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Preface

Welcome to the proceedings of the International Conference on Medical Imaging
and Computer-Aided Diagnosis (MICAD 2022), held at the prestigious University
of Leicester, UK, fromNovember 20th to 21st, 2022.We are delighted to present this
proceedings that showcase the latest advancements in the fields of medical imaging
and computer-aided diagnosis.

MICAD has long been recognized as an important conference series dedicated
to fostering innovation and collaboration among researchers and practitioners in the
realm of medical imaging and computer-aided diagnosis. With each passing year,
the conference continues to grow in scope and significance, and MICAD2022 was
no exception.

MICAD2022 received submissions from 33 countries, in total, 98 full papers, and
each paper was reviewed by at least three reviewers in a standard single blind peer
review process. After meticulous evaluation and deliberation, 47 outstanding papers
were accepted for presentation at MICAD 2022. (acceptance rate of 48%).

The papers featured in this volume encompass a wide array of topics within the
fields of medical imaging and computer-aided diagnosis. They represent the collec-
tive efforts of researchers from diverse backgrounds, united by their shared commit-
ment to advancing the frontiers of knowledge in healthcare technology. We are
confident that the insights and innovations presented in these papers will contribute
significantly to the ongoing progress in these vital domains.

We extend our deepest gratitude to all the authors who submitted their work to
MICAD2022, as well as to our dedicated reviewers for their rigorous assessments.
Additionally, we would like to acknowledge the support and contributions of the
organizing committee, and the program committee for hosting this event. Our hope is
that the discussions, insights, and findings presented in these proceedings will inspire
future research, collaborations, and innovations in the realm of medical imaging and
computer-aided diagnosis.

ix



x Preface

Once again, we extend a warm welcome to you as you embark on a journey into
the rich tapestry of cutting-edge research showcased within the proceedings.

Shanghai, China Dr. Ruidan Su
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Optimizing the Non-local Means
Filtering of CT Images

Ivo Draganov and Veska Gancheva

Abstract In this paper a general optimizing procedure is proposed for the non-
local means (NLM) filter. It involves finding the optimal degree of smoothing, the
size of the search window and the size of the comparison window for a series of
Computed Tomography (CT) images. All of them contain Additive White Gaussian
Noise (AWGN) with a particular variance and zero mean, both of which are prelimi-
nary unknown. Applying the optimization procedure over a single slice from the CT
packet appears to be efficient enough in finding the optimal parameters of the filter
for the rest of the CT images. Positive results are obtained from filtering a complete
set of CT images from a patient’s body and the quality of the filtration is higher than
that of the Gaussian and Average filters.

Keywords CT image · Additive White Gaussian Noise · Non-local means filter ·
Optimization

1 Introduction

Computed Tomography (CT) images play a crucial role inmedical diagnostics. Their
quality is a prerequisite for effectivemedical treatment and it should bemaintained as
high as possible. The inherent noises from the principle of operation of the scanners
worsen the overall representation of the internal organs, both in their homogenous
areas and around the contours. Effective CT filtration could be established only if
the involved filtering techniques preserve the structure of the organs as a whole.

In [1] Zhang et al. propose adaptive non-local means (NLM) filter which uses
local principle neighborhoods (PC-NLM). Thus, they retain the structures of the
organs from low-dose computed tomography (LDCT) images. The latter are known
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to have significant level of noise and artifacts although the body of the patient is less
affected by the radiation. The differencewith the classical NLMfilter is that Principal
Component Analysis (PCA) is initially run over the local windows so they become
decomposed to principal components. They are processes then by the NLM filter.
Adaptive estimation of the filtering parameter is also proposed so components with
higher Signal-to-NoiseRatio (SNR) are less changed than thosewith lowerSNR.This
preserves the original structures in the image. The whole procedure happens several
times over typical LDCT images. The resulting Root Mean Square Error (RMSE)
from tests for PC-NLM is 10.35while forNLM it is 13.53, theCorrelationCoefficient
(CC) for PC-NLM is 0.9668, for NLM—0.8796, and the Structural Similarity Index
Measure (SSIM) for PC-NLM is 0.7551, for NLM—0.5191.

In another study [2], Zhang et al. suggest the combination of Tensor Decompo-
sition and Non-Local Means (TDNLM) for decreasing the extremely high levels of
noise in spectral CT. The image projections from all energy channels are grouped
together, forming a new image with higher SNR. Parameter selection strategy for the
proposed approach is developed in order to get optimal quality of the images. Exper-
imental results show decrease of RMSE from 0.225 to 0.0217 cm−1 and increase of
SSIM from 0.633 to 0.987.

Chen et al. [3] developed high-definition neural visualization technique of rodent
brain. The authors use micro-CT scanning and the non-local means approach. This
combination is thought to be effective in phenotyping and for histological manip-
ulations. The NLM filter is applied as post-acquisition phase after the postnatal rat
brain micro-CT scans for both the ex vivo and in vivo methods. The ex vivo method
and the NLM filtering lead to 3D images close in details to 4 × light micrographs.
This method provides more details in the neural features than those from the in vivo
approach. On the other hand, the effect of the NLM filter on the in vivo samples is
more underlined. It has bigger increase of the SNR. Resolutions of < 2–3 μm/voxel
and scanning time > 15 h are thought suitable to get satisfactory SNR.

Multi-scale transform and NLM is used as denoising approach for Positron Emis-
sion Tomography (PET) in [4] by Bal et al. It turns out that the mutual application of
these two techniques preserves better both the isotropic and anisotropic components
of the image rather than the application of just one processing algorithm. Wavelet
and curvelet transform with Tree clustering NLM (TNLM) appears to be appropriate
solution. TNLM takes out the homogenous (isotropic) features while the curvelet
transform separates the edges and contours (anisotropic features). Filtration takes
place separately for these two sets of objects. At the end they are grouped up together
again. Positive results are reported from test with this approach with the additional
benefit of increasing the contrast of filtered images.

Al-antari et al. [5] use the NLM filter for denoising high and low energy images
obtained from Dual Energy X-ray Absorptiometry (DEXA). They adapted the filter
parameters from uniform phantoms. The noises present in the source and the detector
of the apparatus are modeled separately. SNR for high and low phantom images
increases with 30.36% and 27.02%, respectively. In the same time, tests with real
images of a spine reveal improvement of the SNR of 22.28 and 33.43%.
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Another approach that employs multi-scale transform and the NLM filter for
denoising PET images, in this instance dynamic ones, is proposed by Jomaa et al. [6].
Analyzing images of small animal hearts the authors take into account the correlation
in time among them, employing the Shearlet and wavelet transforms to reduce the
noise. Having noise level of 7.68% the chi-square parameter from the filtering is
4.06. Significant improvement in terms of the Peak Signal to Noise Ratio (PSNR)
equal to 74.38 ∓ 9.2 and SSIM is also achieved as well as in contrast − 27.04 ∓
12.1.

A study on a wider set of images that aims denoising is described in [7] by
Panigrahi et al. In the base of the approach is multiscale NLMfiltering using curvelet
transform and hard thresholding. In this case, ringing artefacts appear so additional
processing by guided filter needs to be applied. Thus, edges and textures could be
preserved better. The PSNR of the reconstructed images for noise with standard
deviation σ = 40 is 29.089 dB. For the NLM alone it is 27.252 dB. In the same time,
SSIM is 0.777 for the composite technique and 0.691—for the NLM filter.

CT thoractic images are also being denoised by the NLM approach in a fast
implementation (FNLM) as described byKim et al. [8]. Gaussian noise with standard
deviation of 0.002 is added to MASH phantom images and then filtered separately
by the FNLM, Gaussian, median and Wiener filters. Achieved PSNRs are 82.354,
79.537, 82.094 and 81.882 dB. The Contrast to Noise Ratios (CNR) are 236.635,
47.630, 50.527 and 67.125, respectively.

FNLM is also used in the detection of pulmonary nodules as proposed by Shim
et al. [9]. The processing is done over chest CT images. The h value of the filter is
set to 2 values—0.0001 and 0.001. In the first case the registered number of artifacts
is less. The Coefficient of Variation (COV) reaches in the best use case just above
2.5 and the Contrast to Noise Ratio (CNR)—around 22.

An adaptive NLM implementation is tried over Basis Material Images obtained
from dual-energy CT at low emitting doses [10]. In this version of the filter distribu-
tionmap helps in obtaining properweights of the averaging pixels taking into account
the decomposition error. The parameters of the filter in one of the experiments are
h = 0.02, r = 50 and the radiuses of the search and comparison windows are 5 and
2, respectively. Depending on the type of the basis material and the dose level the
PSNR changes between 20.35 and 31.61.

Obviously, there is large variety of implementations of the NLM filter and the
different combinations with other techniques. In most of the cases, they are adapted
for particular purposes. The main goal in this study is to propose a general scheme
for optimizing the main parameters of the filter over CT image sets. It will lead to
optimal results in the filtration process. The rest of the paper is organized as follows—
in Sect. 2 description of the algorithm is given, in Sect. 3—experimental results and
in Sect. 4—discussion, followed by a conclusion in Sect. 5.



6 I. Draganov and V. Gancheva

2 Algorithm Description

2.1 The Non-local Means Filter

Let us have a grayscale noisy image In (i, j) with spatial coordinates of a pixel
i ∈ {0, M −1} and j ∈ {0, N −1}. The dynamic range is In ∈ {0, Imax }. The filtered
images are found according to [11]:

I f (i, j) =
∑

k

∑

l

w(i − k, j − l)In(i, j), (1)

where k and l are such that (i − k) ∈ {0, M − 1} and ( j − l) ∈ {0, N − 1} for
all possible positions within the image; w (i − k, j − l) are weights which are
estimated based on the similarity between neighborhoods around the pixels In(i, j)
and In(i − k, j − l). It is true that [11]:

∣∣∣∣
0 ≤ w(i − k, j − l) ≤ 1∑
k

∑
l w(i − k, j − l) = 1

(2)

The weights themselves could be estimated from [11]:

w(i − k, j − l) = 1

C(i, j)
e−

∑c/2
p=−c.2

∑c/2
q=−c.2 [In (i−p, j−q)−In (i−k−p, j−l−q)]2w

h2 , (3)

where p and q are temporal variables. They changewithin the boundaries of a compar-
ison window with a size of cxc pixels around the In (i, j) and In (i − k, j − l) pixels.
Also, h is degree of filtering. As a lower index in the exponent nominator w denotes
that it is a weighted Euclidean distance by a Gaussian with a fixed standard deviation
of d. The parameter C (i, j) is coefficient of normalization, estimated as [11]:

C(i, j) =
∑

k

∑

l

e−
∑ c

2
p=−c.2

∑ c
2
q=−c.2 [In (i−p, j−q)−In (i−k−p, j−l−q)]2w

h2
. (4)

It could be shown that [11]:

1

K

K∑

k=1

c
2∑

p=− c
2

c
2∑

q=− c
2

[In(i − p, j − q) − In(i − k − p, j − l − q)]2w

=
c
2∑

p=− c
2

c
2∑

q=− c
2

[
I f (i − p, j − q) − I f (i − k − p, j − l − q)

]2
w

+ 2σ 2 (5)
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where K is the number of comparisons between each two pairs of windows during
the process of estimation of the similarity; σ—standard deviation of the noise in the
image.

The comparisons aremadewithin a searchwindowwith a bigger size of sxs pixels.
The third parameter that controls the filtration process is the Degree of Smoothing
(DoS).

2.2 Proposed Optimization Procedure

The optimization procedure is shown in Fig. 1. One input image I (i, j) is filled with
Additive White Gaussian Noise (AWGN) with variance σ and zero mean. Thus, we
get the noisy image In (i, j). All three control parameters of the filter DoS, s and c are
varied in growing order with steps 1000, 2 and 2, respectively. There are 3 embedded
loops for the purpose. In each iteration the PSNR and SSIM of the filtered image
I f (i, j) are calculated. After termination of all loops the maximal PSNR and SSIM
determine the optimal DoSopt, sopt and copt . Then the actual filtration of all the images
from the CT set could take place.

The computational complexity of the proposed procedure with non-optimized
version of the NLM filter isO (T ((2c + 1)2(2 s + 1)2·N ·M)). In the last expression T
is the total number of iterations from all the loops shown in Fig. 1. It is straightforward
to obtain such a relation given the considerations from [12].

3 Experimental Results

The test image set is excerpt of theDeepLesion dataset [13] and it is comprised of 103
CT images with dimensions 512 × 512 pixels taken at 16 bpp bitdepth. The testing
platform is IBM® PC® compatible computer with Intel® Core™ i7-6820HQ CPU
with 4 cores. They are running in hyperthreading mode at 2.70 GHz, 64 GB of RAM
and 1 TB HDD. The operating system is 64-bit MS® Windows® 10 Professional.
The test environment is Matlab R2022a.

The first experiment aims to determine the optimal value of the Degree of
Smoothing (DoS) which is varied between 1 and 65,535 with a step of 1000. The
processing is done over a single image which is being noised with Additive White
Gaussian Noise (AWGN) with a variance σ 2 = 0.01 and zero mean. The resulting
PSNR and SSIM of the reconstructed image is given in Fig. 2. Both curves change
in such a way that saturation of the maximum value is reached at DoS = 19,000. It
is considered as the optimum.

The processing time of the whole image is changing according to the curve from
Fig. 3 with an average value of 0.1926s.

The second experiment consists of changing the size of the search window s
and the size of the comparison window c using the optimal value of the DoS as a
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Fig. 1 Non-local means filter optimization procedure

Fig. 2 Variation of a PSNR and b SSIM at different DoS

constant. The range for s is from 1 to 43. It is double the size of the typical value
for this parameter as recommended in [14]. For each iteration with regards to s the
size of the comparison window c changes from 1 to s − 1. Both windows’ sizes are
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Fig. 3 Processing time of the NLM filter at different DoS

Fig. 4 Variation of a PSNR and b SSIM at different s and c

always an odd number. The resulting PSNR and SSIM are given in Fig. 4. These two
parameters saturate to a maximum for c = 5 and s = 43, which are the optimums.

The filtering time for all tested sizes s and c are shown in Fig. 5. It is monotonically
rising function with the increase of both sizes.

The third experiment is related to filtering of all 103 CT images with DoSopt =
19,000, sopt = 43 and copt = 5. First AWGN with σ 2 = 0.001, 0.01 and 0.1 is added
to the images. Apart from the NLM filter, a Gaussian filter with zero centered kernel
and corresponding to the noise standard deviation σ is also used. Together with it,
an Average filter with size of the kernel of 3 × 3 pixels is also applied over all 103
images. The PSNR and SSIM of the reconstructed images as well as the execution
time in each case are presented in Table 1.
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Fig. 5 Filtering times at different s and c

Table 1 Efficiency of the applied filters

Parameter Filter

NLM Gaussian Average

σ2 = 0.001 PSNR, dB 47.08 30.00 39.47

SSIM 0.9954 0.4941 0.9149

t, sec 1.2953 0.0028 0.0013

σ2 = 0.01 PSNR, dB 45.46 20.00 29.52

SSIM 0.9939 0.0914 0.5374

t, sec 1.2899 0.0016 0.0014

σ2 = 0.1 PSNR, dB 32.21 11.18 20.44

SSIM 0.6555 0.0127 0.1316

t, sec 1.2923 0.0017 0.0014

4 Discussion

The highest value of the PSNR from the reconstructed images for noise variance
0.001 is obtained by the NLM filter. It is more than 7.6 dB than that of the Average
filter and 17 dB difference with the Gaussian filter. The difference in SSIM between
the NLM and the Average filter is relatively small—0.0805. It is considerably larger
with the Gaussian filter—0.5013. However, the execution time of the NLM filter is
462.6 times higher than that of the Gaussian filter and 996.4 times the processing
time of the Average filter. The latter is the fastest. These times remain almost constant
regardless of the noise variance.

For higher levels of the noise—σ 2 = 0.01 the differences in PSNR between the
NLM filter and the Gaussian and Average filters is 25.46 and 15.94 dB, respectively.
These differences show increase in the efficiency of the NLM filter with the increase
of the noise level, compared to the other two filters. For the most degraded images at
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σ 2 = 0.1 the NLM filter outruns the Gaussian and Average filters in PSNR by 21.03
and 11.77 dB. For the SSIM the differences are 0.6428 and 0.5239, respectively.

The visual comparison of the quality of the reconstructed images show relatively
small suppression of the noise for the Gaussian filter (Fig. 6c). In this instance
the grainy structure over the whole image still persist. However, there is a little
improvement in contrast and the structure of the organs could be spotted better. The
Average filter (Fig. 6d) smooths the imagemore than theGaussian filter. The contours
of the objects are blurred and the size of the grains, still remaining from the noise, is
bigger. The smoothest effect from the filtering comes from the NLM filter (Fig. 6d).
The grainy structure is totally absent, but the contrast is a bit lower.

Thequality of theNLMfiltered images depends non-linearly from theDoS (Fig. 2a
and b). After steep increase of both the PSNR and SSIM from values of 20 dB and
0.1 for DoS = 1, there is a zone of saturation starting around DoS = 19,000. There
the PSNR is around 44 dB and the SSIM reaches almost 1. The filtering time does not
seem to depend on the DoS. There is just a slight variation for it within the interval
0.15–0.22 s (Fig. 3). The change of the PSNR is upwards with the increase of the
search window with its side s reaching a maximum for 43 pixels of around 45.5 dB.
From s= 3with PSNR= 27.81 dB to s= 21with PSNR= 33.86 dB there is themost
significant increase interval. In the interval c = 3 with PSNR = 29.43 dB up to c =
11 with PSNR = 40.26 dB the quality of images rises the most entering a saturation
zone which ends at c = 43 with PSNR = 45.55 dB. SSIM almost identically follows
the change of the PSNR with the lowest level of 0.5347 for c = 3 and s = 3. Then it
goes to 0.9451 for s = 9 and c = 3 and then follows the saturation zone with 0.9947
for s = 43 and c = 41 at its end. Filtering time steadily increases with the growth of
s and c (Fig. 5). From 5 × 5 pixels search window and 3 × 3 comparison window it
is 0.0057 s and rises to 19.68 s for s = 43 and c = 41.

5 Conclusions

In this paper a general optimization scheme is proposed for the control parameters of
the NLMfilter. It is tested over a set of CT images. Experimental results show that the
Degree of Smoothing affects the quality of the reconstructed images. The increase
of this parameter leads to saturation of both the PSNR and SSIM. There is a minimal
value for DoS which could be found as an optimal at the beginning of the saturation
zone. The change of DoS has no significant effect on the filtration time. The sizes of
the search and comparison windows also have non-linear effect over the quality of
the reconstructed images. For both of them there are saturation areas in the PSNR and
SSIM functions. It is possible to select the minimum windows sizes, such that they
lay at the beginning of the saturation zone. Thus, they guarantee best quality of the
images at the lowest computational time. The computational time, itself, increases
monotonically with the increase of the surface of the search and comparison window.
The NLM filter provides better quality of the filtered CT images than the Gaussian
and Average filters for wide range of noise level of AWGN. The filtering time of all
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a b

c d 

e 

Fig. 6 Sample CT image: a original, b noisy, filtered by c Gaussian filter, d average filter and
e optimal NLM filter (the representation of the images here is at 8 bpp, scaled down from 16 bpp)
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three filters does not depend on the noise level. The NLM filter is more than 2 orders
of a magnitude slower than the other two filters. There is no grainy structure in the
images, filtered by the NLM, but there is a little loss of contrast. As a future work
optimization of the NLM filter as processing time could be undertaken. Also testing
with other types of images could be accomplished, e.g. magneto-resonance imaging
(MRI), multispectral and hyperspectral.
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Exploring Structure-Wise Uncertainty
for 3D Medical Image Segmentation

Anton Vasiliuk, Daria Frolova, Mikhail Belyaev, and Boris Shirokikh

Abstract When applying a Deep Learning model to medical images, it is crucial
to estimate the model uncertainty. Voxel-wise uncertainty is a useful visual marker
for human experts and could be used to improve the model’s voxel-wise output,
such as segmentation. Moreover, uncertainty provides a solid foundation for out-of-
distribution (OOD) detection, improving the model performance on the image-wise
level. However, one of the frequent tasks in medical imaging is the segmentation of
distinct, local structures such as tumors or lesions. Here, the structure-wise uncer-
tainty allows more precise operations than image-wise and more semantic-aware
than voxel-wise. The way to produce uncertainty for individual structures remains
poorly explored. We propose a framework to measure the structure-wise uncertainty
and evaluate the impact of OOD data on the model performance. Thus, we identify
the best UE method to improve the segmentation quality. The proposed framework
is tested on three datasets with the tumor segmentation task: LIDC-IDRI, LiTS, and
a private one with multiple brain metastases cases.

Keywords Uncertainty estimation · Out-of-distribution detection ·
Segmentation · CT · MRI

1 Introduction

Advances in Deep Learning (DL) allow solving a medical image segmentation task
with near human-level quality [1]. But predictions of DL models in medical imaging
could not be taken blindly and assumed to be accurate. Ideally, themodel is required to
provide the uncertainty estimate of its output. Estimating uncertaintymaps inmedical
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image segmentation helps to solve a wide range of problems. The uncertainties are
desired for a better reception by medical experts [2], but the direct impact is hard to
measure in this case.Alternatively, one uses uncertainty on a voxel-wise level to refine
the segmentation map, thus improving the model’s performance [3]. Uncertainty
maps also could be aggregated on an image-wise level, forming a standalone out-of-
distribution (OOD) detection method [4].

In the case of multiple objects or structures per image (e.g., tumors, lesions),
clinical tasks also require analyzing the model’s output on the structure-wise level.
Such cases are common in medical, especially radiological [5], imaging: a brain
tumor, lung cancer, organ-at-risk, or liver tumor segmentation. However, the ways
of using or reporting the uncertainty on distinctly localized multiple structures are
poorly explored, rising acute questions. For example, using voxel-wise uncertainty,
as in [3], one can improve the segmentation quality of detected structures but cannot
filter individual false positive (FP) predicted objects. In image-wise uncertainty, as
in [4], we do not consider the segmentation of local structures and also rebalance FP
and true positive (TP) predictions in a sub-optimal way, filtering the whole image at
once.

Therefore, in this work, we study uncertainty for individual predicted structures,
i.e., connected areas of the predicted segmentation mask. We assume that treating
uncertainty maps in a structure-wise manner helps to remove the FP detections more
effectively, thus improving the detection quality. Secondly, we assume that structure-
wise uncertainty (SWU) value strongly correlates with the segmentation quality of
a given structure. If the latter assumption holds true, it’s possible to conduct quality
control to enhance the model segmentation performance in the human-in-the-loop
setup [6],where the human expert refines themost uncertain (thus,worst) predictions.
We validate and experimentally confirm both assumptions.

Partially, these assumptions were tested directly or indirectly in a prior work. We
detail the related studies and compare with their methodology in Sect. 2. We extend
these studies in several major ways and below we detail our contributions:

• Structure-wise uncertainty estimation. We evaluate different uncertainty estima-
tion (UE) techniques and local uncertainty aggregation functions. We show that
switching from predicted values space to the structure’s Entropy produces 3%
fewer FP predictions on average, up to 7% fewer on LiTS dataset, adding a negli-
gible overhead and being applicable to any segmentation network.

• Uncertainty under out-of-distribution. We propose to evaluate aleatoric and epis-
temic performance by testing on in-distribution (ID) and OOD data. We develop
three OOD aleatoric setups to demonstrate different SWU properties. We show
that Pairwise-DiceUncertainty [7] excels in theOOD setups, filtering out 6%more
FP predictions than the baseline method, and itself in the ID setups.

• Extensive and robust evaluation. We compare state-of-the-art UE techniques on
three large datasets with volumetric medical images. The datasets relate to the
described problem and contain cases with multiple lesions.
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2 Related Work

One of the direct SWU applications is FP reduction. Pursuing this goal, Nair et al.
[8] improved performance of their model in the multiple sclerosis segmentation task.
The authors took a sumof logarithms (sum-log) over a predicted structure uncertainty
as a score to filter them.We argue that the sum-log is biased towards small objects. In
a broader setup with the differently sized target structures, we show that the standard
aggregation techniques such as mean surpass sum-log with a great margin.

Another approach to filter FP is a dedicated postprocessing model. Ozdemir et
al. [9] trained a network to classify predicted structures and compared different
dropout and ensembling regimes for this network. Bhat et al. [10] reduced FP in the
liver lesion segmentation task by training an SVM classifier on predicted patches,
their uncertainties, and hand-crafted features. However, FP reduction with a separate
network is limited with strictly one structure per patch or image. Here, we consider
a more general setup.

Other studies explore the ability to predict quality from uncertainty. Roy et al. [7]
developed a Monte-Carlo-based approach to predict whole-brain segmentation and
uncertainty maps. The authors calculated mean entropy, pairwise Dice score, coef-
ficient of the volume variation, and intersection over union to predict structure-wise
Dice scores. Mehrtash et al. [11] proposed to use mean entropy to predict struc-
ture Dice scores and achieved a high Pearson correlation between them for different
tasks. Hoebel et al. [12] studied several setups for the whole image quality predic-
tion. They compared Deep Ensembles against Monte-Carlo dropout and Dice loss
against weighted cross-entropy in terms of pairwiseDice score, coefficient of volume
variation, and mean entropy value. DeVries et al. [13] trained a separate network to
predict image-wise segmentation quality and compared different uncertainty estima-
tion methods with this network. We extend these approaches by studying uncertainty
application in a structure-wise manner instead of the image-wise one and evaluate
all related UE techniques. Moreover, we introduce studying uncertainty in the OOD
setup.

SWU is also taken advantage of in other challenges. Seeböck et al. [14] devel-
oped an anomaly detection method for retinal optical coherence tomography, but
the authors pursue the other goal of developing a weakly-supervised segmentation
model. Hiasa et al. [15] studied muscle segmentation in an active learning setting and
proposed to use mean structure-wise variance to predict the structure’s Dice score.
In our work, we identify the UE technique for the supervised segmentation problem.

Thereby, we conduct an extensive study of known uncertainty estimation tech-
niques on a structure-wise level. We perform unified experiments across individual
aggregation and uncertainty estimation techniques, emphasizing the importance of
studying both aleatoric and epistemic setups.
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3 Methods

In this section, we propose a general framework to estimate SWU. The estimation
process consists of three steps: (i) compute a voxel-wise uncertainty map, (ii) split
the segmentation map to obtain the individual structures, and (iii) aggregate the
uncertainty inside every structure. The SWU scores can be further used for the FP
filtration and quality estimation.

3.1 Structure Definition

The ground truth structure (e.g., lesion, tumor) is defined as a connected area of the
annotation mask. Similarly, a predicted structure is a connected area of the predicted
segmentation mask, which can be binarized with different probability thresholds.We
experimentally compared different threshold values and found out that either larger
(e.g., 0.75) and smaller (e.g., 0.25) ones give considerably worse results than the de
facto standard threshold of 0.5. We further use the probability threshold of 0.5 to
define a predicted structure and omit the comparison of thresholds for the clarity.

3.2 Uncertainty Estimation Methods

To obtain uncertainty maps, we use Deep Ensembles [16], which are considered
to be state-of-the-art for estimating uncertainty in the medical image segmentation
tasks [11, 17]. We construct an ensemble of T = 5 neural networks trained with
different weight initializations, during the inference time, T predicted probability
maps P1, . . . , PT are generated for an input image. If probability map is a multi-
channel (softmax) output, the different channels are denoted as Pc

i .
The conventional way to filter FP predictions is to threshold a predicted mask

with its maximum value; thus, we consider Pred (max) a baseline method. We also
use the output of the final layer before sigmoid activation instead of probabilities and
call this method Logit. As one of the standard UE methods, we include Entropy:
UEnt = −∑C

c=1 P
c log Pc.

The methods above can be applied both to a single and the ensemble’s (i.e., the
average) prediction by substituting Pc with P̄c, where P̄c = 1

T

∑T
t=1 P

c
t . Alterna-

tively, we can apply averaging after calculating the entropy:UAE = − 1
T

∑T
t=1

∑C
c=1

Pc
t log Pc

t . We call this method Average entropy (AE) and also include it into con-
sideration.

The following two methods are drawn from the related work on UE and operate
only on multiple predicted probability maps. The first isMutual Information (MI)
or BALD [18]:UMI = −∑C

c=1 P̄
c log P̄c + 1

T

∑T
t=1

∑C
c=1 P

c
t log Pc

t . The second is

Voxel-wise variance of predictions [19]: UVar = 1
TC

∑T
t=1

∑C
c=1 (P

c
t − P̄c)2.
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The last method that we consider is Pairwise Dice (PD) between predictions [7].
Unlike previous methods, it produces a single uncertainty score per structure instead
of a voxel-wise uncertainty map. This uncertainty score is the averaged dice score
between all pairs of T predictions and a given structure.

3.3 Uncertainty Aggregation Techniques

Assuming uncertainty map is given, we need to assign a single score for every
structure. In [8], the authors calculate sum-log of uncertainties for all voxels v in
the structure S: u = ∑

v∈S logUv . We argue that sum-log is heavily unbalanced in
cases with differently sized structures, which are common. Therefore, we include in
comparison the standard and, in this case, balanced statistics: min, max, mean, and
median.

4 Experiments

4.1 Data

We study SWU performance on three different challenges. To explore a method’s
aleatoric performance compared to epistemic, we provide an OOD dataset in every
task. Themodel is trained only on the ID training set, andwe compare its performance
on the ID test set and the OOD data. All OOD datasets share the same preprocess-
ing steps with their ID pairs; the preprocessing is disclosed in the supplementary
materials.

Mets (private ID dataset) includes 1554 T1-weighted headMR imageswith anno-
tated metastases masks. Besides, one may consider a recently published public alter-
native [20]. EGD (OOD for Mets) includes 374 images of brain MRI (4 different
modalities) with annotated glioblastomamasks [21].We select 141 of themwith Flair
as the primary modality. We consider it to have empty metastases masks. LIDC (ID)
includes 1018 chest CT images from LIDC/IDRI database [22] with annotated lung
cancer masks. MIDRC (OOD for LIDC) includes 110 chest CT images with anno-
tated COVID-19 lesion masks [23]. We select 98 of them with non-empty segmenta-
tion masks. We consider it to have empty lung cancer masks.LiTS (ID) includes 131
abdominal CT images with annotated liver and liver tumor masks [24]. LiTS-mod
(OOD for LiTS) is a synthetically created dataset from 13 LiTS images with empty
liver tumor masks, generating typical CT imaging artifacts [25, 26].

All considered ID datasets are diverse and have the multiple small structures
segmentation task, which satisfies the considered setup. Five out of six datasets are
publicly available, yielding the partial reproducibility of our experiments.
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4.2 Experimental Setup

In all our experiments, we use the same segmentation model based on nnU-Net [27].
The implementation and training details are provided in the supplementary materials
and they are also available in our repository.1

Metrics. To measure FP reduction capacity, we evaluate howmany FP detections per
image are filtered at 95% recall level and compute average recall for high precision
values. Considering Rmax is the maximummodel’s recall value, and Fx is the average
number of FP predictions for a recall value x

100 × Rmax, we compute the FP reduction
metric as F100−F95

F100
to account for a different number of FP on the OOD setups. The

average recall is computed for precision values P from min(P) to 1
2 (min(P) +

max(P)), the same for each method on a setup, to obtain statistics only from the
more relevant high recall region. For quality control metrics, we report the absolute
value of the Spearman correlation coefficient between the individual structure Dice
scores and SWU values.

4.3 Results

FP reduction. Despite the solid performance of the baselinemethod, there are advan-
tages of using other uncertainty measures and aggregation techniques; see Table1.
Using the Entropy measure or mean aggregation, one can produce fewer FP predic-
tions for most setups. Except for Variance, AE, and Entropy (sum-log) [8], the other
methods surpass the baseline. The most consistent methods are PD and Entropy,
allowing for up to 7% FP reduction with a single model and 11% with the ensemble
model.

A considerable rise in OOD performance is shown by the discrepancy meth-
ods (PD, MI, Variance) in comparison to the averaging methods (Pred, Logit, AE,
Entropy); see Fig. 1, Table1. The discrepancy methods produce 6–8% fewer FP pre-
dictions on the aleatoric OOD setups while averaging methods do not exceed 3%
limit, with an even more apparent difference on individual datasets. Since the OOD
setups differ from the ID ones only in the additional FP samples, we can conclude
that the discrepancy methods are better at filtering OOD data.

Quality control. For most of the methods, mean aggregation is a better index of
a structure quality than min and max aggregations (Fig. 2 and Table2). The only
exceptions are Variance, with poor performance in all setups, and Pairwise Dice,
which does not use the voxel space uncertainty. The Entropy (mean) is the best
method in all LIDC and Mets setups and the second best in ensemble LiTS setup,
while discrepancy methods generally show the weaker correlation.

1 https://github.com/BorisShirokikh/u-froc.

https://github.com/BorisShirokikh/u-froc
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Fig. 1 FROC curves for the best methods in comparison with the baseline (the dashed line). For
visual clarity, the average number of FP per image is given in the log scale. The measures are
obtained on the ID data (row 1) and the ID and OOD data combined (row 2). Discrepancy methods
show better performance when OOD dataset is present

Note that we do not consider the OOD setups in this quality control study, since
OOD data only introduces FP instances and, thus, does not affect the correlation of
scores on TP instances.

Overall, the most consistent method to evaluate SWU is the mean Entropy. It
performs among the top methods, producing 2.5% fewer FP predictions on average
and giving a 0.77 Spearman correlation with the object Dice score for TP predictions.
In the presence of OOD data, Pairwise Dice score reduces FP predictions better than
others, filtering from 2 to 11% more FP structures, depending on the OOD setup.

4.4 Discussion

To construct OOD setups with positive samples, we had to include the ID data. That
means that the FP reduction metric shows an average between ID and OOD false
positives, and pure OOD performance remains unknown. One of the possible ways
to approach this problem is to create a domain-shifted setup which would contain
OOD data with the true-positive structures.

The other promising application of the SWUframework is amore efficient human-
in-the-loop control. Quality estimates might be a good measure to select images or
individual structures to show a medical professional, but the question of how to gain
themost quality given a limited amount of human interaction, combinedwith optimal
FP reduction remains open.
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Fig. 2 Linear models for object Dice scores from SWU plotted on top of the structures’ heat-maps.
The purple and red lines are constructed for only TP and both TP and FP structures, respectively.
Single-dimensional distributions of the measures are plotted along the axes

Table 2 Spearman correlation coefficients between structure’s Dice score and SWU value for TP
predictions

Second
Agg.

Ensemble LiTS LiTS** LIDC LIDC** Mets Mets**

Pred Max 0.86/0.81 0.46/0.46 0.68/0.62 0.63/0.63 0.79/0.65 0.61/0.60

Logit Max 0.85/0.81 0.46/0.46 0.67/0.62 0.64/0.63 0.75/0.65 0.61/0.60

Entropy Min 0.86/0.81 0.46/0.46 0.69/0.62 0.64/0.63 0.79/0.65 0.61/0.60

Pred Max � 0.79/0.69 0.66/0.66 0.70/0.64 0.66/0.66 0.78/0.64 0.61/0.59
Logit Max � 0.75/0.69 0.66/0.66 0.69/0.64 0.67/0.66 0.74/0.64 0.61/0.59
AE Min � 0.72/0.69 0.55/0.65 0.55/0.61 0.58/0.65 0.77/0.64 0.53/0.58

Entropy Min � 0.78/0.69 0.66/0.66 0.70/0.64 0.67/0.66 0.78/0.64 0.61/0.59
MI Min � 0.72/0.24 0.64/0.48 0.49/0.38 0.48/0.40 0.57/0.27 0.50/0.33

PD Min � 0.76/0.74 0.65/0.71 0.67/0.66 0.64/0.63 0.74/0.76 0.59/0.60

Variance Min � 0.42/0.64 0.44/0.60 0.22/0.55 0.22/0.55 0.10/0.52 0.22/0.54

Columns denoted by “**” show values for all predictions, including FP. The values separated by
“/” represent mean and extreme aggregation, respectively

5 Conclusion

In this work, we have conducted an extensive study of structure-wise uncertainty over
six different setups. We have shown that mean Entropy provides a solid baseline
in both false positive reduction and quality control tasks. Also, we have revealed
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the importance of studying uncertainty metrics under different origins of data. In
our experiments, the discrepancy SWU methods perform significantly better for FP
reduction in the presence of the OOD data, with the best results achieved by Pairwise
Dice. Provided results should serve as a solid baseline for future structure-based
analysis.

Acknowledgements The authors acknowledge the National Cancer Institute and the Foundation
for theNational Institutes ofHealth, and their critical role in the creation of the free publicly available
LIDC/IDRI Database used in this study. This research was funded by Russian Science Foundation
grant number 20-71-10134.

Experimental Setup

Preprocessing

Here, we describe data preparation steps including datasets splits, normalization, and
interpolation.

Mets data is randomly split into train (1140 images) and test (414 images) sets.
We interpolate the images to have 1mm × 1mm × 1 mm spacing.

LIDC data is randomly split into train (812 images) and test (204 images) sets.We
clip image intensities between −1350 and 350 Hounsfield units (HU)—the standard
lung window. We interpolate images to have 1 mm × 1 mm × 1.5 mm spacing.

LiTS is presented as two subsets, so we use the first as a test (28 images) and
the second, excluding cases with empty tumor masks, as a train (90 images) set. The
images are cropped to the provided liver masks. The intensities are clipped to the
[−150, 250]HU interval—the standard liver window. Finally, we interpolate images
to have 0.77 mm × 0.77 mm × 1 mm spacing.

LiTS-mod is obtained by random changes of the reconstruction kernel to be
extremely soft (a = −0.7, b = 0.5) or sharp (a = 30, b = 3) using the implemen-
tation and notations of [26], and addition of “metal” artifacts (ball of radius 5 and
3000 HU) by substituting the parts of sinogram projection, as in [25].

Before passing through the network, we scale image intensities in [0, 1].

Training Setup

Although using cross-entropy loss has theoretical justifications of encouraging bet-
ter calibrated predictions [16], models trained with this loss function fail in our
segmentation task. For that reason we use Dice Loss [28] and its modifications in
our experiments. Thus, uncertainty estimates might be shifted in such tasks, and
experimental evaluation, as in our study, becomes even more relevant. All models
are trained in a patch-based manner: patches are sampled randomly so that they con-
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tain structures. We use SGD optimizer with Nesterov momentum of 0.9 and 10−3

initial learning rate, which is decreased to 10−4 after 80% of epochs. For LiTS and
Mets segmentation the model is trained for 100 epochs (100 iterations per epoch,
batch size 20), while for LIDC segmentation there are 30 epochs (1000 iterations per
epoch, batch size 2).
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Towards Developing a Lightweight
Neural Network for Liver CT
Segmentation

Mohammed Yusuf Ansari, Snigdha Mohanty, Serah Jessy Mathew,
Subhashree Mishra, Sudhansu Sekhar Singh, Julien Abinahed,
Abdulla Al-Ansari, and Sarada Prasad Dakua

Abstract Image segmentation is crucial during the diagnosis and treatment plan-
ning of various liver diseases, especially hepatocellular carcinoma (hcc). We present
a new neural network, Res-PAC-UNet, employing Pyramid Atrous Convolutions
and a fixed-width residual UNet backbone resulting in low parameter count and of
course, good liver CT segmentation. We use medical segmentation decathlon dataset
to train the network. The resulting segmentation gives a Dice similarity coefficient
of 0.958±0.015 with less than 0.5 million parameters with 1.2 million parame-
ters.

Keywords Liver · Segmentation · Neural networks

1 Introduction

Outlining the human organs on medical images helps in proper planning and prevent
the clinicians from damaging the surrounding tissues. Furthermore, the segmented
images can have other applications, such as, in image fusion of ultrasound (US),
magnetic resonance image (MRI), computed tomography (CT), etc. to enhance visu-
alization. The fused images can be used in image guided surgeries or interventions.
There have been mainly two types of segmentation, automatic and semi-automatic.
The automatic ones face various challenges due to the nature of the method itself
and that of the complexity of intensity distribution caused by the cancer [1–3]. A few
challenges are: (1) the intensity distribution between liver and surrounding tissues is
such that sometimes it would be difficult for a non-clinician to discriminate, (2) use of
contrast enhancement sometimes results in increased noise level and artifacts on the
CT scans, (3) voxel spacing and axial resolution on CT scans cause loss of necessary
volumetric information for CT segmentation [4], (4) the liver tumors sometimes
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have complex features, such as varying intensity, varying shape and size making the
segmentation task daunting, and (5) additionally, the partial volume effect can’t be
neglected adding further ambiguity.

The literature in image segmentation is quite rich; still, newmethods keep coming
to overcome the challenges posed by the input data and segmentation methods. Ear-
lier, these techniques include: region growing [5–7], model-based [8], clustering [9],
graph cut [10, 11], etc. However, the conventional methods have failed to perform as
per the expectation level of the clinicians, especially with respect to accuracy, robust-
ness, and automation, thus, neural network has presently taken the limelight [12].

The convolutional kernels in the neural network extract the relevant features in
the input data (image) reducing the user dependency and increasing the accuracy.
Ronneberger et al. [13] has revolutionized by proposing a network that has been so
popular that the modifications keep coming in every now and then. This is based on
an encoder-decoder concept, where the encoder learns to generate a dense feature
representation from the input data and the decoder creates the segmentation mask.
Repeated pooling causes a loss in spatial information; thus, the skip connection has
been introduced to minimize this loss.

Recently, a new network has been proposed, Thin-UNet [14], that achieves image
segmentationwith less parameter count. In this paper,we especially focus on reducing
the model size, parameter count, and model usability keeping appropriate acceptable
segmentation accuracy.

2 Proposed Methodology

2.1 Network Architecture

Although UNet has been quite popular, there are some limitations with respect to
skip connections and large parameter counts [15]. Duplications of low resolution
feature maps are resulted from the encoder (E) and propagated to decoder (D) lead-
ing to smoothing the object boundaries. Thus, to overcome this problem, a novel
network, Res-PAC-UNet (Fig. 1), is proposed, where constant feature width (W) of
tuned backbone in addition to the residual (R) blocks are used minimizing the mem-
ory footprint and parameter count. This also improves the gradient and information
flow. We employ strided convolutions; the convolutional blocks are replaced by the
R blocks; this downscales the input features. We also aim to leverage multi-scale
volumetric features from the low-resolution feature maps of the encoder; Pyramid
Atrous Convolution Module (PAC) modules is deployed over the skip connections
to generate these. PAC modules are not placed at the top of the skip connections to
avoid large memory that is required for high resolution feature maps. It is shown in
Fig. 2 on how the R block is being used in the tuned backbone. The feature map is
downscaled by half due to the initial convolutions in E residual blocks with a stride
of 2 (s0 = 2). On the other hand, upscaling of the feature map occurs by the decoder
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Fig. 1 The Res32-PAC-UNet network for segmenting liver CT

after transposing convolutions and regular convolutions, where a 1 stride does the
job in the R blocks. The expression for regular convolutional operation and R blocks
may be provided as:

Convol_u×u×u(xi, s,W ; θ) = f (w j �s xi + b j ),∀1 ≤ j ≤ W, w j ∈ θ, b j ∈ θ,

(1)
where, xi , s,W , and u represent feature map, convolution stride, number of kernels,
kernels dimension, respectively; furthermore, the information on kernels weights
and biases are contained by θ . Additionally, the activation function, f (.), is applied
to the convolution result, �s is the result of strided convolution operation. b j and
w j represent the jth kernel bias and the jth kernel weight, respectively. Thus, the R
block can be expressed as:

oi1 = Convol_u×u×u(c
i−1, s0,W ; θ i

1),

oi2 = Convol_u×u×u(c
i−1, s0,W ; θ i

2),

oi3 = Convol_u×u×u(c
i
1, s1,W ; θ i

3),

oi = oi2 ⊕ oi3,

(2)

where, oi−1 and oi are the R block input and output, respectively. oi1, o
i
2, o

i
3 are the

3 convolutional operations, whereas, ⊕ represents addition operation element-wise.

Modified Surface Loss There has been some popular loss functions, such as focal
loss, surface loss, binary cross-entropy (BCE) and others [18]. However, the distance
metrics do play crucial role to quantify the boundary errors, thus, Kervadec et al. [16]
present a boundary loss function that describes a graph-basedoptimization to estimate
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Fig. 2 a Residual block used to improve the gradient flow and information. b PAC building block
to capture the volumetric features of multi-scale nature at the encoder side

the flow of the gradient for curve evolution. Subsequently, the regional softmax
probabilities of the pixels (�) are used to calculate the boundary loss in the ground
truth level-set function (φG) and predicted segmentation mask (Mθ ).

BL(�) =
∫

�

φG(p)Mθ (p)dp. (3)

Kervadec et al. [16] combine the region-based loss (surface loss) with boundary
loss providing improvement in accuracy of 8%. Thus, we have modified the above
proposed loss function; we replace with a combo loss that is the sum of Dice loss
and focal loss. The objective is to emphasize the distribution with regards to area and
class of the regions of interests (ROI). This would certainly improve corresponding
metrics of class accuracy. In addition, a weight shifting strategy has been proposed
that shifts the weight from 0.01 to 0.75, and 0.99 to 0.25, of boundary loss and combo
loss, respectively. This strategy helps in achieving a decent portion of the net weight
after the training.

3 Setup for the Experiment

3.1 Data

Inmedical segmentation decathlon [17], liver CT scanswere used to train themodels.
The database accommodates 201 CT scans that are contrast-enhanced with 131 scans
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in the train set and 70Scans in the test set. The scans’ spatial dimensionwas 512×512,
and number of slices was having a range (of 50, 1100). The scans are from patients,
who have hcc or liver metastases. Performing training (101 scans) and validation (31
scans) on every original set was done on the CT scans to overcome the challenges in
the test set.

Nifti loader was used to read the file during the pre-processing stage and the scans
thatwere in the range [−500, 500]HUwere captured. The image intensitieswere then
recomputed to [−1, 1] by min-max normalization. To reduce VRAM consumption,
spatial measurements of input scans were resized to 256×256, and 64 slices from
each scan’s liver territory were resampled. The consumption of VRAM is a major
issue, when designing networks for 3D CT. The tumor label was then replaced with
liver label for training liver CT segmentation networks. Volumentations package was
applied to the refined CT scans to minimize overfilling.

3.2 Implementation Details

CT scans were stored in RAM before training to reduce input/output (I/O) as well
as computational costs. Neural networks in Keras1 was also built using Tensorflow
dataset generator and prefetching, which makes certain the neural networks were
reliably supplied enhancing the scans together with ground truth. To establish model
convergence, the networks were trained for 150 epochs (Fig. 3). Three different loss
functions and modified surface loss function were used for training Res32-PAC-
UNet and other models, respectively. For network parameter updates, batch size of
1 and the Adam optimizer (learning rate = 0.0001) were used. The Keras callbacks
were used to save the model weights that produced an elevated Dice coefficient (DC)
on the test set and they were then applied for evaluating the model. We have used
a workstation (HP Z8), whose specifications are as follows: Intel®Xeon(R) Silver,
4216 CPU, 64 cores, 2.10GHz base clock, and 128 GB of system memory.

4 Results

Table1 displays the Res32-PAC-UNet model’s performance summary for three dis-
tinct loss functions. It depicts that using binary cross-entropy as well as focal loss
results in less reliable segmentation. This can be mitigated by focusing on the sig-
nificance of area/volume overlap information in training networks for segmentation
tasks, which increases segmentation reliability, and by region overlapping along with
class distribution in modified surface loss.

The Res32-PAC-UNet model’s 3-moving average DC, which is primed for the
initial 100 epochs utilizing disparate loss functions is shown in Fig. 3. The sudden

1 F. Chollet et al., https://github.com/fchollet/keras, 2015.

https://github.com/fchollet/keras
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Table 1 Quantitative performance of Res32-PAC-UNet with respect to different loss functions, the
bold figures indicate the significance of modified surface loss function

Loss
function

DC IoU Sensitivity Specificity SVD VOE

Focal loss 0.898
(0.024)

0.815
(0.038)

0.95 (0.023) 0.998
(0.002)

0.102
(0.024)

0.185
(0.038)

Binary cross
entropy

0.949
(0.016)

0.903
(0.028)

0.965
(0.028)

0.997
(0.001)

0.051
(0.016)

0.097
(0.028)

Modified
surface loss

0.958
(0.015)

0.92 (0.026) 0.96 (0.026) 0.997
(0.001)

0.042
(0.015)

0.08 (0.026)

Fig. 3 On the test set, DC evolution in first 50 epochs of training: a the network trained with the
loss functions. b The network trained with the proposed loss function

changes in the DC curve produced due to stochastic network weight updates were
smoothed out by applying moving averages. By reaching an 80% DC in the first
initial epochs, modified surface loss offers high segmentation accuracy and speedy
convergence in earlier epochs. Res32-PAC-UNet can achieve excellent segmentation
accuracy due to the modified surface loss, which also hastens convergence among
the tested loss functions (Fig. 4).

An important feature of Res-PAC-UNetmodel is that it was designed formaximiz-
ing segmentation accuracy while reducing parameter count and disk utilization. The
Tuned-UNet overcomes UNet model’s 270MBmodel weight by reducing parameter
counts and storage space by up to 4×. Parameter reduction accelerates segmenta-
tion completion, increasing DC from 91.9 to 95.5% when compared to UNet. The
Thin16-PAC-UNet, as well as Thin32-PAC-UNet models, advance towards Tuned-
Unet model’s segmentation conduct; the figures reach as much as 12×, 4.6× fewer
parameters and storage requirements, respectively. Because of the PAC module in
thin fixed-width architectures, the segmentation performance of Thin-PAC-UNet
was found as better than Tuned-UNets. By confining the model size to 15.1 MB
and the parameters to 1.2 million, the Res32-PAC-UNet out-stands other versions
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Fig. 4 A qualitative comparison of the proposed neural network. The artifacts are marked by red
bounding oval marks. Overlapping of the predicted segmentation masks (yellow) on the ground
truth (red)

in the empiric study. The newly proposed Res-UNet++ [19] architecture has nearly
identical performance to Res32-PAC-UNet, but has almost 10× more parameters.
On the other hand, if segmentation accuracy was the goal, the Res32-PAC-UNet is
agreed upon more than UNet and Tuned-UNet models, as it attains best accuracy
with 18×, 4.6× fewer parameters.

5 Conclusion

It was suggested to employ an original Res-PAC-UNet architecture that combines
PAC modules with a customized fixed-width R backbone to achieve good segmen-
tation performance with minimal weights. The PAC modules located over the skip-
connection are helped in extracting pertinent multi-scale volumetric features by the R
backbone, which limits the exponential growth rate of the parameters while enhanc-
ing information and gradient flow. We have modified the surface-based loss func-
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tion and trained the network in order to enhance the performance of the segmen-
tation. Res32-PAC-UNet has proved to have maximized the segmentation perfor-
mance.
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NuRISC: Nuclei Radial Instance
Segmentation and Classification

Esha Sadia Nasir and Muhammad Moazam Fraz

Abstract Accurate segmentation and classification of nuclei instances is one of
the most challenging tasks due to wide occurrence of overlapping, cluttered nuclei
having blurred boundaries. Existing methods particularly focus on region proposal
techniques and feature encoding frameworks, however often fails to precisely iden-
tify instances. In this paper we propose a simple yet effective model that precisely
recognize instance boundaries as well as caters exhaustive class imbalance prob-
lems, thus yielding accurate class information for each nuclei. We have utilized
nuclei pixel positional information i.e. its distance from contours for accurate shape
estimation along with an object probability score for filtering true nuclei pixels from
background. The network comprises of a light weight multi head U-Net architecture
having separate instance probability, shape radial estimator and classification heads.
A compound classification loss function is used that minimizes loss by assigning
weighted loss to each class according to type occurrence frequency thus mitigating
major class imbalance issues existing in most of publicly available nuclei datasets.

Keywords Whole slide imaging · Nuclei · Segmentation · Computational
pathology · Deep learning · Classification · Detection

1 Introduction

Accurate segmentation and classification of nuclei is considered as a preliminary step
towards an intricate whole slide image analysis leading to circumstantial histology
images research. For instance, nuclei counts on digital pathology images have note-
worthy diagnostic importance in various cancerous stage particularly including
cancer grading, phenotyping, patients survival prediction, automatic nuclear pleo-
morphism scoring and mitosis detection. All of these deliberately relies on nuclei
instance appearances and structural variations [1]. Nuclei presence, size, shape,
staining and morphological characteristics are important indicators in estimation of
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Fig. 1 Adrenal gland WSI from CryoNuSeg dataset along with labelled ground truth indicating
high number of occluded nuclei a image, b ground truth and c occulsion

diseases severity. However, manually segmenting such structures is tedious as well as
error prone due to extreme inter as well as intra observer variability. Figure 1 shows
high number of occluded and overlapping nuclei from adrenal gland CryoNuSeg
Dataset. These occlusion later on hinders model training and yields poor perfor-
mance [2]. Contrary to this automated methods that reports high performance on
a particular WSIs data yields poor results on distinct datasets due to disparity in
organic cells with respect to different organ tissues as well as variation in acquisition
parameters including color inconsistency due to staining variations and occluded
nuclei boundaries [3]. Similarly, malignant cells growth rate is extremely high and
it’s density in malignant cells is also reported much higher compared to normal cells.
Squeezing these two often times yield large number of clumped nuclei instances [4].

2 Related Work

Nuclei segmentation and classification is an elemental task in computer aided disease
diagnosis and tumor micro environment analysis [5, 6]. Traditional approaches used
for segmentation of nuclei comprises of thresholding,watershed [7] segmentation [8],
level-sets [9], morphological operations [10], active contour models [11] and snake
energy optimizations [12]. A notable shortcoming of all these handcrafted tech-
niques is inadequacy to fully detect nuclei due to it’s dependency on low-level
features lacking significant structural details thus leading to degraded segmenta-
tion results [13, 14]. In past few years, convolutional neural networks based deep
learning techniques have surpassed traditional methods in nuclei instance segmen-
tation [15]. In 2017 Kumar et al. [16] proposed a convolution neural network based
on pixels classification, against every image pixel a probability score is computed
yielding 3 class output information for nuclei boundary, interior and exterior proba-
bilities. In 2018 [17] proposed a star convex polygons based cell localization network
considering better shape representation results of convex polygons compared to usual
bounding box based detection and thus do not need shape refinement. For this, they
trained a convolutional neural network for predicting every pixel within that polygon
cell instance at that position. Similarly, Graham et al. [18] proposed distance based
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nuclei identification and classification technique where nuclei instances estimation
is done using pixel to nuclei centroid distance maps in horizontal as well as vertical
directions. A joint attention model based on Neural Architecture Spatial and channel
weighting effect is proposed by Liu et al. [19] using NAS search strategy for atten-
tion module automation with the addition of multiple attention module architectures
searching within same network.

Above mentioned approaches though yield state of the art results however for
final segmentation instance primarily uses sophisticated post-processing modules
including watershed [20], conditional random fields (CRFs), morphological erosions
or dilations and clustering [21]. Recently, shape aware nuclei identification tech-
niques have been proposed, where a polygon is used for representing each individual
instance and is calculating via nuclei center and boundary pixels prediction.

3 Methodology

Nuclei segmentation and classification is one of the basic step yielding rich informa-
tion towards further cancer research including cancer grade estimation, phenotyping,
quantification and survival prediction. For exploiting these details, in this paper we
proposed a single stage probabilistic model for multi class nuclei instance segmen-
tation and type classification. The main aim of the architecture is identification of
nuclei instances using center of mass and contour features information. For pixel
at any point it calculates estimated inter space towards the nuclei edges using arc
gradients metrics. The block diagram of the framework is shown in Fig. 2.

3.1 Deep Regression Network

This model is an extension of the state of the art MRU-Net [22] encoder decoder
based segmentation network that regresses not just instance locations, confidence
scores and class probabilities for each instance, along with detailed shape encoding.

3.2 Instance Representation

We require a compact and interpretable object embedding representation embodying
higher understanding of each instance shape and overlapping patterns for the nuclei
shapes prediction. For this direction maps within each instance yields morphome-
tric information via decodable shape representations to radial vectors and object
probability and finally learned shape encodings.
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Fig. 2 a Shows data preparation and preprocessing using different augmentation techniques.
b Shows MRU-Net building block including ResPath and Multires blocks architecture. c Show
NuRiSC architecture where preprocessed patches are given to Multiheaded MRU-Net as input and
it outputs distance maps, probability head and classification outputs followed by Shape proposal
generation and Non maximal suppression

3.3 Radial Distance Maps

Radial distance maps represents each instance as a line segment from a hypothetical
centre spot within the object and directs pixel distributed over nuclei contours.Model
finds contour points via finding pixels where radial direction cast away from the
central point intersecting the boundary at angles in range from 0 to 2π. For finding
optimal shape we construct multiple radial directions for every nuclei instance and
finally selects one on the basis of maximum IoU threshold.

3.4 Pre-processing

For enhancing model accuracy with fewer learning parameters we have applied pre-
processing for data preparation. During pre-processing stage, Structure preserving
color normalization is used for mitigating redundant variations including image
contrast and differences in reagent concentrations during scanning. Similarly, for
better training data augmentation including rotations, horizontal and vertical flips
and intensity variations are applied.
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3.5 Model Architecture

Initially, high and low resolution feature maps are generated via a backbone convo-
lutional neural network with 3 outputs prediction heads, each consisting of single
convolution layer yielding three specific details per pixel including (1) instance shape
direction map, (2) instance probability score and (3) class information respectively.
The CNN backbone is comprised of 5 levels having 16, 32, 64, 128 and 256 channels.
Similarly each encoding, decoding block comprises of two 3× 3 convolution blocks
along with batch Normalization, ReLU activation function and a 2 × 2 max-pooling
or upsampling branch. The generated feature map has 256 channels and ReLU acti-
vations. In probability estimation head single channel output with sigmoid activation
is used for separating object from background. Similarly, in the shape estimator
branch n output channels are produced for n vertex polygonal nuclei along with
ReLU activation. In classification head m channel output with soft max activation is
used where m indicates number of nuclei classes. In next stage pixels having proba-
bility score greater than thresholds are selected for nuclei shape formation. Similarly
for instances classification an additional classifier head is used in backbone CNN
along with other two heads including object existence probability head and shape
estimator head. Similar, to object probability head, classifier head yields class prob-
ability of pixel which is finally aggregated for all pixels thus representing finalized
class instance. Due to pixels surrounding multiple objects and voting for n instances
simultaneously, an IoU based non-maximal suppression is used for removing redun-
dant instances while keeping most matched one thus mitigating multiple similar
instance formations via eliminating false positive candidates. In this stage out of
several objects the one above a specific threshold is selected i.e. candidate having
best normalized intersection over union overlap threshold.

3.6 Loss Functions

Classification Loss: For alleviating huge class imbalance issue in majority of our
training datasets, we used a joint categorical Tversky loss metric that assign larger
weights to less frequent class pixels similarly, minimal weight to class having higher
occurrence. Loss is computed separately for initially for categorical cross entropy
and Tverksy and finally mean of generalized combined Dice and Cross-Entropy Loss
also regarded as unified focal loss [23] is returned thusminimizing imbalance effects.

LFTL =
(
1 − T P

T P + αFN + βFP

)γ

(1)

LWCE = −wti log(Pi ) (2)

Lcls = LWCE + LFT L (3)
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Regression Loss: For estimation of each instance radii we have applied mean abso-
lute error(mae)loss functions, Similarly for object existence probability computation
we have used binary cross entropy loss function.

Ldist = 1

N

N−1∑
k=0

rki j − rki j (4)

Lprob = 1

N

N∑
i=1

−(yi ∗ log(pi ) + (1 − yi ) ∗ log(1 − pi)) (5)

3.7 Post-processing

In post processing, like other detection based methods, from multiple radii based
generated proposals, NuRISC removes redundant ones during inference via applying
IoU based nonmaximal suppression (NMS). It basically keeps proposals with higher
score while suppresses the ones with lower score and IoUs exceeding the specified
thresholds.

4 Experiments and Results

4.1 Implementation Details

For all experiments, we have used awork station equippedwith an Intel Core i9 CPU,
32 GBRAM and GeForce V100 GPU. All experiments are done in Keras framework
having Tensorflow backend. For all applications, NuRiSC is trained for 300 epochs.
Adam optimizer with learning rate of 3 × 104 and weight decay of half after every
40 epoch was used during model training. Batch size of 4 is used for all datasets. We
have used following augmentation operations including: random flipping (horizontal
and vertical), elastic deformation, hue and brightness adjustment.

4.2 Evaluation Metrics

For validation study and testing, we have use metrics that are reported in the liter-
ature for nuclei instance segmentation and classification. Following five measures
have been used for comparative analysis of segmentation performance evaluation
for different models. Including Accuracy, Precision, Recall, F1-Score and Panoptic
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Table 1 Publicly available datasets used for training

S. no Dataset # Nuclei Mag Organs Source

1 CoNSeP [18] 24,319 40× 1 UHCWa

2 PanNuke [24] 205,343 40× 19 TCGAa

3 CryoNuSeg [26] 7596 40× 10 TCGAb

4 CPM-17 [27] 7570 40× 1 TCGAa

5 CPM-15 [27] 2906 20× 1 TCGAa

6 TNBC [26] 4022 40× 1 TCGAa

7 Kumar [25] 21,623 20× 7 TCGAa

aThe Cancer Genome Atlas
bUniversity Hospital Coventry and Warwickshire

Qualitymetric. Accuracy basically indicates the overall classification accuracy. Simi-
larly, Precision and Recall is True positive rate of identified instances while F1 score
is the weighted average of both Precision and Recall. For final performance eval-
uation we used Panoptic Quality metric PQ which basically comprises of sum of
F1 score i.e. detection quality DQ (H.M of Precision and Recall) and Segmentation
Quality SQ i.e. average IoU for all accurately matched instances. panoptic quality
PQ is defined as the product of detection quality DQ (F1 score, i.e. the harmonic
mean of precision and recall) and segmentation quality SQ (average intersection over
union of all correct matches).

4.3 Datasets

In this paper, we train and evaluate our proposed architecture on following publicly
available nuclei instance segmentation datasets including PanNuke [24], CoNSeP 1,
Kumar [25], CryoNuSeg [26], TNBC [17], CPM15 and CPM-17 [27] datasets. Table
1 shows organs, nuclei counts, magnification of datasets used in this paper. In Fig. 5
represent tissue wise datasets distribution in major datasets.

4.4 Baseline Methods

We have evaluated performance for the following state of the art models.

• Mask-RCNN: It is one of the most frequently used 2-stage instance segmentation
network proposed by He et al. [28] that generates region proposal for each target
object, applies non-maximum suppression for filtering and eventually yielding
masks for each object.

1 University Hospital Coventry & Warwickshire.
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• U-Net: This network is based on an encoder-decoder based approach with lateral
skip-connections developed primarily for medical image analysis. In addition to
initial framework proposed by Ronneberger et al. [22] after each conv layer we
utilized batch normalization and finally classifying pixels into separate categories.

• Hover-Net: It is the first simultaneous segmentation and classification architec-
ture that uses 3 separate branches for semantic segmentation, clustered nuclei
separation and nuclei classification. For overlapping nuclei separation they have
utilized horizontal and vertical distancesw.r.t center ofmass.We have used official
repo of Graham et al. [18] that is available on GitHub.

4.5 Experimental Results

The results section is divided in two main parts including instance segmentation
qualitative and quantitative results in first part while classification result in second
part.

Instance Segmentation Results Table 2 shows the quantitative results comparison
of already existing state of the art networks and our proposed technique in terms of
Panoptic quality, precision, recall and dice similarity for all images from mentioned
datasets. Figure 3 shows predictions visualization and comparison on sample nuclei
patches with state of the art methods.

Classification Results: As shown in Table 3, the proposed model NuRiSC achieves
state of the art results not only on in instance segmentation but classification as well.
In particular, our method outperformed the best method till now i.e. HoVer-Net in
terms of bPQ and mPQ across all datasets (Fig. 4).

Figure 5 represents huge class imbalance issue in PanNuke and CoNSeP datasets
causing poor results forminority classes.We have catered this issue via using training
class weights on the basis of class frequency with respect to total number of instances
of each class and compound classification loss yielding better results compared to
previously proposed classification architectures.
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Table 2 Instance segmentation Panoptic Quality (PQ), Precision (Pr), Recall(Re) and Dice
Similarity Score (DSc) results comparison of proposed architecture with baseline networks

Datasets Methods PQ Pr Re DSc

CoNSeP [18] Mask R-CNN [28] 0.46 – – 0.74

U-Net [22] 0.33 – 0.72

Hover-Net [18] 0.547 0.85

Proposed 0.54 0.80 0.70 0.74

PanNuke [24] Hover-Net [18] 0.46 0.82 0.79 0.80

TSFD-Net 0.4456 – – –

MaskR-CNN 0.3688 0.76 0.68 0.72

Proposed 0.61 0.83 0.72 0.77

CryoNuSeg Mask R-CNN [28] 0.39 0.63 0.54 0.63

U-Net 0.38 0.62 0.51 0.64

Proposed 0.53 0.77 0.67 0.72

CPM-17 [24] Mask R-CNN [28] 0.67 – – 0.85

HoVer-Net 0.69 – – 0.86

Proposed 0.70 0.89 0.87 0.89

Kumar [25] Mask R-CNN [28] 0.509 – – 0.76

U-Net [18] 0.58 – 0.478

HoVer-Net 0.597 – – 0.82

Proposed 0.63 0.85 0.76 0.80

TNBC [17] Mask R-CNN [28] 0.443 – – 0.705

U-Net [18] 0.442 – – 0.681

HoVer-Net 0.578 – – 0.749

Proposed 0.65 0.86 0.83 0.85

CPM-15 [27] Mask R-CNN [28] 0.549 – – 0.764

U-Net [18] 0.446 – 0.720

HoVer-Net 0.606 – – 0.801

Proposed 0.65 0.88 0.83 0.86

The bold values indicates the best performance result in comparison to all model results

Figure 6 shows classification results for PanNuke and CoNSeP datasets having
example input images from the dataset, Hover-Net, Mask-RCNN and proposed
predictions (Left to Right). Each nuclei instance color reflects its specific class
labelled at the bottom.
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Fig. 3 Example input images results c omparison with Proposed architecture, dataset images are
in top row with ground truth, Hover-Net [18] and proposed method predictions in subsequent rows.
From Left to right including PanNuke [24], Kumar [25], CPM-15 [27], TNBC [17], CPM-17 [27],
CryoNuSeg [26] and CoNSeP [18]
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Table 3 Classification results comparison of proposed architecture with baseline networks for
PanNuke and ConSeP dataset in terms of average Panoptic Quality(PQ) and F1 Score

Datasets Methods mPQ Fec Fic Fsc Fmc

CoNSeP Mask-RCNN [28] 0.450 0.595 0.590 0.420 0.098

HoVer-Net [18] 0.516 0.635 0.631 0.566 0.426

Proposed 0.55 0.65 0.61 0.58 0.43

Datasets Methods mPQ PQec PQic PQnc PQcc PQdc

PanNuke Mask-RCNN [28] 0.37 0.40 0.29 0.47 0.3 0.06

HoVer-Net [18] 0.46 0.49 0.41 0.55 0.38 0.14

Proposed 0.48 0.57 0.43 0.57 0.41 0.16

The bold values indicates the best performance result in comparison to all model results

Fig. 5 Categories distribution in PanNuke and CoNSeP indicates large class imbalance in majority
of Publicly available datasets. From sunburst plots we can visualize, high ratio of Neoplastic,
Epithelial and Inflammatory classes while rest of the classes constitute extremely less ratio of entire
dataset. Tissue wise data distribution of the nuclei categories in publicly available datasets
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Fig. 6 Comparative results visualization for nuclear classification on the CoNSeP and PanNuke
datasets

5 Conclusion

In this paper, we have introduced an orientation based shape estimation model for
dual nuclei instance segmentation and classification. NuRISC yields nuclei structural
information and occurrence probability using a light weight encoder decoder model
along with a compounded loss function that caters huge class imbalance issue via
assigning class weights during loss computation. Thus combining object probability
rate with shape estimates producing segmented instances and classification masks
thus alleviating the weaknesses of heavier models proposed earlier for dual task
performance.
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A Semi-supervised Framework
for Automatic Pixel-Wise Breast Cancer
Grading of Histological Images

Kenglun Chang, Yanyuet Man, and Hailong Yao

Abstract Throughout the world, breast cancer is one of the leading causes of
female death. Recently, deep learning methods are developed to automatically
grade breast cancer of histological slides. However, the performance of existing
deep learning models is limited due to the lack of large annotated biomedical
datasets. One promising way to relieve the annotating burden is to leverage the
unannotated datasets to enhance the trained model. In this paper, we first apply
active learning method in breast cancer grading, and propose a semi-supervised
framework based on expectation maximization (EM) model. The proposed EM
approach is based on the collaborative filtering among the annotated and unan-
notated datasets. The collaborative filtering method effectively extracts useful and
credible datasets from the unannotated images. Results of pixel-wise prediction of
whole-slide images (WSI) demonstrate that the proposed method not only outper-
forms state-of-art methods, but also significantly reduces the annotation cost by over
70%.

Keywords Semi-supervised learning · Deep learning · Breast cancer grading ·
Expectation maximization model

1 Introduction

Breast cancer is themost commonly diagnosed cancer for women, which is estimated
to account for 30% of new cancer diagnoses and 15% of cancer deaths in the United
States [1]. Early and precise diagnosis of breast cancer is crucial to improve the

Kenglun Chang and Yanyuet Man are equal contributions.
This workwas supported by theNatural Science Foundation of Beijing, China (Grant No. 7202098).

K. Chang · H. Yao (B)
Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
e-mail: hailongyao@tsinghua.edu.cn

Y. Man
Tencent AI Lab, Shenzhen, 518057, China

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
R. Su et al. (eds.), Medical Imaging and Computer-Aided Diagnosis, Lecture Notes
in Electrical Engineering 810, https://doi.org/10.1007/978-981-16-6775-6_5

53

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-6775-6_5&domain=pdf
mailto:hailongyao@tsinghua.edu.cn
https://doi.org/10.1007/978-981-16-6775-6_5


54 K. Chang et al.

Fig. 1 An annotated whole slide image: The patches framed in red contour are invasive cancer.
Those framed in blue contour are In-Situ cancer. Those framed in green contour are Benign. The
rest part of the slide is normal

survival rate of patients [2]. Microscopic examination of stained tissue sections is
among the most accurate methods of diagnosing and classifying cancer. The cancer
effects can be observed in WSIs in the cellular and tissue levels.

Figure1 shows an example of the cancerous cell’s distribution , which are clas-
sified into four categories, i.e., invasive cancer, In-Situ cancer, Benign, and normal.
Recently, many computer-aided systems utilize deep learning models to improve the
classification consistency and accuracy [3–5]. However, robust deep learning models
require large annotated datasets, which are costly to produce especially for medical
images. Recent studies integrate active learning with deep learning, which utilize
unannotated data to improve the performance of deep learning model [6–9]. Yang et
al. applied active learning method on fully convolutional network (FCN) to select the
most representative and uncertain areas for annotation [10]. One of the drawbacks
is that the FCN cannot be applied to high resolution images, such as WSIs. And it
is difficult to acquire iterative annotation on the high-resolution WSIs. Generative
Adversarial Network (GAN) is widely applied to generate realistic images, which
overcomes the limitations of small training datasets. Mahapatra et al. applies condi-
tional generative adversarial networks (cGANs) to generate informative and realistic
chest X-ray images, which enlarge the training datasets [11].

However, GAN generates subtle artifacts on the original images, which could
substantially alter the features of cells and tissues, and thus further mislead the
model and affect the convergence of parameters. Existing methods fail to provide an
efficient solution for automatically grading breast cancer on limited annotatedWSIs.
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In this paper, we present a new semi-supervised framework based on expectation
maximization (EM). We leverage unannotated WSIs to adjust the deep learning
model on a limited annotated dataset, reducing the reliance on expensive pixel-wise
annotations. The main contributions of the paper are:

• To the best of our knowledge, we first apply active learningmethod in breast cancer
grading, and propose a semi-supervised approach based on EM to effectively
reduce annotated dataset for multi-classes pixel-wise breast cancer grading on
WSIs.

• We propose a sample selection method based on collaborative filtering, which
selects the credible and representative unannotated datasets for enlarging the train-
ing dataset.

• Using the proposed semi-supervise framework, significantly enhanced perfor-
mance on pixel-wise prediction of WSIs is achieved with only 30% of annotated
dataset.

2 Related Work

Recently, many researchers, as well as vendors of WSI scanning equipments, have
started to develop automated WSI image analysis methods to assist pathologists in
cancer diagnosis. However, WSI images are too large to be directly integrated into
the diagnostic process. The WSI images are typically at the level of tens of millions
or even hundreds of millions of pixels, which makes it difficult to store, transmit
and visualize. Therefore, traditional algorithms cannot directly process the WSI
images. Bejnordi et al. proposed an analytical algorithm at pixel level for automatic
detection of ductal carcinoma in situ (DCIS) [12], which detects DCIS across the
WSI and differentiates DCIS from good tissue. Balazsi et al. proposed a solution for
automatically detecting regions expressing invasive ductal breast carcinomas (IDBC)
in images ofmicroscopic tissue orwhole digital slides [13]. Theproposedmethodfirst
tessellatedwhole digital slides. Then image featureswere extracted and presented to a
random forest classifier, which confirms whether each region was cancerous. Cruz et
al. proposed a machine learning approach for automatic detection and visual analysis
of invasive ductal carcinoma (IDC) tissue regions in whole slide images (WSI) of
breast cancer [14]. The adopted convolutional neural network consists of 3 layers.
Due to computational limitations, this model is only used for training the images
subsampled by 16 times. Rezaeilouyeh et al. proposed a framework for breast cancer
detection and prostate Gleason grading using CNN, which was trained on images
along with the magnitude and phase of shearlet coefficients [15]. The framework fed
shearlet features along with the original images to the CNN consisting of multiple
layers of convolution, max pooling, and fully connected layers.
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3 Method

3.1 Semi-supervised Learning Framework Based on EM
Model

An overview of our semi-supervised learning framework is shown in Fig. 2. In the
semi-supervised learning framework, only part of whole slide images is annotated,
which is defined as set D. The label of some slides is unknown, which is defined as
set U . Let yi denote the label for red patch xi ∈ D. Let hidden variable z j denote
the label for patch x j ∈ U . We initialize the CNN model on D and update the model
parameter to θ0.Weapply initialCNNmodel to produce the probabilitymap P(z j |x j )

of x j ∈ U . The EM algorithm alternates between the E-step for estimating the hidden
labels z j and the M-step for computing optimal model parameters with maximized
P(X |θ, Z). The probability map P(z j |x j ) is projected to a scaled value between 0
and 1, which is used to generate the consistent heatmap (see Fig. 2c). The fixed vector
β∗ = (β1, β2, β3) is applied on the heatmap to generate the classmap as shown in
Fig. 2d. Next, The most representative and credible patches based on collaborative
filtering are selected to train the CNN model in the next iteration.

Initialization: Assume the patches are independently and identically distributed
(i.i.d.). The initial parameter θ0 is obtained from the CNN model, which is trained
on annotated dataset D. Here, θ0 is computed as:

θ0 ← argmax
θ

∏

xi∈D
P(xi , yi |θ)

= argmax
θ

∏

xi∈D
P(yi |xi ; θ)P(xi |θ)

(1)

Fig. 2 Overall flow of the EM model
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E-step: Based on the current parameters θ t at EM iteration t , we calculate the
probability maps P(z j |x j , θ

t ) of unannotated patches, and then re-scale the prob-
ability maps to Pnorm(z j |x j , θ

t ) ∈ [0, 1]. We generate the class label c(x j ) based
on β∗ and then obtain the classmap.The ground truth of the unannotated patches is
then extracted as c j , and the effective dataset Et is selected according to the method
described in Sect. 3.2.

M-step: The CNN model is retrained on the effective dataset Et produced in
the E-step. The model parameter θ is updated to maximize the likelihood defined
in Eq. (2).

θ t+1 = argmax
θ

Q(θ, θ t )

K (θ, θ t ) =
∏

xi∈D
P(xi , yi |θ) ×

∏

x j∈Et

P(x j , z j |θ)

=
∏

xi∈D
P(yi |xi ; θ)P(xi |θ) ×

∏

x j∈Et

P(z j |x j ; θ)P(x j |θ)

(2)

Assume that x j |θ follows an uniform distribution, we formulate the objective
function Q(θ, θ t ) as:

Q(θ, θ t ) = log K (θ, θ t )

∝
∑

xi∈D
log P(yi |xi; θ) +

∑

x j∈Et

log P(z j |x j ; θ) (3)

3.2 Patch Selection

Patch selection part can be divided into two stage, Hard Example Mining and Col-
laborative Filtering.

Hard ExampleMining: Hard example mining is used in the initialization step to
fully exploit the annotated dataset, especially those with wrong classification results.
An effective coefficient α is defined as in Eq. (4). The higher the value of α is, the
harder and more valuable the corresponding patch is for model training.

ck = argmax
j

p(y
c j
i ) α = ‖ck − ci‖ × P(ycki ) (4)

Here, ci denotes the class label of the patch xi , and P(y
c j
i ) denotes the probability

map.
For the initialization step, we first train our model on 50% of the annotated data.

Then, we apply this model on the rest of the data and calculate the effective coeffi-
cients. Patches with effective coefficient in the first quintile (top 20%) are selected
to retrain the model.
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Algorithm 1 Patch selection method.
Input:

U = {xi }, i ∈ [1, n] (Unannotated dataset)
D = {(y j , L j )}, j ∈ [1,m] (Annotated dataset)
Mt (CNN model in iteration t)
σ (Similarity threshold for patch selection)

Output:
Et (Set of unannotated patches in iteration t)

Functions:
f eature ← F(M, x) {Output 512 × 1 × 1 feature of M given patch x}
prediction ← P(M, x) {Prediction result of M for patch x}
s ← sim(x, y) {s = x·y

‖x‖×‖y‖ }
label ← argmaxindex(num) {Output label with largest number}

Initialize:
E t ← ∅

1: for each xi ∈ U do
2: αi ← F(Mt , xi )
3: predi ← P(Mt , xi )
4: Set num to vector [0,0,0,0]
5: for each (y j , L j ) ∈ D do
6: γ j ← F(Mt , y j )
7: if sim(αi , γ j ) > σ then
8: num[L j ] ← num[L j ] + 1
9: end if
10: end for
11: labeli ← argmax(num)

12: if predi = labeli then
13: E t ← E t ∪ xi
14: end if
15: end for

Collaborative Filtering: In the E-step, patches are selected using Algorithm 1.
We first apply CNN to extract the features of all patches, and then calculate
similarity sim(xi , y j ) between each unannotated patch xi and annotated patch
y j . For each unannotated patch xi , we compute the set of annotated patches as
{y j |simyj∈D(xi , y j ) > t}. Then we apply the majority voting method on the above
computed patches to determine the label of the unannotated patch. If the assigned
label is consistent with the predicted one by the model, we insert unannotated patch
xi into Et .
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4 Experimental Results

4.1 Dataset for Training and Validation

The dataset for training and validation is from ICIAR 2018 Challenge1.
There are in total 400 images of size 1536 × 1536, which are obtained from

H&E stained breast histology microscopy. The images are labeled into four classes
as Normal, Benign, InSitu, and Invasive, respectively. Each class consists of 100
images. Besides, there are 30 whole-slide images, among which 10 images are pixel-
wise labeled, and 20 images are not labeled. After foreground extraction and patch
cropping, we finally obtained 6389 Normal patches, 695 Benign patches, 369 InSitu
patches, and 8182 Invasive patches, where each patch is of size 1536. We randomly
selected 30% patches from each class as test dataset, and merged the rest with the
above 400 images as the training dataset.

4.2 Data Preprocess

Foreground Patch Extraction onWSI Image: The high resolution images ofWSIs
need to be converted into patches for use. However, a large part ofWSI is background,
which produces uninformative patches in the datasets, and thus should be excluded.
The widely used foreground extraction method Ostu fails to extract certain parts of
the tissue from the slide for its complexity. It can be clearly recognized from Fig. 3
that the regions circled in red, blue and green bounds are different in their color
intensities.

Actually, after converting this image into gray image, the intensity of the pixels
circled in red bound is on average 0.76, in blue bound is 0.72, but in green bound is
only 0.50, yet the intensity in background is on average 0.86. The high variance in
foreground may well reduces the bimodality of the intensity distribution and leads
the Otsu method to output the wrong threshold. In the above example, the output
threshold by Otsu method (implemented by scikit-mage) is 0.68, which mistakenly
classify the region in red circle and blue circle to be background, which in fact are
valuable regions containing candidate tissues.

Our adopted method can tackle this problem by concentrating on the relative
difference between pixels instead of focusing on the global distribution of intensity.
The difference between foreground pixels and background pixels in RGB color space
can easily be detected regardless of the high variance in foreground pixels.

Specifically, we adopt the graph-based image segmentation method in [16]
for foreground extraction. For a given slide, we construct an undirected graph
G(V, E). In G, each node vi, j ∈ V corresponds to a pixel. The edge set E =
{(vi, j , vi+1, j ), (vi, j , vi, j+1))} correspond to the connection between adjacent pixels.

1 https://iciar2018-challenge.grand-challenge.org/.

https://iciar2018-challenge.grand-challenge.org/
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Fig. 3 An example of whole slide image: The patches in the region circled by red, blue and
green boundaries are all foreground patches, whereas Otsu method fails to extract some of them as
foreground

Fig. 4 The foreground extraction of a WSI: a The original WSI, b Otsu method [18], and c our
method

We set the edge weight to beW (vi, j , vi+1, j ) = ‖vi, j − vi+1, j‖. Then we compute the
minimum spanning tree T using Kruskal’s algorithm [17], and delete the edges in T
whose weights are greater than a prespecified threshold (100 in the experiments).

The deletion of these edges produces a forest, i.e., a set of sub-trees (e.g.,
T1, T2, · · · , Tn). Now we compute the average RGB values for the sub-trees (e.g.,
RGB(T1), RGB(T2), · · · , RGB(Tn)). Among the computed average RGB values,
assume the maximum value is u. Then all the sub-trees with average RGB value
greater than u − 45 are set as background. Then the foreground mask is obtained as
shown in Fig. 4. According to the foreground mask, we crop the WSI into patches
with 50% overlap, where each patch consists of 1536 × 1536 pixels. Patches with
less than 40% foreground pixels are considered to be background, which are not used
for classification.

Patch Label Extraction: We assign the label of the patches according to the
ground-truth contour ofWSI. In most cases, the label of the patch is obtained accord-
ing to the type of cancer (Benign, In-Situ or Invasive) with the largest area in the
patch. However, there are two special cases as follows:
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• If the cancer area in a patch is less than one-third of the whole patch area, this
patch is labeled as normal.

• If there are two or more types of cancer in a patch, and the corresponding tissue
areas are both greater than one-third of the whole patch area, this patch is consid-
ered to be a noisy patch and discarded. In the experiments, the number of such
patches is very few.

In Kwok’s work in [4], the class value of a patch is the mean of the class values of
all pixels in the patch. Our experiments show that the above method tends to generate
wrong labels, which disrupt the learning process. For example, when half of a patch
contains In-Situ areas and the rest is normal, Kwok’s method labels this patch as
benign even if there are no benign tissues at all. In contrast, our EM-based method
effectively avoids the drawbacks of Kwok’s method.

4.3 Patch Classification

Our neural network is a fine-tuned vgg19 network with batch normalization. Given
the large patches of size 1536 × 1536, we resize them into 512 × 512, and then feed
them into the network. For adapting to the fully connected layers, we add an average
pooling layer, which converts the 512 × 16 × 16 feature map into a 512 × 1 × 1
vector. The patch-wise experimental results are summarized in Tabel 1. we first apply
active learning method (ALM) to continually finetune the classification model with
informative and effective datasets instead of retrain themodelwith all datasets. ALM-
10%, ALM-20%, and ALM-30% refer to different models trained on corresponding
portions of annotated datasets. FSL is a model trained on all the annotated dataset.
Our-10%, Our-20%, and Our-30% are the proposed EM-based model trained on
corresponding portions of annotated datasets, inwhich situationwe select the training
dataset randomly. For example, Our-30% denotes our proposed method using 30%
of the whole annotated dataset.

From the experiment, FSL obtains 0.76, 0.89 and 0.82 for F1 score, accuracy
and precision, respectively. Kwok’s method obtains similar results of 0.63, 0.77, and
0.57. However, with 30% of the whole annoatated dataset, ALM obtains 0.83, 0.90,
and 0.74, which outperforms FSL. This can be explained by the exclusion of the
uninformative data. In contrast, our proposed method obtains 0.86, 0.91, 0.79 for F1
score, accuracy and precision, respectively. Among the different methods, Our-30%
achieved the best results using only 30% of annotated data combined with unanno-
tated data. Moreover, our method significantly reduces the runtime for finetuning the
model as in ALM.
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4.4 Pixel-Wise Classification on WSI

To achieve pixel-wise classification and visualization. we first construct a heatmap
for the given WSI. Specifically, we compute the intensity of each foreground patch
as I = θT ȳ, where ȳ is the output from the softmax layer, and θ = (0.1, 0.2, 0.7, 1)
is the weight for each label. Notice that I indicates the level of severity, when it’s
closer to 0, the patch is more likely to be normal, but when it’s closer to 1, the patch
is more likely to have Invasive cancer. We are now able to generate a heatmap for
WSI with the intensity of every pixel set as the intensity of the foreground patch it
belongs to. Particularly, if one pixel belongs to the intersecting of several patches,
we take the mean of the intensities from all the patches as the pixel-level intensity.

Next, we map the heatmap to classmap by the fixed vector β∗ = (0.1, 0.5, 0.75),
where a pixel is classified according to its intensity value as follows: (1) [0, 0.1]
for Normal, (2) (0.1, 0.5] for Benign, (3) (0.5, 0.75] for In-Situ, and (0.75, 1] for
Invasive. The pixel-wise classification results are summarized in Table1 in terms of
score metrics defined on ICIAR aiming to penalize more on the predictions that are
further from the ground truth. The formula for the score is defined as:

s = 1 −
∑N

i=1 |predi − gti |∑N
i=1 disti × maski

(5)

where pred is the predicted class, gt is the ground truth class, i is the index of a
pixel in the WSI, N is the total number of pixels, disti and maski are defined as:

disti = max(|gti − 0|, |gti − 3|) (6)

Table 1 Demographic Prediction performance comparison by three evaluation metrics

Metric Patch-wise Pixel-wise

Precision Accuracy F1-measure Score metric

Kwok et al. 0.6798 0.8084 0.7391 0.7605

ALM-10 % 0.7205 0.8466 0.8078 0.7186

ALM-20 % 0.7350 0.8684 0.8082 0.7447

ALM-30 % 0.7477 0.9035 0.8303 0.7759

FSL 0.8239 0.8963 0.7698 0.7592

Our-10 % 0.7218 0.8856 0.8054 0.7675

Our-20 % 0.7499 0.8852 0.8048 0.7539

Our-30 % 0.7987 0.9197 0.8623 0.7858

iteration2-Our-30% 0.8293 0.9210 0.8751 0.8027

Kwok [4] is a well-performed Multiclass classification method in whole-slide images which got
the first prize in the ICIAR 2018 Challence. The FSL is a model trained on all the annotated
datasets while the Our-xx% are the proposed EM-based model trained on corresponding portions
of annotated datasets. Moreover, the ALM-xx% methods are the classic active learning model
trained on different portions of annotated datasets. Iterating twice makes sense on the accuracy of
multiclass classification. Note that metrics in bold represent the best results with our method in a
single iteration
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Fig. 5 The pixel-wise classification results of slides A02 and A08 (Green contour: Benign, Red
contour: Invasive, Blue contour: In-Situ, Others: Normal), a and e give the results of Kwokmethods,
b and f give the results of the model trained on full annotated datasets, c and g give the results of
our EM-based method trained on 30% of annotated datasets combined with unannotated datasets,
d and h give the results labeled by pathologist

maski = 1 − (1 − predi,bin)(1 − gti,bin) (7)

where bin donates the binarized value, which is 0 if the label is 0 and is 1 if the label
is 1,2 or 3.

Our method with 30% annotated dataset achieves the best performance with
a score of 0.785, where the best score of Kwok, FSL, and ALM methods are
0.771,0.759 and 0.775, respectively.

The three methods Kwok, FSL and ALM perform relatively well in detecting
large areas of cancer. However, for small areas of cancer, these methods usually fail.
Figure5 shows an example of invasive tissues in A08 slide, which consists of many
small cancer areas. Kwok’s method tends to classify small invasive tissues to In-Situ
tissues. On the other hand, FSL is unable to recognize lots of small invasive tissues
in A02 and A08 slides shown in Fig. 4. In contrast, the proposed EM-based method
is able to detect small areas of cancer, which are crucial for correct diagnosis.

4.5 FROC Acceptance

In the medical image processing field, we often use FROC curve instead of ROC
curve to validate the effectiveness of a certain model. Figure6 shows the FROC
curves of both the Kwok method and our proposed method. It can be easily seen that
Our-30% obtains a much better FROC curve.
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Fig. 6 FROC curve of the Kwok method and our method: a Kwok, b Our-30%

5 Conclusion

In this paper, we have proposed an effective semi-supervised approach based on
the EM model, which significantly reduces the reliance on the annotated dataset.
Experiment results show that the proposedmethod achieves remarkable performance
with only 30% annotated datasets. Moreover, the proposed method effectively traces
the small cancer areas, which is one of the key markers for cancer diagnosis. In the
future, more parameters and metrics will be introduced in the system, such as max
area of cancer, number of different types of cancer, degree of patient, etc. More prior
knowledge will be introduced for generating adaptive parameters in the proposed
EM framework.

References

1. Rebecca L Siegel, Kimberly D Miller, and Ahmedin Jemal. Cancer statistics, 2019. CA: a
cancer journal for clinicians, 69(1):7–34, 2019.

2. Walter O’Dell, Cristiane Takita, Katherine Casey-Sawicki, Karen Daily, Coy D Heldermon,
and Paul Okunieff. Projected clinical benefit of surveillance imaging for early detection and
treatment of breast cancer metastases. The breast journal, 25(1):75–79, 2019.

3. Baris Gecer, Selim Aksoy, Ezgi Mercan, Linda G Shapiro, Donald L Weaver, and Joann G
Elmore. Detection and classification of cancer in whole slide breast histopathology images
using deep convolutional networks. Pattern recognition, 84:345–356, 2018.

4. Scotty Kwok. Multiclass classification of breast cancer in whole-slide images. In International
Conference Image Analysis and Recognition, pages 931–940. Springer, 2018.

5. DavidTellez,MaschenkaBalkenhol, IreneOtte-Höller, RobvandeLoo,RobVogels, PeterBult,
Carla Wauters, Willem Vreuls, Suzanne Mol, Nico Karssemeijer, et al. Whole-slide mitosis
detection in h&e breast histology using phh3 as a reference to train distilled stain-invariant
convolutional networks. IEEE transactions on medical imaging, 37(9):2126–2136, 2018.



A Semi-supervised Framework for Automatic Pixel-Wise Breast Cancer Grading . . . 65

6. Hayit Greenspan, Bram Van Ginneken, and Ronald M Summers. Guest editorial deep learn-
ing in medical imaging: Overview and future promise of an exciting new technique. IEEE
Transactions on Medical Imaging, 35(5):1153–1159, 2016.

7. Jiming Li. Active learning for hyperspectral image classification with a stacked autoencoders
based neural network. In 2015 7th Workshop on Hyperspectral Image and Signal Processing:
Evolution in Remote Sensing (WHISPERS), pages 1–4. IEEE, 2015.

8. Le Lu, Yefeng Zheng, Gustavo Carneiro, and Lin Yang. Deep learning and convolutional neural
networks formedical image computing.Advances inComputer Vision andPatternRecognition;
Springer: New York, NY, USA, 2017.

9. Fabian Stark, Caner Hazırbas, Rudolph Triebel, and Daniel Cremers. Captcha recognition
with active deep learning. In GCPR Workshop on New Challenges in Neural Computation,
volume 10, 2015.

10. Lin Yang, Yizhe Zhang, Jianxu Chen, Siyuan Zhang, and Danny Z Chen. Suggestive annota-
tion: A deep active learning framework for biomedical image segmentation. InMedical Image
Computing and Computer Assisted Intervention, pages 399–407, 2017.

11. DwarikanathMahapatra, Behzad Bozorgtabar, Jean-Philippe Thiran, andMauricio Reyes. Effi-
cient active learning for image classification and segmentation using a sample selection and
conditional generative adversarial network. In International Conference on Medical Image
Computing and Computer-Assisted Intervention, pages 580–588. Springer, 2018.

12. Van Diest P J et al Bejnordi B E, VetaM. Diagnostic assessment of deeplearning algorithms for
detection of lymph node metastases in women with breast cancer. Jama, 318(22):2199–2210,
2017.

13. Zoroquiain P et al Balazsi M, Blanco P. Invasive ductal breast carcinoma detector that is robust
to imagemagnification in whole digital slides. Journal of Medical Imaging, 3(2):027501, 2016.

14. González F et al Cruz-Roa A, Basavanhally A. Automatic detection of invasive ductal car-
cinoma in whole slide images with convolutional neural networks. In MedicalImaging2014:
Digital Pathology, volume 9041, page 904103. International Society for Optics and Photonics,
2014.

15. Mahoor M H. Rezaeilouyeh H, Mollahosseini A. Microscopic medical image classification
framework via deep learning and shearlet transform. Journal of Medical Imaging, 3(4):044501,
2016.

16. Pedro F Felzenszwalb and Daniel P Huttenlocher. Efficient graph-based image segmentation.
International journal of computer vision, 59(2):167–181, 2004.

17. Joseph B Kruskal. On the shortest spanning subtree of a graph and the traveling salesman
problem. Proceedings of the American Mathematical society, 7(1):48–50, 1956.

18. Nobuyuki Otsu. A threshold selection method from gray-level histograms. IEEE transactions
on systems, man, and cybernetics, 9(1):62–66, 1979.



Lunatum Prosthetic Replacement:
Modeling Based on Volume Rendering
of CT Scan Images
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Abstract Additive Manufacturing has immersed the medical field, especially in
reconstructive surgery, allowing the creation of a 3D model resembling the anatom-
ical structure of interest. Due to Osteonecrosis also referred to as Kienböck’s disease;
carpal bones especially the lunatum are concerned the most with those technologies
especially since a prosthetic replacement is an obligation when it comes to advanced
stages of this disease. In this article, we propose a method based on direct 3D recon-
struction based on volume rendering directly on patients’ medical images (CT scans)
to preserve the anatomical shape. For that purpose, we utilized 3D slicer software to
create a 3Dmodel based on different cuts ofCT scan images. The resultingmodelwas
satisfactory, as it was similar to the lunate bone structure preserving all its anatomical
characteristics and dimensions. The proposed approach helps in creating a prosthetic
replacement with the exact anatomical shape and structure of the bone of interest
respecting the dimensions, curves, and facets.
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1 Introduction

Three-dimensional printing also called additive manufacturing; did take place in
the medical field, especially in reconstructive surgery, in other words, a three-
dimensional model can be built according to the real anatomical structure using data
taken fromMRI and CT scans; this reduces the frequency of occurrence and severity
of any possible risk or complications arising from prosthetic implantation. This
technique is commonly used for total or partial joint replacement or limb salvation
surgeries.

Kienböck’s disease (KD) also known as lunatums osteonecrosis has and still
causes problems both in its etiology and management. Robert Kienböck, a radi-
ologist was the first to describe “lunatomalacia” clinical characteristics and radio-
graphic aspects in 1910; as a condition caused by the tearing of ligaments and vessels
enclosing the semi-lunar bone, which resulted in a fracture and subsequent collapse.
In 1843, Peste was the first to provide the characterization of lunatum collapses
associated with potential traumatism [1, 2].

In the early stages of Kienböck disease, non-operative measures are used for the
treatment of KD, such as anti-inflammatory and painkillers medicaments, physio-
therapy, and reducing activities intensity, although, in some cases, surgery is a must
to preserve the bone, especially for early-stage osteonecrosis stages [3]. In case of
lunatum collapse, prosthetic replacement is recommended to relieve the pain and
improve wrist function.

The anatomical structure of the carpal tunnel can be reconstructed and preserved
with lunatum arthroplasty, which will eventually reduce the pain and improve wrist
mobility [4–6].However, somepatients suffer frommild pain during intense activities
[4, 5].

According to the literature; lunatum replacement efficacy had been proved,
however, the failure rate cause wasn’t clearly explained. The possibility of mate-
rials type being the cause is weak; authors have mentioned the material type used for
modeling the prosthesis, those were biocompatible and clinically approved [4, 5].

The second possibility is the shape and size; very few literature reviews have
mentioned the implant type size wise and manufacturing process [5]; which have
high chances chance to be the main cause of failure, especially with the tendency
of multiple sizes kits that contain 3–5 lunate prostheses of different sizes and the
final shaping retouch done by the surgeon. In this article, we propose a methodology
to modulate a prosthetic replacement for the lunatum bone which is a small bone
localized in the wrist (carpal bones) based on a direct segmentation after 3D recon-
struction of computed tomography images, the goal is to create a prosthetic module
similar to the anatomical structure of the bone of interest.
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Fig. 1 Lunatum anatomy and articular surfaces

2 Lunatum Anatomy and Associated Problems

The lunatum is a moon-shaped bone located between the scaphoid and triquetral in
the proximal row of carpal bones. The proximal facet that articulates with the radius
is convex, whereas the distal facet that articulates with the capitate is concave (Fig. 1)
[4].

With no muscular attachments and only a few ligaments to hold it in place [7], the
lunatum is more prone to injuries and orthopedic diseases such as fracture, disloca-
tion, and Kienböck disease (KD) which is also known as osteonecrosis or avascular
necrosis.

Osteonecrosis remains the principal cause of carpal bones alteration, especially in
the lunatum; it is a condition that impacts the blood flow deliberately causing bone
collapses; this is mainly caused by vascularization problems arterial disruption to
be exact, but may also occur after traumas causing venous congestion with elevated
interosseous pressure, it may happen due to a high-intensity traumatic injury or
spontaneously [8]. According to previous studies, KD’s occurrence ismale-dominant
and most commonly affects the dominant hand in men aged 20–40 years [9].

3 Biomaterial Selection

Biomaterials have an essential role when it comes to implantable prostheses; in fact,
they may be the cause of failure rate, their selection is piloted by matching its prop-
erties with attended application requirements; in our case, biological requirements
have to be specially taken into consideration not to forget themechanical and physical
aspects. Secondary to reactions arising from a foreign body (implants); requirements
such as biocompatibility, stress, bioactivity, osteoinduction, and more have become



70 M. Hamda et al.

a necessity for biomaterials when it’s come to implantable devices such as prosthetic
devices [10].

Startingwith Swanson (1970)was the first to introduce lunatum arthroplasty using
a silicone rubber implant for the case of KD [11], however, this was abandoned years
ago since it causes severe cyst formation due to silicone material with an incidence
of 78% [12].

Afterward, in 1984 Titanium lunate arthroplasty (TLA) was introduced to resolve
the problems common to silicone lunate implants, TLA clinical outcome was
promising with only 20% of failure cases [13]. Titanium and its alloys are initially
used for total hip arthroplasty (THA) [14], α + β titanium alloys, such as titanium-
6Al-4 V used in THA and TLA [13, 15, 16] has excellent corrosion resistance,
low density, and high mechanical strength and biocompatibility with bones [17].
Furthermore, vanadium-free titanium alloys with improved biocompatibility, such
as + titanium-6Al-7Nb alloy, have been developed by incorporating biocompatible
elements like Niobium [15, 18].

Pyrocarbon is another biomaterial used for lunate arthroplasty; according to a
short-term clinical review, Pyrocarbon lunate replacement results were satisfactory
for most patients [5, 15]. When compared with titanium prostheses, pyrocarbon is
more similar to cortical bone and effectively transfers the load.

Despite their higher tendency to break, pyrocarbon implants are biologically inert
and biocompatible, resulting in a lower tendency to tissue reactions when compared
to titanium implants [19].

Another biomaterial that has been introduced to orthopedic arthroplasty practices
is Polyethylene (PE), which has been widely used in knee arthroplasty since the mid-
twentieth century. Polyethylene lunate arthroplasty has a satisfactory outcome [7].
Progress in material manufacturing and processing has led to newer polyethylene
with different material properties over the last few decades [20].

Cobalt-chromium (co-Cr) alloys which are supporting metallic materials, were
initially used in dentistry, now considered one of the materials most used for
THA. Cobalt-chromium alloys characteristics such as strength, corrosion, and wear
characteristics make it a great option as an implant material [14].

Zirconia toughened alumina (ZTA or Al2O3-x% vol ZrO2) which was developed
in 2002 is a promising biomaterial used in hip and knee implants [21]; alumina
in particles is one of the most successful key materials for THA so far; it has a
significant advantage, including good biocompatibility, high mechanical strength,
and high fracture resistance. The ceramic material may also have drawbacks in its
counterpart, such as inflammatory reactions around the implant [22].

Those are a few examples of the many available clinically proven biomaterials
used for implantable prosthesis manufacturing; However, silicon, cobalt-chromium
(co-Cr) alloys and Pyrocarbon will be excluded. The first one was abandoned after
showing side effects, especially cyst formation, and the cobalt-chromium alloy
was labeled as a potential carcinogen according to new European regulation which
prohibits the use of implantable medical devices that include more than 0.1% (m/
m) cobalt [3, 23, 24], as for Pyrocarbon, only few literature reviews described the
clinical outcomes of Pyrocarbon lunate implants [6] which doesn’t prove the efficacy,
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Table 1 Biomaterial selection based on standards, biomedical use, printing technics, and weak-
nesses

Biomaterials Standards/
regulations

Biomedical use 3D printing
technic

Weaknesses

Titanium
(Ti-6AI-4V)
and its alloys

ISO
5832-3:2021

Orthopedic prosthesis
mainly in total hip joint

Selective
laser melting
(SLM)

Osseointegration with
the surrounding bone
tissue at the initial
stage of implantation

Dental implants Expensive material

Polyethylene ISO
5834:2019

Fabrication of porous
high-density
polyethylene implant
for facial and cranial
reconstruction

Fused
disposition
modeling
(FDM)

Rare reactions after
surgery

Surgical implants

Zirconia
toughened
alumina

ISO
5834:2019

Dental implants Fused
disposition
modeling
(FDM)

It’s may cause
reactions such as
inflammatory
reactions around the
implant

Orthopedic implants

longevity, and the functionality of this implant [19]. As shown in Table 1 titanium
and its alloys require a large investment being it an expensive material as well as
its required 3D printing method, in the other hand Zirconia, toughened alumina is
less expensive compared to Ti-6AI-4V as a material and the FDM printing method
requires less investment compared to SLM however; it is most likely can cause
a local reaction (tissues around the implants) which is not ideal. This leads us to
polyethylene, this one requires less investment compared to Ti-6AI-4V and rarely
has any reaction after surgery, nonetheless Polyethylene is commonly used in inva-
sive medical devices such as intravenous cannulas, tracheal intubation tubes, urinary
catheters, and more.

4 Material and Methods

4.1 Data Acquisition

The utilized database source was computed tomography (CT); a CT scan creates
cross-sectional images of the body using rotational x-rays which gives more detailed
information than typical X-ray images, it’s painless, non-invasive, faster, and less
expensive with lower risks than MRI with high accuracy. We based our work on the
Data acquired from two adult patients’ male and female, for automatic segmentation
mask and 3D reconstruction respectively.
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4.2 Segmentation

Segmentation is a process commonly used in image processing to divide an image
into multiple parts or regions, mostly based on the characteristics of image pixels
[25]. The main purpose of this part is to develop an automatic mask for Lunatum
segmentation in order to detect the lunatum and automatically segment it from the
rest of the hand bones allowing fast localization and diagnosis. For this purpose,
we utilized CT scan images of a male patient with a scaphoid fracture to create the
model using MATLAB [26].

4.3 3D Model Creation Based on Volume Rendering

Our approach is based on data’s direct reconstruction using the volume rendering
technique to display CT scan image volumes as 3D objects. After the 3D recon-
struction of the patient hand, we segmented the Lunatum bone directly from the 3D
model. Therefore, we used The 3D slicer software, an open-source flexible platform
designed for image visualization and analysis to create our model [27].

3D slicer is usually utilized for 3D reconstruction of anatomical structures such as
bones for studies and teaching proposes [28], or for prosthetic templatemedialization
[29]. In our case, we utilized this platform to create a 3D model of the Lunatum
bone, which is relatively a small bone localized in the wrist. The purpose is to test
the resulting model structure and compare its similarity with the actual anatomical
structure.

4.4 3D Printing (Fused Disposition Modeling FDM)

3D printing is the process to transfer digital data to physical objects, in our case
FDM or fused disposition modeling is the method of interest. In this case; the printer
machine works disposes of melted filament material (Polyethylene) layer by layer
until forming a completed object (Lunatum in our work) [30]. The saved digital
design of the Lunatum prosthesis was uploaded into the printer which subsequently
automatically transformed it into a physical object, in our case we utilized the stream
ultra 3D printer model [31].
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5 Results

Automatic segmentation: The main goal of this mask is to minimize the consumed
time on manual segmentation of the Lunatum bone from the rest of the carpal bones
which will allow better diagnosis and classification of KD.

For that, we utilizedmultiple filters and segmentation technics to reach the desired
results; as shown in Fig. 2 image (a) Thresholding results weren’t satisfactory, there-
fore, we used the K-means segmentation method. This one is a partitioned-based
algorithm which means dividing analyzed images based on similar features in data
to create groups without labels [24]. K-means results were better than Thresholding
Fig. 2b, however, the object of interest wasn’t fully segmented from the background
elements, therefore, we opted for applying K-means two times with different cluster
K values ranging from 2 to 5 successively to obtain better results Fig. 2c. The next
step was to extract the bone from the binarized image after hole filling Fig. 2d then
drew boundaries using the free-hand Roi segmentation method Fig. 2e [32].

Three-dimensional reconstruction: our approach reconstructs the 3Dmodel using
volume rendering technics Fig. 3a. Therefore, different cuts of CT scan images
“sagittal, coronal, and axial” were utilized to visualize the data in 3D volume.

The lunatum 3D model was segmented directly from the previously created 3D
hand model using 3D slicer segmentation tools Fig. 3a. The resulting model Fig. 3b
was anatomically similar to the patient’s bone. The printed model Fig. 3c was similar
to themodel created using 3D reconstruction Fig. 3b, respecting all itsmeasurements,
dimensions, and curves (half-moon shape).

a b c 

e
f

Fig. 2 Automatic segmentationmask: Thresholding (a) didn’t give good results, there for K-means
segmentation technic was applied with a cluster ranging from 2 to 5 (b, c), the regions of interest
were extracted after holes filling (d) and finally drew
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Fig. 3 Prosthesis modeling process: a volume rendering using different cuts of CT scan,
b segmented 3D Lunatum model, c printed lunatums’ model based on

6 Conclusion

Kienböck disease has always been a clinical challenge in the orthopedics field and
bone regeneration. In advanced stages, an arthroplasty is the only solution to decom-
press the carpal bones, reduce pain, and regain wrist function. Moreover, prosthetic
replacement itself is a challenge in terms of compatibility with the bone structure of
the wrist, hence the important role of 3D modeling and additive manufacturing. In
fact, those technics are mostly involved in prostheses creation and printing.

In this paper, we proposed a simple approach based on 3D reconstruction using
volume rendering technics to create a 3D model of the bones’ anatomical structure
thenmanually segmented the lunatum bone and printed it using the FDM3D printing
technic. We utilized 3D Slicer an open-access software, simple, and with multiple
tools for DICOM data visualization, processing, and 3D reconstruction.

The resulting model was similar to the actual bone in terms of structure, dimen-
sions, curves, size, and facets. Since this method allows direct 3D reconstruction and
segmentation from patients’ CT scan images, we were able to preserve Lunatums’
features, to demonstrate that, we printed the digital model in two different sizes to
compare their shape with the original anatomical structure.

The developed automatic segmentationmask allows perfect extraction of the bone
from the rest of the carpal bones by drawing ROIs around each bone.

For efficacy evaluation purposes, we applied our segmentation mask to the data
of a patient’s case with a scaphoid fracture. The main goal was to evaluate the impact
of external perturbation (fracture, KD, or dislocation of one of the carpal bones aside
from Lunatum) and the possibility to impact the segmentation accuracy.

Since accurate clinical trials require at least 1 year of follow-up to evaluate the
outcome of the implant and patient satisfaction in terms of pain relief and movement
recovery, we are planning to assess the compatibility of the modulated prosthesis
biologically and mechanically in our future works.

For further work, we aim to generalize this technic and create a simple protocol
for implanted prosthesis creation, especially for small bones such as carpal bones
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and articulation since it allows the preservation of exact anatomical features of the
concerned structure.
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Augmented Reality Applications
for Image-Guided Robotic Interventions
Using Deep Learning Algorithms

Jenna Seetohul, Mahmood Shafiee, and Konstantinos Sirlantzis

Abstract Significant breakthrough in the field of surgery has seen the integration
of augmented reality (AR) in standard robot operations, allowing anatomical objects
to be digitalized and overlaid onto a real-life scenario in-situ. This paper provides an
overview of the methodology used to reconstruct and register laparoscopic head and
neck image sequences for an AR tool. Deep learning (DL) algorithms are designed to
strategically place fiducial markers or labels in a dataset, hence enabling a virtual tool
path to be set up for guiding the end effector of a robot. We introduce a dataset of 271
images of patients from four different clinics inQuebecwith a proven history of head-
and-neck cancer. We then propose a marker-based registration method for mapping
a trajectory during surgery, utilizing an unsupervised neural network for computing
the medical image transformations. During the training stage, we use an optimized
convolutional neural network (CNN) which warps a set of labels from the moving
image in contrast to their counterparts in the fixed image. To this end, we compare
the loss functions between warped moving labels and fixed labels with respect to
the ground truth. Finally, we propose a UNet architecture where we measure the
accuracies in label localization throughout the test sequences relative to the initial
output results. Our experiments showed that the UNet outperformed the initial CNN
architecture, with optimum performance outcomes in losses being closer to 1.0.
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1 Introduction

The use of Augmented Reality (AR) in surgery has plummeted over the past decade,
with the ability to provide in situ immersive visualization of a surgical scene in the
planning stage as well as during the intervention. Since the groundbreaking release
of the Microsoft HoloLens in 2016 [1], the way surgeons perform minimally inva-
sive surgeries has evolved, eliminating inherent challenges that narrow port access
and lack of depth estimation causes in the operation theatre. In surgical navigation,
most anatomical landmarks are generated in high definition within three dimensional
workspaces, from acquired preoperative CT or MRI datasets. The virtual model is
registered to the surgical site using fiducial markers, by removing the backend scenes
and overlaying a 3D image onto a see-through display [2]. To ensure the safety of the
patient and successful final outcomes of surgery, this method of 3D image overlay
is ideal for planning in a nonstructured environment. By combining AR with image-
guided robotic surgery, the areas of interest in the body can be displayed through
a visualization device in real time, improving a surgeon’s hand–eye coordination
when manipulating the robot end effector. Despite the plethora of studies in existing
literature, medical image registration for surgical guidance is still confronted with
valuable constraints such as accuracy of label correspondence throughout sequences
of images, computational burden on processing units depending on the DL archi-
tecture as well as external factors such as signal fluctuations, noise, and acquisition
settings.

Our proposed method is an extended framework on the use of two deep convolu-
tional neural networks to compare the output of an optimized registration procedure
of the head and neck data with an appropriate transformation which converges to
a zero value. In a threefold process, we aim to map the warped moving labels to
the fixed labels to earmark the danger zones around the brainstem and spinal cord.
We then calculate the dissimilarity between the dynamic and static labels in the CT
image sequence using a dice scoring system as well as sum-square-difference (SSD)
for intensity-based loss. Finally, we show that by performing a linear transformation
such as an affine registration on the network using an alternative DL model such
as UNet or probabilistic dense displacements, we can achieve greater accuracy as
compared to the existing DeepReg architecture. The output from this experiment can
eventually be used for rendering an estimated target trajectory.

2 Related Work

In this section, we briefly introduce the use of deep learning for medical image
registration, as well as the choice of contrasting models after comprehensive study.
We then describe the application of such output databases for AR use in surgery.
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2.1 Medical Image Registration Based on Deep Learning

The innate need for precision in surgical image guidance has seen a dramatic increase
in research across the academic community, proposing classic DL algorithms of CT/
MRI scans for medical image registration. Ronneberger et al. [3] described the use
of conventional neural networks (CNNs) such as the U-Net, where spatial transfor-
mations are used to two or more images to a coordinate workspace via an encoder-
decoder style network; Qi et al. [4] implemented amodified neural network, PointNet
to extract point clouds frommedical scans for semantic segmentation which are then
used for AR visualisation. Jaderberg et al. [5] proposed a method of applying STNs
during both rigid and deformable transformations using transform feature maps on
a grid generator. Sokooti et al. [6] described another method of registration called
Displacement Vector Fields (DVF) acting as the ground truth and utilized the RegNet
architecture for registering CT images of the chest. This enabled a higher accuracy
generation when using alternative real-life datasets, in line with the conventional B-
splinemethods. DeVos et al. [7] proposed an unsupervised end-to-end network using
CNNs and STNs to register 2D images of the heart. Inspired by dice loss functions
for comparing accuracy in training models, authors such as Hering et al. [8] have
touched on existing algorithms for fixed to dynamic segmentation mapping whilst
combining CNN-based square difference loss and similarity scores. Balakrishnan
et al. [9] extended the work on Voxelmorph for calculating the Dice score between
fixed and warped moving segmented masks. Hansen et al. [10] found that the PDD-
Net architecture provided a 15% increase in accuracy during monomodal CT regis-
tration using a combination of probabilistic dense displacements and differentiable
mean-field regularization.

2.2 Augmented Reality Based on DL Image Registration

The application of AR based technology for surgical guidance has become increas-
ingly relevant in clinics. The use of image superposition for pre-planning of compli-
cated surgeries helps clinicians to transfer the reconstructed medical images from the
database to the operating room, for increased tool localisation and reduced operating
times. Most clinically approved studies use non-invasive fiducial markers displayed
through a visor, to track the position of an end-effector with respect to the patient’s
body using DL algorithms, libraries and software development kits [11]. Jiang et al.
[12] used the principle of medical data registration for detecting simple 2D recog-
nizable objects in a workspace using RGB cameras. Ma et al. [13] used preoperative
CBCT images for generating a trajectory during dental implant surgery, where the
naked-eye 3D reconstructionswere superimposed in-situ to form anAR scene around
the patient’smandible usingmatchingmarkers on the patient’s body and thematching
CT scans. Wang et al. [14] used SDKs as a computing database for tracking 2D and
3D feature coordinates on medical images and create a calibrated coordinate system
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between the real scenario and the digital world. Jiang et al. [15] focused on an AR
guided navigation platform for dental implant surgery using mesh to point cloud
extraction for preoperative image registration, which achieved lower errors and (p <
0.05) for the surgery time.

3 Methodology

In this study, we propose the use of an existing framework based on deep convolu-
tional neural networks (CNN) for CT scan registration of the head and neck. The
unsupervised image registration framework consists of two branches as shown in
the block diagram below, one for the moving image, M and one for the fixed image,
R, each with their associated label. During training, a self-supervised set of labeled
data is fed through the neural network, generating a function F’ and is resampled to
obtain the warped moving image (Fig. 1).

3.1 Dataset and Implementation Details

CT image reconstructions of the head and neck were generated using a public dataset
from The Cancer Imaging Archive. The DeepReg open-source repository is cloned
onto the PC terminal to feed input data of 271 test images, eachwith 37 slices through
supervised network.We perform rigid registration of the dataset first where an image
coordinate system is initially mapped onto the other to align tissue deformations.
This means that only translation and rotation can be performed for target objects to
achieve correspondence. Our experiment involves multi-modal registration of real-
time CT scans with preoperative ones which will allow for marker-based planning of
a trajectory. We aim to use a displacement vector to project the moving coordinates
into the static coordinate space. This transformation is characterized as a combination
of vectors which allow for all voxels in a CT image to be equalized in a warping
procedure. Generally, the voxels within CT images have a wide range of intensity
values across their slices which are calculated using intensity histograms. We use
measures such as normalized cross-correlation (NCC), mutual information (MI) and
basic sum-square-difference (SSD) tomeasure the common features betweenmoving
and fixed images.

3.2 Evaluation Metrics

It is to be noted that the computationally heavy datasets used for image processing
require high GPU processing speeds, which generate complex ground truth transfor-
mations and therefore DL algorithms such as weakly supervised methods are more
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Fig. 1 Flowchart of registration procedure

suitable for training them. This enables a pair of corresponding moving and fixed
labels to be computed, thus extracting the label dissimilarity during the registration.
For this experiment, we compare the prediction array to the mask array with the aim
of identifying the positive and negative outcomes as well as the mapping results to
calculate a loss function for the regions of interest (ROI). The input data includes a
probability map from the model, the mask array containing corresponding ground
truths and the base threshold predictions. The base image contains 37 slices, with a
dimension of 128 × 128 pixels, which is the same for the base label. The outputs
include a dense deformation φwhich has an extra index (128, 128, 2) because at each
pixel, we require a direction vector. The output RGB CT images indicate areas of
overlap between masks and predictions. We observe that the labels have transformed
from the 0th slice at index 1. Upon magnification, a color-coded outcome chart is
used to distinguish among true positives from false positives (FP) and false nega-
tives (FN). The intensity-based loss between the images shown below is calculated
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using the mean difference per image tensor. Let dimensions; f and m be the fixed
and moving image parameters and let ϕ be the registration workspace that maps the
coordinates off onto that of m. This procedure is depicted as an optimisation problem
below:

ϕ =argϕmin L(f, m, ϕ)

=argϕminLsim(f, m · ϕ) + λLsmooth(ϕ) (1)

where m·ϕ represents the warping by ϕ onto m, function Lsim represents differences
in appearance, and Lsmooth shows local spatial variations in ϕ. The constant λ corre-
sponds to the regularisation trade-off variable. In the process of image registration,we
perform voxel-wise correspondence between the fixed and moving datasets whereby
wemay use affine or non-rigid transformations depending on the degrees of freedom.
The function below

μ = minL(Tμ; If, Im) (2)

describes the optimization problem of registering CT images, where T is the desired
spatial transformation which maps m onto f and S is a measure of dissimilarity
between the fixed image and thewarpedmoving image. For our experiment, we chose
a 3× 4 affine transformationmatrix which is used to visualize the data registration on
the fixed images, and then analyze the displacements of consecutive pixels in labels
from the test sequence. This means that the straight and parallel lines in the image
remain intact but may be translated with a slight change of angle.We found that some
of the labels that appeared in the fixed and warped moving images had moved across
the slices in the sequence and therefore disappeared from the original moving image.
The same process applied for labels in the original moving images disappeared from
the fixed and warped moving images, which proved that the warping process was
successful (Fig. 2).

3.2.1 Control Experiment Using U-Net Module

We focus on the use of supervised learning techniques to predict the outcomes of a
particular interventional pathway through the brain. In the control experiment, we
use a weakly supervised method to compare the fixed images with their moving
counterpart. We then apply another CNN architecture from the VoxelMorph library,
adapted from the UNet, to compare the accuracy levels in locating labels in the fixed
and warped moving segmentations. U-Net (http://lmb.informatik.uni-freiburg.de/)
is commonly used for image segmentation tasks and provides accurate registration
results. It is developed from the FCN network and has multiple features such as
enhanced edge detection, minimized information loss, higher background weight
amongst others. In this experiment, we describe the network used with an encoder
input of size 16× 32× 32× 32 but the framework parameters may vary depending

http://lmb.informatik.uni-freiburg.de/
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Fig. 2 a Position of moving label with respect to the fixed label in a 128 × 128 pixel graph, b a
comparison between the positions of the moving label to the fixed label where TP = white, FP =
green and FN = red
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on the requirements. We apply three dimensional, 32-layer convolutions in both the
encoder and decoder stages using a kernel size of 3 and a stride of 2, where each
convolution is followed by a LeakyReLU layer. The process starts with a down
sampling step through different degrees of convolutions, followed by a series of up
sampling steps and concatenations to decode the network size after learning from the
encoding stages. Successive layers of the decoder operate on thinner spatial scaling
which enables accurate CT image alignment, whereby the softmax function activates
the pixels and generates a probability map.

3.3 Experiment Results

In this section, we present the results of each experiment and attempt to compare the
performance based on certain evaluation metrics.

3.3.1 Image Registration

The results of the prediction test (Fig. 3) are shown below in a warped label simu-
lation. We attempt to detect the dissimilarity (SSD) between the fixed label and the
moving label by calculating the dice score. In this case, the dice score is 0.517 for
32nd slice of the sequence, where white pixels indicate instances where the model
proved that the moving label was in fact located in the same position as the fixed
label. The green pixels indicate FPwhere the moving label was detected in the wrong
pixel segment compared to the fixed one and finally, the red FNs indicate a missed
segmentation between fixed and moving label. Detecting the image-based loss of
each moving tensor or vector compared to the fixed tensor enables us to visualize an
average difference between their positions.

3.3.2 Comparison Between U-Net and CNN

In Table 1, we compare the results of the medical image segmentation for the same
dataset using both architectures, using metrics such as accuracy, dice scores, SSD
and training speeds. The experiment shows clearly that the U-Net and CNN are
both suitable for medical image registration. We observed from Table 1 that the U-
net network performs better than the original CNN with a dice score of 0.621 on
the 32nd slice of the sequence, which was an increase of 10%. Figure 4 shows the
difference in intensities and contrasts of the moving label tracked throughout both
experiments i.e., the CNN architecture and the U-Net. It is observed that the label
appears in most slices in the UNet but appears to fade away during the CNN training,
which means that the UNet outperformed the CNN. We compare the accuracy of
mapping between fixed and warped moving images, the training speed (s), the F1
score, the SSD value as well as the dice score for each neural network. For control
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Fig. 3 CT image reconstruction after performing an SSD between the warped moving image and
the fixed image

purposes, we use different neural networks, including the U-Net, CNN, RNN and
RegNet to compare the performance of image registration using the aforementioned
parameters.

Table 1 Results of image registration

Parameters U-Net CNN RegNet RNN

Accuracy 0.71 0.65 0.60 0.77

Training speed (s) 10 30 40 57

F1-score 0.86 0.81 0.751 0.55

SSD 30,450 32,342.5 35,703 19,077

Dice score 0.75 0.51 0.65 0.78
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Fig. 4 Registration of themoving label after being warped throughout the 32-slice sequence during
training of the UNet and CNN architecture

4 Discussion and Conclusions

Deep learning algorithms have been at the core of medical image registration ever
since the concept of surgical visualization emerged in the clinical sector. The preci-
sion to which surgeons are now able to perform using image overlays and pre-
planning marker-based or marker-less trajectories is a steppingstone towards clinical
research in the academic community albeit requiring improvement in the medical
image quality for operations which involve morphological and volumetric differ-
ences, for example, in the resection of the lung in its deflated state using AR may
be impractical since 3D reconstructions are made upon inflated lung CT/MRI scans.
Medical image registration requires a high amount of accuracy and efficiency, espe-
cially when it comes to complicated cases in surgery where minimal invasion and
lower operation times are preferred for quicker convalescence. The use of fiducial
markers or “labels” for in-situ AR guidance is an evolving technique which can be
used to detect, remove, and alter anatomical landmarks precisely.

This paper uses a variant of theU-net network in parallelwith aCNNnetwork from
theDeepReg tutorial to analyze and compare the efficacyof label registration on a pre-
processed and pre-segmented cancer dataset. The optimized CNN architectures are
used for detecting the non-invasive markers throughout the sequence and finally, the
segmentation results are compared through relevant evaluation criteria. This method
is universal, which means that different datasets can be used for analyzing the perfor-
mance of both neural networks to obtain an efficient registration technique. However,
both methods have their flaws since there may be larger datasets whereby the results
are easily influenced by the number of training sets. We are continuously optimizing
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the use of neural networks for image and label registration through various super-
vised learning techniques. The performance of theCNNs can be improved by using an
image deformation method, hence reducing dice loss of the labels within a sequence,
followed by the generated anatomical path for the surgeon’s view.
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Transfer Learning Based Classification
of Diabetic Retinopathy on the Kaggle
EyePACS Dataset

Maria Tariq, Vasile Palade, and YingLiang Ma

Abstract Severe stages of diabetes can eventually lead to an eye condition called
diabetic retinopathy. It is one of the leading causes of temporary visual disability and
permanent blindness. There is no cure for this disease other than a proper treatment
in the early stages. Five stages of diabetic retinopathy are discussed in this paper
that need to be detected followed by a proper treatment. Transfer learning is used to
detect the grades of diabetic retinopathy in eye fundus images, without training from
scratch. The Kaggle EyePACS dataset is one of the largest datasets available publicly
for experimentation. In our work, an extensive study on the Kaggle EyePACS dataset
is carried out using the pre-trained models ResNet50 and DenseNet121. The Aptos
dataset is also used in comparison with this dataset to examine the performance of
the pre-trained models. Different experiments are performed to analyze the images
from the different classes in theKaggle EyePACS dataset. This dataset has significant
challenges including image noise, imbalanced classes, and incorrect annotations. Our
work highlights potential problems within the dataset and the conflicts between the
classes. A clustering technique is used to get informative images from the normal
class to improve the model’s accuracy to 70%.
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1 Introduction

Diabetic retinopathy (DR) is an eye complication that can be developed in diabetes,
as high blood sugar levels in diabetes damage the eye’s retina with time. There are
two types of diabetes; Type 1, in which the body does not produce insulin, and Type
2, in which the body produces insulin but does not know how to use it [1]. DR is
one of the primary causes of the rise in blindness globally. According to the [1], 422
million adults (aged 20 to 79years) in 2014 suffered fromType 2 diabetes. Both Type
1 and Type 2 patients are at potential risk of having DR. The population increased to
463 million in 2019 and was predicted to increase to 700 million adults by 2045 [2].
In 2015, there were 2.6 million people that were visually disabled because of DR,
and it is expected to rise to 3.2 million by 2020 [3], making DR the leading cause of
preventable blindness. The DR is reversible if proper treatment is carried out in the
early stages, but there is no permanent cure for this ailment in the later stages [4].

DR can be categorized into five stages; normal, mild, moderate, severe or non-
proliferative, and proliferative [5]. It progresses slowly through these stages without
proper screening and treatment. During DR, different lesions start appearing gradu-
ally in the eye, like microaneurysms inmild DR [6], hemorrhages and exudates in the
moderate DR, formation of new blood vessels in non-proliferative DR, and fragile
blood vessels and scar tissues in proliferative DR [5]. These lesions slowly distort
the retina and further harm the macula. Regular screening and proper treatment after
diagnosis are required to prevent this eye-threatening disease [7]. Detection of small
lesions is difficult in the initial stages, but it can be very helpful in reducing the risk
of severity. The other thing is the correct diagnosis of all five stages of DR to get
proper treatment [8]. Human experts and ophthalmologists are available to manually
diagnose the signs of DR, which is time-consuming and qualitative. In recent years,
much work has been done on the automated detection of DR with the development
of relevant technologies [9].

Deep Learning (DL) is an essential tool for processing medical images for clas-
sification, object detection [10], and localization [11]. It uses Convolutional Neural
Networks (CNNs) to extract features from the images automatically and then distin-
guishes between images of different classes [12]. In our work, in-depth research on
theKaggle EyePACS dataset is performed to analyze the behavior of the largest avail-
able DR dataset. The eye fundus images are first processed through computer vision
using different techniques to improve the quality of images. Pre-trained models like
ResNet50 and DenseNet121 are trained through transfer learning for multiclass clas-
sification to assist human experts in diagnosis. Aptos dataset is used in comparison
with the EyePACS dataset to investigate the performance of the developed classifi-
cation models. In this paper, all experiments are mainly carried out on the Kaggle
EyePACS dataset, which has five classes of diabetic retinopathy, as shown in Fig. 1.
During classification, many challenges of the EyePACS dataset, such as noise, incor-
rect labeling, and imbalanced classes, are highlighted. However, this paper focused
on the behavior of this dataset, conflicted classes within the dataset, and the potential
steps taken to train the model and increase its performance.
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Fig. 1 Images of the five classes of the Kaggle EyePACS dataset

2 Related Work

Convolutional neural networks get along well with images but need much time for
training [13].Meanwhile, transfer learningwas introduced to achieve better accuracy
in less time. It is used to train a previously trainedmodel on an entirely different prob-
lem by transferring its learning. The model does not need to be trained from scratch;
instead, it learns new data in less time and with reasonable accuracy. GoogLeNet
and AlexNet have been used for transfer learning on the Messidor dataset [14]. They
have done three experiments with two, three, and four classes to get a test accuracy of
74.5%, 68.8%, and 57.2%, respectively. They have also hypothesized that low accu-
racy in four classes is due to noise and incorrect labeling [14]. In [8], authors have used
Inception-v3 for transfer learning. They have trained their model to do binary classi-
fication with a small dataset and managed to get an accuracy of 90.9%with 3.94% of
the loss. Inceptionmodules are considered to extract differently sized features of input
images in one level of convolution [8]. So, Gulshan et al. have also used Inception-v3
to train their model on binary classification. The model is trained on 0 and 1 as one
class and 2, 3, 4 as another class to suggest if the patient needs a referral or not [15].

While working with the Kaggle EyePACS dataset in [5], authors have used data
preprocessing and some traditional data augmentation techniques. They have per-
formed twobinary classifications; onewith healthy (0) and sick (1, 2, 3, 4 classes), and
the second with low (0,1) and high (2,3,4 classes). For first classification, they have
94.5% sensitivity and 90.2% specificity. For the second, they have got 98% sensitivity
and 94% specificity. For five classes, they have obtained 0.85 of Quadratic Weighted
Kappa and 0.74 of F1-score on their test set. In [16], authors have developed a CNN-
based system of DR classification using AlexNet, VGG16, and InceptionNet-V3.
They have used the Kaggle EyePACS dataset andmentioned the problemswithin this
dataset. The images were handpicked by domain experts to avoid the false labelling
of the dataset and achieved a 5-fold cross-validation with the average classification
accuracy of 37.43, 50.03 and 63.23% on AlexNet, VGG16, and InceptionNet-V3,
respectively. In [17], authors have trained and tested their model on the Kaggle Eye-
PACS dataset. They have achieved a relatively good accuracy of 70%, but on the
skewed dataset with the majority of images in class 0. In [18], authors have done
a predictive analysis on the Kaggle dataset using transfer learning techniques. It is
relatively similar to our work, in which we will perform an intensive analysis of the
eye fundus images from the Kaggle EyePACS dataset through different experiments
using pre-trained models.
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3 Pre-trained Models

Two pre-trainedmodels were mainly used for the majority of experiments; ResNet50
and DenseNet121. ResNet50 was introduced with the increased network depth to
train more and achieve a reasonable accuracy on the images. We have achieved
92.1% top-5 accuracy and 3.57% top-5 error on ImageNet validation dataset. The
architecture of themodel is updated and combinedwith two dense layers for five class
classification. DenseNet121 hasmore depth but slightly less accuracy than Inception-
v3, which is 92.3%, and the top-5 error is 7.83% on ImageNet validation dataset. The
DenseNet has dense connections between layers, fewer parameters, high accuracy,
higher computational efficiency, and memory efficiency. This network advanced
the previously developed network ResNet and improves its performance. Like the
identity block of ResNet, this network uses a “dense block”. The architecture of the
DenseNet121 model is updated, where the base model is combined with the average
global pooling layer and dense layer for five class classification in our DR detection
problem.

4 Dataset

The Kaggle dataset EyePACS was sponsored by the California Healthcare Founda-
tion in 2015, where they launched this competition with the support of a data science
team to introduce artificial intelligence in the detection of Diabetic Retinopathy. The
images were provided by EyePACS, which is a free platform for retinopathy screen-
ing. It consists of 88,696 images, which includes 35,126 images that are annotated
for training. Labels are given on the scale of 0–4, which represent the grades of Dia-
betic Retinopathy. Label 0 shows normal class which includes 25810 images, Label
1 shows mild symptoms of DRwhich includes 2443 images, Label 2 is moderate DR
which includes 5292 images, Label 3 shows symptoms of severe DR and has 873
images, and finally Label 4 shows proliferative DR with 708 images. These grades
are given according to the standards of International Clinical Diabetic Retinopa-
thy severity scale by a single specialist. The resolution of images is variable and
approximately 3000× 2000 pixels.

The other dataset we have used is Aptos 2019 (4th Asia Pacific Tele Ophthalmol-
ogy Society Symposium). APTOS includes 5590 images, 3662 for training and 1928
for testing (Kassani et al., 2019). A clinician has rated each image with the same
severity of diabetic retinopathy as in the EyePACS dataset. The number of images
is 1805 in the normal class, 370 in the mild class, 999 in the moderate class, 193 in
the severe and 295 in the proliferative class. The resolution of images is variable.
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5 Methodology

In the proposed method, the dataset EyePACS is taken from the Kaggle public repos-
itory. This dataset contains images of different resolutions and grades in an excel file.
A desktop PC with Nvidia Tesla K80 GPU was used to train the five classes of DR.
TensorFlow was used as backend framework.

Data must be preprocessed to remove noise from the dataset and then fed into the
pre-trained model for further training. Some preprocessing techniques were applied,
which are discussed in this section. The Diabetic Retinopathy images were cropped
to the input size of the model, which varies from model to model. For ResNet50, we
need 224× 224 which is quite low, but for DenseNet121, we have changed the input
layer of the model to accept the images of custom size 512× 512.

5.1 Transfer Learning Details

Following are the hyper-parameter details used in these transfer learning experiments.
Loss Function Several experiments have been conducted using two different loss
functions. Categorical crossentropy loss is used for multiclass classification, but it
did not perform well on our dataset due to the imbalanced nature of the dataset or
small lesions in the images. The loss function is given below.

Loss = −
n∑

i=1

yi · log(ŷi )

This loss function shows the error between the actual and the predicted output. yi
is the probability for event i, which in total equals 1. n is the number of predictions
in the output list.

Sparse Categorical Focal Loss is an extension to categorical crossentropy with the
weighting factor (1−Oyi). γ is the focusing factor used to adjust the rate smoothly.
This focal loss works better if the dataset is imbalanced and if there are small lesions
within the classes. In this work, focal loss is used with gamma equals to 2. The loss
function is below.

Loss =
n∑

i=1

(1− ŷi )
γ · yi · log(ŷi )

Early Stopping Early stopping is used to stop training automatically based on
some metric. The metric is usually the validation accuracy or loss that needs to
be achieved for the performance evaluation of the model. When this metric stops
improving after some epochs, it waits until reaches the value of patience. Patience
is the number of epochs without any improvement in the metric. After these epochs,
it automatically terminates the training cycle. It increases the model’s performance
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Table 1 Conflicting classes

Classes Model Epochs Accuracy
(%)

Class 0 Class 2

Exp 1 0 and 2 ResNet50 120 51 0.61 0.33

0 and 2 ResNet50 200 50 0.32 0.61

Exp 2 0 and 1 ResNet50 260 50 0.26 0.62

0 and 1 ResNet50 280 52 0.23 0.65

by avoiding overfitting and saving time. The metric used in this work is validation
accuracy and the patience value is 70.

Optimizer andLearning rate Anoptimizer calculates the change after each training
cycle and updates the model’s weights. It minimizes the loss value to increase the
accuracy. We have tested two optimizers, stochastic gradient descent (SGD) and
adam optimizer. SGD is calculated by going through all the training examples. This
optimizer did not work for our work; however, the Adam optimizer works well
and converges faster for our problem. It has less computation time and needs fewer
parameters to tune. The learning rate is set to 0.001, which is considered the best to
train the model.

Model Layers In the base model, the initial layers of the model have not been
trained and frozen to fine-tune the model. Only the last few layers have been trained
to extract informative features from the images. After the base model, the global
average pooling layer is used to down-sample a patch’s features by taking average
values from the feature map. It also reduces the problem of overfitting by learning
invariant features. We have used Softmax as an activation function [19], which is
used to transform the output before calculating loss in the training cycle. Softmax is
used with a dense layer of 5 neurons, and each neuron represents each class.

5.2 Training Using Pre-trained Models

EyePACS dataset is the one with the most number of images, but it has a lot of noise,
imbalanced classes, and false annotations. We will look into the problems of the
Kaggle EyePACS dataset through the conducted experiments.

Experiment on conflict classes: This dataset has two major classes, Class 0 and
Class 2, with 25810 and 5292 images, respectively. It was considered better to train
the majority classes initially and analyze the results. We resized our input images
to 224× 224 for ResNet50 and randomly down-sampled Class 0–5292. The highest
accuracy in the two classes was 51%, and the accuracy seemed to be stuck at 50%
in the subsequent epochs, which can be seen in Table 1.
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Table 2 Experiments on three classes

Classes Model Resolution of
images

Epochs Accuracy (%)

Exp 3 0, 1 and 2
(Majority), 3
and 4
(Minority)

DenseNet121 224× 224 80 99.9

Exp 4 0, 3, and 4 DenseNet121 224× 224 160 66

Exp 5 1, 2, and 3 DenseNet121 224× 224 80 63.5

Exp 6 1, 3 and 4 DenseNet121 224× 224 80 69

The same experiment was repeated on Class 0 and Class 1; Class 1 is the next
majority class and has 2443 images, so Class 0 was randomly down-sampled to 2443
images. The model responded similarly to Class 0 and Class 1 as the accuracy stuck
at 51%. We can say that Class 0 (normal) conflicts with class 1 and class 2. There
can be two reasons for this conflict: a mixing between these classes with incorrect
annotations, or themodel is not good enough to learn small lesions in the initial stages
of DR. If we combine conflict classes 0, 1, and 2 as one Majority class and 3 and 4
as Minority class, then it achieves good accuracy, which can be seen in Experiment
3 of Table 2.

Experiment on Three Classes: As illustrated in Table 2, it is noticeable that a good
accuracy is achieved in Exp 4 and 5. One class is taken from initial grades like 0, 1,
and 2, and the other class from severe classes like 3 and 4. It might be due to visible
lesions in the images. When the model is trained for minority classes in Exp 6, it can
be seen that the DenseNet121 model differentiates well between classes 1, 3, and 4,
minority classes. An accuracy of 69% is achieved in 80 epochs.

Experiment on Five classes: In Exp 7, DenseNet121 is trained to performmulticlass
classification on five classes of DR. The images are resized to a higher resolution
of 512× 512. The accuracy achieved in five classes, with all the traditional image
preprocessing techniques, is 48%. The F1-score of each class shows the conflicting
nature between classes 0, 1, and 2. In order to defend the ability of the model to
learn the lesions, the Aptos dataset was taken to perform multiclass classification
on five classes. 80% percent of data was taken from each class for training, and
20% of data was taken for testing. Images were resized to 380× 380. Our model
successfully learned the classes in experiment 8 and achieved a test accuracy of 93%
on five classes. The images have good quality, and it is easy to see the small lesions
and difference between those classes. Eventually, we can hypothesize that our model
is good enough to learn small lesions and differentiate well between five classes.
However, this dataset is relatively small, so we cannot standardize this dataset to
build a generalized model for DR classification.

In experiment 9, only 700 images were taken from each class to train a Support
Vector Machine (SVM). SVM is a non-parametric algorithm implemented to give
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Table 3 Experiments on five classes

Model Dataset Classes Accuracy (%) F1-score

Exp 7 DenseNet121 EyePACS
dataset

5 48 Class 0 (0.31)
Class 1 (0.48)
Class 2 (0.29)
Class 3 (0.56)
Class 4 (0.68)

Exp 8 DenseNet121 Aptos dataset 5 93 Class 0: 1.00,
Class 1: 0.94,
Class 2: 0.84,
Class 3: 0.95,
Class 4: 0.92

Exp 9 Support vector
machines

EyePACS
dataset

5 52.57 Class 0: 0.35,
Class 1: 0.35,
Class 2: 0.36,
Class 3: 0.79,
Class 4: 0.79

the upper estimation of the model’s accuracy. The F1-score of the 0, 1, and 2 classes
is low, confirming the conflict between these three classes, and our highest accuracy
is 52.57%. The five-class classification accuracy is higher on SVM than on neural
networks. The results of these experiments can be seen in Table3.

6 Discussion

In this section, the challenges in the Kaggle EyePACS datasets are highlighted and
discussed. It has a lot of noise and wrong labeling; however, it is the most used
dataset due to its large size. Different image preprocessing techniques have been
used to improve noise and increase the quality of images. Data augmentation is
implemented during training time to balance the classes of this dataset. Although,
the accuracy did not improve as expected. Two pre-trained models, ResNet50 and
DenseNet121, were chosen because of their valuable contributions in the medical
field to perform multiclass classification. During the training, it was noticed that the
model successfully recognized mild classes (0, 1, and 2) from severe classes (3 and
4). However, it did not perform well in differentiating the mild classes (0, 1, and 2)
because of the negligible difference between those images. Moreover, class 0 is the
shared class that conflicts with both class 1 and class 2, which is why the accuracy
got stuck at 50% for these classes. Class 0 is the normal grade class, which holds
70% of the images from the training dataset. So, it can be considered that class 0 has
a higher chance of having junk data that requires to be separated.

We have also applied a k-means clustering on class 0 to distribute it into 3 clusters.
The purpose of clustering is to separate the informative images from the junk images
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Fig. 2 Images from three different clusters

into one cluster. Each cluster is then investigated with the rest of the classes to see if
there is any one cluster that improves the accuracy of the model. After the K-means
clustering, the pre-trained model DenseNet121 is used to extract features from all
the images of class 0 divided into three clusters. These three clusters are considered
class 0 and then trained one by one with other classes 1, 2, 3, and 4. cross-validation
is performed to estimate the model’s error. One part of the data is kept for testing
from the beginning. The remaining part of the data is used for training the model
in a 10-fold cross-validation approach, where weights of the model from each fold
training are used to update in the next fold training. Then, the model is tested on the
test set partition kept aside from the beginning.

The model’s accuracy increases to 70% on five-class classification when trained
on 180 epochs. Ourmodel successfully detects themild stages ofDR, especially class
1 with the small lesion (microaneurysms) of diabetic retinopathy with an F1-score
of 0.67. In addition, the detection for the severe stages of DR is also improved with
a comparatively better F1-score. The accuracy on the other two clusters is relatively
low, which is 42%.

In Fig. 2, we can see some random images from the three clusters 1, 2, and 3. Our
model performed well on cluster 2 with 70% accuracy on five classes. It can be seen
in Table4 that the model did well in classifying the four severity classes (1, 2, 3, and
4).

7 Conclusion and Future Work

In this paper, we have done a detailed predictive analysis of the Kaggle EyePACS
dataset. This dataset is important because it is the largest publicly available dataset
with five classes. However, this dataset has many challenges like poor quality, imbal-
anced classes, and incorrect labeling. In our analysis, we have highlighted the draw-
backs of this dataset through different experiments using transfer learning. ResNet50
and DenseNet121 were used as the deep learning models to perform five-class clas-
sification. The dataset has three conflict classes, considered to be incorrect-labeled
or confused classes; normal, mild, and moderate classes with very few initial symp-
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Table 4 K-means clustering on Class 0

Cluster Classes Accuracy (%) Model Epochs F1-score

Exp 10 Cluster 1 5 42 DenseNet121 180 Class 0: 0.01,
Class 1: 0.46,
Class 2: 0.22,
Class 3: 0.44,
Class 4: 0.62

Cluster 2 5 70 DenseNet121 180 Class 0: 0.13,
Class 1: 0.67,
Class 2: 0.73,
Class 3: 0.85,
Class 4: 0.88

Cluster 3 5 42 DenseNet121 180 Class 0: 0.07,
Class 1: 0.48,
Class 2: 0.31,
Class 3: 0.41,
Class 4: 0.57

toms, which is why it is hard to distinguish between them. The Aptos dataset is
also used to performmulticlass classification and compared to the EyePACS dataset.
However, this dataset is small and insufficient to build a generalized model for DR
classification. In future work, it is essential to generate new images for the stages of
DR to make a new large dataset that will be good enough to be utilized in real life to
help experts in diagnosing Diabetic Retinopathy.
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Ex-vivo Evaluation of Newly Formed
Bone After Lumbar Interbody Fusion
Surgery Using X-ray Micro Computed
Tomography

Jakub Laznovsky , Adam Brinek , Tomas Zikmund ,
and Jozef Kaiser

Abstract Many novel biomaterials are recently investigated for use in spinal fusion
surgery, especially in lumbar interbody fusion. TheX-raymicroCT as a tool is widely
used for evaluating how successfully those biomaterials can perform a vertebral
fusion. However, the current methodologies of microCT image assessment are based
on visual evaluation by the operator. In this paper, we propose amethodology for how
such biomaterials can be investigated in pre-clinical studies by investigating fused
vertebraemorphology.We utilizedmicroCT scans of pigs’ fused vertebrae to develop
a fully automatic approach, which can characterize the morphometry of the bone in
the fused region. A surface mesh model was created to extract the newly formed
bone tissue between fused vertebrae in the microCT data. Extracted bone tissue
was consequently evaluated according to the selected morphometric parameters.
Characterization of the newly formed bone properties in the intervertebral area can
be utilized to evaluate the osteogenesis function of implants used in lumbar interbody
fusion surgery.
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1 Introduction

Spinal fusion is a neurosurgical technique that connects two or more vertebrae to
prevent a motion between them. This technique is performed for the treatment of
various degenerative diseases to relieve back pain and pressure. Since the early
1900s, bone grafts have been used as a source of growth factors to reach a permanent
vertebral fusion. The bone graft (autograft) is surgically removed from another part
of the patient body, usually from the iliac crest. This method remains a standard up
to recent times. Currently, the huge expanse of biomaterials used in medicine brings
many new approaches to spinal fusion every year [1–4]. Usage of biomaterials is
beneficial in this case due to the possibility of fusion rate regulation and complicated
obtaining of the autografts. Evaluation of the vertebral fusion quality in order to
evaluate individual biomaterials is therefore fundamental.

Micro Computed Tomography (microCT) plays an important role in the fusion
quality assessment. Thanks to the 3D non-destructive visualization and quantitative
analysis of Lumbar Interbody Fusion (LIF) location, it is possible to evaluate bone
tissue properties. According to previous studies, the accuracy of microCT for bone
morphometry is closely correlated with histomorphometric techniques [5–7]. In the
case studies, which can proceed ex-vivo, the advantage of microCT can be taken. The
main benefit of microCT compared to a clinical CT scanner is the spatial resolution
of the scan in order of micrometers (dependent on the size of the sample).

In the case of LIF quality assessment using microCT, it is crucial to select an
objective and standardized approach for the LIF area analysis. Several automated
approaches for the LIF area were already introduced but usually require some
enhancement or are suitable for a method other than microCT, especially for clinical
applications (plain radiography, clinical CT, magnetic resonance imaging) [8–11].
Another category is visual methods, which are established but depend on the subjec-
tive evaluation by the operator [12, 13]. The development of a standardized approach
can facilitate the comparison of the vertebral samples, where vertebrae are fused with
different types of intervertebral implants, including bone grafts.

In this work, we extended analyses from [14] and analyzed the vertebral samples
after LIF in detail using quantitative parameters evaluating the newly formed bone
properties. The main motivation is to provide a tool which can easily and objectively
analyze LIF area structure, using different biomaterials used for vertebral fusion.
Such a methodology can consequently facilitate and accelerate the investigation of
biomaterials suitable for vertebral fusion. Automation of this process is crucial, since
manual methods are affected by bias caused by the operator.
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2 MicroCT Bone Tissue Evaluation

The formation of new bone after LIF surgery is possible thanks to the osteogenic,
osteoinductive, and osteoconductive properties of fusion materials used for vertebral
fusion [15]. Since bone fusion is artificially created, the properties of the newly
formed bone tissue may vary from individual to individual. Bone morphometry is
able to quantitatively describe the correlation between the growth and development
of the examined bone and the type of material used for spinal fusion.

Besides, microCT is capable to evaluate bone samples to study metabolic bone
diseases such as osteoporosis and characterize the efficiency of therapies for these
degenerative diseases [16]. The main benefit is the non-destructive evaluation of
bone fragility, microdamages, and density. Consequently, it is possible to create 3D
models of examined bones (vertebrae) for simulations of mechanical stress, and bone
fragility induced by loading [17].

There are several morphological parameters that characterize the bone and can be
derived directly from themicroCT 3D image stack. These parameters are obtained by
image-processing methods using various software provided by microCT manufac-
turers or by applying mathematical methods in a programming environment. There
are four basic parameters characterizing the trabecular bone: Trabecular thickness
(Tb.Th), separation (Tb.Sp), number (Tb.N), and bone volume fraction (BV/TV)
[18]. Mean Tb.Th and Tb.Sp are evaluated using the sphere fitting method, where
in the case of Tb.Th the biggest spheres inscribed in the individual parts of the
segmented object are considered. In the case of Tb.Sp is the approach similar, but
spheres are fitted into the gaps between trabeculae (image background). Individually
fitted sphere diameters are consequently averaged to obtain a single representative
Tb.Th or Tb.Sp value. BV/TV is based on the ratio of voxels belonging to the bone
and to the volume of interest (VOI), and Tb.N can be derived as the proportion of
BV/TV and Tb.Th.

Further parameters evaluating trabecular bone are Connectivity Density (Conn.D)
and Degree of Anisotropy (DA). Connectivity is designed to estimate the number
of connected trabeculae in a trabecular network. The calculation of connectivity is
based on the Euler characteristics, which count the number of objects in VOI, the
number of marrow cavities surrounded by bone, and the number of connections that
must be broken to split the structure into two parts. A more convenient approach is
to relate the connectivity to the total volume of VOI and express this parameter as
connectivity density [19]. The Degree of Anisotropy describes the orientation of the
structural elements in the bone. DA specifies whether the trabeculae have a particular
orientation or are arranged randomly. The calculation is based on the mean intercept
length from various directions [20].
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3 Materials and Methods

3.1 Datasets Used

In this work, X-ray microCT data of 4-month-old pigs after LIF surgery were used.
One-level LIF surgery was conducted on Lumbar 2 and Lumbar 3 (L2–L3) verte-
brae. The samples were divided into three groups according to the material for LIF
used. A bone autograft from the iliac crest was used in the first group (group A).
In the second group (group B) was used a biodegradable nanocomposite implant of
biphasic calcium phosphate [2] modified with collagen/oxycellulose biopolymeric
foam, enriched with fibroblast growth factor 2 [21]. In the third group (group C),
similarly composed biomaterial as in group B was used, but the fibroblast growth
factor 2 was substituted by bioactive polyphosphate. All samples were after the LIF
surgery fixed with the pedicle screws [22].

The fused vertebrae were surgically removed, wrapped into the plastic foil to
avoid samples drying, and scanned on microCT system GE phoenix v|tome|x L 240
(Waygate Technologies, USA). The voltage of the scan was 100 kV, the current was
300 μA and the X-ray beam was filtered by a 1.5 mm aluminum filter. In total, 2200
projections were captured with the detector exposure time of 400 ms. For more about
the samples and their measurement, see [14].

3.2 Determination of Volume of Interest

All datasets were firstly registered in the coordinate system according to the top-
cranial and bottom-caudal orientation, where the L2 vertebra is located in the upper
part of the volume. Consequently, a prepared surface mesh representing the LIF
area was fitted on the sample using VG Studio MAX 3.4 (Volume Graphics GmbH,
Germany). The manually pre-fitted mesh was consequently automatically registered
using the best fit tool. The mesh fitted in the 3D volumetric data created the VOI.
VOI was consequently extracted and further analyzed (see Fig. 1b).

Preparation of the mesh representing the LIF area was conducted by manual
segmentation of the LIF area in 6 samples. Binarymaskswere consequently averaged
and smoothed using a gaussian filter (see Fig. 1a). This procedure was conducted in
Matlab (MathWorks, Inc).

3.3 Image Analysis

Evaluation of the newly formed bone in the LIF area is based on the quantification
of seven parameters: Trabecular In Growth Ratio (TIGR) acquired from [14], mean
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Fig. 1 a Surface mesh representing the LIF area. b Mesh registered into the sample in order to
extract the LIF area for further evaluation

Tb.Th, mean Tb.Sp, BV/TV, Tb.N, Conn.D and DA. TIGR value represents the ratio
between the fused area, and the area of facies intervertebralis.

Within a determined VOI was quantified a bone tissue volume (BV), using VG
Studio MAX 3.4. The suggested threshold according to the image histogram for
advanced surface determination was used. Since the mesh fitted into the LIF area of
individual samples always has the same volume, the total volume (TV) used in the
BV/TV parameter is determined in advance.

ExtractedVOIs of eachmeasured samplewere processed in ImageJ software using
the BoneJ plugin [23]. Three parameters were quantified by BoneJ: Tb.Th, connec-
tivity, density, and anisotropy. Firstly, the samples were segmented to extract the
bone volume. Segmentation proceeded using Otsu thresholding, according to [24].
Consequently, the binary mask was purified to remove all particles. Purification is
based on the analysis of connected components and removes all particles surrounding
the largest component. Such particles may have been formed by potential noise in the
data. Lastly, Tb.Th, Conn.D, and DA were calculated using the BoneJ—see Tb.Th
calculation in Fig. 2). Since the anisotropy calculation is a stochastic process, the
calculation proceeded three times, and themean valuewas chosen as a representative.

Tb.N and Tb.Sp were calculated according to the following equations: (Eqs. 1, 2
respectively):

Tb.N = (BV/TV)/Tb.Th (1)

Tb.Sp = (1/Tb.N)− Tb.Th (2)
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Fig. 2 Analysis of trabecular thickness. a Cross-section in the location of facies intervertebralis,
b Cross-section in the area of LIF. Brighter color depicts larger trabeculae

4 Results

Evaluation of the newly formed bone is characterized by obtained parameters in
Table 1. Samples are divided into three groups. Group A—bone graft, group B and
C—different biomaterials (see Sect. 3.1). According to the TIGR1 value, vertebrae
fusion proceeded the best by the samples in group B, taking into account the average
value. The standard deviation, on the contrary, is the highest because sample 2 in
this group did not fuse at all. The TIGR value coincides with the mean Tb.Th value,
which is also the highest in group B, and also has the highest standard deviation.

In the samples where the bone graft was used (group A), trabeculae formed with
the greatest distance apart of all groups (mean Tb.Sp= 0.45), but the trabeculae had
the highest value of connectivity density (4.14 mm−3). The evaluation parameters
in group C manifest the lowest amount of newly developed bone. This is given by
insufficient osteogenesis function of the bioimplant usedwithin this group.Especially
the TIGR value and Conn.D parameters indicate the fusion fragility.

The parameters characterizing the morphometry of the newly formed bone do not
manifest big differences among individual groups—see graph in Fig. 3. The largest
percentage difference is in Tb.N, where group B has the highest amount of trabecular
bone. This is related to the small Tb.Sp value in this group and thus the increased
BV/TV value. On the contrary, the smallest difference is in the mean Tb.Th value.

1 Trabecular in Growth Ratio (TIGR) acquired from [14].
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Table 1 Morphometric parameters of analyzed bone tissue

Sample TIGR
(%)

Mean
Tb.Th
(mm)

Tb.Sp
(mm)

BV/TV Tb.N (1/
mm)

Conn.D
(mm−3)

DA (–)

Group A 1 1.6 0.27 1.06 0.20 0.75 2.96 0.38

2 7.1 0.23 0.25 0.48 2.08 5.17 0.16

3 4.8 0.28 0.42 0.40 1.42 3.77 0.22

4 3.6 0.23 0.26 0.46 2.04 3.65 0.20

5 22.7 0.25 0.24 0.52 2.02 5.16 0.10

Average 8.0 0.25 0.45 0.41 1.66 4.14 0.21

Group B 1 16.3 0.23 0.19 0.55 2.38 3.95 0.21

2 0.0 0.43 0.53 0.45 1.04 1.37 0.25

3 1.5 0.20 0.21 0.48 2.43 4.55 0.19

4 29.8 0.31 0.17 0.64 2.10 2.99 0.23

5 28.8 0.21 0.28 0.42 2.03 2.78 0.15

Average 15.3 0.28 0.28 0.51 2.00 3.13 0.21

Group C 1 0.2 0.27 0.33 0.46 1.66 2.91 0.31

2 4.7 0.27 0.36 0.42 1.59 2.71 0.11

3 2.2 0.26 0.31 0.46 1.76 2.75 0.16

4 3.1 0.20 0.33 0.38 1.86 3.40 0.10

5 4.0 0.32 0.38 0.45 1.43 2.57 0.15

Average 2.8 0.26 0.34 0.43 1.66 2.87 0.17

This fact can indicate that the trabeculae have the same thickness within all groups
and do not affect the quality of intervertebral fusion.

5 Newly Formed Bone Evaluation

It is interesting to look into the relationship between the TIGR value representing
the amount of the fused area and morphometric parameters describing the bone
properties. There is evident a linear relationship between the TIGR value and Tb.N
and Conn.D, respectively. Increasing the fused bone ratio (the TIGR value) also
increases the number of trabeculae and their connectivity density. It means that the
bone in the LIF area expands as a connected unit. Bone expansion takes place so
that the newly formed bone attaches to both vertebrae (in high TIGR values). If the
newly formed bone were attached only to one vertebra, the TIGR value would be
small (Fig. 4).
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Fig. 3 Graph comparing selected morphological parameters of newly formed bone in the location
of LIF area. Individual color bars represent individual groups of samples

Fig. 4 Graphs depicting the relationship between the ratio of the fused bone (TIGR trabecular in
growth ratio) and the trabecular number, connectivity density respectively

6 Conclusion and Future Work

In this paper, we proposed a methodology to automatically characterize the
morphometry of the bone in the fused region after the LIF surgery. The study was
elaborated using the samples of porcine vertebrae,where theLIFwas conducted using
three different types of implants. The main benefit of the proposed methodology is
an automatic 3D approach for the evaluation of bone tissue. Automated characteri-
zation of fused bone is suitable for accurate comparison of samples where vertebrae
are fused with different types of intervertebral implants. The analysis is not affected
by operator-induced inaccuracies and is therefore suitable for the inter-laboratory
evaluation of osteogenesis bioimplant function in preclinical studies.



Ex-vivo Evaluation of Newly Formed Bone After Lumbar Interbody … 109

In the future, we would like to extend this methodology to the processing of
human fused vertebrae samples. Using clinical CT images cannot provide all infor-
mation mandatory for the analyses described in this paper, but we would utilize
the methodology for LIF area extraction and quantify different parameters, such as
bone mineral density, bone volume, and detection of fractures or abnormalities in
the newly formed bone. The utilization of CT is a standardized diagnostics tool in
the pre- and post-surgery diagnosis of LIF. An automated approach for assessing
the structure of bone formation between vertebrae may expand the possibilities of
diagnosing the success of LIF surgery.
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Community Detection in Medical Image
Datasets: Using Wavelets and Spectral
Methods

Roozbeh Yousefzadeh

Abstract Medical image datasets may contain a large number of images repre-
senting patients with different health conditions. When dealing with raw unlabeled
datasets, the large number of samples often makes it hard for experts and non-experts
to understand the variety of images present in a dataset.Here,wepropose an algorithm
to facilitate the automatic identification of communities in medical image datasets.
We further demonstrate that such analysis can be insightful in a supervised setting
when the images are already labeled. Such insights are useful because health and
disease severity can be considered a continuous spectrum. In our approach, we use
wavelet decomposition of images in tandem with spectral methods. We show that
the eigenvalues of a graph Laplacian can reveal the number of notable communities
in an image dataset. Moreover, analyzing the similarities may be used to infer a
spectrum representing the severity of the disease (code is available at https://github.
com/roozbeh-yz/community_medical_images).

Keywords Unsupervised learning ·Medical images ·Wavelets · Spectral methods

1 Introduction

Analyzing the contents of medical image datasets is not a straightforward task. In
practice, it is useful to label images based on health or severity of the disease.
Although health and disease can be considered a continuous spectrum, for prac-
tical purposes, we usually need to divide that spectrum into specific groups/labels.
For example, in the case of analyzing chest X-ray images with respect to the COVID-
19 disease, it is useful to define labels such as healthy, mild, severe, and pneumonia.
This is not motivated by machine learning, rather by different categories of medical
procedures that should follow.
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Dealing with unlabeled image datasets. Annotating and labeling medical images
require medical expertise and it is an expensive procedure, prone to mistakes and
noisy labels [25]. This makes it sometimes prohibitive to create and analyze large
medical image datasets for machine learning and automation. Despite all these dif-
ficulties, medical institutions have plenty of raw medical images available, and
automating the process of analyzing such datasets and identifying groups of sim-
ilar images can be beneficial for two reasons.

First, such analysis provides insights about the variety of images present in a raw
dataset. For example, if we gather the chest X-ray images of all COVID-19 patients
in a given hospital at a given day, it would not be clear how much variety will be
present in the gathered data. It would be useful to estimate how many communities
of similar images are present in a dataset before having an expert looking over all
the images. We show that eigenvalue analysis of a graph Laplacian can provide an
estimate of the number of such communities.

Second, automatically detecting groups of similar images can facilitate the label-
ing process, because themedical expert can then review the groups of images, instead
of going through all the images one by one. Here, we show that wavelet decompo-
sition of images in tandem with clustering can facilitate that.

Dealing with labeled image datasets. After a medical image dataset is labeled,
or when we are given a labeled image dataset, it would be useful to analyze the
similarities within each class, and also analyze the cross-class similarities. Mistakes
in labeling are not unusual, even by experts, especially when dealing with large
datasets. Analyzing the similarities may be able to identify such mistakes. An image
that is isolated and dissimilar from other images in a class might actually be a
mislabeled image; and even when such images are correctly labeled, it would still be
useful to be informed about their existence, and understand the reason behind their
dissimilarity to other images of the class. In fact, identifying dissimilar images of the
same class are useful for efficient training of models, e.g., triplet mining [11, 24].
Moreover, analyzing the similarities of labeled images may help us automatically
infer a disease spectrum representing the severity of disease among patients as we
discuss in our results.

Related work. There are a few studies that have used community detection methods
to detect specific items in images [12, 16]. In those approaches, each community
consists of certain pixels inside an image and not a group of similar images inside a
dataset. Trivizakis et al. [20] used wavelets to extract features from images, and then,
used those features to train a classification model on histology images of colorectal
cancer. This shows the effectiveness ofwavelets in extracting features. However, their
method is not comparable to ours as their focus is on training a classification model
on a labeled dataset, not identifying groups of similar images, analyzing in-class and
cross-class similarities, and inferring a disease spectrum.

There is a rich literature on community detection algorithms for tabular data and
networks [15, 19], but those methods are not readily applicable to image datasets.
In the object recognition literature, there are methods that create an embedding for
images, but their computational method significantly differs from ours. First, they
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are not for medical image datasets, rather for object recognition. Second, they are
not concerned with detecting communities of similar images in the datasets. Third,
they do not use spectral methods to analyze the abundance of similarities. Fourth,
they compare images either by solving expensive optimization problems [21], or by
comparing image representations in an inner layer of a trained deep network [3]. This
last approach requires a trained model in the first place which can be very expensive.

In previous work, we showed that for object recognition datasets, wavelet decom-
position of images can detect similar images in a dataset, the same way that a trained
deep learning model does [22]. We also used wavelet decomposition of images to
extract independent patterns from image datasets [23].

Recently, Das and Dutta [6] suggested a method to identify images in a medical
image dataset most similar to a specific query image. This method is specifically
designed for histology images of breast. It uses wavelets to identify specific patches
in images, and eventually trains a convolutional neural network and uses the rep-
resentations learned by the model to identify similar images to the query image.
Although this method has similarities to our method, it also has considerable differ-
ences. First, it requires training a neural network on images. Second, it is specific
to histology images of breast and detection of mitotic cells. Third, it only identifies
images similar to a single query image, and does not analyze the similarities in the
entire dataset while we perform that task by forming a graph Laplacian for entire
datasets and analyzing the eigenvalues.

2 Our Method

Wavelets. Wavelets are a class of functions and one of the most capable tools to sys-
tematically process images and extract features from them. The difficulty of working
with images andmany signals arises from the spatial complexity of patterns and struc-
tures in them.What makes an X-ray image to represent signs of pneumonia cannot be
explained by one or a few pixels, rather, it may be explained by the specific patterns
that appear in various regions of an image.

Wavelets were developed building on the scientific knowledge of Fourier trans-
form in the context of image and signal processing. Notably, Daubechies [7]
showed that wavelets perform better than windowed Fourier transform on visual
signals, because wavelets handle the frequencies in a nonlinear way. The family of
Daubechies wavelets are one of the most successful types of wavelet transformation,
and we use them in this paper. The orthogonality of Daubechies wavelets is partic-
ularly useful for feature extraction, because orthogonality in this setting implies the
filters are independent and each filter is measuring a specific feature in the image
signals. To process images with wavelets, we use the function

[ω, β] = wavedec(x,�, N ), (1)
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which takes as input an image x , a wavelet basis �, and level number N . It returns
a vector of real numbers ω, representing the wavelet coefficients obtained from
convolving x with �, and a book keeping matrix β containing the dimensions of
wavelet coefficients by level. This operation is reversible, therefore, given ω, β, and
�, we can return to pixel space and reconstruct the image x , which we denote its
operation by

x = waverec(ω, β,�). (2)

For a given N , β will be constant for all images of the same size.

Radiomics. Radiomics refers to an emerging class of computationalmethods that aim
to extract features frommedical images that can be useful for clinical decisionmaking
and outcome prediction [8, 18]. In certain applications, these methods have been
able to extract, from images, features that are not easily detectable by eye, and they
have been able to characterize clinically useful phenotypes, e.g., [14]. Computing
the radiomic features usually relies on statistical methods and consider the shapes,
intensities, textures of items in the images [18]. In a fewoccasions,more sophisticated
methods such as wavelets are used to extract radiomic features, e.g., [1].

Our Algorithm. First step is to decompose all images using a wavelet basis �,
and organize them in a matrix C with rows corresponding to images and columns
corresponding to wavelet coefficients (lines 1–4). About the choice of �, we have
observed empirically that Daubechies-1, 2, and 3, work well in extracting features
from images. Higher level wavelets can extract some extra features corresponding to
finer details in images, but those finer details are not always useful for analyzing the
similarities of images. In fact, when we use higher level wavelets, like Daubechies-5,
and extract more features from images, the feature selection part of our algorithm
discards those extra features. For each dataset, we recommend a few different wavelet
bases to be tested, starting fromDaubechies-1.Overall, the choice of�does not affect
our empirical results.

Next, our algorithm selects a subset of wavelet coefficients according to their
Laplacian score [9] and using the function fsulaplacian(·) (line 5). Laplacian score
is a feature selection method based on Laplacian eigenmaps and Locality Preserving
Projection [10], specifically designed for unsupervised settings. Wavelet coefficients
with scores less than the threshold τ will be discarded (line 6). Feature selection with
Laplacian score is a standard method and there are standard recommendations for
the choice of τ . We recommend several values to be tested for τ to make sure useful
features are not discarded. It is possible to use other feature selection methods as
well. In the past, we have used rank-revealing QR factorization [4], but we prefer the
Laplacian score because it relates to later steps of our algorithm where we derive the
graph Laplacian.

Our algorithm then computes a distance matrix, D, by applying the function
pdist(·) on C (line 7). pdist(·) measures the pairwise distances between the rows of
C and returns a symmetric square matrix D. To measure the distances, we use the
distance metric M. In practice, we have found the correlation distance to be an
effective metric. Other metrics such as cosine similarity may work as well. We then



Community Detection in Medical Image Datasets … 115

convolve the D with a Gaussian kernel to turn it into an affinity matrix, W (line 8).
In this line, std(·) returns the standard deviation, exp(·) is the exponential function,
and � is the Hadamard product. The diagonal elements of W are set to zero.

Algorithm 1 Wavelet Spectral Decomposition for Community Detection
(WSDCD): Algorithm for detecting communities of similar images in datasets
Inputs: Dataset of images P , wavelet basis �, distance metric M, feature selection threshold τw ,
eigenvalue threshold τc
Outputs: Communities in the dataset idc

1: Count total number of images in P as n
2: for i = 1 to n do
3: C( j, :, i) = wavedec(P{i}, �)

4: end for

5: [idw, scorew] = fsulaplacian(C)

6: C(:, idw(scorew < τw)) = []
7: D = pdist(C,M)

8: W = 1
std(S)

exp(S � S)

9: L = glaplacian(W )

10: λ = eig(L)

11: estimate the number of clusters, nc, based on the eigen-gaps

12: idc = cluster(C,M)

13: return idc

Using the affinity matrix and the function glaplacian(·), we derive the graph
Laplacian of the data (line 9). The eigenvalues of the graph Laplacian will let us
identify the number of clusters in the data, nc (lines 10–11). This is a standard
method suggested by von Luxburg [17]. To estimate the number of clusters, it is
possible to use alternative methods as well. Finally, we cluster the images into nc
clusters based on their affinities captured in W and using a clustering function of
choice (line 12). As a result, similar images will appear in each of the clusters and
we will be able to provide them to medical experts for further analysis.

3 Results

Dataset on COVID-19 Radiology. We use the dataset provided by Cohen et al.
[5] which contains a mixture of chest X-ray and CT-scan images of patients diag-
nosed with COVID-19. We proceed with analyzing the dataset by first decomposing
the images with Daubechies-3 wavelets. We then measure the cosine similarity of
wavelet coefficients of the images. Figure1a shows the similarity matrix obtained
from this analysis. Using the similarity matrix, we then compute its normalized
graph Laplacian. Figure1b shows the eigenvalues of the Laplacian. As we can see,
the number of large eigenvalues are not many. In fact, the eigenvalues beyond the
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Fig. 1 Similarity matrix obtained based on wavelet decomposition of all images in the COVID-19
dataset and the distribution of its eigenvalues

Fig. 2 a Similaritymatrix in Fig. 1a after reordering the images based on spectral clustering. Images
of different mode appear in different clusters, so does images with different severity of disease. b
Subset of similarity matrix for images annotated with pneumonia

25th are very close to zero. Based on this, we choose the number of clusters (i.e.,
image communities) as 25, and proceed with spectral clustering of the images.

Figure2a shows the same similarity matrix as in Fig. 1a after re-ordering the rows
and columns of the matrix based on the appearance of images in the clusters. Each
block along the diagonal of the matrix corresponds to one of the clusters in our
image dataset. The off-diagonal blocks reveal the similarity of clusters with each
other. Further examination of these clusters reveal that patients with pneumonia
appear only in 6 of the 25 clusters, as shown in Fig. 2b. We also see that images of
different modality appear in separate clusters.

Histological images of colorectal cancer (CRC). Here, we study the colorectal
cancer (CRC) histological image dataset [13]. This dataset contains labeled images
corresponding to 9 different types of tissue. We use our algorithm to understand the
variety of images within the last class of tissues labeled as colorectal adenocarci-
noma. Figure3a shows the resulting similaritymatrix. Using the eigenvalues of graph
Laplacian, we choose the number of clusters to be 15.

Figure3b shows the reordered similarity matrix after the clustering and also sam-
ples from each of the cluster. Note that all images in all the clusters are considered
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Fig. 3 a Similarity matrix for the colorectal adenocarcinoma epithelium class. b Reordered simi-
larity matrix based on spectral clustering

Fig. 4 Disease spectrum inferred from labeled images. Borderline separates COVID and non-
COVID patients. The far right of the spectrum implies high severity of disease, and the far left of
the spectrum implies no infection

one malignant type of cancerous tissue. But, there are still different varieties in their
patterns. Each cluster appears as a diagonal block in the similarity matrix. By look-
ing at the off-diagonal blocks of the matrix, we can identify which clusters are more
similar to each other. For example, note that cluster C3 is more similar to cluster C5
compared to other clusters.

4 Inferring the Disease Spectrum

Here,we leverage the similarities and dissimilarities among images to place themon a
spectrum representing the severity of disease. The idea is to analyze the similarities
of images from two different classes to automatically infer the disease spectrum.
Figure4 shows the disease spectrum we infer for a dataset of SARS-COV-2 CT-
Scans [2].

The disease spectrum in Fig. 4 has a borderline in the middle separating CT-scans
of patients with COVID from healthy patients. Images of each class that are similar
to images of other class will appear near the borderline. Images in one class that have
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Fig. 5 Borderline images: images in the COVID class that are similar to images in the non-COVID
class

Fig. 6 Borderline images: images in the non-COVID class that are most similar to images in the
COVID class

large similarities to images in the other class would be considered in themiddle of the
disease spectrum, while images that have strong in-class similarities and weak out-
class similarities would be placed away from the mid-spectrum, i.e., the borderline.
This can be considered an unsupervised approach on labeled images with the aim to
extract extra information from them. Labels define which patients have COVID-19,
but they do not reveal severity.

To infer a disease spectrum, we investigate images that have considerable simi-
larities to images in the other class. For example, images in the COVID class that
are similar to images in the non-COVID class may correspond to patients that are
moderately ill. Similarly, images in the non-COVID class that are similar to images in
the COVID class may correspond to patients that have vague symptoms of infection.
So, we extend our analysis to measure the similarities across classes. Figure5 shows
images in the COVID class that are most similar to images in the non-COVID class,
and Fig. 6 shows images in the non-COVID class that are most similar to images in
the COVID class. We consider these images to be at the borderline of the spectrum.

Additionally, Fig. 7 shows images in the COVID class that have the least similarity
to images in the non-COVID class.We can consider these images likely to correspond
to the infected side of the spectrum. Figure8 shows images in the non-COVID class
that have the least similarity to images in the non-COVID class. We can consider
these images likely to correspond to non-infected side of the disease spectrum, far
from the borderline.

5 Conclusions

We considered a practical setting where a large dataset of medical images is gathered
in a medical institution and we need to detect communities of similar images in order
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Fig. 7 COVID images that are most dissimilar to non-COVID images. These may correspond to
the infected side of the spectrum, far from the borderline

Fig. 8 Non-COVID images that are most dissimilar to COVID images. These may correspond to
the non-infected side of the spectrum

to proceed with classifying/labeling them. Our algorithm has implications for both
unsupervised and supervised learning of medical images. For unsupervised learning,
it facilitates the detection of communities of similar images inmedical imagedatasets,
improving the expensive process of labeling raw datasets. For supervised learning,
our method can help in understanding fine-level similarities within each class and
across classes. Such fine-level similarities can be used for training tasks such as triplet
mining. Identifying images at the borderline of classes and flagging them for further
review by medical experts may reduce the false predictions of deep learning models
and make the automated process more reliable. Finally, we showed that analyzing
the similarities may be used to infer a disease spectrum.
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Non-pooling Network for Medical Image
Segmentation

Weihu Song, Heng Yu, and Jianhua Wu

Abstract Existing studies tend to focus on model modifications and integration
with higher accuracy, which improve performance but also carry huge computa-
tional costs, resulting in longer detection times. In medical imaging, the use of time
is extremely sensitive. And at present most of the semantic segmentation models
have encoder-decoder structure or double branch structure. Their several times of
the pooling use with high-level semantic information extraction operation cause
information loss although there is a reverse pooling or other similar action to restore
information loss of pooling operation. In addition, we notice that visual attention
mechanism has superior performance on a variety of tasks. Given this, this paper
proposes non-pooling network (NPNet), non-pooling commendably reduces the loss
of information and attention enhancement module (AEM) effectively increases the
weight of useful information. The method greatly reduces the number of parame-
ters and computation costs by the shallow neural network structure. We evaluate the
semantic segmentation model of our NPNet on three benchmark datasets comparing
withmultiple current state-of-the-art (SOTA)models, and the implementation results
show that ourNPNet achieves SOTAperformance,with an excellent balance between
accuracy and speed.
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1 Introduction

Medical image segmentation can promote the research and development of medical
field. It can help doctors analyse and take action using image features. The accu-
racy and speed of image segmentation is critical and existing research is carried
out from these two aspects. However, the relationship between accuracy and speed
in most models has not reached a relative balance. FCN [1], as the first semantic
segmentation model, undoubtedly attracted great attention. It changed the last full
connection layer of the classification network into convolution to achieve remarkable
performance on semantic segmentation. U-Net [2], the first segmentation network
proposed for medical images, is a typical encoder-decoder structure. In U-Net, skip
connections are used to effectively integrate shallow spatial information and deep
semantic information, thus making up for the loss of feature information caused by
multiple pooling operations in the encoder stage. Subsequently, a series of improved
models based on U-Net show up. More complex feature extraction modules are used
to extract asmuch feature information as possible from each level of the segmentation
network to weaken the influence of pooling operations on information loss. Although
such models improve certain performance, However, more redundant information,
even error information, was introduced, and themodel size and computation cost also
increased significantly, creating a certain burden. SegNet [3] uses two lassification
networks as encoder and decoder respectively and proposes to use max pool index
to do up-sampling to better restore the impact of pooling. PSPNet [4] and DeePLab
series [5–8] both use image classification networks as the backbone. The former
proves the effectiveness of extracting multi-size feature information by pyramid
pooling module for the first time, while the latter proposes to use atrous convo-
lution to obtain feature information of larger receptive field, using atrous spatial
pyramid pooling (ASPP) to obtain rich feature information of multiple dimensions.
In addition, the attention mechanism introduced from NLP to computer vision has
also shown its dazzling brilliance, among which SENet [9] is undoubtedly the most
important representative, its excellent performance won the last imagenet champion.
Some other semantically segmented networks use dual branching structures [10]
to acquire semantic information [10], spatial information [10], and cascade struc-
tures [11] respectively. Above all, most of the semantic segmentation models have
encoder-decoder structure, use image classification network as the backbone, and
use the structure of the double branch or cascade structure. Pooling operation used
in these semantic segmentation models leads to information loss. And the complex
structure will also cause the burden of model and calculation. In addition, dilated
convolution, multi-dimensional feature extraction, and attention mechanisms are
proved to be effective. Therefore, we elaborately designed a simple and novelty non-
pooling network, which solves the information loss caused by the pooling operation
and uses improvedASPP and a new plug-and-play attentionmechanismmodule. Our
contribution is in four aspects: (1) We propose a new plug-and-play attention mech-
anism module, which has better performance than the attention module in SENet.
(2) We propose an improved ASPP module and have better performance. (3) For the
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first time, non-pooling semantic segmentation model with only 1/50 of the number
of model parameters and computation costs of U-Net is proposed. (4) Our method
surpasses other state-of-the-art performance on three medical image segmentation
datasets.

2 Methodology

In this paper, we propose NPNet, a novel lightweight semantic segmentation model
for medical images. The network structure is described in Fig. 1. It is mainly
composed of the basic block, attention enhancement module shown in Fig. 1, and
feature enhancement module. In this model, all the convolution operations are 3× 3
convolution kernel, followed by batch normalization(bn) and ReLU. There are three
basic blocks at the beginning of the network, and attention enhancement module is
added after each block, and a feature enhancement module is implemented in the
middle of the network. At the back of the network, 1 × 1 convolution is used to
output according to the classification number and bi-linear interpolation is used to
restore the original input size. In this section, we will talk about these components
in detail.

2.1 Basic Block

The basic block first uses 3 × 3 convolution operation with stride equal to 2, which
is equivalent to the function of reducing image size and computation achieved by
the pooling operation of stride equal to 2. Moreover, the convolution operation can
also effectively deal with the loss of feature information in pooling operation. Then,
two 3 × 3 convolution operations with stride equal to 1 are used to fully extract the
feature information of this layer, and also to obtain more abundant and useful feature
information which is conducive to the transmission of the information of the next
layer. The design of this basic block is to reduce the information loss and realize the
effective extraction of spatial feature information of images with different sizes.

2.2 Attention Enhancement Module

Attention enhancement module is an attention module integrated with 1 × 1 convo-
lution. First, the input image is transformed into a 1-dimensional matrix by adaptive
average pooling, and then the input dimension is transformed into the input dimension
divided by parameter reduction using 1 × 1 convolution. Like SENet, we also use
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(a) NPNet 

(b) attention enhancement module

Fig. 1 Proposed NPNet architecture

linear activation function ReLU and nonlinear activation function Sigmoid succes-
sively. The difference is that we use 1 × 1 convolution to replace the full connec-
tion layer. 1 × 1 convolution can effectively improve the nonlinear characteristics
and information interaction across channels, better extracting useful information in
feature information. Finally, the nonlinear activation function Sigmoid is used on
output and the result is weighted by multiplying the original input to achieve channel
adaptive weighting. This module is used after each basic block to further strengthen
the weight of useful information between different channels, thus providing better
characteristic information for the following steps.
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2.3 Feature Enhancement Module

The feature enhancement module is used after three basic blocks, and the image size
currently is 1/8 of the input size. Thismodule is composedof four dilated convolutions
with the ratio of 1, 5, 15, 20, and two 1 × 1 convolutions. The atrous convolution
can obtain feature information from the large receptive field without increasing the
number of parameters, obtaining richer semantic information. The input image is first
output through four dilated convolutions according to 1/2 of the number of output
channels. Then the four outputs are superimposed through concatenation, and the
number of channels is 2 times the number of output channels. 1 × 1 convolution is
used to achieve dimension reduction, that is, the normal number of output channels
is obtained. At this point, the residual structure is introduced to concatenate the result
with the original input information to realize feature reuse. Finally, 1× 1 convolution
is used for further dimension reduction.

3 Experiments and Results

3.1 Datasets

Lung Segmentation. Lung CT image segmentation is an important and initial step
in lung CT image analysis. This dataset comes from the Kaggle contest, Finding and
Measuring Lungs in CT data1 (Luna for short). It consists of 267 2D images and
is randomly split into train set (80%) and test set (20%). Also, we use the original
image equally.

Skin Lesion Segmentation. Computer-aided automatic diagnosis of Skin cancer
is an inevitable trend, and Skin lesions segmentation as the first step is urgent.
The data set is from MICCAI 2018 Workshop—ISIC2018: Skin Lesion Analysis
Towards Melanoma Detection [12, 13] (Skin for short). It contains 2594 images and
is randomly split into train set (80%) and test set (20%). For better model training
and result display, we resize all the original images to 224 × 224.

Polyp Segmentation. Accurate detection of colon polyps is of great significance for
the prevention of colon cancer. CVC-ClinicDB [14] (CVC for short) includes 612
colon polyp images. We use the original size 384 × 288 of image and split it into
train set (80%) and test set (20%).

3.2 Experimental Settings

For three benchmarks and multiple segmentation models, we set consistent training
parameters. We set epochs as 100 in the three data sets. We use a learningrate (LR)
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equal to 1e-3 for Luna and Skin task and 1e-4 for CVC task. In addition, we use batch
size equal to 2 for Luna and CVC task, and 4 for the Skin task. Cross entropy loss and
Adam are used as loss function and optimizer, respectively. All experiments run on
the NVIDIAGeForce RTX 2080Ti GPUwith 12 GB. Intersection over Union (IOU),
dice coefficient (Dice) and multiply–accumulate operations (MACs) are selected as
the evaluation metrics in this paper. We used these evaluation metrics for all datasets.

3.3 Experimental Results

In this section, we presented qualitative results on three data sets and compared with
other SOTA semantic segmentation networks to prove the superior performance of
our NPNet. We set up the same parameters for the same data set in different network
models, and all models were trained from scratch. Since U-Net is still the baseline
of many networks, we also introduce several SOTA models based on U-Net for
comparison. Table 2 shows that our model is superior to other SOTA models in
terms of performance and is 1/50 of U-Net in terms of model size and computation
costs. In all the figures demonstrating the qualitative results in Fig. 2, the sequence
are origin image, FCN8s, SegNet, PSPNet, U-Net, NPNet, mask, respectively. It can
be found from these figures that the model proposed can effectively reduce the loss
of information with our non-pooling module, so as to retain more details and achieve
better performance. Moreover, the model size and computation cost of this paper are
only 1/100 ofU-Net++. Ablation Studies. The attentionmechanismmodule in SENet
plays an important role, and many models insert this template into their models to
achieve better performance. Therefore, we conducted an experimental comparison
on three datasets of our proposed attention enhancement module. The difference
between the model size and the computation costs of these three models can be
negligible, the experimental results in Table 1 prove that our attention enhancement
module is better than SENet as a plug-and-play attention module.

4 Conclusion

In this work, we propose a novel semantic segmentation network with non-pooling
operation for the first time, which can effectively alleviate the problem of infor-
mation loss and difficult recovery caused by the pooling operation. Our proposed
network also gets rid of common encoding and decoding structures. In addition,
we also proposed an attention module to enhance feature information, which can
be easily inserted into other network models with fewer parameters, Experiment
results on three datasets show that our model can surpass state-of-art counterparts
with lightweight parameters and MACs.
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(a) CVC 

(b) Luna 

(c) Skin 

Fig. 2 Qualitative comparison of different segmentation results

Table 1 Comparsion on CVC, Skin and Luna with seven models

Dataset Methods IOU Dice Params (M) MACs (G)

FCN8s [1] 0.6149 0.7249 14.72 33.89

SegNet [3] 0.7146 0.7933 29.44 67.67

PSPNet [4] 0.7159 0.8045 17.5 133.23

U-Net [2] 0.7439 0.8229 34.53 110.46

Attention U-Net [15] 0.7334 0.8153 34.87 112.27

U-Net++ [16] 0.7632 0.8356 36.63 233.88

NPNet 0.7766 0.8397 0.71 2.17

Skin FCN8s [1] 0.7828 0.8511 14.72 61.50

SegNet [3] 0.7897 0.8558 29.44 30.71

PSPNet [4] 0.8052 0.8708 17.5 60.45

U-Net [2] 0.8086 0.8691 34.53 50.12

Attention U-Net [15] 0.8028 0.8691 34.87 50.94

U-Net++ [16] 0.7901 0.8588 36.63 106.11

NPNet 0.8170 0.8757 0.71 0.99

Luna FCN8s [1] 0.9741 0.9802 14.72 80.32

SegNet [3] 0.9688 0.9789 29.44 160.41

PSPNet [4] 0.9732 0.9823 17.5 315.87

U-Net [2] 0.9749 0.9821 34.53 261.64

Attention U-Net [15] 0.9698 0.9794 34.87 266.11

U-Net++ [16] 0.9746 0.9831 36.63 554.37

NPNet 0.9785 0.9832 0.71 5.15
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Table 2 Evaluation of proposed attention enhancement module

Dataset Methods Attention IOU Dice

CVC NPNet No 0.7439 0.8157

NPNet SENet 0.7448 0.8186

NPNet AEM 0.7766 0.8397

Luna NPNet No 0.9758 0.9807

NPNet SENet 0.9772 0.9820

NPNet AEM 0.9785 0.9832

Skin NPNet No 0.8131 0.8742

NPNet SENet 0.8091 0.8709

NPNet AEM 0.8165 0.8766
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Abstract Identification and quantification of pulmonary fibrosis and other anoma-
lies are challenging problems in Radiotherapy. This paper introduces a block match-
ing technique that characterises the voxel displacements as a geometrical relationship
between lung CT scans. The proposed block matching technique uses two-pass dis-
tance and orientation-based regularisation to restrict unnatural and unrealistic tissue
deformations. Also, this technique uses both texture maps and voxel intensities as
block matching criteria. This yields a displacement vector field whose predicted
motion vectors are closer to the actual displacements evaluated at every slice loca-
tion using image quality-based performance metrics-namely structural similarity
index (0.9959), mean squared error (0.0029), and peak signal-to-noise ratio (46.6).
Thus providing a quantitative approach to the clinicians aiding in identifying and
quantifying the clinically significant geometrical changes, eventually characteris-
ing the tumour degradation or pulmonary fibrosis in terms of volumetric and shape
changes.
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1 Introduction

The role of image processing techniques in Radiotherapy has become so important
that it is the fundamental framework for the Image-guided Radiotherapy (IGRT)
[2]. In particular, deformable image registration has been used to improve Image-
guided Adaptive Radiotherapy (ART) [11]. Among several negative side effects [1]
of ART, the toxicity in patients caused by therapeutic radiation is one of the key
limitations, and is therefore a focus of current research [3]. Geometric uncertainties
(anatomical changes) in patients is the one of the reasons for the toxicity of organs
nearby a cancerous tissue i.e. organs-at-risk (OAR) [5] which can be seen in the
scans acquired during the inter-fraction and intra-fraction time period. Therefore, by
having a method that characterises these anatomical changes using the geometrical
relationship between any two scans will aid in improving the benefits of ART. In that
perspective, image registration is used to characterise the geometrical changes and
estimate the geometric transform between two scans. This research is a part of the
study that assesses the ability to detect pre-treatment tumour cell free DNA (cfDNA)
in peripheral blood of patients with early stage lung cancer receiving Stereotac-
tic Ablative Body Radiotherapy (SABR) and the impact of SABR radiotherapy on
tumour cfDNA, cardiac cfDNAand lung cfDNAduring radical radiotherapy forNon-
Small Cell Lung Cancer (NSCLC). In this study, two follow-up lung CT scans are
acquired after definite time intervals post therapeutic radiation. Using those follow-
up scans, the geometrical changes will be characterised using the image registration
techniques to assist the clinical experts to identify the onset of pulmonary fibrosis and
other clinically-significant changes. The disparity-regularised block matching based
non-rigid registration was able to geometrically characterise the organ deformations
occurring in the scans acquired at different time period by restraining unnatural defor-
mations during the motion vector estimation with the two-pass based distance and
orientation regularisation [13]. In that sense, the disparity-regularised block match-
ing is modified to identify clinically significant sites in the lung CT images. The
proposed modification uses the texture information as the block matching criteria.
Using texture information as a part of the block matching has been tried before [4,
16], however, very few investigations [10, 14] have been conducted in terms of esti-
mating a three-dimensional motion vector field for CT scans that has large area of
homogeneous and coarse texture like lung CT. In place of the traditional approach
of using texture as features in block matching cost function [9, 12], an alternative
approach of using them as maps [7] is proposed for the disparity-regularised block
matching. This modified disparity-regularised block matching based motion estima-
tion is able to detect movements in the lung CT, consequently, characterising the
clinically significant sites and their geometrical changes, with less computational
complexity. Therefore, identifying the regions where there are changes in the cur-
rent follow-up scan by comparing it with the previous follow-up scan is vital. This
comparison helps clinicians to assess the disease progression or detect abnormalities
that might have might have appeared within the time period of the scans.
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2 Methodology

2.1 Materials and Data Preprocessing

In the cfLungDNA dataset used in this study, there are follow-up CT scans for each
patient that were acquired on the 4th and 12th month after the radiation therapy.
The follow-up scan B was acquired on the 4th month post radiation treatment and
the follow-up scan A was acquired on the 12th month post radiation treatment. The
voxel size of 4th CT scan is 0.7559mm × 0.7559mm × 2mm and the aspect ratio
is 512 × 512. The voxel size of 12th CT scan is 0.8926mm × 0.8926mm × 1mm
and the aspect ratio is 512 × 512. From the voxel size and aspect ratio of both scans,
it can be observed that the array size and the physical co-ordinates of scans will differ
accordingly. Therefore, the follow-up scans A and B were rigidly registered to share
the same voxel co-ordinate system. Thus rigid registration becoming a pre-requisite
for the proposed technique.

2.2 Lung CT Analysis Using Extended DBLM

The disparity-regularised block matching technique (DBLM) as laid out in [13] was
able to propagate the contours from a planning scan to the on-the-day-of-treatment
scan using the geometrical relationship between the scans, provided they were from
the same modality. Also, the displacement vector field (DVF) estimation by DBLM
was compared with b-spline-a parametric, demons-a non-parametric, and pyramidal
block matching (BLMP) which were chosen from clinical evaluation studies [8, 15].
However, due to larger coarser regions in this CT scan, it is evident that the DBLM
cannot be used in the same form.Because, the image similaritymetric (ISM) i.e.mean
absolute error (MAE) calculated between the voxel intensities in the DBLM is very
sensitive to the intensity variance (texture). Therefore, the proposedmodifications for
the DBLM to handle the large coarser regions is to use texture information as a part
of the block matching criteria (disparity function) along with the MAE of the voxel
intensities, hence the name, Extended DBLM. Instead of using the traditional gray-
level co-occurrence matrix (GLCM) as the texture features in the DBLM, texture
maps were used in the Extended DBLM. The texture filters are applied on the scan
slices and the filter output from these filters are the texture maps. The texture filters
chosen for this technique are entropy filter, range filter and standard deviation filter.
These three texture filters are chosen because of its common usage in the texture
based image analysis [6]. The filter outputs from these texture filters are labelled as
Texture Map 1, 2 and 3 in Figs. 1 and 2 to emphasise that any texture filter could
used be here and the suitability of other texture filters is yet to be investigated.

The entropy filter calculates the entropy for every kth slice in the volume and
generates the entropy texture map i.e. Texture Map 1. These slice-wise texture maps
are then stacked together as the three-dimensional entropy map I Ex . Using this range
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Fig. 1 The displacement vector field estimation process using extended disparity-regularised block
matching

Fig. 2 The exhaustive search based block matching used on texture maps in extended disparity-
regularised block matching
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filter on the slices of the scan volume, it generates slice-wise maps which are stacked
as three-dimensional coarseness map I Rx . Similar to the other texture filters, the stan-
dard deviation filter generates slice-wise maps and stacks them as three-dimensional
variability map I Sx . Finally, all the texture maps were normalised so that the hyper-
parameters of the DBLM could be reused in the Extended version. Then using the
3D normalised texture maps along with the scan volumes, the disparity regularised
block matching is performed to estimate the exclusive 3D displacement vector fields
for every slice location as illustrated in Fig. 1.

As per the cfLungDNA dataset, two follow-up scan 3D volumetric arrays say I f A
and I f B per patient are considered for the establishment of a geometrical relationship
between them using the Extended DBLM. Therefore, upon I f A and I f B , the said
texture filters are applied to obtain the three-dimensional entropymaps (I Ef A and I

E
f B),

three-dimensional coarseness maps (I Rf A and I Rf B), and three-dimensional degree
of variability maps (I Sf A and I Sf B) as inputs to the block matching criteria i.e. the
disparity function. Similar to the DBLM, the search space for a slice in follow-up
scan I f A slice is chosen from several slices in follow-up scan I f B . Figure2, illustrates
all the texture map based search spaces and the voxel intensity based search space
required for motion vector calculation for one block in scan which can be compared
with the search space of DBLM [13]. In the Extended DBLM, a b f A[m, n] block
of size N × N belonging to a slice in follow-up scan I f A is scanned over several
b f B[m, n, z] blocks of size N × N in the search area of size Ns × Ns × Nz belonging
to the corresponding slices of follow-up scan I f B , where Ns = N + p, p is the
search parameter and Nz is the number of slices in follow-up scan I f B per group.
Similarly, the blocks from the texture maps belonging to the slice of follow-up scan
I f A i.e., bE

f A[m, n], bR
f A[m, n], and bSf A[m, n] belonging to I Ef A, I

R
f A, and I Sf A are

scanned over several bE
f B[m, n, z], bR

f B[m, n, z], and bSf B[m, n, z] belonging to the
texture maps of follow-up scan I f B , say, I Ef B , I

R
f B , and I Sf B respectively. The MAE

of all the blocks are aggregated and used as the ISM for all corresponding locations
(Candidate Displacements) in a search area giving a disparity cost matrix of size
2p + 1 × 2p + 1 × Nz which are expressed in Eqs. 1–5,

I SMv(i, j, k) = ||b f A[m, n] − b f B[m, n, z]|| (1)

I SME (i, j, k) = ||bE
f A[m, n] − bE

f B[m, n, z]|| (2)

I SMR(i, j, k) = ||bR
f A[m, n] − bR

f B[m, n, z]|| (3)

I SMS(i, j, k) = ||bSf A[m, n] − bSf B[m, n, z]|| (4)

I SM(i, j, k) = [I SMv + I SME + I SMR + I SMS]/4, (5)

where, b f A[m, n] ∈ I f A[N × N ], b f B[m, n, z] ∈ I f B[Ns × Ns × Nz], bE
f A ∈ I Ef A,

bE
f B ∈ I Ef B , b

R
f A ∈ I Rf A, b

R
f B ∈ I Rf B , b

S
f A ∈ I Sf A, b

S
f B ∈ I Sf B , m is a block’s rows, n is
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a block’s columns, I f A is a follow-up scan 3D array, I f B is another follow-up scan
3D array, I Ex is a 3D Entropy (Randomness) Texture Map, I Rx is a 3D Coarseness
TextureMap, and I Sx is a 3DDegree ofVariability TextureMap.With these equations,
the motion vectors are estimated for the whole volume, making the collection of all
the motion vectors as the displacement vector field whose magnitude is used for
visualisation.

2.3 Parameters of Extended DBLM and Its Performance
Evaluation

Parameters selected for the proposed disparity-regularised block matching algorithm
are block size N = 5 pixels, search space parameter p = 5 pixels, and the step-size
for the search is 1 pixel. The number of slices per group Nz chosen for the trans-
formation is 5. The DVF estimated by the Extended DBLM will be evaluated by
image quality based performance metrics namely—structural similarity index met-
ric (SSIM), normalised mean squared error (NMSE) and peak signal-to-noise ratio
(PSNR). Since the DVF estimated at every slice location of the volumetric stack,
the performance metrics are calculated between slices of the ground-truth follow-up
scan A with the slices of the geometrically warped follow-up scan B, i.e., the slices
of the estimated follow-up scan A. These metrics are defined in the following equa-
tions, where IM and ÎM represents each slices of the ground-truth 3D image and the
estimated 3D image.

MSE = 1

Nv

Nv∑

n=x,y,z

|IM(x, y, z) − ÎM(x, y, z)|2 (6)

NMSE = MSE√
EIM × √

EÎM

(7)

PSN R = 10 × log10
(MAX2

MSE

)
(8)

3 Results and Discussion

The Extended DBLM obtains the texture maps using the texture filters, such as
entropy maps I Ef A and I Ef B , coarseness maps I Rf A and I Rf B , and degree of variability
maps I Sf A and I Sf B , from 3D volumetric arrays I f A and I f B representing the follow-
up scans A and B. With Nz as 5 here, for a slice location n in the follow-up scan
A, the slice locations of the corresponding search group in follow-up scan B were
n − 2, n − 1, n, n + 1, and n + 2. Figure3 shows a sample set of slices belonging to
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Fig. 3 A sample set of follow-up scan B slices with corresponding texture maps when extended
DBLM’s search space size Nz = 5

a search space belonging in follow-up scan B. Also, in Fig. 3, the slices belonging to
the texture maps were shown. Similar to the follow-up scan B, the slices and texture
maps of the follow-up scan A were shown in Fig. 4. I Ef A, I

E
f B , I

R
f A, I

R
f B , I

S
f A and

I Sf B were the texture maps extracted from I f A and I f B 3D arrays representing the
entropy, range and standard deviation maps respectively.

In order to illustrate the DVF estimation using the Extended DBLM, a sample
set of slices belonging to the follow-up scan B are shown in Fig. 5. These slices are
annotated with the labelsA toQ, where,A belongs to the non-anatomical region and
B belongs to the whole anatomical region in the slice locations iz = − 2, iz = − 1,
iz = 0, iz = + 1, and iz = + 2. Similar to the sample set of the follow-up scan B,
the sample slice of the follow-up scan A at the corresponding slice location iz = 0,
is shown in Fig. 6a with the regions annotated as R, S, and T. Figure5 illustrates the
estimatedDVFoverlaid on the origin of the displacement/motion activity in the slices
of the follow-up scan B, whereas Fig. 6a shows the estimated DVF that describes the
geometrical relationship of the corresponding slice in the follow-up scanA. The DVF
overlaid on the slices in Figs. 5 and 6a used the magnitude of the motion vectors in
its corresponding slice locations to highlight the origin of regularised displacements.

The displacement of the voxel blocks in the region R, i.e., the estimated motion
vectors in Fig. 6a are heavily influenced by the regions C, F, I, L, and O highlighted
in Fig. 6a. Similar to this, the DVF, i.e. motion vectors in the region S in Fig. 6a are
heavily influenced by the regions D, G, J,M, and P in Fig. 5. Finally, the estimated
DVF in the region T in Fig. 6a is heavily dependent on the regions E, H, K, N,
and Q which are highlighted in Fig. 5. The DVF estimation using Extended DBLM
was able to characterise the geometrical changes between the two follow-up scans
as discussed in Sect. 2.2. However, in-terms of the clinical perspective, the results
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Fig. 4 A sample follow-up scan A slice with corresponding texture maps

(b) (c)

(e)(d)

(a)

Fig. 5 A sample set of follow-up scan B slices (a–e) with the regions of the activity overlaid when
Nz = 5
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Fig. 6 DVFs of extended DBLM in follow-up scan A slice at iz = 0

illustrated in Figs. 5 and 6awere insufficient to highlight areas of significance. There-
fore, a visualisation technique was applied to the estimated DVF, i.e. motion vectors,
to emphasise the regions of the activity. Since the DVF was biased with weights for
enhanced visualisation unlike the original, where only the magnitude of the motion
vectors was plotted, this was named as Biased DVF. Similar to the annotations in
Fig. 6a, the regions in Fig. 6b were marked in the same locations except the labelling,
where, to all those labels, a numeric ‘1’ was used as suffix. To highlight the motion
activity for the follow-up scan A, the absolute differences between the corresponding
slice of the follow-up scan A and the search group slices of the follow-up scan Bwere
calculated. Then, these absolute difference maps were then summed to become one
combined map. The voxel intensities from the combined map were then multiplied
to the magnitude of the motion vectors according to their corresponding locations,
thus generating a Biased DVF for a slice in the follow-up scan A as shown in Fig. 6b.
The region S1 in Fig. 6b indicates there were no significant geometrical changes
whereas the regions R1 and T1 indicates significant geometrical changes of higher
magnitude as per the colour-bar beside it. For further verification, slice-wise SSIM
and NMSE scores were calculated between the warped scan B with the ground-truth
scan A. Table1 provided the SSIM scores and the NMSE scores of the slices at every
slice locations in the 3D data. From this Table, it was observed that the structural
components of the estimated CT slice was very similar to the ground-truth CT slice
given by the averaged SSIM score with the value of 0.996. In terms of the intensity
based similarity, the averaged MSE and PSNR scores with values of ≈ 0.003 and
≈ 46 showed that the estimated CT slice was closer to the ground-truth. Also, from
the other descriptive statistics such as range and standard deviation, it was observed
that the DVF estimation was consistent with values closer to the mean and median
of the performance metrics. Thus, the Extended DBLM was able to establish a geo-
metrical relationship between two follow-up scans that had large coarser regions
by using texture information as maps rather than GLCM features as a part of two-
pass regularised disparity function without increasing the computational complexity.
Along with that, the Extended DBLM provides a quantitative approach to measure
the geometrical changes between two scans aiding the clinicians to characterise the
tumour degradation or pulmonary fibrosis in-terms of volumetric and shape changes.
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Table 1 Performance evaluation of DVF estimation using extended DBLM

Slice-wise averaged
descriptive statistics

SSIM NMSE PSNR

Mean 0.9960 0.0029 46.4434

Median 0.9959 0.0025 46.9835

Std. 0.0006 0.0008 1.0864

Range 0.0027 0.0024 3.2281

4 Conclusion

Quantified characterisation of the pulmonary fibrosis and other anomalies in lung CT
have always been a challenge for clinicians. This paper has introduced a disparity-
regularised block matching technique that uses both texture maps and voxel intensi-
ties as ISM to establish geometrical relationship between scans. Using two-pass dis-
tance and orientation based regularisation, this technique constrained the estimated
motion vectors disallowing the unnatural and unrealistic deformations, particularly
for the scan that has large coarser regions. With the image quality metrics, it was
observed that the DVF was able to predict displacements that were closer to ground-
truth. Thus, this technique aids in identifying and quantifying clinically significant
geometrical changes in lung CT for SABR. Further investigations are yet to be con-
ducted to deduce the suitable texture feature maps that could improve the robustness
of this technique in identifying anomalies in the lung CT.

References

1. Boersma, L.J., van den Brink, M., Bruce, A.M., Shouman, T., Gras, L., te Velde, A.,
Lebesque, J.V.: Estimation of the incidence of Late Bladder and Rectum Complications
after High-Dose (70-78 Gy) Conformal Radiotherapy for Prostate Cancer, using Dose-
VolumeHistograms. International Journal of Radiation Oncology*Biology*Physics 41(1), 83–
92 (1998). https://doi.org/10.1016/S0360-3016(98)00037-6, http://www.sciencedirect.com/
science/article/pii/S0360301698000376

2. Brock, K.: Image Processing in Radiation Therapy. Imaging inMedical Diagnosis and Therapy,
CRC Press (2016), https://books.google.co.uk/books?id=wVvRBQAAQBAJ

3. Burnet, N.G., Thomas, S.J., Burton, K., Jefferies, S.J.: Defining the tumour and target volumes
for radiotherapy. Cancer Imaging 4, 153–161 (2004)

4. Cui, Z., Qi, W., Liu, Y.: A fast image template matching algorithm based on normalized cross
correlation. Journal of Physics: Conference Series 1693(1), 12163 (2020)

5. Dang, A., Kupelian, P.A., Cao, M., Agazaryan, N., Kishan, A.U.: Image-guided Radiotherapy
for Prostate cancer. Translational Andrology and Urology 7(3) (2018), http://tau.amegroups.
com/article/view/17960

6. Gonzalez, R.C.,Woods, R.E.: Digital image processing. PrenticeHall, Upper SaddleRiver, N.J.
(2008), http://www.amazon.com/Digital-Image-Processing-3rd-Edition/dp/013168728X

7. Hayakawa, H., Shibata, T.: Block-matching-based motion field generation utilizing direc-
tional edge displacement. Computers & Electrical Engineering 36(4), 617–625 (2010). https://

https://doi.org/10.1016/S0360-3016(98)00037-6
http://www.sciencedirect.com/science/article/pii/S0360301698000376
http://www.sciencedirect.com/science/article/pii/S0360301698000376
https://books.google.co.uk/books?id=wVvRBQAAQBAJ
http://tau.amegroups.com/article/view/17960
http://tau.amegroups.com/article/view/17960
http://www.amazon.com/Digital-Image-Processing-3rd-Edition/dp/013168728X
https://doi.org/10.1016/j.compeleceng.2008.11.017


Lung CT Analysis Using 3D Disparity-Regularised Block … 141

doi.org/10.1016/j.compeleceng.2008.11.017, https://www.sciencedirect.com/science/article/
pii/S0045790608001146, Signal Processing and Communication Systems

8. Huger, S., Graff, P., Harter, V., Marchesi, V., Royer, P., Diaz, J., Aouadi, S., Wolf,
D., Peiffert, D., Noel, A.: Evaluation of the Block Matching deformable registration
algorithm in the field of head-and-neck Adaptive Radiotherapy. Physica Medica 30(3),
301–308 (2014). https://doi.org/10.1016/j.ejmp.2013.09.001, http://www.sciencedirect.com/
science/article/pii/S1120179713003967

9. Qian, X., Liu, G., Wang, H.: Texture based selective block matching algorithm for error con-
cealment. In: 2007 IEEE International Conference on Multimedia and Expo. pp. 739–742
(2007). https://doi.org/10.1109/ICME.2007.4284756

10. Rahmat, R., Harris-Birtill, D., Finn, D., Feng, Y., Montgomery, D., Nailon, W.H., McLaugh-
lin, S.: Radiomics-led monitoring of non-small cell lung cancer patients during radiotherapy.
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Identification of Melanoma Diseases
from Multispectral Dermatological
Images Using a Novel BSS Approach

Mustapha Zokay and Hicham Saylani

Abstract In this paper we propose a new approach to identifymelanoma diseases by
identifying the distribution of its main skin chromophores (melanin, oxyhemoglobin
and deoxyhemoglobin) from multispectral dermatological images. Based on Blind
Source Separation (BSS), our approach takes into account the shading present in
most of the images. Assuming that the multispectral images have at least 4 spectral
bands, it allows to estimate the distribution of each chromophore in addition to the
shading without any a priori information, contrary to all existing methods that use
3 bands, i.e. RGB images. Indeed, the fact of neglecting the shading degrades their
performance. To validate ourmethod, we used a database of realmultispectral derma-
tological images of skin affected bymelanoma cancer. To measure our performance,
in addition to the classical criterion of visually analyzing the estimated distributions
with referring to the physiological knowledge of the disease, we proposed a new
criterion that is based on our independence hypothesis. Using these two criteria, we
could see that our approach is very efficient for the identification of melanoma.

Keywords Multispectral dermatological images · Chromophores · Melanin ·
Hemoglobin · Oxyhemoglobin · Deoxyhemoglobin · Shading · Blind source
separation (BSS) · Melanoma

1 Introduction

The skin is the largest organ in the human body. It contains three main chromophores
which are melanin, oxyhemoglobin and deoxyhemoglobin. The distribution of these
chromophores is of great importance for dermatologists who use it for the identi-
fication and monitoring of skin diseases. An increasingly used technique that has

M. Zokay (B) · H. Saylani
Laboratoire de Matériaux, Signaux et Systémes et Modélisation Physique, Faculté des Sciences,
Université Ibn Zohr, BP 8106 Cité Dakhla, Agadir, Morocco
e-mail: mustapha.zokay@edu.uiz.ac.ma

H. Saylani
e-mail: h.saylani@uiz.ac.ma

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
R. Su et al. (eds.), Medical Imaging and Computer-Aided Diagnosis, Lecture Notes
in Electrical Engineering 810, https://doi.org/10.1007/978-981-16-6775-6_13

143

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-6775-6_13&domain=pdf
mailto:mustapha.zokay@edu.uiz.ac.ma
mailto:h.saylani@uiz.ac.ma
https://doi.org/10.1007/978-981-16-6775-6_13


144 M. Zokay and H. Saylani

proven to be effective for identifying the distribution of chromophores is multispec-
tral imaging [1]. However, the direct use of multispectral images tends to give erro-
neous information on the distribution of chromophores. Indeed, the light intensity
reflected by the skin does not only depend on these three chromophores but also on
the geometry of the skin surface, called shading. The multispectral images obtained
at different wavelengths can therefore be considered as mixtures of four constituents
which are the three chromophores and the shading. Thus, if we consider these con-
stituents as sources, this problem can be seen as a source separation problem, known
as an inverse problem that belongs to the field of signal processing. The idea behind
source separation is to estimate the sources exploiting only their mixture. Since it is
performedwithout any a priori information, neither on the sources, nor on themixing
coefficients, it is called Blind Source Separation (BSS). It is easy to see that the BSS
problem is an ill-posed inverse problem that admits an infinite number of solutions.
Hence, it is essential to add hypotheses on the sources and/or on the mixing coeffi-
cients, which has led to 3 main families of BSS methods: Independent Component
Analysis (ICA), Sparse Component Analysis (SCA) and Non-negative Matrix Fac-
torization (NMF) (see [2] for more details). During the last decade, the use of BSS
methods for non-invasive identification of chromophore distributions has attracted
the interest of several researchers [3–9] who all adopted the same mixing model.
Knowing that most of these researchers were interested in RGB images and thus in
3 wavelengths λi , i ∈ {1, 2, 3} which represent respectively the central wavelengths
of the Blue, Green and Red bands, and if we note j ∈ {1, 2, 3} the index related to
the chromophores and which represents respectively melanin, oxyhemoglobin and
deoxyhemoglobin, then the classical mixing model is written:

Iλi (u) =
j=3∑

j=1

ai j .Sj (u) + pd(u) + ni , i ∈ {1, 2, 3}, (1)

where

• Iλi (u) is the logarithm inverse of the reflectance detected by the camera, at wave-
length λi , at the pixel of coordinates (x, y) = u,

• Sj (u) represents the chromophore of index j ,
• ai j represents the mixing coefficient which depends on the molar absorption coef-
ficient of the chromophore Sj (u) and the light penetration depth in the skin at
wavelength λi ,

• pd(u) represents the shading variation in the image,
• ni represents the characteristics of the sensor.

This mixing model has been adopted by all existing BSS methods [3–8], but they
differ in the assumptions made about the chromophores and the procedure followed
to reach the final objective, so that these methods can be grouped into two main
classes. The first class includes the BSS methods that consider oxyhemoglobin and
deoxyhemoglobin as a single source called hemoglobin [3–5, 9, 10]. Indeed, in [5,
10], the authors applied Principal Component Analysis (PCA) and then ICA on an
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RGB image of the skin, assuming that the shading is constant throughout the image
and that melanin and hemoglobin are independent. In [11], Madooei et al. proposed
a new 2-D color chromaticity to eliminate shading using the geometric mean color,
and then estimated the distributions of the two chomophores using ICA. In [9], Gong
et al. proposed to estimate the distributions of both chromophores from an RGB
image using NMF. In [3], Galeano et al. proposed to use a neural network-based
system and then applied NMF to separate the melanin from the hemoglobin, but in
their model they neglected the shading.

The second class includes the BSS methods which are based on a priori informa-
tion on the absorption spectra of the three chromophores and the light penetration
depth in the skin [6, 7]. The authors proposed to remove the shading and the specular
reflection from the RGB image using respectively white paper and polarizers, then
they relied on knowledge of absorption coefficients and estimates the light penetra-
tion depth in order to deduce an empirical mixing matrix to extract the distributions
of the three chromophores. It should be noted, that the weakness of this family lies
in the level of accurate estimation of light penetration depth into the skin.

In this paper, we propose a new method based on BSS to estimate the distribution
of all the three main chromophores separately, in addition to the shading distribution
which we consider as a full-fledged source, unlike all existing methods. Based on
more realistic assumptions and applying to multispectral images with at least 4
spectral bands, our newmethod exploits the intrinsic properties of each chromophore.
To validate ourmethodwe use a database of realmultispectral dermatological images
of skin affected bymelanoma cancer disease [12]. For the performancemeasurement,
in addition to the standard criterion that is based on the visual analysis of the three
estimated chromophore distributions, we propose in this paper a new numerical
criterion which is based on the measure of independence between the estimated
distributions of melanin and hemoglobin. The rest of this paper is organized as
follows. Section2 presents our new method for estimating the distribution of the
three chromophores and shading. Section3 presents the results of the tests carried
out followed by a last section devoted to a conclusion and perspectives for our work.

2 Proposed Method

The first idea behind our new method is to consider shading as a full-fledged source,
in addition to the three sources of interest, which allows us to avoid the unrealistic
assumption made by most existing methods that its contribution is the same at all
wavelengths.1 However, as the number of sources involved becomes equal to 4 we
are interested in this paper for the case where we have multispectral images with at

1 Indeed, we found from the experimental curve obtained by PCA used in [13] that the contribution
of shading (pd ) is not equal to 1 in all mixtures.
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least 4 bands, said case determined.2 From Eq. (1), we can see that the term ni does
not give any information on chromophore distributions. Thus, as in [5], we begin by
eliminating it from our mixtures based on the following hypothesis (H1).
(H1): There is at least one pixel in the 4 images where the concentrations of the three
chromophores and shading are all zero, i.e.:

∃ u/ni = min(Iλi (u)). (2)

So, the new mixture model is written:

Xi (u) =
j=3∑

j=1

ai j · Sj (u) + ai4 · S4(u), i ∈ [1, 4] (3)

where Xi (u) = Iλi (u) − ni , S4(u) = pd(u) and ai4 ∈ R.
In the same way as with all BSS methods, we produce a new set of 1D mixtures

(vectors), which we note Xi (v), from the 2D mixtures (images) Xi (u) by concate-
nating the rows of the latter. We then have:

Xi (v) = vec(Xi (u)) =
j=4∑

j=1

ai j · Sj (v), i ∈ [1, 4] (4)

The second idea behind our method is to treat mixtures in two steps, unlike all
existing methods that treat all mixtures at the same time. Indeed, we start by treating
only two mixtures that contain only melanin and shading in order to separate them
first, and then we eliminate their contribution from the other two mixtures remaining
to keep only oxyhemoglobin and deoxyhemoglobin. These last two chromophores
are then separated in a last step. These three steps of our method are detailed below.

Step 1: Separation of sources S1(v) and S4(v)
In this stepweexploit the properties of each chromophore concerning spectral absorp-
tion as a function of the wavelength. Indeed, based on data published in [14], we
found that light absorption at wavelengths greater than 620nm is dominated by
melanin, so the absorption coefficients ai j of oxyhemoglobin and deoxyhemoglobin
are all negligible, i.e. we have a32 = a33 = 0 and a42 = a43 = 0. Thus, the mixtures
corresponding to the red and infrared bands can be re-written as follows:

{
X3(v) = a31 · S1(v) + a34 · S4(v)

X4(v) = a41 · S1(v) + a44 · S4(v)
(5)

2 This is the case where we have as many mixtures as sources. On the other hand, in the case where
we have more mixtures than sources, called the over-determined case, we can easily return to the
determined case by applying a PCA.
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We can re-write the equation system (5) in a matrix form as follows:

X(v) = A · S(v), (6)

where X(v) = [X3(v), X4(v)]T , S(v) = [S1(v), S4(v)]T and A =
(
a31 a34
a41 a44

)
.

In this first step we assumed that the two sources S1(v) and S4(v) are independent,
in which case we can use one of the ICA methods to separate them. We have opted
here for the AMUSE method [15] for its simplicity since it exploits only the second
order statistics of the signals. Indeed, the working hypotheses of this method are the
following.
(H2): The sources Sj (v) are auto-correlated and mutually uncorrelated, i.e.:

∀ τ,

{
E[Sj (v) · Sj (v − τ)] �= 0, j ∈ {1, 4}
E[S1(v) · S4(v − τ)] = E[S1(v)] · E[S4(v − τ)] (7)

(H3): The condition of identifiability for the method is verified, i.e.:

∃ τ �= 0/
E[S1(v) · S1(v − τ)]

E[S21 (v)] �= E[S4(v) · S4(v − τ)]
E[S24 (v)] . (8)

The method AMUSE allows us to estimate the separation matrix A−1 to a permu-
tation matrix P and a diagonal matrixD [15]. By noting this matrixC = PDA−1, we
obtain finally the source matrix S(v) with the same indeterminations as follows:

C · X(v) = (
PDA−1

) · (AS(v)) = PDS(v). (9)

Indeed, by noting PDS(v) = Y(v) = [Y1(v),Y4(v)] and omitting the permuta-
tion3 we have:

Y j (v) = α j · Sj (v), j = 1, 4, (10)

where the α j are the elements constituting the diagonal of the matrix D.
Step 2: Removal of S1(v) and S4(v) sources from mixtures
The goal of this step is to eliminate the contributions of the sources estimated S1(v)

and S4(v) from the mixtures X1(v) and X2(v). For this we exploit the following
independence hypothesis.
(H4): Si (v) and Sj (v) are mutually uncorrelated instantaneously, for i ∈ {2, 3} and
j ∈ {1, 4}, i.e.:

E[S̃i (v) · S̃ j (v)] = E[S̃i (v)] · E[S̃ j (v)] = 0, ∀(i, j) ∈ {2, 3} × {1, 4} (11)

3 Indeed, the permutation matrix P can be identified based on the visual analysis since the shading
source S4(v) is easily differentiable.
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where S̃i (v) are the centered versions4 of the sources Si (v). By denoting respec-
tively X̃i (v) and Ỹ j (v) the centered versions of the signals Xi (v) and Y j (v), and by
exploiting the relations (10) and (11) we can write:

E[X̃i (v) · Ỹ j (v)] = E

[(
k=4∑

k=1

aik · S̃k(v)

)
·
(
α j · S̃ j (v)

)]
(12)

= ai j · α j · E[S̃2j (v)] (13)

On the other hand, according to the relation (10) we have:

E[Ỹ 2
j (v)] = α2

j · E[S̃2j (v)], j = 1, 4. (14)

Thus, by exploiting the relations (13) and (14) we can generate two new mixtures
Zi (v)(i = 1, 2) which contain only the sources S2(v) and S3(v) as follows:

Zi (v) = Xi (v) − E[X̃i (v) · Ỹ1(v)]
E[Ỹ 2

1 (v)]
· Y1(v) − E[X̃i (v) · Ỹ4(v)]

E[Ỹ 2
4 (v)]

· Y4(v) (15)

= Xi (v) − ai1
α1

· (α1 · S1(v)) − ai4
α4

· (α4 · S4(v)) (16)

= ai2 · S2(v) + ai3 · S3(v) (17)

Step 3: Separation of Sources S2(v) and S3(v)
The goal of this step is to separate the remaining S2(v) and S3(v) sources that repre-
sent oxyhemoglobin and deoxyhemoglobin respectively, and this time by treating the
new mixtures Z1(v) and Z2(v) provided by the previous step. As these two sources
are dependent, which is why most of the existing methods fail to separate them, we
have opted in this paper for a new solution based on the exploitation of their sparsity.5

Here is our working hypothesis for this step.
(H5): For each source, there is at least one spatial area over which it is active while
the other source is inactive, i.e.:

{∃ V1/∀ v ∈ V1, S2(v) = 0 and S3(v) �= 0
∃ V2/∀ v ∈ V2, S3(v) = 0 and S2(v) �= 0

(18)

There are several BSS methods that exploit this sparsity assumption to achieve
separation. We opted here for the TEMPROM method proposed in [16] for its sim-
plicity. This method consists of identifying the single-source areas V1 and V2 at first,
and then calculating the ratio between the mixtures Z2(v) and Z1(v) on these areas
at a second time, which ultimately allows to estimate the matrix of mixture involved.

4 i.e.: S̃i (v) = Si (v) − E[Si (v)].
5 A source is said to be sparse in a given representation domain if some of its samples are zero in
this domain.
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Indeed, by exploiting the two equations of the system (18) and the relation (17) we
obtain: {

∀ v ∈ V1,
Z2(v)

Z1(v)
= a23·S3(v)

a13·S3(v)
= a23

a13
= r1

∀ v ∈ V2,
Z2(v)

Z1(v)
= a22·S2(v)

a12·S2(v)
= a22

a12
= r2

(19)

Finally, by exploiting the relations (17) and (19) we obtain:

{
r1 · Z1(v) − Z2(v) = (r1 · a12 − a22) · S2(v) = α2 · S2(v) = Y2(v)

r2 · Z1(v) − Z2(v) = (r2 · a13 − a23) · S3(v) = α3 · S3(v) = Y3(v)
(20)

where α2 and α3 are scalars.

3 Results

In this section, we measure the performances of our method using a database of
melanoma skin cancer patients which is an open access database [12]. It is recalled
that our method makes it possible to estimate the distributions of oxyhemoglobin
and deoxyhemoglobin separately in addition to those of melanin and shading con-
trary to all existing methods (as mentioned in the introduction). So, in absolute terms
we cannot compare our performance with any of these methods. However, since
most of these methods estimate melanin and hemoglobin (which is a mixture of
oxyhemoglobin and deoxyhemoglobin), we can limit ourselves in the comparison
to these two chromophores. For this, we opted for a comparison with the methods
proposed in [9, 11] because they are accessible for testing, unlikemost of the existing
methods [4, 6, 7]. As for the performance measurement criteria, in addition to the
classical visual criterion which is a subjective criterion, we propose in this paper a
new numerical criterion. In fact, for dermatologists, melanoma is characterized by
a high distribution of melanin, an average distribution of deoxyhemoglobin and a
very low distribution of oxyhemoglobin compared to healthy skin [17]. To support
this subjective criterion, which is the most used in the literature [4, 6, 7, 9], we
use a second numerical criterion, which allows us to check to what extent the inde-
pendence hypothesis we have assumed is satisfied by the estimated chromophores,
since this hypothesis is the most used by researchers [5, 10, 11]. We then define our
new performance measurement criterion, which we note as CInd , by exploiting the
assumption of statistical independence at order 4 between melanin and hemoglobin,
as follows:

CInd = 1

2
(C13 + C31) , (21)
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Fig. 1 Treated multispectral dermatological image

where

C13 = 20 log10

(∣∣∣E[Ỹ1(u)Z̃1(u)3]
∣∣∣
−1

)
and C31 = 20 log10

(∣∣∣E[Ỹ1(u)3 Z̃1(u)]
∣∣∣
−1

)

(22)

We recall that the estimates Ỹ1(u) and Z̃1(u) are respectively the centered versions
of the melanin and hemoglobin distributions.

The database contains 30 multispectral images [12]. Knowing that we have tested
our method on some images and that the results obtained are similar, we limit our-
selves here to present the results of a single melanoma image, due to lack of space.
This image is shown in Fig. 1.

For the methods [9, 11], we used respectively the algorithm FastICA [18] and
MU [19]. Two-dimensional (2D) and three-dimensional (3D) representations of the
estimated distributions of each of the three chromophores in addition to the shading
using our method are given in Fig. 2. These 2D and 3D representations are grouped
by column for each chromophore. The 2D and 3D representations of the estimated
melanin and hemoglobin distributions using themethods [9, 11] are grouped in Fig. 3.

Figure2 shows the good performance of our method for the estimation of the
distribution of each of the three chromophores in addition to the shading. Indeed,
we see that in the melanoma area we have a high distribution of melanin and a rela-
tively high distribution of deoxyhemoglobin compared to oxyhemoglobin as shown
in the 3D representations of these chromophores. This is fully consistent with the
physiological knowledge that characterizes melanoma, since naevus disease, which
generally has a melanin distribution similar to that of melanoma, is instead charac-
terized by an oxyhemoglobin distribution that is close to that of deoxyhemoglobin
[17]. On the other hand, from Fig. 3, we see that the melanin distribution estimated
by the methods [9, 11] is similar to that estimated by our method, which means
that these two methods [9, 11] also suspects melanoma. Nevertheless, its estimated
hemoglobin distribution (which can be seen as a mixture of oxyhemoglobin, deoxy-
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Oxyhemoglobin Shading
Melanin Deoxyhemoglobin

Fig. 2 Estimated distributions (2D and 3D) of the three chromophores and shading using our
method

Hemoglobin Hemoglobin
Melanin Melanin

(a) Method [9] (b) Method [11]

Fig. 3 Estimated distributions (2D and 3D) of melanin and hemoglobin using: a method [9], b
method [11]

hemoglobin, and shading) does not allow to decide on the nature of the disease, since
the distinction between melanoma and nevus can be made only by estimating the
distributions of oxyhemoglobin and deoxyhemoglobin separately. All these findings,
which were made on the basis of physiological knowledge of the melanoma disease,
are in perfect agreement with the results obtained using our new numerical criterion,
denoted CInd and defined by the relation (21), which are presented in Table 1. In
this table we provide the mean and standard deviation of CInd , denoted C Ind and σ ,
obtained on 10 different images from the database [12].
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Table 1 Mean and standard deviation of CInd in dB

Method [9] Method [11] Our method

C Ind (dB) −2.05 27.45 38.44

σ (dB) 3.66 6.20 4.33

From Table 1, we see that our method is much better than the other methods since
the value obtained for C Ind using our method is larger than that obtained using the
methods [9, 11]. We also find that the [9] method has poor performance compared
to our method and the method [11] and this can be explained by the infinite solution
problem posed by NMF. Since this criterion is based on a measure of independence,
we deduce that our method provides estimates of melanin and hemoglobin distribu-
tions in output that are much more independent than those provided by the methods
[9, 11].

4 Conclusion

In this paper we have proposed a new approach which aims to identify the melanoma
diseases by identifying the distribution of its main skin chromophores (melanin,
oxyhemoglobin and deoxyhemoglobin) from multispectral dermatological images.
The key idea of our approach is to take into account the shading, considering it as
a full-fledged source, and the three chromophores, which leads to an instantaneous
linear mixture model with four sources rather than two or three sources, as is the
case for all existing methods. The results of all the tests carried out, using a database
of real multispectral images of skin affected by a skin cancer of the type melanoma,
have shown that our approach is very efficient using the classical criterion based
on visual analysis than our new independence criterion. In terms of perspective, it
would be interesting to test our method on other multispectral dermatological image
databases of other skin diseases.
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2.5D Lightweight Network Integrating
Multi-scale Semantic Features for Liver
Tumor Segmentation

Yilin You , Zhengyao Bai , Yihan Zhang , and Jiajin Du

Abstract One critical research area in the development of a computer-aided diag-
nosis system for liver cancer is efficient and automatic segmentation of lesion from
CT scans. To overcome this issue, we investigated a 2.5D lightweight liver tumor
segmentation by fusing the multi-scale semantic features, named MAA-Net. Our
framework enhanced the information interaction between the input 2.5D stacked
slice via introducing parallel convolution and increasing the knowledge weight of
the lesion channel in different receptive fields. To ease the shortage of missed detec-
tion of tumors,MAA-Net fused the hierarchical semantic information extracted from
the encoder. Moreover, we evaluated our MAA-Net on LiTS2017 and 3DIRCADb
datasets. Extensive experiments shows the proposed method outperforms the others
on both accuracy and total number of calculation. Specifically, our approach can
improve liver tumor segmentation tasks by 2.4%, while reducing amount of parame-
ters by 57.5%. Both quantitative and qualitative results illustrated the MAA-Net can
effectively address with the limitation of small tumors, and some tumors are on the
edge.

Keywords Liver tumor segmentation · Multi-scale feature fusion · Attention
mechanism · U-Net

1 Introduction

Primary liver cancer seriously endangers the health of patients. Experienced doctors
diagnose and treat patients by focusing on the location, shape, and size of lesions
in CT scans. However, the contrast between lesion and adjacent soft tissues is low,
while the shape of liver tumors is highly variable. Thus, it’s tough to define the lesion
boundary, which makes it impossible to achieve accurate tumor segmentation.

In response to the above issues, many sophisticated approaches have reached
varying degrees of success. As an end to end Fully Convolutional Network (FCN)
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[1] occurred, the deep learning to pixel-level segmentation of lesion has become
mainstream. Meanwhile, U-Net [2] used the symmetric structure and unique skip
connections for feature integration. FSFU-Net [3] adopted residual fusion and global
feature selection unit to predict the location of liver tumor. AHC-Net [4] considered
the characteristics of volumetric CT scans, designed a cascade network and combined
soft and hard attention to get exact target bounding boxes. HDenseU-Net [5] adopted
a pre-trained model to get rough liver segmentation, and through 3D Dense U-Net
to detect features between slices. Compared with the 2D network, 3D network can
better capture the detailed spacial knowledge and achieve faster convergence speed.
However, because of the complexity of 3D architecture and heavy computational
burden, Triplanar FCN [6] mixed three 2D neural networks to segment the liver from
the lateral, coronal, and sagittal planes, which effectively used multi-dimensional
features. Hy_CompNet [7] used 2D CompNet to segment the liver and large tumors
to balance computing resources and accuracy. Considering the high similarity of
blood vessels and lesions, 3D CompNet for small missed tumors segmentation.

Combining the characteristics of liverCT scans andU-Net architecture, the current
obstacles for lesion segmentation are: (1). The gray value between tumors and adja-
cent tissues is resemble, while the variability of the location and shape leads to
lower tumor segmentation results than liver; (2). The 2D network can’t fully adopt
the spacial information between slices within the sample, and 3D structure would
consume too much computing resources.

Addressing with the above issues is what we exact concentrated on this paper.
We proposed a 2.5D lightweight global semantic feature integration and multi-scale
encoder-decoder liver tumor segmentation network, called MAA-Net (Multi-scale
Attention Aware-Net). Overall, the main contributions of this work includes: (1).
Extract features through the InceptionV3 with enhanced channel attention; (2).
Employ a dual-feature fusion block in the skip connections to focus on the tiny
features and suppress irrelevant information; (3). Acquire the inter-slice spatial
information via 2.5D network structure.

2 Related Work

2.1 Inception Architecture

InceptionV3 [8] utilized asymmetric convolution in series to decompose the original
convolution kernel. While ensuring the accuracy, the InceptionV3 saved 33% of the
calculation of InceptionV2. Currently, many academicians employed the Inception
to segment medical image. Reference [9] considered using max pooling and up-
sampling in the lung nodules segmentation would affect the resolution of the feature
map. Thus, they adopted a promotedmulti-branch up and down-sampling to perceive
local features of various ranges. RIU-Net [10] replaced the original convolution
operation in the U-Net with InceptionV3 for medical image segmentation.
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2.2 Residual Network

Residual structures [11] are effective in avoiding gradient vanishing and exploding
with the increasing of network depth. Meanwhile, residual connections can fortify
the combined information between the upper and lower layers. Squeeze and Excita-
tion Network [12] utilized global average pooling and two fully connected layers to
perform re-calibration of dynamic features. Ameliorating the representation ability
of the network. Convolutional block attention module [13] adopted a serial architec-
ture. It first used the channel attention vector to rectify the shallow feature map, then
obtained final blended feature map through spatial attention. To ease the burden of
computations, [14] compared the network parameters of SE_Net, designed three
variant experiments and added a band matrix to achieve 1D convolution. Ulti-
mately, the Efficient ChannelAttention block (ECA) through a function to implement
adaptive cross-channel with the least amount of parameters.

2.3 2.5D Network Architecture

Directly using volumetric CT scans as input will bring redundant calculation, while
slice image may waste of too much contextual information. Therefore, it is a good
compromise to consider adopting a 2.5D network structure. Li and Bai [15] designed
a 2.5D convolutional network for multi-site lesion detection. A CT slice of multi-
lesion type is a continuous tomographic image, and only marks its key slice in the
database. We can see from the continuity that the adjacent slices of a slice are spacial
related. So the input of the network is with a CT slice group formed by stacking the
annotated central slice and its adjacent slice carrying contextual information.

3 Method

3.1 MAA_Net

As shown in Fig. 1, multi-scale features were first extracted by the asymmetric
convolutional layers, named global context aware (GCA_E). We embed ECA unit
in each GCA module intends to notice the inter-slice information between distinct
channels. Among them, we employed four dual-feature fusion blocks (DFB) through
skip connection. Then we used the decoder to locate regions of interest, and added
deep supervision to enhance the network transmission. Since the varying size of
lesions, using a settled convolution kernel ineluctably leads to a fixed receptive field.
Thus, MAA-Net designed a hierarchical structure to extract contextual information.
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Fig. 1 Network structure

3.2 Encoder-Decoder Structure

Inspired by nCovSegNet [16], the encoder of MAA-Net employed InceptionV3 as
the backbone for feature extraction. Figure 2 demonstrates the structure of the GCA
module. To get a large receptive field without increasing the amount of parameters,
the GCA has five parallel branches which consists different convolution layers.

In the expansive path, we adopted a parallel decoder with residual. As shown in
Fig. 2, by aggregating semantic information between multi-level. The encoder can
reduce computational redundancy while processing complex and diverse features.

Fig. 2 Multi-branch parallel encoder and decoder
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Moreover, 2D input images can’t fully use the inter-slices information, 3D scans,
on the contrary, may waste of time and computation. Therefore, taking 2.5D form as
the input of the model by stacking adjacent slices to capture the spacial knowledge.
Wardhana [17] compared the Dice and Hausdorff distance of stacked consecutive 3,
5, 7 and 9 slices, then concluded that three slices can provide the most association
information without distorting tumors.

3.3 Dual-Feature Fusion Module

To integrate the high-level semantic information and low level detailed edge operation
is beneficial for early screening andmissed detection.CoordinateAttention (CA) [18]
through the decomposition channel attention to 2 one-dimensional encoded features
and aggregating in distinct directions to achieve multi-scale semantic feature fusion.
The CA mechanism first obtains long distance dependencies along one direction
while retaining precise location information with the other spatial direction. Thus,
we added DFB modules in the skip connection of each layer to alleviate the loss of
deep details and recovering spatial information. Specifically, as shown in Fig. 3, we
considered both high-to-low and low-to-high data flows to gain the cross channel
relationship and location information. Following, we divided the global average
pooling into 2 steps, by using different pooling kernel to get feature maps.

We used the previously feature maps to concat along the spacial dimension,
and transformed the bottleneck layer then activated to achieve information inter-
action. After fusing the hierarchical features, we separated the shared layers along
the spatial dimension and utilized the sigmoid function to obtain the sum of attention
vectors. Ultimately, we operated on the vector and input with Hadamard product.
Mathematically, the description can be expressed as:

Fig. 3 Multi-scale semantic feature fusion module
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C*H*1, zw

c ∈ R
C*1*W, zc are the embedded feature maps in the different

direction. Let xc ∈ R
C*H*W, defined as the input of channel C, where C, H, W are

the number of channels, height and width of the feature map, respectively. And [·]
demotes the splicing operation, F1, Fh , Fw represent the bottleneck layer, δ, σ are
activation function.

3.4 Loss Function

The cross-entropy loss function frequently employed to measure the similarity
between the prediction and the ground truth in semantic segmentation. The smaller
loss indicates stronger robustness of the model. Its mathematical definition is:

Lcross = 1

N

∑
i

Li = − 1

N

∑
i

M∑
c=1

yic log pic (3)

where, M means the number of classes, yic is a sign function, which takes one when
the classification is correct; pic represents the probability that the sample i belongs to
c. Since lesions account for a relatively small proportion of entire CT scans, adopting
a single loss function may cause in a severe class disequilibrium. By adding the Dice
loss function to balance the proportion of tumors, and is defined as

LDice = 1 − 2
∑N

j p(i, j)q(i, j)
∑N

j p2(i, j) + ∑N
i q2(i, j)

(4)

where, N is the sum of voxels in the whole slice, i and j denotes the classes i and
j , p(i, j) and q(i, j) is defined as the probability that the voxels j belongs to the
category i in the prediction and label, respectively. Therefore, the overall loss is

L = LDice + γ Lcross (5)

where the weight γ set to 0.5 in the experiment.
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Table 1 The relevant information of LiTS 2017 and 3DIRCADb

Database Training Testing Size Flat resolution
(mm)

Slice thickness
(mm)

Depth

LiTS17 131 70 512 × 512 0.55–1.0 0.45–6.0 42–1016

3DIRCADb – 20 512 × 512 0.57–0.87 1.6–4.0 74–260

4 Experiments

4.1 Datasets

To evaluate the proposed method, we employed two publicly available datasets,
LiTS2017 [19] and 3DIRCADb [20]. Meanwhile, the relevant information is shown
in Table 1. The experiment randomly selected 70 and 30% of the LiTS2017 samples
to construct training and validation sets, and tested on the 3DIRCADb. We unified
the Hounsfield unit to [−200, 200] and normalized the pixel value to reduce the
influence of irrelevant background.

4.2 Setting Details

We implemented our method based on Pytorch and completed training on NVIDIA
GeForce RTX2080Ti GPU. We used Adam as the optimization algorithm, set the
learning rate to 0.0001, and the batch size is 8. Our module trained 250 epoch,
and resize the image to 352 × 352. Finally, the initial value of deep supervision
attenuation coefficient is 0.4, and every30 epoch decays to 0.8 times the original.

Meanwhile, we adopted six common evaluation indicators to measure the perfor-
mance of our network, consisting Dice, jaccard, volume overlap error (VOE),
Hausdorff distance (HD), and average symmetrical surface distance (ASD).

4.3 Results and Analysis

Quantitative results. We list the quantitative results in Tables 2 and 3. MAA-Net
performs the best in terms of six indicators. To verify the learning ability of our
method, we compared MAA-Net with the state-of-the-art models under the same
optimization, loss function and parameters settings. As observed, the mainstream
res U-Net ++ [21] and sep U-Net show excellent results in liver segmentation, but
for small objects, the Attention U-Net [22] outperforms sep U-Net [23]. Since it
aggregated a new attention gate to assist automatically focusing on target features
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with multiple shapes. From the Table 3, compared with the res U-Net ++, MAA-Net
promoted by 3.8% and 4.8% on the LiTS17/3DIRCADb, respectively.

Table 4 lists the parameters, the dimension and theGFLOPs of contrast tests on the
two databases. Sep U-Net imported inverse residual, yet, adding a large convolution
kernel will inevitably lead to increase the parameters. Thus, MAA-Net reduces the
amount of parameters to 56% compared to the same-dimensional model.

To further confirm the performance of MAA-Net, Table 5 compared with the
multi-dimensional liver tumor segmentation methods on LiTS17 dataset. Specifi-
cally, compared with Triplanar FCN, the Dice of ours in liver segmentation increased
by 0.20%. While in the lesion, the Dice of MAA-Net is 2.49% higher than Hy_
CompNet. When reducing the parameter amount, the effect is equivalent to some 3D
models.

Table 2 Results of liver comparative experiments on the LiTS2017 and 3DIRCADb datasets

Datasets Model Dice Jaccard VOE HD RVD ASD

LiTS17 U-Net [2] 0.951 0.911 0.089 6.324 0.016 3.749

Res U-Net ++ [21] 0.963 0.929 0.070 5.598 0.012 3.590

Attention U-Net [22] 0.950 0.906 0.094 7.241 0.038 3.723

sep U-Net [23] 0.956 0.916 0.084 5.261 0.037 4.231

MAA-Net 0.969 0.941 0.059 4.0 0.010 3.167

3DIRCADb U-Net [2] 0.943 0.892 0.108 13.92 −0.044 5.506

Res U-Net ++ [21] 0.954 0.912 0.088 13.07 0.067 4.653

Attention U-Net [22] 0.944 0.894 0.106 15.36 0.054 5.272

sep U-Net [23] 0.955 0.915 0.085 14.96 0.024 4.350

MAA-Net 0.965 0.932 0.068 9.273 −0.008 3.894

Note that the best results are marked by boldface

Table 3 Results of tumor comparative experiments on the LiTS2017 and 3DIRCADb datasets

Datasets Model Dice Jaccard VOE HD RVD ASD

LiTS17 U-Net [2] 0.613 0.634 0.366 56.25 −0.076 15.89

Res U-Net ++ [21] 0.660 0.693 0.307 57.16 −0.073 13.63

Attention U-Net [22] 0.639 0.621 0.379 55.90 −0.067 13.37

sep U-Net [23] 0.600 0.614 0.386 52.77 −0.091 12.26

MAA-Net 0.698 0.694 0.306 48.31 0.071 10.08

3DIRCADb U-Net [2] 0.599 0.625 0.375 62.20 0.111 13.26

Res U-Net ++ [21] 0.644 0.662 0.338 57.19 −0.075 14.60

Attention U-Net [22] 0.627 0.653 0.347 57.42 −0.049 13.90

sep U-Net [23] 0.608 0.648 0.352 53.17 −0.029 12.83

MAA-Net 0.692 0.679 0.321 50.45 −0.028 11.30

Note that the best results are marked by boldface
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Table 4 Parameters,
dimension and GFLOPs of
comparative models

Model Dimension Parameters GFLOPs

U-Net [2] 2D 8,636,802 31.03

res U-Net ++ [21] 2D 3,626,421 33.59

Attention U-Net [22] 2D 34,878,573 125.82

sep U-Net [23] 2.5D 7,376,066 19.63

MAA-Net 2.5D 3,196,174 10.37

Note that the best results are marked by boldface

Table 5 Comparison among
other mainstream method on
the LiTS2017

Method Dimension Liver Lesion

H-Dense U-Net [5] 3D 0.961 0.722

AHC-Net [4] 3D 0.965 0.690

Triplanar FCN [6] 2.5D 0.967 –

Res SegNet [17] 2.5D 0.952 0.681

Hy_CompNet [7] 2.5D – 0.681

FSF U-Net [3] 2D 0.962 0.684

MAA-Net 2.5D 0.969 0.698

Note that the best results are marked by boldface

Qualitative results.Wechose the representative visualizations inFig. 4.Asobserved,
in the first row where the liver edge contains lesions, the mainstream methods all
lose the tumor area to a certain extent, and omitting the edge information in the lower
right corner of the liver. The intractable issues of tumor segmentation are the high
variability of tumor morphology and the indeterminacy of location. Thus, the lesion
is usually under-segmentation, as the third row in Fig. 5. Overall, the consequence
sufficiently illustrate the MAA-Net is a stable network with strong robustness.

Ablation results. To verify the effectiveness of our MAA-Net, we evaluate the
segmentation performance on 3DIRCADb. Table 6 lists the results of liver and lesion
on 3DIRCADb. We consider the availability of GCA_E unit, DFB unit and GCA
unit. We found the scores of each module added on U-Net increased. Specially, the
structure with hierarchical encoder-decoder and bidirectional feature fusion units has
achieved optimal results in multiple indicators. Among them, the Dice of MAA-Net
advanced by 8.5% and 8.3%, respectively. Figure 6 visualizes the ablation experi-
mental results, where the red area is the liver and the yellow area is tumor. For the
convenience of observation, the test images in the figure are all preprocessed.

Obviously, all models reached excellent results in liver segmentation and is corre-
sponding to the quantitative results in Table 6. There is a certain degree of under or
over segmentation to varying extent. On the contrast, MAA-Net outperforms other
methods when addressing with borderline lesions. Similar to the first row in Fig. 6,
our algorithm successfully segmented two tiny tumors and closer to the ground truth.
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(d) Attention U-Net(a) CT image (b) Ground Truth (c) U-Net (g) MAA-Net(f) sep U-Net(e) res U-Net++

Fig. 4 Visualization of comparative experiments on the LiTS2017 database (a original images;
b labels; c U-Net; d Attention U-Net; e res U-Net ++; f sep U-Net; g ours)

(a) CT image (b) Ground Truth (c) U-Net (d) Attention U-Net (e) res U-Net++ (f) sep U-Net (g) MAA-Net

Fig. 5 Visualization of comparative experiments on the 3DIRCADb database (a original images;
b labels; c U-Net; d Attention U-Net; e res U-Net ++; f sep U-Net; g ours)
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Table 6 Results of tumor ablation experiments on the LiTS2017 and 3DIRCADb datasets

Datasets Model Dice Jaccard VOE HD RVD ASD

LiTS17 U-Net 0.613 0.634 0.366 56.25 −0.076 15.89

+GCA 0.653 0.671 0.329 52.38 0.087 13.86

+GCA_E 0.673 0.657 0.343 51.10 −0.080 8.216

+DFB 0.680 0.659 0.341 49.34 0.047 8.245

MAA-Net 0.698 0.664 0.336 48.31 0.071 9.078

3DIRCADb U-Net 0.599 0.625 0.375 62.20 0.111 13.26

+GCA 0.603 0.582 0.418 61.63 −0.087 12.86

+GCA_E 0.642 0.673 0.327 60.21 −0.034 12.73

+DFB 0.658 0.674 0.326 56.64 0.050 11.93

MAA-Net 0.682 0.671 0.329 50.45 −0.028 11.30

Note that the best results are marked by boldface

(a) CT image (b) Ground Truth (c) U-Net    (d) +GCA  (e) +GCA_E  (f) +DFB   (g) MAA-Net

Fig. 6 Visualization of ablation experiments on the 3DIRCADb database (a original images;
b labels; c U-Net; d +GCA; e +GCA_E; f +DFB; g ours)

5 Conclusion

In this paper, we have proposed a 2.5D lightweight structure for segmenting liver and
lesion in abdominalCT scans.Our framework includes amulti-scale encoder-decoder
framework MAA-Net, which is based on the global context aware and bidirectional
feature fusion. In addition, we trained our model using the novel form of input, and
it realized the information interaction between different levels. Extensive experi-
ments on the public two databases showed our MAA-Net can reduce the amount of
calculations by 57.5% when the evaluation indicators are not much different. The
results also declared the compromise between computation resources and segmen-
tation accuracy. However, the algorithm has certain shortcomings when handing the
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adhering lesion issue. Hence, our future work would concentrate on the multi-view
fusion, adopting sagittal, coronal and axial orthogonal planes to achieve other 2.5D
strategy for multiple lesion detection.
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Registration of Medical Image Sequences
Using Auto-differentiation

Tomas Vicar, Roman Jakubicek, Jiri Chmelik, and Radim Kolar

Abstract This paper focuses on image registration using the automatic differen-
tiation of deep learning frameworks. Specifically, a method for the registration of
image sequences is proposed and tested on retinal video ophthalmoscopic data and
brain DCE MR images. PyTorch auto-differentiation has been used as a core of an
optimisation tool to find the optimal image transformation parameters. It allows us
to easily design a loss function for our registration tasks. The image registration
was achieved by simultaneous registration of all images using a global loss function
without the need of the reference frame.

Keywords Medical image registration · Auto-differentiation · Deep learning
frameworks · Gradient-based optimisation · Video stabilisation

1 Introduction

Image registration is a process that leads to a geometrical alignment of images
acquired at different times, from different points of view, and/or by different sensors
[18]. This is among the most important image processing tasks and continues to
be an active research topic with several important applications in medical imaging.
Image registration is defined as the search for a set of transformation parameters u
of a spatial transformation Tu(x) that is capable of aligning the fixed image fF with
the moving image fM as [17]:
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uopt = argmin
u

[
L
(
fF

(
x
)
, fM

(
Tu (x)

)) + λR(u)
]
, (1)

where L is the loss function designed to have a minimum when the two images
are aligned, and R(u) is a regularisation term. In this paper, we are using the affine
transformations defined as

Tu(x) := Ax, (2)

where A is the linear transformation matrix of size 3 × 3 for 2D and 4 × 4 for 3D,
and X are homogeneous coordinates.

Although deep learning-based methods outperformed classical methods in most
computer vision tasks, their application to image registration is still very limited [16].
The reason is that the main success of deep learning lies in supervised applications
with the availability of large labelled datasets [1], which is usually not the case
for image registration problems. However, deep learning frameworks can serve as an
easy-to-use gradient-based optimisation tool, thanks to available auto-differentiation
and implementation of well-performing optimisers and other useful tools. Moreover,
they can be easily extended from 2D to 3D and provide access to GPU computation,
which can significantly speed up the calculations.

Currently, several image registration frameworks are available (see [2]), but the
most popular tool for medical image registration is Elastix [5, 14], which is a part of
the Insight Segmentation and Registration Toolkit framework [9]. Elastix is based on
gradient optimisation, providing various registration options including rigid, affine,
and nonrigid transformation models, monomodal, and multimodal loss functions,
etc. Moreover, various wrappers introduce this tool to other programming languages
like Python or Java. It is written in C++ including GPU implementations; however, it
is not easy to include custom modifications, mainly because the gradient calculation
needs to be defined; thus, it is not suitable for rapid prototyping.

The proposed approach uses PyTorch capabilities [11] that enable the fast and
simple development of a new registration approach. Therefore, this approach ben-
efits from the active development of this deep learning framework and the vibrant
community around it. Similar efforts have been made by the Kornia authors [12],
which uses an easy-to-use Pytorch-based registration API with access to basic image
transformations (affine) and losses for the registration of two monomodal images
including the pyramidal approach. In AirLab [13] the authors developed a PyTorch-
based tool for the rapid development and testing of registration methods, where users
can introduce custom losses, transformations, or regularisations; however, neither
allows more complex adjustments as we require.

Here, we focus on the application of this approach to a specific task, which is sta-
bilisation of image sequence (registration of multiple images together). This problem
can be approached by selecting a reference frame, where other frames are individu-
ally aligned to this frame [6]; however, it leads to an increase in registration errors
with increasing differences from the reference frame (especially in sequences with
significant information changes). In order to overcome these problems, we have
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defined a global loss function, which leads to the registration of all frames together
without the need for a specific reference frame.

2 Methods

2.1 Image Sequence Registration

The problem of image sequence registration can be formally defined as

argmin
u1,...,un

L
(
f1

(
Tu1(x)

)
, w1

(
Tu1(x)

)
, . . . , fn

(
Tun(x)

)
, wn

(
Tun(x)

))
, (3)

where we search for parameters ui of individual transformationsTui(x) for images fi
in the sequence. It follows that there is no reference image, but all images are moving
images. Furthermore, image masks (positional weights) wi are very important for
successful registration [3], where they aremainly required to ignore the image border,
which can significantly bias the loss. Masks can be binary or in the form of weights,
and they can be more important to a specific part of the image. The weights are
transformed together with each image. We are interested in the loss function, which
will ensure that all images are aligned; therefore, variance over time can be a suitable
loss:

Lk

(
f1

(
Tu1(xk)

)
, w1

(
Tu1(xk)

)
, . . . , fn

(
Tun(xk)

)
, wn

(
Tun(x)

))

= 1

N

∑
i

(
wi

(
Tui(xk)

)
fi
(
Tui(xk)

) − 1

N

∑
j

w j
(
Tuj(xk)

)
f j

(
Tuj(xk)

))2
, (4)

where each image fi is weighted by its mask wi , the final loss function is the mean
variance of the individual positions k. However, we need to restrict this sum to valid
positions, where the majority of masks are non-zero. For this reason, the final loss is
calculated as L = 1

|V |
∑

k∈V Lk , where V is the set of valid positions and |V | is the
number of positions in this set, where valid positions are the positions where at least
50 % of transformed masks are nonzero.

This approachdoes not require reference image; however, it is invariant to the same
additional transformation applied to all images. For this reason, we need to introduce
regularisation, which will keep the ’average transformation’ close to identity. It can
be done by this regularisation term:

Ridenti t y(u1, . . . ,un) =
∥∥∥∥I − 1

N

N∑
i=1

Ai

∥∥∥∥
2

2

, (5)
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where I is the identity matrix, Ai is the affine transformation matrix for the transfor-
mation Tui (·) and ‖·‖22 is the L2-norm squared.

2.2 Experimental Data

Retinal image sequences were acquired using a previously developed video ophthal-
moscope (VO) [15], recently modified to a multispectral monocular version [7]. This
device acquires retinal video of the optic nerve head and the peripapillary area with a
field of view of 20◦ × 17◦ (1224 × 970 pixels). This corresponds to an approximate
area of 6 × 5mm in the retina for a subject with an axial length of 24mm. The frame
rate of the CMOS camera was set at 25 frames per second (exposure time approxi-
mately 40ms). The light power in the plane of the eye pupil was less than 15µW.The
length of the sequences is 5 s. There are two main artefacts that can distort individual
frames and cause difficulties in the registration process. The first artefact is caused by
the limited exposure time (40ms), which can subsequently cause motion blur due to
involuntary eye movements during acquisition. The second major artefact can occur
during eye blinking, when a strong reflection from the eyelid causes saturation of the
image intensity. An example of a VO retinal image sequence is shown in Fig. 1b.

The second tested dataset contains volumetric brain magnetic resonance (MR)
images of oncological patientswith glioma acquired at St.Anne’sUniversityHospital
Brno. For scanning, the GE Discovery MR750 3.0 T with a voxel size of 0.937 ×
0.937mm2 with 6mm of slice thickness. During examination, a contrast agent is
injected and scanned over time (60 time points in total); therefore, the output volumes
are T1-weighted dynamic contrast enhanced (DCE) MR data sized as 240 × 240 ×

Fig. 1 Example of images used for testing of proposed registrationmethod. aMRdynamic contrast
enhanced data, 3D time-lapse sequences, registration was applied to cropped the part of the images
with the tumour. b Video-ophthalmoscopic retinal image sequence data
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Fig. 2 Example of loss
function development during
registration for VO
sequence. Steps are caused
by the resolution change of
the pyramidal approach of
registration

150 × 60 voxels. An example ofDCEMRdata is shown in Fig. 1a, where registration
was applied on images cropped only to the segmented tumour region, where this
registration is necessary for its subsequent analysis.

2.3 Implementation Details

Due to GPU memory limitations, it is problematic to optimise transformations of all
images in the sequence simultaneously in a single optimisation step; however, simi-
larly to deep learning methods, the mini-batch processing approach [8] can be used.

For VO images, which contain larger movement, the pyramidal approach was
used, where the images were first registered with a smaller resolution and then their
registrationwas refinedwith gradually increasing resolution. Specifically, the images
were subsampled by factors of

√
64,

√
32,

√
16,

√
8,

√
4,

√
2 and 1. Transformation

parameters were optimised using Adam optimiser [4] with the parameter of 1st and
2nd moment estimates set to 0.9 and 0.999, respectively. The learning rate 0.0002
(0.002 without pyramidal approach) decayed to 80% after 120, 140 and 150 epochs
were used. The regularisation factor of 10−5 was used. An example of a loss function
that includes steps caused by the pyramidal approach is shown in Fig. 2.

Movements in the MR data are not as frequent and significant (in a range of units
of voxels) as in the VO images, so it was not necessary to use the pyramidal approach.
However, the learning rate settings, including decay and number of epochs, were the
same as in the case of VO images. However, the source code had to be extended by
editing transformation matrices and geometric transforms for 3D images, modifying
the calculation of the loss function.

The code is publicly available on the GitHub repository.

3 Results and Discussion

The proposed method was successfully applied to both VO retinal sequences and
DCEMR images. Examples of unregistered and randomly selected registered frames

https://github.com/tomasvicar/differentiable_sequence_registration
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Fig. 3 Visualisation of the differences between two sample frames in the original sequence and in
the registered sequence. The images are composites (overlays) of two images, where one is shown
in cyan and the other in magenta

from the sequence are visualised as colour composites in Fig. 3, where the registered
frames show significantly better overlap.

Examples of registration quality are also visualised with the standard deviation
values over time in Figs. 4 and 5 for VO andMR images, respectively. As can be seen
in both figures, the original images contain significantly more movements between
frames; thus, there is amore significant improvement in the standard deviation caused
by registration.

We have evaluated the variance (equivalent to our loss without regularisation)
for five VO sequences for various data to compare the quality of registration for
those settings in Table1. Here, the variance of the original data compared to the
data registered decreased significantly from 6.07 × 10−4 to 1.45 × 10−4. We have
also compared the proposed approach with a fixed learning rate of 0.0002 with
the results, where the learning rate was optimised for each image individually. It
provided a decrease in the variance from 1.45 × 10−4 to 1.28 × 10−4, however, this
requires 15 registration evaluations using Bayesian optimisation [10]. Next, we have
found that there is a significant effect of the pyramidal approach, where registration
without the pyramidal approach achieved only variance 1.84 × 10−4. We have also
tested registration without the mini-batch approach (with a single mini-batch on a
GPU with sufficient memory) and reached a very similar result to the technique with
the mini-batch (fixed lr.) of variance 1.43 × 10−4; however, application of the mini-
batch is necessary if the GPUmemory is not sufficient to register the whole sequence
at once. Registration without regularisation achieved the same numerical result as
regularised one; however, registration without this regularisation can result in the
movement of the entire sequence, as can be seen in Fig. 6. We have also evaluated
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Fig. 4 Visualisation of standard deviation in-time for original and registered MR DCE images.
The bottom part shows the value profile through the images in the upper part defined by the red
and blue lines. Lower standard deviation values after registration (blue curve) shows significant
improvement in sequence stability in time

Fig. 5 Visualisation of standard deviation in-time for original and registered VO sequences. The
bottom part shows slices through the images at the top. Lower standard deviation after registration
shows significant improvement in sequence stability in time
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Table 1 Resulting variance of various registration settings for VO data

Seq. Variance
(opt. lr.)

Variance
(fixed lr.)

w/o
pyramid

w/o mini-
batch

w/o regu-
larisation

Register
to 1st
frame

Original

1 1.19 1.60 1.76 1.62 1.60 1.48 3.46

2 1.48 1.49 2.10 1.51 1.49 1.59 4.87

3 1.43 1.59 2.06 1.70 1.60 1.87 8.20

4 1.62 1.89 2.04 1.67 1.88 1.86 9.08

5 0.66 0.67 1.22 0.67 0.66 0.69 4.73

Avg. 1.28 1.45 1.84 1.43 1.45 1.50 6.07

Values are calculated for image values in the range 0–1 and values are 10−4× variance; opt. lr. is
optimal learning rate different for every image (fixed lr. is used otherwise), w/o pyramid is without
pyramidal approach (original scale is used), w/o mini-batch is with all data in a single batch

the approach of standard registration to the first frame of the sequence, which was
calculated using our same PyTorch implementation, where we did not transform the
first image and calculate the loss as the sum of mean squared errors between the first
frame and other individual frames. The results of the registration in the first frame
achieved slightly worse results of variance 1.50 × 10−4.

In the case of the DCE MR dataset, the proposed algorithm provides a decrease
in the overall standard deviation value from 86.72 to 73.98 after registration for
a selected scan (Fig. 4). There was a reduction in the standard deviation values of
7.68 on average (evaluated in 3 samples). However, the problem is the nonzero
residual standard deviation caused by the change in image contrast over time due
to the contrast agent; therefore, each scan has a different value of standard devia-
tion.

Similar effects to theVO listed in Table1were also achieved for theDCEMRdata,
where regularisation protects the optimisation process from significantly shifting
the 3D data in the Z direction out of the image range that is replaced by zeros.
This significantly but incorrectly increases the value of the loss function and leads
to incorrect registration results. Thus, during optimisation, it was unnecessary to
regularise the translation in all directions.

The effect of cropping the MR data resulted in a significant reduction in memory
and computational requirements, naturally leading to faster convergence but ulti-
mately to the same solution. However, the use of mini-batches with significantly
longer computational time and slower convergence was necessary when registering
uncropped images. The computational time of the proposed approach was 10, 8,
and 0.5min for VO, uncropped MRI, and cropped MRI, respectively (on Intel Core
i9-10900KF with NVIDIA GeForce RTX3090).

The registration of all frames together with the proposed loss function has other
advantages; besides the slightly better result, the reference frame can be corrupted or
very different fromother frames.Moreover, it can influence the results, for example, it
can register images in different phases of the cardiac cycle compared to the reference
frame differently.
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Fig. 6 Example of sequence movement if regularisation is not used. Time-averages of the original
image sequence, the sequence with regularisation and the sequence without regularisation. Non-
regularised registration causes the rotation of the entire registered sequence

Similarly to this application, the PyTorch implementation of registration provides
the perfect tool for customised gradient-based registration approaches. In addition
to extensions of multimodal registration with mutual information [17], it can be
used to define task-specific loss functions and transformations. The major problem
with gradient-based optimisation is that it converges to local optima only, making
it very sensitive to the setting of hyperparameters. This can be partially overcome
by wrapping the whole registration process into hyperparameter optimisation; this
is tractable due to the utilisation of GPU, which significantly reduces computation
time, where we have already tested optimisation of the learning rate.

4 Conclusions

This paper focuses on the registration of medical image sequences using the PyTorch
implementation of gradient-descent-based registration. Implementation of the spe-
cialised loss function for the registration of image sequences was tested on both
2D+time video ophtalmoscope retinal images and 3D+time MR based dynamic
contrast-enhanced images, where in both cases we have achieved sufficient regis-
tration quality for further processing. This shows that our implementation of image
registration using a deep learning framework is very suitable for the rapid develop-
ment of new registration approaches.
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Small Animal Imaging: Iterative
Algorithms Combined
with Regularization Schemes,
an Application to a Dual-Head Small
Animal PET

Evangelia Karali

Abstract Iterative algorithms have nowadays gained an enormous clinical interest
and applications, usually in their ordered subsets versions accompanied with regular-
ization approaches. In this study the ordered subset version of expectationmaximiza-
tion maximum likelihood algorithm (OSEM) combined with two different regular-
ization techniques is evaluated towards reconstruction image resolution and image
quality. The regularization methods are median-root prior (MRP) and Total Variation
(TV). Different regularization mask schemes and different regularization multiplica-
tive factors are compared. The evaluation study is based on image reconstruction
contrast to noise ratios (CNRs), reconstruction time and final image resolution.
Simulation data of a derenzo-like phantom, taking into account a rotated camera
of a standard small animal PET system, is used. Results show that reconstruction
methods combined with MRP gives a better image quality for all sized objects. The
multiplicative factor in MRP is small while in TV can be over 0.1. Image resolution
is a function of reconstruction approach.

Keywords Small animal imaging · OSEM · Regularization schemes ·
Median-root prior · Total variation

1 Introduction

Small animal imaging is closely related to clinical application, because small
animal PET systems evaluate radiopharmaceuticals distribution and labelling, clin-
ical systems technology and architecture, clinical protocols and reconstruction algo-
rithms. Such systems are capable of an image resolution below 1 mm at FOV’s (field
of view) edges and high radiation sensitivity [1].

Iterative reconstruction schemes are nowmandatory in every clinical task. Analyt-
ical methods have been thorough studied the previous decades and have been proved
inferior as far image quality concerns. Iterative algorithms are divided to:
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• algebraic techniqueswhere a systemof equations, less in number that the unknown
variables, is tried to be solved through a successive iterative procedure

• statistical methods that model all the physical phenomena during acquisition
process under known statistical distributions. This set of algorithms is further
divided to Poisson-like approaches (like EM-ML, Expectation Maximization
MaximumLikelihood algorithm) and Gaussian schemes (like ISRA-Image Space
Reconstruction Algorithm, WLS-Weighted Least Squares methods) [1].

The aforementioned reconstruction schemes are usually applied in:

• simultaneous ordered subsets (OS) versions like OSEM [2] (OS-Expectation
Maximization or the OS version of EM-ML), where a subset of collected data
is reconstructed at every subiteration, next subset starts from the resulted image
estimate of the previous subset, these methods are famous for their reconstruction
speed.

• or Row action ordered subsets versions like OS-RAMLA (OS-Row Action
Maximum Likelihood Algorithm), where all the pixels that intersect a specific
line of response (LOR) are reconstructed each time.

They usually combined with relaxation parameters to speed up the process and
regularization approaches, where a priori information about the subject under study
is used. The most significant priors are Median-Root-Prior and Total Variation Prior
[3–7].

In this studyOSEM is used accompaniedwith two regularization schemes, namely
OSEM-MRP and OSEM-TV. Such a study has not been conducted previously. Regu-
larization approaches are applied after every subiteration of OSEM. This paper
presents a study fromaprototype small animal PETusing a derenzo-like phantomand
introduce iterative schemes where the prior is applied during subiterations, without
post-processing. Iterative schemes shown here are applied to 3D sinograms followed
by a SSRB (single slice rebining) method that produces 2D sinograms.

2 Theory

Suppose y are the collected data (here in sinogram mode, a matrix where photons in
every angle for every line of response-LOR are shown) and x image data. Collected
data and image data are linearly connected, according to equation:

y = AT x (1)

where A is the System or Probability Matrix, a matrix variable that models all the
physical phenomena during data acquisition process, namely positron range, photons
scatter and attenuation, photons acollinearity, and scanner geometrical characteristics
(number of rings, angle of rotation, number of pixels in a block detector, number
of block detectors, pixel size, image size). Element ai j of matrix A represents the
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probability a pair of photons travelling from image pixel i to be detected from the
two antidiametrical detector pixels that define LOR j. Because A is not quadratic,
A−1 cannot be calculated so Eq. (1) cannot be direct solved, to find image x.

Statistical Iterative formulas give the best solution to (1), in conjunction with the
statistical phenomenon they try to model. OSEM is based on the assumption that
collected data follow a Poisson distribution with mean value

∑N
i=1 ai j xi , where N

the total image pixels number. The iterative step of OSEM in kth iteration for subset
n is:

OSEM(orOS-EM-ML) : xki = xk−1
i

∑

j=Sn

ai j y j
(∑N

i ′=1 ai ′ j x
k−1
i ′

) (2)

When iterative methods are combined with regularization approaches, usually an
one step late iterative scheme is chosen, where the prior is applied on the previous
image pixel value [6]. However, there are techniques where the prior is a part of
image pixel update and is taking into account for extracting current pixel’s value [7].
Here an one step late method is considered.

MRP prior is among themost famous. This penalty function is actually a Gaussian
distribution where themedian value in the vicinity of pixel i is the distribution’s mean
value. Assuming an area m x m around pixel i, the median value of the m x mmatrix
is calculated and applied in every pixel update step:

OSEM-MRP : xk−1
i = xk−1

i

1 + b
xk−1
i −med(xk−1

i ,m)
med(xk−1

i ,m)

∑

j∈Sn

ai j y j
(∑N

i ′=1 ai ′ j x
k−1
i ′

) (3)

where b< 1 amultiplicative factor. b cannot take a big value because image smoothing
increases noise. With a small b-value image edges are preserved.

Total Variation prior [8] takes into account the sum of pixel value differences in
the vicinity of pixel i, so OSEM-TV update step is:

OSEM-TV : xk−1
i = xk−1

i

1 + b
∑m

k=1 (xi − xk)

∑

j∈Sn

ai j y j
(∑N

i ′=1 ai ′ j x
k−1
i ′

) (4)

Assuming b take values over 0.01 and usually less than 2. If b has a big value this
will result in over smoothing while when b value is small this will result in a better
image resolution and an increased noise component.

3 Materials and Methods

System Description. Figure 1 presents a 2D schema of a rotated dual-head small
animal PET. The system detector head consists of a LYSO (Lu0.6Y1.4SiO0.5Ce)
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Fig. 1 A 2D diagram of a
prototype dual-head small
animal PET system

scintillator 44.8 mm× 44.8 mm in size, discretized in 28× 28 crystals cells. Crystal
pixel’s dimensions are: 1.6 mm × 1.6 mm × 1.2 mm. The scanner has an inner
diameter of 160 mm and detectors system is capable of rotating in a gantry between
0° and 180°. Figure 2 shows the camera head rotation over 90°.

LYSO crystals are dominate nowadays together with LSO and other Lutetium
variants (LFS-LutetiumFineSilicate) as a PET scintillator choice.All of thempresent
similar characteristics towards photon detection (Table 1).

Every detector scintillator is followed by a photomultiplier tube (PMT). In the
specific PET tomography scheme a Position Sensitive Photomultiplier Tube (PSPMT
Hamamatsu H8500) is chosen. After that the signal output of each detector is driven
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Fig. 2 The camera head rotation over 90o

Table 1 LBS-Lutetium based scintillators characteristics [9]

Characteristics LYSO LSO LFS

Decay time (ns) 53 40 < 33

Light output (APD) (% towards NaI (Tl)) 85 85 80–85

Peak emission (nm) 420 420 425

Index of refraction 1.81 1.82 1.81

Density (g/cm3) 5.37 7.35 7.35

Effective Z 54 65 64

1/µ mm (511 keV) 20 12.3 11.5

Hygroscopic No No No

further to data processing electronics for online detection of coincidence events
during data acquisition procedure [10].

Phantom Description. The phantom that was simulated and data from that simu-
lation that is used for the aforementioned study is a Derenzo-like Phantom. The
Derenzo-like phantom consists of six different areas of same sized rods in each. The
sets of cylinders, are with diameters 4.8, 4, 3.2, 2.4, 1.6, and 1.2 mm. Every set of
rods has the same diameter separation between radioactive surfaces. The rods are
surrounded with plastic (polyethylene). The Derenzo-type phantom was filled with
F18. In Fig. 3 a 2D slice, of the Derenzo phantom, is presented.

System Matrix. System matrix [11] was derived from an analytical formula as
the area of intersection between two lines of response. In Fig. 4 the hall method is
presentedwith the camera heads in a randomrotation angle.Only scanner geometrical
characteristics were taken into account.

4 Results and Discussion

The PET system simulation was performed with SIMSET, acquiring 18 × 106 coin-
cidence events. The 3D data was rebinned to a 2D sinogram data set consisting of
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Fig. 3 The Derenzo-like phantom

Fig. 4 A schematic view of system matrix element calculation
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55pixels × 170 pixels × 28. So, events from 55 LORs were detected and totally
170 angular samples were collected every 1.0647°. In 2D mode 28 parallel and 27
cross LORS were considered to increase system sensitivity. So, coincidences from
antidiametrical detector pixels are permitted as well as detector pixels that define
LORs with inclination of 0.29°.

The probability matrix was calculated once and stored in disk. It consists of many
elements with zero value. The non-zero items were stored. The image size choice
was 128 pixels × 128 pixels, so the array A constitutes of 55 × 170 × 128 × 128
items that only 4.33% of them were non-zero in value.

The initial image estimate for OSEM, OSEM-MRP and OSEM-TV is:

xoi =
∑M

j=1 y j

N 2
, i = 1, 2, . . . ,N (5)

And the number of subsets is 24 for all reconstruction procedures.
Apart from image profiles, from where the system total resolution feasibility can

be derived, local contrast-to-noise ratios (CNR) for rods 4.8, and 1.6 mm in diameter
were calculated. CNRs for each cylinderwere obtained by assigning squared regions-
of-interest (ROIs). The size ofROIswas 4.55, and 2.15mm, respectively. Inside every
rod, in an area of the same objects, a ROI was positioned. Identical-sized ROIs were
placed in three different background regions, for the set of same rods. CNRROI was
calculated as:

CNRROI = RobjROI − RBackgROI

σBackgROI

(6)

where RobjROI stands for the average intensity of objects that are reconstructed in all
the same diameter cylinder ROIs and RBackgROI represents the average intensity of the
background ROIs in both the case of 4.8 and 1.6 mm diameter rods. σBackgROI stands
for the average background standard deviation in the corresponding ROIs.

In Fig. 5 CNRs are presented for regularization masks 3 × 3 and 5 × 5 both
for MRP and TV accompanied with OSEM, for different multiplicative factors b.
Figure 5 concerns cylinders with 4.8 and 1.2 diameter. As it can be seen when bMRP

= 0.001 OSEM-MRP produces images with better CNRs for big size objects both
for 3 × 3 and 5 × 5 masks. Also, the same multiplicative factor enhances small size
objects. The rest values of b for the MRP prior produce no change as far as standard
OSEM concerns. bTV can be slightly bigger about 0.1. The value 1.5 produces the
same results as 0.1, while when b= 0.001 CNRs for OSEM-TV does not differ from
OSEM. The value bTV presents better contrast to noise ratios for big and small sixe
objects, when mask size is 3 × 3. So for the rest of the study the choice is bMRP =
0.001 and bTV = 0.1.

Figure 6 shows CNRs for OSEM-MRP with b = 0.001 for mask sizes 3 × 3, 5
× 5, and 7 × 7. From the CNR curves it is obvious that a 3 × 3 mask enhances
image detail without to increase noise component. The same still for the bottom row
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Fig. 5 CNRs for rods of (left colums) 4.8 mm and (right columns) 1.6 mm for a regularization
mask 3 × 3 and b 5 × 5 mask both for MRP (up rows) and TV (down rows)
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Fig. 6 Top row) CNRs for OSEM-MRP for different mask sizes, (Bottom row) CNRs for OSEM-
TV for different mask sizes for objects of (left column) 4.8 mm and (right column) 1.6 mm diameter

of Fig. 6, where CNRs for OSEM-TV with b = 0.1 for the same three masks are
presented.

Big size masks 5 × 5 or 7 × 7 enhance image big objects while the small mask of
8 neighbors enhance small objects without increasing noise component. So, a good
choice is a small mask. Image detail as small as possible is preferable and helps an
early diagnosis.

Figure 7 shows 2D reconstructed images with the standard OSEM, OSEM-MRP
(mask 3× 3), OSEM-TV (mask 3× 3) after 3 iterations, while the number of subsets
is 24, bMRP = 0.001, bTV = 0.1. Image Reconstruction was performed on an Intel i7
computer by a software written in Visual C++ by the author.

CNRs for OSEM, OSEM-MRP, OSEM-TV for a 3 × 3 mask are presented in the
same diagram in Fig. 8. As it can be derived OSEM-MRP is preferable for big and
very small objects. As far as image resolution concerns, it can be calculated from the
profiles of Fig. 9. So, image resolution calculated for the small objects of 1.2 mm
in diameter as the FWHM (Full Width at Half Maximum) of the middle curve is
about 2.1 mm for all three reconstruction schemes. This resolution value is similar
to clinical and other experimental small animal PET systems, where the resolution
value varies from 1 mm to 2.4 mm at the edges of the field of view [3–5, 12, 13].
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Fig. 7 2D reconstructed images with the standard OSEM, OSEM-MRP (mask 3 × 3), OSEM-TV
(mask 3 × 3) after 3 iterations, while the number of subsets is 24, bMRP = 0.001, bTV = 0.1

Fig. 8 CNRs for OSEM, OSEM-MRP, OSEM-TV for a 3 × 3 mask for objects of 4.8 mm (left)
and 1.6 mm (right) diameter

Fig. 9 Normilized profiles of line 57 for OSEM, OSEM-MRP, OSEM-TV for a 3 × 3 mask
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5 Conclusions

In this study, Regularization schemes are introduced and evaluated, namely OSEM-
MRP and OSEM-TV. These two algorithms are compared towards standard OSEM.
Depending on data study regularization mask and multiplicative factor value must to
be determined. MRP schemes present a better noise manipulation and keeps image
quality in adequate standards.
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Abstract Detecting the potential for Parkinson’s Disease Dementia (PDD) as early
as possible is crucial to ensure that quality of life can be maintained. However, the
full origins of this condition are unknown and analysing potential causes such as
the influence of the Cholinergic Basal Forebrain (cBF) can be challenging due to
variation in brain tissue as well as low scan resolution. Additionally, the structure
and function of the cBF can span both brain hemispheres, and therefore prove difficult
to analyse using a singular deep learning method. In this paper, we propose a multi-
scale, dual-sided approach to analysis of regions with low surface area such as the
cBF. Initially, images are parsed using super-resolution to increase resolution and
contrast. Then, a dual sided multi-scale convolutional neural network (DSMS-CNN)
model is proposed to classify subjects as either normal cognition or PDD based on
both hemispheres of the cBF together. Ablation studies and comparison experiments
with state-of-the-art CNNmodels show that DSMS-CNN can achieve promising and
superior performance.

Keywords Parkinson’s disease dementia · Parkinson’s disease ·Magnetic
resonance imaging · Convolutional neural network
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1 Introduction

Parkinson’sDisease (PD) is an incurable neurodegenerative disease resulting in unin-
tended, uncontrollable movements such as tremors, as well as issues with coordi-
nation [1]. However, those with PD can also develop cognitive complications caus-
ing continual, severe neurological decline and loss of cognitive functioning such
as Parkinson’s Disease Dementia (PDD)[2]. Current research indicates that PDD
and traditional Dementia share many clinical, neurological, and morphological fea-
tures [3] with works seemingly showing that development of PDD can be partially
attributed to degradation of tissue structures of the brain, with particular focus on
regions that form the cholinergic system of the brain [4]. One main area of interest
within this system that has been highlighted for its potential influence on develop-
ment of cognitive impairments such as PDD is that of the cholinergic Basal Forebrain
(cBF) [5]. This area has widespread connections throughout the brain whilst also
serving as the primary source of cholinergic innervation to the cerebral cortex [6]. In
particular, the cBF has been proven to be important in conditions such as Dementia,
PDD and Alzheimer’s Disease (AD), with work suggesting that changes to tissue
structures and volume of regions within the cBF, namely that of regions Ch1-4p,
have potential to identify patients who have mild cognitive impairment (MCI) and
are likely to convert to AD or PDD [7], whilst cognitive decline has also been linked
to a loss of up to 96% of neurons within region Ch4/Ch4p in PDD patients compared
to control groups [5] [8]. Additionally, greater atrophy of these regions can be found
in the early stages of PDD compared to controls [9]. This therefore indicates that the
analysis of the cBF has potential for use in early detection of PDD.

Magnetic Resonance Imaging (MRI) is commonly used for analysis of brain
structures such as the cBF [10] and as a result, analysis of such structures using MRI
and deep learning (DL) techniques has given rise to considerable focus [11][12].
However, analysis of areas with such little surface area still face issues due to vari-
ation in region presentation, as well as low contrast in images. Some studies aim to
address these issues using super resolution techniques [13] to produce an increase in
overall image resolution that allows for increased clarity in presentation of smaller
regions in MRI [14]. To this end, we implemented super-resolution techniques to
improve intensity contrast surrounding the cBF so as to produce more effective anal-
ysis. Furthermore, analysing regions that are spread across both hemispheres can
be problematic because of an increased separation distance between regions. This
therefore inspires us to propose a dual-sided deep learning architecture for analysing
data from both brain hemispheres and providing a consolidated prediction as a dual
sided, multi-scale convolutional neural network (DSMS-CNN) approach.

There are three main contributions within our work: (1) A multi-scale CNN (MS-
CNN) is utilised for the analysis of regions with limited surface area within MR
images and extraction of the most important features [15]; (2) A dual classification
approach (DSMS-CNN) is proposed to produce a consolidated prediction based
on both hemispheres of the cBF at once; (3) Experiments conducted against data
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gathered by the Parkinson’s Progression Markers Initiative (PPMI) [16] prove that
the proposed method is able to provide considerable predictions and has potential to
outperform state-of-the-art methods.

2 Proposed Method

2.1 Region of Interest

Degeneration of the cBF has been indicated for potential direct links to development
of PDD in those with PD [5]. Therefore, this region was chosen for use as a region
of interest (RoI) for analysis in this work. Identification of the cBF region came
from information gained from the use of a stereotactic map of the cBF [17]. From
this map, identification of different subdivisions of the cholinergic system based on
Mesulam’s nomenclature was possible, with these subdivisions corresponding to the
Ch1-4p regions of the cBF [18]. Examples of the RoI before hemisphere separation
can be seen in Fig. 1.

2.2 Multi-scale Convolutional Neural Network

Computer vision tasks make use of CNNs since they can be designed for learning of
abstract and translationally invariant features without many parameters, largely due
to influences of successive convolutional layers combined together [19]. However,
whilst CNN based methods provide state-of-the-art performance, they are limited
in their ability for learning multiscale features based on the number of filters, depth
of architecture, and quantity of training data, opening such networks up to possible
overfitting [20]. Therefore, to address these issues probably arising in this study, the
architecture forming themain building block is theMulti Scale Convolutional Neural
Network (MS-CNN) [15] that aims to perform multi-scale classification against the
RoIs mentioned above, and has previously demonstrated its efficiency and effective-
ness in the analysis of land use data.

Fig. 1 cBF regions of interest. Green corresponds to regions Ch1-3. Red corresponds to regions
Ch4 and Ch4p
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Fig. 2 Block diagram of the MS-CNN architecture. Image data is represented by green blocks,
with any other coloured blocks representing one or more neural layers

In MS-CNN, input images containing the RoI are rescaled to reproduce the RoI
at three resolutions, namely full, half and quarter resolutions, meaning that image
dimensions provided to the architecture are first halved and then quartered to produce
three different inputs for each CNN block within the MS-CNN. An overall diagram
of the MS-CNN architecture can be seen in Fig. 2.

2.3 Proposed Dual-Sided Architecture

Classification Problem: In this study, the main classification problem is that of
accurately differentiating between those participants with PD who are at risk of
developing PDD within the next 5years (PD-PDD) and those that are not (PD-NC).
This therefore results in the availability of two separate classes, namely PD-NC and
PD-PDD.

As mentioned above, cBF regions Ch1-4 occur in both left and right hemispheres
of the brain, resulting in differences in feature extraction and model performance
that depend on the hemisphere of the brain in question. Therefore, a dual-sided
architecture is proposed to analyse each hemisphere independently which allows
for proper feature extraction and efficient classification performance. The proposed
CNN architecture consists of two independent MS-CNN blocks, as shown in Fig. 3.
Each block aims to analyse an individual hemisphere of the cBF and are trained
at an image size of 48× 48. Features generated from each MS-CNN block are then
combined, at which point classification ismade against both sides together to produce
a singular output of either PD-PDD or PD-NC.
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Fig. 3 Block diagram of the proposed DSMS-CNN architecture. Image data is represented by
green blocks, with any other coloured blocks representing one or more neural layers

3 Experiments and Analysis

3.1 Dataset

All data used is from the PPMI, which aims to identify markers relevant for track-
ing of Parkinson’s Disease risk, onset and progression [16]. Subjects selected were
those with T1-weighted MRI scans, comprising 386 PD and Healthy Control (HC)
subjects. Only those with PD were chosen for use and therefore all HC subject data
was discarded due to irrelevance, leaving 288 subjects. These subjects were cate-
gorised into either Parkinson’s Disease with “normal” cognition (PD-NC), which is
those with a cognitive state that has not degraded to a level considered substantial,
or Parkinson’s Disease Dementia (PD-PDD), which is those with severe cognitive
decline indicative of dementia. This was done using a set of cognitive and clinical
assessments carried out by PPMI, with an overall decision made based on consoli-
dation of 5years of data per subject after their joining the study. The resulting data
suffered from a class imbalance due to 167 PD-NC subjects and 83 PD-PDD subjects.
To address this imbalance, the PD-NC group was randomly reduced to the same level
as the PD-PDD group, whilst ensuring that group demographics were maintained.
This resulted in a final subject pool of 166 subjects equally distributed across both
class groups.

3.2 Preprocessing

PPMI data comes from many institutions, so there exists potential for variation and
disparity across all data samples. Therefore, all data was processed to ensure it was
in a common and standardised format for effective comparison. To perform this pre-
processing, the Advanced Normalization Tools (ANTs) [21] and FMRIB Software
Library (FSL) [22] were utilised through the Nipype Python programming library
[23]. A pipeline of the pre-processing methodology used can be seen in Fig. 4.
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Raw MRI Compression Bias Field
Correction Normalisation

RoI ExtractionUpsamplingLocalisationAugmentation

Localised
Dataset

Fig. 4 Processing pipeline

Fig. 5 Example of pre-processing procedures against MRI scan. Bias field corrected images are
identical to raw images and therefore are omitted

All images arefirst compressed to ausable format for processing.Non-uniformities
within image intensities are then removed through the use of N4 bias field correction
[24]. After this, all images are aligned to a standardised template space, namely the
Montreal Neurological Institute template using FLIRT [25][26]. Based up on theRoI,
a set of 9–12 slices purported to contain this RoI were then extracted from each sub-
ject data depending on image quality and registration. These slices were considered
to be too low of a resolution and were therefore upsampled using super-resolution to
be 8x their original size [13]. All images were then ‘localised’ to only contain that
of the RoI by cropping each individual slice. This localisation was carried out on
both hemispheres to produce 2 images per slice. A lower than preferable number of
subjects were gathered from PPMI, so the number of available images was artificially
augmented to 7x the number of images. This resulted in a dataset containing around
13,000 images per category. These images were then separated into three separate
datasets: left and right hemisphere alone datasets, and a combined dataset containing
all available images. Examples of this preprocessing can be seen in Fig. 5.

3.3 Parameter Settings

(1) MS-CNN MS-CNN models were trained at a variety of different image sizes to
determine the most suitable image size for performance, with an overall size of
48× 48 pixels performing best. CNN and Feature Extraction blocks are formed
of three repeating blocks, within each is a convolutional layer (32 3× 3 kernels),
a max pooling layer (2× 2 window), and ReLU activation.



Early Detection of Parkinson’s Disease Dementia … 197

Table 1 Number of samples used for training and testing in all models. DSMS-CNN uses both the
‘LHS’ and ‘RHS’ datasets independently so are kept separate, whilst all other models are trained
on the ‘Combined’ dataset which includes all images from the LHS and RHS datasets together

Class LHS RHS Combined

PD-NC 6840 6840 13680

PD-PDD 6936 6936 13872

(2) Dual-Sided Architecture To allow for a combined decision making progress,
feature maps from both the left and right MS-CNN are combined using a con-
catenation layer, and the remaining two dense classification layers containing
32 and 2 neurons respectively to form an output.

(3) Sample Sizes From the categorised and extracted participant data introduced in
3.2, the number of samples used for training all models are shown in Table1.

(3) Evaluation Metrics The prediction performance is evaluated using the metrics
of sensitivity, specificity and F1-Score. Sensitivity is to calculate the ability of
the model to predict presence of a positive case (A). Specificity is to calculate
the ability of the model to predict presence of a negative case (B). F1-Score is
the harmonic mean of a models precision and recall score (C).

(A) = T P

T P + FN
(B) = T N

T N + FP
(C) = T P

T P + 1
2 (FP + FN )

(1)

where TP, FP, and FN denote true positive, false positive and false negative pre-
dictions respectively.

3.4 Ablation Study

To examine the benefits gained through the use of the proposed DSMS-CNN, a set
of singular MS-CNN architectures are employed to conduct an ablation study on the
three derived datasets that are shown in Table1.

Since all components of the DSMS-CNN are trained at an image size of 48× 48
pixels, all ablation experiments were conducted on the same size, and the results
obtained are shown in Table2.

It can be observed that whilst theMS-CNNmodel does perform increasingly well
against the left and right hemispheres of the cBF independently, achieving F1-Scores
of 93–94%, as well as overall sensitivity and specificity values of around 92–94%,
this result is not consistent when faced with a combined dataset of both the left and
right hemispheres together, resulting in a significant performance loss of around 3–
4% in F1-Score as well as 2–3% in terms of sensitivity and specificity. This evident
struggle to classify well between the PD-NC and PD-PDD classes is likely due to
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Table 2 Classification F1-Score and overall model sensitivity and specificity (%) comparison
among MS-CNN variations and proposed DSMS-CNN

Metric MS-CNNLHS MS-CNNRHS MS-CNNCombo DSMS-CNN

F1-Score 93.63 94.32 90.98 97.55

Overall
sensitivity

93.08 94.58 91.85 96.25

Overall
specificity

92.54 93.49 93.32 98.27

Best results are shown in bold

the fact that when combined, inherent differences between the formation of the left
and right hemispheres of the cBF as a result of PDD degeneration produces conflict
between the features extracted from the two classes when attempting to perform
classification, resulting in an overall under-performance. However, the evident per-
formance benefit of analysing each hemisphere independently indicates the potential
for the use of DSMS-CNN, with an overall performance benefit of 6–7% in terms of
classification F1 score when compared with the MS-CNN analysing the combined
dataset. Additionally, a similar benefit can be seen in overall sensitivity and speci-
ficity, with DSMS-CNN able to predict classes correctly at a rate of 5% higher. Both
of these results lead us to conclude that a dual-sided approach to classification allows
for more accurate and efficient prediction than using a singular MS-CNN faced with
all data samples.

3.5 Comparison with State-of-the-Art

Further to the ablation study above, we compare our proposed DSMS-CNN model
to a number of existing state of the art methods. The results to this are shown in
Table3. For comparison, we employ a number of different CNN architectures to per-
form classification. The CNN architectures in use are that of the VGG and Inception
architectures, more specifically that of the VGG8 [27] and InceptionV3 variations
[28], as well as the MS-CNN architecture that forms the building block of the pro-
posed model. All three comparison models are trained against the combined dataset
mentioned above comprised of both the left and right hemispheres of the cBF to
allow for adequate comparison against the DSMS-CNN. As can be seen in the table,
our proposed model shows a clear and evident out-performance compared to other
models, with the highest achieving sensitivity and specificity scores of 96 and 98%
respectively, a performance benefit of up to 50% more than other models, as well as
gains of between 6 and 45% in terms of classification F1-Score. From above, one of
the main reasons that this performance difference likely occurs is due to the presence
of confusion between the left and right hemispheres of the cBF when PDD is present
in a data sample. Additionally, the use of the MS-CNN to form the DSMS-CNN
means that a much shallower network is implemented compared to that of the much
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Table 3 Classification F1-Score and overall model sensitivity and specificity (%) comparison
among state-of-the-art CNNs and proposed DSMS-CNN

Metric InceptionV3 VGG8 MS-CNN DSMS-CNN

F1-Score 52.11 63.84 90.98 97.55

Overall
sensitivity

46.55 82.34 91.85 96.25

Overall
specificity

57.04 47.72 93.32 98.27

Best results are shown in bold

deeper comparison CNNs, which are seemingly unable to effectively learn from
such a limited region, as well as the influence of the use of a multi-scale method of
learning, which produces a method that is more suited for the learning of all relevant
features within the chosen data area. The benefit of utilising a shallow, multi-scale
network is also evident in Table3 since the performance of theMS-CNNmodel com-
pared to other models indicates that even in cases of confusion between hemispheres,
MS-CNN type architectures are a much more suited alternative to traditional CNNs
for analysing this type of region.

Consequently, it is also worthwhile to note that performance of the singular MS-
CNN architectures is of a high quality, but suffers from degradation of classification
F1-Score when utilising all data, something that is of importance to ensure analysis
is placed against the entire cBF region, demonstrating the advantage of using the
proposed approach for this particular task. This therefore shows that the proposed
approach provides the most stable and highest performing approach of all tested
models.

4 Conclusions

Analysis and classification of brain regions known for links to PDDhave the potential
to play a vital role in the ability to pre-emptively identify those PD sufferers at risk
of developing PDD. This work aimed to explore potential for novel classification
methods to analyse a crucial brain region that has potential links to PDD known
as the Cholinergic Basal Forebrain (cBF) and implement a dual-sided model to
combine analysis of both hemispheres of the cBF into a singular classification system.
Experimentation clearly indicates the potential for the use of the DSMS-CNN in
terms of early prediction of PDD development, with findings suggesting that the
use of a dual-sided, combined approach allows for effective analysis against all
available information without potential confusion and increased complexity. Whilst
this work shows potential, it is largely limited due to the quality available within
T1 MR imagery, and therefore this limitation needs to be acknowledged. In further
work, we would aim to conduct further testing and analysis against differing medical
imaging modalities such as that of DTI and PET which show admirable potential in
determining effective analysis of brain regionswithout reliance on image quality [29].
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A Change Detection with Machine
Learning Approach for Medical Image
Analysis

Mauro Mazzei

Abstract The research activity focuses on evaluating data from medical images by
applying clustering techniques on extracted components for an ex-ante/ex-post eval-
uation, commonly identified as “change detection”, with respect to evolution times
and/or comparisonwith other analyzed subjects. Themethodological approach exam-
ines an unsupervised automatic method through the implementation of an algorithm
for the extraction of meaningful features related to the properties of the medical
image data analyzed. It then goes on to normalize the data contained in the matrix
to evaluate through multivariate analysis the notion that similar objects produce
similar responses without knowing their entity, type, and class descriptions, which
are inferred by making observations on the clusters. The main specificity of this
algorithm is that classes are identified from compact, well-distinguishable clusters
without knowing the extent of their nature; the entire feature space is divided into
classes using proximity or similarity criteria. After finishing the process of class iden-
tification, properties will be associated with them in relation to the known descrip-
tions. At the end of the procedure, factorial analysis using the principal component
method is applied. The clusters extracted from the data are described by their prop-
erties, which make it possible to identify, on each of the new factorial axes, homoge-
neous classes of clusters characterized predominantly by the only variables that have
a high correlation value between variable and factor. The automatic identification of
classes or “phenomena” that exhibit very different mean and/or variance allows easy
reading of the results for domain experts.

Keywords Artificial intelligence · Machine vision · Image processing · Medical
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1 Introduction

1.1 Basics of Change Detection

The automatic diagnosis of pathologies from biomedical images such as X-rays or
MR images (i.e., obtained byMagnetic Resonance) can also be seen as a sub problem
of the more general problem of Change Detection (CD), i.e.: the diagnosis of a
“change” occurring between two different instances of the same data set (typically
twomeasurements, at different times but with the samemeasuring instrument, on the
same physical object). In the case, here of primary interest, of images, the data set
consists, in the most basic case, of brightness values associated with each point in a
region of plane (2D image) or space (3D image). In the biomedical field, the use of
4D images is not uncommon, meaning a family of 3D images each associated with
an instant of time, taken at some predefined interval. The CD problem consists in the
construction of an algorithm that, given two images of the same scene at different
instants, produces a binary output (0–1) corresponding to a ‘significant’ difference
between the two images (appearance or disappearance of a given object in the image)
and that has certain robustness properties with respect to ‘non-significant’ changes
(referred to in the English-speaking literature as artifacts, false flags, outliers, etc.). In
the case of biomedical images, the binary output, in addition to signaling onset/non-
onset of a given pathology (e.g., a tumor), can also signal (this is the case with 4D
images) more complex changes such as the progress/regression of the pathology. In
the first case, the Change Detector (we will use the acronym CD for this last noun
as well) operates on a pair of images of the same patient at different times, one of
which is with certainty relative to the patient under disease-free conditions. In the
second case, CD operates on two image sequences at different times, one sequence
relating to the patient, and the other relating to a typical case of disease course.

CDmethodologies can be grouped into two categories: deterministic methods and
statistical (or ‘probabilistic’) methods. Both refer to a definition of an image as a set
of random variables linked to regions of the plane, in the case of 2D images.

In general, when comparing two images, I1 and I2, (in this report we will not
discuss the above-mentioned case of comparing two sequences of images) in which
the same object is depicted, and the CD is to detect the possible appearance of some
detail in I2, under the (ideal) assumption that everything except the detail (i.e., the
background) remains unchanged between the two images, it is convenient to operate
on the difference image: ID = |I2−I1|, and indeed CD, under such ideal conditions,
easily accomplishes its task, calculating ID as the sum S of the differences between
all the corresponding pixels (or voxels) of the two images.

Most of the methods of which we will give a bibliographical account follow the
basic methodology described above and differ from each other solely in the different
approach with which they attempt to handle the non-ideality inevitably present in
the real cases, namely the fact that:

1. the background may change between I1 and I2,
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2. the object may be differently illuminated in the two images
3. the object may not be perfectly aligned in the two images, i.e., that translation,

rotation, enlargement, and/or reduction may be required to perfectly match the
object in I2 with the object in I1, and finally

4. the images may be corrupted by noise, i.e., random and mutually independent
variations on individual pixels that make the comparison, i.e., the difference
image, nonsignificant.

1.2 Deterministic Methods

In the presence of noise, the pixels in the difference ID image will reproduce all
the random alterations present in I1 and I2. The only (deterministic) way to correct
for these alterations is to set a threshold r > 0, and replace the condition S(RD) >
0 with S(RD) > r. This simple method can give satisfactory results if the random
alterations in brightness rarely exceed the threshold value r and that, in addition,
the detail in the object to be detected has brightness values predominantly greater
than the threshold itself. For more critical situations deterministic methods must be
replaced by the more sophisticated probabilistic methods. These will be accounted
for later, but it should be emphasized already now that probabilistic methods often
replicate deterministic ones, in the sense that, without changing them in substance
they make them more ‘robust’ by substituting random variables with appropriate
distributions for deterministic quantities.

Another very common example of deterministic manipulation is in relation to the
problem (3) described above of ‘alignment’: instead of the ID difference image, the
I3 image obtained as a minimize of a certain function, based on the difference, is
considered, however, involving the alignment of the two images through variations
of rotation, translation, and magnification/reduction operators, easily obtained with
software on the market.

It is worth noting that such preprocessing is also often necessary for probabilistic
methods. Let us also emphasize that the normalization now described can, in the
simplest cases, also serve as a solution to problem (2) listed above, for example, when
the different illumination of the object is nevertheless always uniform in each image.
If the illumination difference is not uniform the I3 image will still show spurious (no
significant) elements due to this no uniformity. As for the background, it is necessary
for it to be unchanged and uniformly illuminated to avoid the proliferation of spurious
elements. This condition is verified in the cases of interest here of biomedical images
obtained byMR or radiography, in which the subject is always imaged in a laboratory
environment.
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1.3 Probabilistic Methods

There In probabilistic methods, the value of the difference image ID= I2−I1 (simple
difference, not inmodulus) at the generic pixel (i, j) is generally modeled as a random
variable with Gaussian distribution, extracted from images taken from a sample of
healthy patients, that is, under the assumption of no change. To identify the region
(or regions) containing the ‘pathological detail,’ one proceeds in a manner like what
has already been seen in the deterministic case: one scans the difference between
the two patient images for regions where the significance test based on the Gaussian
distribution identified above.

An a priori probabilistic model for the image can be obtained by considering not
only H0 but also the complementary hypothesis H1 (presence of change, either in a
pixel or in a sub region).

Examples and a thorough description of MOG methods can be found in [1–3].
For other methods, not described in this report, see [4] (Kernel Density Estimation,
KDE) [5, 6] (sparse modeling) [7, 8] (compressed sensing), [9] (Sparse dictionaries).

2 Change Detection Applied to Biomedical Imaging

This paper aims to provide the results obtained on “CD” techniques used to
analyze and classify biomedical images for early diagnosis of neurodegenerative
diseases. “CD” techniques refer to the process of identifying changes in a cluster
or phenomenon, which occur in a particular time interval. It is of paramount impor-
tance in “CD” analyses performed in this context, to assess that the change in image
clusters observed by analysis of data detected by positron emission tomography or
PET corresponds to a change in radiometric spectral response, and that this spec-
tral change is significantly more relevant than changes due to other factors, such as:
boundary conditions at the time of acquisitions, non-congruent placements and/or
projections, differences in the acquisition conditions of the detected data.

Comparison, Post classification, Multi-Temporal Data Classification, Principal
Component Analysis, Temporal Differences, Change Vector Analysis, are some of
the comparison techniques already experimented in the spatial domain. The research
activity focused the results on PET image data analysis by providing clusters that
summarize the extracted components for ex ante/ex post evaluation with respect to
evolution times and/or comparison with other analyzed subjects. This method imple-
ments an unsupervised automaticmachine learning algorithmcapable of selecting the
most significant features of the analyzed images and extractingmeaningful numerical
attributes related to the properties of the selected features. The normalization phase of
the data contained in the matrix, subsequently involves a multivariate analysis of the
data by exploiting the concept that similar objects produce similar responses without
knowing their magnitude, which is why the algorithm is focused on unsupervised
machine learning techniques. The peculiarity of themethod lies in identifying classes
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from compact clusters that are well distinguishable from each other without knowing
to the extent of their nature. All content describing the features of the elements is
separated into classes using proximity or similarity criteria. After the class identifi-
cation phase is finished, the properties are associated in relation to the descriptions
made through the numerical indices applied. Next, factorial analysis using the prin-
cipal component method is applied. The clusters extracted from the data describe
their properties, this technique allows their characteristics to be identified on each of
the new factorial axes through only those variables that have a high correlation value
between variable and factor. This automatically analyzes the classes or “phenomena”
with the highest or lowest variance.

Change detection (CD) has always been a subject of study in various fields, such
as image surveillance, remote sensing, medical imaging, etc.

The challenge of change detection in medical imaging favors a very objective
assessment of the stages of change over time verified through medical imaging diag-
noses of the studied pathology. Some of the main challenges lie in the solutions of
eliminating all the elements that contribute to noise in the data, and to the change in
the patient’s position during the image acquisition phase.

In this area, existing change detection methods are reviewed based on the prob-
lems to be addressed and mathematical limitations. Next, the solutions adopted for
subspace optimization to approximate the image background more efficiently are
presented.

These techniques are based on the main components of structure analysis, with
the goal of capturing the similarity of values between two acquisitions in the context
of change detection. We discuss theoretically and numerically the choices made and
used in subspace approximation.

The mathematical approaches developed next consist of:

• A new mathematical model for change detection, defining it as a clustering
problem having a set of data (observation, points, vectors.), one must try to group
such data into subsets, a subspace and a similarity measure.

• Development and implementation of numerical pipelines to calculate clinical
changes by designing mathematical algorithms.

• Optimization of algorithms by introducing a global co-registration.
• Introduce two new subspace structure learning models that are robust to outliers

and noise, reduce the dataset size, and compute actively and efficiently.

The co-registration phase was defined as a minimization problem, all elements
that are less than a certain threshold are eliminated as they are influential in the data
evaluation phase.

Based on the appliedmathematicalmodels, numerical algorithmshave been devel-
oped that allow class identification so that clinically unrelated changes are automat-
ically excluded and true changes in structure that may be of clinical importance are
identified.

The approaches are data-driven and use machine learning or Machine Learning
knowledge.
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The approach is based onquantitatively andobjectively analyzing the performance
of these algorithms using synthetic, real-world data. The work presents potential for
use in computer-aided diagnosis.

3 Related Work

Change detection (CD) algorithms are utilized to identify regions of change in
multiple images of the same scene taken at different times.

These techniques have undergone continuous development over the years and,
today a variety of algorithms, methods and automated systems are used mostly these
algorithms are based with a deterministic approach and few utilize a probabilistic
approach.

In clinical practice it is of great importance, the detection of changes in medical
images taken at different times.

For all imaging modalities such as MRI, computed tomography, etc., here we
mainly focus on MRI.

Imaging datasets may have multiple sequences, each also consisting of many
images, these images must be compared with the immediately preceding study or
multiple previous studies obviously always referring to the patient examined.

The main problem of change detection algorithms in serial MRI images is to be
able to detect changes that detect the pathology being studied, discarding data that
are not needed, such as those induced by noise and that are not meaningful to the
diagnosis. In addition, misalignment of data can cause much annoyance and result
in errors in assessments.

With respect to the diversity of approaches used, a change detection algorithm
usually consists of many common preprocessing steps especially in the techniques
of suppressing or filtering non-significant changes that are usually detected in the
boundary conditions of the evaluated pathology. These preprocessing techniques
make it possible to evaluate the set of pixels that are significantly different from
previous images and are related to the disease.

In medical diagnosis and treatment, serial MRI examinations are often performed
on patients in the field of neurodegenerative diseases, in monitoring on patients with
diseases such as cancer, multiple sclerosis, etc.

Radiologists routinely detect small changes in images of the same anatomical
location that may be clinically significant, as shown in Fig. 1.

Detecting small changes in extension or character, using a side-by-side presenta-
tion mode, can be very tedious and cause gross errors.

Radiologists try to correct with the tools made available to visually verify errors
introduced by patient repositioning and use their professional knowledge to identify
and reject certain detections.

Challenges radiologists face during visual comparison include:
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Fig. 1 a T1-weighted MRI of a normal brain. b T1-weighted MRI of a brain with MS lesions, c
image containing only disease-related changes. (Images from http://mouldy.bic.mni.mcgill.ca/bra
inweb)

• Use of scanner software and hardware-related parameters (pulse sequences,
acquisition parameters, gradient, RF inhomogeneity, registration).

• Separation of acquisition changes from disease-related changes.
• Overload of data and information.
• Inability to detect changes in framed objects or scenes and inability to make

comparisons between two scenes.
• Satisfaction in the study.

The change occurs in an unexpected location.
Change occurs in a part of a complicated lesion.
The side-by-side presentation is not suitable for proper interpretation.

Theuse of appropriately designed computerized automated systems can contribute
to an improvement for clinical interpretation.

Patriarche, J.W., Erickson, B.J. stated that automated, computerized change
detection can be a valuable tool for radiologists.

MRI examinations of brain tumors have been studied with the aim of significantly
reducing the human error that can be caused and due to the enormous amount of data
that were studied, and automated techniques were used to improve the results. The
main purpose of these studieswas to reduce human error byminimizing the enormous
amount of data that radiologists must process to reach a conclusion.

The same authors found that the implementation of a scientifically useful tool is
clinically feasible when it is dynamically integrated into clinical work, concluding
that automatic change detection can improve efficiency, accuracy, and agreed-upon
sharing of interpretation.

A computerized system that automatically reduces the amount of data and directs
radiologists’ attention to clinically relevant areas would therefore be very useful.

The automated change detection system created was a great improvement over
the previous automated system, however, the process is inherently lengthy, and the
task of tissue classification remains very difficult.

http://mouldy.bic.mni.mcgill.ca/brainweb
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Radke, R.J., Andra S., Al-Kofahi O., Roysam B. reviewed many change detection
algorithms and classified them into twogroups, statistical analysis andbasicmodeling
techniques.

Bosc,M., Heitz, F., Armspach, J.P., Namer, I., Gounot, D., Rumbach, L. presented
an automatic change detection system for serial MRI with applications in multiple
sclerosis follow-up.

One of the statistical analysis methods used is based on the use of multimodal
information for change detection, generalized likelihood ratio test, and normalization
of the nonlinear joint histogram: The performance of the algorithm is low when the
noise is nonstationary [9–12].

The work of Patriarche, J.W., Erickson, B.J., in “A Review of the Automated
Detec-tion of Change in Serial Imaging Studies of the Brain” is perhaps among the
best recognized statistical analysis methods in the medical field.

Researchers have implemented an integrated system for change detection inmulti-
spectral serial MRI examinations based on post-classification of image pixels in the
space of multispectral MRI intensity functions.

Their rationale for the use of multispectral space was based on the observation
that abnormal tissue can “look like” a tissue transitioning from one normal tissue to
another in feature space and the hypothesis that changes tend to occur along lines
connecting pairs of centroid clusters in feature space.

The detected changes were presented in the form of a color-coded change map
superimposed on the anatomical images.

The system also formats the output as a quantitative summary. Preliminary clinical
studies tend to show that the system can visually identify subtle disease-related
changes. However, the task of classifying tissues is itself very difficult; moreover,
the entire process of calculating transitional tissue types and fractional membership
for each pixel is inherently time-consuming [13, 14].

Another variation detectionmethod forMR range images is proposed by Seo,H.J.,
Milanfar, P., in “ANon-Parametric Approach to Automatic CD inMRI Images of the
Brain using a non-parametric general statistical method based on local processing
kernel.

The calculation of the test statistics was derived from cosine similarity. Their work
does not address co-registration and is also limited to one imaging modality.

Among the background modeling methods, background subtraction has mainly
been usedwhich is derived from classic video surveillance applicationswhere images
subtracted from the background are recovered using compression detection (CS).

This method works when the major changes occupy a small part of the test image
and therefore the modified image is dispersed in the spatial domain.

Assuming both background and foreground meet the criteria poorly, they solve
the problem using minimization with the total variation algorithm.

Other groundbreakingwork proposed the use of the principal component in search
of a method to detect changes in the foreground. The work is based on the matrix
decomposition of low-level and sparse images.

Robust principal component analysis (PCA) has applications in many other areas,
such as facial recognition, etc.
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This method is applied to a series of video frames and can also be used for a series
of MR images [15, 16].

Others use robust dictionary learning to solve the background subtraction problem.
Their approach appears to produce a better dictionary than the more traditional
approach using the K-SVD algorithm.

However, the same assumptions for scarcity must hold here as well.
Any application of CS to background subtraction models involves the use

of various minimization algorithms. Many MRI reconstruction techniques use
compression sensing methods.

Incidentally, compressionwork is well known for direct application toMR images
of the brain. It uses a well-known fact that MR images are poor on some domains
such as wavelets, finite differences, etc. An underprinted MR image is recovered
using minimization, which allows for faster MR imaging.

Aharon, M., Elad, M., Bruckstein A., K-SVD applied dictionary learning tech-
niques to solve the reconstruction problem. They proposed a patch-based adaptive
scarifying learning dictionary that is obtained using k-space data and is used to
remove aliasing and noise. The dictionary is created using the K-SVD algorithm and
updated for each image block.

One of the major challenges in change detection algorithms for medical imaging
is to detect disease-related changes by rejecting changes caused by noise and
acquisitions of changes such as skew and intensity in homogeneity.

Despite the diversity of approaches, an image-to-image change detection algo-
rithm consists ofmany common preprocessing steps to filter out insignificant changes
before making change detection decisions. The main algorithm is then used to deter-
mine the set of pixels that are significantly different from the initial reference image
and are related to the disease.

The preprocessing steps complicate the consistency of the algorithm as a whole
and increase the calculation time, in these cases it can distort the clinical relevance
of the information in the images.

The work of Nguyen, L.H., Tran, T.D. has addressed mismatches in the change
tracking problem using a set of optimization problems. Theirmethod onlyworkswell
for certain types of images, such as synthetic aperture radar (SAR) images which are
much rarer than most medical images.

Turk, M., Pentland, A., Needell, D., JA Tropp, JA, CoSaMP Eigen faces for
recognition and pattern recognition of principal components of the face distribution
or eigenvectors of the covariance matrix of the ‘set of face images, where each
image is treated as a vector. The eigenvectors are called eigen faces, and each of
them represents a different amount of variation between the images. Each test image
is compared to many trainings reference images from a database.

These challenges motivated the design of three algorithms that automati-
cally tolerate acquisition-related noise and changes, and capture subtle, clinically
important changes in the differences between two or more medical images.
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4 Case Study

PET data (Positron Emisson Tomography) are very useful for obtaining functional
images of the patient’s organs. The resulting data does not concern only the shape
of organs and structures of the body, i.e., the anatomy, but also their metabolism and
“functioning”. PET data exploit the decay of special radiopharmaceuticals composed
of positron-emitting radionuclides bound to specific molecules. The radiopharma-
ceutical is administered to the patient intravenously and is distributed throughout the
body.

Thanks to the so-called “ferry” molecule, the radiopharmaceutical accumulates
in a highly selective way in certain parts of the body, after a pre-established time the
decomposing radiopharmaceutical emits radiation called positrons.

A positron is a particle like an electron but with opposite electric charge, when a
positron meets electron photons are produced and the PET scanner is able to record
these photons and transform them into images [17].

The coding standard for images is the DICOM (Digital Imaging and Communica-
tions in Medicine) format which defines the criteria for communicating, displaying,
archiving, and printing biomedical information. The DICOM standard is public and
accessible to all through special data reading software. Its dissemination proves
to be extremely beneficial because it provides a basis for the exchange of infor-
mation between equipment from different manufacturers, especially in the medical
environment.

Radiological data represented as images that are stored according to the DICOM
standard in the form of files are called DICOM images. The data in the DICOM
format does not undergo compression as in the classic JPEG and GIF formats. The
DICOM standard applied to file encoding is a method for encapsulating data and
defining how it should be encoded or interpreted.

Biomedical images stored in DICOM format take on diagnostic value and have
legal value.

The DICOM (Digital Imaging and Communication inMedicine) standard defines
how biomedical images and related metadata are stored and transferred between
various devices such as scanners, workstations, and servers. The DICOM format can
be used to archive data obtained by various methods of biomedical imaging to obtain
a complete description of a diagnostic study. Includes radiological imaging methods
such as computed tomography (CT), PET, magnetic resonance (MRI), X-ray and
ultrasound images.

For this work, PET images were processed by the protocol of the Alzheimer’s
Disease Neuroimaging Initiative (ADNI), a worldwide project that provides reliable
clinical data for research on the pathological principles, prevention, and treatment of
Alzheimer’s disease [18].

The main objectives of ADNI are the development of improved methods and
uniform standards for the acquisition of data, magnetic resonance imaging (MRI),
positron emission tomography (PET), on patients affected by neurodegenerative
diseases.
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The project plan is to develop an accessible data repository describing longitudinal
changes in brain structure and metabolism during the acquisition of parallel clinical,
cognitive, and biochemical data.

Furthermore, we want to develop methods that maximize the power to determine
treatment effects in clinical trials and to test a variety of hypotheses based on clinical
data and biomarkers.

Patient control data is sampled over several months, in this example we sampled
data at 12 and 24 months. The following is shown in Figs. 2 and 3.

First processing to discriminate significant elements of a PET image cluster and
check a posterioriwhich one is presumed to be closest to the association of a diagnosis
interpretation. The test involves evaluating the results on a series of PET imagesmade
at different times of the same subject, keeping the boundary conditions unchanged,
see Fig. 4 for reference image.

The method of analysis of the PET image that I propose involves the definition
of numerical algorithms that examine all the sections identified for a correct eval-
uation and interpretation. The objective to be achieved is to recognize some of the
information collected in the form of a matrix to obtain dynamic features in order to

Fig. 2 Set: Darkset = −1; Brightest = 14,152 image PET to 12 months
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Fig. 3 Set: Darkset = 0; Brightest = 196,221 image PET to 24 months

evaluate an objective interpretation of the examined classes. Some of the numerical
algorithms used are of different types such as spatial and connectivity algorithms
widely used in the analysis of satellite images [19, 20].

• An algorithm or numerical index is a mathematical expression that transforms a
set of data into a synthetic numerical value attributable to a feature of the analyzed
image.

• Distance indices highlight in terms of space or time the distance between two or
elements within an n-dimensional space.

• Connectivity indices express the degree of relationship between different objects
spatially placed in different ways. Some shapes can express the relationships
between different objects in numerical form, for example the relationship between
area and perimeter allows you to distinguish the shapes of objects.

• The spatial indices evaluated with the depth of the pixel, i.e., with the value of
radiance are able to describe the shape of the spots. The evaluation of the edges and
the relationships found with the homogeneous areas are important information to
evaluate.
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Fig. 4 Reference images T12 and T24
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4.1 Numerical Algorithms

Numerical algorithms are mathematical expressions capable of defining some
information and synthesizing it in a numerical value. In fact, these algorithms
measure the shape of objects, the relationship of objects, their abundance, and their
spatio-temporal relationships. Where Ai is the abundance of object I.

A =
∑

Ai (1)

The Distance Index represents a fundamental element between two objects. The
distance in Euclidean space relative to the Pythagorean theorem, given two points
X’Y’ and X”Y” their distance is given by the following:

d =
√(

X′ − X′′)2 + (
Y′ − Y′′)2 (2)

the distance between two points is calculated as the shortest spatial interval, this
is true for isotropic surfaces, if instead we have anisotropic surfaces the minimum
distance between two points is generally not a straight line.

Whenwe are in the presence of a group of points in a Euclidean space, for example
objects that are scattered, the distance between the points can be measured for each
element that we consider but we can also expect to measure a standard distance
which represents the dispersion of the total. This distance can be calculated with the
quadratic mean of the distance from the center of gravity.

d1 =
√(∑

n/i = 1
(
d2ic/n

))
(3)

dic is the distance between each observation i is the middle center of all points c, n
the number of points.

4.2 Spatial Algorithms

For spatial algorithms we can indicate as a calculation procedure that describes the
spatial characteristics of objects in a global system. These characteristics are both
topological (dimensions, shape) and chorological (position relative to other objects
of the same or different types). Spatial algorithms can describe the shape, evaluate
the individual complexity of each grouping and that expressed collectively in a global
system. Irregularity of the edges, the size of the area, interspersion and contact are
fundamental parameters.

The shape of the elements are based on the difference between a geometric
figure (circles, squares) and the interior of this figure, assuming maximum regu-
larity for geometric figures in which the ratio between the suitably treated area and
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the respective perimeter is approximately 1.

Y1 =
(
2
√

πA
)
/P (4)

where A is the area and P the perimeter of the patch with g1 �1 for circular patches
and g1 < 1 for non-circle or polygon-based shapes. Or simplified area perimeter
report for elements represented in pixel and/or voxel format that we consider:

Y3 = A/p3 (5)

The perimeter is calculated using the Sobel operator which is an algorithm used
to perform edge detection.

The operator applies two 3× 3 kernels, ie two convolutionmatrices to the original
image to compute the approximate values of the derivatives—one in the direction of
the horizontal axis and one in the direction of the vertical axis.

If we call A the source image, andGx andGy the two images whose points respec-
tively represent the approximate values of the horizontal and vertical derivatives, the
operation is described by:

Gx =
⎡

⎣
+1 0 −1
+2 0 −2
+1 0 −1

⎤

⎦ ∗ AeGy =
⎡

⎣
+1 +2 +1
0 0 0

−1 −2 −1

⎤

⎦ ∗ A (6)

4.3 Connectivity Indices

Connectivity algorithms express the degree of “relationship” between different
objects placed in a spatial dimension. The graph elements are able to express in
numerical form the chorological relationships between the different objects and at
the same time to characterize their spatial schemes.

The connectivity algorithms express the maximum of the distances between the
node i from each of the other nodes j. Any graph can be converted from a matrix
where dij = 1 if it exists.

Ki = max dij (7)

Accessibility index is given by the following:

A1 =
∑

n/i=1dij (8)
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where dij is the number of nodes encountered to arrive at the chosen node. The value
of the accessibility index is inversely proportional to the accessibility of the network
node [21, 22].

4.4 Feature Selection

The first stage of processing a DICOM image from the ADNI repository involves
reading the image and creating thematrix in a database. Thismatrixwas subsequently
elaborated through a feature selection through the numerical algorithms listed above,
in order to memorize the value of the pixels to which the numerical values of some of
their geometric properties have been associated, such as area, maximum dimensions
�x and �y along the abscissa axis and along the ordinate axis, area of the rectangle
× �x,�y, moments of inertia Jx with respect to the abscissa axis and Jy with respect
to the ordinate axis, coordinates of their barycenter G, etc. (see Fig. 5).

In this way, the images detected the following objects:
The PET/DICOM image is characterized by a matrix M with number rows m

equal to the number of pixels and/or voxels and with a number of columns n equal to
the number of geometric properties considered for each pixel. Below is a list of the
fourteen descriptive variables which are the expression of the previously described
numerical algorithms, the values of the feature selection as shown in Tables 1 and 2.

1 2 3 4 5 6 7 8 9
N° Obj trovati – T12 260 1355 1456 1635 1682 1419 1119 694 813
N° Obj trovati – T24 197 1423 1602 1676 1684 1383 1050 700 319
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1800
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j

Objects classificated

Fig. 5 Number of selected objects
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Table 1 Object considered

Z N° Obj– T12 N° Obj– T24

80 260 197

60 1355 1423

40 1456 1602

20 1635 1676

0 1682 1684

−20 1419 1383

−40 1119 1050

−60 694 700

−80 813 319

Table 2 Variables considered

Variable Description

Nz Z coordinate—Average depth

Nt No of pixels of the object

Area Attributes of the object: -Area

DeltaX Xmx-Xmn

DeltaY Ymx-Ymn

IdealArea Ideal Area = DeltaX * DeltaY

Gx • Barycentre X

Gy • Barycentre Y

Jx • Moment of inertia with respect to the X axis

Jy • Moment of inertia with respect to the Y axis

Rx • Radius of inertia X

Ry • Radius of inertia Y

AreaRect • Area of the circumscribed rectangle

RapportAAR • relationship between area and area of the circumscribed rectangle

4.5 Factorial Analysis (PCA)

Factor analysis was applied to thematrix of all objects that have the description of the
14 labeled variables. Factor analysis allows to “order” in a vector distribution of data
in order to maximize the variance and, through this information, reduce the size of
the problem, represent the same amount of information with less data, transform the
input data in a that the covariance matrix of the output data is diagonal and therefore
the components of the data are uncorrelated, in k dimensions Z = (Z1, Z2, …, Zk)
in terms of k variables Y1, Y2,…, Yk, linear combinations of the Z j. It has:
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Yi =
∑

j bij Zj (i = 1, 2, . . . , k) (9)

where bij are constants to be determined. Yi is called the main components of the
variable Z and assuming they are not related to each other ordered by importance, in
the explanation of the variability of Z we have:

cov(Yi,Yj) = 0(i �= j) (10)

V(Y1) ≥ V(Y2) ≥ . . . ≥ V(Yk) (11)

where cov is covariance and V is variance. Without loss of generality, we can assume
that the variables Zi are standardized, with mean equal to 0 and variance equal to 1,
so as to eliminate the influence of the origin and the unit of measurement data, so
that it results the following expression:

Zj = (Xj−μj)/σ j (12)

Also, impose the condition that the overall variance of Zj is equal to that of Yi,
i.e.:

�i V(Yi) = �i V(Zi) = k (13)

At last, suppose that the vectors

bi = (bi, 1, bi, 2, . . . , bi, k) (14)

have unit length, i.e., they fulfill the condition:

�j b2 ij = 1 (i = 1, 2, . . . , k) (15)

On account of this, the vectors bi that maximize the variance of Y1, of Y2,
…, to Yk with the constraints (3) and (4), are the eigenvectors of the matrix C of
the coefficients of correlation between the variables Zj, which correspond to the
eigenvalues λ1, λ2,…, λk of C, sorted by non-increasing value. We then have:

|C − λI| = 0 (16)

bi(C − λiI) = 0 (17)

where I is the unit matrix. The matrix C is symmetric and positive definite for which
the solutions λi of the (8) are non-negative and such that their sum (trace of the
matrix C) is equal to k. We then have:
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Table 3 Variance values explained on cases 10,433—T12

F1 F2 F3 F4 F5

0.42 0.68 0.79 0.86 0.92

�i λi = k (i = 1, 2, . . . , k) (18)

The variance of the i-th component is:

V(Yi) = λi (19)

And the contribution of Yi to the overall variance is:

Pi = V(Yi)/k = λi/k (20)

Tables 3 and 5 shows the variance values explained according to the main
components extracted.

Tables 4 and 6 shows the weight measurements of the variables obtained on each
factor.

Table 4 Weight measurements T12

Variable F1 F2 F3 F4 F5

Nzm—F5 −0.1884 −0.0368 0.1249 −0.0119 0.9636

Nt—F2 0.1068 0.99 0.0072 0.0419 −0.0097

Area—F2 0.1068 0.99 0.0072 0.0419 −0.0097

DeltaX—F1 0.9666 0.0591 0.1026 −0.0153 −0.014

DeltaY—F1 0.9504 0.0884 0.0133 −0.0128 0.0124

ArIdl—F1 0.9081 0.13 0.0666 −0.0056 −0.0288

GX—F3 0.1451 0.0238 0.8552 −0.0152 −0.0445

Gy—F3 0.0896 −0.0043 0.8377 0.0588 0.1512

Jx—F2 0.0646 0.9935 0.0099 0.0283 −0.0217

Jy—F2 0.0651 0.9934 0.0099 0.0283 −0.0217

Rx—F1 0.9644 0.0482 0.0981 −0.012 −0.083

Ry—F1 0.9531 0.0398 0.0822 −0.0164 −0.0932

ArRe—F1 0.8987 0.0792 0.0925 −0.0029 −0.1664

R/AAR—F4 −0.0368 0.0919 −0.0328 0.9937 −0.0085

Table 5 Variance values explained on cases 10,034—T24

F1 F2 F3 F4 F5

0.41 0.68 0.78 0.85 0.92
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Table 6 Weight measurements T24

Variable F1 F2 F3 F4 F5

Nzm—F5 −0.2181 −0.0459 0.0574 0.0032 0.9528

Nt—F2 0.1075 0.9899 0.004 0.06 −0.0109

Area—F2 0.1075 0.9899 0.004 0.06 −0.0109

DeltaX—F1 0.9679 0.065 0.084 −0.0175 −0.0052

DeltaY—F1 0.9446 0.1025 −0.0202 −0.0099 0.0377

ArIdl—F1 0.8952 0.1536 0.0331 −0.0089 0.0098

GX—F3 0.1016 0.0245 0.8632 −0.0279 −0.0908

Gy—F3 0.066 −0.002 0.8617 0.0097 0.1404

Jx—F2 0.0629 0.994 0.0142 0.0199 −0.0204

Jy—F2 0.0633 0.994 0.0142 0.0199 −0.0204

Rx—F1 0.9561 0.0357 0.0849 −0.0163 −0.1312

Ry—F1 0.9417 0.0254 0.068 −0.0195 −0.1506

ArRe—F1 0.8821 0.057 0.0804 −0.0058 −0.2254

R/AAR—F4 −0.0408 0.1045 −0.0026 0.9935 0.0024

4.6 Results of the Proposed Methodology

The results of the distribution of the variables in a reduced multidimensional space
show that the factor 5 in Figs. 6 and 7 has a homogeneous distribution in all the

Fig. 6 Variables in a multi-dimensional space
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Fig. 7 Variables in a multi-dimensional space

explored variables with a preponderance in one variable that most characterizes this
type of analysis, the most emerging variable is the depth in pixels expressed by the
radiance of the elements belonging to the analyzed DICOM images.

Once the size of the definition space was reduced, I could reconstruct the images
with the new values normalized with respect to the “feature selection”—greater
than 1. This method required that the principal components from which the corre-
sponding eigenvalues are less than 1 are not included in the reference model. This
criterion is because the data are subject to a reduction of scale and therefore it can
be assumed that the eigenvalue associated with each PC represents the number of
variables whose variability is captured by the principal component. Therefore, if a
PC does not represent at least one variable, it is not needed for model building. It is
necessary to carefully consider the deviation of a PC whose eigenvalue is very close
to 1, which can lead to not considering the variability explained by it, which could
be non-negligible. Eigenvalues greater than 1 is a criterion also known as Kaiser’s
criterion, you choose those components with an associated eigenvalue greater than
1.

The eigenvalue is a number that gives the variance explained by the component,
since initially the variance explained by each individual variable is equal to 1, it
would not make sense to take a component (which is a combination of variables)
with variance less than 1, hence Kaiser’s rule.

A high eigenvalue corresponds to a higher variance, which is equivalent to
returning the results of the reconstructed images these tables with decreasing values,
so the former will always be associated with the most important factor.
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Fig. 8 Schema of methodology used

Figure 8 shows the outline of themethodology proposed for the study and analysis
of biomedical images.

The created software runs on the Windows platform. Figure 9 shows the software
GUI created after data extraction on the factor 5 (right) of the longitudinal image
compared to its counterpart Z4 section (left) at time T24 of the DICOM data.

The results obtained in the factor F5 as shown in Fig. 10, show the maximum
overall variance explained which is the sum of all the elements with maximum
variance derived from the factor 1 to the factor 5 from the variables extracted with

Fig. 9 GUI of software realized
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Fig. 10 Images reconstruction T12

the feature selection algorithms. These reconstructions are shown in Fig. 10 at time
T12 and Fig. 11 and time T24 [23].

The graphically obtained results are shown inFig. 12 for greater visual comparison
of image reconstructions obtained by the proposed method.
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Fig. 11 Images reconstruction T24
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Fig. 12 Images reconstruction compared

5 Conclusion

The analysis of biomedical images through specific algorithms with the aid of
calculation systems becomes a challenge to be taken up in the field of biomedical
sciences. The continuous study and definition of specific Machine Learning algo-
rithms will lead to a significant improvement in image processing which will become
increasingly precise and detailed in view of scientific progress.

This work has its particularity in the classification of data identified by compact
and well distinguishable clusters without having a knowledge of their nature; this
type of classification iswell defined as unsupervised, i.e., it expresses a truly objective
evaluation of the entire set of data analyzed.

In the biomedical field, it is of paramount importance to obtain evidence for
comparison as objective as possible so that there is no doubt about the interpretation
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of data especially in medical diagnosis. In scientific disciplines, it is commonplace
to refer to certain data; in this field, computational systems are very efficient in
evaluating data and the complexity of variables to be compared, as opposed to a
subjective interpretation by human beings.

This work proposes new scenarios in the evaluation and interpretation of biomed-
ical images, this work aims to contribute to providing concrete help in the evaluation
and diagnosis of biomedical images.
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U-Net##: A Powerful Novel Architecture
for Medical Image Segmentation

Fırat Korkmaz

Abstract As medical image segmentation has been one of the most widely imple-
mented tasks in deep learning, there have been various solutions proposed for its
applications to achieve better results. The encoder-decoder based U-Net architec-
ture and its variants have shown outstanding performance in this field. However,
most of these solutions have limited capacity to extract sufficient features from the
input images. In this paper, we propose a powerful novel architecture named U-
Net##, which consists of multiple overlapping U-Net pathways and has the strategies
of sharing feature maps between parallel neural networks, using auxiliary convo-
lutional blocks for additional feature extractions and deep supervision, so that it
performs as a boosted U-Net model for medical image segmentation. Our architec-
ture is essentially a combination of encoder-decoder based multiple U-Net pathways
which have different depth levels, and all their overlapping feature maps on the same
sampling steps share their own feature data with the others by following a specific
addition rule. Each network pathway has its own concatenated long skip connections
from their encoder to decoder sections, and the final output is obtained with deep
supervision method. All these strategies help the model explore much more features
effectively and achieve higher accuracy. PyTorch implementation of the U-Net##
with step-by-step coding is available here: https://github.com/firatkorkmaz/unetsh
arpsharp

Keywords Parallel neural networks · Auxiliary convolutional blocks · Deep
supervision ·Medical image segmentation

1 Introduction

Since medical image segmentation has been playing a significant role in biomed-
ical diagnostics, there have been many studies in deep learning to develop effective
methods for achieving satisfactory segmentation results. Themost common proposed
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models are variants of the encoder-decoder based convolutional neural networks such
as Fully Convolutional Networks (FCNs) [1], DeepLab network versions [2] and the
U-Net [3] architecture which is widely used in medical image segmentation due to
performing quite well in this task and segmenting images effectively even if there is
limited amount of data. As the feature maps from different scales explore different
levels of information, such models with encoder-decoder based structures use skip
connections which combine low-level feature maps from the encoder network with
high-level feature maps from the decoder network, so that the fine-grained details on
the images are preserved during the training process. While the Fully Convolutional
Networks (FCNs) use added skip connections [4] to preserve image resolutions
throughout the network and have few parameters due to using 1 × 1 convolution
filters, the U-Net architecture uses 3 × 3 convolution filters and concatenated skip
connections which are followed by dense layers, resulting in better segmentation.
And ever since then, there have been various proposed models based on the U-Net
architecture.

After He et al. [5] introduced deep residual networks with identity mappings,
Zhang et al. [6] combined this method with U-Net and proposed the ResU-Net archi-
tecture. Then, Oktay et al. [7] introduced Attention U-Net which was based on the
integration of attention gates with the U-Net architecture, resulting in the network’s
attention to the significant regions in feature maps. Jha et al. [8] improved the ResU-
Net architecture and proposed ResU-Net++ by adding Squeeze and Excitation [9]
blocks between the down-sampled convolutional blocks, using Attention Gates [7]
before the skip connections and placing Astrous Spatial Pyramid Pooling (ASPP)
[10] module between encoder and decoder networks as a bridge. Despite being
proposed for image classification tasks in the first place, another effective strategy
for achieving prediction results with higher accuracy is Deep Supervision [11] which
is also applicable to the architectures for image segmentation. This method is based
on additionally supervising the intermediate layers of a convolutional neural network
and directly involving them in the loss evaluation process, rather than using only the
final output layer for this operation. So that, all these supervised hidden layers collec-
tively participate in the learning process of the model. As shown in [12], this method
also helps preventing the vanishing gradients problem [13] in training deep neural
networks.

Based on reducing the semantic difference between the feature maps of encoder
and decoder networks, Zhou et al. [14] proposed U-Net++ architecture to capture
finer details frommedical images by using nested and dense skip connections. Addi-
tionally, it also uses Deep Supervision to obtain results with higher accuracy. Later,
Huang et al. [15] proposed U-Net3+ by placing full-scale skip connections between
the feature maps from different scales and this network also uses Deep Supervi-
sion. Another proposed model for medical image segmentation which contains the
U-Net architecture as a part of itself is KiU-Net [16]. This model has two network
pathways which are Kite-Net and U-Net, working together in a parallel way. On the
same sampling steps, the feature maps from both the networks are added to the corre-
sponding ones from their opposite networks, where auxiliary convolution blocks are
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applied to the added feature maps just before changing their spatial sizes for the
addition.

By using multiple parallel neural networks, auxiliary convolutional blocks and
deep supervision method, we propose a powerful novel architecture named U-Net##
to address the demand for achieving more efficient predictions with higher accuracy
and gaining faster network convergence in medical image segmentation. Our model
uses overlapping multiple U-Net pathways with different depth levels, where all
these U-Nets in the encoding steps gradually branch from a ceiling network that has
constant-size layers. And on the decoding steps, they are gradually merged back to
this ceiling network by concatenation. All these network branches work together in
a parallel way while the corresponding feature maps on the same sampling steps
share their own feature data with the others by a specific rule. The U-Net## model
is evaluated on the TCIA-LGG Segmentation Dataset, which was obtained from
The Cancer Imaging Archive (TCIA) and manually annotated by Buda et al. [17], to
segment thebrain regionswithFLAIRabnormalities on the relatedbrainMRI images.
This dataset is available here: https://www.kaggle.com/datasets/mateuszbuda/lgg-
mri-segmentation

2 The Proposed Architecture

Our architecture contains overlapping multiple U-Net pathways with different depth
levels which work together in correlation with each other. Figure 1 shows the details
of the architecture with the connections between featuremaps from different network
pathways which are passed through auxiliary convolutional blocks before their addi-
tion for more efficient feature extraction. As it is seen, the U-Net## architecture has
multiple encoder networks and multiple decoder networks which belong to different
U-Net pathways and this makes it act as a boosted U-Net architecture. By also taking
the advantage of deep supervision strategy, the model provides better results with
much higher accuracy.

To understand the addition rule of the feature maps, the blocks in 3rd encoding
step could be represented as:

B4_3 = B4_3+ AU(0.5)(B3_3)+ AU(0.25)(B2_3)+ AU(0.125)(B01_3) (1)

B3_3 = B3_3+ AU(0.5)(B2_3)+ AU(0.25)(B01_3) (2)

B2_3 = B2_3+ AU(0.5)(B01_3) (3)

Here, for the AU(scale)(Bx) function, Bx is the identity of its input block and AU(scale)

represents that, firstly an Auxiliary convolutional block is applied to the output of
its input block, and then a bilinear Upsample layer is applied to the output of this

https://www.kaggle.com/datasets/mateuszbuda/lgg-mri-segmentation
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Fig. 1 The block diagram of the U-Net## architecture with the overall view of its feature data
transmission routes

Auxiliary convolutional block, where the up-sampling is done by the specified scale
value. Also, the order of additions shows that one addition should not affect another.

2.1 Parallel Neural Networks

The U-Net## model starts with an initial block which has the same spatial size with
the input images. This block is also the first block of all the parallel U-Net pathways.
As for the notations of the block numbers, they show which network they belong to
and what index of convolutional block sequence they have in these networks. For
example, in the block of 0123_1, the number 0123_ says that this block belongs
to U-Net-0 (the ceiling network), U-Net-1, U-Net-2 and U-Net-3, and the number
_1 says that this is the second block in all these four networks with the index = 1
value. Each U-Net has different encoding depth levels which vary between 1 and
4. The uppermost pathway is the ceiling network with constant spatial size layers
and it does not have any down-sampling process. All the remaining encoder-decoder
based networks below that are the U-Nets which branch one by one from this ceiling
network while the encoding steps take place.

As it is seen in Fig. 2, every sampling step in the whole network is implemented
with only one convolutional block which consists of one Convolutional layer, one
Batch Normalization layer and one Rectifier Linear Unit (ReLU) layer. According to
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Fig. 2 The details of the convolutional blocks from the beginning and the end of the U-Net##
architecture

the step type, there is also one additional Max Pooling layer if it is a down-sampling
step or one bilinear Upsample layer with scale factor 2 if it is an up-sampling step.
While each U-Net pathway is branched from the ceiling network on the encoder side,
they are also gradually merged back to that ceiling network on the decoder side by
concatenation. Each concatenation process to merge the U-Nets back is followed by
transferring their output feature maps downwards for their additions, and then long
skip connections are concatenated which are followed by one single convolutional
block to decrease the filter numbers back to their previous state. Finally, all these
network branchesmeet and end on a final block that has the 01234_8 identity number.

2.2 Auxiliary Convolutional Blocks

When the encoder section starts, each U-Net branches from the ceiling network.
However, to make all these U-Nets work together in correlation, they need to share
their feature data with the other feature maps progressively. And rather than directly
adding the feature maps from different U-Nets with each other, passing a feature map
through an extra convolutional block before its addition providesmuchmore efficient
feature extraction. So, as seen in Fig. 2, auxiliary convolutional blocks are applied
to the feature maps which are added to the other feature maps from different U-Net
branches on the same encoding or decoding steps. An auxiliary convolutional block
simply consists of one Convolutional layer with 3× 3 filters, one Batch Normaliza-
tion layer and one Rectified Linear Unit (ReLU) layer. This block comes just before
the necessary bilinear Upsample layer that is used to equalize the spatial size of
the layers for their addition process. Applying the auxiliary convolutional blocks to
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the feature maps for this purpose results in better overall network performance with
higher accuracy.

As illustrated in Fig. 1, the rule of addition for the feature maps from parallel
U-Nets says that each feature map of the U-Nets below the ceiling network collects
all the other feature maps above themselves on the same encoding or decoding steps.
Which means that all these additions are implemented downwards and all the feature
data from different scales is always transmitted to the lower network branches which
have higher depth levels. As a result, each U-Net also works as a feature collector and
the undermost U-Net with the highest depth level collects the most diverse feature
data from the upper networks, so that it becomes ready to be deeply supervised for
the final output.

2.3 Deep Supervision

Rather than using only the final layer of the model where all the network branches
meet and end, involving the hidden layers in the evaluation of loss function results
in much better performance for the U-Net## architecture. As the overlapping U-
Nets with different depth levels always share their own feature data with the other
U-Net branches below themselves, the intermediate layers of the undermost U-Net
branch collect the most diverse feature data from the other parallel U-Nets. Here, the
outputs of the bottleneck block and the up-sampled decoder blocks in the undermost
U-Net branch with the highest depth level are used together for the loss evaluation
by passing each of these outputs through additional 3 × 3 Convolutional layers and
the necessary Upsample layers. Then, all the outputs that they produce are averaged
and one single output layer is obtained. Finally, the Sigmoid activation function is
applied to this single output layer and the result is used as the final output of thewhole
network for the loss evaluation. There is no necessity to use a specific loss function
to evaluate the model, any loss function can be used with the U-Net## architecture.

3 Experiments and Results

3.1 Dataset and Pre-processing

The dataset used for training our proposed architecture is LGGSegmentation Dataset
which contains the brain MRI images of 110 patients with FLAIR abnormality, and
their corresponding segmentation masks. All the images have 3 channels and their
binary image masks have 1 channel, provided in ‘.tif’ format with the size of 256
× 256 pixels and placed in specific folders for each patient. These folders include
multiple brain MRI image slices and their masks in different numbers which vary
from 20 to 88 among different patients. The total slice number from all the patients as
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image-mask pairs is 3929 and this data is randomly divided into two sets, which are
the training set with 3300 image-mask pairs, and the validation set with 629 image-
mask pairs. An additional test set is not created to use more data in the training
process. All the metrics are evaluated by using the validation set.

Before training, all the images and masks in both training and validation sets are
resized to 128 × 128 pixels. Also, all the images except the masks are normalized.
For data augmentation; horizontal flip, vertical flip, random 90-degree rotation, zoom
by random scale between 0.00 and 0.05, and additional random rotation between −
20 and 20 degrees are applied to both the images and the masks in only the training
set with 0.5 probabilities.

3.2 Implementation Details

All the implementations were done on a Cloud GPU systemwith NVIDIA 1×A100
PCIE 40 GB GPU, by using the deep learning framework PyTorch. As the learning
rate optimizer, Adam is chosen with the learning rate of 1e−3. Also, the learning
rate scheduler ReduceLROnPlateau is applied to decrease the learning rate if the
evaluated loss value stops decreasing and does not improve for 10 epochs which is
the patience value in the scheduler. Also, the reducing factor is set to 0.5 to divide
the learning rate by 2 when it is necessary to reduce it, and the cooldown value is
set to 5 which holds the scheduler from checking the improvement of learning rate
for 5 epochs after a reducing process is implemented. For the training process, the
epoch number is set to 100 and the batch number for data loader is fixed to 4 on
training each model. Although there are other possible batch numbers which could
give much better overall results for all the models, this number is set to 4 in this
experiment deliberately, like reducing the spatial size of the dataset images from 256
× 256 to 128 × 128, in order to observe the capacity of our model and to see what
it can do while the other models cannot do in the given restrictive conditions and
hyperparameters, throughout the 100 epochs of training process. The loss function
which is used for all the models is Binary Cross Entropy Loss plus Dice Loss, named
BCEDice Loss.

Lbcedice = − 1

N

N∑

i=1

[
yi . log(pi )+ (1− yi ). log(1− pi )

] + 1− 2
∑

i (yi .pi )+ 1∑
i yi +

∑
i pi + 1

(4)

Additionally, Dice Coefficient and IOU values are also evaluated with the
validation set for each trainedmodel to compare their performances by these metrics.

Dice = 2
∑

i (yi .pi )+ 1∑
i yi +

∑
i pi + 1

(5)
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IOU =
∑

i (yi .pi )+ 1∑
i yi +

∑
i pi −

∑
i (yi .pi )+ 1

(6)

3.3 Results

Toverify and demonstrate the powerful performance of our proposed architecture,we
compare our model with several state-of-the-art deep learning models including U-
Net [3], AttU-Net [7], U-Net++ [14] andU-Net3+ [15]. As U-Net## uses deep super-
vision method, U-Net++ and U-Net3+ are also evaluated in their deeply supervised
versions. The prediction results of each model after being trained with the mentioned
hyperparameters and metrics for 100 epochs can be observed in Fig. 3 which shows
that the U-Net## architecture gives the best results among all the evaluated models
with the highest accuracy.

Here, a threshold of 0.3 is applied to the predicted images, so the pixel valueswhich
are equal to or higher than 0.3 are changed to 255, and the rest of the pixels with the
values lower than 0.3 are changed to 0. Table 1 gives the comparison of performance
results between the analyzed models in BCE-Dice Loss, Dice Coefficient and IOU
(Jaccard) metrics which are evaluated with the validation set after training themodels
with the given hyperparameters. As we can see, U-Net## shows an outstanding
performance and leaves all the other models behind with its capacity to learn from
data quickly and efficiently, and hence makes the predictions much more effectively
with the highest accuracy.

As U-Net3+ is coming after our U-Net## architecture in the results list with 2nd
rank, Fig. 4 shows the change of Dice Coefficient values per epoch for both the
models. This chart illustrates the power of U-Net## architecture and how it can

Fig. 3 Qualitative comparison between the prediction results of the models: U-Net, AttU-Net,
U-Net++ , U-Net3+ and U-Net##
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Table 1 Results of the analyzed models by the specified metrics with validation data

Model Parameters BCE-Dice Loss IOU (Jaccard) Dice Coefficient

U-Net 34.52M 0.379 0.619 0.699

AttU-Net 34.87M 0.464 0.599 0.681

U-Net++ 36.63M 0.394 0.639 0.702

U-Net3+ 26.99M 0.351 0.703 0.774

U-Net## 43.21M 0.165 0.792 0.859
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Fig. 4 Comparison of the Dice Coefficient changes between U-Net3+ and U-Net## architectures
during the training process

extract features from the medical images much more effectively. So, it is observed
that even there are restrictive hyperparameters, U-Net## can achieve what many
other models cannot do in a given training process.

4 Conclusions

To address the need for achievingmore efficient and accuratemedical image segmen-
tations, we proposed a powerful novel architecture named U-Net##, with the strate-
gies of sharing feature maps between encoder-decoder based parallel networks
through auxiliary convolutional blocks and obtaining the output datawith deep super-
vision. The most significant properties of this architecture are that it can learn faster
from data efficiently and can do much more accurate segmentations even if there
are restrictive hyperparameters or lower data qualities. Comparison of the U-Net##
performance with the other state-of-the-art approaches shows that U-Net## has a
great power and capacity to segment medical images much more effectively and
accurately.
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Abstract During the COVID-19 pandemic, the sheer volume of imaging performed
in an emergency setting for COVID-19 diagnosis has resulted in a wide variability
of clinical CXR acquisitions. This variation is seen in the CXR projections used,
image annotations added and in the inspiratory effort and degree of rotation of clin-
ical images. The image analysis community has attempted to ease the burden on
overstretched radiology departments during the pandemic by developing automated
COVID-19 diagnostic algorithms, the input for which has been CXR imaging. Large
publicly available CXR datasets have been leveraged to improve deep learning algo-
rithms for COVID-19 diagnosis. Yet the variable quality of clinically-acquired CXRs
within publicly available datasets could have a profound effect on algorithm perfor-
mance. COVID-19 diagnosis may be inferred by an algorithm from non-anatomical
features on an image such as image labels. These imaging shortcuts may be dataset-
specific and limit the generalisability of AI systems. Understanding and correcting
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key potential biases in CXR images is therefore an essential first step prior to CXR
image analysis. In this study, we propose a simple and effective step-wise approach to
pre-processing a COVID-19 chest X-ray dataset to remove undesired biases. We per-
form ablation studies to show the impact of each individual step. The results suggest
that using our proposed pipeline could increase accuracy of the baseline COVID-19
detection algorithm by up to 13%.

Keywords Computer-aided diagnosis · Chest X-ray · COVID-19 · Deep learning

1 Introduction

Medical research using artificial intelligence (AI) techniques applied to clinical data
and imaging is transforming our understanding of health and disease. The applica-
tion of machine learning and deep learning techniques has occurred alongside an
exponential growth in healthcare data acquisition. The arrival of the SARS-COV2
virus and the response of healthcare teams around the world in data collection and
data sharing exemplified the scale at which medical information can be collected
today for clinical research purposes.

Large volumes of data are a prerequisite to train AI models. However, as datasets
grow in size and complexity, it is important to be aware of biases that might be
introduced into training AI datasets [9]. A major concern when using AI tools is
that biases within training datasets may be propagated into deployed algorithms.
Examples of biases include training datasets that are not representative of the target
population but are imbalanced with regard to subject age, gender, ethnicity and
socioeconomic or environmental factors. Such biases must be identified, understood
and corrected to ensure that AI algorithms that could be used to assess patient health.

The SARS-COV2 virus has infected hundreds of millions of people across the
world [11]. When the virus first emerged in late 2019, limited access to polymerase
chain reaction testing kits led researchers to consider analysing medical images such
as chest X-ray (CXR) and computed tomography (CT) scans to diagnose the disease
and assess its severity [6, 18]. A hallmark of the image analysis approaches used
was the reliance on deep learning systems to leverage the scale of data acquired in
a timely way [10]. Over the past two years, many automated approaches have been
proposed to detect COVID-19 infection using CXR images [1, 7, 10, 12, 14].

Though several of the proposed deep leaning-based approaches have reported
excellent discriminative performance, re-evaluation of several of these methods,
particularly for CXR analyses has revealed that many were confounded by non-
pathological features in the images such as human annotations [4]. These obser-
vations highlight the importance of having a suitable processing pipeline for CXR
imaging that can remove confounding signals from the image, allowing the AImodel
to focus on detecting and quantifying pathologically important features alone.

With regard to CXR projection, the optimal CXR is captured with the patient
standing upright and with the x-ray beam passing from the back of the patient to the
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Fig. 1 Anteroposterior (left)
and Posteroanterior (right)
chest X-ray images.

x-ray plate placed at the anterior aspect of their chest in a Posterior to Anterior (PA)
acquisition. This allows the patient to perform the best expansion of their lungs in
inspiration and enhances the detection of lung damage. As the heart is positioned
in the anterior compartment of the chest, a PA radiograph provides a good approx-
imation of the size of the heart relative to the size of the lungs and chest wall. A
PA radiograph is the standard CXR acquisiton, however if a patient cannot stand,
a radiograph can be acquired with the patient sitting or lying down and placing the
X-ray plate at the patient’s back, known as an Anterior-Posterior (AP) projection. In
an AP projection, the size of the heart relative to the chest is exaggerated as the x-ray
beams pass through the patient from front to back. AP radiographs may also be asso-
ciated with a smaller inspiratory volume. Figure1 shows an example of CXR images
acquired using PA and AP projections. All non-PA CXR acquisitions are labelled as
such on the image using labels such as “AP”, “sitting” or “supine”. The type of CXR
acquisition performed can provide information about the clinical status of a patient: a
PA CXR would indicate that a patient was in better health than someone undergoing
an AP CXR. COVID-19 imaging datasets typically contain a combination of AP and
PA CXRs. Yet studies using AI tools to diagnose COVID-19 on CXRs invariably
ignore the potential influence on algorithm performance that may result from the
algorithm simply distinguishing AP versus PA radiographs, rather than actual lung
disease features. The proportion of AP and PA CXRs also can vary across datasets,
further biasing algorithms.

Other x-ray acquisitions can also be seen in publicly available COVID-19 chest
radiographic datasets. Lateral view chest X-rays (Lat-CXR) are routinely performed
alongside the frontal CXR acquisition in many countries such as the USA. However
in the UK lateral CXRs are rarely performed in the acute setting. If a lateral view
is performed in the UK it is often to confirm or refute the presence of a lesion
suspected on the frontal CXR. Therefore there is a strong bias towards the presence
of pathology in cases where a lateral CXR has been performed. Abdominal X-rays
(AXR) are also not uncommonly seen in COVID-19 radiographic datasets alongside
the frontal CXR acquisition, particularly in patients who presented with abdominal
pain. Having AXRs and Lat-CXRs in COVID-19 datasets can introduce some biases
and image noise as these images are not useful for COVID-19 detection using AI
methods. Identifying and removing these images from a dataset can help AI models
improve COVID-19 detection performance.
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In this paper, we describe an automated pipeline for cleaning and pre-processing
CXR images. Our pipeline can help standardize a CXR dataset for future analysis.
The pipeline includes: defining the unique ID per patient and per patient’s CXR
session; removing noisy CXR images; identifying AP and PA CXR images; and
applying a lung segmentation. We show that using the pipeline to clean a COVID-19
CXR dataset can improve the performance of the baseline models for COVID-19
detection. Moreover, this pipeline will improve CXR-based deep-learning models
in other existing lung diseases and for analysis of CXR imaging in potential future
pandemics. The open source code will be made available soon to anyone.

2 Materials and Methods

Datasets. In thiswork theUKNationalCOVID-19Chest ImagingDatabase (NCCID)
[2, 3, 8] was analyzed. This dataset is a multi-center research database (compris-
ing data from 14 NHS Hospital Trusts including 52 individual hospitals) comprising
CXRs andCT scans frompatients across theUK.TheNCCID is a growing dataset ini-
tiated in January 2020 to enable the development of machine learning algorithms for
the characterisation of patients hospitalized with COVID-19. All patients in NCCID
have COVID-positive/-negative labels reflecting results of a SARS-CoV-2 RNA test
via the Polymerase Chain Reaction (PCR) method. At the time of proposing our
approach, 18,133 CXR images from 7629 patients were available for analysis.

Method. Since many centers were enrolled in NCCID, the imaging data, partic-
ularly the CXR imaging was highly heterogeneous with regard to imaging acquisi-
tions.We propose an automated pipeline that can process a CXR dataset in a stepwise
manner to create a standardized and homogeneous subset of the dataset, and limit
potential source of bias. Our proposed pipeline includes:

• Assigning a unique ID for CXR images.
• Identifying and removing unnecessary/noisy X-ray images.
• Categorizing X-ray images into Posterior-Anterior and Anterior-Posterior acqui-
sitions.

• Intensity normalization.
• Lung segmentation.

As a first step, we defined an image level identifier that encoded the anonymised
patient identifier, the image acquisition date and the image acquisition time. This
was to distinguish separate CXRs performed on an individual patient on the same
day.

Within theDICOMfolder of aCXRacquisition, itwas not uncommon to encounter
radiographs of the abdomen or lateral CXR projections. These are not suitable for
COVID-19 detection. Therefore we identified them and omitted them from the
dataset. Several DICOM tags were used to recognize these images automatically
including ‘Series Description’, ‘View Position’, and ‘Study Description’.
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To identify AP and PA CXRs to allow for their separate processing we used the
‘Code Meaning’ sequence in the DICOM tag of the image. An example of AP and
PA images can be seen in Fig. 1.

To maintain homogeneity and consistency in the dataset, all CXR images were
scaled to a size of 640 × 512. A histogram equalization algorithm was then applied
to increase the contrast within the images.

The majority of the CXR images in NCCID include text in their borders (outside
of the lung area)which has been annotatedmanually by radiographers or radiologists.
This type of information can result in undesired biases in AI models [4]. To remove
these confounding signals, we used a lung segmentation algorithm that forced the
model to concentrate on the lung region. A challenge in COVID-19 infected lungs is
that they may contain peripherally placed areas of high density which can make the
boundary between the lung and chest wall imperceptible. Accordingly, segmenting
the lung in these cases can be a challenging task. To overcome this, we followed the
idea proposed in [15]. The proposed segmentation architecture involves a variational
encoder for data imputation, and a U-net shape network with encoder and decoder
for segmentation. This model was specifically designed to segment lungs containing
a high proportion of abnormalities including lung damaged by COVID-19 infection.
Following successful lung extraction, we cropped the image to centralize the position
of the lungs in the image.

3 Experimental Analysis and Results

In this section, we describe experiments to highlight the robustness of the pipeline
for COVID-19 detection using the NCCID dataset. We designed a deep learning-
based model to generate a binary classification for COVID-19 (COVID-positive/-
negative) using the PCR-based COVID-19 classification as a ground truth. A 2-
dimensional EfficientNet-B0 [17] pretrained on ImageNet [5] was selected for our
baseline model. As a first experiment, we trained and tested our model using the
raw NCCID dataset to which our proposed processing pipeline was not applied.
5-fold cross validation across the entire dataset was implemented (using 18,133
CXR images) and the average of the 5-fold over test set was reported as the overall
performance metric. As can be seen in the Table1, the AUC performance of the
model was 72%.

In order to gain a better understanding of the robustness of the pipeline, an ablation
study was performed. We repeated the above experiment several times, iteratively
processing the dataset according to the steps mentioned in our processing pipeline.
In this second experiment, those images contained within CXR DICOM folders that
included the abdomen and lateral CXR views were omitted from the dataset. In
total 1201 images were removed from the training and testing datasets. Our baseline
model AUC performance on this processed dataset was 75% Table1, a 3% increase
compared to the unprocessed dataset.
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Table 1 Output performance of our baseline EfficientNet B0 [17] model for COVID-19 detection
using different version of the NCCID dataset

Dataset Accuracy Sensitivity Specificity Precision F1-score AUC

Raw data 0.65 0.56 0.74 0.68 0.61 0.72

AXRs and
Lat-CXRs
were
removed

0.66 0.60 0.73 0.69 0.64 0.75

Only AP
CXRs

0.73 0.74 0.73 0.73 0.73 0.81

Only PA
CXRs

0.74 0.74 0.74 0.74 0.74 0.81

Processed
AP CXRs

0.78 0.78 0.79 0.79 0.78 0.88

Processed
PA CXRs

0.77 0.77 0.77 0.77 0.77 0.82

In the third experiment, using the aforementioned DICOM tags, we categorized
the remaining images into two sub-groups (AP/PA). 71%of the imageswere assigned
theAP label (12023 images). 29%were assigned the PA label (4909 images).We then
repeated our cross validation experiments on AP and PA images separately. Table1
shows the performance of our base-line model when regarding AP and PA images
separately. When analysing AP CXRs, we have a 7% improvement in accuracy, and
6% improvement in AUC value.

To further process the dataset, we normalized the images using histogram equal-
ization and used themodel in [15] to segment the lungs. Then, we cropped the images
centralizing the lungs by considering the maximum and minimum values for (x,y)
pixel coordinates in the extracted mask. The output can be seen in the last column
of the Fig. 2. In this experiment, we used the pre-processed AP and PA images as
input to our baseline network. When using the CXRs with a segmented lung image
Table1, we obtained the highest AUC performance of our study: 88% and 82% for
AP and PA images, respectively.

We implemented a saliency map using the GradCAM [16] algorithm to confirm
whether the baseline model was making COVID-19 classification decisions using
pathological signals from the lung. Figure3 shows some examples of the baseline
model output for COVID-19 detection including the saliencymap visualization using
both the original CXR image and the lung segmented version of the corresponding
image. The results indicate that the processed CXR helps ensure the model is making
decisions based on pathology rather than confounding annotations.

All experiments were performed in the python language1 using PyTorch [13] on
a Nvidia Titan RTX 24GB GPU. We trained our model using a stochastic gradient
descent optimizer with an initial learning rate of 0.001, batch size of 32, and cross-

1 https://www.python.org.

https://www.python.org
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Fig. 2 Lung segmentation process. We applied the lung segmentation algorithm on AP and PA X-
ray images to obtain the lung masks which were used to extract the lungs from the original images
(second column). We then cut the segmented images with centralizing the lung (third column)

Fig. 3 Baseline model output for COVID-19 detection. The first and third rows show model per-
formance on normal CXRs including a saliency map visualization. The second and fourth rows
are the model outputs on processed CXRs of the respective first and third rows. At the top of each
image, information includes: ‘Label’=COVID-19 ground truth label, ‘Prob’=output probability of
the model for COVID-1, and ‘Res’=TP/TN/FP/FN outcomes
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entropy as the loss function. Data augmentation was applied on the training dataset
using random rotationwith amaximumof 15◦C. In all experiments, the epochnumber
was set to 100.We used amodified version of EfficientNet including (B0, B1, B2, and
etc.). We found that increasing the complexity of the model did not improve overall
model performance and so EfficientNet-B0 was selected as our baseline model.

4 Discussion and Conclusion

We propose an automated multi-step processing pipeline to clean and standard-
ize CXR datasets to minimise potential biases. The proposed pipeline improves
dataset homogeneity and improves the performance of existing deep learning-based
approaches to classify COVID-19 disease as exemplified on the UK NCCID dataset.

Defining unique identifiers for every single image in a dataset builds order into
a complex dataset. Individual identifiers improve the certainty with which specific
images are assigned into testing and training cohorts. When different models are
then evaluated, the researcher can be confident that each model will be evaluated on
identical data thereby producing a fair comparison of all available approaches.

In a large chest imaging dataset likeNCCID,which continues to expand over time,
images of different body parts as well as a variety of CXR acquisitions might be cap-
tured for specific purposes. Identifying the type of images captured and categorizing
them appropriately can avoid misleading AI models. For instance, in the NCCID
dataset, we identified lateral projection CXRs and abdominal CXRs and removed
them from the dataset as these images are unhelpful for COVID-19 detection. We
showed that by simply identifying and removing these unnecessary images, the AUC
performance of our COVID-19 detection model improved by 3% Table1.

As mentioned in Sect. 1, by separating the dataset into AP and PA CXRs, our
goal was to avoid any possible undesired bias originating from the CXR acquisition
in the baseline model. As shown in Table1, training and testing a baseline model
separately on AP and PACXRs boosted the performance of the model with respect to
all available measures including accuracy, sensitivity, specificity, precision, F1-score
and AUC value.

The first row in Fig. 3, shows CXRs without any processing and their model
output saliency maps. All the model output predictions were correct based on the
PCRground truth and the predicted output likelihood. However, when visualizing the
saliency maps, it becomes obvious that the model is basing its predictions on non-
pathological signals. Specifically, the strongest predictive signals originated from
text in the corner of the images, calling into question the integrity of the model
predictions. In the second row, comprising segmented lungs model prediction is
unchanged but now focuses on pathological signals inside the lung.

When using deep-learning algorithms, model predictions influencing patient care
may be based on imaging features unrelated to true biological damage, which could
then result in patient harm. An image analysis should aim to confirm the biological
plausibility of imaging features identified as having prognostic or diagnostic impor-
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tance. The importance of these concepts are highlighted in the third row of Fig.3,
where on non-processed CXRs, the baselinemodel produces incorrect predictions by
focusing on confounding signals outside of the lung. In the last row however, using
the processed version of the images, allows the model to correctly predict outcomes
using the pathological signals inside the lung.

Whilst this study was focused on evaluation of COVID-19 CXR imaging, we
believe the steps in our CXR imaging pipeline will have relevance for all researchers
attempting to analyse CXR imaging no matter what the underlying disease. We also
believe that such pipelines will greatly aid analysis of other respiratory infectious
pathologies such as seasonal influenza outbreaks or future pandemic events.

In conclusion, this paper shows that with a simple multi-stage cleaning and pro-
cessing pipeline, model performance can be boosted. We showed that categorizing
CXR images systematically to avoid specific constraints associatedwith image acqui-
sition can avoid biases in model prediction and result in boosted performance. We
also showed that the boosted performance is based on pathological signals within
the lung thereby emphasising the trustworthiness of the proposed pipeline from a
clinical perspective.
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3D-3D Rigid Registration: A
Comparative Analysis Study on Femoral
Bone Scans

Perrine Solt, Adlane Habed, Antoine Bautin, Pierre Maillet,
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Abstract 3D point cloud registration is an important step in a variety of computer-
assisted surgeries and particularly critical for their success. Such registration is tradi-
tionally carried out using the Iterative Closest Point (ICP) algorithm although more
recent and promising algorithms have been reported in the literature. In this paper, we
provide a comparative analysis of several rigid registration algorithms for 3D point
clouds including point-to-point ICP, point-to-plane ICP, Go-ICP and Super4PCS, in
the difficult context of bone registration. In particular, we study the case in which a
point cloud of femoral condyles is to be registered at the distal extremity of a human
femoral bone. The condyles can typically be acquired during surgery using 3D sen-
sors (e.g. intraoperative CT-scans, time-of-flight cameras, structured-light scanners)
while the bone can be scanned preoperatively. The algorithms have been tested for
speed, accuracy and robustness using both real and simulated data.
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1 Introduction

In computer-assisted surgery, imaging modalities (e.g. CT-scans, MRI, X-Ray) and
computer technologies provide the surgeon with a 3D representation of the surgical
region of interest. This not only allows for a precise navigation during surgery, but
also for the preoperative planning of the surgical procedure. However, for planning to
be any useful intraoperatively, proper registration of the patient and the preoperative
surgical data in a single reference frame is required. In essence, such registration
consists in aligning a partial and noisy intraoperative 3D source point cloud on the
complete and precise preoperative 3D model point cloud.

When the navigation system or the surgical robotic device is rigidly attached to
the patient, registration may only be needed once, as an initial step. This is generally
achieved using bone fiducials or inserts [6]. In this case the registration time, though
important to reduce the overall duration of surgery, is not critical. However, when
the patient moves during surgery, registration is to be renewed, in real time, of the
order of a few tens of milliseconds, as to keep the patient and the planning (hence
the preoperative 3D model) reference frames aligned at all times.

Most available commercial robotic and navigation systems use optical trackers
that are rigidly fixed (e.g. with pins or screws) to the patient’s bones so as to track
their movements using an optical device [3, 19, 20, 22, 23]. This makes the tracking
problem quite straightforward. Unfortunately, attaching the trackers to the bones is
quite invasive and may lead to infections and/or fractures in addition to longer sur-
gical procedures and healing time. RGB-D cameras offer a promising noninvasive
alternative to the existing optical tracking systems. Indeed, such cameras are inex-
pensive and provide a relatively accurate 3D shape that may facilitate tracking and
avoid using markers altogether. As a result, several works in progress investigate the
use of RGB-D cameras for tracking [7–10, 17] in order to overcome the drawbacks
of existing systems. Tracking then boils down to registering the 3D intraoperatively
scanned bone portions on a preoperative 3D bone model. However, this requires the
registration process to be fast as to allow real-time tracking. Furthermore, registra-
tion accuracy, robustness to noise as well as to different amounts of bone motion
are also required for a safe and precise surgical act. The context of femoral bone
surgery, which is the subject of the current study, is particularly difficult and chal-
lenging for such registration because only a small portion of the bone is visible during
surgery [7].

This paper provides a comparative analysis study of 3D-3D rigid registration
algorithms of bones in the context of knee surgery. In particular, we focus on the
application described by Liu and Baena in [10] and in which femoral condyles are
scanned with a RGB-D camera and require intraoperative registration on a preopera-
tively scanned femoral bone point cloud. This is a challenging registration procedure
with real-time requirement and in which only a portion of the bone is visible during
surgery. In this regard, we compare the viability and efficiency of the well-known
and widely used Iterative Closest Point Algorithm (ICP) in its point-to-point [2]
and point-to-plane [11] variants against two more recent and promising algorithms:
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Super 4-Points Congruent Sets (Super4PCS) [12] and Globally Optimized ICP (Go-
ICP) [21]. Super4PCS is based on the 4PCSprocedure: it computes the best alignment
in the least squares sense by finding coplanar bases of 4 congruents pointsets within
a RANSAC (RAndom SAmple Consensus) procedure. In contrast, Go-ICP is based
on a branch-and-bound search using ICP as a subroutine. To test these algorithms in
the context of the chosen application, we propose a workflow to simulate bonemove-
ment and evaluate the registration accuracy, while applying increasing perturbations
to the scanned femoral condyles.

Our paper is organized as follows: the targeted registration algorithms are pre-
sented in Sect. 2. Section3 describes the material and methods used to compare the
registration algorithms. The results of our experiments along with our analysis are
given in Sect. 4. Section5 concludes this work and provides future works.

2 Registration Algorithms

This section provides a review of the four 3D-3D rigid point cloud registration algo-
rithms considered in our comparative analysis study: namely, point-to-point ICP,
point-to-plane ICP, Super4PCS and Go-ICP.

Point-to-Point ICP: The ICP algorithm from Besl and McKay [2] is the most com-
monly used algorithm for solving the 3D-3D registration problem and has many
variants [16]. The algorithm attempts to register the two point clouds by iteratively
considering the closest points (in the Euclidean sense) in the source and model point
clouds as corresponding ones. For S a source point cloud containing N points with
si = (six , siy, siz, 1)T a source point, andmi = (mix ,miy,miz, 1)T the closest model
point, at each iteration, the ICP algorithm estimates the optimal 4 × 4 rigid transfor-
mation matrixMopt by solving

Mopt = argmin
M

N−1∑

i=0

‖mi − Msi‖2. (1)

The estimated transformation is then applied to the source points and the process of
solving (1) is repeated.

Point-to-Plane ICP:While the point-to-plane variant of the ICPproceeds in the same
iterative way as its point-to-point counterpart, it differs from it in that it considers, as
a minimization metric, the distance between each source point and the tangent plane
at its closest corresponding model point [11]. This allows one to take advantage of
the surface normal information and was observed to generally lead to more robust
and accurate registration results. Using the same notation as for the point-to-point
ICP, and with ni = (nix , niy, niz, 0)T the unit normal vector at point mi from the
model, the optimal transformation is obtained by solving:
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Mopt = argmin
M

N−1∑

i=0

((mi − Msi )Tni )2. (2)

Super4PCS: The 4PCS procedure consists in three steps [1]: creating some wide
4-points coplanar base, searching for all congruent bases and finding the most appro-
priate one. First, to create a coplanar base, three points, say p1, p2 and p3, are ran-
domly selected and a fourth point, p4, is selected on the plane defined by the first
three points. The size of this wide base is conditioned by the overlap value, set by
the user. This value defines the proportion of common points in the point clouds.
Then, congruent base points are extracted. For a rigid alignment, two distances are
computed from the base as invariants. As it is always possible to find two intersecting
lines between the four coplanar points, let set p1 p2 and p3 p4 the lines intersecting
in a point p5. The two invariants are defined by the ratios:

r1 = ‖ p1 − p5‖ /‖ p1 − p2‖ (3a)

r2 = ‖ p3 − p5‖ /‖ p3 − p4‖ (3b)

All the bases having the same invariants, up to a user-defined approximation level
δ, are selected. Finally, the best aligning transformation is sought within a RANSAC
procedure. The chosen base is the one having the largest number of points within
δ distance from model points. In order to deal with the quadratic time complex-
ity, Super4PCS removes the redundant 4-points candidates by using a rasterization
approach.

Go-ICP: Go-ICP uses a nested branch-and-bound (BnB) structure together with the
point-to-point ICP minimization problem (1). The BnB structure consists in split-
ting the search intervals using a tree structure, and evaluating candidate solutions by
comparison with lower and upper estimated bounds. In this case, the outer BnB loop
explores the rotation space, whereas the inner one explores the translational compo-
nent of the rigid transformation. The algorithm is based on defining a progressively
tight underestimator of the globally optimal registration error within a parameter
space interval. While this corresponds to the most optimistic registration cost, the
most pessimistic one is provided by the traditional local point-to-point ICP. Clearly,
when an optimistic cost is worse than the pessimistic one, its corresponding param-
eter interval may be safely dropped. This makes the algorithm globally convergent
and guarantees global optimality (up to a predefined optimality threshold).

Three main parameters of Go-ICP can be set by the user: the MSE threshold
defining the convergence threshold based on themean of squared errors, the trimming
factor used tomanage outliers, and the size of the distance transform used to compute
the closest distances for bound evaluation.
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3 Material and Methods

3.1 Material and Preprocessing

For this study, we use one right femur 3Dmodel extracted from the database provided
by Nolte et al. [14]. A preprocessing of this 3D bone model is applied. It consists in
placing the bone in a well-defined femoral coordinate system, in defining a region
of interest (ROI) and in upsampling the point cloud.

First, some studies proposemethods to determine the anatomical axis of the femur
and the tibia [4, 13]. For our purpose, we use the following definition (see Fig. 1):

• The X axis is defined as the epicondylar axis, going through both epicondylar
points and oriented towards the right side of the patient, i.e. laterally for the right
femur and medially for the left femur.

• The Y axis is placed on the antero-posterior axis, also named Whiteside line. It is
oriented from the posterior to the anterior side.

• The Z axis is oriented from the intersection between X and Y axis towards the
center of the femoral head.

Then, in order to decrease the computation time, a ROI is defined by keeping only
the 10cm femoral distal part of the point cloud. This is realistic since the part of the
bone that is scanned during surgery is on the incision site.

Finally, point clouds are upsampled to increase and uniformize the point cloud
density of the model. This is necessary because the fitness score computed by the

Fig. 1 Femoral coordinate
system and femoral condyles
point cloud generation
process. Only a half matrix
of transducers with low
density (d = 10mm) is
presented for visualization
ease
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ICP algorithms depends on the point cloud density. For this purpose we use the
Poisson-disk sampling algorithm presented by Corsini et al. [5] and implemented
in Meshlab to create a Poisson density with a mean distance of 0.4mm. After this
preprocessing, the model point cloud contains 63,641 points.

3.2 Simulation Workflow

We propose an implementation of a simulation workflow. It aims at quantifying
the registration error of the point cloud of the condyles on the preprocessed bone
model point cloud during bone movement in real time. It consists of 4 steps: leg
movement simulation, femoral condyles point cloud generation, registration and
error quantification (see Fig. 2).

LegMovement Simulation: The movement of the leg (Fig. 2a) is simulated through
random transformations of the preprocessed bone model. These random transfor-
mations are generated with a Gaussian distribution of μr mean Euler angle with σr
standard deviation, and μt mean translation with σt standard deviation. We denote
by Mapplied the resulting 4 × 4 rigid transformation matrix. Different leg movement
speeds are simulated by varying the mean value of these transformations. Note that,
at each trial, the algorithms are fed the same data set obtained by applying a generated
transformation.

Femoral Condyles Point cloud Generation: The point cloud of the femoral
condyles is modeled by the following method (see Fig. 1). Each sensor is represented
by a matrix of n × m transducers. A raycast is generated from each transducer. All
the intersections between the raycasts and the bone model mesh are collected and
account for the condyle point cloud. Each condyle point belongs to the bone mesh,
but is not necessarily included in the bone point set.

We propose to simulate different point cloud densities to account for various
resolutions. This is done by varying the distance d (in mm) between two transducers
(e.g. between two rays).Wealso addperturbation to this point cloud throughGaussian
noise of mean value μnoise and standard deviation σnoise. After this step, the source

Fig. 2 Simulation workflow to compare registration error for different registration algorithms
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point cloud is composed of 691 points for d = 2mm, 110 points for d = 5mm and
2747 points for d = 1mm.

Registration: The generated femoral condyle point cloud is registered (Fig. 2c) on
the bone model point cloud using one of the registration algorithms described in
Sect. 2.

Error Quantification: In order to quantify the registration error (Fig. 2d), we use a
RMSE with the following definition.

For S a source point cloud containing N points,with si = (six , siy, siz, 1)T a source
point and Mest the 4 × 4 rigid transformation matrix estimated by the registration
algorithm as the inverse of Mapplied to align the transformed source on the model,
the RMSE is obtained by:

RMSE =
√√√√ 1

N

N−1∑

i=0

‖si − MestMapplied si‖2 (4)

This value differs from the standardRMSE error internally used by the registration
algorithms and also named fitness score [2]. In fact, the fitness score compares the
distance from each point of the registered source to its nearest neighbor in the model.
The RMSE instead compares the position of each point of the registered source
(after a transformation has been applied) MestMapplied si to the same point si from
the initially well-aligned source.

This metric has two advantages: it is not influenced by the quality of the matching
between both model and registered source point clouds and it does not depend on
the model point cloud density. But the metric can only be used if the initially applied
transformation is known, which is the case in our experiments.

3.3 Preprocessing

A point cloud preprocessing is applied before registration. First the model and the
source point clouds are centered. For both point-to-point and point-to plane ICP, the
parameters are computed so that the model is centered at the origin, and the same
parameters are applied to the source point cloud. For Super4PCS and Go-ICP, we
use an independent centralization: both source and model point clouds are centered
at their respective origins. In all cases, a normalization is then applied such that the
model lies within the unit-radius sphere. Both model and source point clouds are
scaled with the same scale factor. Finally, the point indices in the model and source
point clouds are randomized.
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4 Experiments and Results

The simulations were carried out on a laptop with an Intel i7-11850H 2.50GHz CPU,
Ubuntu 20.04, Oracle VM VirtualBox.

4.1 Parametrization of the Registration Algorithms

Point-to-Point andPoint-to-Plane ICP: Point-to-Point andPoint-to-plane ICPwere
tested using their respective Point Cloud Library’s (PCL v1.12 [18]) implementa-
tions. These are based on solving (1) and (2) using Singular Value Decomposition.

Parametrization of Super4PCS: Super4PCS was tested using its OpenGR library
implementation [15]. Particular attention was paid to the setting of following param-
eters:

• The overlap parameter defines the overlap ratio between the source and the model
point clouds, with respect to surface area of the smallest point cloud. The number
of trials of different 4-point sets bases is directly linked to this value: the larger
overlap, the less trials. The femoral condyles being totally included in the bone
point cloud, the real overlap value is 1. In our experiments, the overlap was set
to 0.9 because in practice some points may not necessarily belong to the bone. As
a consequence, the number of RANSAC iterations naturally increases.

• The parameter δ has an influence on the process of extraction of the pairs of points
and in the search of congruent bases. With a larger δ, more pairs of points are
considered to have the same invariants andmore congruent bases are evaluated. For
δ too small, the number of retrieved potential correspondences may be insufficient
and the algorithm fails to converge. With a much bigger δ than it ought to be, many
more possibilities are evaluated and the algorithm may take prohibitively longer
to terminate. In our experiments δ was set to 1mm and then normalized with the
same scale factor used during the normalization process described in Sect. 3.3.

• Super4PCS relies on a sparse matching of points across point clouds. It is hence
essential, as it is also recommended in the OpenGR library documentation, to use
a reasonable sample size limited to a few thousands of points. We used a sample
size of 3000 points.

• We set 60 s as a time limit as it has been proposed for some test data provided by
Mellado et al. [12] along with their software.

As suggested by the authors, the registration output of Super4PCS is fed into an ICP
refinement.

Parametrization of Go-ICP: Some parameters require proper setting by the user
for the Go-ICP algorithm.

• The tr imming factor is meant to manage outliers by excluding extreme values.
We set it to 0.
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• Go-ICP’s runtime depends on the convergence threshold (global optimality gap).
A compromise is hence needed between time and accuracy. We set the optimality
threshold to 0.001mm. A smaller value slows the algorithm down but increases
the registration accuracy.

• The number of nodes per dimension of the distance transform is used to compute
the closest distances for fast bound evaluation. We set this value to 30.

Description of the experiments: We conducted four experiments. For each of them,
we were interested in the mean registration time (Fig. 3), in the convergence (Fig. 4)
and in the mean of the RMSE value (Fig. 6) over 100 trials.

Both point clouds were initially aligned. For the two first experiments, we were
interested in the ability of the algorithms to converge while increasing the bone
movement amplitude for a fixed time difference. This movement is defined as a
transformation composed of a rotation and a translation. Except for the third exper-
iment, the matrix of transducers used to generate the femoral condyle points is of
size of 100 × 120 boxes, with d = 2mm. All the distances, for applied translations
and distance between transducers, are defined in mm before being normalized with
the same scale factor used during the normalization process described in Sect. 3.3.

• First, we increased the translation while not applying any rotation. μt was taken
in the range between −55 and 55mm with a step of 10mm along the three axes
X, Y and Z, with a fixed δt = 5mm.

• We then assessed the robustness of the algorithms while increasing the rotation
with a small realistic Gaussian translation (μt = 5mm, σt = 5mm).

• In the third experiment, we focused on the influence of the dimensions of the
matrix of transducers on the registration convergence. We increased d to change
the density of the source point cloud. Gaussian rotations (μr = 10◦, σr = 5◦) and
translations (μt = 10mm, σt = 5mm) were applied.

• Finally, we assessed the impact of noise on each registration algorithm. For this
purpose, we increased σnoise while keeping μnoise = 0mm. Gaussian rotations
(μr = 10◦, σr = 5◦) and translations (μt = 10mm, σt = 5mm) were applied.

4.2 Registration Time

Figure3a shows that Go-ICP and Super4PCS were quite slow (between 15 and 25s)
in comparison to the local algorithms point-to-point and point-to-plane ICP (less than
4s) in case of variation of translations. For translation values between −15mm and
15mm (resp. −5mm and 5mm), point-to-point ICP converged on average in 0.26 s
(resp. 0.18 s), and point-to-plane ICP converged on average in 0.13 s (resp. 0.08 s).

It can be seen in Fig. 3b that, by reducing the distance d between the center of
each transducer (i.e. by increasing the source point cloud density), the registration
time increased exponentially for Go-ICP, while it did not increase much for both
local ICP variants.
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Fig. 3 Registration time for: a a variation of the translation applied to the source point cloud,
b a variation of the distance between each transducer, c a variation in the applied noise standard
deviation

While applying increasing noise to the source point cloud (see Fig. 3c), the regis-
tration time did not increased much for point-to-point ICP: typically 0.24 s of mean
time in the absence of noise and 0.58 s in the presence of noise with a standard devi-
ation of 10mm. Point-to-plane ICP registration time increased from 0.17 s with no
noise to 4.61 s for noise with 10mm standard deviation. Super4PCS was a lot slower
with a mean registration time of 17.2 s without noise and 642s for noise with 10mm
standard deviation. The simulations with Go-ICP were not carried out to the end
because, for each trial, the time exceeded 95s for a noise standard deviation of 2mm
and to more than 2h for noise with 5mm standard deviation.

4.3 Convergence

We are interested in the convergence of the different algorithms. We consider that
a run converges if the RMSE value is less than 5mm. This value has been chosen
by considering the histograms from Fig. 4, with a bin size of 5mm. It separates the
cluster of points with a RMSE close to 0 from the rest of the clusters of points with
high RMSE values, representing point clouds that have been wrongly registered.
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Fig. 4 Histogram of RMSE for: a a variation in the rotation, b a variation in the translation

Fig. 5 Convergence percentage for: a a variation in the rotation, b a variation in the translation

In both cases of rotation variation (Fig. 5a) and translation variation (Fig. 5b),
Super4PCS converged only in about 30% of the cases with our parametrization. Go-
ICP always converged. Both local ICP algorithms increasingly failed to converge for
rotations of more than 20◦ and for translations exceeding than 10mm. Such failures
are likely due to a premature convergence to a local optimum.

4.4 Registration Accuracy

Considering only the cases where the algorithms converged, Super4PCS exhibited
the same behavior as that of Go-ICP and point-to-plane ICP when increasing the
rotations (see Fig. 6a), with a RMSE error above 0.3mm, while point-to-plane ICP
outperformed all algorithms with a RMS error of 3.3E−3mm. For translations (see
Fig. 6b), Super4PCS performed better than point-to-point ICP and Go-ICP when it
converged. No values for translations more than 35mm are shown because point-
to-point ICP failed to converge all the time. To explain the shift in the convergence
observed in Fig. 6b, we present in Fig. 6c the variation of the RMSE for the point-
to-point ICP algorithm by decomposing the applied translations into each Euclidean
axis. We suspect the shape of the bone point cloud to be the cause of the behavior
observed on the Z axis, and to induce the previouslymentioned shift. Figure6d shows
the mean RMS error for all the algorithms with non-converging cases included.
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Fig. 6 Registration accuracy for: a a variation of the only rotation in the case of convergence, b
a variation in only the translations in the case of convergence, c a variation of the translation in
Euclidean axes only in case of convergence, d a variation in the translations for all cases (i.e. with
and without convergence)

5 Conclusion and Future Work

We conducted a comparative analysis study of four 3D-3D rigid registration
algorithms—point-to-point ICP, point-to-plane ICP, Super4PCS and Go-ICP—in
the context of knee tracking with a 3D camera. We tested the registration robustness
to the amplitude of the leg movement (for increasing transformations), to noise and
to the density of the source point cloud. Our study has shown that point-to-plane
ICP is the most adequate to guarantee convergence despite a variation in the source
point cloud density and noise, while being fast. The condition for that is that the
movement amplitude stays small, thus inducing small motions between consecutive
point clouds. This is realistic because of the high frequency of data acquisition in
real-time tracking. Nevertheless, our study shows that there is a need for registration
algorithms that are more suitable for real-time applications. Dedicated solutions,
such as local point cloud descriptors, specific to the bone local shape, should be
investigated.
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Fully Automatic Axial Vertebral Rotation
Measurement of Children with Scoliosis
Using Convolutional Neural Networks

Jason Wong , Marek Reformat , and Edmond Lou

Abstract Adolescent idiopathic scoliosis is a three-dimensional spinal disorder,
where the spine is characterized by lateral curvature and axial vertebral rotation
(AVR). Measurement of AVR is not as common as the lateral curvature due to its
time-consuming nature. However, AVRmeasurements are useful for predicting curve
progression and planning surgeries, which could both result in improved treatment
outcomes. To improve accessibility to AVR measurements, this study reported on a
convolutional neural network-based method that automatically measured the AVR
on posteroanterior (PA) radiographs based on Stokes’ method. The proposed method
was tested on 26 PA radiographs (338 vertebrae). The method resulted in 84% of
automatic measurements within the clinically accepted error of 5° and achieved a
circular mean absolute error of 3.1° ± 3.5° when compared with manual measure-
ments. This high accuracy, coupled with quick computation time (1.7 s per vertebra)
and highly interpretable outputs, demonstrates the clinical feasibility of employing
the proposed automatic method. This is the first method that automatically measures
AVR accurately on PA radiographs taken by both the conventional and EOS x-ray
imaging systems.

Keywords Axial vertebral rotation · Convolutional neural network · Machine
learning · Radiograph · Scoliosis

1 Introduction

Adolescent idiopathic scoliosis (AIS) is a three-dimensional (3D) spinal disorder,
where the spine features a coronal curvature, abnormal sagittal curvature, and axial
vertebral rotation (AVR). This disorder occurs in adolescents aged 10–16 years old
and affects 1–3% of this population. The severity of AIS is typically quantified using
only theCobb angle, ameasure of the lateral curvature of the spine [1]. However, only
measuring the Cobb angle may underestimate the 3D spinal deformation and delay
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treatment management. AVR is another scoliotic parameter that has been found to be
relevant for treatment and prognosis of AIS. Providing AVRmeasurements to a clini-
cianwould allow for a better understanding of the progression of a subject’sAIS. This
could allow for earlier treatment,maximizing treatment effectiveness andminimizing
surgical intervention. Also, accurate AVR measurements is crucial for surgical plan-
ning. Incorrectly evaluating a subject’s AVR could increase the chances of pedicle
breaches during surgery, resulting in a higher risk of screw-related complications
[2].

Ideally, AVR is measured using a computerized tomography (CT) scan because
the full 3D spine is imaged and the AVR can be directly measured. However, due to
its high ionizing radiation dosage, CT imaging is not used regularly. From literature,
the most common method which can quantify the AVR on PA radiographs is Stokes’
method. It consists of identifying theminimumwidth of the vertebral body alongwith
the centroids of the pedicles. Actual 3D information is then incorporated into their
formula to calculate AVR by using pre-computed vertebra width-depth ratios [3].
However, labelling the pedicles is particularly difficult and time-consuming because
the area around them is sometimes unclear due to poor contrast on the radiograph.

Consequently, a computer-assisted method of AVR measurement that is fully
or even partially automated is widely sought by clinicians [4]. Two other groups
have reported on automating steps of AVR measurement on PA radiographs [5, 6].
However, their methods still required users to manually identify spinal features, such
as the general area of the pedicles, spinal curve, or vertebral endplates. No other group
has developed a fully automatic AVR measurement method for PA radiographs.

Our group has previously developed a machine learning algorithm for PA radio-
graphs, which achieved a circular mean ± standard deviation of absolute errors of
4.3° ± 5.7° [7]. Among the 221 tested vertebrae, 81% of automatic measurements
were within the clinically accepted error of 5° when compared with manual measure-
ments. However, that algorithm was developed to only work for radiographs taken
by the EOS x-ray system. The EOS system (EOS Imaging, France) is a low-dose
ionizing radiation x-ray system, which is commonly used at hospitals in developed
countries. However, many private scoliosis centers and low-income countries are still
employing the conventional x-ray system. Consequently, a machine learning algo-
rithm that can measure the AVR from both the conventional and EOS x-ray systems
is highly desired. This manuscript reported on a fully automatic algorithm that could
measure the AVR on PA radiographs taken by both the conventional and EOS x-ray
systems and on the accuracy of this automatic measurement method.
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2 Methodology

2.1 Proposed Method

The proposed AVR measurement algorithm was accomplished using a cascaded
convolutional neural network (CNN) design, where the algorithm was divided into
six stages: (1) segmentation of the spinal column from the top thoracic (T1) to
bottom lumbar (L5) vertebra, (2) segmentation of the individual vertebral bodies,
(3) segmentation of the pedicle centroids, (4) iterative location of the vertebral body,
(5) correction of the vertebral body segmentations, and (6) AVR measurement using
Stokes’method. The flowchart of the procedure (Fig. 1) ismodified fromour previous
work [7], by addingvertebral body segmentation correction to improvevertebral body
width calculations.

Spinal column, vertebral body, and pedicle centroid segmentation were all accom-
plished with CNNs trained using the supercomputer from the Industry Sandbox and
Artificial Intelligence Computing (ISAIC) at the University of Alberta. Training and
validation were performed on a Linux virtual machine with an Intel Xeon Gold 6138
dual processor, NVIDIA Tesla V100 16 GB GPU, and 64 GB of RAM. The code
for this study was developed in the Python language, using TensorFlow for CNN
development.

To train CNNs and validate the final measurement algorithm, PA radiographs
of children with AIS were extracted from local scoliosis clinical records. Ethics
approval (Pro00102044) was granted by the University of Alberta research health
ethics board.

2.1.1 Stage 1—Segmentation of the Spinal Column

This segmentation stage crops out the key spinal column region to assist the next
two stages of segmentation in locating the individual vertebral bodies and pedi-
cles. This stage includes image processing, scaling the image down to 256 × 128,
applying a variant of the U-net CNN, and post-processing to obtain the spinal column
curve (SCC). The detailed description can be found in [7]. A new dataset and hyper-
parameters were used in this study to train the spinal column segmentation CNN
(CNNSC).

Fig. 1 Flowchart of the proposed automatic AVR measurement algorithm
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To train and optimize CNNSC, 110 PA radiographs were split into a 96-image
training and 24-image validation set randomly. On all 110 images, the spinal column
from T1 to L5 was labelled as one continuous segment. Both sets comprised of half
conventional andhalf EOS radiographs.Data augmentationwas employed to increase
the effective size of the training set by randomly flipping the image horizontally or
rotating the image by an angle of up to 10°.

A grid search was performed to optimize the hyperparameters of CNNSC. CNNSC

aimed to minimize the soft Dice loss function and was trained using the Adam opti-
mizer. The optimized CNNSC was trained for 1,000 epochs with a 10−3 learning rate
and batch size of 2. The leakyReLUactivation functionwith 0.01 alphawas used after
each convolutional layer [8]. The regularization techniques of batch normalization
and dropout were performed to improve the network’s ability to generalize. Batch
normalizationwas performed before each pooling and upsampling layer, and dropout
after each pooling and upsampling layer with a probability of 0.5. The network with
the lowest Dice loss on the validation set during training was treated as the final
CNNSC. Figure 2 depicts the image pipeline from initial PA radiograph to segmented
spinal column with SCC.

Fig. 2 PA radiograph pipeline from original to segmented spinal column (yellow) with the SCC
(green)
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2.1.2 Stage 2—Segmentation of the Vertebral Body

The vertebral body was segmented on square images that were cropped from the
initial unprocessed PA radiographs and centered around the vertebral body. Segmen-
tation of the vertebral body was required to obtain the center of the minimum width
of the vertebral body (CVB). To highlight the boundaries of the vertebral body, the
images underwent histogram equalization, and then were scaled down to a size of
128 × 128.

A similar CNNarchitecture (CNNVB) asCNNSC was used to segment the vertebral
body, with the only difference being an initial input image size of 128 × 128. A total
of 20 PA radiographswere selected from the database, fromwhich 340 vertebral body
imagesweremanually cropped, labelled, and randomly sampled to form a 272-image
training and 68-image validation set. Each set consisted of half conventional and half
EOS images. Random horizontal flipping, zooming from 80 to 120%, horizontal
and vertical shifts of up to 10%, and/or rotations of up to 45° were employed as
data augmentation methods so that CNNVB was more robust to different vertebra
anatomies.

The same grid search practices for CNNSC were employed to optimize CNNVB.
Using the Adam optimizer and a soft Dice loss function, CNNVB was trained for
1000 epochs with a 10−4 learning rate and a batch size of 4. The leaky ReLU acti-
vation function with 0.01 alpha was used after each convolutional layer. Dropout
was performed with 0.125 probability, and batch normalization was not performed.
The network with the lowest Dice loss on the validation set was treated as the final
CNNVB.

2.1.3 Stage 3—Segmentation of the Pedicle Centroids

Using the same input images to CNNVB, the pedicle centroids were identified using
the same architecture (CNNPED) as CNNVB. However, CNNPED aimed to predict the
centroids of the pedicles. Therefore, images were labelled such that the centroids of
the two pedicles on the vertebral body image were digitized. Then, the labels were
encoded for heatmap regression, where the labelled centroid pixel had a value of
1 and as you moved further from this center, the surrounding pixels decreased in
value. How the values decreased was determined using a Gaussian neighborhood
function with a standard deviation of 2 and a window of 3 (creating a 7 × 7 square
centered on each pedicle centroid). A total of 390 vertebral body images derived from
30 PA radiographs, with the pedicle centroids labelled, were randomly sampled to
form a 312-image training and 78-image validation set. Each set consisted of half
conventional and half EOS images. The same data augmentation practices as CNNVB

were employed for CNNPED.
CNNPED was trained using amean squared error loss function instead of soft Dice.

Other than that, optimizing CNNPED followed a similar grid search practice as the
others. The optimized CNNPED was trained using an Adam optimizer for 500 epochs
with a learning rate of 10−4 and a batch size of 1. The leaky ReLU activation function



274 J. Wong et al.

with 0.01 alpha was used after each convolutional layer. Dropout of probability 0.125
was performed, and there was no batch normalization. The network with the lowest
mean squared error loss on the validation set was treated as the final CNNPED.

2.1.4 Stage 4—Iterative Location of the Vertebral Body

Because the inputs to CNNVB and CNNPED are square images centered on the verte-
bral body, a procedure to locate and crop out these images is required. An iterative
algorithm was developed to localize these vertebrae for segmentation. The general
structure of this iterative algorithm is like our previouswork [7]: segmenting a starting
vertebra at aroundT12, segmenting the vertebra directly above, evaluating the quality
of the segmentation by using ametric derived from standardmasks, cropping another
image to re-segment if a certain quality was not achieved, and repeating this proce-
dure iteratively up and downuntil the ends of the spinal column are reached.However,
one major improvement was made to the iterative location algorithm.

The metrics with which to evaluate the quality of a vertebral body segmentation
were modified. The previous mean and variance quality metrics were replaced with
a single similarity loss coefficient (�). Calculating � involved using thirteen standard
vertebral bodymasks from the CNNVB training set to compare with a given predicted
segmentation. First, the predicted segmentation was rotated such that its bounding
box was flat with the horizontal. Then, its contour was extracted, along with the
contours of each standard mask. The minimum distances from each point on the
standard contour to the predicted contour and vice versa were then calculated. Let
the set of all standard masks be ψ and the distribution of points in the standard and
predicted contour be Γ and Φ with a single point being γ and ϕ in each contour,
respectively. The similarity loss � is calculated as follows:

� = min
ψ
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whereNΓ andNΦ refer to the number of points in distributionsΓ andΦ, respectively.
A higher value of � refers to a poorer vertebral body segmentation.

2.1.5 Stage 5—Correction of the Vertebral Body Segmentation

A common trend in our previous algorithm’s inaccurate measurements was poor
vertebral body segmentation that influenced the position of CVB. Cases where the
segmentation contained an extra protrusion at the sides of the segmentation increased
the chances of AVR measurements being outside of clinical acceptance due to the
shift in the CVB calculation. Therefore, an image registration step was incorporated
to correct these segmentations and maximize the chances of obtaining an accurate
CVB.
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The scaling iterative closest points algorithm (SICP) was implemented to accom-
plish image registration correction [9]. SICP is an algorithm that searched for the
affine transformation (scaling, rotation, and translation) that minimized the sum of
squaredminimum distances between the points on two given contours. For our study,
these two contours were of the predicted segmentation and the standard vertebral
body mask that produced the lowest � in the iterative vertebral body location algo-
rithm. SICP was repeated until an improvement of less than 10−3 was obtained
between consecutive iterations or until 100 iterations was reached. An inlier ratio
of 0.8 was used. The registered standard mask was used in place of the predicted
segmentation to calculate CVB.

2.1.6 Stage 6—Measurement of the AVR

With the vertebral body segmented and the probability heatmap from CNNPED

obtained, the algorithm conducted post-processing to derive the necessary infor-
mation for measuring AVR. Based on vertebral anatomy, the vertical position of the
minimum width is located close to the centroid of the vertebral body. Therefore,
to determine CVB, the algorithm calculated the geometric centroid of the rotated
mask and searched for the minimum width in a vertical window centered around
the centroid’s y-position. The algorithm then calculated the lengths of the largest
continuous segment for each row within the window. The location of the median
segment length was treated as the vertical position of the minimum width, and CVB

was then calculated by determining the x-centroid of this continuous segment.
Next, the algorithm performed post-processing on the predicted probability

heatmaps. First, a list of potential centroid candidates was determined through itera-
tive local probability thresholding. This consisted of obtaining the connected compo-
nents when the heatmap was thresholded by a value θ and identifying the pixel with
the highest probability within each connected component. These identified pixels
were stored in a list of potential candidate centroids. This process was iterated for
multiple θ , starting at 0.5 and decrementing by 0.05 each time until 0.01was reached.

With a list of potential centroid candidates obtained, the algorithm separated the
candidates according to the different halves of the vertebral body (potential left and
right pedicles), based on where they were relative to the vertebral body’s centroid.
If no left or no right candidates were found during thresholding, then the algorithm
skipped the vertebra. Otherwise, the algorithm picked the candidate with the highest
probability within each half. This procedure was repeated for all vertebrae from
T4-L4 inclusive.

Using these points, the AVR is calculated as:

AVR = arctan

(
w

2d
× a − b

a + b

)
(2)

where w/d refers to the pre-computed width-depth ratios and a and b refer to the
distances between the center of the minimum width and the centers of the pedicles.
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Fig. 3 Vertebral body image pipeline from original to AVR measurement labelled with pedicle
centroids in green, and CVB in red. In CNNVB, yellow indicates the predicted segmented pixels and
in CNNPED, pixels from white to dark red indicate higher to lower probability predictions

Figure 3 depicts the image pipeline from original vertebral body to processed, CNN
segmented, and AVR measurement labelled. The AVR was calculated for T4-L4
inclusive.

Finally, an additional post-processing step of verifying that the AVR values were
reasonable was conducted. This involved first calculating confidence scores of each
vertebral body based on the pedicle centroid probabilities and the � of the vertebral
bodymask.Amaximumconfidence scorewas obtained if both pedicle centroidswere
predicted with 100% probability and if the predicted vertebral body segmentation
matched perfectly with one of the standard masks. Then, using the vertebral body
with the highest confidence score as the baseline, the algorithm examined the vertebra
above to check that its AVR values were reasonable. If there was a difference in AVR
values between neighboring vertebrae of 10° or if the trend of AVR values did not
follow a smooth curve, then a search for different pedicle centroid positions was
conducted. This search consisted of calculating all possible AVR values from the
previously identified left and right pedicle centroid candidates. The pair of centroid
candidates that produced the AVR closest to what was expected based on the trend of
the AVR values was chosen as the true centroids. With this vertebra now complete,
the algorithm iterated upwards, treating the recently checked vertebra as the baseline
and investigating the next vertebra above. This repeated until T4 was reached, and
then the algorithm went back to the original baseline vertebra and repeated the same
iterative procedure, but moving downwards instead until L4 was reached.
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2.2 Validation

2.2.1 Spinal Feature Segmentation

To evaluate the performance of CNNSC and CNNVB, fivefold cross-validation was
employed. This was conducted using the optimized hyperparameters found from the
grid searches. Each fivefold cross-validation used all labelled images—110 spinal
column images and 340 vertebral body images. Performance was evaluated using
the means and standard deviations of precision, recall, and the Dice coefficient over
the folds. Cross-validation was not performed for CNNPED because the nature of its
outputs is different and cannot be evaluated with intuitive performance metrics such
as precision, recall, or the Dice coefficient.

2.2.2 AVR Measurement

To evaluate the performance of the automatic AVR measurement algorithm, a set
of 26 spinal PA radiographs was selected. The set comprised of 13 conventional
and 13 EOS radiographs, and all images were randomly selected. The average AVR
of the 26 subjects for all valid vertebrae was 3.4° ± 2.9° (range: 0°–18.5°). None
of the images in this set were used for training the CNNs or tuning the algorithm.
ManualAVR (M-AVR)measurements performed on the PA radiographswere used as
a baseline to compare the automatic AVR (A-AVR) ones. All M-AVRmeasurements
were performed by a rater who had over 20 years of experience measuring scoliotic
parameters manually. The rater was blinded to the A-AVR measurements.

The percentage of A-AVR measurements within clinical acceptance was calcu-
lated to determine the automatic algorithm’s accuracy performance. An A-AVR
measurement was deemed clinically acceptable if the measurement was within at
most 5° of the M-AVR measurement. In addition, the circular mean absolute error
(CMAE) and standard deviation of circular absolute errors (SD) were used to deter-
mine the automatic algorithm’s accuracy performance. These two metrics were
derived from the circular absolute error (CAE), which is defined as:

CAE = arctan

(
sin(|θa − θm |)
cos(|θa − θm |)

)
(3)

where θa and θm refers to theA-AVRandM-AVRmeasurement, respectively. Finally,
our previous method [7] was applied to this 13-image EOS radiograph set to quantify
the effect of the improvements from the proposed method.
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Table 1 Fivefold cross-validation results for CNNSC and CNNVB

Network Precision Recall Dice coefficient

Spinal column (CNNSC) 0.959 ± 0.004 0.955 ± 0.006 0.957 ± 0.003

Vertebral body (CNNVB) 0.911 ± 0.011 0.929 ± 0.006 0.915 ± 0.006

3 Results and Discussion

3.1 Spinal Feature Segmentation

CNNSC, CNNVB, and CNNPED converged in 398, 195, and 170 epochs, respectively.
Table 1 lists the fivefold cross-validation results for CNNSC and CNNVB. A Dice
coefficient greater than 0.91 was achieved for all folds in both networks.

3.2 AVR Measurement

In the 26-image test set, therewere 338vertebrae eligible forAVRmeasurement using
Stokes’ method (T4-L4 for each radiograph). The automatic algorithm successfully
measured the AVR for all 338 vertebrae. Examples of AVR measurements on the
full PA radiographs are illustrated in Fig. 4. Overall, the A-AVR measurements
were 3.1° away from the M-AVR measurements on average, which is within the
clinically accepted error.Also, 84%of theA-AVRmeasurementswerewithin clinical
acceptance of the M-AVR measurements. Table 2 lists the measurement accuracy
results for different groups, according to x-ray imaging system. Looking only at
EOS radiographs, our method outperformed that of Logithasan et al. [7] on the same
13-image test set by 1.4° in terms of CMAE (4.6°± 6.2°) and 6% in terms of clinical
acceptance rate (79%).

There was no notable difference between the algorithm’s performance on conven-
tional vs. EOS radiographs. There was only a 0.2° difference in terms of CMAE and
a 2% difference in terms of clinical acceptance between the two groups.

Our measurement algorithm took 22.0± 9.9 s to measure the AVR of 13 vertebrae
per radiograph. This meant that an AVR measurement for a single vertebra took
1.7 s on average. This is a significant improvement over the typical 30 s it takes to
manually measure the AVR for each vertebra. The algorithmmeasured more quickly
on radiographs taken by the EOS than the conventional system (14.3± 2.2 s vs. 29.7
± 8.4 s). In contrast, the method in [7] took 109.6 ± 21.1 s to measure the 13 AVR
values per radiograph in the 13-image EOS test set.
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Fig. 4 Examples of AVR measurements with pedicle centroids (green) and the center of minimum
width of the vertebral body (red) labelled. The two leftmost images are from the conventional x-ray
system and the two rightmost images are from the EOS x-ray system

Table 2 Comparison results
for M-AVR versus A-AVR
measurements on the AVR
test set

Category % within clinical CMAE ± SD (°)

All 84% (283/338) 3.1° ± 3.5°

Conventional 83% (140/169) 3.0° ± 3.7°

EOS 85% (143/169) 3.2° ± 3.4°

4 Conclusion

This manuscript reports on a fully automatic AVRmeasurement method on PA radio-
graphs of children with AIS. The proposed method measured 84% of its 338 AVR
measurements within the clinically accepted error andwas on average only 3.1° away
from themanualmeasurements. This accuracy, combinedwith the quick computation
time (1.7 s per vertebra) and highly interpretable outputs, demonstrates the strong
clinical feasibility of the method, giving scoliosis centers the ability of convenient
AVR measurement. In addition, it could result in improved treatment outcomes and
improved surgical planning, leading to a reduction in screw-related complications.
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Diagnostic Accuracy and Reliability
of Deep Learning-Based Human
Papillomavirus Status Prediction
in Oropharyngeal Cancer
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Abstract Oropharyngeal cancer (OPC) patients with associated human papillo-
mavirus (HPV) infection generally present more favorable outcomes than HPV-
negative patients and, consequently, their treatment with radiation therapy may be
potentially de-escalated. The diagnostic accuracy of a deep learning (DL) model
to predict HPV status on computed tomography (CT) images was evaluated in this
study, togetherwith its ability to performunsupervised heatmap-based localization of
relevant regions in OPC and HPV infection, i.e., the primary tumor and lymph nodes,
as a measure of its reliability. The dataset consisted of 767 patients from one internal
and two public collections from The Cancer Imaging Archive and was split into
training, validation and test sets using the ratio 60–20–20. Images were resampled
to a resolution of 2 mm3 and a sub-volume of 96 pixels3 was automatically cropped,
which spanned from the nose until the start of the lungs. Models Genesis was fine-
tuned for the classification task. Grad-CAM and Score-CAM were applied to the
test subjects that belonged to the internal cohort (n = 24), and the overlap and Dice
coefficients between the resulting heatmaps and the planning target volumes (PTVs)
were calculated. Final train/validation/test area-under-the-curve (AUC) values of
0.9/0.87/0.87, accuracies of 0.83/0.82/0.79, and F1-scores of 0.83/0.79/0.74 were
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achieved. The reliability analysis showed an increased focus on dental artifacts in
HPV-positive patients, whereas promising overlaps and moderate Dice coefficients
with the PTVs were obtained for HPV-negative cases. These findings prove the
necessity of performing reliability studies before a DL model is implemented in a
real clinical setting, even if there is optimal diagnostic accuracy.

Keywords Human papillomavirus · HPV · Deep learning · Oropharyngeal
cancer · OPC · Interpretability · Reliability

1 Introduction

The global burden of oropharyngeal cancer (OPC) has steadily increased over the
last decades, reaching almost 100,000 new patients in 2020 [1]. Infection with high-
risk variants of human papillomavirus (HPV) has been recognized as the leading
cause of this rising incidence rate, accounting for approximately 30% of OPC cases
worldwide [2]. Patients with HPV-driven tumors generally present a more favor-
able outcome after treatment with radiation therapy (with or without concomitant
chemotherapy), with 3-year overall survival rates ranging from 82.4% for HPV-
positive cases to 57.1% for HPV-negative cases [3]. The etiological and prognostic
significance of HPV status has thus led to its inclusion in the American Joint
Committee on Cancer (AJCC) staging guidelines for OPC and has prompted an
increased interest in treatment de-escalation strategies for HPV-positive patients [4].
Current clinical standard for the determination of an HPV infection is often based on
p16 staining/immunohistochemistry (IHC) due to its ease of implementation, high
sensitivity, and inexpensiveness [5].

Cantrell et al. investigated the radiological differences between computed tomog-
raphy (CT) images of HPV-positive and HPV-negative OPC patients [6]. Authors
reported tumor exophytic characteristics, improved tumor border definition, and an
increased presence of cystic nodal metastases in HPV-positive oropharyngeal carci-
nomas, whereas HPV-negative tumors were more likely to present muscle invasion.
However, currently there is no standard, widely adopted radiological signature for
the prediction of HPV status. A significant link between CT radiomic features associ-
ated to textural heterogeneity and HPV-negative tumors has been reported in several
studies [7–9]. Nevertheless, radiomics involves the extraction of quantitative imaging
features which are hand-engineered, which might not be relevant or well-suited for
the prediction task and might be especially time-consuming.

Deep learning (DL) circumvents these disadvantages by using the entire image or
region of interest as input data, and by performing automatic feature extraction and
selection. Two studieswere foundwhich employedDL for the task ofHPVprediction
in CT of OPC [10, 11]. Both studies performed transfer learning from non-medical
models and only focused on the primary tumor and its immediate regions, without
taking into consideration other important regions such as the affected lymph nodes.
In this study, we propose an alternative deep learning-based method for HPV status
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diagnosis in CT images of OPC patients. The proposed approach performs transfer
learning fromModels Genesis, a publicly available 3D convolutional neural network
(CNN) pre-trained on lung CT images [12]. The 3D input is selected automatically
and requires little pre-processing, eliminating the need for previously delineated
contours of the primary tumor, and it includes all regions from the nasal columella
until the start of the lungs, capturing thus the complete spatial context of the disease.
Moreover, the reliability concern regarding the black-box nature of DL methods is
addressed by evaluating the ability of the classification model to perform unsuper-
vised heatmap-based localization of the planning target volume (PTV). Our hypoth-
esis is that a reliablemodel shouldmainly focus on the primary tumor, affected lymph
nodes, and immediate surrounding regions, as these are well-known relevant areas
in OPC and HPV infection.

2 Methods

2.1 Study Cohort

The dataset was composed of clinical and imaging data from 767 oropharyngeal
cancer patients, retrospectively collected from our institution (n1 = 106) following
approval of the local ethical committee, and two publicly available cohorts from
The Cancer Imaging Archive (TCIA) [13]: the OPC Radiomics collection (n2 =
498) [14] and the head and neck squamous cell carcinoma (HNSCC) collection (n3
= 163) [15]. Definitive chemoradiation or radiation alone were used to treat all the
patients. Pre-treatment contrast-enhancedCT scans andHPVstatus informationwere
available for all patients. p16 IHC was employed in most cases to determine HPV
status. Contours of the PTV, defined by a radiation oncologist were available for all
patients in the internal cohort. The dataset was split into training (60%), validation
(20%), and test (20%) sets, so that the HPV-positive/negative ratio was kept the same
in the three partitions.

2.2 CT Pre-processing

The pre-processing pipeline was fully automated. First, the DICOM CT scans were
converted to NIfTi format and resampled to a resolution of 2 × 2 × 2 mm by
interpolation. On each scan, a crop of 96 × 96 × 96 pixels was extracted, which
spanned from the nasal columella to approximately the lungs’ apices. The most
inferior axial slice of the head which intersected with the most anterior slice of the
head was selected as the starting axial slice (i.e., nose slice). The end or most caudal
axial slice was selected 96 slices below the starting axial slice (Fig. 1a). The height
andwidth dimensions of the resultant 96 axial slices were trimmed so that theywould
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Fig. 1 Sub-volume selection in a head-and-neck CT scan. a Starting axial slice and ending slice
96 slices below. b Center of mass of the starting axial slice. The posterior 24 coronal slices of the
sub-volume are set to background

have a square 96 × 96 pixels shape (Fig. 1b). This cropping was centered around
the center of mass of the starting axial slice. The posterior 24 coronal slices of the
sub-volume were set to background as no relevant structures in OPC are in those
regions. Additionally, CT values were clipped in the range of [−40, 160] HU and
min–max normalized to have values ranging from 0 to 1. Voxels with HU values
outside the selected range were set to the mean HU value to avoid sharp gradients,
except for those voxels with HU values lower than −100 HU, which were set to 0
after normalization.

2.3 Deep Neural Network: Architecture and Training

Theproposedmodelwas composed of twoparts: a feature exactor and a classifier. The
former consisted of the pre-trained encoder of the 3D Genesis Chest CT model [12],
a 27-layer CNN of approximately 7 million parameters, whereas the latter consisted
of a three-layer fully-connected network of approximately 80 thousand parameters.
Adam optimizer was employed to minimize the cross-entropy loss and optimally
tune model parameters. An extensive manual search was carried out to determine
the following hyper-parameter combination: starting learning rate of 0.00001 with
a step decay of 0.9 every two epochs; starting number of frozen layers of 15 with
the unfreezing of one additional convolutional block every 100 epochs, a batch size
of 4 and dropout between the fully-connected layers with a probability of 0.25. The
model was trained for 500 epochs, even though early stopping was applied if the
validation loss or F1-score did not improve during 50 epochs. To counteract the
class imbalance, on each epoch, the model learned from a reduced, class-balanced
subset of 200 subjects. Data augmentation was applied on-the-fly consisting of small
random rotations and elastic deformations with a probability of 0.8, and random
left–right flips with a probability of 0.5. The final model was selected based on the
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best validation F1-score. The model was implemented using Keras and Tensorflow
libraries.

2.4 Reliability Assessment

In order to assess the reliability of the proposed model, one gradient-based method,
Grad-class activation map (Grad-CAM) [16], and one perturbation-based method,
Score-CAM [17], were applied to the test subjects which belonged to the internal
cohort (n= 24), as the delineations of the PTVswere readily available and carried out
by the same expert radiation oncologist. Grad-CAM exploits the spatial information
that is maintained through the convolutional layers of the model to detect which
regions in the input image are important in the classification. Typically, each feature
map of the last convolutional layer is given an importance weight for a specific class
c. This weight is calculated as the gradient of the output of the network for that class
before softmax with respect to that feature map averaged over its width, height and
depth dimensions.

Then, the output heatmap is obtained by first computing the weighted sum of
the feature maps, followed by the application of ReLU and the final re-sizing of the
heatmap to the input image size. Score-CAM, on the other hand, does not require the
computation of gradients. The importance weights of each future map are calculated
based on the prediction score obtained after masking the input with the respective
feature map and performing a forward pass. The resulting heatmap is constructed
in the same manner as in Grad-CAM. After the application of the above-mentioned
interpretability methods, two different threshold values were used to select the most
important regions in the heatmap: the 70th and 85th percentiles. Afterwards, the
overlap coefficient (OC) and the Dice similarity coefficient (DSC) between the PTVs
and the thresholded heatmaps (thHMs) were calculated as follows:

OC = |PTV ∪ thHM|
min{|PTV|, |thHM|} DSC = 2∗|PTV ∪ thHM|

|PTV| + |thHM|

3 Results

3.1 Study Cohort

The characteristics of the patients included in each partition of the dataset are
described in Table 1. There was an HPV status class imbalance of 560 positive
versus 207 negative subjects (73.0% versus 27.0%).
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Table 1 Patient characteristics

Training Validation Test Total

# Patients 459 154 154 767

HPV status (pos./neg.) 335/124 113/41 112/42 560/207

Sex (M/F) 363/96 393/105 132/31 607/160

Tumor size (cm3) 27.3 26.7 30.5 27.7

Stage (7th edition))

I–II/III–IV 27/432 12/142 16/138 55/712

Resolution (mm2)

0.49 80 22 28 130

> 0.49, < 0.98 73 21 26 120

0.98 290 103 96 489

Other 16 8 4 28

Slice thickness (mm)

1 80 23 29 132

2 358 126 115 599

Other 21 5 10 36

Mean values are reported for the tumor size

3.2 Diagnostic Accuracy and Reliability Assessment

The best model was found at epoch 220 after 6 h and 48 min of training. Final
training/validation/test AUC values of 0.90/0.87/0.87, accuracies of 0.83/0.82/0.82
and F1-scores of 0.83/0.79/0.74 were obtained.

The reliability study was performed on the 24 test patients that belonged to the
internal cohort. 7 out of 11 HPV-negative patients and 9 out of 13 HPV-positive
patients were correctly classified by the network. The mean ± standard deviation
values for the overlap and Dice coefficients between the CAMs and the PTVs can be
found in Table 2. HPV-negative samples that were correctly classified showed better
overlap scores than those incorrectly classified as positives. However, no significant
difference was found between true negatives and false negatives. Moreover, correctly
classified HPV-positive samples showed worse mean overlap and Dice coefficients
with the PTVs than those incorrectly classified. Visual inspection of the heatmaps
revealed a focus on dental artifacts in those cases correctly and incorrectly classified
as HPV-positive by the model (Fig. 2a). On the contrary, the heatmaps of the samples
classified as HPV-negative presented a good agreement with the PTV (Fig. 2b).
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Table 2 Mean ± standard deviation values for the overlap coefficients (OCs) and Dice similarity
coefficients (DSCs) between the planning target volumes (PTVs) and the 70th-percentile- and
85th-percentile-thresholded heatmaps obtained with Grad-CAM and Score-CAM

Thr Grad-CAM Score-CAM

OC DSC OC DSC

TN
(n = 7)

70th 54.3 ± 17.6 32.0 ± 11.4 61.1 ± 11.5 30.3 ± 5.4

85th 37.2 ± 15.5 32.0 ± 12.6 38.9 ± 13.2 30.6 ± 9.0

FP
(n = 4)

70th 34.8 ± 6.7 21.3 ± 6.0 48.9 ± 7.6 25.8 ± 3.2

85th 21.6 ± 4.3 18.9 ± 4.2 23.0 ± 3.8 18.8 ± 2.9

TP
(n = 11)

70th 28.5 ± 10.2 17.9 ± 6.3 46.6 ± 19.9 24.6 ± 6.2

85th 18.8 ± 8.6 15.5 ± 5.7 25.3 ± 12.6 19.7 ± 7.2

FN
(n = 3)

70th 49.1 ± 10.7 33.4 ± 7.9 56.5 ± 7.3 32.4 ± 4.9

85th 34.2 ± 4.3 27.7 ± 3.8 31.6 ± 5.0 27.6 ± 4.6

TN: true negatives; FP: false positives; TP: true positives; FN: false negatives

4 Discussion

Thecom goal of the study was to assess the clinical accuracy and utility of deep
learning for the prediction of HPV status in CT images of OPC patients by means
of deep learning, together with the assessment of the model’s ability to perform
unsupervised heatmap-based localization of the planning target volume as a measure
of its reliability. Imaging and clinical data from 767 patients were collected from our
institution and two public collections from the TCIA, and employed to fine-tune a 3D
CNN for the prediction task.While the resultingmodel achieved excellent diagnostic
performance, the reliability analysis revealed an increased focus of the model on
dental artifacts in HPV-positive patients. On the contrary, promising overlap between
the heatmaps and the PTVs was observed in patients classified as HPV-negative.

The diagnostic accuracy of DL for the proposed taskwas also explored in [10, 11].
Both studies employed transfer learning techniques from non-medical models and
achieved very good performances on external patient cohorts (AUC = 0.81−0.88).
Nevertheless, there were some disadvantages present in both studies: they required
previously delineated tumor contours, the complete 3D spatial context of the disease
was not investigated (only the primary tumor) and both lacked an evaluation of
the model’s reliability. In our study, we propose a fully-3D approach in which all
structures located between the nose and the lungs are considered in the prediction
task. Moreover, tumor or lymph node delineations are not required as the input is
constructed automatedly. Additionally, transfer learning is carried out from a model
pre-trained on CT images, which ensures the transferability of the learned features,
as opposed to transfer learning from natural images/videos datasets.

The implementation of an AI model in radiology requires a thorough assessment
of its reliability and interpretability [18]. Therefore, in this study we evaluated the
reliability of the model’s predictions via the study of different post-hoc attribution
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Fig. 2 a 70th-percentile-CAM (red), 85th-percentile-CAM (yellow), and PTV (dark blue) contours
for two correctly classified HPV-positive patients and one incorrectly classified HPV-negative
patient.b 70th-percentile-CAM(red), 85th-percentile-CAM(yellow), and PTV (dark blue) contours
for two HPV-negative patients correctly classified and one HPV-positive patient incorrectly
classified

maps and their overlap with the PTVs. We hypothesized that a reliable prediction
should focus on the primary tumor, lymph nodes and surrounding regions, as these
structures are known to be affected byHPV infection. Post-hoc generatedCAMshave
been widely employed to interpret DL-based medical image classification tasks [19],
such as detection of Parkinson’s disease [20], multiple sclerosis [21], Alzheimer’s
disease [22], and COVID [23] among others, as they offer the possibility to explore
the correlation between well-known disease image biomarkers and those regions
relevant for the model’s prediction. Our model showed increased relevance of areas
including the primary tumor and affected lymph nodes in the prediction of HPV-
negative cases. However, the model failed to focus on the PTV in HPV-positive
cases and focused instead on dental artifacts. This learnt correlation between the
presence of HPV infection and dental implants could be a result of different OPC
patient profiles: HPV-negative patients usually have a history of tobacco, alcohol
and other substances consumption, which is frequently linked to poor oral hygiene
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and care [24]. On the contrary, HPV-positive patients are associated to an increased
number of sexual partners, with no association to tobacco or other substances abuse.
It is likely that this group is more careful about dental care and has more artificial
implants. This example shows the importance of performing a reliability analysis to
find model limitations before they are introduced in the clinic.

Several limitationswere found in the proposed study. Firstly, the scarcity of labeled
data potentially hampered the generalization capability of the model. Furthermore,
head-and-neck CT scans are very frequently subject to artifacts from dental implants,
which cause streak patterns that may affect the study of the primary tumor and other
regions of interest and as observed in this study, may confound any automatic image
analysis tool. The inclusionofmagnetic resonance andpositron emission tomography
images, which have been successfully employed to predict HPV status [25], could
lead to a more accurate and explanatory diagnostic tool. Another potential drawback
encountered was the use of p16 IHC for ground truth data labeling, as this technique
might lead tomoderate false-positive rates [27].mRNA-in situ hybridization-labelled
data should hence be considered to rigorously assess the clinical validity of the
proposed method. Finally, further studies on external validation cohorts should be
carried out to validate the reported findings.

5 Conclusion

DL achieved excellent performance inHPV status diagnosis in CT ofOPC. However,
our reliability analysis showed an increased relevance of regions with dental artifacts
for the prediction ofHPV-positive cases,whereas a good agreementwith the PTVwas
observed in HPV-negative cases. These findings prove the necessity of performing
reliability studies before a deep learning model is implemented in a real clinical
setting, even if there is an optimal diagnostic accuracy.

Funding This work was supported by the Swiss National Science Foundation (310030 173303),
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Optimizing the Illumination of a Surgical
Site in New Autonomous Module-based
Surgical Lighting Systems

Andre Mühlenbrock, René Weller, and Gabriel Zachmann

Abstract Good illumination of the surgical site is crucial for the success of a
surgery—yet current, typical surgical lighting systems have significant shortcom-
ings, e.g. with regard to shadowing and ease of handling. To address these short-
comings, new lighting systems for operating rooms have recently been developed,
consisting of a variety of swiveling light modules that are mounted on the ceiling and
controlled automatically. For such a new type of lighting system, we present a new
optimization pipeline that maintains the brightness at the surgical site as constant as
possible over time and minimizes shadows by using depth sensors. Furthermore, by
performing simulations on point cloud recordings of nine real abdominal surgeries,
we demonstrate that our optimization pipeline is capable of effectively preventing
shadows cast by bodies and heads of the OR personnel.

Keywords Surgical lighting · Optimal illumination · Depth sensors

1 Introduction

Although good illumination of the surgical site—i.e. the wound—is so important
for the success of an operation, existing solutions, e.g. conventional surgical lighting
system (SLS) or head lamps, have major disadvantages. In the case of SLS, the main
drawback is the shadowing byOR personnel around the table that makes illumination
of an OR wound difficult and requires frequent manual readjustments of the SLS.
Head lamps, on the other hand, are strenuous to wear for long periods of time and
require the wearer to assume a certain head posture.
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Fig. 1 Left: The Kinect cameras we used to record nine real open abdominal surgeries in an
operating room.Center and right: The resulting point cloud recordings againstwhichwe can perform
ray tests

To solve the problems of these SLS, new surgical lighting systems have been
developed to automatically prevent shadows and to keep the brightness in the surgical
site at the desired level constantly over time and as evenly distributed as possible
over the area. These new surgical lighting systems do not consist of two or three
conventional large lighting systems, but of a large number of small swiveling light
modules placed at the ceiling that are automatically rotated and intensity-controlled
with the aid of a central control computer. Recent examples are the Optimus ISE
CelestialTM Surgical Lighting System,1 and the lighting system developed in the
SmartOT research project.2

In this paper, we present a novel optimization pipeline for such lighting sys-
tems based on multiple depth sensors such as Microsoft’s Kinect. By simulating
the optimization with point cloud recordings of nine real open abdominal surgeries
(see Fig. 1), we compare different parameters and fitness scores with respect to the
illumination they create at a virtual surgical site.

2 Related Work

In today’s operating rooms, SLS are commonly used for traditional open surgery.
However, they still come with some disadvantages: According to Knulst et al.[1],
conventional surgical lights are readjusted every 7.5min on average to provide appro-
priate illumination for the surgical site. In addition, surgeons and other OR personnel
often saw a need for improvement in lighting intensity, shadowing, illumination of
deep wounds, and the handling of such lights. Curlin et al. [2] also elaborates on the
advantages and disadvantages of surgical lights and other common lighting systems,
including head lights, lighted retractors, and operating microscopes, none of which
meet all lighting needs.

1 See https://www.optimus-ise.com/.
2 See https://www.smart-ot.de/.

https://www.optimus-ise.com/
https://www.smart-ot.de/
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As an approach to improve the handling of conventional SLS, Dietz et al. [3]
suggest to use a gesture control for brightness and color temperature instead of using
a control panel, which is usually located high up on the SLS. An attempt to also
address the problem of manual repositioning and alignment of conventional surgical
lights was provided by Teuber et al. [4], in which three motor-driven surgical lights
automatically position themselves so that shadows are avoided. This optimization
was further optimized in [5]. We have discussed developing these ideas further and
implementing a similar motor-driven approach, but have rejected it due to several
drawbacks, including the expected noise and the danger in terms of collisions with
OR personnel.

In novel lighting concepts for operating rooms, as in the SmartOT project, a vari-
ety of small lighting modules are proposed that are placed on the ceiling and control
themselves to automatically generate optimal illumination at the site and avoid shad-
owing. Recently, an optimization procedure was presented in [6] to position the light
modules of such lighting systems on the ceiling with the help of point cloud record-
ings in such a way that the most satisfactory illumination is theoretically reachable
during the entire surgery.

Nevertheless, to the best of our knowledge, methods to optimize the intensity of
light modules at the runtime of the surgery for this new type of surgical lighting
system have not been presented or evaluated in the literature up to this point.

3 Implementation

In this section, we present our optimization pipeline (Sect. 3.3) as well as the specific
optimization of the intensities of individual light modules (Sect. 3.4). For under-
standing, we briefly discuss the different types of shadows beforehand in Sect. 3.1
and describe our surgical site model for enabling the illumination of deep wounds in
Sect. 3.2.

3.1 Occluder Types

The shadows in surgeries can be divided into two categories: On the one hand, there
are shadows caused by hands and OR instruments, where occluders—the hands and
instruments—are very close to the site. These shadows are difficult to compensate for
by an autonomous shadow management because the lights in question change very
quickly due to the fastmovements and the short distance of the occluder to the surgical
site. Themost time, even all the lights cast a shadow for these type of occluders. In new
module-based lighting concepts, these shadows can be compensated by distributing
as many light modules as possible over a large area which are used simultaneously.

On the other hand, there are shadows caused by the heads and bodies of OR
personnel: for these type of occluders, only some lamps cast shadows at the surgical
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site simultaneously, since the head and body of individual persons are usually located
to the side of the surgical site and their distance to the site is greater. In this section,
we mainly focus on preventing this type of shadowing.

3.2 Representation of the Surgical Site

In order to illuminate narrow, deep surgical sites, the site is modeled using a virtual
cylinder-shaped tube, which can be placed, rotated and scaled in diameter and depth.
By not just testing for occlusions by the point cloud geometry but also against this
tube, we can ensure that only light modules are used which are able to illuminate the
site in depth when this is required. This virtual surgical site model is visualized in
Fig. 3.

3.3 Optimization Pipeline

Our pipeline (see Fig. 2) starts with the depth images from multiple depth cameras
as input. The cameras are placed on the ceiling between the lamps. By using the
camera intrinsics and extrinsics parameters, a point cloud is generated in camera
space, registered to each other and transformed into world space—in our case the OR
room. In case of the point cloud recordings of the nine surgery used for evaluation, we
used a lattice registration procedure [7] to extrinsically calibrate the depth cameras.

In order to efficiently test for occlusions, we first transform the separate point
clouds of multiple depth sensors into a common geometric datastructure, which is a
height map that stores the height from the ground in the 2m x 2m area around the
operating table. In a first step, we remove occlusions of the first type according to
Sect. 3.1, i.e. hands and instruments close to the site. This can be easily achieved by
simply removing all points of the point cloud within a fixed radius r around the site
(we used r = 0.3m).

By projecting a ray into this height map and iterate over the resulting line, we
can efficiently calculate for each light module whether there is an occluding object

Fig. 2 The pipeline starts with the input of the depth sensors and ends with the output of the
parameters to control the light modules, described in detail in Sect. 3.3



Optimizing the Illumination of a Surgical Site … 297

in the path that would lead to shadows at the site. To test whether a ray is blocked
by the surgical site model (see Sect. 3.2), a simple ray-plane intersection test can be
performed where the distance between the intersection point and plane midpoint is
tested against the tube radius. By testing multiple rays per light module which are
starting at different positions on the luminous surface and run to different positions
in the site, we moreover calculate a floating point value vi that indicates how much
a light module i is blocked by the geometry. To reduce sensor noise, we filter this
value using a 1D Kalman filter.

Next, the light modules in the pipeline are assigned to a light target and rotated
accordingly so that they are aligned with it. This is done according to the desired set-
ting defined by the OR staff. Finally the optimization and smoothing of the intensities
of the light modules takes place which is described in Sect. 3.4.

3.4 Light Intensity Optimization

Requirements Since we want to optimize the intensity I i of every light module i in
such a way that the illuminance Ev at the surgical site is as constant as possible and
close to the desired value EvPref , we need be able to calculate what illumination E i

v

is produced by a single light module i at the site.
In order to be able to calculate which intensity values I i produce which illumina-

tion Ei
v at the center of the site for any one of the modules of the light module array,

we assume that for an arbitrary chosen, but fixed distance dNorm and a perpendicular
incidence of light, a mapping function f is known that maps the intensity I i the light
module i is driven with to illumination E i

vNorm
:

E i
vNorm

= f (I i ) (1)

Given the distance di from a light module i to the center of the surgical site, the
virtual site surface normal n and the light vector li of light module i , we approximate
the luminance E i

v as follows:

E i
v = E i

vNorm
· (
dNorm
di

)2 · (−li · n) (2)

Note that we assume that the illuminance of the used light modules decreases
approximately quadratically over distance. The term (−li · n), on the other hand,
describes the decrease in luminance when the surface on which the same amount of
light is incident increases due to a tilt—similar to Lambert’s cosine law.

I -Optimization
The optimization approach can be summarized by the following two steps: In the
first step, the light modules are sorted according to their suitability to illuminate the
site well. In the second step, each non-occluded light module is assigned a certain
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amount of light until the target brightness is reached, starting with the most suitable
light module.

To sort the light modules, we implemented two different scores. The first score is
the perpendicularity of the inverse light vector −l to the site surface with the surface
normal n:

siPerpendicular = (−li · n) (3)

The second score we have implemented counts the number of last consecutive
frames in which the floating-point number value v filtered with the 1D Kalman filter
(see Sect. 3.3) was greater than 0.9:

siSuccessiveUnblocked = #Consecutive frames with vi ≥ 0.9 (4)

After sorting the light modules by their presumed ability to illuminate the site
well, we calculate the maximum illuminance EvMax the system is able to provide at
the center of the surgical site. To do this, we use a simple heuristic: The maximum
illuminance Ei

vMax
a light module i can produce at the center of the site is multiplied

by the relative number of unblocked light rays from that light module i to the site
and then summed up over all light module:

EvMax =
i∑

Ei
vMax

· unblockedRays(i) (5)

Before we iterate over the list of sorted light modules, we define the ratio which
describes how much illuminance is preferred (EvPref ) compared to the illuminance
EvMax the system is actually able to provide using all unblocked light modules:

ω = min(1,
EvPref

EvMax

) (6)

In addition, we define a variable EvRem that is decreased over time and describes
which illuminance is still needed to reach the preferred illuminance EvPref . Accord-
ingly, it is initialized with the preferred illuminance:

EvRem ← EvPref (7)

Finally, we iterate over the list of sorted light modules and calculate the intensity
I i with which each light module i should be driven. In order to investigate how the
number of simultaneous lights used affects the characteristics of the illumination, we
have adapted our optimization method to be configurable by a floating-point light
spread parameter α, which specifies whether as few optimal and unblocked light
modules as possible should be used (α = 0.0), or whether the desired brightness
should be achieved by using all the unblocked light modules (α = 1.0):

I i = I iMax(1 − α) + I iMax · ω · α (8)
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Moreover, we calculate the illuminance Ei
v expected to be achieved at the site for

the light module i by using Eqs. (1) and (2):

E i
v = f (I i ) · (

dNorm
di

)2 · (−li · n) (9)

In the case that this value E i
v is lower that the remaining required illumination, i.e.

E i
v ≤ EvRem , the illumination of this light module i is subtracted from the remaining

needed illumination:
EvRem ← EvRem − E i

v (10)

In the case that the illumination of light module i would exceed the remaining
needed illumination, i.e. E i

v > EvRem , we recalculate the intensity with which the
light module should be driven:

I i ← I i · EvRem

Ei
v

(11)

as well as we set the remaining needed illumination to zero and stop the iteration
at that light. The intensity of all other light modules is left at zero.

I -Smoothing Since we do not want the light to react immediately to everymovement
around the site, as this might distract surgeons, we perform a temporal smoothing of
the intensity values I i for every light i . We do this by simply blending the already
smoothed intensities ISmoothed

i,t−1 of the previous frame t − 1 with the optimal lumi-
nous power I i,t of the current frame t by using a blending value γ ∈ (0, 1]:

I i,tSmoothed = I i,t−1
Smoothed · (1 − γ ) + I i,t · γ (12)

Remarks Currently, we shoot multiple rays from a single light module to different
points at the surgical site to calculate the unblocked amount of light vi for each
light module i (see description of vi in Sect. 3.3), but for intensity optimization, we
only consider the illumination at a single point, i.e. the center of the surgical site.
However, it would also be possible to optimize the illumination not only for a single
point but for the whole surface area: This might be particularly useful if the emission
characteristics of the light module are distributed unevenly over the surface (e.g. for
cost reasons of the installed LED as seen in Fig. 3).

Nevertheless, such an optimization causes some problems: On the one hand, cur-
rently, our site model is only very coarse, mainly, because of the limited resolution
and the fixed viewing angle of the depth sensors that are not able to capture the
complex geometry and details of real world sites. Moreover, the emission character-
istics of the actual physical light modules—e.g. beam angle—cannot be changed.
Consequently, the only way to compensate for uneven emission patterns remains the
continuous rotation of the light modules.
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(a) Flat site (b) Deep site

Fig. 3 Visualization of the sensors placed onto (a) an almost flat surgical site and (b) a deep surgical
site with a depth of 10cm and a diameter of 7.5cm. Here, the illumination is color coded using the
Google turbo color map

But even if optimization over the entire area currently seems to make little sense
due to these problems, our pipeline as a whole is prepared to handle this as we are
able to estimate the illumination in multiple points at a site.

4 Results

In this section, we evaluate our optimization pipeline in a simulation on point cloud
recordings of nine real abdominal surgeries. The methodology of the evaluation is
presented in Sect. 4.1. Since the best possible light in the surgical situs is generally
assumed to be (a) as free of shadows as possible and (b) should not change visibly as
much as possible to avoid interference, we examine the quality of illumination with
respect to these aspects in Sects. 4.2 and 4.3.

4.1 Methods

For the evaluation, we used point cloud recordings of nine real abdominal surgeries
taken at Pius-Hospital Oldenburg, Germany (see Fig. 1). The setup of the evaluated
virtual lighting system was as follows: We used 7x8 light modules at a height of
2.5m arranged in a grid with a spacing of 36cm x 35cm. The preferred illumination
EvPref was set to 80klx. Single light modules were able to generate almost 50klx at
the site center at a distance of 1.9m when driven at maximum intensity. We placed
5x5 sensors on an area of 5cm x 5cm in the virtual site and simulated the brightness
at 60Hz using an illumination profile of the actual planned light modules in the
SmartOT prototype, generated and provided by Qioptiq Photonics GmbH& Co. KG
(see Fig. 3).

For our measurements, we chose a representative scene of 1:30min from each OR
recording and placed the virtual site to the position where the real surgical site was in
that specific recording. In order not to be biased by the choice of scene, we decided
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Fig. 4 Mean brightness: Brightness averaged over sensors and over time (n = 9 surgery sections)

to use a scene in the middle of each recording, i.e. at exactly 2h after the start of
the recording. Moreover, we discarded the first 10 s for warm-up of the Kalman and
smoothing filter.

Finally, in the evaluationwe examined howdifferent parameters affect the lighting
properties, which are (a) the parameter α presented in Sect. 3.4, which specifies
the amount of simultaneous used light modules, (b) the score functions presented
in Sect. 3.4, where ‘OFF’ represents no optimization and no response of the light
modules to occluding geometry and (c) the usage on a flat wound (without a shadow
casting tube) or a deep surgical site, see Fig. 3.

4.2 Shadow Reduction

First, we examined the average brightness and plotted it in Fig. 4 as this indicates
the amount of shadowing. The average brightness in the flat site with optimization
is 56.2klx–59.2klx depending on the setting (compared to 43.0klx without opti-
mization), which is very close to the expected optimum without shadows with about
57–62klx depending on the position of the site (keep in mind that the preferred
illumination of 80klx refers just to the maximum value in the center of the site).
Moreover, with the flat site, the settings regarding brightness have practically no
impact.

However, in case of a deep site, our results show that they will be illuminated very
low without optimization with an average of 11.4klx—after all, the light from most
lamps does not penetrate at all. While the brightness of both optimization scores
is identical with α = 1.0 and is 31.4klx, since simply all available lamps are used,
one sees that sPerpendicular with an average of 45.6klx performs slightly better than
sSuccessiveUnblocked with 39.4klx, which might be explained by the fact that the light
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Fig. 5 Changes over time: Sum of illumination changes between adjacent frames, summed over
all sensors (n = 9 surgery sections)

modules which can shine most vertically into the site and cause less shadows at the
edge of the tube always tend to be selected.

4.3 Temporal Brightness Distribution

Comparing the brightness changes over time, it is noticeable that there are signifi-
cantly more changes at the site without optimization than with activated optimization
(see Fig. 5). However, except for a large α = 1.0, where more changes occur over
time than with α ≤ 0.9, the optimization settings have little effect on the overall rate
of change when optimization is activated.

5 Conclusions and Future Works

We have presented a simple optimization algorithm for optimizing the illumination
of a surgical site for new module-based lighting systems with a large number of
swiveling automatically controlled light modules which are using depth sensors.
We have investigated the influence of individual optimization parameters, namely,
the number of simultaneously used lights and the depth of a virtual surgical wound
with respect to the average brightness and changes in brightness. Finally, with our
simulation, we were able to show that automatic optimization of intensity is a very
effective means of preventing shadows and providing uniform illumination of the
site over time.
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In future work, we will evaluate the new lighting concept with the presented
optimization within a real prototype and conduct a user study with active surgeons
performing a task similar to actual operation. In this user study, we will also compare
the performance to conventional SLS. Finally, we would like to consider the whole
site area instead of only the site center for the optimization (see Sect. 3.4).
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An Eye-Tracking Based Machine
Learning Model Towards the Prediction
of Visual Expertise
for Electrocardiogram Interpretation
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Mohammed Al-Hijji , Alaa Alahmadi , and Yahya Sqalli Houssaini

Abstract The electrocardiogram, known as the ECG or EKG, is considered among
the mostly used medical diagnostic tests worldwide. Despite the test’s prevalence in
the healthcare sector, there still exist gaps into training medical practitioners become
skilled and efficient ECG interpreters. Moreover, this also brings the challenge of
assessing the expertise of those practitioners. This is primarily due to the difficulty of
assessing visual expertise. Visual expertise is the skill of interpreting images relating
to a certain technical field. Due to the limited quantitative research methodologies
that could not capture this subtle skill during the previous two decades, a limited num-
ber of models are being conceptualized and assessed. In addition, automated ECG
interpretation models based on artificial intelligence are still not accurate enough to
be fully deployed in the medical field. This therefore leaves only one choice, which
is to focus on improving on methodologies to train and assess medical practition-
ers’ visual expertise. This approach will contribute towards increasing the accuracy
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of ECG interpretations within medical institutions by forming competent medical
staff. In this paper, we present a road map for the development of an eye-tracking
based machine learning model that leads towards the prediction of visual expertise
within medical practitioners. To develop the model, we built on top of our previously
conducted research that aimed at understanding the differences in visual patterns
within medical practitioners with different expertise levels. The developed model
could predict the expertise level of the ECG interpreter with an accuracy of 94.08%.
This is thanks to the eye movement patterns of the participant.

Keywords Electrocardiogram · ECG · ECG interpretation · Eye-tracking ·
Human-computer interaction

1 Introduction

1.1 Background

The electrocardiogram, abbreviated as the ECG or EKG, “is a graph that represents
the electrical activity of the human heart” [1]. The ECG is referenced as the main-
stream initial medical diagnostic test to support the clinical decision making process
regarding the patient’s heart. Thanks to its unified structure, it englobes the diagnos-
tic of both mild and urgent heart conditions [2]. The ECG is the most-used medical
test globally with 300 million ECGs done yearly in the United States alone [2]. This
raise in demand over the past decade for ECG interpretation has pushed the need
for more expertise capable of an accurate and immediate interpretation. This is with
the aim to decrease the number of avoidable cardiac deaths. Moreover, as the price
and effort for taking one has decreased over the years, patients are more referred
to getting an ECG for an effective diagnosis [3]. The spotlight is therefore directed
towards medical practitioners to handle this imminent and continuous flow of unin-
terpreted cases. During these circumstances, clinical staff may make conscious or
non-conscious compromises during the interpretation process. These compromises
range from clinical staff not being fully trained to carry out the task of interpretation,
to interpreters not having the full access to the patient’s clinical information and
history [4]. The shortcoming for this strategy may result in dangerous consequences
[3].

The repercussions of an inaccurate ECG interpretation are detrimental. They range
from avoidable cardiac deaths, to unnecessary expensive costs that burden the patient.
In an investigative report conducted by Mele et al. [5] tens of millions of dollars
are poured annually into malpractice payouts, in addition to the 100,000 patients
who die annually due to an avoidable cardiac death. Moreover, another study that
assessed ECG interpretation competency in cardiology residents describes that 58%
of imminent potential life-threatening ECGs are missed by residents [6]. 60% of
those residents claim to be convinced that they perform a correct interpretation [6].
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These findings urge for the improvement of ECG interpretation. This is by developing
more effective training programs, as well as having the necessary tools that enable
the identification of where do medical practitioners lack crucial ECG interpretation
expertise.

1.2 Related Works

The literature gap that this paper addresses is the lack of use of machine learning
to understand and predict the visual expertise of medical practitioners interpreting
ECGs. In addition to the scarcity of literature that used eye tracking for ECG inter-
pretation, each study of the three available studies has looked at eye tracking data to
solve one small portion of a bigger problem which is the ECG interpretation, but not
the problem as a whole. Examples of that would be Bond et al. [7] that adopted eye
tracking in order to only understand how the collected eye-gaze data may be used in
order to unveil insights about how expert annotators proceed with an ECG interpre-
tation. This study was restricted to only the quantification of experts’ interpretation
of an ECG, while not considering the potential of applying machine learning on the
eye tracking data. The following studies by Davies et al. [8, 9] proposed a qualita-
tive study that followed a similar eye tracking study design. Under the aim of better
understanding the applied cognitive processes that expert interpreters refer to when
interpreting ECGs, Davies et al. [8] referred to interviewing and surveying rather
than quantitatively analyzing the eye tracking data. Finally, the most recent study is
the one conducted byWu et al. [10] where the aimwas to understand visual expertise
within medical practitioners. The study is designed to be a qualitative one using eye
tracking as a supporting analytical element. The aim was to highlight the differences
in the cognitive approaches to ECG interpretation between medical students, emer-
gency medicine (EM) residents, and EM attending physicians using both interviews
and eye tracking experiments. This work is the first one that applies machine learning
on eye tracking data to predict the visual expertise levels and patterns for medical
practitioners.

The objective of this paper is to design a machine learning model able to predict
the visual behavior, represented by the fixation’s duration over the ECG lead, for
medical practitioners with different expertise levels. The aim is to reach an accuracy
of over 90%. In the upcoming sections, we describe the dataset for eye-tracking data
along with its pre-processing methodologies (Sect. 2). We then describe the data
processing methodologies through the feature engineering process (Sect. 3). This
enables us to design and craft a model able to predict the fixation duration across
all of the electrocardiogram leads for the medical practitioners. Subsequently, we
present this model in the results section (Sect. 4). Finally, we conclude the paper
(Sect. 5).
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2 The Dataset

2.1 Overview

The dataset [11], open-sourced through PhysioNet.org [12], was collected across two
phases for an exploratory eye tracking study.Thefirst phase had as a goal unveiling the
ECG interpretation dynamics for medical students [13]. The second phase extended
the first one by including, in addition to medical students, medical practitioners
[14]. These practitioners had varying expertise levels in ECG interpretation as well
as different roles in the medical sector. They deal with ECGs mostly daily while
practicing in the hospital. The primary aim behind the collection of this dataset
was to use it for uncovering insights to chart key best practices as well as common
mistakes in theECG interpretation process [15]. The following aimbehind the dataset
collection, which relates to this paper, was to find innovative solutions to improve
the ECG interpretation training programs for both medical students and practitioners
[16]. This may be through the inclusion of eye-tracking as well as machine learning
as supporting technologies. The collected eye tracking data was used as the primary
quantitative data for the below studies that performed a quantitative analysis on the
medical students’ data [13], as well as the remainingmedical practitioners’ data [14].

2.2 Data Collection Method

The dataset was generated through the collection of eye-tracking data using a Tobii
Pro X2-60 eye tracker device and iMotions version 8.1 software [17]. Medical prac-
titioners’ eye movements were sampled with a frequency 60Hz (± 1Hz). Gaze
and fixations data related to the practitioner’s eye movements were recorded fol-
lowing their eyes’ micro-saccades in terms of milliseconds. According to iMotions,
“micro-saccades represent movements that are shorter in the distance that is covered
compared to normal saccades, at around 15 arcminutes” [18]. The fixations algorithm
used by iMotions is the I-VT (Velocity-Threshold Identification) Fixation Filter algo-
rithm [19] where the gap fill-in option/interpolation is disabled. The noise reduction
is also disabled. The following are the fixations filter parameters used, with the win-
dow length being 20ms, and the velocity threshold being equal to 30◦C per seconds.
The merger of adjacent fixations is disabled and the discard of short fixations option
is also disabled. Regarding the data collection setting, the eye movement data was
collected in real-time while the participants were performing the ECG interpretation
in the experiment setting. The dataset collected includes a total of 630 different ECG
interpretations from 63 unique medical practitioners. These practitioners belong to
five expertise categories. Each practitioner or student interpreted ten different ECGs
each. Moreover, Each participant in the experiment was given a limited time of 30s
to interpret the ECG. More details about the data collection methodology, the ECGs,
and processes used in the experiemnt can be found through the dataset’s repository
[11].
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2.3 Ethics

Prior to the commencement of the experiment and data collection, the study
was granted institutional review board approval from the ethical board of the
Qatar Biomedical Research Institute at Hamad bin Khalifa University under the
research protocol number QBRI-IRB-2020-01-009. All the necessary procedures
and approvals were granted before the start of the experiment. The Institutional
review board approval guarantees that all study methods were conducted following
the guidelines and recommendations of international regulatory agencies. All the
participants in the study gave written informed consent.

3 Data Processing

Prior to the initiation of the process of features exploration, data cleaning and pre-
processing was done. During the pre-processing phase, explained in details in the
dataset’s repository description [11], eye tracking data was calculated according to
each lead among the 12 leads that constitute the electrocardiogram. In addition, lines
where the eye tracking data was missing were omitted. Finally all the participants
were standardised by being assigned to the compelling category according to a survey
they filled prior to the eye tracking experiment.

The goal in this section is to identify the relationship among all the collected eye
tracking features within the set of medical students and practitioners. These features
are described in the open-sourced dataset published in the PhysioNet repository [11].
For this purpose, we use the Pearson’s correlation coefficient [20].

We use the eye tracking features, defined according to the dataset collection
methodologies section in the dataset repository[11], to generate Pearson’s corre-
lation matrix. The generated matrix sheds light on important insights that contribute
towards completing the understanding of howmedical practitioners interpret anECG.
The matrix is calculated using the grid-based Areas of Interest (AOI) distribution.
An area of interest represent an important area in the electrocardiogram to be inter-
preted. Within this AOI, all the eye tracking metrics within this area are calculated
with respect to the other areas highlighted on the ECG. Our publications [13, 14]
demonstrate in details the process of choosing AOIs and calculating the eye tracking
metrics within thse AOIs. Generally, an AOI represents an ECG lead. The generated
correlation matrix highlights the intensity of the correlation among all eye tracking
features respective of all AOIs. It also serves to identify the top correlated features
that guide the analysis of the data.

The correlation matrix, depicted in Fig. 1, follows a colour scheme commonly
known as the hot/cold colour scheme. The “hot” squares in thematrix denote a strong
positive correlation among two eye tracking features, while the “cold” squares denote
the opposite. In Fig. 1, most of the eye tracking features have positive correlations
among each others. Some features show a strong correlation among each others
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Fig. 1 Correlation matrix showcasing the relationship among the eye tracking features for the
medical practitioners

whether the nature of this correlation is positive or negative.An important observation
in the correlation matrix is the existence of two vertical and one horizontal “cold”
lines in the features matrix. These lines showcase the eye tracking features that are
negatively correlated with the time to first fixation and with the hit time. These two
features (TTFF and Hit Time) as defined in the dataset repository [11] hold small
values (in milliseconds) whenever the eye tracking behavior of the participant is
significant. However, it is the opposite for all the other features. Hence, the positive
correlation among each other, and negative correlation among the rest of the features.
This indicates that the ECG lead corresponding to a specific AOI that is fixated the
earliest is potentially to be fixated more.

From the correlation matrix, we deduce the top three correlated features of the
collected eye tracking data among medical students and practitioners. These are the
fixations count, the time spent fixating and the fixations re-visitations with Pearson
correlation coefficients equal to r = 0.97, r = 0.87, and r = 0.82 respectively. These
features’ definitions can be found in the dataset’s repository [11]. These features
will be the foundation of the features’ engineering process for designing the best
predictive model.
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4 Results

We explore to what extent are medical students’ interpretation patterns predictable.
We attempt the comparison of different machine learning models in order to find the
optimal model for the type of data presented above. Table1 summarizes the classi-
fication reports of four models in addition to the baseline model not being trained.
The train-test split is 75–25%, and the target is similar across all models for the time
spent fixating across different ECG leads. The following describes the parameters of
the best-performing machine learning model. It is noteworthy that the reason why
advanced models like support vector machine and convolutional neural network did
not perform well in term of accuracy, is mainly due to the shortage of the available
eye tracking data in the dataset. We therefore refer to the best performing model
among the ones tested in Table1 to predict the visual ECG interpretation behavior of
medical practitioners. We use a linear regression machine learning model to attempt
to predict to what extent are visual patterns of medical practitioners predictable and
thus their visual expertise level. The collected dataset contains around 298,589 raw
observations. These observations contain the gaze and fixation data, along with some
noisy data due to poor lighting conditions and poor eye-calibrations. Filtering the
raw data results in 45,917 fixations. These fixations are then clustered based on their
X,Y coordinates on the ten ECG images, and based on their time sequence. This
final step then results in obtaining 15,373 clusters to be analyzed. Although the sam-
pling rate of the used eye-tracker collects a considerable amount of information, it
is noteworthy that the results presented are more of a proof of concept rather than a
robust predictive algorithm. This is mainly because the selected population sample
is small. Moreover, the sample of ECGs explored is small as well compared to the
complexity and the varying nuances of ECGs found in the clinical practice. It is also
worth reminding that the aim of the predictive algorithm is to predict the medical
students’ interpretation patterns and not the ECG interpretation itself. The filtered
dataset, the raw dataset, and the python notebook are available upon request.

Table 1 Average results for the classification report of different machine learning models applied
to the ECG interpretation dataset

Machine learning
model

Precision Recall F1 score Average accuracy

Baseline 0.21 1.00 0.35 0.21

Support vector
machine

0.67 0.70 0.68 0.65

Convolutional
neural network

0.61 0.40 0.48 0.43

Logistic
regression

0.88 0.90 0.83 0.86

Linear regression 0.94 0.88 0.95 0.92
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We use the ridge regression algorithm to power our predictive machine learning
model. Linear regression refers to a linear approach tomodel the relationship between
a dependent variable and one or more independent variables [11]. The other variables
explored through the correlation matrix in Fig. 1 are fed to the algorithm as inde-
pendent variables. Moreover, we use one-hot encoding to encode the non-numeric
variables like the ECG diagnosis and the AOI/lead name. This would enable answer-
ing the following question. Given the ECG diagnosis, and given the lead area in that
ECG, is there a possibility of predicting the fixation duration of participants in that
specific area of the ECG. Using an 75% train, 25% test split, the predictive algo-
rithm reaches a predictive accuracy of 94.08%. This was done under a 5-fold cross
validation by randomly shuffling the eye tracking ECG interpretation results for the
best performing model that predicts the interpreter’s visual expertise represented by
the fixations data. we have thus obtained five AUCs. The average AUC for this was
derived to be around 0.94. Figure2 summarizes the model predictive results.

Figure2a compares the actual interpreter’s time spent fixation data points (in
seconds) with the model predicted time. Since the training data is significantly larger
than the testing data according to the train test split, the transparency of the training
data in red is lowered by 90%. This is to allow the testing data in green to show
better. Figure2 shows that there is a linearity and a correlation between the training
data and test data results, which explains the obtained accuracy score. It is also worth
mentioning that the data clusters around two areas, the area which the actual time
spent fixating is bigger than 2s, and the area inwhich the time spent fixating is around
0s. This is due to the scarcity or the non-availability of fixations in some AOIs. This
result confirms the bi-modality in some ECGs in the fixation duration distribution
found in our previous research [13].

Figure2b displays the top 20 learned variables used by themachine learningmodel
to make a prediction. Along with each variable, there is a coefficient assigned by the
algorithm. The coefficients play a vital role in making the predictions. They indicate
the direction of the relationship between a predictor variables and the predicted
variable. A positive variable coefficient sign, labeled in Fig. 2b with the green colour,
indicates that as the predictor variable increases, the predicted variable also increases.
However, a negative coefficient sign, labeled in Fig. 2b in red indicates that as the
predictor variable increases, the predicted variable decreases. We notice that the first
four features in the list of top 20 used variables, are all linked to the gaze and fixations
participants visitors and re-visitors. This is a logical behavior, since as the number
of participant visitors to the AOI increases, there is a strong probability that this
AOI contains a clue that catches the attention of the observer. Hence, the individual
time spent fixating at that AOI for a sample participant will increase. This might
also indicate that participants will re-visit this area more as shown in the top 11th
feature. Other than the quantitative variables, the qualitative variables also have a
direct influence on the time spent fixating at a specific AOI. All the E All these
features and others along with their coefficients weave the complex structure of the
interpretation behavior among medical students.
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Fig. 2 Predictive model results

5 Conclusion

We presented a roadmap for an eye-tracking based machine learning model aiming
towards the prediction of ECG interpretation behavior of medical professionals. This
is with the end-goal to assess and better trainmedical practitioners reach accurate and
efficient ECG interpretations. Throughout this paper, we described the dataset for
eye-tracking data along with its pre-processing methodologies. We then described
our feature engineering process. This enabled us to design and craft a model able
to predict the fixation duration across all of the electrocardiogram leads for the
medical practitioners. The best-performing model used linear regression to reach an
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accuracy percentage of 92%. It also referred to a number of different eye-tracking
features, mainly areas of interest, fixations and gaze counts and duration. This will
enable us in the future works to explore the remaining strongly correlated features
analyzed to predict not only the accuracy of interpretation as one static output, but
also the dynamism of the scan-paths followed by these practitioners before giving
their diagnosis answer. It is important to note that the model presented represents
only a proof of concept demonstrating that the ECG interpretation within the medical
practitioners population is predictable using machine learning techniques. This leads
us to the limitations of thiswork.Ourwork is limitedby the scarcity of the eye tracking
data collected, which may have led to over-fitting. Despite the high sampling rate of
the eye-tracker used in the experiment, machine learningmodels remain data-hungry.
Thus, the insufficiency of the collected eye tracking data. Moreover, the sample of
ECGs explored is small as well compared to the complexity and the varying nuances
of ECGs found in the clinical practice.

Acknowledgements The authors would like to thank all the volunteering participants who con-
tributed with their electrocardiogram interpretations.
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Abstract Assistive tools to aid in skin cancer detection are experiencing an unprece-
dented rise with the accessibility of robust and accurate deep learning models. How-
ever, in the present applications, only a negligible number of dermatology images
come from patients with Fitzpatrick skin types IV–VI, representing brown, dark
brown or black skin, respectively. In this study, we demonstrate the utilization of
Zero-Shot Text-to-Image autoregressive models to generate synthetic medical data
for improved balance in training CAD classification models with minimized racial
bias. Synthetically generated images of skin lesions were assessed by an experienced
dermatologist using the ABCD rule and differential diagnostics, and subsequently
validated using a pre-trained ResNet50V2 multi-class classification model.
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GAN Generative adversarial networks
AKIEC Actinic keratosis and intraepithelial carcinoma
BCC Basal cell carcinoma
BKL Benign keratosis
DF Dermatofibroma
MEL Melanoma
NV Melanocytic nevus
SCC Squamous cell carcinoma
VASC Vascular lesion

1 Introduction

Melanoma is considered the most aggressive form of skin cancer [1]. Given the
similar shape of benign and malignant findings, doctors spend considerably more
time diagnosing these lesions [2]. Currently, the malignancy assessment is mainly
performed by invasive histological examination of the suspicious lesion [3]. The
development of an accurate classifier can reduce and monitor the negative effects of
skin cancer and improve patient survival rates [4]. Currently, however, Fitzpatrick
skin types IV–VI, which correspond to brown and dark brown or black skin, respec-
tively, represent a small percentage of dermatology images available [5].

2 Background

Despite the fact that people with Fitzpatrick skin types IV–VI are less likely to
develop melanoma, they face a higher risk of mortality because of delayed detection
and treatment [6, 7]. Very often, skin cancer in these patients is diagnosed at a more
advanced stage, making treatment difficult [8]. Although the incidence of melanoma
in the Fitzpatrick skin type 0-III population has increased by almost 20% in the last
20years alone [9], an epidemiological review published by the American Academy
of Dermatology showed that the 5-year survival rate in the Fitzpatrick skin type
IV–VI population is 70%, which is significantly lower than the Fitzpatrick skin type
0-III population (92%) [6, 7].

2.1 Medical Examination

Melanoma represents themost dangerous formof skin cancer.Although it is less com-
mon than other types of cancer, it often metastasizes and spreads to other parts of the
body faster [10]. Melanoma develops from neoplastic proliferation of melanocytes,
however, the pathophysiology is not yet clearly understood [11]; several pathogenetic
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Fig. 1 The ABCDE rule for skin cancer detection

Table 1 Dataset characteristics indicating data imbalance across race and ethnicity taken from Jain
et al. [15]

Race and ethnicity Development set Validation set A Validation set B

American Indian or
Alaska Native

142 (0.1%) 42 (0.1%) 9 (0.9%)

Asian 1775 (11.0%) 473 (12.6%) 97 (10.1%)

Black or African
American

1087 (6.8%) 229 (6.1%) 61 (6.3%)

Hispanic or Latino 7044 (43.7%) 1631 (43.4%) 409 (42.5%)

Native Hawaiian or
Pacific Islander

224 (1.4%) 61 (1.6%) 19 (2.0%)

White 5475 (34.0%) 1175 (31.3%) 329 (34.2%)

Not specified 367 (2.2%) 145 (3.9%) 39 (4.0%)

mechanisms of the development are hypothesized. Malignant melanoma is predom-
inantly observed on the skin, but it can also develop in ears, eyes leptomeninges,
and oral or genital mucosa [12]. Melanoma originates not only on sun-exposed skin,
where the main pathogenetic factor is considered to be UV radiation, but also in body
parts that are otherwise relatively protected from radiation [10, 13]. If melanoma is
suspected, the lesion with the surrounding skin or mucosa is biopsied, followed by
histological examination [12] (Fig. 1).

2.2 CAD Examination

Machine learning-driven systems used in healthcare are statistical models created
mostly from retrospectively collected and demographic-specific data, with the aim
of providing outputs that serve as a basis for decision-making [14]. Their use in
allocating resources and determining access to health services has quickly become
commonplace [14].

Among themost discussed commercial applications for more effective skin lesion
detection is Google Health’s research [15, 16], which recognizes 26 common skin
diseases, representing 80% of cases seen in primary care, while also providing sec-
ondary prediction for 419 skin diseases (Table1).
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Detection and monitoring of malignant skin tumors and benign moles is a partic-
ularly challenging problem due to the general uniformity of large skin lesions [17],
the fact that the skin lesions do not differ much in appearance [18], and the relatively
small amount of existing datasets [19–21].While there has been a significant amount
of attention paid to the design and validation of commercial [22–24] and academic
[25, 26] CAD prediction systems, the problem of insufficient availability of suitable,
high-quality and, above all, comprehensive datasets is often overlooked [27].

Furthermore, there are still no globally standardized methods for verifying the
reliability of AI models: there is no single answer to the regulation or accountability
of artificial intelligence in healthcare [28]. Each depends on the clinical application,
intended use, use instructions, product claims, etc. [29]. Currently, there are complex
software regulations that can be adapted toAI, for example in the FDAmedical device
assessment methodology [30]. An audit conducted before deploying a system into
clinical practice could significantly improve outcomes for patients [30]. Although
pre-deployment audits do not directly address underlying structural issues, they can
identify and reduce the harmful effects of bias and add evidence that relying on data
and models to make important decisions automatically makes outcomes more fair
and honest [31].

3 Related Works

While in less regulated fields,we can encounter the use of synthetic data at all levels of
R&D [32, 33], inmedical applications, they can find their usemainly in the context of
internal validation of data-driven software applications [34, 35]. Data augmentation
techniques (inverting, cropping, enlarging, or distorting images) can be applied to
medical images, but are insufficient to produce new and original data [36].

3.1 Generative Adversarial Networks

Among the widespread modalities are magnetic resonance imaging (MRI) [37] or
computed tomography (CT) [38]. However, the path from synthetic data to clinical
practice is still unclear. The use of these data as one of the sources for training
machine learning models raises many questions. Nevertheless, in recent years, we
can observe the initial deployment of similar generative models in drug design or
protein engineering [39, 40].

A study by Li et al. [20], which addresses the possibility of using synthetic data
in clinical R&D, dates back to 2016, two years after original study by Goodfellow et
al. [41] which introduced generative adversarial networks (GAN). In their study, Li
et al. focused on the problem of limited data availability of clinical data in biomedi-
cal research, validating synthetically generated data using a pre-trained CNN-based
multi-class classifier.
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Fig. 2 Example of generated samples from Limeros et al. [42]

The lack of large open medical databases and the subsequent possibility of using
GANs for generating dermatoscopic images of various skin lesions is addressed in
Limeros et al. [42]. As input dataset for training GAN, they used the widely-adopted
ISIC collection.1 The synthetic images, shown on Fig. 2, are then evaluated through
latent space exploration and embeddings projection, demonstrating the authenticity
and generalization of the trained GANs [42]. From a medical perspective, the artifi-
cially generated data were also assessed by two dermatologists who failed to identify
features in the images that indicated that they were real or synthetic images.

3.2 Zero-Shot Text-to-Image Generative Models

The main limitation of GANs is that they can only produce data for a known domain.
Although the models achieve realistic results when applied in denoising [43], chest
X-ray generation [44], CT [45], or MRI [37], the use of random variable noise does
not replace the closed-world assumption of the training dataset [46]. Besides, there
are domain transfer approaches for applying few-shot GAN models [47], but these
are not widely adopted and are out of the scope of this study. For all of them we can
mention Choi et al. [48] and Li et al. [49].

Zero-data learningwas established inLarochelle et al. [50] as an attempt to address
a prediction of samples from classes, which were not observed during training. This
can be achieved by passing additional information that encodes properties of objects
associating observed and non-observed classes [51]. One of modern models solving
this problem is CLIP (Contrastive Language-Image Pre-training), model trained on

1 https://www.isic-archive.com/.

https://www.isic-archive.com/
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Fig. 3 Simultaneous training of the text and image encoder to learn visual representations from
natural language supervision

the images and their text descriptions pairs from internet [52]. The model learns
through encoders the best abstract representation of images and text and their com-
bination, as shown in Fig. 3.

DALL-E 2DALL-E2, introduced inRamesh et al. [53], is anAImodel fromOpenAI,
the successor of DALL-E presented in Ramesh et al. [54], that can create realistic
images and art from a description provided in English. The newer version reduces
number of parameters from 12 billion parameters to 3.5 billion and generate even
more realistic images with higher resolution and enable a new functionality called
inpainting: generating patterns according to text input directly into a provided image
[55]. DALL-E 2 is achieving an excellent performance thanks to the combination of
diffusion models [56], CLIP image embeddings, CLIP text embeddings, and GPT-3
(Generative Pre-trained Transformer 3), the language model introduced in Brown
et al. [57]. GPT architecture is based on the transformer model type, which uses
the attention technique [58]. In an effort to prevent misuse of DALL-E, OpenAI
excluded sexual and violent content from the training set and blocks prompts with
their explicit mention.2

4 Experiments and Results

Zero-Shot Text-to-Image autoregressive models were used to generate synthetic
medical data of patients with Fitzpatrick skin types IV–VI, as shown in Fig. 4. For

2 https://github.com/openai/dalle-2-preview/blob/main/system-card.md.

https://github.com/openai/dalle-2-preview/blob/main/system-card.md
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Fig. 4 Artificially generated data showing melanoma in Fitzpatrick skin type IV–VI created using
Zero-Shot Text-to-Image model

the experiment, 10 generated images of melanoma were randomly selected. These
images were assessed by an expert dermatologist to determine whether they show
characteristics used for the diagnosis of melanoma.

4.1 Dermatological Perspective

The ABCD rule, introduced in 1985, is one of the most common methods used to
identify potentially malignant melanoma [59]. The acronym stands for Asymmetry
(two halves don’t match), Border (borderline irregularity), Color (changes in color)
and Diameter (often larger than 6mm). The ABCD acronym was expanded in 2004
to include the letter E, which stands for Evolving [60]. As shown on Fig. 1, each
criterion has certain characteristics that are monitored to distinguish between benign
and malignant lesion. In addition, this technique failed to detect several malignant
nevi in their earlier stages [19, 21].

The evaluation of a skin lesion from a single image, at a given quality, is difficult.
In clinical evaluation, it is common practice to investigate the lesion during personal
examination using dermatoscope, which allows better observation of edges, internal
structure, colors, angiogenesis, etc. [61].

For each of the generated 10 melanoma images for patients with Fitzpatrick skin
type IV–VI, the possible type of melanoma and the characteristics indicative of it
(with the exception of rule D: Diameter, which is difficult to determine from the
single image) were assessed by an experienced dermatologist. Table2 lists possi-
ble differential diagnoses that may be benign as well as malignant. As part of the
assessment, the examiner was only provided with the visual data shown in Fig. 4.
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Table 3 Distribution of individual lesions across the training dataset for the ResNet50V2 multi-
class classifier

Class AKIEC BCC BKL DF MEL NV VASC Total

n 332 514 1099 115 1563 3061 142 6826

4.2 CAD Perspective

Residual networks (ResNets) are unique type of deep convolutional networks whose
basic idea is to skip blocks of convolutional layers by using shortcut connections
[62]. In this case study, we use a variant of the residual neural networks called
ResNet50V2 [63]. ResNets provide tradeoff between performance and number of
parameters. The weights used in the proposed model have been pre-trained using the
ImageNet database [63].

The ResNet architecture for computer vision applications is based on two simple
rules: (i) the layers share the same number of filters for the same output feature map
size; and (ii) the number of filters is doubled when the feature map size is halved
[62]. The down-sampling is performed by convolutional layers that perform a stride
of 2 and batch normalization is carried right after each convolution operation and
before ReLU activation [62]. The identity shortcut is used when the input and output
are of the same dimensions. The projection shortcut is used to match dimensions
through 1 × 1 convolutions when the dimensions increase. When the shortcuts go
across feature maps of two sizes, they are performed with a stride of 2 [62]. The
network uses a fully-connected layer and softmax function at the output [63].

Training Dataset The training dataset shown in Table3 consists of 6826 dermato-
scopic images from theMedical University of Vienna dataset (HAM10000) [64]. The
dataset represents a significant part of important diagnostic categories: actinic kerato-
sis, basal cell carcinoma, benign keratosis-like lesions, dermatofibroma, melanoma
in various stages (Fig. 5), melanocytic nevus, and vascular lesions (hemorrhages,
pyogenic granulomas, angiokeratomas or angiomas).

In a significant proportion of the images (∼ 50%), the ground truth was defined by
histopathological analysis of the tissue, in the remaining images the class was deter-
mined either by expert consensus or by in vivo confocal microscopy. Dermatologic
images were divided between the training and validation sets in an 80/20 ratio.

ResultsDespite the limited knowledge of the target domain, the usedmodel classified
7 synthetic images of Fitzpatrick skin type IV–VI patients as melanoma and 2 images
as high-risk melanocytic nevus, shown in Table4. In only one case (image g) the
image model predicted the skin lesion as benign keratosis with high confidence
probability. The heatmap localization shown in Fig. 6 suggests that the classifier
might face issues with more findings or their spatial distribution is irregular. The
prediction results together with high confidence may suggest that the synthetically
generated data possess some of the characteristics typical for diagnosis of melanoma.
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Fig. 5 Examples of melanoma at different stages represented in the training set

Table 4 Results of ResNet50V2 model prediction on synthetic melanoma images in patients with
Fitzpatrick skin type IV–VI

Image (a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Model prediction MEL MEL NV NV MEL MEL BKL MEL MEL MEL

Confidence (%) 99.98 100 99.99 100 100 100 91.96 83.92 100 99.98

Fig. 6 Incorrect prediction (image g), heatmap localization and the top 3 predictions of the
ResNet50V2 multi-class classifier

5 Conclusions

Although automatic detection and evaluation of skin findings is the subject of active
research, the limited availability of datasets containing images of patients with Fitz-
patrick skin types IV–VI for training clinically robust machine learning-driven mod-
els has not received much attention.

In our study, we explored the use of Zero-Shot Text-to-Image generativemodels to
produce synthetic data for more accurate and fair diagnosis of melanoma in patients
with Fitzpatrick skin types IV–VI. Our experiment was subsequently validated by
(a) an experienced dermatologist, and (b) a CAD system using the ResNet50V2
multi-class classification model trained on the preselected HAM10000 dataset.

Synthetic data may represent a reliable solution for augmenting existing datasets
to improve the performance of other AI tools aimed at improving early diagnosis
of skin cancer in underrepresented populations. The approach could be applied to
patients with Fitzpatrick skin type IV–VI, where data collection is more difficult due
to more limited cases.
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BD-Transformer: A Transformer-Based
Approach for Bipolar Disorder
Classification Using Audio

Mohamed Ramadan, Hazem Abdelkawy, Mustaqueem, and Alice Othmani

Abstract Bipolar disorder, named also manic depression, is a mental disorder per-
ceived by extrememood swings that include abnormally emotional lows (depression)
and highs (hypomania or mania episodes). According to the World Health Organi-
zation, 46 million people around the world have bipolar disorder, including 2.8% of
the U.S. population. The risk of suicide in bipolar disorder over a period of 20years
is high, 6% died by suicide, while 30–40% engaged in self-harm. Bipolar disor-
der (BD) is a significant public health issue and computer-aided diagnosis systems
are needed for the diagnosis and the follow-up of patients. In this paper, a new
Transformer-based approach for BD classification based on audio data is proposed.
Our proposed approach outperforms all existing approaches for BD classification on
the turkish audio-visual bipolar disorder corpus by achieving an accuracy of 88.2%
and a F1-score of 87.8%.

Keywords Computer-aided diagnosis · Bipolar disorder · Audio analysis ·
Computer vision

1 Introduction

Mental Disorder is defined as disturbance in an individual’s cognition, or behavior
based on the world health organization (WHO) [1]. It’s usually connected with stress
or impairment in important areas of functioning. In 2019, one in eight individuals,
or 970 million people worldwide, had a mental illness. Anxiety and depressive dis-
orders are the most prevalent [2] and increased due to the COVID-19 pandemic in
2020. Initial projections indicate an increase of 26% in anxiety and 28% in major
depressive disorders, in just one year [3]. Although there are effective methods for
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both prevention and therapy, the majority of those who suffer from mental illnesses
do not have access to them. Stigma, prejudice, and human rights violations are also
commonplace. For bipolar disorder, as a type of mental illness, it’s stated that about
40 million people have its symptoms in 2019 [2]. Depressive episodes and times of
manic symptoms alternate for people with bipolar illness. The person has a depressed
mood (feels gloomy, irritable, or empty) or loses interest in activities for the major-
ity of the day, almost every day, during a depressive episode. Suicide risk is higher
for those who have bipolar disorder. Nevertheless, there are effective therapeutic
methods available, such as psychoeducation, stress reduction and social functioning
enhancement, and medication. In general, mental health is one of the most neglected
areas of health globally.

Distortion of bipolar (BD) is a historically referred psychiatric disorder, called
bipolar depression. In young adults, BD is themost prevalent psychological condition
in the top ten of a disability-adapted life year. Consequently, it is extremely important
that BD episodes can be detected early and accurately through machine learning
technologies. The current methods of mental illness diagnosis are primarily based
on psychological interviews and very subjective self-reported ratings. An automated
recognition system helps to identify symptoms at an early stage and offers insights
into biological diagnostic markers [4–10].

There is a great need to pay attention tomental diseases by the side of the scientific
community. More researches are needed to be done over patients trying to help
them and detect the mental disease early. All information related to patients and all
details about the patients’ mental health levels are needed to be captured and easily
accessed. Deepening our understanding of mental health issues is made possible
by artificial intelligence (AI) and machine learning (ML), which are also potential
tools for supporting psychiatrists in improved clinical judgment and analysis [11].
AI approaches have demonstrated superior performance in a variety of data-rich
implementation environments in recent years, including bipolar disorder [4–10, 12,
13].

In this paper, we propose a new and robust approach for bipolar disorder recogni-
tion. We developed a model using audio recordings for patients who are diagnosed
with bipolar disorder clinically. We apply deep learning mechanisms on the audio
data to extract useful features that helps disease recognition. We trained the model
with labeled data and test itwith newunseenfiles.We implement different approaches
to reach the optimum classification accuracy. The contributions in this paper are the
new audio transformer-based model, as well as the comparative experimental out-
comes for various problem-solving strategies. The paper is organised as follows.
Section2 presents related works on BD diagnosis methods using machine learning.
A detailed description of our proposed approach is presented in Sect. 3. Experiments
and results are presented in Sect. 4. Section5 concludes this research work.



BD-Transformer: A Transformer-Based Approach for Bipolar … 333

2 Related Work

The bipolar disorder (BD) recognition system is a recent dynamic field of research,
and researchers have designed numerous approaches over the last few years for
a robust and significant system. The use of advanced deep learning approaches,
researchers mostly used complex hand-crafted features for bipolar with the con-
ventional machine learning approaches such support vector machine (SVM) and
k-nearest neighbor (kNN). Therefore, researchers are greatly motivated by the grow-
ing use and the high performances of deep learning methods for bipolar disorder
tasks. Hence, [14] focuses on the AVEC-18 Bipolar Disorder Challenge and analyze
a number of BD Corpus modalities and introduced a new model for the hierarchi-
cal reminder for different phases where a patients with different manic levels are
re-called. Furthermore, the authors [15] has suggested a multi-modal deep learn-
ing system to analyze automatically signs of mental illness utilized audiovisual and
textual data. A multi-DDAE approach used for encoding per frame representations
over a variety of audiovisual features as well as compact per-session descriptors
using Fisher Vector Encoder. The authors improved the performance by integration
of the interview transcripts provided to Paragraph Vector (PV) models as a multi-
task learning system to handle overfitting. In this regards, we proposed an efficient
multi-modal representation learning system for identification of bipolar disorder on
the basis of depression detection to overcome the limitation without being directly
optimized to the learning task [15].

Nowadays, Deep learning is certainly the most common method of speech pro-
cessing but it is still not extensively used in healthcare applications. Hence, small
companies with health problems are also available to provide the data, in 2018 the
audiovisual challenge collect 218 audio samples of 46 individuals for Bipolar Dis-
order Corpus [16]. Moreover, the brain disorder in BD causes mood changes that
prevent patients from doing ordinary daily tasks [17]. In this work, we overcome the
problemand categorized patients suffering fromBD into one of the three categories or
episodes: hypomania, mania and remission using various profound strategies, feature
fusion, and connecting techniques along with a basic sliding window protocol and
obtained a positive results as compared [17]. Furthermore, the authors [18] focused
on the audiovisual Emotion Challenge (AVEC-18) as a Bipolar Disorder Challenge
(BDC) task. They proposed two new features: A histogram-dependent arouses, Long
Short-TermMemoryNeuralMethod (LSTM-RNN)measures the continuous arousal
values by Deep Neural Networks and Random Forestry used for Ensemble Learning.

BD is a prevalent mental disorder that affects the job and social function in a
negative way. The bipolar symptoms are episodic, particularly when there are irreg-
ular differences between episodesmaking the accurate diagnosis of BDvery difficult.
The authors [19] introduced a new audio-based technique named IncepLSTM,which
incorporates the LSTM and Inception module for feature sequence to capture tempo-
ral multi-scale cues. The authors suggested a severity-sensitive loss based on a triple
loss to set-up the inter-severity relationship which help to get a representative and
discriminating representation of BD severity [19]. Additionally, some researchers
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identify patients with bipolar disorders in remission, hypo-manic and manic audio-
visual recordings of organized interviews into the 2018 audio and visual emotion
recognition challenge (AVEC) [20]. In this work, the authors suggested ‘turbulence
characteristics,’ to catch shifts in audio and visual contours suddenly, and to demon-
strate its effectiveness for the task at hand. In [21] authors used a Capsule Neural
Network (CapsNet) to identify BD patients in three categories: recovery, hypomania,
and mania followed by an episode of mania. The capsNet seeks the critical spatial
hierarchy between the spectrum’s of audio files, to overcome the limitations of Con-
volutions Neural Networks (CNN’s). These capsules attempt to represent input data
meaningfully and learn the right BD class as a vector of operation that show the
output of each capsule.

Furthermore, the scientists undertake the task of detecting BD states by tracking
effective data derived from organized interview video recordings. Our objective is the
classification of the condition ofBDpatients into clinically important recovery, hypo-
mania, and mania states. In order to derive facial characteristics from video signals,
the author used a Convolution Neural Network (CNN) model [22] in a hybrid mode
for BDC using Visual Information. Recently, the “Bipolar Disorder and Intercultural
Effect Identification” audio-visual emotional challenge and workshop (AVEC 2018)
is the eighth contest for the comparison of multimedia processing and automated
audio-visual well-being and emotion analytic learning methods, with participants
exclusively participating under the same conditions [23]. The goal is to provide a
shared test set for multi-modal data processing, to put together community health
and emotional awareness as well as video processing cultures, and to compare the
relative merits of different approaches to health and emotional awareness from real-
life data. Three proposed tasks have been proposed in this challenge: classification of
bipolar disturbances, cross-cultural emotional identification, and generation of emo-
tional labeling from individual ratings. In this paper, we propose a novel intelligent
end-to-end transformer based bipolar disorder recognition system to overcome the
limitations of data scariness and optimization. In the subsequent section, we give the
detailed description of our proposed approach.

3 Proposed Framework

In this section, the different steps of the proposed approach are detailed. First, a
pre-processing of splitting into smaller chunks is applied to the audio recordings.
Augmentation has been used on the audio files after they are split, in order to increase
training data diversity. After pre-processing, features are extracted from the audio
files to describe the key characteristics or patterns of BD. The chosen model is
wav2vec2 framework for self-supervised learning of representations from raw audio
data. In the subsequent sections, we extensively describe each component of our
proposed approach.
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3.1 Preprocessing

Pre-processing is a very crucial step in our proposed approach, because of the high
ratio signal to noise and the limited number of training samples. We have applied
pre-processing on the raw audio files represented into two major steps; splitting and
augmentation. Splitting divides, the files into smaller chunks based on pre-defined
files for each recording and based on the concept of avoiding training the model
with very large files. Augmentation helps removing noise from the audio files and
improve learning by enforcing consistency.

Audio Splitting Data splitting is one of the basic steps for model training and our
dataset contain audio files with multiple recordings for all patients. In suggested
dataset, one patient may have more than one recording. The recording length is not
fixed with separator files to show the sound of a tone that is used for bipolar disorder
(BD) detection. The audio length ranges from 14s up to around 17min. We split
the audio files based on those separators (tones). Also, we split the audio files to be
more than 1s and less than 60s length. A file that is less than a second in length
is dropped and a file that is longer than 60s is split into several chunks as long
as the chunks do not exceed 60s in length. Also, another splitting step is to use a
tone in the audio files as a separator. The timing of such separators is predefined
in a CSV file and used to split the files into chunks without such tone. Splitting
is not windowing, it’s just a step to enrich the dataset by more consistent audio
files.

AudioAugmentation The data scarceness and quality affect themodel performance.
Audio augmentation is a group of techniques that create changed copies of an existing
audio files and add them to it or generate new data using simulation techniques or
also deep learning techniques like the generative adversarial network (GAN).

Data Augmentation in general and audio augmentation techniques more specifi-
cally generate awide range of natural data variances and can function as aRegularizer
to lessen the issue of over-fitting. Additionally, it can assist deep neural networks
become resilient to intricate variances in real-world data, which enhances their gen-
eralization capabilities.

We utilized the time dropout (chunk drop), and frequency dropout (freq. drop)
techniques as an augmentation to augment the dataset for training. In the time dropout
method, drops chunks and replaces some random chunks of the original waveform
with zeros. In the frequency dropout, it drops frequency, instead of adding zeros in
the time domain and adds zeros in the frequency domain.

3.2 Feature Extraction

Once data is pre-processed, feature extraction step is performed to extract high level
feature from input tensor. The used model is wav2vec model with previously set
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weights; in other words, a pre-trained model. In fact, using pre-trained or non-pre-
trained model, features do not differ as they are the same features the network would
have extracted from the data and the weights represent the network understanding
of the data and how it can learn from the dataset. The use of weights of a pre-trained
neural network only accelerate the model training and help to overcome the problem
of data scarcity.

We have chosen wav2vec model [24] to benefit from the self-supervised learning
mechanism. Self-supervised learning has become a paradigm in machine learning
for learning general data representations from unlabeled samples and refining the
model with tagged data. We used Wav2Vec2 model as the main transformers’ archi-
tecture. Wav2Vec2 is a transformer-based architecture for automatic speech recog-
nition (ASR) tasks [24]. Using a novel contrastive pre-training objective, Wav2Vec2
learns discriminating speech representations. The model of the wav2vec2 takes the
audio signal and passes it through CNN model to extract very good representative
features from it. The feature extractor converts the speech signal to the model’s input
format, and afterwords a tokenizer converts the model’s output format to text. They
are both required since ASR models convert speech to text.

Features are fed into transformers neural network that can learn from unlabeled
speech. The Transformer generate initial representations, or embedding, for each
audio file. Next, it aggregates information from all of the other audio files, generating
a new representation per file. The self-attention computation requires as input a
query Q, keys K, and values V. The embedding matrices X are multiplied with
the corresponding internal weight matrices WQ WK WV as defined in Eq.1. Let I
∈ Q, K , V

I = X × W. (1)

The self-attention is thus described in Eq.2:

attention(Q, K , V ) = so f tmax(Q · KT )V (2)

In fact, Eq. 2 is simply the dot-product attention function. The scaling factor is
ignored for simplicity. This step is repeated several times for all files, successively
generating new embeddings. Transformers here generate contextualized representa-
tions, which means they will perform a classification and a forecasting process at
the same time. Then the model is fine-tuned on labeled data with the Connectionist
Temporal Classification (CTC) algorithm for specific ASR tasks. CTC is a neural
network that associate a scoring function, for training RNNs networks. It allows to
handle sequence problems with variable sequence/time size. The workflow of our
proposed Transformer-based model is summarized in Fig. 1.
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Fig. 1 System model workflow from input; training steps and generating accuracy based on test
set

4 Experiments and Results

4.1 Dataset

The dataset used to evaluate the performance of the proposed approach is a Turkish
dataset called Bipolar Disorder Corpus (BDC) and introduced by Ciftci et al. [25].
The Bipolar Disorder Corpus (BDC) is gathered from patients from themental health
service of a hospital. It has been annotated by psychiatrists with BD states and the
Young Mania Rating Scale (YMRS) scores. Those scores were acquired at session
level where each score corresponds to one patient on one of the test days.

The BDC has been used in the AVEC 2018 Challenge [23], a competition event
for proposing and comparing new data processing and machine learning methods for
bipolar disorder diagnosis. A subset of BDC has been used in the AVEC challenge,
it contains video recordings of clinical interviews of 100 Turkish locals who have
been diagnosed with a specific type of BD. We are concerned with only audio data
in our experiments.

These patients were chosen from a mental health facility with the ethical com-
mittee’s agreement and had a prior BD diagnosis following the DSM-5 inclusion
criteria. Patients who met certain exclusion criteria, such as abusing drugs or alco-
hol three months previous to the onset of another severe organic disease, exhibiting
hallucinogenic symptoms, having low mental capacity, or acting disruptively during
the session, were excluded [25]. Additionally, several participants refused to have
their information made public. The total number of subjects in the publicly available
dataset is 46, with a mean age of 36.5 and a standard variation of 10.2years. There
are 30 men and 16 women in this final group. Sessions were documented both dur-
ing the patient’s hospital stay and after their release in the third month. After each
session, a YMRS score is given to each subject where: YMRS ≤ 7 is Remission,
YMRS ∈ [8, 19] is Hypomania, and YMRS ≥ 20 is diagnosed as Mania.

In our experiments, we used the 218 audio recordings, made publicly available in
theAVEC challenge, whichwill be then split into training, validation and test subsets.
For more details, please refer to training explanation given in the next section.
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4.2 Implementation Details

Train/Validation/Test split: we assigned 80% of the data for training, 10% for
validation, and 10% for model testing to show the significance and robustness of the
proposed model.
Fine-tuning strategy: To overcome the data scarcity problem and to reduce the
computational time of training, a transfer learning strategy is set up with two steps:

• pre-training step: the deep neural networks are first trained on a first and big dataset
that owns enough labeled audio signals for a related task.

• fine-tuning step: the deep neural networks are initializedwith the parameters learnt
in the first pre-training step and then trained a second time for the new task. In this
work, the CNNs are fine-tuned on the Bipolar Disorder Corpus dataset to test.

The best hyperparameters of our Wav2Vec2 transformer: the learning rate is
heuristically tuned until fine-tuning has become stable. We set it as 0.00001 in all
our trials. We use the number of training epochs of 16, 32 and 128 during our tries.
Seed Values of 0, 1234, 1993 are set fix. Max Length of the recording to be processed
of 10, 20, 30, 45, and 60s are considered. A batch size of 2, 4, and 8 are evaluated
in our experimentation. The tested hyperparameters are shown in Table 1.

4.3 Performance of the Proposed Approach for Bipolar
Disorder Diagnosis

In this section, we present the experiment results of our transformer-based approach
for Bipolar Disorder diagnosis. Several experiments have been performed to find the
best configuration and hyperparameters to learn accurate audio patterns of bipolar
disorder. Table 1 shows a comparison of the trials made with Transformers. We have
used a pre-trainedmodel andwe tested also to train themodel from scratch.We tested
different parameters such as the number of training epochs, learning rate, batch size,
and max length of audio files. The best results reached an accuracy of 88.2% in the
test set.

Our transformer-based deep neural network has shown very accurate results in
the training and it achieves an accuracy of 95% after 16 epochs and no over-fitting
problem is reported. It has been demonstrated also that it has a very good general-
ization capacity in the test set by achieving a precision of 87.9%, a recall of 87.7%,
a F1-score of 87.8% and an accuracy of 88.2%.
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Table 1 Experimental results for transformers

Method Augmented use Seed Epochs Batch size Max
length (s)

Accuracy
(%)

wav2vec2_large N/A 0 32 2 10 45.80

wav2vec2_large N/A 0 32 2 20 51.10

wav2vec2_base N/A 0 32 4 60 61.30

wav2vec2_base N/A 0 128 4 30 65.40

wav2vec2_base N/A 0 32 8 30 84.70

wav2vec2_base N/A 1993 16 4 30 75.10

wav2vec2_base N/A 1234 16 4 45 69.00

wav2vec2_base Time dropout 1234 16 4 30 82.90

wav2vec2_base Time and
frequency
dropout

1234 16 4 30 88.20

4.4 Comparison with State of the Art Methods

We compared the performances of our Wav2Vec2-Base model and existing
approaches for BD classification using audio data [17, 19, 21] on the same data
(the Turkish BD corpus). Table2 demonstrates that the pre-trained Wav2Vec2-Base
achieved 0.882 overall accuracy and UAR 0.877, which is better than the state-of-
the-art approaches.

Du et al. [19] utilized audio and developedmodel that received the lowest UARs in
the AVEC 2018 Challenge [23]. For the purpose of diagnosing bipolar disorder, [21]
employed audio spectrograms, and they obtained anUAR of 46.2%. Sequential mod-
els such as LSTM, RNNs, and BiLSTM architectures are trained using the baseline
characteristics supplied by the competition organizers with a low-level audio features
(MFCCs, eGEMAPS, Bag-of-Acoustic-Words (BoAW), and DeepSpectrum).

They achieved a 74.60%UARon the training set whenMFCCandBoVWfeatures
are fused onBi-LSTMmodel.However, the stated test set result of 33.33% is theUAR
score at the chance level for the 3-class classification issue. By avoiding over-training,
deep learningmodels should be trained with caution of LSTM that is trained using all
of the characteristics offered in the challenge achieves the greatest results on the test
set. Success is indicated by a 59.24% UAR on the validation and a 44.44% UAR on
the test under such conditions. But this result is worse than the SVMmodel’s baseline
performance on the dataset due to sequence structure and learning strategy [17].

On a limited dataset, employing more sophisticated deep learning models does
not always improve performance. A contrastive task defined through quantization
of latent representations is solved with wav2vec2, which masks the speech input
in the latent space. Our proposed wav2vec2-transformer-based approach achieve an
accuracy of 88.2% and an UAR of 87.7% and it outperforms existing methods on
Turkish BD dataset despite the limited number of samples in this dataset.
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Table 2 Performance comparison of bipolar disorder classification and assessment methods on
AVEC2018 (BD) dataset

Method Metrics Audio features Model used Performance (%)

[21] UAR Raw audio CapsNet 45.5

[17] UAR Deep spectrum
features

LSTM/Bi-LSTM 58.20

[19] UAR MFCCs coefficients InceptLSTM/LSTM 65.1

Our UAR Raw audio Transformers 87.7

5 Conclusion and Future Work

In this paper, a new approach for BD diagnosis and classification using audio data
is proposed. After pre-processing the audio signals by splitting and augmenting the
signal data, they are fed to a Wav2vec transformer based deep neural networks to
learn BD patterns and to classify the audio signals into three BD classes. Thanks to
the transformer’s capacity to capture long-range dependencies and interactions, the
proposed approach outperforms existing approaches on the Turkish audio-visual BD
corpus by achieving 88.2% of accuracy. In future work, we are planning to propose a
multi-modal approach for BD diagnosis that fuses audio, visual and textual patterns
extracted from video data.
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Establishment and Analysis
of a Combined Diagnostic Model of Acute
Myocardial Infarction Based on Random
Forests and Artificial Neural Networks

Zhenrun Zhan, Xiaodan Bi, Jinpeng Yang, Xu Tang, and Tingting Zhao

Abstract Acute myocardial infarction is a serious disease worldwide that kills
approximately 8.5 million patients each year. It can occur in multiple age groups
and, despite the more diverse diagnostic techniques available, it has a number of
limitations. Therefore, a diagnostic model based on gene biomarkers should be
developed to assist existing diagnostic methods and improve the efficiency of diag-
nosis. For this research, we applied three datasets, one for screening DEGs and the
other two for validation. We selected the DEGs of AMI from the first dataset and
used a random forest classifier to identify key genes, including TREM-like tran-
script 2 (TREML2), interleukin-1 receptor type 2, CSF3R, HMGB2, nuclear factor
interleukin 3 regulated, granzyme K (GZMK), MXD1, KIAA1324, NTNG2, and
LOC440737. Among these genes, TREML2, HMGB2, GZMK,MXD1, KIAA1324,
NTNG2, and LOC440737 have never been associated with AMI. Next, we success-
fully used an artificial neural network to construct a newmodel to diagnose AMI and
verified the diagnostic effect of the model using the two validation datasets.

Keywords Acute myocardial infarction · Biomarkers · Artificial neural
networks · Random forests ·Machine learning

1 Introduction

Acute myocardial infarction has been responsible for the largest number of deaths
worldwide in the last decade [1]. This disease is the most grievous representation
of acute coronary syndrome (ACS). Each year, over 2.4 million patients die from
this disease in the US and over 4 million in Europe and Northeast Asia. Further,
one-third of patients in developed countries die of AMI every year [2], and this
number is still increasing annually. From a pathophysiological perspective, acute
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myocardial infarction can be classified into two types: STEMI and NSTEMI [3].
Both of them are collectively referred to as ACS with unstable angina pectoris. The
pathophysiology of NSTEMI is similar to that of unstable angina pectoris. These
conditions are collectively referred to as non-ST-segment elevation ACS.

In general, myocardial infarction is caused by the rupture of fragile atheroscle-
rotic plaques or erosion of coronary endothelial cells [4]. Ultimately, cardiomyocyte
necrosis remains the final result. AMI is still the most severe form of coronary heart
disease. In 2010 alone, over 1.1million patients in the USAwere admitted to hospital
because of AMI. The economic burden on society exceeded $450 billion [5]. The
diagnosis of myocardial infarction depends on the changes in the electrocardiog-
raphy (ECG) results caused by myocardial ischemia or infarction; the biochemical
indices related to myocardial infarction, as well as the occurrence of ischemic symp-
toms, are also important signals [6, 7]. First, ECG is one of the most frequently used
techniques for diagnosing AMI, and its accuracy depends heavily on the clinical
experience and machine operation of ECG doctors, which leads to subjective results.
Second, CK-MB (Creatine Kinase Isoenzymes) and cTn (cardiac troponin) are the
most distinguished biomarkers for the diagnosis of AMI [8, 9]. However, CK-MB
seems relatively insensitive in detecting small myocardial infarctions. Consequently,
a new diagnostic model needs to be established to fill the gap in existing techniques
[10, 11]. Thereafter, an artificial neural network (ANN) model was established to
predict the genetic diagnostic model of AMI.

2 Materials and Methods

2.1 Data Collection

We opened the website “www.ncbi.nlm.nih.gov/geo” to find appropriate datasets,
used theGEOquery package to download the chip data of theGSE61144, GSE97320,
and GSE48060 datasets, and integrated their clinical phenotypes and expression
profiles (Table 1). We obtained the corresponding annotation information for the
respective platform chip probes from the GEO database.

2.2 Differential Expression and Enrichment Analysis

Using the limma package to determine the difference between the 7 AMI samples
and 10 normal samples from the GSE61144 dataset. The conditions for significance
of the DEGs were set as follows: log FC values of > 1 and P-values of < 0.05.
The cluster profiler package from the R software was used for the GO and KEGG
enrichment analysis of the DEGs.

http://www.ncbi.nlm.nih.gov/geo
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Table 1 Data download

Data Sample size Organization type Data type

GSE 61144 24 (normal: 10; disease: 7) ACS STEMI PCI blood: 7
ACS STEMI blood: 7
Normal control blood: 10

Microarray

GSE 97320 6 (normal: 3; disease: 3) Peripheral blood of acute
myocardial infarction: 3
Peripheral blood of healthy
people: 3

Microarray

GSE 48060 52 (normal: 21; disease: 31) Peripheral blood, patient without
recurrent events: 26
Peripheral blood, patient with
recurrent events: 5
Peripheral blood, normal control:
21

Microarray

2.3 Random Forest Screening for the Important Genes

The Random Forest package of R software was employed to establish a random
forest model based on DEGs. We set the number of best-fit variables for the binary
tree to 6 and selected 30 as the optimal number of trees to be included in the random
forest. When the importance value > 0.6, the top 10 genes were selected to construct
the model. Clustering of unsupervised hierarchical clusters of 10 significant genes
was reclassified using the pheatmap package, and a heat map was drawn.

2.4 PPI Network Analysis

The STRING software was used to analyze the PPI network of the 10 DEGs. We
logged in to the website (www.string-db.org/), selected “multiple proteins by names/
identifiers,” entered the names of the candidate genes, and selected the “organism”
and “Homo sapiens” options; thereafter, “SEARCH” was clicked.

2.5 Neural Network for Building the Disease Classification
Model

The GSE61144 dataset was used to build the ANN model. We used the NeuralNet
package (version 1.44.2) and NeuralNetTools package (version 1.5.3) to build the
ANN model predicated on the important variables. The disease classification model
of AMI was established using the obtained gene weight information. The classifica-
tion score was obtained using the following method: For the upregulated genes, the

http://www.string-db.org/
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score was evaluated as 1 point when the gene expression level was greater than its
median value and 0 points when the gene expression level was lower than its median
value, and vice versa. We then opened the pROC software package in the R software
and imported the disease classification score to compute the verification of the AUC
categorization properties.

2.6 Additional Data Verification

The validity of the categorical score models of AMI and normals was verified using
the two independent datasets (GSE97320 and GSE48060). The ROC curve of each
dataset was drawn using the pROC software package, and the AUC of the two
independent validation datasets was computed to test the classification efficiency.

3 Results

3.1 Differential Expression Analysis

For this research, we first downloaded the chip dataset GSE61144 and analyzed
the data to filter for the DEGs. The GSE61144 dataset includes 17 samples, which
can be divided into 7 AMI disease samples and 10 normal samples. Thereafter,
the DEGs between the AMI samples and normal samples of the chip dataset were
identified using the limma software package to perform the Bayesian test. By setting
the screening conditions to a significance threshold of P-values of < 0.05 and log
fold change (FC) values of > 1, we obtained 168 remarkable DEGs associated with
AMI through conditional screening (Supplementary Document 1). The DEGs are
reflected in the volcano map shown in Fig. 1a and heat map shown in Fig. 1b.

A B C D

Fig. 1 a Volcano plot of differential expression analysis results. b Heatmap of DEGs. Bar chart
(c) and bubble plot (d) of GO enrichment results
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Fig. 2 a Ring plot showing GO enrichment. The connecting line indicates that the gene is included
in the GO term. Bubble chart (b) and ring plot (c) showing the KEGG pathway enrichment

3.2 GO/KEGG Enrichment Analysis

We used the clusterProfiler software package to perform enrichment analysis of
DEGs. GO enriched the molecular functions, cellular components and biological
processes, and the results are displayed in Fig. 1c, d. We found that the biological
processes associated with AMIwere abundant, including T cell activation, regulation
of cytokine production involved in immune response, positive regulation of leukocyte
activation, and leukocyte-mediated immunity cell killing. The cellular components
involved included tertiary granules and other important components. The molecular
functions included enrichment of immune receptor activity andothermajor functions.
Figure 2b, c shows the results of theKEGGpathwayenrichment analysis of theDEGs,
including the related strikingly enriched biological pathways and relevant DEGs.

3.3 Random Forest Screening for DEGs

A random forest classifier was then used to process the 168 DEGs. We classified
all probable numbers in 1–168 variables by cyclic random forests and computed
the average error rate of this model. All variables were included to calculate the
average error rate, and the results are shown in Fig. 3a. Finally, the variable coeffi-
cient was set to 6. We attempted to control the number of variables and minimize
the out-of-band error as much as possible. Figure 3 (relationship plot) illustrates the
relationship with the number of decision trees and the model error. To make the
error in the model most stable, we set the condition to be more important than 0.6
and obtained 10 DEGs as possible genes for follow-up analysis. Figure 3c shows
that TREM-like transcript 2 (TREML2), interleukin-1 receptor type 2 (IL1R2), and
CSF3R were the most important variables, followed by HMGB2, nuclear factor
interleukin 3 regulated (NFIL3), granzyme K (GZMK), MYC-associated factor X
dimerization protein 1 (MXD1), KIAA1324, LOC440737, and NTNG2. We used
these 10 significant candidates from the GSE61144 dataset to conduct K-means
unsupervised clustering. Of the 17 samples in the GSE61144 dataset, the 10 genes
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Fig. 3 a The effect of the decision tree number on the error rate. b Heatmap of unsupervised
clustering. c Findings from the random forest classifier in the Gini coefficient method. d Diagram
of PPI network analysis of DEGs

may be employed for distinguishing disease samples from normal samples. Interest-
ingly, TREML2, IL1R2, HMGB2, NFIL3,MXD1, KIAA1324, NTNG2, and CSF3R
were significantly more expressed in disease samples than in normal samples. The
opposite was true for LOC440737 and GZMK.

3.4 Protein–Protein Interaction (PPI) Network Analysis

The STRING software was used to analyze the PPI network of the 10 DEGs.
PPI refers to the non-covalent binding of mannoproteins with two or more protein
molecules. We logged in to the website (www.string-db.org/), selected “multiple
proteins by names/identifiers,” entered the names of the candidate genes, and selected
the “organism” and “Homo sapiens” options; thereafter, “SEARCH” was clicked.
Nine key proteins were identified in the STRING software, with NFIL3 and IL1R2
being the most important proteins (Fig. 3d).

3.5 Construction of the ANN Model

We then used the NeuralNet software package to establish the ANN model based on
GSE61144. Initially, we preprocessed the data to standardize them. Before training
the neural network, we applied the min-max method [0,1] to separate the zoom data.
We standardized the minimum and maximum data values, and then performed the
operation. To assess the results of the neural network model more effectively, we
applied statistical methods for verification. Finally, the output of the first hidden
layer in the neural network results (i.e., input of the last output layer) was regarded
as the result of the gene weight. Based on such, we established a model to sort the
expression data of genes between AMI and normal samples. The ROC curve of the
validation results shows the performance of the classification model in Fig. 4a. The
AUC of the verification results was 1, demonstrating the model’s robustness. Thus,
these reliable data could be used to build a neural network model and obtain the
outcomes (Fig. 4b).

http://www.string-db.org/
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A B DC

Fig. 4 a Validation of ROC curve of classification efficiency. b Neural network model. c AUC
verification results in the GSE97320 dataset. d AUC verification results in the GSE48060dataset

3.6 Evaluation of the AUC

After themaximum andminimum standardizations of the GSE97320 andGSE48060
datasets, we used these data to verify the designed ANN model, calculate the neural
AMI score, evaluate its classification efficiency, and compare the AUC. The neural
AMI score was obtained using the following method. For the upregulated genes,
the score was evaluated as 1 point when the gene expression level was greater than
its median value and 0 points when the gene expression level was lower than its
median value. For the downregulated genes, the score was evaluated as 1 point when
the gene expression level was lower than its median value and 0 points when the
gene expression level was greater than its median value. Figure 4 shows the ROC
curve of the two independent validation datasets. The scores of the two datasets
were then compared. In the GSE97320 dataset (Fig. 4c), the AUC of the neural
AMI score remained 1.00; the specificity was 100%, and the sensitivity was 100%.
In the GSE48060 dataset (Fig. 4d), the AUC of the neural AMI score was 0.768.
Although the sensitivity and specificity were lower than those in the other dataset,
they remained high. This indicates that the ANNmodel maintained a high robustness
in both the independent validation datasets.

4 Discussion

In this study, we identified the DEGs associated with AMI from the GSE61144
dataset, established a random forest tree model, and used a random forest classi-
fier to obtain 10 important DEGs. The established neural network model was used
to ensure the weight of the candidate genes, and a scoring model for neural AMI,
which was associated with AMI, was established. Finally, we used two independent
sample datasets to determine the classification efficiency of the scoring model estab-
lished. The AUC values indicated that the classification efficiency of the two datasets
was significantly high, and the neural AMI model in the GSE97320 dataset had a
better classification efficiency than that in the GSE48060 dataset. More interestingly,
LOC440737 was not found in either verification dataset; therefore, we can conclude
that LOC440737 is not a key gene for diagnosis.
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Of nine genes, CSF3R encodes granulocyte colony- stimulating factor (G-CSF).
After consulting the literature,we found that the receptor for this factor isG-CSFR.As
amultifunctional cytokine, it functions inmutual regulationwith receptors. In cardio-
vascular disease, this factor can promote the division of granulocytes and strengthen
the function of mature neutrophils, leading to the intensification of the inflamma-
tory response, promoting the development of the disease. In contrast, Takano et al.
showed that G-CSF and its receptor can enhance the activity of bone marrow stem
cells, leading to vascular and myocardial regenerations, which are conducive to the
recovery of cardiac function after AMI and can reduce the associated death rate
[12]. As for other aspects, CSF3R also plays a role in chronic neutrophilic leukemia,
chemoresistance of hepatoblastoma, and atypical CML [13–15].

According to study, IL1R2 is a key mediator related to a variety of immune
cells. The IL1R2 gene can act as a mediator of cell metabolism and many other
immune responses mediated by IL1R2, and it also affects atherosclerosis [16–18].
In another study, IL1R2 expression increased in cells with myocardial ischemia-
reperfusion injury. IL1R2 also inhibits the function of IL-17RA; this mechanism
reduces cardiomyocyte apoptosis. Therefore, overexpression of cytokine receptors
encoded by IL1R2 in cardiomyocytes can serve as a basis for a new approach for the
treatment and alleviation of myocardial ischemia-reperfusion injury [19].

In terms of heart disease, some authors [20–22] have conducted a preliminary
study on the diagnostic biomarkers of AMI and found gene modules related to AMI.
It also affects cardiac function by regulating the signal transduction process of cellular
molecules and causes heart failure. This gene may affect the pathogenesis and devel-
opment of heart failure through these processes and has the potential to become a
new site for intervention in patients with heart failure [23]. After consulting several
relevant studies [24–26], we concluded that NFIL3 can regulate the inflammatory
response causing gout; thus, it is possible to treat gout through this gene.

The TREML2 gene, a triggering receptor expressed on myeloid cells, has been
confirmed to be associated with the pathogenesis of Alzheimer’s disease [27].
HMGB2 encodes high-mobility group box 2, the expression of which decreases
with age. Jeong et al. confirmed that the protein encoded by the gene is involved in
a variety of biological processes, including regulation of cell aging [28].

After reading many related articles [29–31], we obtained the following conclu-
sions. GZMK mainly affects immune aging in the entire body by promoting the
production of inflammatory cytokines. Currently, there is no research on its relation-
ship with heart diseases. Appropriate expression of netrin-G2, which is encoded by
NTNG2, is conducive to the normal development of human nerves.

Our study did not aim to design a new diagnostic model and completely replace
the existing diagnostic methods, but to help improve the efficiency of such current
diagnosticmodels.Our diagnosticmodel has high accuracy and sensitivity, especially
in East Asians. However, previous studies have been based on STEMI datasets, and
whether the diagnostic model established can be applied to the diagnosis of NSTEMI
is unclear. In addition, the accuracy of the model needs to be further investigated in
consideration of our results. Indeed, there are still some deficiencies in our diagnostic
model, and the accuracy and specificity need to be further improved.
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Striped-Cross Attention Network
with Implicit Semantic Knowledge
for Antibody Structure Prediction

Miao Gu and Min Liu

Abstract The structure of an antibody directly determines its ability to bind with
the target proteins specifically. It is of great significance to obtain accurate struc-
ture data for the antibody research in the field of disease diagnosis and therapy.
Since antibody structure resolution experiments are time-consuming and costly, a
growing number of methods for protein structure prediction are proposed to address
this problem. Although considerable improvements have been made in the general
protein structure prediction, deep learning-based approaches still fail to yield suffi-
ciently accurate antibody structures to provide functional insights and design assis-
tance. In this paper, we firstly exploit the unique semantic information implied from
the comparison between the antibody structures and the general protein structures.
We further propose a Striped-Cross Attention Network (SCA-Net) to efficiently fuse
the features of different local functional regions and that of global regions on the anti-
body. Concretely, for each target amino acid position, SCA-Net collects its contextual
information preferentially at the same functional domain (CDR or FR region) of the
same peptide chain (heavy or light chain). Subsequently, the contextual information
is fused with the global information. We utilize 2D ResNet with dilated convolu-
tion as the backbone network for feature extraction, and then construct a parallelly
structured attention network using the proposed SCA-Net component as a classifier.
Finally, an end-to-end multi-task learning framework is yielded to predict the anti-
body structures, which are described by the inter-residue distances and orientations.
Quantitative experiments on two independent antibody structure test sets suggest that
the proposed method achieves the expected results.
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1 Introduction

Antibodies are a class of proteins that can specifically bind to specific target proteins
and play an important role in the diagnosis and treatment of diseases today [1].
The specific binding ability of antibodies is determined by their own protein tertiary
structures, and the rational design of antibodies for a given antigen relies on an
accurate model of the antibody structure. As it is time-consuming and costly to
perform structural analysis experiments on a large number of candidate antibody
sequences during antibody design and development, antibody structure prediction
has become an important research direction in protein structure prediction [2].

As shown in Fig. 1a, the antibody is a Y-shaped structural protein complex that
assembled from two heavy and two light chains. The Fc region is highly conserved,
it’s engaged in immune effector functions, but not in antigen recognition. However,
as shown in Fig. 1b, for the variable fragment (Fv) region, there exist six sequen-
tially non-adjacent but structurally adjacent complementary decision regions (CDRs)
that engaged in antigen recognition. For the reasons mentioned above, the antibody
structure prediction task mainly refers to the prediction of the Fv structure.

Most of the current available methods for antibody structure prediction, including
the RosettaAntibody and ABodyBuilder [3, 4], are derived from the threading
methods used in common protein structure prediction, which uses resolved anti-
body fragment structures as homologous templates for some forms of grafting. This
approach can produce models with an overall root-mean-square deviation (RMSD)
less than 1 A˚ from the native structure [5]. However, amino acids of the CDRs is
more highly variable than FRs, the available fragment template data can barely cover
the conformational space of CDRs.

Recently, deep learning has made breakthroughs in the key challenging prob-
lems in structural biology including protein folding. Yang et al. [6] obtained inter-
amino acid distance and angle data representation of protein structures based on
protein sequence co-evolution features with deep residual network prediction. Deep-
Mind proposed AlphaFold2 [7], an accurate prediction framework for common
protein folding, based on graph network, transformer variant, and multiple sequence
comparison features. David Baker et al. [8] incorporated 1D sequence level, 2D

Fig. 1 The diagram of antibody structure, the visualization functional regions of Fv and the
resulting antibody Fv structure by this work
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amino acid distance map level, and 3D coordinate level information to achieve the
RoseTTAFold framework, which is second only to AlphaFold2 in terms of protein
structure prediction accuracy. Recently, deep learning-based methods for antibody
structure prediction have been proposed [9, 10]. Borrowing the idea of ordinary
protein prediction, these studies mainly devoted to the prediction of the distance
and the angle between amino acids of antibodies, which are further employed as
a geometric potential constraint to obtain antibody structures. These methods, to a
certain degree, improve the prediction accuracy of CDR regions, while their attention
models are directly derived from the image segmentation task, which do not consider
the semantic-specific information in the antibody sequences.

It can be found that antibody sequences have unique semantic information
compared with ordinary protein sequences. In specific, there are two types of func-
tional regions on antibody Fv sequences, each with six fragments, which are discon-
tinuous in sequence level but adjacent in structure. In this study, by introducing the
semantic information of antibody sequences, we propose a new attention mechanism
Striped-Cross Attention (SCA) for antibody structure prediction. The SCA-based
module first performs attention-based feature fusion on the CDRs of antibody VH,
FRofVH,CDRsofVL, andFRofVH, respectively, and thenper-forms feature fusion
between different functional domains to obtain global representations. We propose a
classifier that introduces semantic information specific to antibody sequences based
on the SCA module, and build a feature extraction module with Dilated Residual
Network (DRN), and then implement amulti-task deep learningmodel for the predic-
tion of antibody structure geometry information. After obtaining the description of
geometric information, the antibody structure, as shown in Fig. 1c, can be predicted
according to the pipeline of previous work [6, 9].

The main contributions of our work are as follows. (1) We proposed a new atten-
tion mechanism (SCA) for antibody structure prediction. Unlike previous attention
mechanisms that perform self-attention on all amino acids equally, SCA collects
contextual information for each amino acid at the same structural domain (heavy or
light Chain) and the same functional domain (CDR or FR region). (2) We designed
a parallel network for multiple inter-residue distances and orientations classification
tasks based on the SCAmodule and 2D convolutional networks. (3) We combine the
SCA module-based classifier with a feature extraction backbone network to imple-
ment a multi-task learning framework for the prediction task of geometric informa-
tion of antibody structures. We conducted validation experiments on two test sets
with highly diverse antibody structures and the experimental results showed that the
proposed SCA-Net achieved encouraging results.

2 Methodology

In this section, the motivation of the proposed SCA-network and the constructed
overall framework are briefly described. The SCA module calculates the attention
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implied between amino acid pairs of the same functional domain based on the func-
tional domain information implied by the antibody sequence compared to the normal
protein sequence rather than at the global level. The overall network architecture
consists of three parts: an encoder and feature splicing layer, a feature extraction
backbone network, and a multi-task classifier based on the SCA module. We used
this network framework to perform the task of predicting the distance and angle
between antibody amino acids based on the SAbDab dataset [13]. Then in line with
other related work [9], antibody structures were obtained by pyRosetta based on
inter-residue distances and orientations.

2.1 The Diagram of Striped-Cross Attention

Deep learning-based protein/antibody structure prediction tasks all rely on the amino
acid pair feature matrix obtained by amino acid sequence expansion and transpo-
sition, and as mentioned previously, most remarkable protein structure prediction
algorithms employ the attention mechanism to extract amino acid remote correla-
tions. As shown in Fig. 2a, the non-local network perceives the correlation between
the features at a certain position and all other positions on the feature map, and
then generates the global attention-aware context information. Recently, in order to
reduce the practical and spatial complexity of the attention network on the predic-
tion of antibody structures with fewer samples, the Criss-cross attention (CCA) block

Fig. 2 Diagrams of related attention mechanism and the novel one proposed by this paper
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[11], which belongs to the local-block network in the field of image segmentation, is
introduced, as shown in Fig. 2b, with continuous of longitudinal and cross attention
modules to collect the correlation information of each pixel point with any pixel
point globally.

To some extent, the antibody sequence semantic information implies the relation-
ship between the local structures of antibodies. The CDR regions/FR regions that are
not adjacent to the sequence are structurally adjacent. Some clues about it can also be
found on the attention heat map in previous studies [9], shown as Fig. 2c, where the
positional attention score between CDR regions is higher than between CDR regions
and FR regions. Therefore, we propose the striped-cross attention (SCA) module
to embed this prior knowledge, diagrammed in Fig. 2d. For each SCA module, the
horizontal and vertical stripe (yellow and purple boxes in the figure) is generated
based on the functional region location information in the antibody sequence, and
then the horizontal and vertical attentions are calculated at the striped-cross level for
each feature point belonging to the striped-cross region.

We compare the differences between the three attentional mechanisms in Fig. 2.
Specifically, all three use the input feature map with space size H × W to generate
the attention map (upper branch) and the transformed implicit feature map (lower
branch), respectively and then use weighted summation to collect contextual infor-
mation. The differences are: the local module adopts dense connectivity for each
location at the global level for feature relevance capture, and the weight size of
the attention map is H × W. The CCA module adopts sparse connectivity for each
location at the horizontal and vertical levels for feature relevance capture, and the
predicted attention value matrix size is H + W-1. Then the global two-by-two loca-
tion dependency type calculation is realized after a single loop structure. The SSA
module generates a series of strips for limiting the range of the sensory field based on
the semantic information of the functional domain category of the antibody sequence.
For each position located in the intersecting region of the strips, feature correlation
is captured at the horizontal and vertical levels in the intersecting region of the strips.
The predicted attention map weight size is Hregion + Wregion-1, and similarly, after a
cyclic structure to capture feature correlations on similar functional domains.

2.2 Classifier Network Structure Based on Striped-Cross
Attention

Based on the SCA attention mechanism, we can perform attention feature fusion that
is discontinuous at the spatial level but continuous at the functional domain level for
different semantic regions of antibodies, and then fuse them with global features.
In this paper, inter-amino acid distance and angle prediction classifiers based on
the SCA module are constructed, and the network framework is shown in Fig. 3a.
There are convolution layers for feature transformation, serial SCAmodules for each
function region of the antibody, and a 1 × 1 convolution layer for classification.
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Fig. 3 Classifier network structure based on striped-cross attention

The network structure implemented for the SCA module is given in Fig. 3b.
Given the amino acid pair feature map and transposed to obtain Pab ∈ RH×L×L ,
two convolutional layers with 1 × 1 filters are first applied for dimensionality
reduction to obtain three feature maps Q, K, and V, where {Q, K } ∈ RH ′×L×L ,
V ∈ RH×L×L , H ′ is the number of channels whose value is smaller than H. In addi-
tion, we distinguish the antibody sequence {r0, r1...ri ...rL−1} into four functional
domains according to light or heavy chains, CDR regions or FR regions: SHcdr =
{r Hcdr

0∗ , r Hcdr
1∗ ...r Hcdr

n∗−1 }, SH f r = {r H f r
0∗ , r H f r

1∗ ...r H f r
n∗−1}, SLcdr = {r Lcdr0∗ , r Lcdr1∗ ...r Lcdrn∗−1},

SL f r = {r L f r0∗ , r L f r1∗ ...r L f rn∗−1}, where n∗ is each index of residue at the function region.
We will perform the attention calculation process on the respective scope of the four
defined functional domains.

After obtaining the feature maps Q and K and the functional domain range, we
further obtain the attention maps by the Striped Affinity operation to generate the
respective attentionmaps, Aregion ∈ R(n∗+n∗−1)×n∗×n∗ based on the functional domain
range. The Striped Affinity operation is performed as follows: for each position u
at feature maps, we obtain its feature vector qu ∈ RH ′

, and at the same time, we
obtain the set �u ∈ R(n∗+n∗−1)×H ′

, combined by feature vectors located in the same
row or column as that position in the given functional domain range, �i,u denotes
the i-th element in �u . Then, for position u, we define the following striped affinity
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operation:

di,u = qu�
T
i,u (1)

di,u ∈ R(n∗+n∗−1)×H ′
can be used to measure the correlation degree of other location

features in the functional domain with the current location u. Traversing i and u at
each location of S∗ and we can get the mat D ∈ R(n∗+n∗−1)×H ′

, and then we calculate
the local functional domain attention map Aregion through the softmax layer.

At the same time, for position u we can obtain the feature vector vu ∈ RH on
the feature map V, and obtain the set of feature vectors �u ∈ R(n∗+n∗−1)×H on the
functional domain range that belongs to the same row or column as position u. Thus,
the striped contextual information fusion is achieved, and this operation is defined
as the Aggregation operation:

Pu′ =
∑

i∈|�u|
Aregion
i,u �i,u + Pu (2)

2.3 Framework Architecture for Antibody Structure
Prediction

The overall network framework for antibody structure prediction proposed in this
study is shown in Fig. 4. There are three main components: an encoder and feature
splicing layer, a feature extraction backbone network, and a multi-task classifier
based on the Striped-Cross Attention network.

Fig. 4 The overview of our proposed network architecture
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The antibody sequence is encoded in one-hot form, and the embedding represen-
tation pab = {r0, r1 . . . ri . . . rL−1}, pab ∈ RL×c, is obtained by pre-trained BiLSTM
[12] sequence encoder and one-dimensional convolutional neural network, where ri
represents the feature vector corresponding to the ith amino acid, l is the length of the
antibody sequence, and c is the feature dimension of the hidden layer of the encoder.
Then the feature vectors are tiled and longitudinally tiled to obtain the amino acid
pair feature map Pab ∈ RL×L×2c.

Further, through the feature extraction backbone network, we obtain the feature
map P

′
ab ∈ RL×L×2H , which implies amino acid pair interrelationship. Then the

classifier based on striped-cross attention constructed in 2.2 is introduced, and the
feature map P

′
ab is fused with functional region features guided by the semantic

information of functional domains on antibody sequences. Through the above clas-
sifier, we harvest 6 classes of discrete representation (37 bins) of the inter-amino
acid geometric relationship matrix {MCa, MCb, MNO , Mω, Mθ , Mϕ} ∈ RL×L×37. To
handle the problem of the unbalanced distribution of inter-amino acid geometric
relationship label values, we choose the Focal Loss as the loss function for the model
training. Then, similar to the pipeline of other reports, the antibody structure was
obtained by pyRosetta energyminimization based on inter-residue distance and angle
information.

3 Experiment

3.1 Dataset

The model proposed in this paper was trained on the antibody database SAbDab
[13] subjected to a redundancy operation (sequence identity threshold of 99%),
and the database size is 1692. Two independent test sets were selected to evaluate
our approach: the RosettaAntibody benchmark set (45 targets) [12] and the anti-
body development process work in clinical therapeutic antibodies (45 targets) [14].
Overall, the antibody assemblies in the test sets cover as much structural diversity
as possible, contain therapeutic and some diagnostic antibodies, and can be used to
evaluate predictive methods for antibody Fv structures.

3.2 Evaluation of Inter-Residue Distances and Orientations
Prediction

The output of the model is the distance and orientation information between six
amino acids as the geometric description of the antibody structure, and the true value
of each geometric feature is discretized as 37 bins. Because amino acids that are
far away from each other do not interact with each other. We adopt 18.5 Å as the
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cut-off threshold for distance, i.e., all three distances of amino acid pairs larger than
18.5 Å with their corresponding angle classes are classified as the 37th bin. Besides,
the outputs of the three angle matrices are positionally masked during training and
validation, focusing only on the distance threshold between amino acid pairs within
the relative orientation.

For this multiple output biased multi-classification problem, we calculate the
average meaningful accuracy, recall, and F1 score under multi-classification for each
geometry information.

Precisiongeo_i = 1

Kgeo_i

Kgeo_i∑

j=1

T Pj

T Pj + FPj
(3)

Recallgeo_i = 1

Kgeo_i

Kgeo_i∑

j=1

T Pj

T Pj + FN j
(4)

F1geo_i = 2 × Presigiongeo_i × Recallgeo_i
Presigiongeo_i + Recallgeo_i

(5)

where geo_i represents the ith geometric information category, and Kgeo_i repre-
sents the number of categories of the ith information category. For the ith geometric
information category, T Pj is the number of true positives for the jth category (i.e.,
correct prediction for that category), FPj is the number of false positives for the jth
category (i.e., misclassification of samples from other categories as samples from
that category), and FN j is the number of false negatives for the jth category (i.e.,
missed prediction for samples from that category). To evaluate the effectiveness
of the proposed SCA, an attention mechanism guided by semantic information of
antibody functional regions, we use the CCA attention mechanism to replace the
SCA attention mechanism in the structure prediction framework proposed in this
paper and perform comparison tests with the same hyperparameters and F1 score for
classification performance evaluation, and the results are shown in Fig. 5. It can be
found that the SCA attention module achieves better results in predicting geometric
information between almost all amino acids, especially in distance prediction.

3.3 Evaluation of the Antibody Structure Prediction

We input the distance and orientation information between the six amino acids
predicted by the model into pyRosetta to obtain antibody structures and compared
them with those obtained by currently available antibody prediction methods. We
calculated the Root Mean Square Deviation (RMSD) for the CDR loop of both
chains and the backbone heavy atoms in the framework region to assess the accuracy
of each functional domain, and the relative orientation coordinate distance (OCD)
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Fig. 5 Comparison of SCA-net and CCA-net at the classification task by F1 score

[5] to measure the accuracy of the relative orientation between the light and heavy
chains. The evaluation results of each method on the two test sets are summarized in
Table 1.

In Table 1, RosettaAntibodyG [3] and ABodyBuilder [4] are fragment-template
based grafting methods, and CCA-Net (marked with an asterisk), which is the
DeepAb framework proposed in related work [9], belongs to deep learning-based
antibody structure prediction methods. In this work, DeepAb and the SCA-Net based

Table 1 Performance of antibody FV structure prediction methods on benchmarks

Method OCD HFR (Å) H1 (Å) H2 (Å) H3 (Å) LFR (Å) L1 (Å) L2 (Å) L3 (Å)

RosettaAntibody benchmark

RosettaAntibodyG 5.2 0.56 1.18 1.11 3.45 0.57 0.76 0.86 1.04

ABodyBuilder 4.72 0.49 0.96 0.84 2.88 0.49 0.70 0.51 1.10

CCA-Neta 5.75 0.67 1.19 1.16 3.26 0.64 1.06 0.67 1.27

Our SCA-Neta 3.54 0.46 0.77 0.91 2.93 0.45 0.70 0.48 0.97

Therapeutic benchmark

RosettaAntibodyG 5.32 0.63 1.43 1.05 3.86 0.55 0.89 0.83 1.52

ABodyBuilder 4.25 0.49 1.02 1.01 3.09 0.45 1.05 0.51 1.35

CCA-Neta 5.26 0.61 1.23 1.10 3.31 0.57 1.17 0.65 1.12

Our SCA-Neta 3.36 0.42 0.85 0.68 2.85 0.39 0.77 0.47 1.17

a “Å” is a unit of distance, also written Ångström, 1Å equals 0.1 nanometers, it is a common unit to
measure the accuracy of a protein’s predicted structure.
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architecture proposed in this paper were trained and tested under the same hyper-
parameter and initialization method. The results show that our antibody structure
prediction method achieves better or near-optimal results in all metrics compared
to the grafting method. Moreover, it can be observed that some improvements
are also achieved compared to existing deep learning antibody structure prediction
frameworks, which is also consistent with the results in 3.2.

4 Conclusion

In this thesis, we analyze the limitations of current antibody structure prediction tasks
and propose a new attention mechanism Striped-Cross Attention (SCA) embedded
with semantic information of antibody sequences to efficiently fuse correlations
between amino acid pair features of non-adjacent but homogeneous functional
domains of antibody sequences. We constructed an antibody structure prediction
framework based on this module. After validation on two independent benchmark
datasets, the results show that the proposed SCA-network-based antibody prediction
framework achieves more accurate results in the antibody inter-amino acid distance
and angle classification tasks. The evaluation of antibody structure prediction also
indicates that thismethod outperforms current antibody structure predictionmethods.
In the future, we will explore the antibody-antigen interaction prediction task based
on the proposed model and graph neural networks for the case of unknown antibody
structures.
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AMobile Monitoring Application
for Post-traumatic Stress Disorder

Sirine Chaari, Chaima El Ouni, and Alice Othmani

Abstract Post-traumatic Stress Disorder (PTSD) is a impairing condition that can
have a important impact on a person’s life. The ability of the patient to cope with
stressful situations is often affected, making PTSD treatment and monitoring indis-
pensable. Therefore, developing a mobile application that can assist patients in iden-
tifying their symptoms and giving accurate readings is mandatory. In this paper, we
propose amental health surveillance application that will allow users to monitor their
PTSD symptoms using self-assessment questionnaire and video-based technology.
This application keeps track of the behavior of the patient throughout the results of
the PTSDChecklist of the DSM-5 called PCL-5 test on one hand, and records videos
of the patient for future artificial intelligence-based diagnosis. The web application
will be publicly released.

Keywords Mental health · PTSD ·Mobile app · PCL-5 · Patient monitoring

1 Introduction

Posttraumatic stress disorder (PTSD) is a mental disorder resulting after exposure
to a traumatic event. These events generally involve direct threat, or represent a real
risk of death or serious injury, and can cause significant distress such as natural
disasters, sexual assault, military combat experience or even during a major stressful
life experience like divorce or unemployment. About 4 of every 100 men develop
PTSD in their lives, according to the US Department of veterans affairs. While, it is
more frequent for women and it is about 8 of every 100women, whichmakes it one of
the most common mental health concerns worldwide. While the symptoms of PTSD
may vary from one person to another, it is common for people with this disorder to
have flashbacks of their traumatic event, feel and re-experience the emotions from
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the event periodically and have distressing physical reactions such as hypervigilance
and self-medication with alcohol or drugs.

One of the most common tests to monitor PTSD symptoms is the Post-traumatic
StressDisorderChecklist (PCL)-5 test. It is a 20-item,widelyusedDSM-correspondent
self-report that assesses the 20 DSM-5 symptoms of PTSD. The PCL-5 was designed
to be used by a variety of testers like healthcare and social sciences practitioners,
non-professional researchers, students, and community members to determine the
presence and severity of PTSDfollowing an initial traumatic experience. It is intended
for use in the clinical setting as a screening device for initial assessment of PTSD.

The PCL-5 test comprises 20 questions and the patient answer them by self-
assessment of his PTSD symptoms over the past month, using a 5-point scale ranging
from 0 to 4 with 0 meaning not at all and 4 when the symptom is extremely present.
An overall symptom severity score with a range from 0 to 80 can be computed as
a sum of the scores for each of the 20 items. According to preliminary research,
samples with a PCL-5 cutoff score greater than 38 are likely to have PTSD. The
test takes approximately 5–10min to complete, and the interpretation is made by a
clinician. The PCL has been translated into over 50 languages and is universally used
in research studies, and clinical trials all over the world.

With the increasing number of patients with this mental condition, as well as the
high cost of therapy sessions, has led to an increased interest in an alternative, more
reliable tool that is accessible to anyone at anytime and that is easy to use for PTSD
treatment and monitoring. Thus, we propose in this paper PTSDetection application
for the diagnosis, the assistance and the follow-up of PTSD patients.

The paper is organised as follows. Related works to mental health disorders and
telemedicine are discussed in Sect. 2. In Sect. 3, our new proposed methods for moni-
toring PTSDare presented. The different technologies used to develop the application
and the different architectures are presented in Sect. 4. In Sect. 5 is consecrated for
the application evaluation. Finally, Sect. 6 give the conclusion of this research work
and discusses future works.

2 Related Work

2.1 Mobile and Web Applications for Health Monitoring
and Surveillance

The use of software applications by clinicians and healthcare professionals has
changed many aspects of medical practice [21]. With the widespread use of devices
in healthcare settings, the development of medical software applications has grown
rapidly [1]. Several applications are now available to assist medical staff with many
major tasks, such information and time management, recording and saving, commu-
nication and consultation, referral and information gathering, patient assistance and
follow-up, help decision-making, and teaching and training [5]. Patients who require
24/7 monitoring have traditionally been monitored with fixed, bulky equipment that
may restrict their mobility or not effectively provide monitoring over predetermined
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periods of time. Increased mobility naturally results in a change in the user’s con-
textual information, such as location and available resources around them. The use
of mobile web services provides a natural opportunity for mobility and allows care-
givers in remote locations to “keep an eye” on patients. Providing such remote health
monitoring throughmobile andweb applications offers a low-cost alternative to tradi-
tional telemedicine approaches. The requirements are a device, a mobile web service
hosted on the patient’s device and a simple user interface on both sides and a standard
web browser.

2.2 Mental Disorders and Mental Health Telemedicine

Telemedicine can provide help formental health disorders and issues that are difficult
to treat in person, such as addiction. With telemedicine, a healthcare provider can
examine a patient remotely and diagnose and prescribe treatment. Telemonitoring
is also used to help monitor the health of individuals who have lost the ability to
communicate verbally or through other means.

In a recent study [19], medication adherence with telemedicine has been investi-
gated for adult persons with severe mental disorders. In their clinical trial, patients
with schizophrenia or bipolar illness were randomly chosen to either the intervention
group or the usual care control group [19]. Trained nurses conducted the intervention.
The Medication Adherence Report Scale was used to assess medication adherence.
The study found that patients who received telemedicine intervention had improved
medication adherence as compared to the control group. The telemedicine inter-
vention was successful in improving medication adherence. The study found that
patients who received telemedicine intervention had improvedmedication adherence
as compared to the control group. In another work, a system for tracking people with
bipolar disorder in the mental health field [9] was introduced. This system collects
speech while performing tasks and includes a questionnaire system, sleep activity
monitoring, and medicine intake monitoring capabilities. It is built on textile-based
autonomic nervous sensor technology.

When stress becomes chronic, serious health issues result. The biosensors in
mobile phones can detect psychological stress, but they cannot detect mental stress,
which is determined by monitoring the heart rate and its variability. The R peaks
and ECG data were processed using an algorithm, which provided good results [4].
Numerous issues affected the management of chronic illnesses in both home and
hospital settings. Different parameters were chosen to provide the optimum care for
the patients, despite the fact that the monitoring and abnormality detection methods
differed between hospital and home. To integrate the two settings, a new architecture
was created [8]. The heart rate variability is used to measure human emotions and
stress. The ECG alterations that corresponded to the four different moods were
recorded. The optimal emotional states were determined using the physiological
characteristics [22]. Under tough circumstances, the biomedical signals were used
to monitor the physiological parameters. The condition was discovered using micro
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sensors and algorithms [18]. The mood of the person changes since stress has been
rising among people at all levels. A mood recognition system based on the frequency
of use of several mobile applications was also introduced [10].

Clinical depression or also called Major Depressive Disorder (MDD) is the most
studied mental disorder by the computer vision community and several machine
learning-based solutions havebeenproposedbasedon thevideodata [11, 11–17]. The
proposed computer-aided diagnostic systems for continuous assistance of patients
withMajor Depressive Disorder are based on high performing deep neural networks-
based approaches and they have demonstrated that video is a fast, non-invasive and
non-intruded approach for depression recognition and surveillance and it is con-
venient for real-world applications. More recently, in [15, 16], a proposed clinical
decision support systems that uses audiovisual cues extracted from the video record-
ings of clinical interviews in order to predict depression relapse and guide treatment
decisions. The proposed clinical decision support systems uses machine learning and
behavioral profiling techniques to extract audiovisual cues from the video recordings
of clinical interviews and to predict depression relapse [15, 16].

2.3 Mobile Application for Post-traumatic Stress Disorder
Diagnosis and Follow-Up

Despite the adequacy of current treatments for PTSD, access to treatment, particu-
larly for veterans, continues to pose critical challenges that can impact adherence to
appropriate treatment [7]. First, access tomental health care is becoming increasingly
needed as people have become more conscious of their stress and anxiety levels and
as the health sector suffers from a shortage of medical staff. Mental health offices
continue to be understaffed and despite the growing demand for mental health care.
Many people with post-traumatic stress disorder (PTSD) are unable to get to health
care jurisdictions for treatment due to social, cultural and access facility barriers.

New health care interventions that rely on electronic information and communi-
cation processes, such as the use of mobile applications, could be a way to overcome
several barriers for people who are unable or unwilling to access mental health
care. Over the past decade, computer-based applications (such as cell phone alcohol
app mediations and machine learning approaches to distinguish PTSD) have been
used to extend reach, provide real-time verification, and offer a more comprehensive
treatment pathway through advanced support steps. A subsequent study of veterans
treated for PTSD showed that those with access to a mobile device were eager to use
a versatile wellness intervention through apps to monitor their health condition [6].
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3 The Mobile Application

3.1 Video and Data Acquisition

Data acquisition is the process of collecting data. In this project, the application
collects several data for further analysis and statistics. The acquired data represents
demographic data that provides a better understanding of certain background charac-
teristics of an audience, whether it is age, ethnicity, sex and job. The user’s answers
will be given and recorded while the camera is open. The recorded video of him
answering the questions will be saved and can be used later for statistical purposes.

3.2 Virtual Interviewer

A virtual interviewer is designed in our proposed mobile application to play the role
of the clinician. The virtual interviewer asks the user the 20 questions of the PCL-5
test to determine if he is suffering from post-traumatic stress disorder or not and
to determine the PCL-5 score for this test. This score will be saved in the patient’s
history with the corresponding date. The design of a virtual human interviewer aims
to engage the patient in a face-to-face virtual interaction where he can feels more
comfortable than in clinical interview. Besides, it create interaction conditions for
automatic assessment of distress indicators.

The virtual interviewer has several advantages: it promotes social distancing due
to Covid19 [20], it can solves the problem of the lack of medical and paramedical
staff [2], and it helps the patient being more comfortable when answering the mental
health questionnaires [3]. In fact, it has been noticed that people aremore comfortable
talking to a virtual agent or responding anonymously. One study indicated that fol-
lowing a combat deployment, the sub-sample of benefit individuals who namelessly
replied the schedule PDHA side effect checklist detailed twofold to fourfold higher
mental wellbeing side effects and the next intrigued in accepting care compared to
the in general comes about inferred from the standard organization of the PDHA,
which is identifiable and connected to benefit members’ military records [23].

3.3 PCL-5 Questionnaire

The PCL-5 can be a self-screening device to assess PTSD. It is used to conclude the
existence of PTSD; a conclusive determination can be given by a properly trained
clinician. It is a 20-item self-report degree that evaluates the 20 DSM-5 symptoms of
PTSD. It has a variety of purposes, including: tracking symptom progression during
and after treatment, screening for PTSD, and making a provisional diagnosis of
PTSD. This tool can be used multiple times after diagnosis to assess the progression
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of PTSD symptoms over time. A 5-point decrease has been proposed to reflect a
solid lessening in side effects, meaning that the alter is not arbitrary. This can be
used to test whether a person’s symptoms are responding to treatment. A reduction
of 10–20 points reflects a clinically significant change. In our proposed PTSDetection
application, the PCL-5 questionnaire is implemented.

3.4 Patient History Recording

The history of the user is a typical approach to infer information about the user. An
initial history of information must be produced when the user is registered. Each
time a user completes the test, the results are displayed in a table and graph, and
the application uses the information to assess whether or not the user has PTSD.
After taking the test and answering the 20 questions, the application will determine
whether or not the user has PTSD. The result will be stored in the database as a
patient history. The PCL-5 test result is used to start a clinical history and medical
record for the user.

4 Application Development

In this section we will be discussing the general architecture of the application and
the technological choices.

4.1 General Architecture

The physical architecture of our application is composed of 3 levels, called 3-tier
architecture. First, we have the client layer which is mainly a web browser that
represents the communication tool between users and our application. Indeed, the
user sends HTTP1 requests and receives the response in JSON2 format. Secondly,
we have the application server layer that takes care of the business processes of the
application, it contains aWeb layer that manages the client’s requests and sends them
to the other layers to perform the necessary processing. And last of all, we have the
database server layer which is a database containing the information related to the
users of the application.

This choice of this architecture is justified by its flexibility for applying new
technologies. It also guarantees increased security and protect the privacy of the
patients which is very important for mental health applications. With a three-tier

1 Hypertext Transfer Protocol.
2 JavaScript Object Notation.
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architecture, access to the database is provided only by the application server. This
server is the only one that knows how to connect to the database. It does not share any
information that allows access to the data, including the database login and password.
Furthermore, it provides better performance, given the sharing of tasks between
different servers. Also, it significantly reduces deployment and administration costs.
In fact, the main advantage of a three-tier architecture is the ease of deployment. The
application itself is deployed only on the server part (application server and database
server). The client itself can access it using the browser that is compatible with our
application and is installed by default on all machines.

Thepresentation layer is developedwithReact Js and contains all theMan/Machine
interfaces and services that ensure communication with the back-end. Indeed, React
Js applications are modular applications. Each module is organized according to the
following Hooks architecture: The component is a function that implements the busi-
ness logic of the application and interacts with the views also called templates that
describe HTML3 pages. These interfaces provide services that are unique to the func-
tionality of the application from which we use the back-end REST controller-level
Web services. There is the security layer that ensures the security of the application
thanks to the Web token JWT.4 Also, there is the core layer. It contains all the core
processes of our application. We then implement the different data processing. And
last of all, the data persistence layer that contains the data handling logic.

4.2 Technological Choice

In the process of creating the project that would contain all of our features and after
a thorough analysis of all the technologies, we chose ReactJs, Django and MongoD-
BATLAS. And in this section we have detailed the languages used by classifying
them, according to their specificities, in three layers.

Frontend For the frontend we decided to use React.js. Its is an open-source library
developped in JavaScript. It is widely used for creating user interfaces for single-page
apps. It can handle the view layer for mobile/web applications. Another advantage
of React, it allows to build reusable UI components.5

Backend The proposed application will integrate in the future deep neural networks
for the diagnosis and the follow-up of PTSD. For interoperability reasons, django
and django REST framework are chosen for the backend of the app. Django is a high-
level Pythonweb framework for fast development. In fact, Django REST framework:
is a strong and flexible open source toolkit for building Web APIs.6

3 HyperText Markup Language.
4 JSON Web Tokens.
5 https://www.c-sharpcorner.com/article/what-and-why-reactjs/.
6 https://www.django-rest-framework.org/.

https://www.c-sharpcorner.com/article/what-and-why-reactjs/
https://www.django-rest-framework.org/
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Database To ensure many users usage, MongoDB ATLAS and Djongo are chosen.
MongoDB Atlas, a cloud management database system. It has several advantages
of dealing with complexity of deploying/managing/healing the placing on the cloud
service provider. It is in fact the best way to place and run MongoDB in the cloud.7

Also, to make data manipulation more easy and to simplify constructing queries, we
used Djongo. It is an integrated approach for database interfacing.8

Development tools The chosen editor is Visual Studio Code (VS Code). It integrates
several features that facilitate development such as syntax highlighting, IntelliSense
auto-completion system, source code management with simple and powerful Git
integration, integrated terminal support that allows to select and use the Shell of the
development platform.

And to test the functionalities of our APIs in the backend, we used Postman,9 an
API platform for creating and using APIs.

Version control software Git and Github are used for collaborative work environ-
ment. In fact, Git is a version control system that track change history and help to
coordinate work among several work collaborators. And last of all, to store all the
different versions of our project, we used Github.

5 Application Evaluation and Dataset Collection

The first step for the user is to register and log in. Once logged in, the user will have
to turn on his camera to take the PCL-5 test. The subject will listen to the virtual
interviewer and respond to each question vocally and select an answer by a click
on the corresponding button. The application will determine if the user has PTSD
based on their answers to 20 questions. Each question will have a response on a scale
of 0–4. If the total scale of all the responses is greater than 38, then the subject is
diagnosed with PTSD. The test procedure is illustrated step by step in Fig. 1.

For user satisfaction evaluation and for further future study of PTSD, PTSDetec-
tion app is used to collect a new dataset from 100 participants. All participants are
normal control subjects and they did not present PTSD antecedents. Each test takes
around 10min and each participant is asked to rank the app and to give comments
and recommendations for improving the app. The average score given by the par-
ticipants is 4.2/5. This score is satisfactory for app deployment for more collect of
data from PTSD subjects in collaboration with Henri Mondor Hospital in Paris. The
in-wild dataset collected from 100 subjects will be used for self-supervised learning
of PTSD patterns from audiovisual cues.

7 https://www.mongodb.com/basics/mongodb-atlas-tutorial.
8 https://www.djongomapper.com/.
9 https://www.postman.com/.

https://www.mongodb.com/basics/mongodb-atlas-tutorial
https://www.djongomapper.com/
https://www.postman.com/
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(a) Sign In (b) Profile

(c) Ready For Test (d) Starting Test

(e) Test Result (f) Table of Previous Tests and patient history

(g) Patient history based on the scores of the
PCL-5 test.

Fig. 1 A screening of the proposed PTSDetect monitoring application
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6 Conclusions and Future Work

In this paper, a newPTSDmonitoring application is introduced. The proposedmobile
application is based on the acquisition and the analysis of the responses of the PCL-5
test and the videodata from the patients.Byusing this app, it is possible tomonitor and
to follow-up PTSD symptomsmore accurately and at home. The proposed app can be
used to recognize changes in patients’ audiovisual cues and self reported symptoms
and then it can alert the doctor and caregivers to potential risks. In future work, we
are planning to propose a deep learning-based approach for PTSD recognition and
to integrate it into the PTSDetect application. The automatic analysis of the video
data of PTSD patients will give more information about patients’ mental state. The
aim is to get a better understanding of patients’ mental health and be able to predict
PTSD symptoms in them.
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COVID-19 Diagnosis and Classification
from CXR Images Using Vision
Transformer
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Abstract The COVID-19 pandemic is yet to come to a halt, and the current primary
method of diagnosis is Reverse Transcription Polymerase Chain Reaction (RT-PCR).
Although RT-PCR is reliable, it is known to have a long turnaround time and high
false-negative rates that can severely hinder the accuracy of diagnosis. Alongside RT-
PCR, Rapid Antigen Tests (RAT) are also used, but they have much lower accuracy
than RT-PCR. Motivated by the flaws of the current diagnosis methods, we present a
Vision Transformer-based classifier for the successful diagnosis and classification of
COVID-19 using chest X-Ray (CXR) images. In order to address dataset imbalance
and bias issues, a 15,000 sample CXR dataset was compiled, which consisted of
5000 CXR per class. Afterwards, a Vision Transfer (ViT) was fine-tuned on the
dataset. Resnet-50 and DenseNet121 were used as baseline models. It is observed
that for multiclass classification, the Vision Transformer-basedmodel has the highest
classification accuracy of 96.2% with a F1 score of 0.965 and the average precision
and recall of 0.9617 and 0.962, respectively. This study demonstrates the adequacy
of the ViT for the identification and classification of COVID-19 and Pneumonia.

Keywords COVID-19 · Vision transformer · Image classification

1 Introduction

The novel coronavirus disease 2019 (COVID-19), caused by severe acute respiratory
syndrome (SARS), has emerged as the deadliest virus of the century resulting in
about 367.8 million people infected with over 5.65 million deaths worldwide as
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of Jan. 28, 2022 [1]. The public health system is facing many obstacles in this
pandemic. Shortage ofmedical resources increases the risk of infection for healthcare
workers. Now, the primary method of diagnosis is Reverse Transcription Polymerase
Chain Reaction (RT-PCR) or rapid antigen test. RT-PCR is considered the gold
standard in diagnosing COVID-19 for its higher sensitivity and specificity than other
primary diagnoses [2]. However, depending on the region and other factors, it can
take several hours to days to get the result. Equipment to perform RT-PCR tests
is also not adequate in all hospitals and health complexes. Before the COVID-19
pandemic, only a handful of tests required RT-PCR. Therefore, not all hospitals have
the test available. It is a long process to equip these hospitals with these equipment’s.
Also, trained professionals are required to operate these equipment’s. Creating newly
trained professionals at an accelerated rate during this pandemic is not possible.
For these reasons, the less economically developed countries are suffering to better
detect COVID-19 cases. Positive radiological findings are present in the majority of
the COVID-19 positive patients. Almost all hospitals and health complexes, even
in less economically developed countries, have conventional radiographs or CXR
machines. So, radiological diagnosis can be used for rapid screening of COVID-19,
such as chest radiograph (CXR). Nevertheless, highly trained medical professionals
are required to detect the disease, which is a scarce resource for many remote areas.

The use of deep learning approaches is widespread nowadays in different areas,
and it also boosted the performance ofmany research fields. One essential application
of deep learning in medical image analysis. CXR images of COVID-19 patients have
distinct features that a deep learning-based model can classify. But at the same time,
CXR images of COVID-19 patients and CXR images of Pneumonia patients can look
exactly the sameor have similar features. So, it is difficult to differentiate aCOVID-19
CXR image from a Pneumonia CXR image. For these computer vision-related tasks,
CNN has been widely used in the last few years. Almost all the image classification
tasks were performed using CNN-based models in recent years for the high accuracy
rate of CNN-basedmodels. But like other technology, CNN also has some limitations
due to its hard-inductive biases. Hard inductive biases restrict the capabilities of CNN
when it handles a large amount of data [3]. In recent times, Vision Transformer has
shown the capabilities of overtaking CNN in computer vision-related tasks. Recent
studies show thatVisionTransformer is comparable and, in somecases, better than the
CNN-based model [4]. So, CXR or CT (CXR holds some practical advantages over
CT) can be used for rapid screening by using vision transformers (ViT) techniques.
But data is very important to complete these tasks. Decent amount of data from
trustworthy sources are required for the building ofVisionTransformer-basedmodels
that classify COVID-19 images effectively.

Roberts et al. [5] showed the various pitfall of deep learning-based classification
of COVID-19. One of their primary concerns was the quality of COVID-19 datasets.
Most of the public datasets were found to be unbalanced. They contained a small
amount of COVID-19 data compared to other CXR data like normal pneumonia,
lung cancer, etc. This kind of imbalance in data is as a bottleneck for classification
performance of many standard learning algorithms. For instance, in [6] it was found
that imbalanced dataset has inferior classification performance but using an improved
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Fig. 1 The proposed vision transformer model

SMOTE algorithm can give better result. Amodel trained with an unbalanced dataset
can become very biased towards the class with the majority sample. If the data from
different classes have huge differences in quantity, then the model may give biased
output even if the accuracy is good. This can occur in misdiagnosis which can be
disastrous and can affect the spread of COVID-19.

In order to address some of the concerns presented in [5], in this study we compile
a custom dataset where the classes are balanced and other demographic are ensured
without any form of implicit bias. Apart from that, this study also focuses on classi-
fication of COVID-19 from Pneumonia and healthy lungs and to evaluate the perfor-
mance of Vision Transformer to classify CXR images. Therefore, the contribution
of this paper is two folds,

1. We partially address the concerns of Roberts et al. [5] by compiling a balanced
dataset without introducing any implicit bias.

2. Using the custom dataset, we analyze the performance difference between CNN
and Vision Transformers for the task of COVID-19 detection.

The rest of the paper is as following, in Sect. 2, we discuss and illustrate related
works. In Sect. 3, the proposed Vision Transformer model is discussed, and the entire
pipeline is demonstrated. Section 4 gives an overviewof thewhole process of creating
the datasets, data settings, and data preprocessing techniques. Section 5 summarizes
the experiment process, analyzes the results, and compares the proposed model with
CNN-based baseline models. Finally, we conclude with Sect. 6 (Fig. 1).

2 Related Work

In this section, we present works related to COVID-19 detection through deep
learning. In [7], the study used vision transformer to detect COVID-19 from normal,
COVID-19, and pneumonia patients CXR images. In the multiclass classification to
detect covid from normal, covid, and pneumonia CXR images, they got an accuracy
of 92% and an AUC score of 98%. Luz et al. [8] used a family of deep artifi-
cial neural networks based on the EfficientNet and achieved an overall accuracy of
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 (a) Covid (b) Normal  (c) Pneumonia

Fig. 2 Chest x-ray images

93.9%.Mondal et al. [9] also used vision transformer-basedmodel to detect COVID-
19 and the model was called ViTCOS-CXR, which achieved an accuracy of 96%.
Parl et al. [10], used a vision transformer-based model on three different data sets of
CXR images. These datasets were curated into three classes; normal, other infections
(which includes bacterial pneumonia and tuberculosis), and COVID-19. They got
an average accuracy of 86.4, 85.9, 85.2% and AUCs of 0.941, 0.909, 0.915 on three
different datasets. Zhang et al. [11], used a two-step transfer learning pipeline and
a deep residual network framework called COVID19XrayNet to detect COVID-19
from x-ray images. They integrated two novel layers into the popular ResNet32, i.e.,
feature smoothing layer (FSL) and feature extraction layer (FEL). They achieved an
overall accuracy of 91.92% (Fig. 2).

3 Proposed Model

Transformer is widely used in natural language processing. But Dosovitskiy et al. [4]
showed the potential of aTransformer basedmodel for computer vision. They showed
how an image can be compared with text and how to process an image with a trans-
formermodel to classify images. In this study,weutilizeVisionTransformer to design
a COVID-19 detection model. We used transfer learning and fine-tuned the model
by training the model with our dataset. The pipeline for our model training is same
as vision transformer. First, the input image goes through a preprocessing pipeline.
After preprocessing, the images get converted into multiple flattened patches. The
patches and their corresponding positional embedding are added to the transformer
encoder as a sequence of data. Vision transformers recreate the visual structure from
the training data and the vision transformer’s self-attention layers enable it to integrate
information globally to recreate the visual structure. Then the MLP head classifies
the image into classes. Figure 1 shows the proposed Vision Transformer model.
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4 Data

The dataset is one of the most important aspects in order to maximize a model’s
performance. Finding image data, especially medical data like CXR (Chest X-Ray)
is a challenging task by itself due to data privacy and rarity of somediseases.However,
there are many public CXR data that are available online. But most of them have
some form of issues with the data. There are high risks of biases in those data. Same
data can be present in different datasets as these is public datasets. Some dataset
only contains images with no other information, like how they verified the positive
or negative data. In the dataset [12], they only included chest x-ray images of 1–
5 years old babies. In the dataset [13], they included chest x-ray images of adult
patients only. With these biased data, it is not possible to verify the effectiveness of
any good model. Arranging private data from direct sources and verifying them with
professionals is cost and time consuming. Therefore, the primary task was to find
good sources of datasets and compiling from those sources to a single dataset. Before
compiling the final dataset, we compiled several small datasets and did classification
on them with no augmentation to verify that our compilation of the new datasets did
not contain any implicit bias. We compiled a dataset of 15,000 CXR images with
5000 images from each class (COVID-19, Pneumonia, and Normal). We collected
the data for our dataset from two public datasets that had very few limitations like
other public datasets have, as mentioned above.

4.1 Dataset Details

The COVID-19 Radiography Dataset [14] contained 3615 COVID affected CXR
images, 10,192 healthy CXR images, 6012 lung opacity affected CXR images, and
1345 pneumonia affected CXR images. On the other hand, the Extensive and Local
Phase EnhancedCOVID-19X-Ray dataset [15] contained 8851 normal CXR images,
6045 CXR images of pneumonia affected patients, and 4038 CXR images of COVID
affected patients. Out of these two datasets, we randomly sampled 5000 images for
each class, as shown in the Table 1.

Table 1 The arrangements of training, validation, and test datasets

Dataset/class COVID Normal Pneumonia Total

Train 3000 3000 3000 9000

Validation 1000 1000 1000 3000

Test 1000 1000 1000 3000

Total 5000 5000 5000 15,000
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Fig. 3 Chest x-ray images after preprocessing

4.2 Data Preprocessing

Various data augmentation techniques are applied to the training samples to improve
the model’s performance. For this purpose, we have used the OpenCV and Albu-
mentations library. Since all the images in our dataset had a dimension of 299 by
299 pixels, we first resized the photos to a target size of 224 by 224 pixels using
OpenCV. Furthermore, we applied normalization and CLAHE on our images. Then,
using Albumentations, we applied ShiftScaleRotate with a shift and scale limit of
0.5 and rotate limit of 180. We also incorporated RGBShift with shift limits of 15.
RandomBrightnessContrast and MultiplicativeNoise were also implemented. Next,
we used HueSaturationValue with shift limits of 0.2. Finally, we added GaussianBlur
and GaussianNoise (Fig. 3).

5 Experiments and Analysis

5.1 Implementation Details

For our experiments, we used Google Colab Notebooks for training and testing. For
training, we used TPU instead of GPUs.We used Adam optimizer to train our model.
TheAdam-epsilon value for ourmodelwas 1e-8 tomaintain numerical stabilitywhile
updating the values. Weight decay was 0.01, and we used a learning rate of 1e-4.
The hyperparameter details are given in Table 2.
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Table 2 Training
hyperparameters and data
distributions

Parameters Value

Adam epsilon 1e-8

Weight decay 0.01

Learning rate 1e-4

Training data 9000 images (60%)

Validation data 3000 images (20%)

Testing data 3000 images (20%)

Batch size (training, validation and
testing)

30

Epochs 30

Steps 9000

5.2 Evaluation Method

Choosing an appropriate assessment metric is fundamental to overcome the bias
among the differentiation of algorithms. For the classification standard, accuracy,
review, F1 score, and exactness are the most common measures. Among all the
identified samples, the number of correctly identified samples is called precision;
from all positive samples, the number of correctly identified samples is called the
recall. The harmonic average of precision and recall is called the F1 score. Accuracy
is defined by the amount of correct classified samples from all samples.

True-positive (TP): The number of accurately labeled positive samples.
True-negative (TN): The correctly detected negative samples.
False-positive (FP): The number of negative examples classified as positive.
False-negative (FN): The number of positive cases classified as negative.

5.3 Results and Discussion

We trained our proposed vision transformer model ViT-M for 30 epochs. Then the
system was evaluated over the test dataset of 3000 images, where we have 1000
images from each class. Our model could distinguish between the different classes
with great accuracy. The test accuracy on our test dataset was 96.20%. The average
precision of multiclass classification was 0.961, and the average recall of multiclass
classification was 0.962. Our model performed better in classifying COVID-19 than
other classes. As we can see in Fig. 5, the confusion matrix clearly shows us the
performance of our model classifying COVID-19. Among 1000 COVID-19 chest
x-ray images, our model successfully classified 988 images as COVID-19. There
were only 13 false-negative cases. False-positive cases are even lower, only 8. As
a result, our model achieved a precision of 0.988 and a recall of 0.992. Our model
also achieved an AUC score of 99.15% in classifying COVID-19. Still, our model



384 M. M. Rahman et al.

can be seen getting confused sometimes in distinguishing between COVID-19 and
other classes. In some mild cases of COVID-19, patients get less or no damage to
the lungs. It can be a potential reason for this confusion. However, the model could
accurately distinguish between COVID-19 and Pneumonia. We also trained a ViT
called ViT-B with binary class that had only COVID-19 and healthy lungs. We can
see that it achieves better performance compared to the multiclass model. However,
the multiclass model is much more practical in many scenarios (Fig. 4; Table 3).

The accuracy and AUC score in classifying COVID-19 shows us that it performs
much better than standard RT-PCR. It is also suitable for real-world deployment. It
can be a great tool for assisting radiologists in reducing human errors. It can also be
used as a primary diagnostic tool for COVID-19 detection for emergencies.

To evaluate the performance of our proposed vision transformer-based approach,
we have compared its performance to two other classifiers: ResNet50 and
DenseNet121. To achieve this, we trained both these models on the same dataset
used in our vision transformer-based approach. For the ResNet50 model, we got an
accuracy of 92.63%, which is lower compared to ViT-M. The confusion matrix in
Fig. 5 shows that the ResNet-basedmodel correctly classified 889 images out of 1000

Fig. 4 ROC curve of each class for each model

Fig. 5 Confusion matrix of vision transformer, ResNet-50, DenseNet-121
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Table 3 Evaluation of the proposed vision transformer model

Model Accuracy Precision Recall F1

ViT-M 96.20% 0.961 0.962 0.961

ViT-B 98.7% 0.988 0.992 0.990

Resnet-50 92.63% 0.916 0.926 0.921

Densenet-121 93.23 0.932 0.932 0.922

images for COVID-19, whereas ViT-Mwas able to successfully classify 988 images.
In the case of the DenseNet121 model, on the same dataset, we got an accuracy of
93.23%, which is slightly better than that of ResNet50, but still falls behind our
ViT-M model. In this case, as well, the DenseNet based model correctly classified
903 images (Fig. 5), which is still lower than our proposed approach. In both cases,
ViT-M works better in comparison to the other two baseline models, especially at
classifying COVID-19.

6 Conclusion

In this study, we proposed a vision transformer model to classify COVID-19 from
CXR images. We also compiled a custom dataset to partially address the issues
highlighted in [25]. We found that ViT outperformed ResNet50 and DenseNet121
in terms of COVID-19 detection. Upon comparison, our proposed model gave more
promising results, especially in discriminating between COVID-19 and Pneumonia.
This shows that for quick screening and diagnosis, ViT’s can be a useful tool. It can
also be used to assist doctors and radiologists as a second screening tool to reduce
human errors.
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Improved Techniques for the Conditional
Generative Augmentation of Clinical
Audio Data

Mane Margaryan, Matthias Seibold, Indu Joshi, Mazda Farshad,
Philipp Fürnstahl, and Nassir Navab

Abstract Data augmentation is a valuable tool for the design of deep learning sys-
tems to overcome data limitations and stabilize the training process. Especially in
the medical domain, where the collection of large-scale data sets is challenging and
expensive due to limited access to patient data, relevant environments, as well as
strict regulations, community-curated large-scale public datasets, pretrained mod-
els, and advanced data augmentation methods are the main factors for developing
reliable systems to improve patient care. However, for the development of medical
acoustic sensing systems, an emerging field of research, the community lacks large-
scale publicly available data sets and pretrained models. To address the problem of
limited data, we propose a conditional generative adversarial neural network-based
augmentation method which is able to synthesize mel spectrograms from a learned
data distribution of a source data set. In contrast to previously proposed fully con-
volutional models, the proposed model implements residual Squeeze and Excitation
modules in the generator architecture.We show that our method outperforms all clas-
sical audio augmentation techniques and previously published generative methods
in terms of generated sample quality and a performance improvement of 2.84% of
Macro F1-Score for a classifier trained on the augmented data set, an enhancement
of 1.14% in relation to previous work. By analyzing the correlation of intermediate
feature spaces, we show that the residual Squeeze and Excitation modules help the
model to reduce redundancy in the latent features. Therefore, the proposed model
advances the state-of-the-art in the augmentation of clinical audio data and improves
the data bottleneck for the design of clinical acoustic sensing systems.
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1 Introduction

Medical acoustic sensing systems utilize air- and structure-borne acoustic signals
that can be captured in a medical environment, such as vibration signals from surgi-
cal tools captured with contact microphones [1] or sounds acquired with air-borne
microphones directly from the area of operation [2], to provide guidance and support
in medical interventions and diagnostics. Because acoustic signals can be captured
non-invasively, radiation-free, and the systems are low-cost and easy-to-integrate,
acoustic sensing has great potential for the design of multimodal sensing paradigms
for the support of human surgeons, surgical diagnostics, robotic surgery, or to analyze
surgical workflow. Hereby, acoustic sensing can be used to obtain measurements for
applications where conventional medical computer aided support systems are lim-
ited, for example for the assessment of implant-bone press-fit which is impossible to
obtain using imaging or navigation [1, 2], or to complement the limitations of med-
ical imaging for the assessment of implant loosening [3] or cartilage degeneration
[4].

Exemplary applications for the successful application of acoustic sensing in med-
ical interventions are error prevention in orthopedic surgery by analyzing drill vibra-
tions to detect drill breakthrough [5], the evaluation of implant seating during inser-
tion of the femoral stem component in Total Hip Arthroplasty (THA) [1, 2], or the
guidance of the insertion process of surgical needles using structure-borne acoustic
signals acquired from the distal end of the medical device [6]. Also in medical diag-
nostics, acoustic signals have been successfully employed, e.g. for cough detection
[7] or the examination of heart sounds [8].

In the recent years, deep learning-based analysis methods have outperformed
classical signal processing and machine learning techniques for the processing of
acoustic signals [9] which has also been applied in the medical domain in first use
cases and showed promising performance improvements [1, 5].While thesemethods
are very powerful, they require large-scale high-quality training data to achieve supe-
rior performance and generalization to unseen cases. One of the main challenges for
medical applications, however, is the limited availability of large amounts of data due
to the limited access to the real surgical environment, expensive acquisition of realis-
tic data, and clinical requirements and regulations. While in the non-medical domain
of audio deep learning research, large-scale audio datasets, such as the Librispeech
dataset for speech recordings [10] or the UrbanSound-8K dataset for environmental
audio [11], are publicly available, the medical domain is lacking large-scale com-
munity data for the development of medical acoustic sensing systems. Therefore,
especially in the medical domain, data augmentation is a valuable tool to artificially
increase the size of a training data set to increase the diversity of training examples
and stabilize the training process. To address this issue, we published amedical audio



Improved Techniques for the Conditional Generative … 391

dataset in a previous work which contains acoustic signals recorded in the real oper-
ating room during THA procedures which resemble typical surgical actions such as
hammering, drilling, or sawing [12] and proposed a data augmentation method based
on a conditional generative adversarial network.

However, we note that several studies report that deep networks tend to learn
redundant features due to the huge model capacity [13–15]. Channel attention has
been successfully exploited to model channel level dependencies and facilitate learn-
ing of less redundant features [16–18] and subsequently improved model perfor-
mance. Motivated by these observations, in this paper, we demonstrate that due
to the huge number of model parameters, conditional generative adversarial net-
work (cWGAN-GP [12]) learns redundant features. To combat this, we introduce a
channel-wise attention mechanism in the generator sub-network through the imple-
mentation of Squeeze and Excitation [16] block and residual skip connections [19].
We provide visualizations that signify the reduced redundancy and subsequently,
improved quality of generated mel spectrograms samples quantified by a custom ver-
sion of the Fréchet Inception Distance [20]. As a result, the present work advances
the state-of-the-art in data augmentation for the emerging field of medical acous-
tic sensing and addresses the important issue of data limitations for medical deep
learning-based systems.

2 Materials and Methods

2.1 Data Set, Preprocessing, and Benchmark Augmentations

We use a publicly available data set1 [12] recorded during real Total Hip Arthroplasty
surgeries that contains sounds of the typical surgical actions that are performed
during the intervention and resemble the different phases of the procedure. The data
set includes 568 recordings with a length of 1–31s and the following distribution:
nraw,Ad justment = 68, nraw,Coagulation = 117, nraw,I nsertion = 76, nraw,Reaming = 64,
nraw,Sawing = 21, and nraw,Suction = 222.

We compute mel spectrograms, a feature representation for audio signals that
obtains state-of-the-art results for deep learning-based audio signal processing sys-
tems [9], using non-overlapping sliding windows which results in the following sam-
ple distribution for the entire data set: nspec,Ad justment = 494, nspec,Coagulation = 608,
nspec,I nsertion = 967,nspec,Reaming = 469,nspec,Sawing = 160, andnspec,Suction = 899.
Mel spectrograms provide a compact representation, capture time- and frequency-
domain aspects about a signal and can be computed from a raw waveform by first
computing theShort-timeFourierTransform (STFT) X and thenfiltering the resulting
spectra using a triangular filter bank spaced evenly on the mel scale [21] to compute
the mel spectrogram Xmel . All spectrograms computed within the present work have

1 The data set can be obtained from: https://rocs.balgrist.ch/open-access/.

https://rocs.balgrist.ch/open-access/
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dimensions 64 × 64 and are normalized using the formula Xnorm = (Xmel − μ)/σ

where μ is the mean and σ is the standard deviation computed over the entire data
set.

A number of data augmentation techniques for acoustic signals have been pro-
posed in prior research, among them classical raw signal based methods like adding
noise, time stretching, and pitch shifting, as well as spectrogram-based methods, e.g.
SpecAugment [22]. Furthermore, we compare the results of the proposed data aug-
mentation framework with the results reported in our previous work [12] in which a
standard convolutional conditional generative adversarial network with Wasserstein
Loss with Gradient Penalty regularization [23] was employed.

2.2 Proposed Data Augmentation Method

The architecture of the proposed GAN’s generator is depicted in Fig. 1. It consists
of 4 convolutional upsampling blocks followed by a squeeze-and-excitation block
with a residual connection, a technique originally proposed in by Hu et al. [16].
The Squeeze and Excitation block consists of a global average pooling layer, which
allows to squeeze global information to channel descriptors, a re-calibration part,
which acts as a channel-wise attention mechanism and allows to capture channel-
wise relationships in a non-mutually-exclusive way. The last operation scales the
input’s channels by multiplying them with the obtained coefficients. The Squeeze
and Excitation mechanisms adds two fully connected layers with a ReLU activation
function in between and a sigmoid function applied in the end as shown in Eq.1.

s = Fex (z,W ) = σ(g(z,W )) = σ(W2δ(W1z)) (1)

Here, the variablesW1 andW2 have the dimensions (Cr × C) and (C × C
r ), respec-

tively, σ is the sigmoid function and δ refers to a ReLU activation. The value of r
is a hyperparameter and for our method it was chosen equal to 16 in an empirical
manner.

The generator has an overall of 1,537,316 parameters. For the discriminator we
use a fully convolutional network architecture with a total of 4,321,153 parame-
ters analogous to our own previous work [12]. Both the generator and discriminator
employ the LeakyReLU non-linear activation function throughout the whole net-
work structure. As a loss function the Wasserstein Loss with Gradient Penalty (GP)
was chosen with GP weight equal to λ = 10. For both the generator and the dis-
criminator, we utilized the Adam optimizer with a learning rate of λ = 5 × 10−4.
The discriminator was trained for 5 extra steps per epoch. The implementation and
training of all reported results were done using Tensorflow/Keras 2.6 using a Google
Cloud instance running a single NVIDIA T4 GPU.

The determination of when to stop the training process is notoriously difficult for
the training of GANs. To assess the quality of the generated samples, we repeatedly
compute a custom version of the Fréchet Inception Distance [20] which is computed
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Fig. 1 The schematic illustrates the structure of the proposed SE-ResNet generator for the gener-
ation of synthetic mel spectrograms

based on the features of the last convolutional layer of aResNet-18 [19] pre-trained on
the THA data set published in [12]. The training process is stopped when the lowest
FID is observed which is computed using Eq.2, where μr and μg is the feature-wise
mean of the real and generated spectrograms, Cr andCg are the covariance matrices.

F I D = ‖μr − μg‖2 + Tr(Cr + Cg − 2 ∗ √
Cr ∗ Cg) (2)

2.3 Classifier for Evaluation

For the evaluation of the proposed improved data augmentationmethodwe employed
aResNet-18 classifier as previously reported in [12]which is a standard convolutional
neural network architecture for spectrogram-based audio classification tasks and has
been shown to achieve state-of-the-art results inmedical acoustic sensing applications
[1, 12]. To be able to compare the results presentedwithin this workwith the previous
results, we augment 100% synthetic samples for each class present in the data set.
The classifier was trained for 20 epochs using 5-fold cross-validation technique.
We used categorical cross-entropy loss with the Adam optimizer and the following
hyperparameters: learning rate = 10−5, β1 = 0.9, β2 = 0.99.

3 Results

In order to visually compare the quality of the proposed model, we present per-
class randomly selected ground truth data, generated spectrograms from the pro-
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Fig. 2 Log-mel spectrogram of random samples for each class (top row); log-mel spectrogram of
random generated images of our proposed model (second row); log-mel spectrogram of the model
proposed in the previous work [12] (bottom row). Respective classes from left to right: Sawing,
Adjustment, Reaming, Coagulation, Insertion, Suction

Table 1 Comparison of different augmentation methods for clinical audio data

Augmentation method FID Macro F1-score
(mean ± std, %)

Relative improvement
(%)

No augmentation 93.9 ± 2.5

White noise 92.87 ± 0.99 −1.03

Pitch Shift 94.73 ± 1.28 0.83

Time Stretch 95.0 ± 1.49 1.1

SpecAugment [22] 94.23 ± 1.14 0.33

cWGAN-GP [12] 3.30 95.60 ± 2.6 1.7

Our method 3.01 96.74 ± 1.03 2.84

All reported results were obtained by applying the respective augmentation method to double the
number of samples for each class of the public THA sounds data set

posed model, and synthetic spectrograms generated from the previous augmentation
framework [12] in Fig. 2.

We stopped the training by frequently monitoring the quality of the generated
samples through the computation of the FID as described in Eq.2 and selected the
best model with the lowest FID score which was subsequently used to augment the
data set by doubling the number of samples for each class, the best performing aug-
mentation strategy identified in previous work. We report the mean Macro F1 score
over a five-fold cross validation experiment in the format mean ± standard devia-
tion. A comparison between the classifier performance with no augmentations, using
classical signal- and spectrogram-processing-based methods, the method proposed
in our own previous work [12], and the proposed model is shown in Table1.

To analyze the redundancy in learned feature space of the proposed model and
compare it with the previously published method, we plot the correlation matrices
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Fig. 3 Sample correlation matrices of features learned by the proposed model (left column) and
cWGAN-GP published in previous work [12]. The correlation matrices are computed from an
intermediate layer of the generator network. The plots represent the correlation in the feature space
after the second-last convolutional layer with dimensions 32 × 32 × 64. The significantly lower
correlation values obtained after introducing Squeeze and Excitation block demonstrate the reduced
correlation among features and therefore reduced feature redundancy

computed from intermediate layers of the network to analyze the redundancy of
features in Fig. 3. The results show that the redundancy of features is significantly
reduced by introducing residual Squeeze and Excitation modules in the generator
network.

4 Discussion

Deep learning-based acoustic sensing has been shown to have high potential for
clinical applications in diagnostics and interventional guidance, can be used for mul-
timodal sensing to complement established assistance systems, and provide data
beyond the limits of computer aided diagnostic and interventional support systems.
However, to achieve state-of-the-art results, learning-based systems rely on big train-
ing data sets to generalize well for unseen cases. Obtaining these large amounts of
clinical data is a common problem for the design of deep learning-based support and
guidance systems in medicine. Advanced augmentation methods have been designed
for medical imaging applications [24, 25] and a first method for the augmentation
of clinical audio data sets has been proposed by the authors in previous work [12].

In the present work, the results show that the proposed method outperforms all
previously suggested augmentation methods. In comparison to the first generative
modeling basedmethod for clinical audio data, we outperform themodel by amargin
of 1.14% in Macro F1-Score. While this is an incremental improvement, we could
significantly improve the results by only adding a total number of 11,232 additional
parameters which corresponds to a parameter growth of only 0.74% for the generator
model. Furthermore, the correlation analysis of intermediate latent features revealed
that the introduced residual Squeeze and Excitation modules reduce the redundancy
in the learned features of the generator model. Therefore, the proposed architecture
is a highly valuable extension in the generator architecture for an improved synthetic
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generation of mel spectrograms. An improvement of 0.3 in the reported FID score
underlines the capabilities of the proposed architectural modifications.

The proposed approach can generate any arbitrary number of samples for the
classes present in the learned data set distribution and could therefore be employed
to address data imbalance issues.However, in the currentworkwe focused on improv-
ing the quality of the generated samples. Therefore, a more thorough investigation
regarding the influence of different augmentation schemes using conditional gener-
ative data augmentation should be subject to future research.

By introducing a generative deep-learning method, the processing time for gener-
ating the augmentations increases in comparison to simple signal processing-based
approaches. To investigate the capabilities of the proposed method, the model should
be trained and evaluated on multiple relevant clinical audio data sets in future
research.

5 Conclusion

In this work, we propose an enhanced generator architecture for conditional gener-
ative learning-based data augmentation of clinical audio data. We outperform all
previously published methods and provide an in-depth analysis of the proposed
modifications in the generator structure. The method is able to increase the qual-
ity of synthetically generated samples by 0.3 in terms of FID score and improves the
performance of a classifier trained on the augmented data set by a margin of 2.84%
in terms of Macro F1-Score. All presented results are evaluated on a public data
set containing sounds of a Total Hip Arthroplasty procedure which was recorded in
the real operating room and evaluated using a 5-fold cross validation scheme. The
obtained results show that the proposed method has great potential to improve the
problem of data limitations for the design of clinical acoustic sensing systems.
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References

1. M. Seibold, A. Hoch, D. Suter,M. Farshad, P. O. Zingg, N. Navab, P. Fürnstahl, Acoustic-based
spatio-temporal learning for press-fit evaluation of femoral stem implants, in: International
Conference on Medical Image Computing and Computer-Assisted Intervention, 2021, pp.
447–456.

2. Q. Goossens, L. Pastrav, J. Roosen,M.Mulier,W.Desmet, J. Vander Sloten, K. Denis, Acoustic
analysis to monitor implant seating and early detect fractures in cementless THA: An in vivo
study, Journal of Orthopedic Research (2020).

3. A. Arami, J.-R. Delaloye, H. Rouhani, B. M. Jolles, K. Aminian, Knee implant loosening
detection: A vibration analysis investigation, Annals of Biomedical Engineering 46 (2018)
97–107.



Improved Techniques for the Conditional Generative … 397

4. K. S. Kim, J. H. Seo, J. U. Kang, C. G. Song, An enhanced algorithm for knee joint sound
classification using feature extraction based on time-frequency analysis, Computer Methods
and Programs in Biomedicine 94 (2) (2009) 198–206.

5. M. Seibold, S. Maurer, A. Hoch, P. Zingg, M. Farshad, N. Navab, P. Fürnstahl, Real-time
acoustic sensing and artificial intelligence for error prevention in orthopedic surgery, Scientific
Reports 11 (2021).

6. A. Illanes, A. Boese, I. Maldonado, A. Pashazadeh, A. Schaufler, N. Navab, M. Friebe, Novel
clinical device tracking and tissue event characterization using proximally placed audio signal
acquisition and processing, Scientific Reports 8 (2018).

7. K. S. Alqudaihi, N. Aslam, I. U. Khan, A. M. Almuhaideb, S. J. Alsunaidi, N. M. A. R.
Ibrahim, F. A. Alhaidari, F. S. Shaikh, Y. M. Alsenbel, D. M. Alalharith, H. M. Alharthi, W. M.
Alghamdi, M. S. Alshahrani, Cough sound detection and diagnosis using artificial intelligence
techniques: Challenges and opportunities, IEEE Access 9 (2021) 102327–102344.

8. N. Giordano,M. Knaflitz, A novel method for measuring the timing of heart sound components
through digital phonocardiography, Sensors 19 (8) (2019).

9. H. Purwins, B. Li, T. Virtanen, J. Schlüter, S.-y. Chang, T. Sainath, Deep learning for audio
signal processing, IEEE Journal on Selected Topics in Signal Processing 14 (2019) 206–219.

10. V. Panayotov, G. Chen, D. Povey, S. Khudanpur, Librispeech: An asr corpus based on public
domain audio books, in: 2015 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2015, pp. 5206–5210.

11. J. Salamon, C. Jacoby, J. P. Bello, A dataset and taxonomy for urban sound research, in: 22nd
ACM International Conference on Multimedia (ACM-MM’14), Orlando, FL, USA, 2014, pp.
1041–1044.

12. M. Seibold, A. Hoch,M. Farshad, N. Navab, P. Fürnstahl, Conditional generative data augmen-
tation for clinical audio datasets, in: International Conference on Medical Image Computing
and Computer-Assisted Intervention, 2022, pp. 345–354.

13. J. Liu, B. Zhuang, Z. Zhuang, Y. Guo, J. Huang, J. Zhu, M. Tan, Discrimination-aware network
pruning for deep model compression, IEEE Transactions on Pattern Analysis and Machine
Intelligence (2021).

14. I. Joshi, A. Utkarsh, P. Singh, A. Dantcheva, S. D. Roy, P. K. Kalra, On restoration of degraded
fingerprints, Multimedia Tools and Applications (2022) 1–29.

15. P. Singh, V. K. Verma, P. Rai, V. Namboodiri, Leveraging filter correlations for deep model
compression, in: Proceedings of the IEEE/CVFWinter Conference on applications of computer
vision, 2020, pp. 835–844.

16. J. Hu, L. Shen, G. Sun, Squeeze-and-excitation networks, in: 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2018, pp. 7132–7141.

17. R. Roy, I. Joshi, A. Das, A. Dantcheva, 3d CNN architectures and attention mechanisms for
deepfake detection, in: Handbook of Digital Face Manipulation and Detection, 2022, pp. 213–
234.

18. M. Choi, H. Kim, B. Han, N. Xu, K. M. Lee, Channel attention is all you need for video frame
interpolation, in: Proceedings of the AAAI Conference onArtificial Intelligence, Vol. 34, 2020,
pp. 10663–10671.

19. K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770–778.

20. M.Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, S. Hochreiter, GANs trained by a two time-
scale update rule converge to a local Nash equilibrium, in: Proceedings of the 31st International
Conference on Neural Information Processing Systems, 2017, p. 6629–6640.

21. S. S. Stevens, J. Volkman, E. B. Newman, A scale for the measurement of the psychological
magnitude pitch, The Journal of the Acoustical Society of America 8 (1937).

22. D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph, E. D. Cubuk, Q. V. Le, Specaugment: A
simple data augmentation method for automatic speech recognition, Interspeech 2019 (2019).

23. I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, A. Courville, Improved training of Wasser-
stein GANs, in: Proceedings of the 31st International Conference on Neural Information Pro-
cessing Systems, 2017, pp. 5769—5779.



398 M. Margaryan et al.

24. M. Tirindelli, C. Eilers, W. Simson, M. Paschali, M. F. Azampour, N. Navab, Rethinking
ultrasound augmentation: A physics-inspired approach, in: Medical Image Computing and
Computer Assisted Intervention, 2021, pp. 690–700.

25. H.-C. Shin, N. A. Tenenholtz, J. K. Rogers, C. G. Schwarz, M. L. Senjem, J. L. Gunter, K. P.
Andriole, M. Michalski, Medical image synthesis for data augmentation and anonymization
using generative adversarial networks, in: A. Gooya, O. Goksel, I. Oguz, N. Burgos (Eds.),
Simulation and Synthesis in Medical Imaging, 2018, pp. 1–11.



Learning from Failure: A Methodology
for the Retrieve Stage
of a Cardiovascular Case-Based
Reasoning System

Ana Duarte and Orlando Belo

Abstract Finding the most suitable cases is a critical process in implementing a
Case-Based Reasoning system. A poor choice of the selected case has a negative
impact on all the subsequent steps in the Case-Based Reasoning cycle. Over the last
years, several studies have focused on the objective of defining retrieval mechanisms
for improving the Similarity-Based Retrieval process. However, these works do not
integrate metrics that take into account how often a case has led to successful and
unsuccessful solutions. In some areas, such as cardiovascular health, a solution that
works for some individuals may lead to poor outcomes for others. In such situations,
it is important that the cases in the case database accurately reflect the success ratio
of each solution. Therefore, the retrieval process should integrate this measure. In
this paper, we propose a new method for retrieving cases based on similarity and
success. Thus, in addition to similarity, we establish new metrics that allow the
average success of the case solutions in a case database to be taken into account.

Keywords Retrieve · Similarity measure · Case-based reasoning · Well-being
indexes · Cardiovascular health

1 Introduction

Human reasoning is an extremely complex cognitive process that is difficult to repli-
cate. Frommemory and learning acquired through specific past examples in particular
contexts, humans have the unique ability to infer new knowledge and new ways of
solving problems [1–3]. As an example, we can imagine the scenario of a basketball
game. Even if the court is different or the speed of the ball is constantly changing,
players have the ability to generalize and quickly adapt to new circumstances.
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Supported by the way humans learn and solve problems based on their previous
experience, a new branch of Artificial Intelligence (AI) formally emerged in the
early 1990s:Case-Based Reasoning (CBR). This paradigm enabled the development
of more efficient systems that are able to mimic part of human reasoning. This
type of reasoning is particularly relevant in areas where there is a strong subjective
component, such as Health [4, 5].

One of the biggest public health problems in modern society is Cardiovascular
Disease (CVD).Due to the highmortality rate, the causes of CVDhave been a subject
of scientific research over the years. The influence of lifestyle on cardiovascular
health is undisputed.Nevertheless, although it is awidely researched area, knowledge
about cardiovascular health is still far from being fully understood and it cannot be
generalised to all people in the same way. In the area of nutrition, for example, there
are countries that advocate a direct link between egg consumption and an increased
cardiovascular risk, while others, such as Australia and the USA, have less restrictive
guidelines [6].

CBR systems may be particularly suited to addressing the complexity and subjec-
tivity inherent to cardiovascular health. If human reasoning can be transferred into
machines, it is possible to create systems that can adapt to new problems and suggest
effective actions to improve cardiovascular health based on previous successful expe-
riences. Aamodt and Plaza made one of the most important contributions related to
the CBR paradigm. In 1994, the authors presented the CBR cycle model, which
consists of the processes retrieval, reuse, revise and retain [7]. Its circular shape
allows CBR systems to continuously learn and improve their performance as more
experiments are tested. This type of model can be especially useful in the context
of cardiovascular health, as it enables to retrieve the past experiences (cases) that
best represent a New Problem (NP) and reuse their solution. Therefore, retrieve is
a critical step in the CBR cycle since an inadequate selection of the retrieved cases
from the case base may lead to inappropriate solutions for the NP.

In order to select the best case that represents the NP, a methodology based on the
similarity of the NP to each of the cases in the case base must be followed. Typically,
this process is carried out using similarity metrics to determine the case from the
case base that best reflects the target problem [4]. Since not all analysed attributes
have the same relevance to the final solution, it is common to weight each attribute
and assign a higher value to those that have a greater impact on the outcome. This
strategy for finding the cases that are closest to the NP is called Similarity-Based
Retrieval (SBR). When applied to cardiovascular health, this approach fails in one
important aspect. Because it focuses only on finding the most similar cases with a
NP, this strategy is blind to the success of the solutions associated with each case.
In such situations, the most appropriated approach is to retrieve, among all the cases
that have a high similarity to the NP, the one case whose solution has produced the
best improvements in terms of cardiovascular health. Thus, our research provided
the definition of a novel approach for the retrieval process of CBR systems aimed at
improving cardiovascular health. To this end, in addition to the similarity measure,
we propose the consideration of two new complementary metrics.
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We organized the rest of this paper as follows. In Sect. 2 we give an overview of
the retrieval process in some studies using CBR systems. In Sect. 3, we introduce
the problem under analysis in more detail and describe the methodology used. Then,
in Sect. 4, we demonstrate the importance of considering other measures besides
similarity. Finally,wediscuss themain conclusions andpossible futurework (Sect. 5).

2 Used Strategies to Retrieve Cases

Just as people use their memory to remember the solutions to a given problem, we
can analogously use the case base to find the cases that have led to the best solutions
in the past. Whenever a NP is analysed, it is very likely that the case base will not
contain records that fully match the new case. Therefore, the main objective of the
first phase of the CBR cycle is to find a case in the case base that is sufficiently similar
to the problem to be solved. This way, its solution can be reused for the NP. However,
this process is not always as linear as it appears and should not be viewed in such a
simplistic way. Depending on the domain, the choice of the reference case must be
carefully analysed, and the most similar case is not always the most appropriate one
to serve as a reference for the NP. For this reason, it is important to reflect and find
a set of criteria to select the most appropriate case from the case base.

The issue of retrieving cases has been addressed by different authors depending
on the context of the problems to be solved. In addition to the similarity measure,
some researchers recognise the importance of new measures or new strategies to
improve the retrieving stage. One of these examples can be found in [8]. In 2001,
the authors stated that in certain contexts it is important to combine similarity with
diversity for retrieving cases. This is especially applicable in recommender systems
or other applications that provide the user with more than one suggested solution
to choose from. In turn, [9] uses the genetic algorithm in another study in 2008 to
determine the optimal number of nearest neighbours to retrieve in situations where,
instead of choosing just one case, several similar cases are selected. A year later, in
[10] is emphasised the need to include gain and loss functions in the case retrieval
process. In this study, gain and loss are directly related to the potential benefits and
costs associated with each solution, respectively. In 2014, [11] proposed the use of
association rules to complement the SBR approach. These rules make it possible to
value the interaction between attributes and at the same time the similarity between
the cases and the NP to be solved. Later, in 2016, [12] introduced a retrieval approach
that uses class association rules to generate an optimum tree of frequent patterns.
More recently, in 2020, [13] developed a retrieval strategy that takes into account
the interaction between attributes, the relative importance of each attribute and the
“attitudinal character” of decisionmakers. The approach established by these authors
involves a redefinition of “similarity” considering both local and features similarities.

In general, these studies suggest interesting alternatives to the typical case retrieval
approach based only on SBR. One aspect they have in common is that they all assume
that the cases in the case base always represent successful solutions. However, in
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many real-world problems, there is no guarantee that a solution that has worked well
in the past will be equally effective in a new situation. When this happens, each
case in the case base should reflect both the successes and failures associated with
its solution. In these situations, we argue that an effective retrieval process should
not only include the similarity with the cases in the case base. Rather, it should
also consider additional measures to assess, for each case, the likelihood that its
solution will lead to success and the corresponding expected value of success. For
this purpose, in addition to the similarity measure, an evaluation index for the degree
of success of the solutions (high, low or failure) must be considered. Furthermore,
the percentage of successful situations that have arisen based on a particular solution
should also be taken into account.

In this way, our work aims to propose a methodology for retrieving cases based
on similarity and success. This approach applies to CBR processes that integrate
solutions into the case base that are usually successful but that also sometimes lead
to failures.

3 Other Measures Beyond Similarity

The case retrieval mechanismwe propose in this paper applies to systems designed to
promote cardiovascular health. Each of the cases in our case base consists of a set of
characterising attributes, the proposed solution, and metrics to evaluate its success.

Two different approaches were considered for the selection of the description
attributes of the case. On the one hand, we used some necessary attributes to quantify
the value of the cardiovascular well-being index. On the other hand, we also selected
a set of attributes that specifically characterise a person’s lifestyle. In this work, the
cardiovascular well-being index is a numerical measure expressed as a percentage
that indicates the degree of cardiovascular health. To determine a person’s well-
being index, we adapted the QRISK2 calculation methodology [14]. QRISK2 is a
tool recommended by several institutions for measuring cardiovascular risk and is
widely used in the UK [15].

In brief, the method we developed for finding the most suitable case starts with
applying the k-NN algorithm and selecting the k cases from the case base that are
most similar to the NP. After calculating the similarity and determining the nearest
neighbours, we set a minimum threshold for similarity to ensure that the cases that
do not have a high similarity to the NP are excluded. In addition to the similarity
measure, we also consider the values of the index variations associated with each
case and the degree of success of their results, using Eq. 1. In the end, the case with
the highest score becomes the reference for the NP (Fig. 1).

Score = Similarity × IndexVariation × Success Ratio (1)
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Fig. 1 Outline of the main steps of the proposed approach to case retrieval

Our methodology thus requires a deeper understanding of the concepts of simi-
larity, index variation and success ratio. In the following subsections, we will address
each of these points in detail.

3.1 Similarity

Similarity is a measure that can be calculated to retrieve cases in the case base whose
attributes are similar to the NP. To determine it, we can use Eq. 2, considering the
different local similarities and the weights of each attribute.

Global similarity =
∑

i wi × Local similarityi∑
i wi

(2)

The weighting of each attribute (wi) enables to associate the most important risk
factors for cardiovascular health with the highest weighting values. At this level, we
assumed that the attributes included in the formula for calculating the well-being
index correspond to the most important risk factors. Therefore, these attributes were
assigned the highest values of wi. Depending on the type of attribute (binary, numeric
or nominal), we specified different methods for determining the local similarities.
For binary and numeric attributes, the Eqs. 3 and 4 in Table 1 were used.

In these equations, q represents the attribute value for the NP, xi represents the
attribute value for case i from the case base, andmax andmin represent themaximum
and minimum allowable values for the analysed attribute.

For nominal attributes such as ethnicity, specific similarity tables were created
based on the QRISK2 formula. For example, in terms of the risk of developing heart
complications, QRISK2 indicates that the similarity between Caucasian and Indian
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Table 1 Methods used for
calculating the local
similarities depending on the
attribute type

Attributes Similarity

Binary attributes S =
{
1, seq = xi

0, seq �= xi
(3)

Numeric attributes S = 1 −
( |q−xi |
max−min

)
(4)

Table 2 Ethnicity scores for
males and females according
to the QRISK2 formula

Ethnicity Men coefficient Women coefficient

Caucasian 0.00 0.00

Indian 0.32 0.26

Pakistani 0.47 0.61

Bangladesh 0.52 0.34

Other Asian 0.14 0.15

Black African −0.39 −0.18

Black Caribbean −0.38 −0.35

Chinese −0.41 −0.28

Other −0.23 −0.16

Maximum range 0.93 0.96

ethnicities is greater than between Indian and Pakistani ethnicities. Therefore, to
determine the similarity scores, we considered the QRISK2 coefficients associated
with each ethnicity, as indicated in Table 2. To calculate this similarity, we used Eq. 4
to measure the closeness between the values of the coefficients used in the QRISK2
formula. As an example, the similarity value between a Caucasian man and an Indian
man was calculated as follows:

Similarity = 1 −
( |0.00 − 0.32|

0.93

)

= 1 − 0.34 = 0.66

A similar strategy was followed for the other nominal attributes.

3.2 Index Variation

The index variation works as a measure for evaluating the success of each solution.
The cardiovascularwell-being index ismeasured before and after following a solution
and varies between 0 and 100. The index variation can thus be determined by Eq. 5.

Index variation = Final index value − Initial index value

100
(5)
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Therefore, this means that higher values of the index variation correspond to more
successful solutions. That is, a solution with an index variation of 10%means that, on
average, each NP that followed that solution improved the cardiovascular well-being
index by 10%.

3.3 Success Ratio

Another measure we propose to consider is the success ratio. This parameter corre-
sponds to the percentage of successful outcomes relative to the total number of cases
that followed a specific solution.

In the case base, we have included two fields related to the number of successes
and the number of failures. Whenever a NP based on a case in the case base has a
failure outcome, we increase the variable for the number of failures by one. Similarly,
whenever there is a successful outcome, we increase the variable for the number of
successes by one. Based on these considerations, we have definedEq. 6, which allows
us to determine the success level of each case in the case base.

Success ratio = Number of successes

Number of successes + Number of failures
(6)

The need to include this metric is related to the fact that there may be cases
associated with a high index variation but that represent a significant number of
failure outcomes. That is, there may be misleading situations where most of the
problems solved with a given solution were not successful, but due to some outliers
the value of the index variation is positive.

4 Evaluating Case Retrieval Strategies

In order to demonstrate the importance of considering the proposed measures, we
can imagine the scenario shown in Table 3, where two cases with high similarity
(above the defined threshold)—cases 1 and 2—are returned.

In this situation, the solution of case 1 increases the index value by 10%, on
average. Case 2, on the other hand, leads to an average improvement of the index
value by 9%. At first glance, i.e. without taking other parameters into account, case
1 seems to be the best reference, as its solution leads to a larger percentage increase

Table 3 Example
1—comparison of the index
variation of two cases

Case Index variation

Case 1 0.10

Case 2 0.09
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in the cardiovascular well-being index. Thus, applying its solution to the NP is more
likely to also result in a larger increase in the value of the well-being index, which
consequently translates into amore significant improvement in cardiovascular health.
Index variation is thus a relevant factor to consider in the retrieval process. However,
this is not the only important aspect to take into account.

Even if the returned cases already have a high similarity to the NP, there may
be significant differences between their values. For example, one case may have
a similarity of 95% to the NP and another case may have a similarity of 85%. In
spite of the fact that both have high values, the first case is more similar to the NP
and therefore it is more likely to lead to closer solutions and results. In this sense,
similarity is a parameter that should not be neglected. Although it is already ensured
that the returned cases have a high similarity to the NP, the most similar cases should
be valued.

In addition to these factors, it is also necessary to quantify the ability of the cases
to produce good results by means of a success ratio. As an example, we can consider
two cases with the same similarity values with the NP. The first case has an average
index variation of + 10%, while the second case has an average index variation of
+ 9%. In this scenario, without considering other parameters, the first of these cases
would be the retrieved case due to its higher average index variation. Nevertheless,
it is necessary to consider an important factor related to the probability of success of
the case. This probability implies taking into account the number of records that led
to success or failure. Let us assume that 30 records followed the solution of case 1
and 40 followed the solution of case 2, as shown in Table 4.

Although the index variation is, on average, higher in case 1, 6 of the 30 records
that followed this case are unsuccessful cases. On the other hand, the records that
followed the solutions of case 2 were always successful and increased the index
value, although in a less visible manner comparing to case 1. Thus, according to
Eq. 6, the first case has a success rate of 80% and the second a success rate of
100%. In situations like this, it is not clear which case should be chosen. However,
by applying Eq. 1, it is possible to calculate a score that takes the three proposed
measures into account (Table 5).

Table 4 Example 2—comparison of the success ratio of two cases

Case Number of failures Number of successes Total Index variation Success ratio

Case 1 6 24 30 0.10 0.80

Case 2 0 40 40 0.09 1.00

Table 5 Example 3—combined comparison of the similarity, index variation and success ratio of
two cases

Case Similarity Index variation Success ratio Score

Case 1 0.90 0.10 0.80 0.072

Case 2 0.90 0.09 1.00 0.081
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Since the score associated with case 2 is higher than the score associated with
case 1, we believe that case 2 should be selected in these circumstances. Although
its index variation is lower, there is greater confidence that its solution will give good
results.

5 Conclusions and Future Directions

A case base can be compared to human memory. It makes it possible to retrieve
experiences that were successful in the past and apply them to identical situations.
However, solutions that have been previously successful do not always lead to good
results in new problems. In this work, we aimed to develop a methodology for
retrieving cases based on similarity and success. The motivation for the topic arose
after we found that the most studies focused on case retrieval do not consider the
success ratio associated with each solution. The cases in a case base serve as a
reference for several new problems. Many of these problems fail, which shows that
the reference solution is not 100% successful. For this reason, the success ratio should
also be a factor to consider when selecting cases. Another aspect to note is that
whenever a quantitative evaluation measure is available, such as a well-being index,
it is preferable to select the case that leads, on average, to the best results. Therefore,
we concluded that the definition of a methodology for the retrieval phase needs to
include additional metrics besides similarity, namely the success ratio and a measure
to quantify the results obtained. For future approaches, it would be important to test
the proposed methodology in different situations in order to see if it is necessary to
assign different weights to each of the key concepts: similarity, index variation and
success ratio.
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Forming of Validation Dataset for Deep
Learning Based Model of Medical Image
Grouping

Robert Baždarić, Franko Hržić, Mateja Napravnik, and Ivan Štajduhar

Abstract This paper presents a human-machine method for creating multimodal,
hierarchically organised medical image validation datasets for the purposes of an
AI image annotation algorithm. The multimodal image datasets provided here are
independent of the training and testing datasets, as they are obtained in different
ways from publicly available medical repositories. Objectivity in the formation of
the datasets is maintained based solely on DICOM metadata. These are mainly pro-
vided by the medical instruments themselves and by computer-assisted parsing of
the original metadata. To overcome the inconsistency of metadata from repository
to repository, the algorithm incorporates human observation and monitoring that can
guarantee higher confidence in morphological uniformity. The presented methodol-
ogy provides and discusses the use of image parameters for broader and quantity-
based selection and grouping ofmedical images. The rendered groups contain images
with the obtained information leading to the general source of the data for easier use
and understanding.
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1 Introduction

The fundamental problem in developing an artificial intelligence (AI) model is cer-
tainly the qualitative selection of the learning database. Since the overall database
should be divided into several data portions for different learning tasks, in this paper
we present the work involved in forming a validation portion of the complex mod-
elling in medical image grouping. Given the enormous prevalence of machine learn-
ing (ML) and deep learning (DL) methods in solving a wide range of tasks encoun-
tered in normal human life, especially in image-based decisionmaking, it is inevitable
that these methods will also be used in medical image analysis. The neural network
(NN) is becoming a fundamental building block in the construction of decision sup-
port systems (DSS) based on computer-aided diagnosis (CAD). Comparingmedicine
and biomedicine with other disciplines and professions, the overall contribution of
society to development or its influence is certainly weaker. The reason for this is in
the need for specific knowledge, but also in the ethical constraints associated with the
availability of data. This work is part of a larger project that addresses the problem of
building a suitable and general image database for the development of various meth-
ods in CAD. Comparable to the ImageNET project, presented in [1] , our general task
is also to create hierarchically organised medical images under the title “Machine
Learning for Knowledge Transfer in Medical Radiology—RadiologyNET“[8]. This
work contributes to the validation part of the task to build the AI model for grouping
the clinical radiology datasets. The future model in [8] will be based on datasets
selected under different aspects from picture archiving and communication system
(PACS) of the Clinical Hospital Centre, Rijeka, Croatia. For the quality-based val-
idation process, the work in this article provides the targeted ground-truth datasets
that are independently sourced from the publicly available databases. By using the
mathematical formalism in terms and applying it to medical image analysis, the task
of providing CAD can be divided into a quantitative and a qualitative process. The
quantitative process is recognised in the formation of a huge database [8], which will
be a prerequisite for the derivation of the qualitative AI model. In the proposal [8],
the final grouping will be a synergy of DICOM-based, narrative diagnosis, and last
but not least, image-based classification. In the past, there have been similar attempts
to create and test expert annotated datasets [2, 3, 6]. From these attempts, the idea of
providing different multimodal annotated datasets evolved [7]. Our approach follows
this idea, but differs from it by focusing on the objectivity of the image data during the
process of image generation, rather than relying on multiple transformations of the
images on the way to the final AI user. The problem raised is slowly gaining attention
[10], and the efforts of numerous academies and the support of the governments of
various countries are moving toward a solution in publicly available datasets. In this
work,we search for the validation datasets. The search for the validation datasets is no
less challenging than the search for the training and testing datasets. For this purpose,
we have used several publicly available sources. They were thoroughly reviewed to
assess their compatibility with the task defined above. The sources listed in Table1
are considered as candidates for the formation of validation datasets. Since one of
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our main grouping objectives is to reveal the ground-truth of the images and their
morphological similarity, we selected the “National Biomedical Imaging Archive
(NBIA) US” or more generally “The Cancer Imaging Archive” (TCIA) in Table1
for greater consideration. The labelled validation set must be a medically charac-
terised and group-oriented database. It must follow the monohierarchical, multiaxial
[3] strategy in annotation, which is the basic idea in the standardisation of the final
multimodal datasets. Therefore, the crucial characteristics in the selection of the
database sources are the diversity of the human organs examined, the diversity of
the modality of examination, the number of images available, and finally the number
of subjects examined. The hierarchical order of the characteristics corresponds to
their priority in the selection process. It is difficult to endorse a lack of standardisa-
tion in the provision and storage of medical images, despite the existence of the solid
DICOMstandard, which is regularly evolving. The promising attempts have emerged
in the last two decades with the standardisation of IRMA [3]. For the purposes of
our work, the wide availability of IRMA annotated images would be beneficial. As
far as authors are aware, there are no multimodal publicly available annotated data
sources, and the work presented in this paper will provide them for the validation
portion of the AI learning in [8]. The groups provided are developed strictly based on
the image associated data stored as a result of the DICOM standard during the patient
examination process. Although in [3] the reasons for the evolving standardisation
relies on the medical device conformance, we strongly believe that after a decade of
progress in the medical device technology, this fact should be neglected. If there is a
non-conformity with standardisation, it is still the uniformly followed in the image
formation, which is easy to capture in various computerised data analysis. The main
problem we have identified lies in the human factor and the data, which is mainly
influenced by human input. Since in this work wewill provide grouping based purely
on available DICOMmetadata, the selection of metadata is carefully worked out and
observed during the grouping process. Section2 then presents the general challenges
of grouping or annotation in the validation dataset, using the TCIA dataset as an
example. Section3 presents the methodology to overcome the problem described
in Sect. 2. Section4 presents DICOM-based grouping algorithms that support the
methodology explained in Sect. 3. Section5 discusses the results of the performed
grouping of the validation dataset. The paper is concluded with a brief conclusion in
Sect. 6.

2 Challenges in Selection of the Valuable Source of Medical
Images

As noted above, consistent with our intent to strive for objectivity in the storage of
medical images, we will closely examine the NBIA repository. The NBIA has a large
number of repositories that are preserved through their structure and are accessible
through jointly developed indexing and links to sources. It is also enriched by control-
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Table 1 Publicly available repositories

Source Link Source Link

1. Mendely Data https://data.mendeley.
com/datasets/
rscbjbr9sj/2

5. Stanford Institute,
MRNet

https://
stanfordmlgroup.
github.io/
competitions/mrnet/

2. National Institute of
Health CC, US

https://nihcc.app.box.
com/v/ChestXray-
NIHCC

6. Stanford Institute,
Mura

https://
stanfordmlgroup.
github.io/
competitions/mura/

3. National
Biomedical Imaging
Archive US (TCIA),
Cancer

https://www.
cancerimagingarchive.
net/collections/

7. Medical
Segmentation
Decathlon

http://
medicaldecathlon.
com/

4. Stanford Institute,
CheXpert

https://
stanfordmlgroup.
github.io/
competitions/
chexpert/

8. IRCAD - Hôpitaux
Universitaires - 1,
FRANCE

https://www.ircad.fr/
research/data-sets/

lable downloads through the NBIA software. Table2 shows only a limited selection
from the collective and indexed list of available repositories. The NBIA web offers
the possibility to search for suitable databases and to make a simple selection of
these repositories, adapted to the task-related requirements. As expected, and due to
the wide range of DICOM data in the files, the repositories we selected in Table2
are downloaded in conjunction with the *.csv manifest, which does not contain all
the required image attributes. If we recall the standardisation of IRMA [3], our pub-
licly available databases are formed so that group D is at the top of the hierarchy
of image groups. The repositories compiled in Table2 are strictly differentiated by
medical diagnosis and fall into our group of quality-oriented ML databases. This is
reminiscent of our earlier distinction between quantitative and qualitative image ML
applications, and the emerging requirements for selectivity and hierarchical avail-
ability of databases. Means, the targeted database should start from the overall organ
based grouped images that fall in hierarchy towards the biological system examina-
tion similarity [3]. For example, as stated, the databases that are used and extracted
from TCIA are mostly qualitatively oriented, preselected and filtered according to
the type of cancer. If we take, e.g. the Cancer Genome Atlas (TCGA) group of repos-
itories that were predominantly selected as data source in our work, TCIA contains
only radiological data or DICOM-based stored images, but it comprehensively con-
tains our selection of image attributes, which are explained below. Even in cases
where attributes are present, this is not a sufficient condition for automatic labelling,
which is our task in providing the quantitative image characteristics. Figure1 shows
a visualisation example based on the TCGA_LIHC liver CT database.

https://data.mendeley.com/datasets/rscbjbr9sj/2
https://data.mendeley.com/datasets/rscbjbr9sj/2
https://data.mendeley.com/datasets/rscbjbr9sj/2
https://stanfordmlgroup.github.io/competitions/mrnet/
https://stanfordmlgroup.github.io/competitions/mrnet/
https://stanfordmlgroup.github.io/competitions/mrnet/
https://stanfordmlgroup.github.io/competitions/mrnet/
https://nihcc.app.box.com/v/ChestXray-NIHCC
https://nihcc.app.box.com/v/ChestXray-NIHCC
https://nihcc.app.box.com/v/ChestXray-NIHCC
https://stanfordmlgroup.github.io/competitions/mura/
https://stanfordmlgroup.github.io/competitions/mura/
https://stanfordmlgroup.github.io/competitions/mura/
https://stanfordmlgroup.github.io/competitions/mura/
https://www.cancerimagingarchive.net/collections/
https://www.cancerimagingarchive.net/collections/
https://www.cancerimagingarchive.net/collections/
http://medicaldecathlon.com/
http://medicaldecathlon.com/
http://medicaldecathlon.com/
https://stanfordmlgroup.github.io/competitions/chexpert/
https://stanfordmlgroup.github.io/competitions/chexpert/
https://stanfordmlgroup.github.io/competitions/chexpert/
https://stanfordmlgroup.github.io/competitions/chexpert/
https://stanfordmlgroup.github.io/competitions/chexpert/
https://www.ircad.fr/research/data-sets/
https://www.ircad.fr/research/data-sets/
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Fig. 1 Example of randomly selected images from the TCGA_LIHC repository, CT examinations

Fig. 2 Data selection for examination of repositories

In the following, we present a preliminary way to overcome the problem and form
more uniform groups of images that contain the unique attributes not present in the
original grouping of Table2.

3 Forming of Distinctive Groups, Constrained
Combinations

Our selection of metadata must be distinguishable primarily in terms of the organs
examined and the examination modality, but will certainly be sufficient later to form
a group of data specific to the medical-diagnostic examinations performed on the
subjects. Because our grouping goes for the validation data, and in order to be able
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to comment on the final modelling results (possibly fine-tuning), the group labelling
must be as accurate as possible. In the absence of specific medical knowledge that
extends to instrumentation and diagnosis, our grouping is based on a purely technical
approach. This means that our grouping is based on the DICOM metadata present
in the images, which includes the setting of the examiner and the formation of the
numerical image matrix. Thus, the purely technical information must be closely and
directly related to the final goal of evaluating the classes derived from the model,
which is yet to be determined and is the future product of unsupervised learning.
By using AI and combining supervised and unsupervised learning [4, 5, 9], our
task will most likely lead to a medical diagnosis in the near future, characterised
by a possibly optimised grouping. Since grouping is a purely human perception,
but also the defining parameter in the AI learning process, human involvement and
supervision will still be inevitable. The metadata available is far from uniformly
stored and is rather dependent on individual examiners, in addition to the original
device settings and the different approaches of the device manufacturers in stor-
ing DICOM-standardised data. Although DICOM-standardised data is of great use
in our task, which is an objective mixture of human and computerised grouping
process. The final task of the AI model is to further develop the DICOM standard-
ised data and provide unique representatives that lead to the characteristics of the
group as a product of medical diagnosis. Figure2 shows the Python-based dictio-
nary definition of the data containing the image metadata that forms the basis for
our human-supervised and computer-assisted process of objective selection. Our
procedure for forming the validation data should not affect the data structure of
the repository downloaded from the public sources mentioned above. In this way
we have the possibility to trace the problem back to the source of the image and
comment objectively on the results. The extracted image in our group contains infor-
mation about the source path (“path”, Fig. 2), its original filename (“file”, Fig. 2)
and is additionally indexed by the path index (“path_no”, Fig. 2) to avoid complex-
ity in labelling images. With the exception of the “CrossSection”, the rest of the
targeted data frame, which is later used for grouping, is associated with DICOM
standard image attributes.% The selection of DICOM tags should be sufficient for
rough grouping of human organ examination, and the technical characteristics of
image generation should be sufficient for the particular examination process. Our
dendrogram of grouping is shown in Fig. 3. Of the repositories selected in Table2,
only CPTAC-UCEC has the DICOM Body Part Examined attribute unassigned. In
this particular repository, we used the “Series Description” and “Study Description”
attributes as the basis for the final determination of which organ examination the
examiner focused on. The “Modality” and “Patient Position” attributes (attributes
to images, stored DICOM-based) are generally present in all TCIA repositories we
searched. This is not the case for “Patient Orientation”. For this reason, we chose
the “Image Orientation Patient” (IOP) as the source of information to determine
the final cross-section of the stored image with respect to the fixed position of the
patient or the geometry of the examination instrument. The mentioned attribute con-
sists of a tuple of 6 real numbers in the range [−1, 1] representing the rotation
parameter of the original medically defined three-dimensional examination space of
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the body and formed as follows: x (from right to left), y (from anterior to poste-
rior) and z (from inferior to superior). The 6-tuple of information is a mathematical
6-dimensional vector formed from two 3D normalised vectors of projections of the

original medical x and y axes of the human body: I OP = [Xx , Xy, Xz
... Yx ,Yy,Yz].

In the image, we call the resulting and stored plane a cross section (CS). In this par-
ticular image grouping task, we are more interested in the coarse distinction between
images, i.e., the quantitative distinction. Therefore, we reduce the IOP to four char-
acteristic subsets of CSs, namely: axial, sagittal, coronal and oblique. In Fig. 3, the
subgroups mentioned in the last level of the grouping, shorter CS, are planar sec-
tions through the space of the human body, orthogonal, but with one exception
assigned by Oblique. Variants of the pixel directions of the sections are omitted.
As mentioned earlier, the “Oblique” section is a set consisting of all possible sec-
tions that are not orthogonal to the original medical geometry of the human body.
This approach serves to reduce the number of possible different CSs and their sub-
groups, which we consider a more qualitative approach to our grouping and project
perspective in the later stages. If the CS is purely orthogonal to the original human
geometry or the orthogonality error is infinitesimally small (allowing for calibration
offsets), the image is automatically classified as a member of one of three distin-
guishable and accurate sets. The additional attribute for the set is provided by the
“CrossSection” parameter (Fig. 2), namely “Axial”, “Sagittal” and “Coronal”. The
attribute IOP, which contains the information CS, when purely orthogonal, con-
sists of only two non-zero values. These values are the position of the transformed
pixel plane, which is oriented to the position of our original human CS plane x-y, as
explained earlier. The recognised combinations are divided into three precisely distin-
guishable sets as follows: Axial = {[1, 0, 0, 0, 1, 0], [0, 1, 0, 1, 0, 0]} , Sagittal =
{[0, 1, 0, 0, 0, 1], [0, 0, 1, 0, 1, 0]} ,Coronal = {[1, 0, 0, 0, 0, 1], [0, 0, 1, 1, 0, 0]} .
All CSs that fall out of purely orthogonal groups form the attribute “Oblique” for the
respective group:Oblique = {∀ I OP : I OP /∈ Axial ∧ I OP /∈ Sagittal ∧ I OP
/∈ Coronal} .This group is very sensitive as it contains images that undoubtedly cor-
respond to a specific setup in medical diagnostics of certain organ examinations, but
may also be a specific result of AI routines in instruments that are rapidly increasing.
Accordingly, this groupwill receive a special attention in our futuremodel validation.

4 Process of Grouping and Algorithms

The process of grouping validation images, using the human-machine approach to
grouping is shown in Fig. 4. Humans are involved in the selection of sources and later
in the formation of groups of interest. First, in source selection, human participation
means selecting a repository that can provide a sufficient number of examinations of
specific organs on a sufficient number of subjects.

Downloading the selection must be done in accordance with the requirements and
conditions (registration, NBIA software, etc.) specified and regulated by the source.
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Fig. 3 Dendrogram of image grouping

Fig. 4 Human-machine process of medical images’ grouping

After downloading the selection from the source (Fig. 4, TCIA), the downloaded
repository is analysed using the algorithm in Fig. 5a. Figure2 shows the specific and
task-related data that the algorithm will read or compute, as explained in Sect. 3.
Second, after the parsing with the computer algorithm has provided information
tables for each repository, onewill form the respective data group by simply selecting
the same attributes, starting with the coarse information in the hierarchy (organ,
modality) and ending with the specific and exact attributes related to the pixel matrix
information (Fig. 3). The filtered Excel tables are stored in the temporary directory
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Fig. 5 Algorithms: a Parsing and info developer algorithm, b Image selection, transformation and
visualisation algorithm

for data extraction. The name of the filtered Excel table contains the identifying
information including some parameters

CT COLONOGRAPHY $Colon CT FFDR Contrast Axial 01000.xlsx
In the grey colour we have the original repository tag, after the sign $ follows

the group selection hierarchy, which is also the unique tag of the group. Of all the
possibilities contained in the Excel file, the number in red is the number of randomly
selected representatives. The algorithm in Fig. 5b provides a computer routine that
extracts the files from the repositories into the newly formed group directories. The
algorithmcalls the user’s configurationfile,which adds to themodality information in
the file name a list of commands that select the specific computer subroutines. These
subroutines perform the image transformations and visualisation of the groups when
specifically selected. As an example, the name of Excel file above shows in blue the
modality informationCT,which selects a specific image transformation, startingwith
theHounsfield unit transformation and followedby the organwindow transformation.

5 Results

The process explained in Sect. 4 and the tools explained in Sect. 3 lead to a more
homogeneous distinction and labelling of image groups. Our original groups, shown
in Fig. 1 , which are directly downloaded and considered in the coarser grouping
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Fig. 6 Results from the process presented by the Fig. 4 among the TCGA_LIHC
repository shows: a TCGA_LIHC_Liver_CT_FFS_Contrast_Axial group of images, b
TCGA_LIHC_Liver_CT_FFS_Contrast_Sagittal group

of the NBIA (see Table2), have transformed into several DICOM-based differen-
tiated subgroups. The number of subgroups depends on the maximum number of
different attributes found in the repositories. For example, Fig. 6 shows two groups
with different representatives that have evolved into more monolithic groups by con-
tent compared to Fig. 1. In Fig. 6 only two selected subgroups are shown for clarity.
From the repositories selected in Table2, we distinguished 275 groups of images,
all of which evolved through by the grouping strategy in Fig. 3 and the availabil-
ity of images in the repository. The number of representatives in the group varies.
Although we aimed for a number of 1,000 (parameter in the group file name), some
of the groups contain a dozen or fewer images, while other groups have more than
250 representatives. Figure7a shows the number of subgroups distributed among the
selected repositories from Table2. As mentioned earlier, we have focused as much
as possible on those repositories that offer a large number of subgroups. In Fig. 7b
we see how many images we were able to retrieve from the repositories for all dif-
ferentiated 274 subgroups. The list of subgroups can be found in the Appendix. To
better illustrate the diversity of groups, Fig. 8 shows various statistics on the number
of subgroups if we want to rearrange the grouping hierarchy at a different level of
attributes in Fig. 3.

6 Conclusion

This work contains 275 labelled groups ofmedical images. The images are uniformly
grouped according to their DICOMmetadata, most of which comes from the original
medical imaging process. The images are named with a unique name that leads to
a common data source that may be useful for understanding future AI classification
and prediction results. The grouping is classified as quantitative grouping because
the task is geared toward large collections of morphologically uniform images rather
than a task-oriented database for diagnostic purposes. The groups are provided with
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Fig. 7 a Number of subgroups extracted from each repository. b Number of images included in
each differentiated subgroup

Fig. 8 Number of subgroups displayed at different levels of the grouping hierarchy: a Number of
groups for the same “Body Part Examined”, b Number of groups for the same “Patient Position”
selected, c Number of groups for the same “Cross Section” selected

their statistical image-related measures. Future work is in the direction of providing
automatic web access to the groups, which will also be confirmed by the knowledge
of experts before publication. The groups will be linked to the image-based group
statistics and the original metadata that can help in annotating the results based on
the use of the group.

A Table of Extracted Groups

See Table 3.
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Deep Learning Based Radiomics
to Predict Treatment Response Using
Multi-datasets
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Abstract In this work, we present a multitask network with multi datasets to assess
the relapse of patients with head-neck and lung cancers after a therapy from both
scanner images and patient clinical data. A multitask architecture is developed to
realize classification of the multi-type of cancers and relapse prediction tasks using
clinical data and radiomics features. Medical imaging requires reliable algorithms
for analysis and processing, especially regarding diagnosis and outcome prediction.
However, inmedical domain, only small datasets are available, this iswhywepropose
to combine several small data sets that contain the same type of images and patient
information.We also propose to use Havrda-Charvat cross-entropy, which is a gener-
alized cross-entropy with a parameter α, as loss function for our traning step. It tends
toward Shannon cross-entropy when said parameter α is equal to 1. The influence
of the variations of the parameter on classification is assessed. The experiments are
carried out on a dataset of 580 patients with two cancer datasets (head-neck or lung).
The results assess that Havrda-Charvat entropy has slightly better performances in
term of prediction accuracy: 64% of correct prediction for Shannon’s entropy and at
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Keywords Deep learning · CT scan · Radiomics · Outcome prediction ·
Classification

1 Introduction

This paper means to study deep neural networks [1] for outcome prediction in both
lung and head-neck cancers. In the field of radiomics [2, 3], only small data sets are
usually available for outcome prediction. Increasing the datasets and choosing a rele-
vant loss function are primary factors for successful outcome prediction. When cate-
gorical prediction is the goal, the loss function turns out to be a cross-entropy derived
from an entropy formula. Entropies are ameasure of the information contained in ran-
dom data. Suchmeasures of information are related to disorder in samples of random
variable. In [4] are presented several different entropies. In both tasks of classifica-
tion and prediction, the cross-entropy comes from a specific entropy measure and is
tasked to measure the differences between the prediction and reality. In most neural
networks used for classification and/or prediction, a Shannon related cross-entropy
is the most common and widely used loss function for segmentation [5], classifica-
tion [6], and detection [7] plus several other uses [8–11]. In [12], several ways of
picking an entropy and its corresponding divergence are described. Among them,
Shannon entropy is extended by replacing the logarithm with another specific func-
tion. Cross-entropies are defined by replacing the counting measure (resp. Lebesgue
measure for continuous case) by a Radon-Nykodim derivative between probabilities
measures. Shannon’s entropy has been declined in other entropies like Renyi [13],
Tsallis [14] and Havrda-Charvat [15]. In this article, we study a specific general-
ization of Shannon’s cross-entropy: Havrda-Charvat’s cross-entropy [16]. This class
of entropies has the particularity that it can be adapted with one parameter α and
we find back Shannon’s entropy when the value of the parameter is equal to 1. To
increase the size of the dataset, we propose to combine several of the same type of
datasets whose difference is the type of cancer observed. A classification task can
thus be added. Classification is used to automatically identify what type of cancer
the patient experiences [17, 18] or identify relevant outcomes after treatment, like
survival expectation [19] or relate to the treatment [2]. Relapse in cancer is a huge
concern for physicians [20], as is can dramatically threaten the outcome and life
expectancy of patients for the worse. The innovation lies in the performance increase
from Shannon to Havrda-Charvat entropies in the context of cancer relapse predic-
tion with Computed Tomography data for patients suffering from head and neck
(H&N) and lung cancers, along with clinical data. Moreover, we particularly study
the parameter’s value to see what its impact on predicting these relapses in both kinds
of cancer is. The contributions exposed in this article are: a U-Net based multitask,
multi datasets network carrying out reconstruction, classification and segmentation
at the same time; the use of Havrda-Charvat entropy to design a novel loss function
and the acquisition of good results on both lung and head-neck cancers datasets.
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The paper unfolds as follows. First, we explain how categorical Shannon cross-
entropy formula is defined and how it can be generalized to Havrda-Charvat and the
second part describes our experiments and comparison between both entropies.

2 Entropy

As our study regards a prediction, we focus solely on finite-state random variables
whose state-space is provided by the counting measure.

2.1 Havrda-Charvat Cross-Entropy

There is someways to generalize Shannon entropy as described in [12]. The Shannon
entropy is described as follows:

H(q) = −
k∑

i=1

h(qi ) (1)

where h(u) = u log(u). h is a convex function that verifies h(1) = 0. The idea is to
pick another function with similar properties. The Havrda-Charvat entropy is defined
by picking:

hα(u) = uα − u

α − 1
, (2)

where α > 0 and is expressed by:

Hα(q) = 1

α − 1
×

[
1 −

k∑

i=1

qα
i

]
(3)

The associated cross-entropy is becomes:

Hα(q : p) = 1

α − 1
×

[
1 −

k∑

i=1

qα−1
i pi

]
(4)

As for the usual cross-entropy, the Havrda-Charvat cross-entropy forces the pre-
diction q to be the closest as possible to p with p being a Dirac distribution. Indeed,

if p = δi0 , then Hα(q : p) = 1−qα−1
i0

α−1 and the function u → 1−uα−1

α−1 is decreasing and
its minimum is reached at 1.
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Fig. 1 Architecture of the network for relapse prediction (T3) with participation from two other
tasks (T1: image reconstruction, T2: cancer classification)

3 Neural Network Architecture for Relapse Prediction

Theproposednetworkused for relapse prediction is amultitask architecture including
a U-Net structure and two branches prerforming classification and prediction tasks.
The architecture is represented in Fig. 1

Threemain tasks are taken care of by the architecture. T1 is the reconstruction task,
carried out by the U-Net part. It allows to determine if the features extracted by the
encoder are relevant for prediction and classification and can be used to reconstruct
the whole scan at the same time. The loss function selected for this is the mean
squared error. It is presented as follows.

L rec = 1

N

N∑

n=1

‖yn − ŷn‖2, (5)

T2 is the classification task. It is used to decide, from the features described earlier
and the clinical data, if the cancer is a head-neck cancer or a lung cancer. It workswith
dense layers and end up in a binary prediction. The loss function used in this branch
is Shannon’s binary cross-entropy, as described in Eq.6 for two classes represented
by true classes p and predicted classes q, N being the sample’s size.
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Lclassif = − 1

N

N∑

n=1

[
pn × log(qn) + (1 − pn) × log(1 − qn)

]
(6)

T3 is the carrying out the prediction. It is used to decide, from the images features
and table data , if the current patient risks to experience a relapse of their cancer. It
is realized with dense layers and end up in a binary prediction. The prediction task’s
loss function will be the subject of the tests. We will determine which one gives the
most accurate results.

Lpred,α = 1

α − 1
×

[
1 − 1

N

N∑

i=1

(qα−1
n pn + (1 − qn)

α−1(1 − pn))

]
(7)

The final loss function of the network is the sum of all three losses.

Ltotal = L rec + Lclassif + Lpred,α (8)

The prediction task will be what is studied in this article, the other two tasks being
used to enhance the prediction’s results by helping the feature extraction.

4 Experimentations

4.1 Datasets

We use two datasets, one is composed of 434 patients who suffer from head-neck
cancer and the other of 146 patients suffering from lung cancer. Scanner images used
as inputs in the network have been resized to the following dimensions: (128× 128
x 64 voxels ). As for patient data used as secondary input in the network, they are of
two types: quantitative information and qualitative one, as presented in the following
Tables 1 and 2

Our experimentations consist of comparing Havrda-Charvat’s accuracy on both
datasets to Shannon’s.

4.2 Evaluation Method

As we are correntlyrealizing this study on small datasets, a strategy to validate the
results is mandatory. We propose to use the k-fold cross-validation. Cross-validation
is in fact a resampling procedure realized to evaluate models when using small data
samples. In our work, we use a 5-fold cross-validation.
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Table 1 Quantitative data

Clinical data Modality

Hemoglobin g/dL

Lymphocytes Giga/L

Leucocytes Giga/L

Thrombocytes Giga/L

Albumin g/L

Duration of treatment Days

Total dose of irradiation Gy

Number of fractions /

Average dose per fraction Gy

Weight both at the start and end of treatment kg

Table 2 Qualitative data

Clinical data Modality

Gender M/F

Use of tobacco Smoker, non-smoker, formerly

Use of induction chemotherapy Yes/no

Use of concomitant chemotherapy Yes/no

TNM Tumor, node, metastasis

And, as an evaluation metric, accuracy is proposed. It consists, in our study,
in comparing the value of the reality and the predicted output, and computing the
percentage of correct predictions as our accuracy. To further study themeaning of this
value, we also compute the sensitivity and specificity of the prediction. Hereafter are
the formula used for all three calculations (eq:Sen,eq:Spe,eq:Acc), with TN being
true negative, TP being true positive, FN being false negative and FP being false
positive.

Sensi tivi t y = T P

T P + FN
(9)

Speci f ici t y = T N

T N + FP
(10)

Accuracy = Number of correct predictions

T otal number of samples
(11)
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Fig. 2 Images : original
inputs(left) versus
reconstructed slices(right)

4.3 Results

The results achieved during the testing phase are presented hereafter. Reconstructed
images are used here to assess the relevance of the features extracted by the encoder
for the other branches. Therefore, this branch’s performance is secondary, because
the main goal is the prediction of relapse. The original inputs and reconstructed
images are presented in Fig. 2.

The results show that our network can well extract relevant features which are
used at same time for the prediction task.
Havrda-Charvat cross-entropy Regarding Havrda-Charvat, it was proposed to
study the variations of accuracy when its hyperparameter α varied from 0.1 to 1.3.
The achieved p-value assesses if the predictions obtained by Havrda-Charvat are sta-
tistically differing from Shannon’s with five-fold cross-validation. Two conditions
must be met so that we accept the our generalized entropy gives better results than
the Shannon entropy. A threshold of 0.05 is taken for the p-value, and the mean result
of the 5-fold has to be better to Shannon. Results are described in Table 3.

When we look at the results obtained via our generalized entropy, we can say
that, for a lot of the studied values of α, the final result is inferior to the one obtained
via Shannon’s loss function. It can be said that the generalized equation can give
results that are superior to Shannon’s in several cases. However, it is difficult to
decide without testing first what α is relevant for a set application. Its choice remains
a complicated, yet here we can demonstrate that Shannon’s entropy is not always the
best choice.

However, the results achieved with the commonly used Shannon cross-entropy
are coherent, judging by the small value of the Standard Deviation. Shannon’s cross-
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Table 3 Results obtained by Havrda-Charvat entropy derived loss function in function of α

(p-values inferior to 0.05 are highlighted in bold).

α Accuracy SD p-value

0.1 0.62 0.08 0.36

0.2 0.69 0.03 0.01

0.3 0.62 0.03 0.24

0.4 0.63 0.09 0.41

0.5 0.66 0.01 0.02

0.6 0.65 0.06 0.28

0.7 0.67 0.04 0.02

0.8 0.63 0.04 0.31

0.9 0.60 0.04 0.04

1.0 0.64 0.02 N/A (Shannon’s entropy)

1.1 0.68 0.05 0.11

1.2 0.63 0.03 0.46

1.3 0.66 0.06 0.23

Table 4 Results obtained by different tasks combinations with Havrda-Charvat and α = 0.2.

Tasks Accuracy SD Sensitivity Specificity

T2, T3 0.64 0.04 0.37 0.79

T1, T3 0.65 0.06 0.18 0.90

T1, T2, T3 0.69 0.04 0.52 0.77

entropy is a stable and reliable formula for loss function, but has difficulties to adapt to
non-Riemannian datasets. Results obtained with this entropy has an average accurate
rate of 64% from our two datasets. Even if they are lower than Havrda-Charvat’s
results, they are acceptable.

To demonstrate the advantage of our multi-task network, we propose to assess the
importance of each task of the network along with Havrda-Charvat using the most
favorable α. Results are displayed in Table4.

We notice that results obtained with the combination of all three tasks are the best
ones, meaning that the reconstruction and classification tasks can effectively help to
find the relevant features for the prediction task.

5 Discussion

According to the results, we can conclude that Havrda-Charvat’s loss function are
equal or superior to Shannon’s cross-entropy, depending on the selected α. It is due
to the fact that Havrda-Charvat is a generalized version of Shannon’s entropy, able
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to perform adequately despite the data’s values distribution being non-Riemannian.
It is to note that the value of α is critical for the loss function to perform well,
and it needs to be studied to fit the input data, but what α fits what input? On the
other hand, we can conclude that, based on achieved p-values and the corresponding
standard deviations, Havrda-Charvat’s entropy is less stable than Shannon, as its SD
reaches 0.08, where Shannon’s is only 0.02. Also, when studying the p-values for
several α, the values achieved via Havrda-Charvat are not statistically significant
when compared with Shannon’s. The selection of a proper α is still complicated
as it relies heavily on the input data. In perspective, the possibility to automate the
selection of the value of this hyperparameter would be very interesting. The goal is
to reach a proper area of α wherethe oss function gives stable and superior results.
Further analysis need to be carried out to assess the input images and the selection of
the best α area, to determine what kind of feature, what kind of neuronal path leads
to a zone being the most accurate.

6 Conclusion

In this paper, we concluded that, for our data, Havrda-Charvat’s formula is giving
superior results when compared with Shannon’s loss function. Havrda-Charvat best
performance on average is 69%of correct relapse predictionwhile Shannon’s is 64%.
In medical applications, even a 1 or 2% improvement is interesting. We also show
that the combination of several data sets is a good choice in the case of lack of a
large data set. A future work would be eperimenting on an algorithm to automate the
determining of the best value of α for any input data.
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Convolutional Neural Network
Classification of Liver Fibrosis Stages
Using Ultrasonic Images Colorized
by Features of Echo-Envelope Statistics

Akiho Isshiki, Dar-In Tai, Po-Hsiang Tsui , Kenji Yoshida,
Tadashi Yamaguchi, and Shinnosuke Hirata

Abstract The progression of liver fibrosis is the most important indicator that deter-
mines the prognosis of patients with diffuse liver disease. Variations in tissue struc-
ture triggered by liver fibrosis severely affect the texture and contrast of the ultra-
sound image. Therefore, progression can be non-invasively evaluated by analyzing
ultrasound images. The convolutional neural network (CNN) classification of liver
fibrosis stages using ultrasound images has also been studied. In previous studies,
grayscale ultrasound images obtained using conventional ultrasound scanners were
adopted as the input images. In this study, the modulation and colorization of the
ultrasound images by the echo-envelope statistics that correspond to the texture and
contrast of the ultrasound images have been proposed. In the proposed method, the
colorized ultrasound image in RGB representation comprises the original image and
two images modulated by different features of the echo-envelope statistics. Accord-
ingly, the effect enhancement of tissue-structure variation by the colorization of
the ultrasound images is promising in improving the accuracy of CNN classifica-
tion. Therefore, CNN classification of the ultrasound images colorized by their 1st-
and 3rd-order moments is demonstrated via the transfer learning of the VGG-16
pretrained network.
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1 Introduction

In the diffuse liver disease, the inflammation-necrosis-regeneration process of the
liver parenchyma is repeated by chronic infections owing to HBV and/or HCV,
alcoholic hepatitis and non-alcoholic steatohepatitis. This process is often associated
with the irreversible fibrogenesis. Eventually, this disease leads to liver cirrhosis and
hepatocellular carcinoma. The progression of liver fibrosis is the most important
indicator that determines patient prognosis.

Liver fibrosis is quantitatively diagnosed via liver biopsy, ultrasound transient
elastography (TE), and ultrasound shear-wave elastography (SWE). Pathological
examination via liver biopsy remains the gold standard for determining the stage
of liver fibrosis. However, liver biopsy is an invasive procedure often accompanied
by complications [1]. In TE and SWE, shear waves are induced by a mechanical
vibrator or acoustic radiation force impulse (ARFI) inside the liver. Liver elasticity
is non-invasively estimated from the propagation speed of shear waves. However,
inflammation or congestion other than fibrosis can also increase the liver elasticity
[2].

The variation in tissue structure due to liver fibrosis severely affects the texture
and contrast of the ultrasound image. Therefore, the progression of liver fibrosis
can be non-invasively evaluated via ultrasound image analysis. Tissue characteri-
zation in the liver using echo-envelope statistics corresponding to the texture and
contrast of the ultrasound images has been reported [3–6]. However, the classifi-
cation of liver fibrosis stages by the convolutional-neural-network (CNN) analysis
of ultrasound images has also been reported [7–9]. In previous studies on CNN
classification, grayscale ultrasound images obtained using conventional ultrasound
scannerswere adopted as the input images. In this study, themodulation and coloriza-
tion of the ultrasound images using echo-envelope statistics are proposed. The color
image comprises three images in RGB representation. In the proposed method, the
colorized ultrasound image comprises the original ultrasound images modulated by
different features of the echo-envelope statistics. The effect enhancement of the
tissue-structure variation in the ultrasound images by the colorization is promising
in improving the accuracy of CNN classification. In this paper, the colorization of
ultrasound images by moment, a feature of echo-envelope statistics, is described.
Subsequently, the CNN classification of liver fibrosis stages using colorized ultra-
sound images is demonstrated via the transfer learning of the VGG-16, the pretrained
CNN.
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2 Method

2.1 Dataset

Clinical data of patients infected with HBV and/or HCV were obtained from the
Chang GungMemorial Hospital, Linkou, Taiwan. A portable ultrasound scanner and
a convex array probe (Model 3000 and Model 5C2A, Terason, USA) were utilized
to acquire the raw echo data. The center frequency of the transmitted ultrasound was
3.5MHz, and the received echoes were stored by the sampling frequency of 30MHz.
The focal and maximum depths were fixed at 40 mm and 80 mm, respectively.

The stages of liver fibrosis were assessed by liver biopsy in accordance with the
Metavir scoring system: normal liver (F0), early to severe fibrosis stages (F1–F3),
and cirrhosis (F4). Because there were insufficient cases for the Metavir score of F0,
the cases for the scores from F1 to F4 were used for CNN classification. The number
of cases for each score was 20; in other words, 80 cases in total were used. The rate of
intracellular fatty deposition, which was also assessed by liver biopsy, ranged from
0 to 30%.

2.2 Formation and Selection of Input Images

Ultrasound images were reconstructed by the scan conversion of the raw echo-data
envelopes. The pixel spacings in lateral and depth directions of the image were
64.9µmand 63.3µm, respectively. In each image, the liver regionwas segmented by
expert radiologists. Echo envelopes without logarithmic compression were normal-
ized to eliminate the effects of focus and gain during transmission and reception. For
the normalization of each pixel, the 2nd-order moment M2 of the echo envelopes in
the region around the pixel was estimated as:

M2,i, j = E
[
I 2k

]
, (1)

where i and j denote the coordinates of the center pixel of the region and Ik represents
the kth pixel value in the region. The region was ellipse-shaped centering on the pixel
and 12 (4 × 3) times the spatial resolution (1.9 mm × 2.4 mm) of the ultrasound
image. In the normalization, each pixel value Ii j in the reconstructed ultrasound
image was divided by the square root of the 2nd-order moment as follows:

Ii j
∧

= Ii j√
M2,i, j

, (2)

where Î denotes the normalized pixel value. Subsequently, the normalized pixels
with values larger than 3 were discarded. The estimation-division-removal process



444 A. Isshiki et al.

was repeated until the pixel with a value larger than 3 disappeared. Examples of the
reconstructed ultrasound image, the distribution of the estimated 2nd-ordermoments,
and the normalized ultrasound image are presented in Fig. 1. The regions of interest
(ROIs), the input images to the CNN, were extracted from the normalized image
within the ranges of −27 to 27 mm and 24–64 mm in lateral and depth sizes, respec-
tively. The size of the ROI was 15 mm in lateral and depth (231 × 237 pixels). In the
extracted ROI, pixels outside the liver region and the discarded pixels in the normal-
ization were less than 1%. Sliding intervals were greater than 1 mm. All ROIs were
rotated such that each vertical (depth) direction followed the scan line.

In total, 27,324 ROIs were extracted from 80 normalized ultrasound images.
Several hundred ROIs were expected from each image (case). However, several
echoeswere assumed to be generated not from the liver parenchymaor fibrous tissues,
but from vessel walls or lipid droplets in several ROIs. Therefore, the probability
density functions (PDFs) of the ROIs were investigated. If most echoes are generated
from homogeneous tissues, such as the liver parenchyma, the PDF of the ultrasound
image can be approximated by a Rayleigh distribution. To compare the PDFs of
the ROIs and the Rayleigh distribution, the Kullback–Leibler divergences (KLDs)
between these distributions were calculated. A lower KLD value indicates that the
PDFof theROI is similar to theRayleigh distribution. In otherwords, the echoeswere
mostly generated from the liver parenchyma. A higher KLD indicates that several

Fig. 1 Reconstructed ultrasound image: a, the distribution of the estimated 2nd-order moments: b,
the ultrasound image normalized by the square root of the 2nd-order moments: c
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Fig. 2 KLDs between the
PDFs of the extracted ROIs
(echo data) and Rayleigh
distribution

echoes generated from the fibrous tissues are mixed. The KLDs between the PDFs of
all ROIs and the Rayleigh distribution are presented in Fig. 2. The high-KLDROIs of
F1 and low-KLD ROIs of F4, respectively, appear and should be discarded because
the texture and contrast of the ROIs may not correspond to the tissue structures.

To calculate the KLD between the PDF corresponding to the assumed tissue
structure and the Rayleigh distribution, the multi-Rayleigh model was introduced
[5]. In the model, the PDF of the echoes from the fibrotic liver is expressed by the
combination of the low-variance Rayleigh distribution corresponding to the echoes
from the liver parenchyma and high-variance Rayleigh distribution corresponding to
those from fibrous tissues. In the calculation of KLDs based on the multi-Rayleigh
model, the rates of fibrous tissues were set to 5, 10, 15, and 20% in the cases of F1,
F2, F3, and F4, respectively. The variance ratios between both Rayleigh distributions
were set from 2.4 to 3.3 in all cases. The KLDs calculated from the random numbers
of 5000 samples in each PDF are presented in Fig. 3. In each score in Fig. 2, the
ROIs whose KLDs were from the lower whisker of the variance ratio of 2.4 to the
higher whisker of the variance ratio of 3.3 were selected. Furthermore, 2560 ROIs
in each score, approximately 128 ROIs in each case, were adopted for the CNN
classification. The KLDs between the PDFs of the used ROIs and the Rayleigh
distribution are presented in Fig. 4.

2.3 Modulation and Colorization of Input Images

The 1st- and 3rd-order moments were employed as the features of the echo-envelope
statistics for the colorization of the ROIs. In each ROI, the 1st-order moment M1 and
3rd-order moment M3 of the normalized pixel values were estimated as follows:

M1 = E
[
În

]
, (3)

M3 = E
[
Î 3n

]
, (4)
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Fig. 3 KLDs between the PDFs of the multi-Rayleigh models (random number) and the Rayleigh
distributions

Fig. 4 KLDs between the
PDFs of the used ROI (echo
data) for the CNN
classification and the
Rayleigh distribution

where În denotes thenth normalizedpixel value in theROI.The estimatedmoments of
all ROIs utilized for the CNN classification are presented in Fig. 5. Before the modu-
lation, the moments were normalized from 0 to 1 based on the calculated moments
from the random numbers of 5000 samples. Regarding the 1st-order moments, the
normalization band was set from the lower whisker of the variance ratio of 3.3 and



Convolutional Neural Network Classification of Liver Fibrosis Stages … 447

Fig. 5 The 1st- and
3rd-order moments of the
utilized ROIs (echo data) and
their normalized bands
between the moments
estimated by the
multi-Rayleigh model and
the Rayleigh distribution

fibrous-tissue rate of 20% to the higher whisker of the variance ratio of 1 (Rayleigh
distribution). Regarding the 3rd-order moments, which were set from the lower
whisker of the Rayleigh distribution to the higher whisker of the variance ratio of
3.3 and fibrous-tissue rate of 20%. The normalized pixel values in the ROI were
modulated as:

I1,i, j = Îi, j × 2
2∗

(
M1

∧

−0.5

)

, (5)

I3,i, j = Îi, j × 2
2∗

(
M3

∧

−0.5

)

, (6)

where M1

∧

and M3

∧

represent the normalized moments from 0 to 1. The colorized
image input to theCNNwas created using the original image of Îi, j , modulated image
I1,i, j , and that of I3,i, j in the blue, red, and green layers, respectively. Examples of
the colorized ROIs are presented in Fig. 6.



448 A. Isshiki et al.

Fig. 6 Colorized ROIs comprising the original images, the images modulated by the 1st-order
moments and images modulated by the 3rd-order moments in the blue, red, and green layers,
respectively

2.4 Learning and Validation of Networks

The selected ROIs and the horizontally flipped ROIs (20,480 ROIs in total) were
used to learn and validate the network. In this study, the pretrained network VGG-16
in the Deep Learning Toolbox in MATLAB is utilized for the CNN classification of
the liver fibrosis stages. The VGG-16 comprises 13 convolution layers and 3 fully
connected layers. For the classification of the Metavir scores F1–F4, the last fully
connected layerwas replacedwith the new fully connected layer (input: 4096, output:
4). The weights of the layer were initialized using random numbers. In the transfer
learning, only the last two convolutional layers and three fully connected layers were
trained to prevent early overfitting. The training was performed using the stochastic
gradient descent with the mini-batch processing of 64 images. The dropout between
the fully connected layers were 80%, the learning rate was 3.5 × 10−5, and the
number of epochs were 4 and 5 in the cases of the colorized ROIs and grayscale
ROIs, respectively. Averages of validation losses were minimized at the epochs.
To validate the trained network, five-fold cross-validation was performed. All ROIs
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were divided into five sets. Three of sets were adopted to train the network and the
remaining two sets were adopted to validate the network. The combination of these
sets was switched and repeated five times. Therefore, each ROI was adopted for
learning thrice and for validation twice.

3 Result and Discussion

The ROIs colorized by the 1st- and 3rd-order moments as the features of the echo-
envelope statistics were classified by the VGG-16 trained by the ROIs. For compar-
ison, the original grayscale ROIs indicated that the normalized echo envelopes were
also classified by the VGG-16 trained using the original ROIs. The results of the
confusion matrices for both cases are presented in Fig. 7. Regarding the colorized
ROIs, the accuracies of the predicted Metavir scores in F1, F2, F3, F4, and total
were 83.2%, 33.5%, 51.5%, 32.3%, and 50.1%, respectively. Regarding the original
ROIs, the accuracies were 55.6%, 35.9%, 34.8%, 38.2%, and 41.1%, respectively.
The accuracy of the classification was improved 9% via the colorization of the ROIs.
Limited to the classification of F1–F2 and F3–F4, the accuracywas improved from65
to 75%. Furthermore, the ROIs of F1 predicted as F3 or F4, and those of F2 predicted
as F4, were significantly decreased. However, in the ROIs of F4, the accuracy of the
classification was not significantly improved; in other words, the ROIs predicted as
F1 and F2 were not significantly decreased.

In Fig. 5, 3rd-ordermoments of the several ROIs of F4 are lower than those of F1 or
the Rayleigh distribution despite their KLDwith the Rayleigh distribution are higher
than those of F1. The 3rd-order moments and KLDs of the F4 ROIs are presented
in Fig. 8. Basically, as the 3rd-order moment increases, KLD also increases in the
multi-Rayleigh model. When the 3rd-order moments go below that of the Rayleigh

Fig. 7 Confusion matrices of the CNN classification of the liver fibrosis stages using the colorized
ROIs: a, original grayscale ROIs: b
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Fig. 8 The 3rd-order
moments and KLDs with the
Rayleigh distribution of the
utilized ROIs of F4

distribution, the KLD increases from 0.0094, the bottom range of the KLD in F4.
The tissue structures in these ROIs may not correspond to the multi-Rayleigh model.
Therefore, such ROIs in all Metavir scores should be preliminarily discarded.

4 Conclusion

For the non-invasive and accurate quantitative diagnosis of liver fibrosis caused by the
diffuse liver disease, the CNN analysis of ultrasound images colorized by the features
of echo-envelope statistics was proposed. In this study, the CNN classification of
liver fibrosis stages using ultrasound images colorized by the 1st- and 3rd-order
moments of echo envelopes was demonstrated for clinical ultrasound images of
patients infected with HBV and/or HCV. The accuracy of the predicted Metavir
scores could be improved from 41.1 to 50.1% by the colorization. In this study,
the ROIs utilized for the CNN classification were selected using their KLDs with
the Rayleigh distribution. However, moments of several ROIs were not appropriate,
although KLDs were appropriate for their liver fibrosis stages. Therefore, discarding
such ROIs may improve the accuracy.

Acknowledgements This study was partly supported by the Takahashi Industrial and Economic
Research Foundation.

References

1. Seeff, L. B., Everson, G. T., Morgan, T. R., et al.: Complication rate of percutaneous liver
biopsies among persons with advanced chronic liver disease in the HALT-C Trial. Clinical
Gastroenterology and Hepatology 8(10), 877–883 (2010).



Convolutional Neural Network Classification of Liver Fibrosis Stages … 451

2. Millong, G., Friedrich, S., Adolf, S., et al.: Liver stiffness is directly influenced by central venous
pressure. Journal of Hepatology 52(2), 206–210 (2010).

3. Weng, L., Reid, J. M., Shankar, P. M., et al.: Ultrasound speckle analysis based on the K
distribution. The Journal of the Acoustical Society of America 89, 2992–2995 (1991).

4. Dutt, V., Greenleaf, J. F.: Ultrasound echo envelope analysis using a homodyned K distribution
signal model. Ultrasonic Imaging 16(4), 265–287 (1994).

5. Mori, S., Hirata, S., Yamaguchi, T., et al.: Quantitative evaluation method for liver fibrosis based
onmulti-Rayleigh model with estimation of number of tissue components in ultrasound B-mode
image. Japanese Journal of Applied Physics 57(7S1) 07LF17 (2018).

6. Fang, F., Li, Q., Tai, D.-I., et al.: Ultrasound assessment of hepatic steatosis by using the double
Nakagami distribution: A feasibility study. Diagnostics 10(8), 557 (2020).

7. Meng, D., Zhang, L., Cao, G., et. al.: Liver fibrosis classification based on transfer learning and
FCNet for ultrasound images. IEEE Access 5, 5804–5810 (2017).

8. Lee, J. H., Joo, I., Kang, J. W., et al.: Deep learning with ultrasonography: automated classi-
fication of liver fibrosis using a deep convolutional neural network. European Radiology 30,
1264–1273 (2019).

9. Saito, R., Koizumi, N., Nishiyama, Y., et al.: Evaluation of ultrasonic fibrosis diagnostic system
using convolutional network for ordinal regression. International Journal of Computer Assisted
Radiology and Surgery 16, 1969–1975 (2021).



FedRNN: Federated Learning
with RNN-Based Aggregation
on Pancreas Segmentation

Zengtian Deng, Touseef Ahmad Qureshi, Sehrish Javed, Lixia Wang,
Anthony G. Christodoulou, Yibin Xie, Srinavas Gaddam,
Stepehen Jacob Pandol, and Debiao Li

Abstract Federated learning (FL) has been applied by several studies for pancreas
segmentation. However, handling heterogeneous datasets across participating sites
remains to be a challenge. To address the heterogeneity issues to further improve
the performance of FL, we developed an innovative aggregation method, FedRNN,
which used a Recurrent Neural Network (RNN) to adjust the aggregation weight of
each site’s model based on the history of model loss and aggregation weight. At each
round, the RNN took in the previous round aggregation weight and current round
loss value from each site to estimate the optimal aggregation weight for the current
round. Additionally, Mean Square Error (MSE) was applied for balanced perfor-
mance across the clients. Based on cross-site validation, FedRNN outperformed the
existing FL algorithms with an overall mean dice score of 78.7% and was up to
4.2% in improvement. In addition, FedRNN had the most stable performance across
all clients in terms of the lowest standard deviation. Based on the results, the loss
and aggregation weight history can be beneficial to the aggregation process of FL.
Additionally, since FedRNN does not have restrictions on the form of loss functions,
it can be applied to other tasks such as classification and object detection.

Keywords Federated learning · Model aggregation · Pancreas segmentation ·
Recurrent neural network

1 Introduction

To date, Deep Learning (DL) has been widely implemented in the medical field
for various tasks. Although it is very promising in some circumstances, adequate
training data is not always available at a single institution, necessitating collaboration
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between multiple. However, data sharing across institutions faces technical difficul-
ties transferring the data and has privacy concerns on disclosing patient information
[1]. Therefore, an efficient training method without data sharing while preserving
privacy is highly desirable.

In recent years, federated learning (FL), an AI framework that allows private
and decentralized model training, has been applied to multiple medical research and
projects. In the field of medical segmentation, FL has been applied for multi-site
brain segmentation [2], brain tumor segmentation [3, 4], and pancreas segmentation
[5–7], etc. In general, FL has the same model separately trained at each client site,
and the updates of trained models reflecting the dataset of each client are aggregated
to generate the new model. One of the commonly used federated learning schemes
is centralized federated learning [1], which has a server to distribute the model to
each client and aggregate model updates.

Model aggregation weight, the factor that scales the model update of each client
before the aggregation process, is crucial to the end form of the model. In the
first FL paper, McMahan et al. proposed Federated Averaging (FedAvg) as the first
aggregation algorithm for FL [8]. FedAvg applies fixed aggregation weights based
on the size of client’s training data, which is lightweight and easy to implement.
However, FedAvg cannot handle heterogeneous datasets well. To incorporate data
heterogeneity into consideration, Shen et al. evaluated various algorithms and discov-
ered that Dynamic Weight Averaging (DWA) yielded the highest performance [6].
DWA adjusts aggregation weight based on the improvement of training loss between
consecutive rounds and has been shown to have better performance than FedAvg.
However, DWA is not robust to fluctuations in the loss over the training history and
does not take the aggregation weight setting into consideration. Therefore, to fully
utilize the temporal information during the training process, we designed an inno-
vative aggregation algorithm called FedRNN that uses a recurrent neural network
(RNN) to incorporate both the loss and the aggregation weights into the aggregation
process.

Pancreatic ductal adenocarcinoma (PDAC),which constitutes over 90%of pancre-
atic cancer, is one of the highly lethal malignancies [9], and pancreas imaging is an
initial and key study for diagnosis and management. Thus, pancreas segmentation is
the critical step in the process of improving imaging methods in the field. However,
since manual segmentation could be timing consuming, automatic segmentation is
preferable and an ongoing research field for both centralized learning [10, 11] and
federated learning [6, 7]. Therefore, we chose multi-site pancreas segmentation as
the task, aiming to prove the feasibility of FedRNN and further improve existing FL
performance on pancreas segmentation.

An important consideration in FL is its performance compared to centralized
learning. According to Nilsson et al., with heterogeneous setting of the MNIST
dataset, FedAvg performs slightly worse than all-dataset centralized learning [12].
However, no previous FL studies on pancreas segmentation have compared all-
dataset centralized learning with FL methods. Thus, we also performed all-dataset
centralized learning for comparison with FL methods.

Our research work was summarized into the following contributions:



FedRNN: Federated Learning with RNN-Based Aggregation … 455

(1) We introduced a new FL algorithm, FedRNN, which used RNN to adjust the
aggregation weight based on the loss and aggregation changed over time.

(2) We visualized and explored the relationship between aggregation weight and
local training loss for both DWA and FedRNN methods.

(3) We compared the performance of FL algorithms with both the performance of
CL algorithms using single datasets and the CL algorithm using all datasets.

2 Materials and Methods

2.1 Dataset

The study includes three publicly available datasets. The first dataset is from Task 07
of Medical Segmentation Decathlon (MSD)1 [13] and has 281 CT abdominal scans;
The seconddataset is thePancreas-CTdatasetwith 82 scans publishedby theNational
Institute of Health Clinical Center (NIH)2 [14]; The third dataset is from MICCAI’s
Multi-Atlas Labeling beyond the Cranial Vault challenge (BTCV)3 [15] and has 30
abdominal scans. All three datasets are publicly available. Each case is resampled
to the dimension of 1.0 mm3 × 1.0 mm3 × 2.0 mm3 using bilinear interpolation.
The density range of each scan was cropped within the range from −200 to 250 in
Hounsfield Unit and normalized. Random density shift and random affine transform
were applied for data augmentation. Additionally, RandCropByPosNegLabel from
MONAI [16] was used to randomly crop each case volume to multiple volumes of
size 112 × 112 × 48. For our study, 4 volumes were generated per case, and the
center voxels of the cropped volumes were enforced to be evenly distributed to be
arbitrary positive and negative labels.

2.2 Federated Learning Framework

As shown in the centralized FL setup in Fig. 1, at the start of each round, the server
first distributes the global model to each client. The clients then evaluate the received
global model for cross-site validation, train the model with local datasets, and upload
the trained model updates processed by the privacy protocol back to the server for
aggregation. The aggregated model then becomes the new global model for the next
round. The goal of FL can be expressed as minimizing the function shown in Eq. 1,
where the global loss function L is comprised of the weighted sum of the individual
loss function Lk at each client k [1]; θ is the model parameter; and Xk and ωk are
the input data and the aggregation weight of client k, respectively.

1 http://medicaldecathlon.com.
2 https://wiki.cancerimagingarchive.net/display/Public/Pancreas-CT.
3 https://www.synapse.org/#!Synapse:syn3193805/wiki/89480.

http://medicaldecathlon.com
https://wiki.cancerimagingarchive.net/display/Public/Pancreas-CT
https://www.synapse.org/#!Synapse:syn3193805/wiki/89480
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Fig. 1 Overview of centralized FL framework

min
θ

L(X, θ) = min
θ

K∑

k=1

ωk Lk(Xk, θ) (1)

2.3 Model Aggregation

Prior studies have used various approaches for model aggregation. For the FedAvg
[8] method, ωk is selected to be the ratio of local data size to the total data size as
shown in Eq. 2, where nk is the amount of data at client k and ntotal is the total amount
of data across all datasets.

ωk = nk
ntotal

(2)

To account for data heterogeneity, DWA [6] adaptively adjusted the aggregation
weight to focus on the model that suppresses more training loss on local dataset,
as expressed in Eq. 3, where ξ and T are the scaling factors, and ρk,τ−1 is the loss
difference equation of client k at time τ − 1 defined in Eq. 4.

ωk,τ = ξ exp
(
ρk,τ−1/T

)
∑K

i=1 exp
(
ρi,τ−1/T

) (3)
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ρk,τ−1 = Lk,τ−1

Lk,τ−2
(4)

To broaden the contribution of the loss factor and incorporate aggregation weight
into consideration, we proposed FedRNN, which uses the recurrent neural network
(RNN) to adaptively estimate the appropriate aggregation weight. As shown in Eq. 5,
ωτ is the vector of aggregation weight of all clients at time τ , andLseg,τ is the vector
of training loss from all clients at time τ .

ωτ = fRNN
(
ωτ−1,Lseg,τ

)
(5)

The RNNmodel used in this study is Elman RNN [17], and Eq. 5 can be extended
to Eqs. 6–8, where xτ is the input of the model at time τ , and hτ is the hidden state
feature at time τ . As shown in Eq. 8, xτ is the previous-round aggregation weight
and the current round segmentation loss connected through additive attention. The
SoftMax function is applied to the model output to enforce the aggregation weights
to sum to one as shown in Eq. 6. The overall RNN structure is depicted in Fig. 2.

ωτ = σSof tMax (Wohτ + bo) (6)

hτ = σtanh(Wi xτ + bi + Whhτ−1 + bh) (7)

xτ = ωτ−1 + Lseg,τ (8)

The optimization goal of the RNN model is to minimize the segmentation loss at
each client. However, the backpropagation from local training loss to the aggregation

Fig. 2 The structure of RNN network and its equivalent unfolded form that shows the update
progress of RNN along the input sequence. τ represents the time point or round number; xτ repre-
sents the input of the model; hτ represents the hidden state of the RNN network; and ωτ represents
the output of the model, which is the aggregation weights to be used for next round
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weight will be computationally expensive and prone to vanishing gradient. There-
fore, we designed an innovative loss function to approximate the overall process as
depicted in Eq. 9, where θ RNN is the model parameter of RNN network; ω′

τ is the
optimal aggregation weight, and L′

seg,τ is the segmentation loss.

min
θ RNN

LRNN = min
θ RNN

∥∥ω′
τL′

seg,τ − fRNN
(
ωτ−1,Lseg,τ , θ RNN

) ∗ Lseg,τ

∥∥2
(9)

In Eq. 9, fRNN
(
ωτ−1,Lseg,τ , θ RNN

) ∗ Lseg,τ can be interpreted as the skip-
connection-like multiplication to the final optimization loss of the RNN model.
Additionally, since the optimal segmentation loss is zero, Eq. 9 can be rewritten
into the form in Eq. 10, and the optimization process will be minimizing the product
between RNN output and the induced segmentation loss.Mean Squared Error is used
for the RNN model to enforce balanced performance across the clients.

min
θ RNN

LRNN = min
θ RNN

∥∥ fRNN
(
ωτ−1,Lseg,τ , θ RNN

) ∗ Lseg,τ

∥∥2
(10)

Theoretically, the hidden states of the RNN model store information about the
history of aggregationweight and segmentation loss. Assuming there is a latent space
of model parameters, and heterogeneous datasets have varied optimal model state,
the losses from each site can be interpreted as the distance to the optimal model
of each local dataset; the aggregation weights represent the step size of the model
during optimization; and the model updates imply the direction towards the specific
optimal model. Then, the overall optimization goal of RNN can be interpreted as
finding the optimal position in the model space that has the shortest distance to all
optimal models.

2.4 Experimental Setup

The experiment was run using NVIDIA container for Pytorch, release 21.02,4 with
Clara Train 4.05 [18] as the package for federated learning framework. The percentile
privacy protocol used in this study only allows 25% of the largest model updates
in absolute value to be sent from clients to the server. The training process was
performed within a single server using different containers, and each client was
assigned a GeForce RTX 2080 Ti with around 4800 MB memory used per client.

The 3D UNet with residual unit is used as the base model in this study [19]. The
3D UNet is a 4-layer network with the scaling factor as two. Two residual units are
used per layer. The model is implemented with project MONAI package [16]. To
balance model performance and communication efficiency, the training was set to
have two local epochs and 500 aggregation rounds. All CL methods were trained

4 https://docs.nvidia.com/deeplearning/frameworks/pytorch-release-notes/rel_21-02.html.
5 https://docs.nvidia.com/clara/clara-train-sdk/index.html.

https://docs.nvidia.com/deeplearning/frameworks/pytorch-release-notes/rel_21-02.html
https://docs.nvidia.com/clara/clara-train-sdk/index.html


FedRNN: Federated Learning with RNN-Based Aggregation … 459

for 1000 epochs with the exact same setting. The models were trained using Adam
optimizer with the initial learning rate at 2e−4 and subsequent learning rate adjusted
by lr ∗ (

1 − nepoch/nmax _epoch
)0.9

. A combination of Dice Loss and Focal Loss is
implemented on a scale of 1:1 to cope with class imbalance. Batch normalization is
used, and themodel is trainedwith 0.5 drop off rate. TheRNNmodel is jointly trained
with the segmentationmodel using the training loss, and the validation dataset is used
to prevent overfitting of the whole framework combining RNN and 3D UNet. The
output of the model is the vector of probabilities for each voxel being pancreas and
background. During inference, sliding window inference from MONAI is used to
predict the pancreas volume of each case, and the SoftMax function is applied to the
output to ensure the probabilities of each voxel sum up to one. Then, both the ground
truth and the model output are converted to one-hot encoding for comparison. In case
both probabilities are the same, the voxel will be considered as the background.

As the ablation study on the amount of effective temporal information for RNN,
the input sequence to RNN was experimented with 10, 15 and 20. Additionally, to
study the influence from RNN complexity, the size of hidden feature was tested with
5, 7, and 10. To ensure enough input for RNN, the aggregation weights were fixed
to same value as FedAvg until enough aggregation weights and losses are collected.

3 Results

Cross-site validation in terms of Dice Similarity Coefficient (DSC) was performed
on both CL methods and FL methods as shown in Table 1. Besides the performance
on each site, the mean DSC of all test cases (Case Avg) was also evaluated. Paired
Samples T-Test was performed between datasets. Based on the cross-site validation,
CL with MSD dataset outperformed the other two CL methods. However, CL with
NIH dataset performed the best on its own test set. From the local CL result, a positive

Table 1 Cross-site validation on average dice similarity coefficient (DSC) of all methods with
standard deviation. The best DSC of FL methods is shown in bold

Method MSD (93) NIH (27) BTCV (10) Case avg

Centralized learning

MSD local 74.8 ± 13 69.8 ± 15 77.4 ± 6.2 73.9 ± 13

NIH local 60.0 ± 22 73.3 ± 12 69.2 ± 12 63.4 ± 21

BTCV local 44.1 ± 22 56.8 ± 19 56.9 ± 23 47.7 ± 22

All dataset local 76.5 ± 12 79.4 ± 5.6 80.7 ± 4.8 77.4 ± 10

Federated learning

FedAvg 75.2 ± 11 72.2 ± 7.6 74.6 ± 7.0 74.5 ± 10

DWA 77.5 ± 11 77.6 ± 6.7 80.1 ± 5.0 77.7 ± 11

FedRNN 78.1 ± 11 80.1 ± 5.5 80.8 ± 5.7 78.7 ± 9.7
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correlation between the model performance and the size of the dataset was seen, and
CL with all datasets yielded the best performance among all CL methods. As shown
in Table 1, all FL methods performed better than local CL methods. Among all FL
methods, FedRNN outperformed both the DWA by 1.0%(P < 0.001) and FedAvg
by 4.2%(P < 0.001) in terms of Case Avg. Comparing to CL with all data, FedRNN
performed better than CL with all data (P < 0.001); DWA had similar performance
with CL with all data (P = 41.1); and FedAvg had worse performance than CL with
all data (P < 0.001). In addition, FedRNN also had the lowest standard deviation on
Case Avg compared to other methods.

Figure 3 showed the aggregation weight and loss change of FedRNN and DWA
during the training process. As shown in Fig. 3a, FedRNN had the aggregation
weights slowly adjusted to similar values during the training process. On the contrary,
as shown in Fig. 3b, the aggregation weights of DWA showed arbitrary fluctuations
and increasing difference between each other, which conformed with the plot shown
in the work of Shen et al. [6]. Figure 3c showed the loss plots of both methods,
and the two plots were indistinguishable from each other. However, since the best
performed FedRNN model used the previous 15 rounds for each prediction, the
15-round moving average plot was created shown in Fig. 3d. As shown in Fig. 3d,
the loss of FedRNN was explicitly lower than that of DWA for most of the time.

Fig. 3 The aggregation weight plot of best performed FedRNN a and DWA b as well as their loss
plot c and the loss plot in 15-round moving average d during the training process
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Additionally, the loss of FedRNN also dropped faster than that of DWA during the
first 100 epochs.

Table 2 showed the cross-site validation on the ablation study of FedRNN. As
shown in Table 2, the best performed FedRNN model had a sequence length of 15
and 10 hidden features. For the RNNmodels with better performance, a certain ratio
between sequence length and hidden feature size was maintained, such as group 2
and group 4. The performance immediately dropped when either parameter was set
above the optimal setting, as shown in group 3 and group 5.

Figure 4 showed the example pancreas segmentation of the three FL methods
from the MSD test set in both 3D volume and 2D slice view. The green volume
represented the overlap between ground truth label and prediction (True Positive);
the red volume represented the error prediction (False Positive); and the blue volume
represented the unidentified ground truth label (False Negative). Compared to DWA
and FedAvg, FedRNN had explicitly less false positive voxels and better DSC.

Table 2 Cross-site validation on ablation study of FedRNN in terms of hidden feature and input
sequence length. Best performance is shown in bold

Group Sequence length Hidden feature MSD (93) NIH (27) BTCV (10) Case avg

1 10 5 78.1 ± 11 78.9 ± 6.8 80.7 ± 5.7 78.1 ± 9.3

2 10 7 78.2 ± 11 78.8 ± 6.7 80.1 ± 6.2 78.5 ± 10

3 10 10 76.7 ± 12 77.0 ± 9.6 79.5 ± 6.2 77.0 ± 11

4 15 10 78.1 ± 11 80.1 ± 5.5 80.8 ± 5.7 78.7 ± 9.7

5 20 10 77.8 ± 12 78.2 ± 8.5 80.0 ± 6.3 78.0 ± 11

Fig. 4 Example pancreas segmentation by FedRNN (Left), DWA (Middle), and FedAvg (Right).
The upper row displays the 3D volume of the segmentation, and the lower row shows the example
2D axial slices of the segmentation with dice score shown. For all plots, the green volume represents
the overlap between ground truth and prediction (True Positive); the blue volume represents the
ground truth volume not detected by the model (False Negative); and the red volume represents the
error prediction volume (False Positive)
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4 Discussion

Based on the cross-site validation result, FedAvg showed better performance onMSD
dataset because it has the largest number of training data. In addition, comparing CL
with all datasets to FLmethods, all-dataset CL performed better than FedAvg, which
conforms with the observation from Nilsson et al. [9]. However, DWA performed
similar to the all-dataset CL method, and FedRNN performed better than all-dataset
CL method. This might be due to the difference between the training scheme of
CL and FL. For all-dataset CL, the model is trained sequentially with data from all
datasets; while for the FL setting, the model is parallelly trained on the data from
different groups. The results may imply that for heterogeneous data, parallel training
of the model on different groups could yield better results than traditional sequential
training.

Based on Table 2, the input sequence length and the hidden feature jointly influ-
enced the result of FedRNN, and a correct ratio between the two is crucial based on
the results. On the other side, RNNwith inadequate combination may either not have
enough information or not have enough model capacity. Additionally, larger hidden
feature with longer sequence length yields better result, as shown in group 2 and 4
from Table 2.

Based on Fig. 3b, the aggregation weight of DWA had an unstable trend due to its
dependence on the fluctuation of the loss. On the contrary, FedRNN had minimum
interference from the fluctuation of loss by taking the history of loss and aggregation
weight into account. SamewithDWA,FedRNNwill focus on the aggregationweights
of the model that has less loss. However, the MSE loss and the history of loss and
aggregation weight help stabilize the distribution of aggregation weight to force the
model paying attention to updates of the model with larger loss, yielding a better
result than DWA.

The performance of FedRNN also shows better performance visually than other
FL methods. As shown in Fig. 4, both DWA and FedAvg tend to overpredict the
pancreas region, resulting in a much larger false positive red volume comparing to
FedRNN. However, all three FL methods fail to detect part of the pancreas head,
leaving a blue False Negative volume in Fig. 4. Since all FL frameworks use the
Residual UNetwith the exact same setting, such errors could be due to the insufficient
capability of the segmentation model itself. Therefore, experimenting with more
complicated model structure and developing data harmonization methods could be
possible directions for future research.

Since the RNN network only takes the aggregation weights and the averaged
loss from each site as input, FedRNN is still simple and lightweight. In terms of
communication, FedRNN only requires the average loss value of each site to be
transferred to the server. In addition, since FedRNN does not have restrictions on the
type of loss to be learned except for a fixed ideal value of the loss function output,
which is usually zero. Therefore, FedRNN can smoothly fit into other AI-related
tasks like image classification, registration, super-resolution etc.
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5 Conclusion

We developed a new federated learning algorithm, FedRNN, which uses an RNN
to extract the temporal information of aggregation weights and losses to automati-
cally adjust the model aggregation in FL for better model performance. It not only
showed better DSC than FedAvg, DWA and even all-dataset CL, but also had less
variation in terms of DSC standard deviation across data from all sites. Addition-
ally, since FedRNN has no restriction on the loss function and model type, it can
be easily applied to other deep learning tasks. More advanced data harmonization
methods and other more complicated recurrent networks such as Long Short-Term
Memory (LSTM) networks may further improve the generalization and accuracy of
the algorithm.
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UNet-2022: Exploring Dynamics
in Non-isomorphic Architecture

Jiansen Guo, Hong-Yu Zhou, Liansheng Wang, and Yizhou Yu

Abstract In this paper, we first analyze the differences between the weight alloca-
tion mechanisms of the self-attention and convolution. Based on this analysis, we
propose to construct a parallel non-isomorphic block that takes the advantages of self-
attention and convolutionwith simple parallelization.We name the resultingU-shape
segmentation model as UNet-2022. In experiments, UNet-2022 obviously outper-
forms its counterparts in a range segmentation tasks, including abdominal multi-
organ segmentation, automatic cardiac diagnosis, neural structures segmentation,
and skin lesion segmentation, sometimes surpassing the best performing baseline
by 4%. Specifically, UNet-2022 surpasses nnUNet, the most recognized segmenta-
tion model at present, by large margins. These phenomena indicate the potential of
UNet-2022 to become the model of choice for medical image segmentation.

Keywords Medical image segmenation · Transformer

1 Introduction

Image segmentation has been among the fundamental tasks in medical image anal-
ysis. As the most widely adopted segmentation tools, UNet [1] and most of its
series [2–4] were built upon DCNNs. With the prevalence of vision transformers in
2021, the medical imaging community started to incorporate the self-attention mod-
ule into U-shape segmentation models for performance boosting [5–15]. The core
behind these approaches is to construct non-isomorphic U-shape architecture by inte-
grating self-attention with convolution. Although these methods achieved progress
in different medical imaging tasks, most of them failed to provide an intuitive expla-
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Fig. 1 Illustration of the weight allocation mechanisms. Different colors denote different weights

nation for why this combination can be optimal. Accordingly, it is unclear how to
better exploit the advantages of self-attention and convolution to build more optimal
segmentation networks.

Let us briefly review the weight allocation mechanisms of self-attention and con-
volution, respectively.As iswell-known, the key characteristic that lead to the success
of Transformers is the self-attentionmechanism [16]. In vision transformers [17, 18],
self-attention relates representations at different positions by employing a dynamic
weight allocationmechanism. Thus, as shown in Fig. 1a self-attention, different posi-
tions have different weights while all channels at the same position share the same
weight. On the other hand, DCNNs rely on extra learnable convolution kernels to
aggregate spatial representations. As shown in Fig. 1b convolution, the same set
of convolution kernel weights are shared across different spatial positions while
dynamic weights are assigned to different channels.

Based on the above analysis, we see that self-attention and convolution maintain
distinct but complementary characteristics. Based on this insight, we introduce a
non-isomorphic block to include self-attention and convolution as two parallel mod-
ules. The proposed block comprises a novel weight allocation mechanism, which
introduces dynamic to both space and channel dimensions (cf Fig. 1). In practice,
we find this embarrassingly simple combination performs surprisingly well, out-
performing previous state-of-the-art medical segmentation models by large margins
in various segmentation tasks. Moreover, to reduce the risk of overfitting, we use
depth-wise convolution (DWConv) for decreasing the number of weight parame-
ters, which we empirically found performs slightly better than the naive convolution.
The resulting UNet-2022 obviously outperforms nnUNet, currently the best generic
medical image segmentation model, in a range of medical image segmentation tasks,
including abdominal multi-organ segmentation, automatic cardiac diagnosis, neu-
ral structures segmentation, and skin lesion segmentation. For instance, UNet-2022
surpasses nnUNet by nearly 4% with a much smaller input size on multi-organ seg-
mentation.

2 Related Work

TransUNet [7], TransClaw UNet [6], and LeViT-UNet [13] inserted self-attention
layers between the encoder and decoder of DCNNs to take advantage of captur-
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ing long-range dependencies among a number of feature channels. Swin UNet [5]
replaced the convolutional blocks with the Swin Transformer blocks [18] and built
a U-shape segmentation model. DS-TransUNet [19] extended Swin UNet by intro-
ducing a fusion module for modeling long-range dependencies between features
of different scales. Similar to Swin UNet, MISSFormer [8] built a hierarchical U-
shape Transformer network that bridges all stages from the encoder to the decoder
by mixing multi-scale information obtained by the hierarchical Transformer blocks.
UNETR [20] adopted ViT [17] as the encoder network. In UNETR, feature maps
from different layers of ViT with different resolutions are collected and sent to the
convolutional decoder to capture the multi-scale information. nnFormer [14] uti-
lized both local and global volume-based self-attention to build feature pyramids.
MedT [21] proposed a gated axial attention layer which introduces a summational
control mechanism in the self-attention. However, one problem of these hybrid seg-
mentation models is that they did not provide an intuitive explanation of why the
combination of self-attention and convolution can be beneficial. As a result, it is still
unclear how to build an optimal combination of self-attention and convolution.

3 Methodology

We illustrate the detailed architecture of UNet-2022 in Fig. 2. As shown in Fig. 2a, the
encoder of UNet-2022 consists of one convolution stem and three stages, where each
stage involves three parallel non-isomorphic (PI) blocks. Symmetrically, the decoder
also comprises three stages and one de-convolution stem.At each down-sampling/up-
sampling step, we increase/decrease the number of channels and decrease/increase
the spatial resolution of featuremaps accordingly. Skip connections are used to bridge
the gap between low-level details and high-level semantics.

Fig. 2 Illustrations of UNet-2022.DwConv,MLP, FC, and LN stand for the depth-wise convolu-
tion,multi-layer perceptron, fully-connection layer, and layer normalization. P is a hyper-parameter,
which varies based on the input resolution
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Figure2b describes the internal structural details of the parallel non-isomorphic
block.Weuse depth-wise convolution (DwConv) to reduce the number of parameters.
Self-attention and depth-wise convolution are parallelized to explore dynamics in
spatial and channel dimensions, respectively, whose outputs are then added up and
passed to a fully-connected (FC) layer. In the convolution stem, we stack multiple
convolution layers to extract high-resolution feature maps, inspired by [14]. Similar
operations are also applied in the de-convolution stem,wheremultiple de-convolution
layers are stacked to produce the final segmentation mask.

3.1 Parallel Non-isomorphic Block

As aforementioned, self-attention and convolution emphasize dynamics in different
dimensions, making them complementary to each other. Inspired by this finding, we
propose to integrate their advantages in a non-isomorphic block via straightforward
parallelization on self-attention and convolution.

SupposeF l ∈ R
H×W×C denotes the input featuremap to aparallel non-isomorphic

block. As shown in Fig. 2b, we first pass the input feature mapF l to a DwConv layer,
after which a 2-layer multi-layer perceptron (MLP) is appended. The internal struc-
tures of the MLP layer are as follows: LayerNorm (LN)-FC-GELU-FC. We also add
a residual connection to the output of MLP:

F̂ l = MLP(DwConv(F l)) + F l . (1)

F̂ l is then forwarded to two parallel layers, i.e., self-attention and DwConv, whose
outputs are added up:

F̃ l = SA(F̂ l) + DwConv(F̂ l), (2)

where SA stands for the self-attention layer. Here we employed the window-based
self-attention layer, proposed in [18], to improve the running efficiency. The kernel
size of DwConv is 7. Finally, F̃ l is fed to the last FC layer and another residual
connection is added:

F l = FC(F̃ l) + F̂ l . (3)

F l
is the output of the PI block and will be passed to the following layer as the input

feature map.



UNet-2022: Exploring Dynamics in Non-isomorphic Architecture 469

3.2 Convolution/De-convolution Stem

As displayed in Fig. 2c, the convolution stem consists of a number of stacked blocks
(layers in the dashed box). To adapt to images with high resolutions, we stack more
blocks in the convolution stem in order to reduce the memory cost and improve the
computational efficiency. Specifically, the number of blocks, i.e., log2 P , depends
on the patch size P that we manually set. For instance, we set P to 4 for small and
medium input resolutions, such as 224 × 224 and 320 × 320. We increase P to 8
when the input resolution is high, such as 512 × 512. Compared to the patchify stem
used in [17, 18], we empirically found our convolution stem could better capture the
low-level information with equal receptive fields. Similar to the convolution stem,
the architecture of the de-convolution stem also varies based on the resolution of
input images.

4 Experiments

4.1 Dataset

Multi-organ CT segmentation (Synapse). Synapse1 consists of 30 abdominal CT
scans, where 13 organs were annotations. After pre-processing, we extract 3779
slices from all CT cases. Following instructions from [7], we split the whole dataset
into training (18 scans, 2211 slices) and test (12 scans, 1568 slices) sets.

Automated cardiac diagnosis (ACDC) [22]. The dataset is split into 70 samples
for training (1290 slices), 10 samples for validation (196 slices), and 20 samples for
testing (416 slices).

Neural structures segmentation (EM). EM (Electron Microscopy) dataset [23]
contains 30 images and the size of each image is 512 × 512. The whole dataset is
split into 24 samples for training, 3 samples for validation, and 3 samples for test.

Skin lesion segmentation (ISIC-2016 and PH2). The training dataset comes from
the International Skin Imaging Collaboration at year 2016 (ISIC-2016), which con-
tains 900 samples with lesion segmentations from dermoscopic images. Follow-
ing [24, 25], we construct the test set using images from PH2 [26].

1 https://www.synapse.org/##!synapse:syn3193805/wiki/217789

https://www.synapse.org/
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Table 1 Comparisons with 2D DCNN-based and hybrid segmentation models on multi-organ
segmentation (Synapse)
Methods Size Average Aorta Gallbladder Kidney

(Left)
Kidney
(Right)

Liver Pancreas Spleen Stomach

DSC ↑ HD95
↓

ViT [17] +
CUP [7]

224 67.86 36.11 70.19 45.10 74.70 67.40 91.32 42.00 81.75 70.44

R50-ViT [17] +
CUP [7]

224 71.29 32.87 73.73 55.13 75.80 72.20 91.51 45.99 81.99 73.95

TransUNet [7] 224 77.48 31.69 87.23 63.16 81.87 77.02 94.08 55.86 85.08 75.62

TransUNet [7] 512 84.36 – 90.68 71.99 86.04 83.71 95.54 73.96 88.80 84.20

TransClaw
UNet [6]

224 78.09 26.38 85.87 61.38 84.83 79.36 94.28 57.65 87.74 73.55

TransClaw
UNet [6]

512 80.39 – 90.00 56.86 83.27 76.21 95.06 67.76 91.16 82.82

SwinUNet [5] 224 79.13 21.55 85.47 66.53 83.28 79.61 94.29 56.58 90.66 76.60

SwinUNet� [5] 384 81.12 – 87.07 70.53 84.64 82.87 94.72 63.73 90.14 75.29

LeViT-UNet-
384s [13]

224 78.53 16.84 87.33 62.23 84.61 80.25 93.11 59.07 88.86 72.76

MT-UNet [27] 224 78.59 26.59 87.92 64.99 81.47 77.29 93.06 59.46 87.75 76.81

MISSFormer
[8]

224 81.96 18.20 86.99 68.65 85.21 82.00 94.41 65.67 91.92 80.81

nnUNet [2] 512 82.36 24.74 90.96 65.57 81.92 78.36 95.96 69.36 91.12 85.60

UNet-2022 224 84.98 16.70 92.10 69.63 88.40 83.93 96.02 75.50 90.40 83.86

UNet-2022 320 86.46 11.34 91.96 69.40 89.26 85.58 96.34 75.66 94.22 89.29

The best results are bolded while the second best are underlined . Size denotes the input size

4.2 Implementation Details

All experiments are implemented on a single NVIDIA 2080ti GPU with 11 GB
memory. We utilize both cross-entropy loss and dice loss and add them up like the
Eq.4 where the λ1 and λ2 are 1.2 and 0.8 for all datasets.

L = λ1LDSC + λ2LCE. (4)

Inference details. During the inference stage, UNet-2022 makes predictions follow-
ing a slidingwindowmanner. OnSynapse,we set the step size of each slidingwindow
to 0.3×crop size and 0.2×crop size for 224 × 224 and 320 × 320 input sizes,
respectively. A smaller step size means that more overlapped patches participate in
the voting of the mask prediction, leading to better segmentation performance. On
the rest three datasets, the crop size is close to the full image size.
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Table 2 Comparisons on automatic cardiac diagnosis (ACDC)

Methods Ave. DSC ↑ RV Myo LV

ViT [17] + CUP
[7]

81.45 81.46 70.71 92.18

R50-VIT [17] +
CUP [7]

87.57 86.07 81.88 94.75

TransUNet [7] 89.71 88.86 84.54 95.73

SwinUNet [5] 90.00 88.55 85.62 95.83

LeViT-UNet-
384s
[13]

90.32 89.55 87.64 93.76

MISSFormer [8] 90.86 89.55 88.04 94.99

MT-UNet [27] 90.43 86.64 89.04 95.62

nnUNet [2] 92.32 90.39 90.53 96.05

UNet-2022 92.83 91.04 90.97 96.49

The evaluation metric is DSC (%). The best results are bolded while the second best are underlined.
The default input size is 224 × 224 for all approaches

Table 3 Comparisons on EM

Methods mIoU ↑
UNet [28] 88.30

Wide UNet [4] 88.37

UNet+ [4] 88.89

UNet++ [4] 89.33

nnUNet [2] 90.55

UNet-2022 91.05

The evaluation metric is the mean IoU (mIoU). The best result is bolded while the second best is
underlined

4.3 Comparisons on Abdominal Multi-organ Segmentation

Table1 presents the segmentation performance on 8 organs on Synapse. When the
input size is 224 × 224, we see that MISSFormer [8] achieves the highest average
DSC while LeViT-UNet-384s [13] produces the lowest average HD95 among all
baselines. In comparison, our UNet-2022 outperforms MISSFormer by about 3%
in the average DSC. Despite average HD95 of our method is slightly better than
that of LeViT-UNet-384s, our approach achieves a much higher average DSC, sur-
passing LeViT-UNet-384s by over 6%. Considering the trade-off between the run-
ning efficiency and task performance, we increase the input resolution to 320 × 320
and observe large performance gains over 224 × 224. Comparing UNet-2022 with
nnUNet [2], our method achieves impressive progress under both DSC and HD95
metrics. UNet-2022 outperforms nnUNet by 4% in the average DSC while dramati-
cally reducing HD95 to 11.34 mm (14 mm reduction).
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Fig. 3 Comparisons of nnUNet andUNet-2022 on neural structures segmentation (EM).Wepresent
the computed IoU results at thresholds ranging from 0.5 to 0.95 with a step size of 0.05

4.4 Comparisons on Automated Cardiac Diagnosis

In Table2, we compare the segmentation performance of different models on ACDC.
Wefix the input resolution to 224 × 224. Somewhat surprisingly,wefind that nnUNet
obviously outperforms MISSFormer by nearly 1.5% on average while providing
consistent performance gains on all three classes. Nonetheless, our UNet-2022 still
outperforms nnUNet by about 0.5% in average. Moreover, UNet-2022 achieves con-
sistent improvements on all three individual classes, demonstrating the potential of
UNet-2022 to replace nnUNet.

4.5 Comparisons on Neural Structures Segmentation

In this task, we follow [4] to calculate IoUs at thresholds ranging from0.5 to 0.95with
a step size of 0.05. In Table3, we present the segmentation performance of a range of
UNet-likemodels.We see that nnUNet is the best performingbaseline, outperforming
the second best UNet++ by over 1%. Thus, we thoroughly compare UNet-2022
against nnUNet at different thresholds of IoU in Fig. 3. The default threshold is
usually set as 0.5. As Fig. 3 displays, compared to nnUNet, UNet-2022 has obvious
advantages in large thresholds. This phenomenon indicates that UNet-2012 is more
advantageous in making high-confidence predictions.
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Table 4 Comparisons with 2D DCNN-based and hybrid segmentation models on skin lesion seg-
mentation

Methods DSC ↑ IoU ↑
SSLS [29] 78.3 68.1

MSCA [30] 81.5 72.3

FCN [31] 89.4 82.1

Bi et al. [32] 90.6 83.9

nnUNet [2] 91.6 85.1

Lee et al. [24] 91.8 84.3

BAT [25] 92.1 85.8

UNet-2022 93.6 88.4

The evaluation metric is DSC (%) and IoU(%). The best results are bolded while the second best
are underlined

4.6 Comparisons on Skin Lesion Segmentation

Table4 presents the comparisons of DCNN-based and hybrid models on skin lesion
segmentation. The best performing baseline is BAT [25], which is a customized
hybrid segmentation model that integrates the boundary-aware attention. BAT out-
performs nnUNet by 0.5 and 0.7% in DSC and IoU, respectively.

Comparing UNet-2022 with BAT, we see that UNet-2022 achieves dramatic
improvements in both DSC and IoU. For instance, UNet-2022 outperforms BAT
by 2.6% in IoU while BAT only surpasses nnUNet by 0.7%. Considering IoU is a
stricter metric than DSC, we believe the 2.6% improvement is sufficient enough to
demonstrate the strengths of UNet-2022 over BAT and nnUNet.

4.7 Ablation Studies of Modules and Strategies

Impact of the PI block. Table5 presents the comparisons of different building
blocks, including blocks used in Swin Transformer [18], ConvNeXt [33], and our
UNet-2022. We see that the CNX block performs slightly better than the ST block in
average.Nonetheless, our PI block obviously surpasses theCNXblock by 1.5% in the
average DSC while largely improving HD95 by approximate 5 mm. The underlying
reason is that the latter two blocks only use isomorphic operations. This characteristic
makes them lack the ability to capture dynamics across different dimensions.

Influences of dynamics across the space and channels. In Table6, we remove the
self-attention layer from the PI block. As a result, the resulting building blocks fail to
explore dynamics across different spatial positions, as they only contain convolution
operations. This failure can be verified by the observable task performance drop in
the second row of Table6.
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Table 5 Ablations on building blocks

Methods Average

DSC ↑ HD95 ↓
ST [18] 84.42 20.74

CNX [33] 84.96 16.60

Our PI 86.46 11.34

Table 6 Influence of the self-attention (SA)

Methods Average

DSC ↑ HD95 ↓
UNet-2022 86.46 11.34

• SA 85.20 14.96

Table 7 Influence of the pre-training

Methods Average

DSC ↑ HD95 ↓
UNet-2022 86.46 11.34

• Pre-training 84.87 15.04

ConvNeXt 84.96 16.60

• Pre-training 84.32 18.02

Table 8 Impact of the inference step size

Step size Average

DSC ↑ HD95 ↓
0.5×crop size 86.27 13.95

0.2×crop size 86.46 11.34

Impact of ImageNet-based pre-training. We use ImageNet-based pre-training to
boost the segmentation performance. We replace the default encoder in UNet-2022
with the recently proposed ConvNeXt [33], and compare the modified ConvNeXt-
based UNet-2022 with our proposed version on Synapse. As shown in Table7, we
see that ImageNet-based pre-training plays a vital role in both UNets, providing
observable performance gains over training from scratch.

Impact of the inference step size. As aforementioned, we adjust the inference step
size when sampling sliding windows on Synapse. Here, we present the impact of
the step size in Table8. When we set the step size to 0.2×crop size, we find that it
performs better than 0.5×crop size, bringing about 2.6 mm improvement in HD95.
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5 Conclusion

We build a non-isomorphic block by parallelizing self-attention and convolution
operations. The resulting UNet-2022 achieves quite competitive performance in a
range of medical image segmentation tasks. In the future, we will investigate how
to appropriately incorporate self-supervised learning [34, 35] into UNet-2022 as we
found pre-training plays a vital role in medical image segmentation.
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Hybrid-Fusion Transformer
for Multisequence MRI

Jihoon Cho and Jinah Park

Abstract Medical segmentation has grown exponentially through the advent of a
fully convolutional network (FCN), andwe have now reached a turning point through
the success of Transformer. However, the different characteristics of the modality
have not been fully integrated into Transformer for medical segmentation. In this
work, we propose the novel hybrid fusion Transformer (HFTrans) for multisequence
MRI image segmentation. We take advantage of the differences among multimodal
MRI sequences and utilize the Transformer layers to integrate the features extracted
from each modality as well as the features of the early fused modalities. We validate
the effectiveness of our hybrid-fusion method in three-dimensional (3D) medical
segmentation. Experiments on two public datasets, BraTS2020 and MRBrainS18,
show that the proposed method outperforms previous state-of-the-art methods on the
task of brain tumor segmentation and brain structure segmentation.

Keywords Transformer · Multi-modality · 3D Medical image segmentation

1 Introduction

Magnetic resonance imaging (MRI) is widely used in the detection, diagnosis, and
treatment planning of diseases in the human body, including the brain, spinal cord,
prostate, and knee. Depending on the target organ and purpose, there are several
types of MRI protocols consisting of many sequences [18]. Each MRI sequence has
shown various characteristics, especially the signal of different tissues such as fluid,
muscle, and fat. In addition, some sequences represent functional information beyond
the anatomical structure [21]. Considering that a valuable feature varies by sequence
type, a combination of sequences gives better results than unimodal processing in
the presence of diseases [17] and lesion segmentation [4].

In recent years, Convolutional Neural Networks (CNN) have been successful in
various computer vision tasks. U-Net [16] adopts the concept of a FCN [14] with a
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Fig. 1 Three types of fusion methods. a early fusion b middle fusion c our hybrid fusion

relatively shallow structure and balancing feature representation and locality through
the skip connection. Following the modifications suitable for 3D medical image
segmentation, U-net has become the de facto standard even for multimodal MRI
volumeswith the early fusion of simplemultichannel input [9, 10] as shown inFig. 1a.
More recently, Vision Transformer (ViT) [3], inspired by the tremendous success of
Transformer [19], become a new solution to the limited receptive field of CNN with
the global self-attention mechanism. For 3D medical segmentation, UNETR [6] and
Swin-UNETR [5] have proposed Transformer networks with CNN layers on the
decoder, and TransBTS [20] have constructed with CNN encoder and decoder with
the bottom Transformer layer. However, all of these Transformer networks have the
disadvantage of treating multiple MRIs as a multichannel input.

Similar to multisequenceMRI, RGB-D images consist of multiple modalities that
have the same spatial information: color image and depth image. However, consid-
ering the sharable and specific features between color and depth images [7], partic-
ular encoding (as shown in Fig. 1b is used for each modality in many tasks including
semantic segmentation [11]. This approach has been used even for recent work of
Transformer-based methods [12, 13]. From the effort to consider the multimodalities
of RGB-D images, we find that the adoption of the middle fusion approach for MRI
sequences can benefit from different modality characteristics.

In this work, inspired by the processing of multimodal RGB-D images and the
long-range visual dependence fromViT, we propose the Hybrid-Fusion Transformer
(HFTrans) for multisequence MRI images. The proposed HFTrans is constructed
with the hybrid fusion approach to take advantage of both early fusion and middle
fusion, as shown in Fig. 1c, and consists of multiple CNN encoders and the Trans-
former encoder. Each encoder extracts a local context feature representation for each
modality, including the early fused modalities, and they are integrated in the Trans-
former encoder. The feature embedding from the Transformer encoder is progres-
sively up-sampled with the spatial information from encoders via skip-connection,
and finally predicts segmentation maps of the original resolution. In experiments
on the Brain Tumor Segmentation 2020 dataset (BraTS2020) [2] and the MR Brain
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Fig. 2 Overview ofHFTrans network for BraTS2020 dataset. Hybrid fusion of fourMRI sequences
is performed in the CNNEncoders and the Transformer Encoder. The encoded representation output
from the Transformer encoder is progressively upsampled with skip connection to predict the final
segmentation maps

Segmentation 2018 dataset (MRBrainS18),1 we validate the effectiveness of our
method in multisequence MRI segmentation. HFTrans achieves remarkable perfor-
mance on both public challenge datasets. We also conduct further experiments on
encoder compositions, which show that our hybrid fusionmethodworkswell without
human heuristics by using simple encoders for each multisequence MRI image.

2 Method

An overview of HFTrans is presented in Fig. 2. Although we accept the early fusion
encoding, the hybrid fusion method is applied by constructing additional encoders
for each modality.

2.1 Hybrid Fusion from CNN Encoders

Considering the high computational cost of Transformer for high-resolution 3D
images and the inductive bias of the convolutional layer, we propose to construct
the convolutional layers to make a rich local context feature representation. To
bring benefits from different modality characteristics, each modality is processed
in individual encoders. Features are embedded into 1D sequences and then perform

1 https://mrbrains18.isi.uu.nl/

https://mrbrains18.isi.uu.nl/
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self-attention between feature embedding in the Transformer layer. In addition, the
encoding of early fused modalities is also utilized, taking into account the ability
to extract an apparent powerful representation. Hybrid fusion between powerful
representation from the entire encoding and modality-specific representation from
separate encoding can exploit the advantages of both methods.

For the 3D MRI input consisting of N MRI sequences xi(i = 1, 2, . . . , N ) ∈
R1×W×H×D with resolution (W, H, D), we use N + 1 feature representations for
hybrid fusion. N features are extracted individually from each MRI sequence, and
the representation of early fusion is encoded by all N sequences x ∈ RN×W×H×D .
The encoders have the same structure consisting of stacking the convolutional layers
3× 3× 3 and stride-convolutional layers consecutively. Then, the high-level feature
representations f j (i = 1, 2, . . . , N + 1) ∈ RK× w

8 × H
8 × D

8 are projected linearly, but
the computational complexity of the Transformer layer is increased quadratic based
on the number of 1D sequences. Therefore, we apply the 2 × 2 × 2 patch embed-
ding projection to the features extracted from CNN. Subsequently, we get the input
embedding z0 ∈ RC×M(=N× w

16× H
16× D

16 ) with the channel dimension C. To preserve
location information of flattened sequences, we add a learnable positional embedding
Epos ∈ RC×M as

z0 = W × f + Epos (1)

where W is the 1D projector with 2 × 2 × 2 patch. After the feature embedding,
we conduct self-attention using a standard Transformer encoder consisting of L
Transformer layers. The l-th Transformer layer is operated as follows,

z∗
l = MSA(LN (zl−1)) + zl−1 (2)

zl = MLP
(
LN

(
z∗
l

)) + z∗
l (3)

whereMSA denotes multihead self-attention, MLP is multilayer perceptron, and LN
refers to layer normalization.

2.2 CNN Decoder and Loss Function

The output sequences of the Transformer encoder are reshaped in the 4D featuremaps
to generate voxel-wise semantic segmentation results. The reshaped feature maps
d j ∈ RC× w

16× H
16× D

16 are concatenated channel-wise and upsampled by a factor of 2 to
shape the original feature size of fj before linear projection.After featuremapping, the
feature representation d ∈ RK× w

8 × H
8 × D

8 is progressively fed into the deconvolution of
stride 2 and the convolutional layers 3 × 3 × 3. During deconvolution, we aggregate
the encoding features of multiple CNN encoders via a skip connection. This process
is repeated up to the feature representation reaching the original input resolution,
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and the final semantic segmentation is generated through the convolutional layer 1
× 1× 1 with a softmax activation function. We use both Dice loss and cross-entropy
loss together as an objective function.

3 Experiments

3.1 Datasets

We use two publicly available 3D medical segmentation datasets consisting of
multimodal MRI images: BraTS2020 and MRBrainS18.

BraTS2020: BraTS2020 [2] is a patient’s brain MRI dataset labeled with three
tumor sub-regions, peritumoral edematous tissue, enhancing tumor, and necrotic
tumor core. The dataset contains 369 training sets acquired from several institutions
with various protocols and scanners. Each MRI scan consists of four sequences: T1-
weighted (T1), T2-weighted (T2), post-contrast T1-weighted (T1ce), and T2 fluid-
attenuated inversion recovery (FLAIR). They were provided after preprocessing of
the co-registration and skull stripping, and we additionally perform z-score normal-
ization to brain regions except the masked background area with zero intensity. All
MRI sequences have the same voxel size of 240 × 240 × 155 with 1 mm isotropic
voxel spacing.

MRBrainS18: For thewhole brain segmentation, we use theMRBrainS18 dataset
that includes both brain structure and pathological abnormalities. The dataset consists
of 30 subjects acquired on a 3 T scanner from various patients, including dementia,
diabetes, and Alzheimer’s. Multimodal MRI scans consist of aligned sequences of
T1, T1 inversion recovery sequence (T1-IR), and FLAIR. All scans have a 0.958 mm
× 0.958 mm × 3 mm voxel spacing with 240 × 240 × 48 voxel size. We perform a
sevenfold cross-validation for 7 training set and use 8 labels in the evaluation, which
are gray matter, basal ganglia, white matter, white matter lesion, CSF, ventricles,
cerebellum, and brain stem.

3.2 Quantitative Results

Weperform experiments on BraTS2020 andMRBrainS18 datasets by comparing our
HFTrans with five previous state-of-the-art: (1) U-Net [16]; (2) ResUNet [22]; (3)
AttnUNet [15]; (4) nnU-Net [8]; (5) TransBTS [20], which is the Transformer-based
network with an early fusion approach. We perform a five-fold cross-validation on
the BraTS2020 dataset for all methods. As shown in Table 1, HFTrans achieves Dice
scores of 82.81%, 84.66%, 90.82% and HD95 of 26.42 mm, 6.98 mm, 2.57 mm on
ET, TC, WT, which are higher results than the other methods except HD95 of TC.
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Table 1 Cross-validation results on the BraTS2020 dataset. ET, TC, and WT denote enhancing
tumor, tumor core, and whole tumor

Models Dice score (%) ↑ HD95 (mm) ↓
ET TC WT Avg ET TC WT Avg

U-Net [16] 80.79 80.40 88.67 83.29 32.20 17.13 4.15 17.83

ResUNet [22] 80.31 78.45 88.79 82.52 29.05 16.11 4.70 16.62

AttnUNet [15] 80.73 79.30 88.54 82.86 31.24 23.86 11.30 22.13

nnU-Net [8] 82.28 84.18 90.56 85.67 32.20 5.03 2.68 13.30

TransBTS [20] 81.39 80.70 90.16 84.08 30.59 15.17 7.68 17.81

HFTrans 82.81 84.66 90.82 86.10 26.42 6.98 2.57 11.99

HFTrans* 82.52 84.59 90.40 85.84 29.79 5.61 3.98 13.13

Compared to U-Net [16], ResUNet [22], AttnUNet [15], TransBTS [20], and nnU-
Net [8], our proposedmethod outperforms them by 2.81%, 3.58%, 3.24%, 2.02% and
0.53% in terms of average Dice score and 5.84 mm, 4.63 mm, 10.14 mm, 5.82 mm,
and 1.31 mm in terms of average HD95, respectively. HFTrans*, the hybrid fusion
variant model that consists of modality exception encoders instead of each modality
encoder (described in Table 3), also outperforms the previous methods.

The results evaluated on MRBrainS18 are reported in Table 2. HFTrans achieves
Dice score 84.81%, HD95 3.25 mm, and volume similarity 94.12%, which outper-
forms the result of nnU-Net [8] and TransBTS [20] by 2.16% and 1.44% in terms
of Dice score, 3.29 mm and 2.01 mm in terms of HD95, and 1.49% and 1.08% in
terms of volume similarity. It is also comparable to U-Net [16], ResUNet [22], and
AttnUNet [15]. Comparing the model complexity, U-Net, ResUNet, AttnUNet, and
ourHFTrans have 90.30M, 37.72M, and 25.78M, 65.17Mparameters and 266.91G,
498.53G, 329.54G, and 140.39G FLOPs, respectively. Despite the relatively small
model complexity, HFTrans shows significantly better performance, especially in
brain stem segmentation, by bridging high-level global context information with
low-level local details.

3.3 Qualitative Results

Qualitative comparisons on brain tumor segmentation are presented in Fig. 3. Our
hybrid fusion method HFTrans shows fine-grained segmentation of brain tumors,
while the pure CNN-based method nnU-Net tends to over-segment and the CNN-
Transformer method TransBTS tends to under-segment, which are evident in rows
1 and 3. This indicates that hybrid fusion captures both powerful spatial context
and long-range dependency. In Fig. 4, we present qualitative segmentation compar-
isons for brain structure segmentation in the MRBrainS18 dataset. HFTrans exhibits
detailed segmentation of the whole brain structure. In particular, our method shows
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Table 2 Cross-validation results on the MRBrainS18 dataset

Models Dice score (%) ↑
GM BG WM WML CSF Vent Cereb BS Avg

U-Net [16] 84.79 83.89 86.24 64.86 82.82 93.60 92.62 88.59 84.67

ResUNet [22] 84.23 83.51 86.06 64.27 82.29 93.29 92.17 88.88 84.34

AttnUNet [15] 84.68 83.17 86.51 63.44 82.54 93.69 92.46 89.50 84.50

nnU-Net [8] 82.60 80.99 85.49 60.59 79.87 92.59 91.00 88.09 82.65

TransBTS [20] 83.07 83.71 85.78 60.59 80.43 92.57 92.35 88.47 83.37

HFTrans 84.71 83.74 86.99 64.03 82.35 93.50 92.32 90.85 84.81

HFTrans* 84.33 84.17 86.80 63.80 82.46 93.59 91.40 90.60 84.64

Models HD95 (mm) ↓
GM BG WM WML CSF Vent Cereb BS Avg

U-Net [16] 0.96 3.07 1.15 10.83 1.98 1.36 1.36 3.85 3.30

ResUNet [22] 1.01 3.10 1.51 10.76 2.04 1.53 1.53 3.95 3.37

AttnUNet [15] 0.96 3.11 1.48 10.95 1.98 1.48 1.48 3.46 3.31

nnU-Net [8] 1.52 3.86 1.96 12.38 2.44 1.78 1.78 25.26 6.54

TransBTS [20] 1.18 3.02 1.84 12.60 2.41 2.12 2.12 16.02 5.26

HFTrans 1.15 2.85 1.48 10.36 2.08 2.41 2.79 2.90 3.25

HFTrans* 1.07 3.05 1.47 11.15 1.98 1.36 3.23 3.21 3.32

Models Volume similarity (%) ↑
GM BG WM WML CSF Vent Cereb BS Avg

U-Net [16] 95.16 94.91 94.42 82.96 94.95 96.91 96.24 93.63 93.49

ResUNet [22] 95.20 94.06 94.43 80.61 93.53 94.44 95.91 95.04 93.28

AttnUNet [15] 95.48 93.68 95.29 79.39 95.09 96.63 95.96 94.27 93.30

nnU-Net [8] 95.37 93.47 96.12 76.55 94.38 97.46 95.19 93.01 92.63

TransBTS [20] 95.73 94.81 96.02 73.17 95.03 97.53 97.49 94.67 93.04

HFTrans 95.74 94.16 96.04 80.59 94.97 96.92 96.63 96.03 94.12

HFTrans* 95.17 95.49 95.61 78.30 94.53 97.14 95.38 96.13 93.55

Note GM: gray matter, BG: basal ganglia, WM: white matter, WML: white matter lesions, CSF:
cerebrospinal fluid, Vent: ventricles, Cereb: cerebellum, BS: brain stem

superior performance with a detailed boundary in brain stem segmentation, and the
effectiveness of the hybrid fusion method is demonstrated.

4 Discussion

We evaluate the effectiveness of our encoder composition by comparing the early
fusion approach, which takes all modality as input, the middle fusion approach of



484 J. Cho and J. Park

Table 3 Results for different variants of encoder composition

Encoder composition Dice (%) HD95 (mm)

T1/T2/T1ce/FLAIR (Middle Fusion) 82.40 28.01

All (Early fusion) 83.06 25.56

All/T1ce 82.62 27.35

All/FLAIR 83.02 24.09

All/T1ce/FLAIR 83.17 25.62

All/T1 + T1ce/FLAIR 82.58 27.29

All/T1/T2/T1ce/FLAIR (HFTrans) 83.52 24.07

All/T1*/T2*/T1ce*/FLAIR* (HFTrans*) 83.28 22.63

T1* denotes the three-channel input of T2, T1ce, and FLAIR except for T1. T2*, T1ce*, and
FLAIR* have the same approach as T1*
We compare the early fusion method, the middle fusion method, and our hybrid fusion methods
including the additional human heuristics

Fig. 3 Qualitative comparison of brain tumor segmentation on the BraTS2020 dataset. The
enhancing tumor (ET) is depicted in the yellow region, and the tumor core (TC) is represented
as a union of red and yellow regions. The whole tumor (WT) contains a colored region of green,
red, and yellow

individual feature extraction frommodalities, and considering the humanheuristics of
the annotation protocol [1], that the appearance of a brain tumor is typically depicted
as a hyperintense signal in T1ce and FLAIR. As shown in Table 3, the middle fusion
approach shows the worst results of Dice score 82.40% and HD95 28.01 mm, failing
to get the benefit of each modality. The early fusion approach shows the better results
of 83.06%and 25.56mm in terms ofDice score andHD95. Several results of different
human heuristic approaches improve HD95 of 3.92 mm when using the early fusion
encoder and additional FLARE encoder, and improve Dice score of 0.77% when
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Fig. 4 Qualitative comparison of brain structure segmentation on the MRBrainS18 dataset. The
brain stem region (gray) is zoomed-in

using the early fusion encoder, FLARE and T1ce encoders. However, they do not
produce an improvement for both theDice score andHD95at the same time compared
to the early fusion approach. The encoder compositions of our proposed method
HFTrans, taking advantage of early fusion and middle fusion, improve performance
by 1.12% and 3.94 mm on Dice Score and HD95 without human heuristics. In
addition, the variant of our method, HFTrans*, also shows improvements in both
metrics, especially with a remarkable HD95 result of 22.63 mm.

5 Conclusion

This paper introduces a novel Transformer-based segmentation framework for multi-
sequence MRI. The proposed hybrid fusion method inherits the advantages of the
early fusion approach with the powerful locality of 3D CNN and the middle fusion
approach with the global consistency of Transformer. Experiments on different volu-
metric segmentation datasets, BraTS2020 and MRBrainS18, validate the effective-
ness of our method. The proposed method could serve as the basis for a Transformer-
based segmentation network for multimodal medical images. As a future work,
we plan to explore the Transformer-based fusion method with a focus on the
computational efficiency.
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STResNet: Covid-19 Detection by ResNet
Transfer Learning and Stochastic Pooling

Wei Wang, Shui-Hua Wang, and Yu-Dong Zhang

Abstract Since 2019, COVID-19 has been spreading globally with a very rapid
rate of transmission, resulting in a large number of confirmed diagnoses and deaths.
The main interdiction measure currently in use for COVID-19 is the isolation of the
confirmed population. For this reason, an effective and rapid diagnostic approach
is particularly important. In this paper, we propose a deep learning framework
(STResNet) for diagnosing COVID-19 from chest CT image slices. The proposed
framework uses a modified residual network with 50 network layers as a backbone
to extract features from chest CT slices and a support vector machine to classify
the extracted features. Experiments show that the proposed framework has excel-
lent performance. In the experiment based on a chest CT slices dataset, STResNet
achieved accuracy of 93.81% ± 1.02%, MCC of 87.64% ± 2.02%, FMI of 93.83%
± 0.99%, sensitivity of 94.03% ± 1.07%, precision of 93.64% ± 1.54%, F1-score
of 93.83% ± 0.99%, and specificity of 93.59% ± 1.67%. These demonstrate the
excellent performance of the proposed framework with well balance and stability.

Keywords ResNet-50 · Stochastic pooling · Support vector machine

1 Introduction

Since December 2019, a disease caused by Severe Acute Respiratory Syndrome
Coronavirus 2 (SARS-CoV-2) infection (COVID-19) has been spreading rapidly
around the world [1]. The main symptoms of COVID-19 are fever, cough, loss of
taste, lung infection and, in severe cases, death [2]. As of October 2022, the disease
has killed more than six million people. The main reasons for this are the highly
infectious and unstoppable nature of COVID-19 and its rapid mutation. Currently,
the main measure of COVID-19 interruption in various countries and regions is the
isolation of confirmed patients. However, a proportion of COVID-19 patients are
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asymptomatic, which makes targeted diagnosis difficult. Broad coverage diagnosis
is also difficult to implement due to the limitations of current diagnostic methods
[3].

Currently, the main diagnostic modalities for COVID-19 are Reverse Transcrip-
tion Polymerase Chain Reaction (RT-PCR) and expert diagnosis based on chest CT
images. Among them, RT-PCR is widely used for community diagnosis due to its
fast diagnostic speed and low cost. However, RT-PCR has a high false negative rate
and tends to miss infected patients. On the other hand, expert diagnosis based on
chest CT images is mainly manual, subjective and difficult to implement on a large
scale due to the lack of medical experts. In this context, it is important to explore
new diagnostic methods.

With the rapid development of computer technology and the availability of
computing resources, computer-aided diagnosis system (CAD) is widely used in
the diagnosis of many diseases due to their fast and accurate diagnosis [4]. Conse-
quently, medical image-based diagnostic tasks are one of the most active areas of
CAD. Therefore, a variety of studies on the COVID-19 CAD system have been
proposed by many researchers.

Khan [5] constructed a COVID-19 CAD system based on a multiplexed data
enhancement approach to preprocess a CT image slice dataset with a pseudo-Zernike
moment derived from the Zernikemoment as the feature extracted from theCT image
slice and a deep stacked sparse autoencoder as the classifier. Wang [6] proposed
a wavelet entropy-based COVID-19 CAD system. The system extracted wavelet
entropy from multiple wavelet decomposition results of chest CT images as the
extracted features and used the Cat Swarm Optimisation algorithm to train a feedfor-
ward neural network to classify the extracted features. Their approach is novel and has
potential. Tang, Wang [7] used ensemble learning to integrate multiple deep neural
networks to perform chest CT slice-based diagnosis of COVID-19. The proposed
model achieved over 90% accuracy in performance. Gafoor, Sampathila [8] used
a convolutional neural network with four convolutional layers to perform a binary
classification task on chest CT slices to diagnose COVID-19, achieving up to 94%
accuracy. Han, Hu [9] used stationary wavelet entropy as the extracted features
and extreme learning machine as the classifier to diagnose chest CT slices. Jiang,
Brown [10] used amultiple-distance grey-level cooccurrence matrix to extract image
features, a feedforward neural network as a classifier, and a genetic algorithm as a
training algorithm to construct a COVID-19 CAD system based on chest CT slices.

In this paper, we proposed a deep learning framework (STResNet) for diagnosing
COVID-19 from chest CT image slices. STResNet consists of twomain components,
a modified 50-layer residual network as the backbone to extract features from check
CT slices and a support vector machine as the head to classify the extracted features.
In the rest of the paper, Sect. 2 describes the dataset we used for the experiment;
Sect. 3 introduces the components of STResNet; Sect. 4 shows and discusses the
performance of STResNet in the proposed experiments.
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Table 1 Statistic of the
dataset used for the
experiment

Class Num of
subjects

Num of images Subjects’ age
range

COVID-19 142 320 22–91

HC 142 320 22–76

2 Dataset

The experimental of this paper uses a dataset of chest CT slices proposed by Wang,
Govindaraj [11]. The dataset contained a total of 640 samples from 282 subjects.
The data samples were divided into two classes, the COVID-19 class and the Health
Control class (HC). The COVID-19 category contains 320 chest CT slices from 142
COVID-19 patients aged 22–91 years. The HC category contains 320 chest CT slices
from 142 healthy subjects aged 21–76. Detailed statistics of the data set are shown
in Table 1.

3 Methodology

This paper proposes a novel deep learning-based framework for diagnosing COVID-
19 from chest CT image slices. This framework replaces all pooling layers in a
Residual Network (ResNet-50) with a stochastic pooling layer, which is used as
a backbone to extract features from chest CT slices and a support vector machine
(SVM)as a head to classify the extracted features. The overall structure of the network
is shown in Fig. 1.

3.1 ResNet-50

Convolutional neural networks are widely used in image-processing tasks due to
their translation invariance and weight-sharing properties. Theoretically, deeper
neural networks can perform better in more complex tasks with more parameters
and complex network structures. However, in practice, as the depth of the network
increases, the performance of neural networks tends to saturate or even decline. The
Residual Network (ResNet) alleviates this problem by adding residual learning and
a fast gradient channel to the network [12].
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Fig. 1 Overall structure of the proposed framework

ResNet mainly consists of many convolutional blocks, and each block contains
several convolutional layers with the rectified linear unit (ReLU) in between. As the
name suggests, ResNet is based on residual learning, which solves the problem of
degradation of network performance as the network depth increases by having the
network learn the residual between the original input and the features learned by the
network layer. Therefore, the units of a ResNet are known as residual learning units.
The residual learning unit is shown in Fig. 2.

Other than the residual learning units, ResNet contains a 7×7 convolutional layer
and a 3 × 3 max pooling layer as preprocessing of the input data. In addition, an
average pooling layer and a fully connected layer are added to the end of the network
to downscale and classify the extracted features.

Fig. 2 Illustration of
residual learning unit where
x is the input of the unit, and
F(x) is the features learned
by the unit. The output of a
residual unit is the output of a
ReLU with the combination
of x and F(x) as input
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Another possible reason for the saturation of performance in high-depth neural
networks is the disappearance of gradients or gradient explosion due to the increased
number of layers in the network. As shown in Fig. 1, the fast channel the residual
learning units use to transfer their original input allows a direct connection between
the different residual learning units in the network. It allows the gradient to be passed
directly to each residual learning unit so that the gradient is not degraded by toomany
layers of the network as the depth of the network increases, leading to degradation
or over-enhancement leading to gradient explosion.

3.2 Stochastic Pooling

The pooling layer is an important component of a convolutional neural network
that reduces the features’ dimensionality while preserving the features’ structural
information, thus reducing the complexity of the CNN and reducing the time and
space cost of the network training. The pooling process is similar to that of the
convolutional layer in that the pooling process is performed by sliding a preset size
window over the grid data in an orderly manner from left to right and from top to
bottom, and pooling is performed during each sliding process. Therefore, pooling
layers can be translation invariant, rotation invariant and scale invariant. Different
types of pooling layers usually have different pooling operations. The most common
pooling layers are the average pooling layer and the maximum pooling layer.

In the average pooling layer, the pooling operation takes the average of the eigen-
values in the area covered by the window during the sliding process, while in the
maximum pooling layer, the pooling operation takes the maximum of the eigen-
values in the area covered by the window during the sliding process. Figure 3 shows
an example of maximum pooling and average pooling.

Fig. 3 Illustration of max
pooling and mean pooling
examples with the same
input
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Fig. 4 Illustration of a stochastic pooling operation example

However, in averagepooling, it is susceptible to extremeeigenvalues as the average
pooling operation considers all eigenvalues. For example, more eigenvalues close to
zero will reduce the weight of strong activation. Maximum pooling, which selects
only the largest eigenvalues, is a good solution to the above problem of average
pooling. However, considering only the largest eigenvalues makes it easy to ignore
other valuable eigenvalues, which can lead to overfitting the network. Therefore, the
generalization of maximal pooling is generally poor.

The stochastic pool layer [13] is a new type of pooling layer, which solves the
problems of traditional pooling by adding randomness to the pooling process to
enhance model generalization. The pooling process of the Stochastic pool layer is
divided into two steps: (1) calculating the probability of each feature based on the
size of the feature in the window and (2) selecting the feature in a weighted random
way based on the probability of each feature. Assume that the coverage area R j of
the pooling window at the jth slide consists of k eigenvalues (x1, x2, . . . , xk). The
computation of the probability of the ith eigenvalue is shown in Eq. (1).

pi = xi
∑

k∈R j
xk

. (1)

In each sliding process, stochastic pooling selects an eigenvalue based on the
probabilities P of the covered region as the output of the current sliding process, as
shown in Eq. (2).

A j = xl , l ∼ P
(
p1, . . . , p|R j |

)
, (2)

where l is the location of the selected feature value. Figure 4 shows an example of
stochastic pooling.

3.3 Support Vector Machine

The Support Vector Machine (SVM) is a high-performance classification model
widely used for various classification tasks [14]. In contrast to most other classi-
fication models, SVMs are characterized by the fact that they are not limited to
successfully classifying samples but find the hyperplane that can split the samples
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of different classes with the maximum interval between each class of samples. Since
SVMs include a kernel technique, they are non-linear. Suppose a linearly divis-
ible data set T = {(x1, y1), (x2, y2), . . . , (xN , yN )} with N samples. The geometric
interval between the hyperplane w · x + b = 0 and the i-th sample (xi , yi ) can be
calculated by Eq. (3).

γi (w, b) = yi

(
w

‖w‖ · xi + b

‖w‖
)

. (3)

In this case, the distance γ between the hyperplane and the nearest sample is given
by Eq. (4).

γ (w, b) = min
i=1,2,...,N

γi (w, b). (4)

According to the learning strategy ofmaximizing the interval of an SVM, the solu-
tion of an SVM can be expressed as a constrained optimization problem represented
by Eq. (5).

max
w,b

γ (w, b). (5)

4 Experiment Results and Discussion

4.1 Experiment Results of STResNet

A tenfold cross-validation was introduced in the experimental section to ensure that
the data were fully utilized. Specifically, the dataset was randomly divided into 10
data sets with the same amount of data without any return. Since the total data
volume could not be divided into ten parts, the tenth data set had slightly less data
than the other nine data sets. The experiment consisted of ten runs, with one data
set selected as the test set for each run to evaluate the model performance and the
other nine data sets as the training set to train the model. The final performance of
the model was determined by calculating the mean and standard deviation of the
performance obtained over the ten runs. Seven performance metrics were used to
evaluate the performance of the model, namely Sensitivity (Sen), Specificity (Spc),
Precision (Pre), Accuracy (Acc), F1-score (F1), Matthews Correlation Coefficient
(MCC) and the Fowlkes-Mallows Index (FMI). Table 2 shows the experimental
results of STResNet in 10 runs and the mean & standard deviation (MSD) of the 10
runs results.

STResNet has a very good and stable overall performance in the COVID-19
diagnostic task based on chest CT slices, achieving an accuracy of 93.81%± 1.02%,
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Fig. 5 Examples of data augmentation output

MCC of 87.64% ± 2.02%, and FMI of 93.83% ± 0.99%. The sensitivity of 94.03%
± 1.07%, precision of 93.64% ± 1.54%, and F1-score of 93.83% ± 0.99% obtained
by the model show that STResNet has an excellent diagnostic capability for positive
samples, i.e., it can accurately diagnose COVID-19 patients from chest CT slices.
The model obtained a specificity of 93.59% ± 1.67%, showing that the model can
accurately identify healthy subjects from chest CT slices. Overall, the performance of
STResNet in the chest CT slice-based COVID-19 diagnosis task was well balanced,
with the excellent diagnostic ability for bothCOVID-19 patients and healthy subjects.

4.2 Data Augmentation Results

In order to improve the generalizability of themodel and reduce the negative impact of
the small collective size of the data, six data augmentation techniqueswere introduced
in this paper, namely shift, rotation, scale, gamma correction, adding Gaussian noise
and adding The output of each augmentation is shown in Fig. 5.

4.3 Stochastic Pooling Against Max Pooling and Average
Pooling

To verify the contribution of stochastic pooling to STResNet performance. We
conducted an ablation experiment based on the same dataset, which uses SVM as
the head, and the original ResNet-50 and STResNet as the backbone, respectively.
The original ResNet-50 contains a max pooling layer at the beginning of the network
during the input data preprocessing phase and an average pooling layer before the
fully connected layer at the end of the network. In STResNet, both pooling layers are
replaced with stochastic pooling layers. Table 3 and Fig. 6 show the model’s perfor-
mance with the original ResNet-50 as the backbone and SVM as the head. Compared
with Table 2, it can be seen that STResNet performs better than the model with the
original ResNet-50 as the backbone with SVM as the head among all performance
metrics.
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Fig. 6 Performance comparison between STResNet and RestNet-50 with SVM

4.4 Comparison to State-to-the-Art Approaches

Table 4 shows the performance of STResNet compared to other state-of-the-art
(SOTA) CAD systems based on chest CT images. STResNet improves in all perfor-
mance metrics, confirming the relevance of the proposed approach for COVID-19
diagnosis based on chest CT slices.
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5 Conclusion

This paper proposes a deep learning framework as a COVID-19 CAD system
(STResNet) using a residual learning network with 50 network layers containing
stochastic pooling as the backbone and an SVM classifier as the head. The proposed
approach has experimentally demonstrated excellent performance in diagnostic tasks
based on chest CT slices. STResNet is theoretically applicable to other medical
image classification tasks. However, this requires further experimental validation. In
the future, we will further experiment with algorithms that can automatically filter
different backbones to build a CAD system that can be used for the diagnosis of
multiple diseases.
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Convolutional Neural Networks
for Newborn Pain Assessment Using Face
Images: A Quantitative and Qualitative
Comparison

Gabriel A. S. Coutrin , Lucas P. Carlini , Leonardo A. Ferreira ,
Tatiany M. Heiderich , Rita C. X. Balda , Marina C. M. Barros ,
Ruth Guinsburg , and Carlos E. Thomaz

Abstract Pain experience, when intense or repetitive, may harm the development
of newborns. Several clinical and non-clinical studies have been carried out to iden-
tify the presence of pain through behavioural analysis, mainly by facial mimicry.
Advances in deep learning might show automatic, continuous and non-invasive solu-
tions for neonatal pain assessment as well. In this context, this work investigates the
following five state-of-the-art Convolutional Neural Networks (CNNs) for the classi-
fication of pain using two distinct face image datasets (UNIFESP and iCOPE): VGG-
16, ResNet50, SENet50, and Inception-V3, all implemented with transfer learning,
and the specific one calledNeonatal CNN,whichwas trained end-to-end. Our experi-
mental results, based on quantitative and qualitative analyses, indicate the superiority
of models originally trained with face images, highlighting most relevant differences
owing to the explainable information extracted by each model and the current issue
of limited neonatal face images available.

Keywords Neonatal pain · Facial expression · Deep learning

1 Introduction

The International Association for the Study of Pain describes pain as an “unpleasant
sensory and emotional experience associated with, or resembling that associated
with, actual or potential tissue damage” [1]. The subject that experiences pain tends
to perform an act of escape and withdrawal from the source of this phenomenon
[2]. If not avoided, the constant presence of pain increases the suffering of a certain
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individual and also results in the reduction of their life span [3]. Consequently, the
assessment and correct treatment are mandatory for the healthy development of
human beings.

Specifically about neonatal pain, due to the inability of newborn babies to indicate
pain by verbal communication, it was believed in the past that the central nervous
system of neonates was not fully developed, and, as a consequence, painful proce-
dures were carried out with insufficient (or none) analgesics for the relief of pain [4].
Fortunately, since 1980s, several studies have shown that, during gestation, the devel-
oping nociceptive system is able to process painful stimulus [4–6]. Moreover, it was
reported that the pain experienced by critically ill neonates is associatedwith changes
in their cardiovascular, respiratory and metabolic stability, which increseas mortality
in neonatal intensive care units [7]. Therefore, these studies demonstrate that reliable
and precise pain assessment tools are mandatory for their healthy development and
well-being.

Since then, several clinical scales have been developed. Recently, Tamanaka et
al. [8] carried out a systematic literature review that identified 52 scales published
from 1971 to 2020 that are based on the facial expression responses for neonatal
pain assessment. This work also reported that the eyes, the region in-between eye-
brow, forehead, nasolabial furrows, and mouth are the facial features most analysed
by clinical scales. Meanwhile, computer scientists have proposed several automatic
frameworks, also based on facial expression, which enable continuous monitoring
of the newborn and are specific to the pain phenomena [9–14]. Mainly, these frame-
works applied transfer learning on Convolutional Neural Networks (CNNs) that
were originally trained on facial or object recognition. Specifically, Zamzmi et al.
[14] proposed the Neonatal Convolutional Neural Network (N-CNN), the first CNN
architecture that was implemented end-to-end to neonatal pain assessment. Using a
private dataset [14] and the public iCOPE one [9], the authors compared the N-CNN
with the ResNet architecture and with a classifier based on Local Binary Patterns
(LBPs) and SVMs. Regarding the first dataset, the N-CNN achieved 91% accuracy
and 0.93 AUC, while the ResNet reached 87.1% accuracy and 0.89 AUC, and the
LBP obtained 85.5% accuracy and 0.82 AUC. To the iCOPE, the N-CNN, ResNet
and LBP achieved, respectively, 84.5%, 82.9%, and 81.3% accuracy.

Even though these frameworks implemented several CNNs architectures with
high classification performance, each work carried out their own training/test pro-
cedure using distinct face image datasets. Therefore, preventing a direct compari-
son of performance between these architectures. In this context, the current work
presents two main contributions: (I) we propose a novel training/test protocol named
leave-some-subject-out, based on the original leave-one-subject-out, where we cre-
ate folds splitting training-test sets according to the identity of the neonate; and (II)
we implement and compare a number of state-of-the-art (SOTA) CNNs, evaluating
their performance based not only on quantitative but also qualitative analyses using
eXplainable Artificial Intelligence (XAI).

The remainder of this work can be summarised as follows. In Sect. 2, we describe
the face image datasets used, classification models, the proposed training protocol,
and the XAI technique implemented. Next, in Sect. 3, we show our quantitive and
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qualitative experimental results, and, then, we discuss the performance of each clas-
sification model. Finally, in Sect. 4, we conclude our work, discuss the impact of our
findings, and provide guidance for future research.

2 Materials and Methods

In this section, we firstly describe the face image datasets used, labelled as neonates
with “pain” or “no pain”. Next, we depict the classification models that are being
investigated, and their training/test protocols. Then, we describe the Gradient-
weighted Class Activation Mapping (Grad-CAM) [15], that is, the XAI algorithm
implemented here to qualitatively analyse the classification results.

2.1 Face Images Datasets

UNIFESP Image Dataset: Heiderich et al. [12] developed the UNIFESP dataset
at the Federal University of São Paulo. It contains 360 face images with resolution
of 320×233, which were captured from 30 neonates with 24 to 168h of life. These
photographs were taken during routine painful procedures, such as intramuscular
or capillary injection and venipuncture. Each image was randomly evaluated by a
group of health professionals with experience in neonatal intensive care units. The
assessment resulted in 164 “pain” images and 196 “no pain” ones.
iCOPE Dataset: Brahnam et al. [9] created the infant Classification of Pain Expres-
sion (iCOPE) dataset. A total of 200 face images, with resolution of 3008×2000,
were captured from 26 neonates with 18h to 3 days of life, all Caucasians. The pho-
tographs were taken during a session in which the neonates experienced 4 different
stimuli, in the presented order: transport between cribs, air stimulus, friction on the
heel using a cotton wool; heel puncture for blood collection (painful stimuli). Thus,
the iCOPE images are divided in: 18 images of neonates crying, 36 of heel friction,
23 of air stimulation, 63 resting neonates images and 60 examples of neonates during
a painful procedure. For the present work, only the images classified as “pain” and
“rest” were used.

2.2 Classification Models

For the classification task, we employed the following SOTA CNN architectures that
were selected based upon their accuracy on pre-trained datasets for facial recognition
or ImageNet if the model didn’t have any available pre-training on face images:
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Table 1 Fully connected layers used for each pre-trained model.

Model VGG-16 ResNet50 SENet50 Inception-V3

FC 1 512, ReLU 1000, ReLU 1000, ReLU 512, ReLU

FC 2 512, ReLU – – 512, ReLU

Output 2, Softmax 2, Softmax 2, Softmax 2, Softmax

Total parameters 27,823,938 25,612,154 28,143,146 23,115,554

Fine tuning conv.
layers

6 9 9 18

• VGG-16: Parkhi, Vedaldi, and Zisserman [16] implemented a VGG-16 architec-
ture [17] for facial recognition. The CNN was trained on 2.6 millions face images
from 2622 individuals (VGGFace dataset)1;

• ResNet50: Cao et al. [19] extended the original VGGFace database, originating a
new dataset containing 3.3millions face images. The ResNet50 [20] model trained
on it and is capable of recognising 9131 individuals1;

• SENet50: Following theResNet50, the “Squeeze-and-Excitation”ResNet50 archi-
tecture [21] was also trained on the VGGFace2 dataset [19]1;

• Inception-V3: For the Inception-V3 architecture [22], no pre-trained model for
face recognition was found. Therefore, we used themodel trained on the ImageNet
dataset;

• N-CNN: In addition to the aforementioned pre-trained models, the N-CNN of
Zamzmi et al. [14] was also implemented. Since no pre-trained version of the
model was found, this work rebuilt the N-CNN (as described in [14]) and carried
out its training with the iCOPE and UNIFESP datasets.

As mentioned in the previous Sect. 2.1, due to the limited sample size of both
UNIFESP and iCOPE datasets, we applied the well-known transfer learning strategy.
Therefore, the pre-trained models were selected, refined and submitted to a new task
of pain classification in newborns. For each pre-trained CNN, the original convo-
lutional layers were preserved and a new set of fully connected (FC) layers were
attached to the top of the CNN. In order to maximise its accuracy, the configura-
tion of the new sequence of FC layers was defined experimentally, with parameters
ranging from 50 to 2048 neurons and from 1 to 3 layers. Also, we fine-tuned the last
convolutional layers, where their weights were updated during the new training with
newborn images. Table1 shows the adapted models.

1 We used the pre-trained models available at [18].
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2.3 Training/Test Protocol

Before training eachmodel, we extracted the face of each image. The cropped images
intended for training the models were submitted to a data augmentation process,
generating 20 new samples per image by randomly applying the following manipu-
lations: rotation (30◦), shear (0.15), width and height shift (0.20), zoom (0.70–1.5),
brightness (0.50–1.1) and horizontal flip. Also, for each newly generated image,
we verified whether that face was still automatically detectable (that is, visible and
within the image bounds).

All models were trained using the RMSprop optimizer [23] and with Categori-
cal Cross-Entropy loss. To speed up training and reduce the possibility of models
being overfitted, we used the mini-batch strategy, dividing the data into batches of 16
images. For the new FC layers, we applied the DropOut (0.5) and the weight regulari-
sation l1 (5 × 10−4). The learning rate ηwas dynamically altered from η = 1 × 10−4

during training to η = 1 × 10−4 during fine-tuning.
Initially, training was performed only to adjust the weights of the new set of fully

connected layers, except for N-CNN, in which all layers needed training. For the pre-
trained models, if there is no error reduction for 5 consecutive epochs (processing
of all available images), fine-tuning of the convolutional layers starts. Therefore, the
weights of the last convolutional layers are updated as well (Table1). For models in
the fine-tuning phase and for N-CNN, training was terminated after 10 consecutive
epochs without loss reduction.

All CNNs were trained and tested with the union of UNIFESP and iCOPE
databases, using the leave-some-subjects-out protocol: the dataset subjects are
equally divided into folds and, at each iteration of the cross-validation, one fold
is preserved for testing the model, whereas the others are used in the training. In this
way, there are more images for testing (when compared to the traditional leave-one-
subject-out) and information leakage is avoided, since there will not be images of
the same subject in both training and test sets at the same time. Then, for the total
of 56 subjects (30 from UNIFESP and 26 from iCOPE), 10 folds were created, each
containing 5 or 6 subjects (3 necessarily from UNIFESP).

2.4 Explainable Artificial Intelligence

XAI techniques are able to explain the decision-making process that leads an AI
model to a particular answer, allowing a sound understanding of such models.
Recently, Velden et al. [24] presented a systemic review of works that used deep
learning-basedXAI inmedical image analysis, categorising their explanationmethod
into three types: visual, textual, and example-based. As shown by the authors, the
most popular XAI method is the Grad-CAM [15].

Grad-CAM evaluates the gradients between the final convolution layer and the
desired output. In fact, Grad-CAM is able to produce an attribution mask in terms
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of any convolutional layer of the CNN. However, as stated by Selvaraju et al. [15],
it is expected that the last convolutional layers have the best compromise between
detailed spatial information and high-level semantics, since its neurons look for
semantic class-specific information in the image.

To obtain the attribution mask Lc
Grad-CAM to a specific c class of a given input x , it

is firstly needed to compute the gradient ∂yc

∂Ak
i j
of the score yc (before the Softmax)with

respect to feature maps A of the desired convolutional layer k. Then, the importance
weights αc

k of each feature map are calculated by the global average pooling of the
gradients. The final attribution mask is obtained by Eq.1. ReLU is applied to filter
out feature maps that show a negative influence on the class of study. These features
are likely to influence other classes instead of the desired one.

Lc
Grad-CAM = ReLU

(∑
k

αc
k A

k

)
︸ ︷︷ ︸
linear combination

, where

αc
k =

global average pooling︷ ︸︸ ︷
1

Z

∑
i

∑
j

∂yc

∂Ak
i j︸ ︷︷ ︸

gradients via backpropagation

(1)

3 Results and Discussion

In this section,we begin analysing the quantitative results of each classificationmodel
regarding their evaluation metrics. Then, we show the qualitative results provided by
a XAI technique. Finally, we close discussing our findings.

3.1 Quantitative Results

Table2 shows the average quantitative performance of each classification model. We
can see that the VGG-16, ResNet50, and SENet50 models presented similar per-
formance and outperformed the Inception-V3 and N-CNN ones. The former three
CNNs achievedmore than 85% level for all the evaluationmetrics. There is though no
statistical difference between the results of VGG-16, ResNet50, and SENet50 (con-
sidering p = 0.05). However, VGG-16 has overall the fastest convergence training
process: 34 epochs, whereas ResNet50 and SENet50 44 and 40 epochs, on average,
respectively. Also, all the CNN models presented a high standard deviation for all
the metrics considered (≥ 5%), showing sensitiveness to the training/test samples
chosen.
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Table 2 Evaluation metrics results for each model.

Metric VGG-16 ResNet50 SENet50 Inception-V3 N-CNN

Accuracy 86.2% ± 7% 85.6% ± 7% 86.1% ± 5% 81.3% ± 5% 77.1% ± 7%

F1 87.7% ± 6% 87.0% ± 7% 87.3% ± 5% 84.1% ± 4% 80.8% ± 6%

AUC 85.4% ± 8% 85.2% ± 7% 85.7% ± 5% 80.6% ± 6% 76.0% ± 7%

Epochs 34 ± 7 44 ± 12 40 ± 10 47 ± 12 33 ± 17

Dataset Class Image VGG ResNet SENet IncepV3 N-CNN

iCOPE Pain

iCOPE No-pain

UNIFESP Pain

UNIFESP No-pain

Fig. 1 Qualitative examples of Grad-CAM results for each model.

3.2 Qualitative Results

In order to apply the Grad-CAM, for each architecture, we selected the layer before
the last pooling layer to generate the class activation maps. Figure1 shows the results
for each CNN using as examples the correct classification of 4 neonate images.

All the models learned to detect discriminant facial regions to pain assessment.
Apparently, VGG-16 associates the “no pain” state only with the nose and the region
between eyebrows. When “pain” is detected, the model highlights, in addition to the
already mentioned regions, the nasolabial furrows and the forehead. Both ResNet50
and SENet50 seem to use the entire face in the decision process. However, it is not
clear what is the relation between regions and classes. Inception-V3 is capable of
recognising face elements, but its attention is drawnby artefacts, such as the ornament
in the second image (from top to bottom). Also, this model seems to associate the
pain state with the neonate’s open mouth. Lastly, N-CNN appears to associate the
“pain” state with open mouth and the “no pain” state with open eyes. However, its
activation maps have a scattered behaviour, which intensifies when these indicators
are not present,making it difficult to identify any pattern of facial expression analysis.



510 G. A. S. Coutrin et al.

3.3 Discussion

The quantitative results demonstrated the superiority of the VGG-16, ResNet50 and
SENet50models.We hypothesize that this superiority can be attributed to the original
training of each CNN: the three superior models were trained on face images, that
is, a datatype related to the iCOPE and UNIFESP datasets. Statistically, there is no
significant difference between the quantitativemetrics of these threeCNNs.However,
the qualitative results distinguish the behaviour developed by each CNN for the
classification of facial expressions. VGG-16’s strategy is focused on the analysis of
the nose, the nasolabial furrows, the forehead, and the region between eyebrows of the
neonate. These facial features are commonly used by neonatologists [25]. ResNet50
and SENet50, on the other hand, do not focus on specific face regions, but rather use
the entire face for classification. Despite achieving similar metrics to the VGG-16,
the activation maps generated by this holistic approach make it difficult to interpret
what these networks consider “pain” or “no pain”. Thus, under the conditions of the
present investigation, we consider VGG-16 to be the best suited model for neonatal
pain assessment, since it combines high performance with better explainability.

Inception-V3was pre-trainedwith the ImageNet dataset, which ismade of images
from 1000 object categories. Thus, possibly, the convolutions applied to the neonate
images did not extract specific features for the classification of facial expressions.
This hypothesis is reinforced by the Grad-CAM results. Although Inception-V3 have
shown to be capable of using facial elements, the presence of artefacts in the image
receives most of the CNN’s attention, such as the ornament of the example depicted
in the previous section (Fig. 1). This model correctly classified the image, but its
decision was not based on the neonate’s face.

The implemented N-CNN model had no prior training. Considering that deep
learning methods require a large amount of data, the union of the UNIFESP and
iCOPE dataset was certainly not enough for training the N-CNN’s layers. In the
original publication of this architecture [14], the CNNwas trained with 3026 images,
plus a process of data augmentation, to achieve an average accuracy of 91%. In the
qualitative analysis, for some samples, the N-CNN showed exclusive attention to
the mouth and eyebrows of the neonate. However, in general, its activation maps are
scattered, and no well-defined strategy for image classification is evidenced. In fact,
in some cases, the model highlighted regions outside the face of the neonate, such
as hair, the contour of the face, and other elements of the image. These observations
are consistent with the quantitative results, and reinforce the hypothesis that the N-
CNN was not trained with enough images, since it did not learn a clear strategy for
recognizing pain patterns.

The lack of images is actually a limiting factor for the application of deep learning
in neonatal pain assessment [10, 11]. Besides data protection policies, the very nature
of the studied task represents an obstacle for data collection, since painful procedures
implies ethical issues. Another aggravating point is the lack of standardization of
datasets. This work has united two datasets, but it is important to highlight a possible



Convolutional Neural Networks for Newborn Pain Assessment Using . . . 511

incompatibility between the data, for presenting different resolutions and for being
labelled according to different methods.

4 Conclusion

This paper presented a systematic and detailed comparison of several CNNs when
performing neonatal pain assessment. To date, several works have proposed distinct
models that achieved SOTA performance, however each framework was evaluated
using distinct face image datasets and training/test protocols, consequently, prevent-
ing a direct comparison of performance between these architectures.

Firstly, we introduced the leave-some-subjects-out training protocol. This strategy
avoids data leakage from the training set to the test one, and also better evaluation of
the generalisation capabilities of each classification model. Then, we quantitatively
and qualitatively compared these models. The quantitative results showed superi-
ority of the VGG-16, ResNet50, and SENet50 over the Inception-V3 and N-CNN
models. However, when applying the Grad-CAM XAI technique, we observed that
the ResNet50 and SENet50’s feature extraction is based on the entire face of the
neonate, without distinctions for “pain” and “no pain” images. On the other hand,
theVGG-16model seems to focus on the nasolabial furrow and on the foreheadwhen
assessing “pain” images. These regions are indeed clinically relevant and agree with
the visual perception of adults when assessing pain [25]. Therefore, we consider the
VGG-16 as the best model to combining high classification performance with better
explainability.

Finally, as future work, we intend to implement a CNN architecture that, during
training, also consider the human knowledge. To accomplish this, we will use the
visual cognitive perception of experts performing neonatal pain assessment through
facial expression. The combination of prior knowledge of experts with the current
SOTA CNN models may enable even better performance and specificity to the pain
assessment, overcoming the limited training sample problem and the subjectivity of
human judgement as well.
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Machine Learning for the Evaluation
and Detection of Key Markers in Dilated
Cardiomyopathy

Xiaodan Bi, Zhenrun Zhan, Jinpeng Yang, Xu Tang, and Tingting Zhao

Abstract Objective: Screening for dilated cardiomyopathy (DCM) core genes and
letter immune infiltration by bioinformatic methods to find new strategies for preven-
tion and treatment.Methods: Gene expression compilation database (GEO)GSE3585
and GSE17800 gene microarray sets were extracted and differentially expressed
genes (DEGs) were obtained from DCM and normal control myocardial biopsies
using R language. The DEGs were tested for gene ontology (GO) functional anal-
ysis, Kyoto Gene and Genome Encyclopedia (KEGG) pathway analysis and gene
probe (GSEA) enrichment. The Lasso algorithm was subsequently used to iden-
tify key DCM-related genes in the practice set and to authenticate them against
the test set. Prospective mechanisms for DCM development included: differences
in key gene expression between normal and DCM samples, variations in western
blot coverage, correlates of clinical relevance to exempt cells, and key gene and
immune cell correlation. Results: The final screening identified 2 key genes, NPPA
and NPPB. The variation in expression of the key genes between normal and DCM
samples can be regarded as a diagnostic factor for patients. Also, There is a striking
divergence in vaccine levels of immuinia among normal and DCM samples, and the
critical gene expressionwas closely related to the richness of immune cell infiltration.
Conclusion: Based on bioinformatics analysis and review of relevant literature, two
candidate genes, NPPA and NPPB, were screened and strongly associated with the
progression of DCM, providing meaningful clues and suggestions used to prevent
and heal DCM.

Keywords Enrichment analysis · Dilated cardiomyopathy · Bioinformatics ·
Machine learning · Immuno-infiltration · Differentially expressed genes

X. Bi · Z. Zhan · J. Yang · X. Tang · T. Zhao (B)
Changzhi Medical College, Changzhi, Shanxi, China
e-mail: 649823325@qq.com

Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
R. Su et al. (eds.), Medical Imaging and Computer-Aided Diagnosis, Lecture Notes
in Electrical Engineering 810, https://doi.org/10.1007/978-981-16-6775-6_42

515

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-6775-6_42&domain=pdf
mailto:649823325@qq.com
https://doi.org/10.1007/978-981-16-6775-6_42


516 X. Bi et al.

1 Introduction

Dilated cardiomyopathy (DCM) is a cardiomyopathy inwhich one or both left ventri-
cles have systolic or diastolic dysfunction, in addition to coronary artery disease and
abnormal load. The pathogenesis of cardiomyopathy is complex, involving viral
infection, immunity, genetics and the environment, and has not been clearly under-
stood [1]. The pathogenesis of cardiomyopathies is complex and notwell understood.
The pathogenesis of cardiomyopathies is complex, involving viral infections, immu-
nity, genetics and the environment, andhas not been clearly understood. So far, LiGuo
et al. have identified several related genes encoding myosin, cytoskeleton, nuclear
membrane, myosin, Ionic channels and cell to cell connectionsmolecules involved in
the pathogenesis ofDCM [2]. Geneticmutations encodingmyosin (TTN) are thought
to be the most common cause of DCM. In addition, transformation of the LMNA
gene (nuclear fibre board layer), FLNC (filament protein C), Des (knot protein),
PLN (phosphoprotein), and the SCN5A allele has been shown to be a malignant
cause of DCM. In this study, comprehensive bioinformatics analysis of endocardial
tissue and mRNA export profiles based on the Gene Expression Public Database was
conducted to investigate the pathogenesis of the disease, thus providing a reference
for molecular mechanism research and clinical diagnosis and treatment exploration.

2 Methods and Materials

2.1 Data Acquisition and Download

The GPL96-based GeneChip dataset GSE3585 was downloaded to the GEO
database (https://www.ncbi.nlm.nih.gov/) [3]. GSE358 gene microarray dataset
derived among individuals with dilated cardiomyopathy with lowered left septal
ejection fraction and normal cardiac function and the GSE17800 gene microarray
dataset from the GPL570 platform were downloaded from the GEO database, of
which the GSE17800 dataset includes 40 DCM biopsies before IA/IgG treatment
following immunosorbency and 8 biopsies for control. The GSE3585 microarray
dataset includes seven independent specimens of subendocardial left ventricular
tissue from patients with DCM at the moment of transplantation and five NF donor
hearts that were not transplanted due to palpable coronary artery calcification due to
palpable coronary artery calcification, excluding technical or biological duplicates;
for more informative results, only myocardial samples from DCM patients without
IA/IgG treatment and myocardial samples from normal hearts were included as
criteria for this study Forty specimens from DCM patients prior to IA/IgG treatment
and eight specimens from normal hearts from the GSE17800 dataset were therefore
obtained.

https://www.ncbi.nlm.nih.gov/
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2.2 Data Processing and Genetic Screening

Principal component analysis (PCA) was performed on specimens from the above
two datasets separately according to different chips using R language to observe the
distribution between groups [4, 5]. And used the GEO2R online tool (https://www.
ncbi.nlm.nih.gov/geo/geo2r/) to profile the aforementioned differentially represented
gene in each of the above data sets, and set the screening condition as log2FC > 1
or log2FC <− 1, P < 0.05 to identify differentially expressed genes. In contrast, the
co-expressed differential genes from bothmicroarrays will contain genes with incon-
sistent up- and down-regulation, and direct raw signal analysis of all co-expressed
differential genes for genes and pathways associated with dilated cardiomyopathy
with combined heart failure will confound the effect of false-positive co-expressed
genes [4, 6]. To exclude this confounding factor, and in order to screen for genes that
can be used as predictive targets for clinical diagnosis and prognosis, it is clear that
up-regulated expression genes are more feasible for clinical application and more
valuable for study compared to healthy individuals with normal cardiac function,
so we selected only those genes that were up-regulated in co-expression differential
genes for analysis. The differentially expressed genes obtained from the two datasets
were plotted using R language for heat map and volcano map respectively. We also
used Venn Diagram to differentially expressed genes were screened obtained from
the two datasets for intersection. The differentially up-regulated genes obtained from
the two datasets were intersected to obtain differentially up-regulated genes with
consistent expression associated with dilated cardiomyopathy.

2.3 Enrichment Analysis: GO, KEGG, DO and GSEA

The above commonly up-regulatedDEGswere extracted, andGO functional analysis
and KEGG pathway analysis were performed in R language [7], setting P < 0.1 and
adj. P < 0.2 as screening conditions to screen for major enrichment functions and
pathways of differential genes [8–10]. Themain enabling features and pathwayswere
visualised accordingly, and GESA enrichment analysis was performed on each of
the two chips to explore the main signalling pathways of DCM. The main signalling
pathways of the DCM were investigated.

2.4 Selecting and Identifying Gene Predictor Models
for Premature Diagnosis

The data from GSE3585 was chosen as the training set and data from GSE17800 as
the test set. LASSO model for GSE3585 was constructed using the glmnet package.
Plot the differential gene characteristic curve and calculate its area under the curve

https://www.ncbi.nlm.nih.gov/geo/geo2r/
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[10, 11]. SVM is a generalised linear classifier that classifies data binary in a super-
vised learning manner so as to maximise the magnitude of differences using e1071,
kernlab and insert symbolic packets to eradicate recurrent traits Data computation
on the obtained differential gene to finally obtain the best gene markers [12, 13].
Second machine A learning algorithm was using simultaneously filtering for pivotal
kIRC genes to obtain the identical key genes by using R’s Venn package. Key genes
in GSE3585 were then differentially analysed using the limma package R. In addi-
tion, subject operating characteristic (ROC) curves were built and AUC values were
generated to assess the predictive value of the results in the exercise and test sets
[14].

2.5 Immune Cell Infiltration Analysis

In this case, immune cells were correlated and a matrix of immune cell infiltration
was obtained by Cibersort analysis to assess the percentage of such cells in dilated
cardiomyopathy versus normal samples [5]. A heat map was also produced using
the ggplot2 package to shed light on the signature of immune cell infiltration in
myocardial tissue during heart failure [5, 6, 15, 16]. We also analysed the linkage
between the key genes screened and immune cells.

3 Results

3.1 Screening for DCM-Associated Differential Genes

After screening, we obtained 7 independent subendocardial left ventricular tissue
specimens from the GSE3580 dataset from DCM patients receiving grafts and 5 NF
donationhearts that hadnot beengrafts due to accessible coronary artery calcification,
and 40 specimens from the GSE17800 dataset from DCM patients prior to IA/IgG
treatment and 8 specimens from normal hearts. The two datasets were subjected
to principal component analysis in R and the differential genes were screened for
and highly consistent clustering results were obtained for both groups. Based on
the screening criteria, the meaningful variably expressed genes were presented in
different colours in a volcano plot (Fig. 1a).These results include differential genes
that we focused on that were up-regulated in the dilated cardiomyopathy group, and
GSE3585 yielded 13 differentially expressed genes that were up-regulated (Fig. 1b).
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Fig. 1 a The DEG volcano plot, where the up-regulated genes are in red and the down-regulated
genes are in green. b is a heat map of whole gene expression for normal and DCM samples, where
red is high expression and blue is low expression

3.2 Co-expressed Genes GO, DO and KEGG Signalling Path
Enrichment Analysis

The GO enrichment analysis of the 17 common DEGs obtained from the screening
showed that there were 2 cellular components (CC), 81 biological processes (BP),
and 29 molecular functions (MF). The results showed that the differential proteins
weremainly involved in cell growth regulation, cell growth, astrocyte differentiation,
receptor guanylate cyclase signalling pathway and cGMPmetabolic process in terms
of biological processes; cell composition was mainly distributed in the extracellular
matrix containing collagen and neuromuscular junction; molecular function was
mainly related to endopeptidase activity (Fig. 2a, b). KEGG enrichment analysis of
the above-mentioned differential genes yielded a total of six pathways, the results of
which showed thatDCMwasmainly associatedwith the complement and coagulation
cascades, vascular smooth muscle contraction, and cGMP-PKG signalling pathways
(Fig. 2c, d). A total of 13 pathways were obtained by DO analysis. (Fig. 2e, f).

Fig. 2 Plots a and b of GO enrichment analysis of 30 genes screened by DEG. plots c and d of
KEGG enrichment analysis of 6 different genes. Figures e and f show the DO enrichment analysis
of 13 genes screened
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Fig. 3 Plot of GSEA enrichment analysis of normal and DCM samples

3.3 Functional Clustering of DCM-GSEA Analysis

To further explore DCM-related signalling pathways, we performed GSEA enrich-
ment analysis of GSE3585 and screened DCM-related pathways based on FDR <
0. 05 and adjusted P < 0.05 (Fig. 3a, b). This figure shows that the following five
groups of biological processes involved in immune response cell activation, gastroe-
sophageal inflammatory arthritis response, leukocyte-mediated immunity, myeloid
leukocyte activation, and mediated immunity were active in the control group; for
growth factors, extracellularmatrix-containing collagen, external encapsulated struc-
tures, structural components of the extracellular matrix, and structural molecular
activity were mainly active in the experimental group.

3.4 Screening and Identification of Gene Prediction Models
for Early Diagnosis

GSE3585 data were used as the training set and GSE17800 data were used as the
test set. The LASSO model was constructed in the training set and the smallest
valve was selected for screening, which was able to obtain pivotal genes that could
accurately predict early KIRC (Fig. 4a). Meanwhile, we screened 17 different genes
using the SVM-RFE algorithm to obtain four hub genes (Fig. 4b). The genes obtained
by these two algorithms were then intersected to obtain two key genes, NPPA and
NPPB (Fig. 4c). Differential analysis crucial genes in GSE3585t revealed that the
experimental groupwasmore expressed than the normal samples (Fig. 4d, e). Subject
operating characteristic (ROC) curveswere constructed, andAUCvalueswere calcu-
lated for assessing the predictive value of the model in the training and test sets. The
AUCs ofNPPAandNPPB in the training set were 1 (Fig. 5a, b), and the area under the
curve for NPPA and NPPB in the GSE3585 group was 0.863 and 0.897 respectively,
suggesting that the model has good validation performance (Fig. 5c, d).
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EC DBA

Fig. 4 LASSO regret modelling and SVM-RFE on the training set were used to select key genes
for potential DCM. a Lasso regression module b screening of key genes for potential DCM. The
candidate pivotal genes of the Lasso algorithm (c) and 2 key gene difference analysis in normal
DCM samples including NPPA (d), NPPB (e)

Fig. 5 ROC curves for GSE3585 and GSE17800. NPPA (a), NPPB (b), in training set, NPPA (c),
NPPB (d), in test set

3.5 The Immune Checkpoint Related Genes Analysis

By correlation analysis of immune cells, the results showed a positive correlation
between caveolar cell quiescence and NK cell activation (R= 0.75), mast cell resting
and B cell memory (R = 0.69), monocytes and eosinophils (R = 0.92), T cell CD8
(R= -0.33) and plasma cells (R= 0.73), and T cell regulation (Tregs) and T cell γ δ

positive correlation (R= 0.84) (Fig. 6a). T cell regulation (Tregs) was actively related
to T γ δ cells (R = 0.84) (Fig. 6a). The results for the 12% immune cell subsets in
terms of relative percentages showed that NK cells, T cells, B cells and dendritic cells
accounted for the most in both the experimental and control samples (Fig. 6b). The
results of the discrepancy in immune infiltration among the control and experimental
groups showed that the results for each of the specimens were not significant (P >
0.05) (Fig. 6c), which could be related to smaller sample sizes. Scatter plots were
drawn by visualizing the cells with significant correlations (Fig. 7a–f), from which
it can be seen that NPPA and NPPB were both negatively correlated with B cell
memory (R=− 0.61, p < 0.05) (R=− 0.7, p < 0.05), NK cell resting (R=− 0.7 p
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Fig. 6 a Correlation between immune cells in GSE3585 samples. b Percentage of the 19 immune
cell subpopulations in the two sets of samples. c Vioplot plots of the differences in immune infiltra-
tion between the two sets of samples, with normal in blue and abnormal in red. Correlation lollipop
plots were drawn using key genes from the training set, including NPPA (d), NPPB (e) and immune
cells

Fig. 7 Plot of correlations between GSE3585’s essential genes and immunocells scatter plot

< 0.05) (R=− 0.64, p < 0.05) and positively correlated with B cell naïve (R= 0.82,
p < 0.05) (R = 0.333, p < 0.05). Analysis of the linkage with key genes and vaccine
cells showed that NPPA exposure was significantly linked to B-cell memory phase,
NK-cell quiescence and B-cell naive phase, all with P less than 0.05 (Fig. 6d, e).

4 Discussion

Dilated cardiomyopathy is a genetically predisposed myocardial disease charac-
terised by systolic dysfunction, with or without heart failure, and its development
is associated with autoimmune disorders and mutations in myosin or cytoskeletal
protein genes [17]. Among these, truncated variants in the TTN gene, which encodes
the giant myosin [18], as well as variants in the myosin heavy chain MYH7 and
troponin TNNT2, which are involved in muscle contraction, are common genetic
susceptibilities to dilated cardiomyopathy [19] and are closely related to implications
for the pathogenesis of dilated cardiomyopathy. However, dilated cardiomyopathy
in combination with heart failure is a clinical challenge and there are no reliable
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treatment options to reverse cardiac function other than heart transplantation. There
are no reliable therapeutic options to reverse cardiac function.

Based on the analysis of the GEO database, we selected two gene dataset microar-
rays using GPL96 and GPL570 as the study platform, with myocardial biopsies from
dilated cardiomyopathy with heart failure as the experimental group and myocardial
biopsies from normal heart function as the control group. Genes with up-regulated
expression in the twomicroarrayswere intersected usingVenn diagrams to obtain two
candidate genes. KEGG and GO analysis of the candidate genes focused on biolog-
ical processes related to cell growth and conduction pathways, such as tonicity and
blood clotting cascade, vascular muscle smooth muscle systole and the cGMP-PKG
signalling pathway.

In this study, two key genes of NPPA and NPPB were screened, and the perfor-
mance of these genes was distinct for normal and laboratory samples. DCM patients
have been reported to with heart failure develop low levels of cardioselective serine
proteases (corin), and serine proteases are involved in the lysis and production of
active forms of natriuretic peptide precursors, so corin and natriuretic peptide family
members are commonly used cardiac injury markers for clinical cardiac exhaustion,
suggesting the occurrence of DCM decompensation and the severity of heart failure
symptoms [19], consistent with our bioinformatic predictions. Genome-wide asso-
ciation studies have demonstrated that NPPA is a causative factor in blood pressure
development, and that cardiac natriuretic peptide (ANP) is a vasodilating hormone
encoded by NPPA that promotes salt excretion, and in humans [20], ANP levels
are considered indicators of salt sensitivity [21]. Therefore, strictly limiting sodium
intake and controlling hypertension may become an important way to prevent the
development of DCM. At the same time, studies [22] have found that Treating DCM
patients with heart failure with recombinant human brain natriuretic peptide with
injection can effectively reduce the serum brain natriuretic peptide (BNP), BNP
precursor (NT-proBNP), angiotensin II (AngII.) and other indexes, and improve
ventricular remodeling. The crucial genes in this research are strongly linked to
contributing to immunotherapy.

5 Conclusion

In summary, using a bioinformatics-based approach, we obtained the genes that may
be related to DCM, providing meaningful research clues and directions for clinical
prognosis judgment and treatment. The treatment ofDCM is a personalized treatment
plan, which should be further explored in clinical trials.
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Schema Based Knowledge Graph
for Clinical Knowledge Representation
from Structured and Un-structured
Oncology Data

Farina Tariq, Saad Ahmad Khan, and Muhammad Moazam Fraz

Abstract Cancer is currently the second leading cause of death worldwide, killing
more people every year owing to its increasing growth rate. There is a vast amount of
clinical data in radiology reports and electronic health records (EHRs). Case studies
are important because they offer a plethora of medical information on diseases, treat-
ments, and other issues. However, because this information is frequently available as
unstructured notes, workingwith it can be challenging. Additionally, the data volume
is huge, the production rate is rapid, and the format is special. Thus, the conversion
of health information into standards-compliant, comparable, and consistent data is
essential for these scenarios. To address these challenges, we have proposed a knowl-
edge extraction pipeline based on schema based knowledge graphs (KG), fromEHRs
and clinical reports. After extracting knowledge usingNameEntityRecognition from
radiology reports and EHRs of 33,431 cancer patients, we developed a knowledge
graph in Neo4j containing 368,436 entities and 754,061 relationships of 15 different
semantic categories based upon the proposed schema. The proposed method would
serve as the initial step in understanding how to use KG intelligently for uniform
representation of medical knowledge to analyse the course of disease after learning
about it via EHRs.

Keywords Electronic health records · Clinical reports · Information · Extraction ·
Knowledge graph · Oncology data

F. Tariq (B) · S. A. Khan · M. M. Fraz
National University of Sciences and Technology (NUST), Islamabad, Pakistan
e-mail: ftariq.msds20seecs@seecs.edu.pk

S. A. Khan
e-mail: skhan.msds20seecs@seecs.edu.pk

M. M. Fraz
e-mail: moazam.fraz@seecs.edu.pk

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
R. Su et al. (eds.), Medical Imaging and Computer-Aided Diagnosis, Lecture Notes
in Electrical Engineering 810, https://doi.org/10.1007/978-981-16-6775-6_43

529

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-6775-6_43&domain=pdf
mailto:ftariq.msds20seecs@seecs.edu.pk
mailto:skhan.msds20seecs@seecs.edu.pk
mailto:moazam.fraz@seecs.edu.pk
https://doi.org/10.1007/978-981-16-6775-6_43


530 F. Tariq et al.

1 Introduction

Cancer is the uncontrollable growth of body cells with one in six people losing their
lives worldwide to the disease. The disease’s pace of growth is predicted to climb by
70%over the next 20 years ranking it among the prevalent deadly diseases [1]. Cancer
persists with no formidable solution to the ailment, resulting in un-favourable phys-
ical, emotional, and financial strains on individuals, communities, and the healthcare
system. Unfortunately, many cancer types have early symptoms that show up late in
the course of the disease despite biological fluids such as serum, saliva, spinal fluid,
and urine being used for early detection of cancer biomarkers. Early detection of
cancer may increase the likelihood of effective therapy and lower mortality rates in
patients. Furthermore, they may also assist in reducing the economic burden on indi-
viduals and the health care system. Thus, the research community is actively working
to achieve the aforementioned goal throughmeans such as genomic profiling, pheno-
typic profiling, health disparities research and so on. The driving force behind
such research is the availability of relevant data. The advent of EHRs enabled the
widespread recording of digital data, both in structured and unstructured formats.
Patient demographics (age, gender), height, weight, blood pressure, lab results, and
medications are a few examples of structured data. Contrarily, narrative data found
in EHRs such as clinical notes, surgical records, discharge summaries, radiology
reports, medical photographs, and pathology reports are considered unstructured
data.

The research community is interested in comprehensive cancer features which can
be achieved by correlating the genomic and phenotypic data. Genomic data is found
in a structured format owing to the lab panels. Phenotypic data, on the other hand,
is unstructured and includes tumor morphology (such as histopathologic diagnosis),
laboratory results (such as gene amplification status), particular tumor behaviors
(such as metastasis), and response to treatment (such as the impact of a chemother-
apeutic agent on tumor volume). This data contains vital information for analysis
however the lack of structure has made it difficult to work with. Therefore, extracting
phenotypic data from electronic medical records has been a top priority for many
NCI-designated Cancer Centers, NCI Specialized Programs of Research Excellence,
and Cancer Cooperative Groups (EMR). The extraction of cancer phenotypes is a
labor-intensive, slow-moving manual process carried out by highly skilled human
abstractors, making it only practical for limited datasets.

The growth of EHRs and increasing health information exchanges have resulted
in the need to merge the structured and unstructured aspects of data. The integration
of diverse data types across EHRs (unstructured clinical notes, time series clinical
signals, static data, etc.) opens up avenues for research but is not free from its own
challenges. These challenges include heterogeneous data formats (such as JavaScript
object Notation (JSON), comma-separated values (CSV), and others), non-flexible
storage structure (such as Relational Database Management System, or RDMS), and
the lack of a big data pipeline [2]. Thus, the conversion of health information into
standards-compliant, comparable, and consistent data is essential for cancer research.
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The proposed framework leverages knowledge graphs to organise and manage
medical knowledge that is dispersed among different EHRs components. The study
has made use of the 33,431 cancer patients’ clinical information that was available
in the form of clinical notes and EHRs. A knowledge graph, often referred to as
a semantic network, portrays a network of actual things, such as events, circum-
stances, or concepts, and shows how they are related to one another [3]. In addition
to effectively describing and mining the relationship between medical entities and
avoiding information overload, the proposed approach can describe the pertinent
medical knowledge in the EHRs, clinical reports and un-structured patient notes.
The proposed methodology can be used to decrease the time required for clinicians
to find patient information and enhance the knowledge service capability of EHRs
for improved diagnostic decisions.

2 Background and Related Work

There have been numerous initiatives to use healthcare data for research goals in a
secondary way. In this area, numerous study efforts have been done. Richesson et al.
[4] discussed the SHARPn architecture, which enables data normalisation, secure
transmission, and shared phenotypic capabilities on data frommanyEHRs. However,
they didn’t employ graph-based searches as the information returned from numerous
EHRs could be handled easily by the KG-based data management system. Vafajoo
and his coworkers [5–7] suggested a high-performance approach that makes it easier
to identify breast cancer early on using disease course analysis, before the disease
progresses to the point of metastasis or the onset of tumour growth. The study has
encouraged the biological, physical, and chemical discoveries for early breast cancer
diagnosis.

Early studies in this area showed how to encode EHR data using an OWL model,
but they did not generate RDF graphs at the patient level. The semantic web-based
KG method for secondary use of cancer registry data sets has only been the subject
of a small number of research. In the study proposed by Esteban-Giland [8], it
suggested a semantic web-based architecture for cancer registries or the purpose
of data processing and visualisation. The study’s conclusions lacked clinical under-
standing because they were based on simulated cancer registry data rather than real
data from cancer patients. By building knowledge graphs from biomedical literature,
the inquiry into the risk factors for cancer and chronic illness [9] has been accom-
plished. The suggested process includes KG, literature-based discovery, disease-
specific word embedding utilising Natural Language Processing (NLP) techniques,
and Literature Based Knowledge Discovery (LBD). The KG that was developed
showed that the breast cancer literature placed more stress on the clinical traits than
the standard chemical prescriptions. However, this is incredibly difficult due to the
vast amount and variety of biomedical data, as well as the dispersion of knowledge
that is crucial for therapeutic purposes across various biomedical databases and publi-
cations. The Clinical Knowledge Graph (CKG), an open source network with more
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than 16 million nodes and 220 million links that currently represents experimental
data, literature, and public databases, was suggested in the study [10]. It proved
that the analysis and interpretation of conventional proteomics workflows may be
greatly sped up by including CKG into statistical and machine learning approaches.
Several studies [11, 12] have also been carried out for relevant information retrieval
from unstructured data sources like. In [13], National Cancer Institute (NCI) intro-
duces an automated technique to extract cancer phenotype from EHRs of cancer
patients in a fraction of time. The system is a double pipeline design. The first part
uses ontologies for mention-extraction, and then the phenotyping summarisation
pipeline uses Apache cTakes to present data in a standardised format. This system,
termed DeepPhe, was compared against human expert abstracted information. The
agreement between the two human experts (inter-annotator agreement) ranged from
0.46 to 1.00 (1.00 indicates perfect agreement), and system agreement with humans
ranged from 0.20 to 0.96. The system, however, struggles with mentions that have
multiplemeanings. This couldmean that the ontologies utilisedwere not as extensive
as the authors had hoped them to be, or the manual annotation carried out had been
inconsistencies with the ontology.

3 Design and Methodology

The goal of this work is to build disease-specific knowledge graphs in order to
incorporate both structured and unstructured medical data. As shown in Fig. 1, we
created the KG building framework based on EHRs by fusing the traits of tumour
from EHRs. This leads to a framework consists of five steps: (1) Data description,
(2) KG schema construction, (3) Information extraction, (4) Entity selection, and (5)
KG construction.

3.1 Data Analysis

The data which consists of radiological reports, clinical notes and EHRs of 33,431
cancer patients, which is provided by the Rawalpindi General Hospital, Pakistan.

The data is anonymized before use, and it contains EHRs with the individual
clinical notes for the eight different cancer types shown in Table 1. In contrast
to unstructured clinical notes, structured EHRs include patient demographic data,
patients vitals, social history, diagnosis, lab results, and medication.
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Fig. 1 Workflow of proposed methodology

Table 1 Count of patients for
each cancer type

ICD-10 codes Cancer patient

C78 2198

C79 3652

C90 1626

C77 1307

C34 4887

C18 3775

C61 5416

C50 10,570

3.2 KG Schema Construction

It entails examining the knowledge graph’s application demand. The knowledge
graph’s goal is to provide a semantic breakdown of EHRs content at the patient level.
In order to establish classes and their data qualities as well as the semantic relation-
ships, we combined characteristics of cancer disease from many sources (SNOMED
CT [14], NCI Metathesaurus [15]). Finally, the domain expert has reviewed and
evaluated the schema. The relevant data is shown in Table 2.
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Table 2 Class and entities of
KG schema

Class Entities

Profile Marital status, Ethnicity

Demographic Age, Gender

Disease Primary cancer, Secondary cancer

Phenotype Clinical staging, TNM-staging, Pathological
staging, Grading

Vitals BMI, BSA

SocialHistory Alcohol consumption, Smoking status

LabTest Lab panel, Lab test, Lab report, Test outcome

Treatment Chemo regime, Chemo drug, Chemo plan

3.3 Information Extraction

To extract relevant medical information radiology reports, the unstructured text has
been subjected to a number of data preprocessing techniques: sentence splitting,
co-reference resolution, abbreviation resolution and sentence simplification. The
National Cancer Institute Thesaurus (NCIT) [15] ontology has been augmented
with the help of domain experts from National Institute of Blood Diseases, Karachi,
Pakistan to incorporate the phenotypes for both primary and secondary cancers. This
ontology has been used as the knowledge base to annotate the clean notes on Incep-
tion tool. 400 notes have been manually annotated and validated by domain experts.
Once the annotation has been carried out, spaCy Named-entity recognition (NER)
model has been trained on the corpus for automated extraction of data in structured
format from the EHRs. NER is a sub-task of information extraction that seeks to
locate and classify named entities in text into pre-defined categories such as the
names of persons, organisations, locations, expressions of times, quantities, mone-
tary values, percentages, etc. Hand-crafted grammar-based systems typically obtain
better precision, but at the cost of lower recall and months of work by experienced
computational linguists.

3.4 Entity Selection

In medical records, the same entity may be referred to by different terms. In order
to convert the original term into a standard one and construct additional entities
by inheriting terms from the standard one, entity selection is therefore necessary.
Our KG defines widely used sorts of entities listed by Table 2, and each of them is
discussed below.

• Profile: The patient’s ethnicity and marital status.
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• Demographic Info: Age subdivided into three groups: less than 40 years, between
40 and 60 years, and more than 60 years where as two values of gender: male and
female.

• Disease: International Classification Codes of Diseases (ICD-10).
• Phenotype: Physical or observable characteristics associated with cancer.
• Social History: Two factors; alcohol usage and smoking status.
• Patient Vitals: Body Mass Index (BMI) and Body Surface Area (BSA).
• Lab Test: A laboratory examination often includes numerous test items.
• Medication: The chemotherapy regimen with followed cycle.

3.5 KG Construction

In this research, the Neo4j graph database [16] was employed to generate the KG.
Neo4j’s speed is unaffected by data capacity and features a reasonably straightfor-
ward Cypher syntax. The column data types are inherited from the raw data, and
we have utilised CSV files as the table name. Database column names are generated
based on the column headers contained in the CSV extract. The null values in the
CSV file are all set to the database null value and are displayed in a variety of ways
(for example, NA, NR, and space). We have used the Cypher language to write the
script for creating entity nodes from a database, as well as the relationship between
these entities via linking keys.

4 Results and Discussion

4.1 Name Entity Recognition

The OpenNLP multi-token sequence classifier used for NER has shown an accuracy
of 75.4% for the extraction of document level phenotypes. The precision and recall
of the model are 0.5 and 0.4 respectively. The model has been given a note which
is not annotated, and asked to identify the phenotypes without informing the model
which type of cancer it is. One such example is shown in Fig. 2.

4.2 EHRs Visualization by Semantic Retrieval Approach

From a “text-centered” retrieval model to a “things-centered” retrieval approach, the
knowledge graph executes the change. A multi-relational KG containing a total of
368,436 entities and 28 categories, as well as 754,061 quadruplets and 15 types, was
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Fig. 2 NER result

Table 3 Number of entities
for constructed KG

Enity name Number of entities

Profile 6588

Disease 3729

Phenotype 1168

Vitals 5687

SocialHistory 5135

LabTest 278,120

Treatment 63,180

producedvia theKGsynthesis framework.Eachnodehas a special label called aprop-
erty that identified it. The link between these things is described by the quadruplets.
The statistics for nodes are displayed in Table 3.

In this study, we show examples of constructed KG visualisation at both the high-
level and low-level. Our high-level visualisation, which is a partial visualisation
of the Cancer registry data in our KG, is shown in Fig. 3. The number of edges
that are connected to the node, or node degree, is the basis for the visualisation.
The basic data (profile, age groups, disease, primary cancer, chemotherapy regimen,
and therapeutic plan) from the EHRs are shown alongside results that have been
registered. For visual considerations, only the top 300 nodes are shown. 40 and older
is the key age range for enrollments. The bulk of the groups investigated are both
single and married, with targeting solely non-Hispanic populations. Out of all the
trials, five have combined the chemotherapy regimens of docetaxel and cisplatin
(DC), cisplatin-5FU, ACDOC, and carboplaton-VP16, while the remaining studies
use only chemotherapeutic agents such as Bevacizumab, Carboplatin and Casodex.

The low level visualisation of the case query for outcome data is displayed in
Fig. 4. Using the phrase “Chemo regime Failure” as an example, we query the
triplets (subjected-relation-object) based upon the relationship the query ‘PLAN IS
DISCONTINUED’, obtaining details about the continuation of the chemo plan. 20
chemo plan nodes are collected by the results. Nine clinical chemo regimes have been
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Fig. 3 High level context knowledge graph

identified by the examined query, according to the extension of the node-related
association. It implies that a single chemotherapy regimen might be used across
several procedures.

Cypher query command:

MATCH p = ()-[r:PLAN IS DISCONTINUED]→() RETURN p LIMIT 25

5 Conclusion and Future Work

EHRs have a multitude of clinical knowledge, but their usage is incredibly low.
The name “knowledge graph” was coined since this material is typically kept in
graph databases and shown as a graph structure. A brand-new category of knowl-
edge representation technology called KG provides an innovative method for using
EHRs and deep mining. Through the use of knowledge graph approaches, we have
developed a pipeline to directly combine structured data and unstructured language
for application in clinical decision support systems. The learnt patient representa-
tion comprises of medication, diagnosis information, lab test, vital signs from EHRs
and cancer phenotype from unstructured radiology records. A patient’s health status
can be more accurately represented by this concatenation of latent representations
of structured and unstructured data. Thus, it not only facilitates the organisation of
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Fig. 4 KG result of query 25 chemo-regimes with the relationship providing the information
regarding chemo plan continuation

knowledge in the field of cancer research but also lays the way for knowledge extrac-
tion from unstructured radiology reports based on features. More importantly, this
study promotes the development of semantics-focused ontology research. In future,
by adding more instances of each phenotypes we will also enhance the performance
of the NER model. The absence of a thorough assessment of the built KG is another
drawback of this study. So that the KG can be utilised and assessed more extensively,
we plan to develop an interactive knowledge analysis based on the created KG in the
future. To achieve this purpose, We intend to use graph pattern mining methods in
subsequent studies to produce clinical hypotheses drawn from this knowledge graph
that improve comprehension of the patient care trajectory.
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Abstract The aim of this research work was to design, implement, and validate
several fuzzy decision support systems using clusters and dynamic tables. The
outcomes were evaluated with related works obtained from the literature for vali-
dating the proposed fuzzy inference systems—FISs to classify the Wisconsin breast
cancer dataset. Two validation approaches were used in this work. The FISs were
trained with distinct input features, according to the studies obtained from the litera-
ture. The uniqueness of this study remains in the manner of generating the member-
ship functions and the rule base for the intelligent fuzzy clinical decision support
systems. The outcomes showed that the obtained performance metrics in several
issues were higher than the achieved outcomes from the literature, demonstrating
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1 Introduction

Breast cancer is the second most common cancer among women in the United States
(some kinds of skin cancer are the most common [1]). According to [2], these are
some symptoms of breast cancer, a lump or swell in the breast, upper chest, or armpit,
among others. To classify breast cancer fuzzy logic has been used [3, 4].

For the reasons above, the aim of this study was the design, implementation,
and validation of different fuzzy systems using a framework for the development of
data-driven fuzzy clinical decision support systems for classification problems. To
validate the proposed models, fuzzy inference systems—FIS were trained and tested
for classifying the Wisconsin Breast Cancer dataset and evaluated the results with
other artificial intelligence techniques models acquired from the literature.

2 Material and Methods

For validating the framework proposed by [5, 6], different experiments were imple-
mented. Each of the phases that are mentioned in the framework for the development
of the clinical decision support systems through clusters and dynamic tables was
used.

2.1 Identifying the Dataset

The Wisconsin Breast Cancer Dataset (WBCD) [7] comprises 458 benignant
instances and 241 malignant instances. The properties of this dataset are explained
in Ref. [8].

2.2 Data Preparation (Crisp Inputs)

In this phase, the data had to be changed because the dataset has missing values. The
symbol “?” was switched by a number 0. Also, we had to change the class 2 by 1 for
benignant class and 4 by 2 for malignant class. In this stage, the clustering methods
were applied. This step will be described in Sect. 2.7.
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2.3 Reviewing Existing Models

In this stage, a search of the different related works about the topic was carried out.
The indexed databases such as Scopus, Science Direct, among others were used.

2.4 Evaluating the Optimal Number of Clusters

In this stage, pivot tables were applied to the WBCD to know the number of rows
for all the used variables. For the case study, the optimal number of clusters was 10.

2.5 Setting a Number of Clusters (Minimum and Maximum)
According to the Previous Evaluation

The minimum values were 2, and the maximum number of clusters was ten for all
input variables. To the output feature, two clusters were applied.

2.6 Random Permutations

The dataset were randomized and permuted when used the proposed algorithms.

2.7 Cluster Analysis (Fuzzification Process)

In this phase, three clusters methods were applied and analyzed using the results
obtained in the previous stage. The maximum number of clusters for every variable
for each subset was the values of the optimal cluster.

2.8 Sampling Datasets (Cross-Validation or Random
Sampling)

For the experiments, two random sampling methods were applied. In one hand,
random sampling was used, and int the other hand the cross-validation method was
used. The default values for the first data partitionmethodwere training dataset: 70%,
validation dataset: 30%, and number of iterations: 3000. For the cross-validation
process, the k-fold method was selected. The default value of k was 10.
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2.9 Pivot Tables

To the experiments, the “unique” command from the Matlab software was utilized
for the deployment of the subsequent sub-stages. This stage helps to establish the
rules number for the development of the DDFCDSS.

2.9.1 Combining Different Input Variable Clusters Datasets

This phase involves of creating arrangements among input features and the sets of
output features applying dynamic tables.

2.9.2 Stablishing the Fuzzy Rules

This phase is established on the earlier one. The procedures involved using the pivot
tables one or several permutations can be used to make the rule bases for the FIS.

2.10 Elaborating the Decision Support System Based
on Fuzzy Set Theory (Inference Engine)

In this phase, the aim is to put all the elements cited above in the fuzzy inference
system.

2.11 Evaluating the Fuzzy System Performance
(Defuzzification and Crisp Outputs)

This phase is assessing through some performance metrics (showed in Tables 2, 3,
4, 5, 6, 7, 8 and 9). Also, we performed a McNemar’s test.

3 Results and Discussion

Table 1 shows the confusion matrix for the mentioned Data-Driven Fuzzy Clinical
Decision Support System (DDFCDSS).

Tables 2 and 3 show the performance metrics obtained with our proposed frame-
work. The most excellent results for a set of five features were obtained by the Ward
clustering method using Random sampling validation method.
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Table 1 Confusion matrix
for WCDB dataset Specialists

Benign Malign

DDFDSS Benign 455 3

Malign 0 241

Bold text represents accurate forecasts
DDFDSS Data-driven fuzzy decision support system

Table 2 Performance metrics achieved using the proposed framework (cross-validation method)

[5] CV

[2 4 5 6 8] K-means Ward FCM

Num of rules or hidden neurons/technique 248 233 190

Accuracy (%) 99.3 99.4 99.1

Sensitivity 0.9857 0.9853 0.9851

Specificity 0.9969 0.998 0.9939

F-Measure 0.9899 0.9907 0.9868

Area under curve: 0.9933 0.9942 0.9903

Kappa statistics: 0.9845 0.9858 0.9798

CV cross-validation method

Table 3 Performance metrics achieved using the proposed framework (random sampling method)

[5] RS

[2 4 5 6 8] K-means* Ward FCM*

Num of rules or hidden neurons/technique 207 208 168

Accuracy (%) 99.0 99.57 98.43

Sensitivity 0.9916 0.9877 0.9637

Specificity 0.9892 1.0000 0.9956

F-Measure 0.9854 0.9938 0.9775

Area under curve 0.9874 0.9967 0.986

Kappa statistics 0.9778 0.9905 0.9654

RS random sampling
*Significant difference at 95% of the Confidence Interval between them

As can be seen, the DDFCDS had a specificity value of 100%, showing an
excellent performance predicting the true negatives cases of the Wisconsin Breast
Cancer Dataset (WBCD). It means that all malignant cases were classified correctly.
According to the confusion matrix, there are only three true positive values
misclassified corresponding to a sensitivity value of 0.9877.

In the following pages, we are going to compare the results obtained from the
literature with our results. The results shown in the Table 4 correspond to the same
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Table 4 Performance metrics achieved using the proposed framework compared with results
obtained by [8] (cross-validation method)

Onan [8] CV

[1 2 4 5 6 7 8] K-means Ward FCM

Num of rules or hidden neurons/technique FRNN 312 338 260

Accuracy (%) 99.72 98.94 98.53 98.66

Sensitivity 1.0000 0.9703 0.9594 0.9694

Specificity 0.9947 1.0000 1.0000 0.9960

F-Measure 0.9970 0.9849 0.9792 0.9808

Area under curve 1.0000 0.9919 0.9888 0.9880

Kappa statistics 0.9943 0.9768 0.9679 0.9704

FRNN fuzzy rough nearest neighbor, CV cross-validation

Table 5 Performingmetrics obtainedwith our proposed framework comparedwith results obtained
by [8] (random sampling method)

Onan [8] RS

[1 2 4 5 6 7 8] K-means Ward FCM

Num of rules or hidden neurons/technique FRNN 260 253 249

Accuracy (%) 99.72 98.66 98.00 98.28

Sensitivity 1.0000 0.9694 0.9451 0.9526

Specificity 0.9947 0.9960 1.0000 1.0000

F-Measure 0.9970 0.9808 0.9718 0.9757

Area under curve 1.0000 0.9880 0.9737 0.9869

Kappa statistics 0.9943 0.9704 0.9563 0.9624

RS random sampling, FRNN fuzzy-rough nearest neighbor
NSNot Significant difference at 95% of the confidence interval

characteristics made by the researchers using the same dataset (WBCD). We used
the same data partition method, the same features.

According to the results showed in Tables 4 and 5, for theWBCD, the best perfor-
mance belongs toOnan [8]. The author used a tenfold cross-validationmethod as data
partition. As can be seen in Tables 4 and 5, the classification accuracy for his results
was 99.72%, and themaximum value for classification accuracy of our results belong
to the k-means tenfold cross-validation method. The obtained sensitivity value by
the author was 100%; however, his specificity value was 0.9947. Our results show
the contrary. Our Specificity value was 1.0, and the sensitivity value was 0.9703.
The performance metric Sensitivity indicates the true positive (TP) rate, and speci-
ficity means the true negative (TN) rate [9]. According to [9], in Breast Cancer the
TP represents cases that are correctly categorized in the benign tumor, and the TN
represents cases that are correctly categorized in the malign tumor. This result shows
that our model predicts 100% of the true negative values. In this case, we can state
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that if a tumor is malignant, the fuzzy inference system is going to be classified as
malignant with a 100% of accuracy.

Making the comparison between the three clustering methods results, we found
that McNemar’s test indicated that all of them don’t perform significantly better than
the other, indicating that all the DDFCDSS have the same classification error rates.
The test results were Ward vs. k-means: X2

1 = 0.0455; k-means vs. FCM: X2
1 = 0.0,

and Ward vs. FCM: X2
1 = 0.12903, respectively.

According to Tables 6 and 7, Zemouri et al. [10] proposed a Breast Cancer
ComputerAidDiagnosis (BC-CAD)based on joint variable selection and aConstruc-
tive Deep Neural Network “ConstDeepNet”. The authors used fivefold cross-
validation as a partition datamethod. The classification accuracy for the set of features
mentioned in Tables 6 and 7, is 96.2%. Our results were higher than the obtained
for these authors. Our classification accuracy using Cross-validation data partition
method with k = 5 was 98.37%. For the comparison among the three clustering
approaches, the McNemar’s test outcomes are the following: K-means vs. Ward:
X2
1 = 0.3636; k-means vs. FCM: X2

1 = 1.8947, and Ward vs. FCM: X2
1 = 0.5625,

indicating no significant differences between them. For the case of the second set of
features used by the authors (Tables 8 and 9), the obtained classification accuracy
by the constructive deep neural network was 96.6%. Our results for the same set of
features were higher than the obtained by the authors. Regarding the McNemar’s
test results for the three clustering methods, they indicate that there is no significant
difference among them. The test values are k-means vs.Ward: X2

1 = 0.3636; k-means
vs. FCM: X2

1 = 1.8947; Ward vs. FCM: X2
1 = 0.5625.

Table 6 Performance metrics achieved using the proposed framework compared with results
obtained by [10] (cross-validation method)

[10] CV

[1 4 5 6 8 9] K-means Ward FCM

Num of rules or hidden neurons/technique DNN 198 214 199

Accuracy (%) 96.2 98.37 98.26 98.31

Sensitivity – 0.9713 0.9736 0.9621

Specificity – 0.9903 0.9873 0.9947

F-Measure – 0.9765 0.9747 0.9759

Area under curve – 0.9832 0.981 0.9848

Kappa statistics – 96.40% 96.14% 96.29%

DNN deep neural network, CV cross-validation



548 Y. F. Hernández-Julio et al.

Table 7 Performance metrics achieved using the proposed framework compared with results
obtained by [10] (random sampling method)

[10] RS

[1 4 5 6 8 9] K-meansNS WardNS FCMNS

Num of rules or hidden neurons/technique DNN 192 193 180

Accuracy (%) 96.2 99.00 98.86 98.86

Sensitivity – 0.9875 0.9915 0.9794

Specificity – 0.9913 0.9870 0.9934

F-Measure – 0.9854 0.9832 0.9835

Area under curve – 0.9884 0.9844 0.9883

Kappa statistics – 97.8% 97.45% 97.47%

RS random sampling. – not mentioned in the literature, DNN deep neural network
NSNot significant difference at 95% of the confidence interval

Table 8 Performance metrics achieved using the proposed framework compared with results
obtained by [10] (cross-validation method)

[10] CV

[1 2 5 6 7 8] K-means Ward FCM

Num of rules or hidden neurons/technique DNN 212 221 147

Accuracy (%) 96.6 98.63 98.51 96.25

Sensitivity – 0.9684 0.9684 0.959

Specificity – 0.996 0.9943 0.9646

F-Measure – 0.9803 0.9787 0.9448

Area under curve – 0.9878 0.9861 0.9552

Kappa statistics – 96.98% 96.73% 91.65%

DNN deep neural network. CV cross-validation

Table 9 Performance metrics achieved using the proposed framework compared with results
obtained by [10] (random sampling method)

[10] RS

[1 2 5 6 7 8] K-meansNS WardNS FCMNS

Num of rules or hidden neurons/technique DNN 183 198 178

Accuracy (%) 96.6 99.00 98.86 98.00

Sensitivity – 0.9875 0.9794 0.9595

Specificity – 0.9913 0.9934 0.9912

F-Measure – 0.9854 0.9835 0.9713

Area under curve – 0.9884 0.9883 0.9808

Kappa statistics – 97.8% 97.5% 95.6%

RS random sampling, – not mentioned in the literature, DNN deep neural network
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4 Conclusions

The objective of this research work was the design, implementation and valida-
tion of the diverse decision support systems based on a fuzzy set theory applying
clustering methods and pivot tables. As could be demonstrated, in some cases, the
proposed fuzzy models showed the best performing indices related to this dataset,
surpassing the outcomes obtained from advanced artificial intelligence techniques
(deep learning). The achieved outcomes for the used metrics were closer to 100%,
indicating a strong fit between the forecast results and the studied data. The obtained
performance metrics for this dataset were between 0.90 and 1.0, representing an
excellent classification task [11]. The chosen features shown in Tables 2 and 3 using
both data partitionmethodswere:Uniformity ofCell Size,MarginalAdhesion, Single
Epithelial Cell Size, Bare Nuclei, Normal Nucleoli, In this case, it is not essential
to perform the process of mitosis, reducing waiting times for the decision-making,
accelerating a probable treatment [5, 12]. According to the McNemar’s test results
for the three clustering methods, the k-means have significant difference at 95% of
the confidence interval with the FCM clusters method (X2

1 = 5.7857), indicating
that these two clusters’ methods have different error rate. For the other two clusters
methods the test evidenced that the clustering methods did not perform significantly
different.
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Research on the Design and Production
of VR Rehabilitation Game
for Parkinson’s Disease Patients Based
on Real-Time Action Acquisition

Ying Zhang, Xin Su, and Xibin Xu

Abstract Aiming at the symptoms such asmotor retardation of Parkinson’s patients,
this paper studies real-time motion acquisition based on Kinect equipment, and
designs remote virtual reality (VR) rehabilitation games using Unity as well as visual
studio programming tools to help patients perform interesting rehabilitation move-
ment exercises. It also stores the game score data obtained through the relevant
database platform, forming the patient rehabilitation training results. Finally, this
result will be used as the basis for the evaluation of VR rehabilitation games and
serves as a long-term rehabilitation auxiliary treatment mechanism for Parkinson’s
patients.

Keywords Virtual reality · Parkinson’s · Rehabilitation games

1 Introduction

1.1 Rehabilitation Treatment of Parkinson’s Disease

Parkinson’s disease [1] is a disease based on neuropathy, and the onset age of most
people is about 60 years old. Parkinson’s patients have the symptoms of dyskinesia,
which is due to the loss of dopaminergic neurons in the substantia neuropathology
of the patient’s midbrain. It will lead to the reduction of dopamine production in
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the midbrain, resulting in increased muscle tone, tremor, slow movement, and dyski-
nesia. China has the largest number of Parkinson’s patients in theworld. According to
the prediction of experts from the World Health Organization, about 500,000 people
in China will suffer from this disease by 2023. Although there are about 100,000 new
patients every year, the medical treatment rate in China is extremely low, accounting
for only 40% of them. Only when patients with Parkinson’s disease carry out appro-
priate activities can their dyskinesia symptoms be effectively alleviated. They need
to choose appropriate sports according to their own conditions or doctor intervention,
such as table tennis and swimming for patients who are not too old. Older patients can
do yoga and catch butterflies slowly. Only when patients choose appropriate rehabil-
itation exercise, can it be carried out correctly and normatively, and combined with
doctors’ suggestions, they can get twice the result with half the effort. At present,
Parkinson’s disease is not completely curable. Once the elder suffer from this disease,
they generally need to take active rehabilitation exercises. In view of the traditional
“one-to-one” rehabilitation mechanism for Parkinson’s disease patients, rehabilita-
tion practitioners will not be able tomeet the doubled number of elder patients, which
will lead to the shortage of health care workers for rehabilitation training, and greatly
reduce the rehabilitation efficiency. At the same time, elder patients not only have
time and space limitations that will bring inconvenience to the tracking and feedback
of medical staff and the follow-up of their conditions, but also from the perspective
of patients, the long-term quantitative training content is boring, which is easy to put
pressure on the spirit and psychology of elder patients and bring economic stress.
Therefore, it is particularly important for the elder patients with Parkinson’s disease
to achieve the rehabilitation effect through virtual reality game training.

1.2 Rehabilitation Therapy with Kinect

In recent years, Kinect, a depth camera, has been widely used in the medical field [2–
5]. Many scientific research institutions at home and abroad are using it to carry out
relevant research, develop sports games with Kinect, and help patients with move-
ment disorders to carry out rehabilitation treatment. The Royal Berkshire Hospital
in the UK [6] used the game developed by Kinect to help stroke patients regain their
athletic ability. Southampton University [3] also developed a technology based on
Kinect to help stroke patients recover. The Hong Kong Polytechnic University [7]
developed kinelabs somatosensory games to train the sports ability of stroke patients
and help them recover. A company inHangzhou has developed an “intelligentmotion
analysis and training system” [8] that converts the control of human motion into
the supervision of limb motion. It has been released and put into clinical practice
in Zhejiang Provincial People’s Hospital and other hospitals. Fahmy [9] and others
have successfully developed a shoulder rehabilitation system in their research, which
improves the rehabilitation speed and reduces the possibility of secondary injury by
setting corresponding parameters in combination with various situations.
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1.3 Effects of VR Rehabilitation Games on Parkinson’s
Patients

VR technology acts on users through perception. With the help of necessary equip-
ment, the user [10]maps himself into the virtual scene, communicateswith the objects
in the scene, and makes them experience their surroundings, thus making the feeling
of human–computer interactionmore real. Today, VR technology has been applied to
all aspects of rehabilitation treatment, similar to the rehabilitation of motor disorders
in upper limb imbalance, cognitive rehabilitation in attention focus, and emotional
rehabilitation in depression, all of which have achieved good rehabilitation effects
[11]. Among them, rehabilitation training of motor dysfunction is one of the impor-
tant contents of rehabilitation medicine [12, 13]. Based on the control experimental
research, it has been proved that by selecting appropriate games as references and
integrating safety and intensity according to the characteristics of medical rehabili-
tation assistance needs, gait balance and cognitive functions of Parkinson’s patients
can be improved more than traditional gait training.

1.4 VR Rehabilitation Games can be Played Remotely
with the Help of the Network

With the rapid development of 5G technology, some problems such as slow loading
caused by data transmission quality in the past have been fully delayed. Zhejiang
Mobile and Wenzhou central blood station have made concerted efforts to build
an “information highway” that applies 5G to free blood donation for smart blood
stations. By providing 5G+ VR panoramic experience in blood donation rooms and
other areas, when blood donors wear VR glasses that experience every brilliant
moment from an all-round perspective, they reduce their tension when donating
blood.Theultra bandwidth transmission of 5Gnot only effectively solves the problem
of strong dizziness caused by the use of helmets, and makes them more relaxed in
the process of blood donation, but also narrows the psychological distance between
doctors and blood donors. In addition, Hangzhou people’s Hospital also released
the VR psychological rehabilitation diagnosis and treatment system based on the
clinical project of 5G technology. With the arrival of 5G era, telemedicine came into
being, and the distance between patients and hospitals has been greatly reduced. In
addition to remote surgery and video consultation becoming research hotspots in the
medical field, rehabilitation medicine will also become an indispensable part of the
follow-up development. 5G technology undoubtedly provides timely assistance for
the development ofVR. In terms of data transmission,while 4Goffered themaximum
data rate of 150 Mbps per user under ideal conditions, 5G promises 10Gbps under
the same conditions. In terms of delay, compared with 100 ms for 3G and 30 ms
for 4G, 5G promises 1 ms. In connection density, 4G could connect 100 thousand
devices per square kilometer, while 5G promises to connect 1 million per square
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kilometer. In a word, the above advantages help the panoramic virtual reality scene
in the telemedicine game that need higher resolution and transcoding rate.

2 Virtual Reality Rehabilitation Game Design

2.1 System Architecture of Butterfly Catching Game

The overall structure of the game is shown (see Fig. 1). The basic idea of the reha-
bilitation game is that the patient stands on the grass, and there are many butterflies
around him at random. After catching butterflies with his fingers for 5 s, the butter-
flies disappear, and the number of butterflies he catches is calculated. The game
logic mainly controls the number of butterflies, simulates the flying of butterflies,
and detects the realization of catching butterflies.

HTC VIVE

Rehabilitation Training of Parkinson s disease 
patients

Store game 
scores

Kinect

Head 
positioning

Loading of Unity3D virtual scene to drive people to move in real time

Patient login or 
register

Succeed

Butterfly recovery 
game

Acquisition of 
bone point data

Bone skinning 
and binding

Evaluation given by 
system or physician

Doctor login or 
registration

Succeed

Restart the game

Fig. 1 System architecture of butterfly catching game
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2.2 Control the Number of Butterflies

Use the for loop to traverse the butterflies in the scene.When the number of butterflies
set is less than the existing butterflies, the cloning function will be automatically
triggered. First, the butterfly is made into a preform, and then the preform is cloned
using the “instantate” function.

2.3 Function Design for Simulating Butterfly Flying

In order to achieve the goal of simulating butterfly flying, customize butterfly flying
and rest parameters. Judge whether the butterfly model is empty. If not, get the flying
speed of the butterfly component and turn off the rest parameters.

2.4 Realization of Detecting and Catching Butterflies

The realization of catching butterflies is based on collision detection. Any collision
detection has two carriers, one is to initiate the collision and the other is to accept
the collision. The collision effect is like that the protagonist is a rigid body and the
hand is a collision body. The protagonist will disappear after touching the hand. First,
add rigid bodies to the fingers of the butterfly preform and manikin. Then we add a
collision body to the butterfly, and a script to the character to monitor how long the
character has been touched by which butterfly.

2.5 Design of Database

The design of the rehabilitation game table is shown in Table 1. This task is to create
a simple login and registration interface. The system can determine whether the user
already exists when clicking the login button, and if so, log in directly and load the
user’s data. If the user does not exist, it will prompt login failure.When the user clicks

Table 1 Butterfly catching
system database table

Field Field type Remarks

User-id Int(8) Primary key

Username Varchar(32) Foreign key

Password Varchar(32) Foreign key

Gender Char(4) Foreign key

Score Int(8) Foreign key
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the register button, it will judge whether the user already exists. If the user already
exists, the system will prompt “registration failed, the user name already exists”. If
the user does not exist, it will prompt “registration succeeded”. After the user logs
in successfully, the game scene is loaded. In the game scene, In the game scene, it
can realize that every time you catch a butterfly, the butterfly will disappear and the
score will be increased by one.

3 Rehabilitation Game Making Based on Virtual Reality

3.1 Unity3D Components

Each complete Unity3D game is composed of several game scenes, game objects
and game components. The game scene is composed of several game objects, and the
game objects are composed of several components. All game objects can be created
on the hierarchy panel, and all game resources can be managed in the project view.
Components are also called scripts. There are some parameters on each component
that can be selected or designed. For example, the transform component is available
to all game objects and cannot be deleted. It is used to record the coordinates, rotation
and zooming information of game objects in the 3D world.

3.2 Scene Production of Rehabilitation Games

The login scenario of the game is shown (see Fig. 2). After the patient logs in, it
will automatically shift to the main scene of the game, as shown (see Fig. 3). When

Fig. 2 Login page of the game
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Fig. 3 Scene of the game of catching butterflies

patients do rehabilitation training in an open room for a while, theywill inevitably get
bored. Therefore, starting from the patient’s experience and use effect, this system
focuses on improving the delicacy of face-to-face pictures and interactions of patients
during use, such as beautiful scene building and model rendering, and is committed
to improving the patient’s experience during long-term rehabilitation. In the rehabil-
itation game, this paper uses the terrain production of Unity3D to simulate the wild
butterfly flying environment and feel the beauty of nature. The inconsistent direction
of butterflies increases the spontaneity of patients’ movement and allows them to
enjoy a comfortable time.

3.3 Scene Production of Rehabilitation Games

The patient reaches the virtual environment by using HTC VIVE, a device that can
read the user’s position coordinates in space. Then kinect collects depth information
7 through infrared information, recognizes other people’s body parts according to
machine learning algorithms, and thus obtains 25 bone point coordinates. Kinect is
used to capture human actions in real time, and the captured bone information is
transmitted to Unity in real time. Unity assigns the obtained data processing to the
character model in the demo, so as to realize real-time synchronization of human
actions to virtual characters. The specific character animation model is shown (see
Fig. 4). The connection process between Kinect and Unity is as follows: First, install
Kinect SDK on your computer. Then, in the Unity3d project, import the Carnegie
Mellon plug-in. Create an empty object in the scene and hang the Kinect manager
script on it. Finally, drag the “avatarcontroller” script onto the character model.
In order for the virtual character model to keep up with the rhythm of the actual
character, you need to drag and drop the key skeleton points on the model that
control the movement of the model to the appropriate variables in the control script,
that is, bind the skeleton points recognized by Kinect to the skeleton points in the
model. Part of the skeleton points of the model are shown (see Fig. 5). After binding
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Fig. 4 Character animation model

Fig. 5 Some bone points in the character animation model

the skeleton points, you can use Kinect to control the movement of the characters in
Unity.

4 Rehabilitation Game Making Based on Virtual Reality

In this paper, the design and production of VR rehabilitation games for Parkinson’s
disease patients are described, and in combination with the rapid development of
5G wireless communication, it is proposed that Parkinson’s disease patients can
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be rehabilitated through remote VR rehabilitation games to achieve the purpose of
reducing movement disorders. At the same time, the design and implementation of
the main functions of the system, as well as the relevant manufacturing technologies
are briefly described. In order to achieve a better immersion effect, this paper analyzes
and compares the current game development engines such as Unity3d game engine,
and completes the design and production of butterfly catchingVR rehabilitation game
based on Kinect. The running effect shows that the VR rehabilitation game designed
and made for Parkinson’s disease patients is remote, efficient and easy to operate.
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Force-Directed Graph Layout Based
on Community Discovery and Clustering
Optimization

Linshan Han, Beilei Wang, and Songyao Wang

Abstract In order to visualize the important information in the knowledge graph
and visualize the graph data constituting the knowledge graph for visual analysis, this
paper optimizes and combines the Louvain algorithm and the force-directed graph
algorithm to propose a force-directed graph layout based on community discovery
and clustering optimization for the graph data. This paper uses the pruning idea
to optimize the calculation steps and the community merging in the Louvain algo-
rithm and obtains a community discovery algorithm that is more efficient and more
conducive to optimizing the effect of graph layout, and introduces group elements
into the force-directed graph layout to represent the community structure in graph
data and implement group-based clustering optimization, so that the force-directed
graph layout can clearly display the discovered community structure analyzed by the
community discovery algorithm when displaying graph data, and optimize the effect
and readability of the graph layout for visual analysis.

Keywords Visualization · Force-directed graph layout · Louvain algorithm

1 Introduction

The knowledge graph is an effectivemethod for organizing knowledge in the fields of
biological networks, and the visualization has also be-come an important technology
for displaying and analyzing the information contained in the knowledge graph [1].
Data visualization technology can convert data into graphics or images to visually
display the effective and valuable information in the data, which will play an impor-
tant role in data analysis and mining [2]. Graph data is an important data structure
in the knowledge graph. The algorithm for realizing the visualization of graph data
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is the graph layout algorithm [3]. The node-link graph layout is a commonly used
graph layout algorithm to reflect the data entities and entity relationships in graph
data and to support graph-based network search, which uses nodes and links between
nodes to reflect data entities and entity relationships [4]. When the node-link graph
adopts a random layout, although the nodes and the edges of the link nodes can be
drawn, the chaotic layout effect presented makes it difficult for the observer to read
the information and structure in the graph data, and to make correct judgments and
analysis. Therefore, in order to generate a layout with clear visual effects and easy to
read and understand, common implementations of node-link graphs include force-
directed graphs [5, 6], tree graphs [7, 8] and combinations with other visualization
methods [9, 10].

In order to realize a graph layout that can fully mine and display the graph data
constituting the knowledge graph andmake the graph layout have a good layout effect
[11], this paper proposes a force-directed graph layout algorithm based on commu-
nity discovery and clustering optimization. Firstly, this paper uses the pruning idea
to realize the community discovery process of graph compression for leaf nodes
and selective community merging, thereby improving the computational efficiency
and optimizing the community discovery results of the traditional Louvain algo-
rithm. Secondly, using the clustering optimization idea, this paper introduces group
elements into the force-directed graph of the traditional FR (Fruchterman-Reingold)
model and implements a force-directed graph layout based on group-based clustering
optimization, which optimizes the effect and readability of the graph layout.

2 Related Work

Community discovery is an indispensable technology for the study of the knowledge
graph [12]. Louvain algorithm is a community discovery algorithm that performs
well in both computational efficiency and discovery effect. In the community struc-
turewith largemodularity, the similarity of nodes inside the community is high,while
the similarity of nodes outside the community is low, which is a better community
discovery result. Therefore, Louvain algorithm discovers a good community struc-
ture by discovering the maximum modularity, that is, by calculating the change of
the modularity (ΔQ) and finding the maximum modularity change (maxΔQ), and
gradually make the community discovery result close to the community structure
that maximizes modularity [13]. The Louvain algorithm can be divided into 2 stages
[14]. The first stage of Louvain’s algorithm regards each node in the graph data
as an independent community and traverses the nodes in the graph data, and then
assigns the traversed nodes to the community where each neighbor node is located
and calculates ΔQ respectively. Find maxΔQ, if maxΔQ > 0, it proves that the allo-
cation method when maxΔQ is realized can increase Q and can increase Q to the
maximum, so implement this allocation method and update the community struc-
ture, otherwise the community to which the node belongs will remain unchanged.
When all the nodes in the graph are traversed and the communities to which all the
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nodes belong no longer change, the communities are compressed into equivalent
nodes. The sum of the internal edge weights of the community is converted into the
self-loop edge weights of the new nodes, and the sum of the edge weights between
the communities is converted into the edge weights between the corresponding new
nodes, thus forming a new compressed graph. The second stage of the Louvain algo-
rithm will continue to iterate the first stage algorithm of the Louvain algorithm until
the modularity no longer increases so as to continuously approach and finally obtain
the community discovery that maximizes modularity.

The force-directed graph layout is a common and popular node-link graph layout
method, and its mechanical model principle can be summarized as follows: Let there
be a repulsive force between any two nodes so that they are not too close together,
and let there be an attractive force between two nodes with edges so that they are not
too far apart. All nodes move under the interaction force, and the optimal layout is
obtained when the system reaches force equilibrium and is stationary. The maturity
of force-directed graph layout technology stems from the continuous research and
improvement of scholars, such as the Eades model [15], the KK (Kamada-Kawai)
model [16] and the FR (Fruchterman-Reingold) model [17]. In order to improve
the convergence speed of the force-directed graph and optimize the final layout
effect, researchers have proposed a variety of optimization strategies, such as the
Multidimensional Scaling algorithm (MDS) [18], the Multilevel Algorithm [19],
the Constrained Graph Layout algorithm [20], and the community gravity directed
algorithm [21].

3 The Algorithm

3.1 Problems of Louvain Algorithm and the Optimization
Idea Based on Pruning Idea

In the traditional Louvain algorithm, it is necessary to traverse each node to calculate
ΔQ, and in the second stage, multiple iterations are required until the modularity Q
does not increase anymore. Therefore, the operational efficiency of Louvain algo-
rithm will be greatly affected when the scale of graph data is large [22]. In addition,
community discovery thatmaximizesmodularity is not exactly equivalent to commu-
nity discovery that has the best visual layout, it may cause a large number of nodes in
the graph data to gather in the same community after the iteration, which reduces the
aesthetics of the graph layout and increases the difficulty of correct visual analysis.
Therefore, in order to improve the computational efficiency of Louvain algorithm
and the readability of force-oriented layout, this paper uses the optimization idea of
pruning proposes an improved Louvain algorithm through graph compression for
leaf nodes and selective community merging.

Graph compression for leaf nodes is a key improvement over the traditional
Louvain algorithm. Define the node with only one edge in the graph data as a leaf



564 L. Han et al.

node. Since a leaf node can only belong to the community of its uniquely linked
neighbor node, the optimization idea of pruning can be adopted to directly assign
the leaf node to the community of its neighbor node, which avoids unnecessary
modularity-related computations of leaf nodes and improves algorithm efficiency.
Selective community merging is also a key improvement over the traditional Louvain
algorithm. Since the community structure in the first stage can be regarded as a proto-
type of a community structure that is likely to maximize modularity, the optimization
idea of pruning can be used to propose a selective community merging algorithm to
replace the iterative communitymerging process in the second stage of the traditional
Louvain algorithm, that is, a community merger method that tries to avoid mergers
between large communities and promote mergers between small communities and
large communities or mergers between small communities. This avoids the calcu-
lation related to the community merging method that will affect the visual layout
effect, and the large amount of calculation generated by the iterative process, and
improves the efficiency of the algorithm.

3.2 Implementation of Improved Louvain Algorithm

Graph data for community discovery can usually be defined as G(V, E), where V
represents a node in the datamodel, andE represents an edge in the datamodel, which
is represented from a source node to a target node, and the default edge weight is 1.
The implementation steps of the improved Louvain algorithm on the graph data (G)
are as follows.

Before the first stage of the improved Louvain algorithm, the graph compression
for leaf nodes is performed by directly dividing the leaf nodes into the community
represented by their only connected neighbor nodes, and use themethod of generating
equivalent nodes in the traditional Louvain algorithm to compress all nodes in each
community into an equivalent node to obtain a new compressed graph. Then the
same computation as the first stage of the traditional Louvain algorithm is performed
on the new graph to find the community structure that maximizes modularity and
compress each community into equivalent nodes.

The second stage of the improved Louvain algorithm uses selective community
merging to replace the second-stage iteration process of the traditional Louvain algo-
rithm. First, the nodes in the new graph formed by the first stage of the improved
Louvain algorithm are divided into core nodes and non-core nodes. The core node is
the node representing the prototype of a large community. The degree of a node can
be regarded as the number of associations with other communities, the greater the
degree of a node, the easier it is to become the core of a large community containing
many closely related nodes. Therefore, whether a node is a core node is judged by
the degree of the node, and the judgment formula is as Formula 1, where v represents
the traversed node in G, deg(v) is the weighted degree of v (equivalent to the sum
of the weights of various edges of v), g is the average of node degrees in G, p is the
standard deviation of node degrees in G.
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deg(v) > g + p (1)

Then traverse the non-core nodes in the new graph. For the traversed node i,
in order to be more likely to achieve a community structure that maximizes the
modularity, first divide the node i into the community of the neighbor core node, and
find the community division that achievesmaxΔQ.When the neighbor core node that
increasesQ cannot be found, in order to reduce the occurrence of too many scattered
small communities, then divide the node i into the community of the neighbor non-
core node, and find the community division that achieves maxΔQ. If the neighbor
non-core node that increasesQ still cannot be found, the community to which node i
belongs remains unchanged. When all non-core nodes are traversed in this way and
the community to which they belong does not change, a community structure with
large modularity will be found.

The specific steps of the improved Louvain algorithm are as follows:

Input: Graph data G(V, E) with adjacency list structure
Output: Community structure C of graph data G
Step 1: Initialize each node in G as a community and traverse the nodes in G.
Step 2: For node i (i ∈ V ), when i is a leaf node, divide i directly into its neighbor
community; when i is a non-leaf node, if ΔQ > 0 exists after i is divided into its
neighbor community, divide i into the community that realizesmaxΔQ; otherwise,
the community of i remains unchanged.
Step 3: Repeat Step 2 until the community structure no longer changes.
Step 4: Save the community structure C at this time, compress each community
into each equivalent point to obtain a compressed new graph G′(V ′, E′), traverse
the nodes inG′, determine whether the node is a core node, and store it in the core
node set K and the non-core node set N (N = V ′ − K).
Step 5: Traverse the nodes in the non-core node setN. For node i′ (i′ ∈N), when i′
is a leaf node, divide i′ into its neighbor community directly; when i′ is a non-leaf
node, if ΔQ > 0 exists after i is divided into its neighbor core community, divide
i into the community that realizes maxΔQ; otherwise, if ΔQ > 0 exists after i is
divided into its neighbor non-core community, divide i into the community that
realizes maxΔQ; otherwise, the community of i remains unchanged.
Step 6: Repeat Step 5 until the community structure no longer changes.
Step 7: Update and output the community structure C at this time. The algorithm
is over.

3.3 Problems of Force-Directed Graph Layout
and the Clustering Optimization Idea

The existing optimization strategies of force-directed graph layout usually only adjust
the mechanical model, and the geometric distance of nodes in the layout formed by
the mechanical model often has a certain error with the path length between nodes in
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the graph data.Moreover, when optimizing themechanical model, it often only relies
on the basic attributes of nodes and edges in the graph data, and does not analyze and
mine the information contained in the graph data. These will not only make the final
graph layout insufficient to display the graph data analysis results, but also affect
the understanding and judgment of observers when using the graph layout for visual
analysis.

Since the community structure is an important data analysis attribute of the knowl-
edge graph and the division of the community of nodes in the graph data by the
community discovery algorithm is very consistent with the node clustering of the
force-oriented graph layout, this paper introduces group elements into the FR model
to realize the optimization and adjustment of the mechanical model, and let the
grouping elements correspond to the community structure obtained by the improved
Louvain algorithm. This optimizes the layout effect and the optimized direction is
more consistent and fully displays the information contained in the graph data.

3.4 Group-Based Clustering Optimization Implementation

In order to enable the force-directed graph layout to display the community structure
of graph data, this paper adds group elements representing the community on the basis
of the node elements and edge elements contained in the force-directed graph layout
of the traditional FR model to guide the clustering optimization of the force-directed
graph layout, which is implemented as follows:

The grouping element represents the community entity in the graph data. Just like
the Louvain algorithm can regard the community as an equivalent point, the model
and rendering method of group elements can also be implemented with reference to
node elements in the force-directed graph layout, which is represented as a circle
surrounding the node element in the group. In order to achieve group-based clustering
optimization, it is necessary to make the nodes in the same group as clustered as
possible, and to avoid overlapping between different groups as much as possible.
Therefore, this paper defines the force-directed model based on the FR model.

There is a repulsive force Fr between all nodes, and an attractive force Fa between
nodes connected by edges.

{
Fr = Kr

r2

Fa = Ka×r
∂(c)

(2)

The calculation formula is as Formula 2, where r is the distance between two
nodes; Kr and Ka are the coefficients that control the strength of the attractive and
repulsive forces; in order to distinguish different communities, it is necessary to keep
the nodes of different communities as far away as possible, that is, to attenuate the
attractive force between nodes that are connected by edges but belong to different
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communities, so ∂(c) indicates whether the nodes belong to the same community,
the same is 1, otherwise it is the attenuation coefficient C.

In order to make the nodes in the same group gather as much as possible, this
paper refers to the force-directed model with gravity, and adds an intra-group gravity
Fc to the grouped element from the average position center of the nodes in the group.

Fc = G × deg(v) (3)

The calculation formula is as Formula 3, where G is the gravity coefficient that
controls the tightness of the internal layout of the group; deg(v) is the degree of the
node, which represents the core degree of the node, making the core node in the
community closer to the center of the community element.

4 Experimental Results and Analysis

In order to verify the algorithm implemented in this paper, this paper uses real large-
scale undirected graph datasets such as Zachary karate club, Dolphins, Lesmis and
Facebook as the validation of this experiment. The characteristics of these datasets
are shown in Table 1. We experimented and compared the community discovery
effects of the traditional Louvain algorithm and the improved Louvain algorithm
proposed in this paper on these datasets. The evaluation indicators of the effect are
the modularity Q, the number of communities N, and the running time T of the
algorithm. Q and N reflect the discovered community structure. The larger the Q,
the better the obtained community structure, and the smaller the T, the higher the
efficiency of the algorithm.

The experimental results are shown in Table 2. It can be seen that the modularity
Q obtained by the improved Louvain algorithm is improved compared with the
traditional Louvain algorithm, which means that a better community structure can
be found. And the computational efficiency of the improved algorithm is improved,
and as the scale of the graph dataset becomes larger, the computational efficiency is
improved more significantly.

Then we visualized the Zachary karate club, Dolphins and Lesmis datasets and
used colors to distinguish different communities of the graph data. We adopted three
forms of graph layouts for visualization, namely the traditional louvain algorithm,

Table 1 Dataset information

Dataset information Dataset name

Zachary karate club Dolphins Lesmis Facebook

Number of nodes 34 62 77 2888

Number of edges 78 159 254 2981

Proportion of leaf nodes (%) 2.94 14.52 22.08 96.61
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Table 2 The experimental
results

Evaluation
index

Dataset Improved
Louvain

Traditional
Louvain

Q Zachary karate
club

0.4198 0.3807

Dolphins 0.5188 0.4955

Lesmis 0.5583 0.5006

Facebook 0.8087 0.8086

N Zachary karate
club

4 3

Dolphins 5 4

Lesmis 6 5

Facebook 8 8

T (s) Zachary karate
club

0.001990 0.002950

Dolphins 0.003751 0.005941

Lesmis 0.004032 0.009932

Facebook 0.064841 16.556743

(b) the traditional force-directed graph layout for the improved louvain algorithm,
and (c) the force-directed graph layout based on group-based clustering optimization
for the improved Louvain algorithm. The visualization results are shown in Figs. 1,
2 and 3 in turn.

As can be seen from Figs. 1, 2 and 3, the community structure found by the
improved Louvain algorithm is obvious, and the distribution of nodes among the
communities is more uniform. And the improved grouping-based clustering opti-
mization force-directed graph layout can further highlight the community structure
of graph data, which is helpful for observers to perform visual analysis.

Fig. 1 The three forms of graph layouts for the Zachary karate club
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Fig. 2 The three forms of graph layouts for the Dolphins

Fig. 3 The three forms of graph layouts for the Zachary karate club

5 Conclusion and Future Work

This paper optimizes and combines the Louvain algorithm of the traditional commu-
nity discovery algorithmand the force-directed graph of the classical node-link graph,
and proposes a force-directed graph layout based on community discovery and clus-
tering optimization. Experiments show that the method in this paper has a higher rate
of community discovery, the discovered community structure has better modularity
and visualization effects, clustering optimization guided by the obtained commu-
nity structure can improve the readability of force-directed graph layout, and while
optimizing the layout effect, it is more helpful to analyze and understand the graph
data. In the future, we will continue to research and improve this algorithm, such as
further optimizing and reducing the influence of overlapping graphics on the effect
of graph layout and establishing a more comprehensive and objective visual layout
evaluation index to guide the realization of automatic map layout.
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Comprehensive Strategy to Screen
the Ankylosing Spondylitis-Related
Biomarkers in the Peripheral Serum

Zhenrun Zhan, Xiaodan Bi, Xu Tang, and Tingting Zhao

Abstract Ankylosing spondylitis (AS) is one of themain research priorities in spine
surgery and rheumatology, and available research suggests that AS can be strongly
associated with genetic, environmental, immunological and endocrine pathological
factors. It is meaningful that exploring differential genes associated with ankylosing
spondylitis (AS) through bioinformatics strategies to find novel diagnostic markers
for the disease. Methods: The GSE25101 dataset was downloaded from the GEO,
screened for DEGs, and then subjected to GO and KEGG enrichment analysis. Next,
five algorithms, WGCNA, RF machine learning algorithm, SVM-RFE algorithm,
protein–protein interaction network (PPI) analysis, and LASSO logistic regression
were used to screen new and critical biomarkers of AS. Results: We performed GO,
KEGG, DO and GSEA enrichment analysis with 62 screened DEGs to explore their
interactions with biological functions, mechanisms of action and related diseases.
The results suggest that multiple signaling pathways enriched by DEGs may be inti-
mately involved in the onset and procession of ankylosing spondylitis. In addition,
combiningmultiple algorithms, PTPN1was determined to be a promising biomarker
in the serumofASpatients and showed good diagnostic value. Conclusion: In conclu-
sion, we used a holistic approach to select for biomarker associated with ankylosing
spondylitis, and PTPN1 may serve as a novel diagnostic marker associated with
peripheral blood AS disease.
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1 Introduction

Ankylosing spondylitis (AS) is a disabling disease of unknown etiology with inflam-
mation of the sacroiliac joints and spinal attachment points as the main symptom,
mostly seen in men, and its onset tends to be younger [1]. AS is one of the
research priorities in spine surgery and rheumatology, and the available studies have
shown that AS is mainly associated with genetic, environmental, immunological
and endocrine pathological factors [2–4]. Currently, biomarkers for the early diag-
nosis and treatment of AS are still lacking in the clinical setting, and therefore it
is necessary to explore important targets related to AS. As technology continues
to mature and evolve, whole genome sequencing for many diseases is available,
in recent year. One study used cRNA microarray technology for detecting cRNA
expression in peripheral blood of AS patients and found that ring RNA may be an
important marker for the diagnosis and progression observation of AS [5]. Applica-
tion of single-cell sequencing technology inAS disease further reveals the underlying
mechanisms of AS progression [6]. Bioinformatics analysis can be used to screen
for promising biomarkers for various oncological and non-oncological diseases [7,
8]. First, we downloaded the GSE25101 dataset from NCBI’s GEO database. Then,
we screened differentially expressed genes from it, further constructed a weighted
gene co-expression network, and combined with other algorithms to select core
genes, which are the candidate markers we were looking for. Finally, we explored
the possible functions of the biomarkers through various functional and pathway
enrichment analyses to offer novel ideas on early diagnostics and therapies for AS.

2 Materials and Methods

2.1 Data Collection and Processing

First, the AS-related datasets were searched in the database and then downloaded by
applying the GEOquery [9] package, and finally the GSE25101 dataset containing
the AS group and the normal control group was downloaded. Next, we annotated
the data and finally obtained the complete dataset information for the next step of
analysis.

2.2 DEGs Screening and GSEA Analysis

First, we first performed differential expression analysis of genes, and our screening
conditions were set to P < 0.05 and |log2 (FC)| > 0.5, and those satisfying this
screening condition were identified as DEGs. Next, the heat map was depicted by
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the “pheatmap” package [10]. Meanwhile, the GSEA analysis of the screened target
gene set was performed by applying R software.

2.3 WGCNA-Based Targeting Modules and Genes Screening

First, a weighted gene co-expression network was constructed using the “WGCNA”
package [11]. Set mean FPKM= 0.5 as the filtering criterion, load the trait data, and
evaluate the similarity of gene expression at the same time to obtain the matrix file.
We set soft thresholds, minimal gene modules, visualized the gene network graph,
and finally correlated the modules with clinical traits to filter out the target modules
and genes closely related to AS.

2.4 Functional Enrichment Analysis

In R software, the clusterprofiler package is loaded and run it for GO, KEGG, and
DO analysis of the target genes [12].

2.5 PPI Network Analysis

PPI refers to the non-covalent binding of two or more protein molecules. The PPI
network of candidateDEGswas analyzed usingSTRINGsoftware and the confidence
score was set to 0.4. In addition, cytoscape was chosen to validate the net and screen
for top ten genes.

2.6 Multiple Algorithms Combine to Identify Prospective
Biomarkers of AS

Five algorithms were used to screen new and critical biomarkers for ankylosing
spondylitis, including random forest (RF)machine learning algorithms [13], Protein–
Protein Interaction Networks (PPI) analysis, LASSO logistic regression [14], SVM-
RFE [15], and WGCNA. The Random Forest package from R software has been
employed to establish a random forest model based on candidate genes, the average
misjudgment rate of all the genes was calculated on the basis of the out-of-band data.
Then, the glmnet package was applied to construct the LASSO model to filter the
candidate mRNAs from the dataset [12]. The ROC curves were constructed, and the
area under the curve was applied to reflect the predictive efficacy of the model. In the
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next step, the “e1071” package [11] was loaded in the R software and we employ it
to filter suitable genes using the SVM-RFE algorithm. Lastly, the core genes selected
by the integrated strategy are recognized as biomarkers for AS.

2.7 Validation of the Diagnosis-Related Gene Expression
and Regulatory Mechanisms and Biological Functions
of the Potential Biomarkers

In the R software, the pROC package was loaded to reflect the diagnostic efficacy of
candidate genes by drawing ROC curves [16]. The differences in biomarker expres-
sion levels between the two groups were also analyzed. Next, GSEA analysis of
candidate genes was carried out to explore their potential relationships with various
functions and pathways. At the same time, we divided the samples into AS and
normal groups and used the ssGSEA R package “GSVA” to explore the different
levels of HALLMARK pathways in the expression profile of the GSE25101 dataset.

3 Results

3.1 Identification of DEGs of Patients with Ankylosing
Spondylitis

After gene annotation and data standardization (Fig. 1a), we used |log2 FC| > 0.5
and adjusted P value < 0.05 as inclusion conditions. We found 62 DEGs from
the GSE25101 dataset, including 20 up-regulated mRNAs and 42 down-regulated
mRNAs, and drew a volcano plot containing this information (Fig. 1b). In the R
software, the heatmap package was loaded for drawing the differentially expressed
mRNAs in the heatmap (Fig. 1c). The GSEA enrichment analysis illustrated that
GnRH secretion, Citrate cycle (TCA cycle), Adherens junction, Primary immun-
odeficiency and 2-Oxocarboxylic acid metabolism were predominantly positive in
AS samples, while Renin-angiotensin system, Oxidative phosphorylation, Chem-
ical carcinogenesis—DNA adducts, Ribosome and Cardiac muscle contraction were
highly active in normal samples (Fig. 1d, e).

3.2 WGCNA-Based Filtering of Goal Modules and mRNAs

We incorporated 12,926 genes for the construction of a weighted gene co-expression
network (Fig. 2a) and selected the most appropriate soft threshold (Fig. 2b). We
merged modules with a feature factor greater than 0.7 and limited each module
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Fig. 1 The differential gene expression of GSE25101. a The box graphs of mRNA expression in
normal and AS samples. Volcano plot (b) and expression heat map (c) of differential mRNAs. d
Display of the top 10 signaling pathways in the GSEA-based dataset. e The ridgeplot of the result
on GSEA

to contain no less than 50 genes, screening out 27 modules (Fig. 2c). In addition,
we investigated the correlation of the modules (Fig. 2d). Lastly, our MEfloralwhite
module got chosen as the most relevant candidate module for the occurrence of AS
(Fig. 2e), and 25 differentially expressed mRNAs were singled out (Fig. 2f).

Fig. 2 Characterization of candidate mRNAs by WGCNA. a The dendrogram and trait heatmap
of 32 samples. b Soft threshold analysis. c Target modules as determined after performing merging
and filtering. d Relevance between the 27 modules. e Associations between AS and modules. f
Venn diagram of the intersection of MEfloralwhite genes and differential genes. g The scatter graph
reflect the association between the gene importance of AS and the FLORALWHITE module
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Fig. 3 a GO outcomes of the candidate genes; b ring plot showing GO enrichment and relevant
DEGs; c results of KEGG enrichment analysis; d bubble chart showing the DO enrichment results

3.3 GO, KEGG and DO Enrichment Analyses

The clusterProfiler package was loaded into the R software and 25 genes were
analyzed for GO, DO and KEGG enrichment for bio-functional studies. The anal-
ysis results of GO enrichment were shown in Fig. 3a. Positive regulation of protein
kinase activity, positive regulation of response to external stimulus, positive regu-
lation of kinase activity, regulation of DNA-binding transcription factor activity
and Leukocyte migration were associated with biological processes (BP). Cyto-
plasmic vesicle lumen, vesicle lumen and secretory granule lumen were involved
in the cellular components (CC). In terms of molecular function (MF), genes were
enriched in phosphatase activity, phosphate hydrolase activity and receptor ligand
activity signaling receptor activator activity. Figure 3b illustrates a considerable frac-
tion of the GO-enriched words and associated DEGs. Furthermore, the DEGs were
mainly concentrated in MicroRNAs in cancer, Adherens junction, Prostate cancer
and Human papillomavirus infection in the KEGG enrichment analysis (Fig. 3c).
Moreover, theDEGswere primarily clustered in colon cancer, arteriosclerotic cardio-
vascular disease, arteriosclerosis and breast carcinoma in the DO-rich concentration
(Fig. 3d).

3.4 Establishing a PPI Network

We opened STRING, entered the target genes, and analyzed the interactions for the
proteins they translated. We can see that the constructed PPI network has 23 nodes
and 47 edges (Fig. 4a). Moreover, we selected 10 core genes that are most closely
related to each other (Fig. 4b). In particular, the PPI network is built and visualized
by the Cytoscape v3.9.0 software.
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Fig. 4 a PPI network of the candidate mRNAs; b ten core genes of PPI network

3.5 Machine Learning Algorithm-Based Recognition
of Prospective Biomarkers for AS

We identified 9 genes as biomarkers for AS from DEGs using the LASSO logistic
regression algorithm (Fig. 5a). SixmRNAswere detected as diagnostic markers from
the DEGs with the SVM-RFE algorithm (Fig. 5b). 11 mRNAs have been defined as
significant biomarkers for the RF algorithm (Fig. 5c, d). To identify highly correlated
sets of genes in their expression blocks, we conducted a joint analysis using data
obtained by the PPI andWGCNA algorithms. At last, we obtained PTPN1 obviously
correlated to AS through the overlap of five algorithms (Fig. 5e).

3.6 Validation of the Diagnosis-Related Gene Expression

To validate the potential of PTPN1 as diagnosis marker for AS, we performed ROC
analysis of this gene in the expression dataset GSE25101 and plotted ROC curves
(Fig. 6a). At the same time, to further validate the role of PTPN1 in AS, we also
looked at the expression of candidate mRNAs in people with ankylosing spondylitis.
Intriguingly, we derived an observation that PTPN1 expression is inhibited in AS
patients (Fig. 6b).

3.7 Regulatory Mechanisms and Biological Functions
of the Potential Biomarkers

We conducted GSEA study on the ordered gene expression matrix to explore the
regulatory effect of PTPN1. The analysis results show that PTPN1 was mainly
involved in B cell receptor signaling pathway, Complement and coagulation
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Fig. 5 Screening for hub biomarkers through a comprehensive strategy: a the LASSO algorithm
was performed to reserve the highest promising genes; b results of candidatemRNAs by SVM-RFE;
c Filtering mRNAs by random forest (RF) algorithm; d results of candidate mRNAs by RF; e the
image displays the convergence of the diagnostic markers acquired via five algorithm

Fig. 6 a ROC curves of PTPN1; b the expression levels of PTPN1 in AS patients and control
samples; ssGSEA analysis: c analysis results of PTPN1; d expression of genes of different
HALLMARK pathways in AS and normal samples; e correlation analysis of PTPN1 and pathways

cascades, Primary immunodeficiency, Chemical carcinogenesis-DNA adducts and
SNARE interactions in vesicular transport (Fig. 6c). Then, we employed ssGSEA
to analyze the data of 32 samples obtained from GSE25101 to select their enriched
HALLMARKpathways, then the richness levels of 48HALLMARKpathways inAS
and normal samples were obtained. For further study, we performed computational
matrix scores, comparative differences, and single-gene correlation tests. As shown
in Fig. 6d, e, the expression of gene, which up-regulated by ROS and activation
of WNT signaling through accumulation of beta catenin CTNNB1, up-regulated
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through activation of mTORC1 complex, involved in cholesterol homeostasis, in
response to TGFB1 was statistically different between AS and normal samples. The
most relevant pathways to PTPN1 are HALLMARK_TGF_BETA_SIGNALING,
HALLMARK_REACTIVE_OXYGEN_SPECIES_PATHWAY and HALL-
MARK_CHOLESTEROL_HOMEOSTASIS.

4 Discussion

AS is a common clinical condition and has a serious impact on the daily life of
patients, and in severe cases, it can even lead to disability. Therefore, it is impor-
tant to investigate the mechanisms of AS by biological information technology and
to explore biomarkers associated with AS. For this research, bioinformatics was
employed to identify and evaluate the gene expression of healthy individuals and
AS patients, and screened 62 differentially expressed genes. GO functional anal-
ysis revealed the DEGs were primarily engaged in biological processes including
oxidative phosphorylation metabolism. Oxidative stress damage was evident in AS
patients, and oxidative stress damage contributes to sickness activation [17]. It has
been shown that anti-inflammatory treatment can significantly improve the activity
of various lipids and enzymes, which may become one of the directions for the
treatment of AS [18]. KEGG signaling pathway enrichment analysis revealed DEGs
were primarily concentrated in MicroRNAs in cancer, Human papillomavirus infec-
tion and other signaling pathways. Chen-YuWei et al. showed through a prospective
clinical study that patients infected with HPV are more likely to develop ankylosing
spondylitis [19]. Mohammadi et al. [20] reviewed the recent studies on the role of
miRNAs in the development of AS and explored the possibility of applying miRNAs
as prognostic markers and targeting it for therapeutic strategies. For example, regu-
lation of miR-495 can then influence the development of ankylosing spondylitis
from the mechanism of programmed death [21]. PPI network analysis, ROC curve
analysis, three machine learning algorithms and gene expression analysis further
clarified that the gene PTPN1 can be used as a diagnostic marker for AS. The protein
tyrosine phosphatase nonreceptor type 1 (PTPN1) gene encode the protein tyro-
sine phosphatase 1B (PTP1B). The target of PTP1B is the leptin receptor, and its
signaling mediates the metabolism of glucose [22]. But the association of this gene
with the pathogenesis of ankylosing spondylitis has not been adequately studied. It
is suggested that further study of this pathway may be a potential therapeutic direc-
tion for AS. According to the results of GSEA analysis, PTPN1 is mainly invoked
in the B-cell receptor signaling pathway and primary immunodeficiency, and its
expression was mainly up-regulated by reactive oxygen species (ROS) and activa-
tion of mTORC1 complex. The results of Jennifer J. Schwarz et al. also confirm the
character of this gene in the B-cell receptor signaling pathway [23]. The negative
regulatory effect of PTPN1 on immunity has also been experimentally confirmed in
the past [24]. Previous studies have demonstrated that in patients with ankylosing
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spondylitis, there may be mitochondrial dysfunction and excess ROS causing senes-
cence of mesenchymal cells, and these are consistent with the conclusions drawn
from our raw letter analysis [25]. In summary, we have studied both the onset and
progression of AS in greater depth, which points us to the next step in developing a
treatment for AS.

Screening for disease-related diagnostic markers can provide direction for early
diagnosis and treatment of disease. Yu et al. used chromatography mass spectrom-
etry to screen hip ligament samples from AS and non-AS groups for differential
expression of myeloperoxidase and non-AS hip ligament samples, and found that
myeloperoxidase might Myeloperoxidase may be an important marker associated
with AS-induced hip lesions [26]. The use of whole blood samples for screening
disease-related diagnostic markers is more convenient than obtaining tissue samples.
García-Salinas et al. [27] evaluated human leukocyte antigen B27 (HLA-B27) as a
diagnostic marker for axial spondylitis in a cohort study, and the result showed
that HLA-B27 has good specificity but low sensitivity for the diagnosis of axial
spondylitis disease. In this study, we screened the peripheral blood diagnostic marker
PTPN1 in AS patients by bioinformatics analysis method to further complement the
existing diagnostic methods. This marker may be a potential target for treatment
of AS and may be an important modality for future non-surgical treatment of AS,
reducing the risk of treatmentmodalities such as tissue engineering repair and surgical
procedures.
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17. SolmazD,Kozacı D, Sarı İ, et al. Oxidative stress and related factors in patients with ankylosing
spondylitis. Eur J Rheumatol. 2016;3(1):20–24. doi: https://doi.org/10.5152/eurjrheum.2015.
0031

18. Czókolyová M, Pusztai A, Végh E, et al. Changes of Metabolic Biomarker Levels upon One-
Year Anti-TNF-α Therapy in Rheumatoid Arthritis and Ankylosing Spondylitis: Associations
with Vascular Pathophysiology. Biomolecules. 2021;11(10):1535. Published 2021 Oct 18. doi:
https://doi.org/10.3390/biom11101535

19. Wei CY, Lin JY, Wang YT, Huang JY, Wei JC, Chiou JY. Risk of ankylosing spondylitis
following human papillomavirus infection: A nationwide, population-based, cohort study. J
Autoimmun. 2020;113:102482. doi: https://doi.org/10.1016/j.jaut.2020.102482

20. Mohammadi H, Hemmatzadeh M, Babaie F, et al. MicroRNA implications in the etiopatho-
genesis of ankylosing spondylitis. J Cell Physiol. 2018;233(8):5564–5573. doi: https://doi.org/
10.1002/jcp.26500

21. NiWJ, LengXM.Down-regulatedmiR-495 can target programmed cell death 10 in ankylosing
spondylitis. Mol Med. 2020;26(1):50. Published 2020 May 25. doi: https://doi.org/10.1186/
s10020-020-00157-3

22. Bence KK, Delibegovic M, Xue B, et al. Neuronal PTP1B regulates body weight, adiposity
and leptin action [published correction appears in Nat Med. 2010 Feb;16(2):237]. Nat Med.
2006;12(8):917–924. doi: https://doi.org/10.1038/nm1435

23. Schwarz JJ, Grundmann L, Kokot T, et al. Quantitative proteomics identifies PTP1B as modu-
lator of B cell antigen receptor signaling. Life Sci Alliance. 2021;4(11):e202101084. Published
2021 Sep 15. doi: https://doi.org/10.26508/lsa.202101084

https://doi.org/10.3389/fimmu.2021.760381
https://doi.org/10.1007/978-3-031-13829-4_9
https://doi.org/10.1002/jcp.27381
https://doi.org/10.1016/j.mbs.2018.06.004
https://doi.org/10.1021/acs.jproteome.7b00595
https://doi.org/10.1016/j.jchromb.2012.05.020
https://doi.org/10.5152/eurjrheum.2015.0031
https://doi.org/10.3390/biom11101535
https://doi.org/10.1016/j.jaut.2020.102482
https://doi.org/10.1002/jcp.26500
https://doi.org/10.1186/s10020-020-00157-3
https://doi.org/10.1038/nm1435
https://doi.org/10.26508/lsa.202101084


584 Z. Zhan et al.

24. Yue L, Yan M, Chen S, Cao H, Li H, Xie Z. PTP1B negatively regulates STAT1-
independent Pseudomonas aeruginosa killing by macrophages. Biochem Biophys Res
Commun. 2020;533(3):296–303. doi: https://doi.org/10.1016/j.bbrc.2020.09.032

25. Ye G, Xie Z, Zeng H, et al. Oxidative stress-mediated mitochondrial dysfunction facilitates
mesenchymal stem cell senescence in ankylosing spondylitis. Cell Death Dis. 2020;11(9):775.
Published 2020 Sep 17. doi: https://doi.org/10.1038/s41419-020-02993-x

26. Yu C, Zhan X, Liang T, et al. Mechanism of Hip Arthropathy in Ankylosing Spondylitis:
AbnormalMyeloperoxidase andPhagosome. Front Immunol. 2021;12:572592. Published 2021
Nov 22. doi: https://doi.org/10.3389/fimmu.2021.572592

27. García-Salinas R, Ruta S, Chichande JT, Magri S. The Role of HLA-B27 in Argentinian Axial
Spondyloarthritis Patients. J Clin Rheumatol. 2022;28(2):e619–e622. doi: https://doi.org/10.
1097/RHU.0000000000001763

https://doi.org/10.1016/j.bbrc.2020.09.032
https://doi.org/10.1038/s41419-020-02993-x
https://doi.org/10.3389/fimmu.2021.572592
https://doi.org/10.1097/RHU.0000000000001763

	Organization
	Preface
	Contents
	Medical Imaging
	 Optimizing the Non-local Means Filtering of CT Images
	1 Introduction
	2 Algorithm Description
	2.1 The Non-local Means Filter
	2.2 Proposed Optimization Procedure

	3 Experimental Results
	4 Discussion
	5 Conclusions
	References

	 Exploring Structure-Wise Uncertainty for 3D Medical Image Segmentation
	1 Introduction
	2 Related Work
	3 Methods
	3.1 Structure Definition
	3.2 Uncertainty Estimation Methods
	3.3 Uncertainty Aggregation Techniques

	4 Experiments
	4.1 Data
	4.2 Experimental Setup
	4.3 Results
	4.4 Discussion

	5 Conclusion
	References

	 Towards Developing a Lightweight Neural Network for Liver CT Segmentation
	1 Introduction
	2 Proposed Methodology
	2.1 Network Architecture

	3 Setup for the Experiment
	3.1 Data
	3.2 Implementation Details

	4 Results
	5 Conclusion
	References

	 NuRISC: Nuclei Radial Instance Segmentation and Classification
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Deep Regression Network
	3.2 Instance Representation
	3.3 Radial Distance Maps
	3.4 Pre-processing
	3.5 Model Architecture
	3.6 Loss Functions
	3.7 Post-processing

	4 Experiments and Results
	4.1 Implementation Details
	4.2 Evaluation Metrics
	4.3 Datasets
	4.4 Baseline Methods
	4.5 Experimental Results

	5 Conclusion
	References

	 A Semi-supervised Framework for Automatic Pixel-Wise Breast Cancer Grading of Histological Images
	1 Introduction
	2 Related Work
	3 Method
	3.1 Semi-supervised Learning Framework Based on EM Model
	3.2 Patch Selection

	4 Experimental Results
	4.1 Dataset for Training and Validation
	4.2 Data Preprocess
	4.3 Patch Classification
	4.4 Pixel-Wise Classification on WSI
	4.5 FROC Acceptance

	5 Conclusion
	References

	 Lunatum Prosthetic Replacement: Modeling Based on Volume Rendering of CT Scan Images
	1 Introduction
	2 Lunatum Anatomy and Associated Problems
	3 Biomaterial Selection
	4 Material and Methods
	4.1 Data Acquisition
	4.2 Segmentation
	4.3 3D Model Creation Based on Volume Rendering
	4.4 3D Printing (Fused Disposition Modeling FDM)

	5 Results
	6 Conclusion
	References

	 Augmented Reality Applications for Image-Guided Robotic Interventions Using Deep Learning Algorithms
	1 Introduction
	2 Related Work
	2.1 Medical Image Registration Based on Deep Learning
	2.2 Augmented Reality Based on DL Image Registration

	3 Methodology
	3.1 Dataset and Implementation Details
	3.2 Evaluation Metrics
	3.3 Experiment Results

	4 Discussion and Conclusions
	References

	 Transfer Learning Based Classification of Diabetic Retinopathy on the Kaggle EyePACS Dataset
	1 Introduction
	2 Related Work
	3 Pre-trained Models
	4 Dataset
	5 Methodology
	5.1 Transfer Learning Details
	5.2 Training Using Pre-trained Models

	6 Discussion
	7 Conclusion and Future Work
	References

	 Ex-vivo Evaluation of Newly Formed Bone After Lumbar Interbody Fusion Surgery Using X-ray Micro Computed Tomography
	1 Introduction
	2 MicroCT Bone Tissue Evaluation
	3 Materials and Methods
	3.1 Datasets Used
	3.2 Determination of Volume of Interest
	3.3 Image Analysis

	4 Results
	5 Newly Formed Bone Evaluation
	6 Conclusion and Future Work
	References

	 Community Detection in Medical Image Datasets: Using Wavelets and Spectral Methods
	1 Introduction
	2 Our Method
	3 Results
	4 Inferring the Disease Spectrum
	5 Conclusions
	References

	 Non-pooling Network for Medical Image Segmentation
	1 Introduction
	2 Methodology
	2.1 Basic Block
	2.2 Attention Enhancement Module
	2.3 Feature Enhancement Module

	3 Experiments and Results
	3.1 Datasets
	3.2 Experimental Settings
	3.3 Experimental Results

	4 Conclusion
	References

	 Lung CT Analysis Using 3D Disparity-Regularised Block Matching for Stereotactic Ablative Body Radiotherapy
	1 Introduction
	2 Methodology
	2.1 Materials and Data Preprocessing
	2.2 Lung CT Analysis Using Extended DBLM
	2.3 Parameters of Extended DBLM and Its Performance Evaluation

	3 Results and Discussion
	4 Conclusion
	References

	 Identification of Melanoma Diseases from Multispectral Dermatological Images Using a Novel BSS Approach
	1 Introduction
	2 Proposed Method
	3 Results
	4 Conclusion
	References

	 2.5D Lightweight Network Integrating Multi-scale Semantic Features for Liver Tumor Segmentation
	1 Introduction
	2 Related Work
	2.1 Inception Architecture
	2.2 Residual Network
	2.3 2.5D Network Architecture

	3 Method
	3.1 MAA_Net
	3.2 Encoder-Decoder Structure
	3.3 Dual-Feature Fusion Module
	3.4 Loss Function

	4 Experiments
	4.1 Datasets
	4.2 Setting Details
	4.3 Results and Analysis

	5 Conclusion
	References

	 Registration of Medical Image Sequences Using Auto-differentiation
	1 Introduction
	2 Methods
	2.1 Image Sequence Registration
	2.2 Experimental Data
	2.3 Implementation Details

	3 Results and Discussion
	4 Conclusions
	References

	 Small Animal Imaging: Iterative Algorithms Combined with Regularization Schemes, an Application to a Dual-Head Small Animal PET
	1 Introduction
	2 Theory
	3 Materials and Methods
	4 Results and Discussion
	5 Conclusions
	References

	 Early Detection of Parkinson's Disease Dementia Using Dual-Sided Multi-scale Convolutional Neural Networks (DSMS-CNN)
	1 Introduction
	2 Proposed Method
	2.1 Region of Interest
	2.2 Multi-scale Convolutional Neural Network
	2.3 Proposed Dual-Sided Architecture

	3 Experiments and Analysis
	3.1 Dataset
	3.2 Preprocessing
	3.3 Parameter Settings
	3.4 Ablation Study
	3.5 Comparison with State-of-the-Art

	4 Conclusions
	References

	 A Change Detection with Machine Learning Approach for Medical Image Analysis
	1 Introduction
	1.1 Basics of Change Detection
	1.2 Deterministic Methods
	1.3 Probabilistic Methods

	2 Change Detection Applied to Biomedical Imaging
	3 Related Work
	4 Case Study
	4.1 Numerical Algorithms
	4.2 Spatial Algorithms
	4.3 Connectivity Indices
	4.4 Feature Selection
	4.5 Factorial Analysis (PCA)
	4.6 Results of the Proposed Methodology

	5 Conclusion
	References

	 U-Net##: A Powerful Novel Architecture for Medical Image Segmentation
	1 Introduction
	2 The Proposed Architecture
	2.1 Parallel Neural Networks
	2.2 Auxiliary Convolutional Blocks
	2.3 Deep Supervision

	3 Experiments and Results
	3.1 Dataset and Pre-processing
	3.2 Implementation Details
	3.3 Results

	4 Conclusions
	References

	Computer-Aided Detection/Diagnosis
	 Optimising Chest X-Rays for Image Analysis by Identifying and Removing Confounding Factors
	1 Introduction
	2 Materials and Methods
	3 Experimental Analysis and Results
	4 Discussion and Conclusion
	References

	 3D-3D Rigid Registration: A Comparative Analysis Study on Femoral Bone Scans
	1 Introduction
	2 Registration Algorithms
	3 Material and Methods
	3.1 Material and Preprocessing
	3.2 Simulation Workflow
	3.3 Preprocessing

	4 Experiments and Results
	4.1 Parametrization of the Registration Algorithms
	4.2 Registration Time
	4.3 Convergence
	4.4 Registration Accuracy

	5 Conclusion and Future Work
	References

	 Fully Automatic Axial Vertebral Rotation Measurement of Children with Scoliosis Using Convolutional Neural Networks
	1 Introduction
	2 Methodology
	2.1 Proposed Method
	2.2 Validation

	3 Results and Discussion
	3.1 Spinal Feature Segmentation
	3.2 AVR Measurement

	4 Conclusion
	References

	 Diagnostic Accuracy and Reliability of Deep Learning-Based Human Papillomavirus Status Prediction in Oropharyngeal Cancer
	1 Introduction
	2 Methods
	2.1 Study Cohort
	2.2 CT Pre-processing
	2.3 Deep Neural Network: Architecture and Training
	2.4 Reliability Assessment

	3 Results
	3.1 Study Cohort
	3.2 Diagnostic Accuracy and Reliability Assessment

	4 Discussion
	5 Conclusion
	References

	 Optimizing the Illumination of a Surgical Site in New Autonomous Module-based Surgical Lighting Systems
	1 Introduction
	2 Related Work
	3 Implementation
	3.1 Occluder Types
	3.2 Representation of the Surgical Site
	3.3 Optimization Pipeline
	3.4 Light Intensity Optimization

	4 Results
	4.1 Methods
	4.2 Shadow Reduction
	4.3 Temporal Brightness Distribution

	5 Conclusions and Future Works
	References

	 An Eye-Tracking Based Machine Learning Model Towards the Prediction of Visual Expertise for Electrocardiogram Interpretation
	1 Introduction
	1.1 Background
	1.2 Related Works

	2 The Dataset
	2.1 Overview
	2.2 Data Collection Method
	2.3 Ethics

	3 Data Processing
	4 Results
	5 Conclusion
	References

	 Synthetic Data as a Tool to Combat Racial Bias in Medical AI: Utilizing Generative Models for Optimizing Early Detection of Melanoma in Fitzpatrick Skin Types IV–VI
	1 Introduction
	2 Background
	2.1 Medical Examination
	2.2 CAD Examination

	3 Related Works
	3.1 Generative Adversarial Networks
	3.2 Zero-Shot Text-to-Image Generative Models

	4 Experiments and Results
	4.1 Dermatological Perspective
	4.2 CAD Perspective

	5 Conclusions
	References

	 BD-Transformer: A Transformer-Based Approach for Bipolar Disorder Classification Using Audio
	1 Introduction
	2 Related Work
	3 Proposed Framework
	3.1 Preprocessing
	3.2 Feature Extraction

	4 Experiments and Results
	4.1 Dataset
	4.2 Implementation Details
	4.3 Performance of the Proposed Approach for Bipolar Disorder Diagnosis
	4.4 Comparison with State of the Art Methods

	5 Conclusion and Future Work
	References

	 Establishment and Analysis of a Combined Diagnostic Model of Acute Myocardial Infarction Based on Random Forests and Artificial Neural Networks
	1 Introduction
	2 Materials and Methods
	2.1 Data Collection
	2.2 Differential Expression and Enrichment Analysis
	2.3 Random Forest Screening for the Important Genes
	2.4 PPI Network Analysis
	2.5 Neural Network for Building the Disease Classification Model
	2.6 Additional Data Verification

	3 Results
	3.1 Differential Expression Analysis
	3.2 GO/KEGG Enrichment Analysis
	3.3 Random Forest Screening for DEGs
	3.4 Protein–Protein Interaction (PPI) Network Analysis
	3.5 Construction of the ANN Model
	3.6 Evaluation of the AUC

	4 Discussion
	References

	 Striped-Cross Attention Network with Implicit Semantic Knowledge for Antibody Structure Prediction
	1 Introduction
	2 Methodology
	2.1 The Diagram of Striped-Cross Attention
	2.2 Classifier Network Structure Based on Striped-Cross Attention
	2.3 Framework Architecture for Antibody Structure Prediction

	3 Experiment
	3.1 Dataset
	3.2 Evaluation of Inter-Residue Distances and Orientations Prediction
	3.3 Evaluation of the Antibody Structure Prediction

	4 Conclusion
	References

	 A Mobile Monitoring Application for Post-traumatic Stress Disorder
	1 Introduction
	2 Related Work
	2.1 Mobile and Web Applications for Health Monitoring and Surveillance
	2.2 Mental Disorders and Mental Health Telemedicine
	2.3 Mobile Application for Post-traumatic Stress Disorder Diagnosis and Follow-Up

	3 The Mobile Application
	3.1 Video and Data Acquisition
	3.2 Virtual Interviewer
	3.3 PCL-5 Questionnaire
	3.4 Patient History Recording

	4 Application Development
	4.1 General Architecture
	4.2 Technological Choice

	5 Application Evaluation and Dataset Collection
	6 Conclusions and Future Work
	References

	 COVID-19 Diagnosis and Classification from CXR Images Using Vision Transformer
	1 Introduction
	2 Related Work
	3 Proposed Model
	4 Data
	4.1 Dataset Details
	4.2 Data Preprocessing

	5 Experiments and Analysis
	5.1 Implementation Details
	5.2 Evaluation Method
	5.3 Results and Discussion

	6 Conclusion
	References

	 Improved Techniques for the Conditional Generative Augmentation of Clinical Audio Data
	1 Introduction
	2 Materials and Methods
	2.1 Data Set, Preprocessing, and Benchmark Augmentations
	2.2 Proposed Data Augmentation Method
	2.3 Classifier for Evaluation

	3 Results
	4 Discussion
	5 Conclusion
	References

	 Learning from Failure: A Methodology for the Retrieve Stage of a Cardiovascular Case-Based Reasoning System
	1 Introduction
	2 Used Strategies to Retrieve Cases
	3 Other Measures Beyond Similarity
	3.1 Similarity
	3.2 Index Variation
	3.3 Success Ratio

	4 Evaluating Case Retrieval Strategies
	5 Conclusions and Future Directions
	References

	Machine Learning and Deep Learning
	 Forming of Validation Dataset for Deep Learning Based Model of Medical Image Grouping
	1 Introduction
	2 Challenges in Selection of the Valuable Source of Medical Images
	3 Forming of Distinctive Groups, Constrained Combinations
	4 Process of Grouping and Algorithms
	5 Results
	6 Conclusion
	References

	 Deep Learning Based Radiomics to Predict Treatment Response Using Multi-datasets
	1 Introduction
	2 Entropy
	2.1 Havrda-Charvat Cross-Entropy

	3 Neural Network Architecture for Relapse Prediction
	4 Experimentations
	4.1 Datasets
	4.2 Evaluation Method
	4.3 Results

	5 Discussion
	6 Conclusion
	References

	 Convolutional Neural Network Classification of Liver Fibrosis Stages Using Ultrasonic Images Colorized by Features of Echo-Envelope Statistics
	1 Introduction
	2 Method
	2.1 Dataset
	2.2 Formation and Selection of Input Images
	2.3 Modulation and Colorization of Input Images
	2.4 Learning and Validation of Networks

	3 Result and Discussion
	4 Conclusion
	References

	 FedRNN: Federated Learning with RNN-Based Aggregation on Pancreas Segmentation
	1 Introduction
	2 Materials and Methods
	2.1 Dataset
	2.2 Federated Learning Framework
	2.3 Model Aggregation
	2.4 Experimental Setup

	3 Results
	4 Discussion
	5 Conclusion
	References

	 UNet-2022: Exploring Dynamics in Non-isomorphic Architecture
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Parallel Non-isomorphic Block
	3.2 Convolution/De-convolution Stem

	4 Experiments
	4.1 Dataset
	4.2 Implementation Details
	4.3 Comparisons on Abdominal Multi-organ Segmentation
	4.4 Comparisons on Automated Cardiac Diagnosis
	4.5 Comparisons on Neural Structures Segmentation
	4.6 Comparisons on Skin Lesion Segmentation
	4.7 Ablation Studies of Modules and Strategies

	5 Conclusion
	References

	 Hybrid-Fusion Transformer for Multisequence MRI
	1 Introduction
	2 Method
	2.1 Hybrid Fusion from CNN Encoders
	2.2 CNN Decoder and Loss Function

	3 Experiments
	3.1 Datasets
	3.2 Quantitative Results
	3.3 Qualitative Results

	4 Discussion
	5 Conclusion
	References

	 STResNet: Covid-19 Detection by ResNet Transfer Learning and Stochastic Pooling
	1 Introduction
	2 Dataset
	3 Methodology
	3.1 ResNet-50
	3.2 Stochastic Pooling
	3.3 Support Vector Machine

	4 Experiment Results and Discussion
	4.1 Experiment Results of STResNet
	4.2 Data Augmentation Results
	4.3 Stochastic Pooling Against Max Pooling and Average Pooling
	4.4 Comparison to State-to-the-Art Approaches

	5 Conclusion
	References

	 Convolutional Neural Networks for Newborn Pain Assessment Using Face Images: A Quantitative and Qualitative Comparison
	1 Introduction
	2 Materials and Methods
	2.1 Face Images Datasets
	2.2 Classification Models
	2.3 Training/Test Protocol
	2.4 Explainable Artificial Intelligence

	3 Results and Discussion
	3.1 Quantitative Results
	3.2 Qualitative Results
	3.3 Discussion

	4 Conclusion
	References

	 Machine Learning for the Evaluation and Detection of Key Markers in Dilated Cardiomyopathy
	1 Introduction
	2 Methods and Materials
	2.1 Data Acquisition and Download
	2.2 Data Processing and Genetic Screening
	2.3 Enrichment Analysis: GO, KEGG, DO and GSEA
	2.4 Selecting and Identifying Gene Predictor Models for Premature Diagnosis
	2.5 Immune Cell Infiltration Analysis

	3 Results
	3.1 Screening for DCM-Associated Differential Genes
	3.2 Co-expressed Genes GO, DO and KEGG Signalling Path Enrichment Analysis
	3.3 Functional Clustering of DCM-GSEA Analysis
	3.4 Screening and Identification of Gene Prediction Models for Early Diagnosis
	3.5 The Immune Checkpoint Related Genes Analysis

	4 Discussion
	5 Conclusion
	References

	Others
	 Schema Based Knowledge Graph for Clinical Knowledge Representation from Structured and Un-structured Oncology Data
	1 Introduction
	2 Background and Related Work
	3 Design and Methodology
	3.1 Data Analysis
	3.2 KG Schema Construction
	3.3 Information Extraction
	3.4 Entity Selection
	3.5 KG Construction

	4 Results and Discussion
	4.1 Name Entity Recognition
	4.2 EHRs Visualization by Semantic Retrieval Approach

	5 Conclusion and Future Work
	References

	 Intelligent Fuzzy Clinical Decision Support System to Classify Breast Cancer—Case Study: The Wisconsin Dataset
	1 Introduction
	2 Material and Methods
	2.1 Identifying the Dataset
	2.2 Data Preparation (Crisp Inputs)
	2.3 Reviewing Existing Models
	2.4 Evaluating the Optimal Number of Clusters
	2.5 Setting a Number of Clusters (Minimum and Maximum) According to the Previous Evaluation
	2.6 Random Permutations
	2.7 Cluster Analysis (Fuzzification Process)
	2.8 Sampling Datasets (Cross-Validation or Random Sampling)
	2.9 Pivot Tables
	2.10 Elaborating the Decision Support System Based on Fuzzy Set Theory (Inference Engine)
	2.11 Evaluating the Fuzzy System Performance (Defuzzification and Crisp Outputs)

	3 Results and Discussion
	4 Conclusions
	References

	 Research on the Design and Production of VR Rehabilitation Game for Parkinson's Disease Patients Based on Real-Time Action Acquisition
	1 Introduction
	1.1 Rehabilitation Treatment of Parkinson's Disease
	1.2 Rehabilitation Therapy with Kinect
	1.3 Effects of VR Rehabilitation Games on Parkinson's Patients
	1.4 VR Rehabilitation Games can be Played Remotely with the Help of the Network

	2 Virtual Reality Rehabilitation Game Design
	2.1 System Architecture of Butterfly Catching Game
	2.2 Control the Number of Butterflies
	2.3 Function Design for Simulating Butterfly Flying
	2.4 Realization of Detecting and Catching Butterflies
	2.5 Design of Database

	3 Rehabilitation Game Making Based on Virtual Reality
	3.1 Unity3D Components
	3.2 Scene Production of Rehabilitation Games
	3.3 Scene Production of Rehabilitation Games

	4 Rehabilitation Game Making Based on Virtual Reality
	References

	 Force-Directed Graph Layout Based on Community Discovery and Clustering Optimization
	1 Introduction
	2 Related Work
	3 The Algorithm
	3.1 Problems of Louvain Algorithm and the Optimization Idea Based on Pruning Idea
	3.2 Implementation of Improved Louvain Algorithm
	3.3 Problems of Force-Directed Graph Layout and the Clustering Optimization Idea
	3.4 Group-Based Clustering Optimization Implementation

	4 Experimental Results and Analysis
	5 Conclusion and Future Work
	References

	 Comprehensive Strategy to Screen the Ankylosing Spondylitis-Related Biomarkers in the Peripheral Serum
	1 Introduction
	2 Materials and Methods
	2.1 Data Collection and Processing
	2.2 DEGs Screening and GSEA Analysis
	2.3 WGCNA-Based Targeting Modules and Genes Screening
	2.4 Functional Enrichment Analysis
	2.5 PPI Network Analysis
	2.6 Multiple Algorithms Combine to Identify Prospective Biomarkers of AS
	2.7 Validation of the Diagnosis-Related Gene Expression and Regulatory Mechanisms and Biological Functions of the Potential Biomarkers

	3 Results
	3.1 Identification of DEGs of Patients with Ankylosing Spondylitis
	3.2 WGCNA-Based Filtering of Goal Modules and mRNAs
	3.3 GO, KEGG and DO Enrichment Analyses
	3.4 Establishing a PPI Network
	3.5 Machine Learning Algorithm-Based Recognition of Prospective Biomarkers for AS
	3.6 Validation of the Diagnosis-Related Gene Expression
	3.7 Regulatory Mechanisms and Biological Functions of the Potential Biomarkers

	4 Discussion
	References


