (Fig. 5a) and translation variation (Fig. 5b),
Super4PCS converged only in about 30% of the cases with our parametrization. Go-
ICP always converged. Both local ICP algorithms increasingly failed to converge for
rotations of more than 20◦ and for translations exceeding than 10mm. Such failures
are likely due to a premature convergence to a local optimum.

4.4 Registration Accuracy

Considering only the cases where the algorithms converged, Super4PCS exhibited
the same behavior as that of Go-ICP and point-to-plane ICP when increasing the
rotations (see Fig. 6a), with a RMSE error above 0.3mm, while point-to-plane ICP
outperformed all algorithms with a RMS error of 3.3E−3mm. For translations (see
Fig. 6b), Super4PCS performed better than point-to-point ICP and Go-ICP when it
converged. No values for translations more than 35mm are shown because point-
to-point ICP failed to converge all the time. To explain the shift in the convergence
observed in Fig. 6b, we present in Fig. 6c the variation of the RMSE for the point-
to-point ICP algorithm by decomposing the applied translations into each Euclidean
axis. We suspect the shape of the bone point cloud to be the cause of the behavior
observed on the Z axis, and to induce the previouslymentioned shift. Figure6d shows
the mean RMS error for all the algorithms with non-converging cases included.
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Fig. 6 Registration accuracy for: a a variation of the only rotation in the case of convergence, b
a variation in only the translations in the case of convergence, c a variation of the translation in
Euclidean axes only in case of convergence, d a variation in the translations for all cases (i.e. with
and without convergence)

5 Conclusion and Future Work

We conducted a comparative analysis study of four 3D-3D rigid registration
algorithms—point-to-point ICP, point-to-plane ICP, Super4PCS and Go-ICP—in
the context of knee tracking with a 3D camera. We tested the registration robustness
to the amplitude of the leg movement (for increasing transformations), to noise and
to the density of the source point cloud. Our study has shown that point-to-plane
ICP is the most adequate to guarantee convergence despite a variation in the source
point cloud density and noise, while being fast. The condition for that is that the
movement amplitude stays small, thus inducing small motions between consecutive
point clouds. This is realistic because of the high frequency of data acquisition in
real-time tracking. Nevertheless, our study shows that there is a need for registration
algorithms that are more suitable for real-time applications. Dedicated solutions,
such as local point cloud descriptors, specific to the bone local shape, should be
investigated.
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