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Preface

Welcome to the proceedings of the International Conference on Medical Imaging
and Computer-Aided Diagnosis (MICAD 2022), held at the prestigious University
of Leicester, UK, from November 20th to 21st, 2022. We are delighted to present this
proceedings that showcase the latest advancements in the fields of medical imaging
and computer-aided diagnosis.

MICAD has long been recognized as an important conference series dedicated
to fostering innovation and collaboration among researchers and practitioners in the
realm of medical imaging and computer-aided diagnosis. With each passing year,
the conference continues to grow in scope and significance, and MICAD2022 was
no exception.

MICAD2022 received submissions from 33 countries, in total, 98 full papers, and
each paper was reviewed by at least three reviewers in a standard single blind peer
review process. After meticulous evaluation and deliberation, 47 outstanding papers
were accepted for presentation at MICAD 2022. (acceptance rate of 48%).

The papers featured in this volume encompass a wide array of topics within the
fields of medical imaging and computer-aided diagnosis. They represent the collec-
tive efforts of researchers from diverse backgrounds, united by their shared commit-
ment to advancing the frontiers of knowledge in healthcare technology. We are
confident that the insights and innovations presented in these papers will contribute
significantly to the ongoing progress in these vital domains.

We extend our deepest gratitude to all the authors who submitted their work to
MICAD2022, as well as to our dedicated reviewers for their rigorous assessments.
Additionally, we would like to acknowledge the support and contributions of the
organizing committee, and the program committee for hosting this event. Our hope is
that the discussions, insights, and findings presented in these proceedings will inspire
future research, collaborations, and innovations in the realm of medical imaging and
computer-aided diagnosis.



< Preface

Once again, we extend a warm welcome to you as you embark on a journey into
the rich tapestry of cutting-edge research showcased within the proceedings.

Shanghai, China Dr. Ruidan Su



Contents

Medical Imaging

Optimizing the Non-local Means Filtering of CT Images ........

Ivo Draganov and Veska Gancheva

Exploring Structure-Wise Uncertainty for 3D Medical Image

Segmentation ............. .. ... ...

Anton Vasiliuk, Daria Frolova, Mikhail Belyaev, and Boris Shirokikh
Towards Developing a Lightweight Neural Network for Liver CT

Segmentation .................. ...

Mohammed Yusuf Ansari, Snigdha Mohanty, Serah Jessy Mathew,
Subhashree Mishra, Sudhansu Sekhar Singh, Julien Abinahed,
Abdulla Al-Ansari, and Sarada Prasad Dakua

NuRISC: Nuclei Radial Instance Segmentation and Classification
Esha Sadia Nasir and Muhammad Moazam Fraz

A Semi-supervised Framework for Automatic Pixel-Wise Breast

Cancer Grading of Histological Images ........................

Kenglun Chang, Yanyuet Man, and Hailong Yao

Lunatum Prosthetic Replacement: Modeling Based on Volume

Rendering of CT ScanImages ................................

Manal Hamda, Btihal El Ghali, Imane Hilal, Omar El Midaoui,
Nabil Ngote, Bahia El Abdi, and Kawtar Megdiche

Augmented Reality Applications for Image-Guided Robotic

Interventions Using Deep Learning Algorithms .................

Jenna Seetohul, Mahmood Shafiee, and Konstantinos Sirlantzis

Transfer Learning Based Classification of Diabetic Retinopathy

on the Kaggle EyePACS Dataset ..............................

Maria Tariq, Vasile Palade, and YingLiang Ma

xi



xii Contents

Ex-vivo Evaluation of Newly Formed Bone After Lumbar

Interbody Fusion Surgery Using X-ray Micro Computed

Tomography . .......... .. 101
Jakub Laznovsky, Adam Brinek, Tomas Zikmund, and Jozef Kaiser

Community Detection in Medical Image Datasets: Using Wavelets

and Spectral Methods .......... ... ... ... i 111
Roozbeh Yousefzadeh
Non-pooling Network for Medical Image Segmentation ............... 121

Weihu Song, Heng Yu, and Jianhua Wu

Lung CT Analysis Using 3D Disparity-Regularised Block

Matching for Stereotactic Ablative Body Radiotherapy ............... 131
Durai Arun Pannir Selvam, David I. Laurenson, William H. Nailon,

and Duncan B. Mclaren

Identification of Melanoma Diseases from Multispectral
Dermatological Images Using a Novel BSS Approach ................. 143
Mustapha Zokay and Hicham Saylani

2.5D Lightweight Network Integrating Multi-scale Semantic
Features for Liver Tumor Segmentation ............................. 155
Yilin You, Zhengyao Bai, Yihan Zhang, and Jiajin Du

Registration of Medical Image Sequences Using
Auto-differentiation .............. .. ... ... ... 169
Tomas Vicar, Roman Jakubicek, Jiri Chmelik, and Radim Kolar

Small Animal Imaging: Iterative Algorithms Combined

with Regularization Schemes, an Application to a Dual-Head

Small Animal PET . ... ... . . . 179
Evangelia Karali

Early Detection of Parkinson’s Disease Dementia Using Dual-Sided
Multi-scale Convolutional Neural Networks (DSMS-CNN) ............ 191
Callum Altham, Huaizhong Zhang, Marcello Trovati, Ella Pereira,

Nicola Ray, Simon Keller, Antonella Macerollo, and Hulya Wieshmann

A Change Detection with Machine Learning Approach for Medical
Image Analysis . ............ i 203
Mauro Mazzei

U-Net##: A Powerful Novel Architecture for Medical Image
Segmentation .............. ... 231
Firat Korkmaz



Contents

Computer-Aided Detection/Diagnosis
Optimising Chest X-Rays for Image Analysis by Identifying

and Removing Confounding Factors ...............................

Shahab Aslani, Watjana Lilaonitkul, Vaishnavi Gnanananthan,
Divya Raj, Bojidar Rangelov, Alexandra L. Young, Yipeng Hu,
Paul Taylor, Daniel C. Alexander, NCCID Collaborative,

and Joseph Jacob

3D-3D Rigid Registration: A Comparative Analysis Study

on Femoral Bone Scans ........... ... .. ... .. ... . .. ..

Perrine Solt, Adlane Habed, Antoine Bautin, Pierre Maillet,
and Michel de Mathelin

Fully Automatic Axial Vertebral Rotation Measurement

of Children with Scoliosis Using Convolutional Neural Networks . ... ..

Jason Wong, Marek Reformat, and Edmond Lou

Diagnostic Accuracy and Reliability of Deep Learning-Based

Human Papillomavirus Status Prediction in Oropharyngeal Cancer .. ..

Agustina La Greca Saint-Esteven, Chiara Marchiori,

Marta Bogowicz, Javier Barranco-Garcia, Zahra Khodabakhshi,
Ender Konukoglu, Oliver Riesterer, Panagiotis Balermpas,
Martin Hiillner, A. Cristiano I. Malossi, Matthias Guckenberger,
Janita E. van Timmeren, and Stephanie Tanadini-Lang

Optimizing the Illumination of a Surgical Site in New Autonomous

Module-based Surgical Lighting Systems ...........................

Andre Miihlenbrock, René Weller, and Gabriel Zachmann

An Eye-Tracking Based Machine Learning Model Towards
the Prediction of Visual Expertise for Electrocardiogram

Interpretation ........... .. .. .. . . ... ...

Mohammed Tahri Sqalli, Dena Al-Thani, Mohamed B. Elshazly,
Mohammed Al-Hijji, Alaa Alahmadi, and Yahya Sqalli Houssaini

Synthetic Data as a Tool to Combat Racial Bias in Medical AI:
Utilizing Generative Models for Optimizing Early Detection

of Melanoma in Fitzpatrick Skin Types IV-VI ......................

Daniel Kvak, Eva Bfezinovd, Marek Biro§, and Robert Hruby

BD-Transformer: A Transformer-Based Approach for Bipolar

Disorder Classification Using Audio ................................

Mohamed Ramadan, Hazem Abdelkawy, Mustaqueem,
and Alice Othmani

Xiii

281



Xiv Contents

Establishment and Analysis of a Combined Diagnostic Model

of Acute Myocardial Infarction Based on Random Forests

and Artificial Neural Networks ............ ... ... ... .............. 343
Zhenrun Zhan, Xiaodan Bi, Jinpeng Yang, Xu Tang, and Tingting Zhao

Striped-Cross Attention Network with Implicit Semantic
Knowledge for Antibody Structure Prediction ........................ 353
Miao Gu and Min Liu

A Mobile Monitoring Application for Post-traumatic Stress
Disorder .. ... ... 365
Sirine Chaari, Chaima El Ouni, and Alice Othmani

COVID-19 Diagnosis and Classification from CXR Images Using

Vision Transformer . ......... ... .. . ... . ... . . ... ... . . ... 377
Md Mahbubur Rahman, Shihabur Rahman Samrat, Abdullah Al Ahad,

Mahmud Elahi Akhter, Ibraheem Muhammad Moosa, Rajesh Palit,

and Ashfia Binte Habib

Improved Techniques for the Conditional Generative

Augmentation of Clinical AudioData ................................ 389
Mane Margaryan, Matthias Seibold, Indu Joshi, Mazda Farshad,

Philipp Fiirnstahl, and Nassir Navab

Learning from Failure: A Methodology for the Retrieve Stage
of a Cardiovascular Case-Based Reasoning System ................... 399
Ana Duarte and Orlando Belo

Machine Learning and Deep Learning

Forming of Validation Dataset for Deep Learning Based Model
of Medical Image Grouping .............. .. ... .. i 411
Robert Bazdari¢, Franko HrZi¢, Mateja Napravnik, and Ivan Stajduhar

Deep Learning Based Radiomics to Predict Treatment Response

Using Multi-datasets .............. .. ... . ... 431
Thibaud Brochet, Jérome Lapuyade-Lahorgue, Alexandre Huat,

Sébastien Thureau, David Pasquier, Isabelle Gardin,

Romain Modzelewski, David Gibon, Juliette Thariat,

Vincent Grégoire, Pierre Vera, and Su Ruan

Convolutional Neural Network Classification of Liver Fibrosis

Stages Using Ultrasonic Images Colorized by Features

of Echo-Envelope Statistics ........................ ... ... ... ... ..... 441
Akiho Isshiki, Dar-In Tai, Po-Hsiang Tsui, Kenji Yoshida,

Tadashi Yamaguchi, and Shinnosuke Hirata



Contents XV

FedRNN: Federated Learning with RNN-Based Aggregation

on Pancreas Segmentation ............... ... ... i 453
Zengtian Deng, Touseef Ahmad Qureshi, Sehrish Javed, Lixia Wang,

Anthony G. Christodoulou, Yibin Xie, Srinavas Gaddam,

Stepehen Jacob Pandol, and Debiao Li

UNet-2022: Exploring Dynamics in Non-isomorphic Architecture ...... 465
Jiansen Guo, Hong-Yu Zhou, Liansheng Wang, and Yizhou Yu

Hybrid-Fusion Transformer for Multisequence MRI .................. 477
Jihoon Cho and Jinah Park

STResNet: Covid-19 Detection by ResNet Transfer Learning
and Stochastic Pooling .......... ... ... . . .. 489
Wei Wang, Shui-Hua Wang, and Yu-Dong Zhang

Convolutional Neural Networks for Newborn Pain Assessment

Using Face Images: A Quantitative and Qualitative Comparison ....... 503
Gabriel A. S. Coutrin, Lucas P. Carlini, Leonardo A. Ferreira,

Tatiany M. Heiderich, Rita C. X. Balda, Marina C. M. Barros,

Ruth Guinsburg, and Carlos E. Thomaz

Machine Learning for the Evaluation and Detection of Key
Markers in Dilated Cardiomyopathy ................................ 515
Xiaodan Bi, Zhenrun Zhan, Jinpeng Yang, Xu Tang, and Tingting Zhao

Others

Schema Based Knowledge Graph for Clinical Knowledge
Representation from Structured and Un-structured Oncology Data .... 529
Farina Tariq, Saad Ahmad Khan, and Muhammad Moazam Fraz

Intelligent Fuzzy Clinical Decision Support System to Classify

Breast Cancer—Case Study: The Wisconsin Dataset .................. 541
Y. F. Hernandez-Julio, L. A. Diaz-Pertuz, M. Prieto-Guevara,

M. Avilés-Roman, B. Castillo-Osorio, M. Barrios-Barrios,

and W. Nieto-Bernal

Research on the Design and Production of VR Rehabilitation

Game for Parkinson’s Disease Patients Based on Real-Time Action
Acquisition . ......... .. 551
Ying Zhang, Xin Su, and Xibin Xu

Force-Directed Graph Layout Based on Community Discovery
and Clustering Optimization .......... ... .. ... .. ... .. ... ........ 561
Linshan Han, Beilei Wang, and Songyao Wang

Comprehensive Strategy to Screen the Ankylosing
Spondylitis-Related Biomarkers in the Peripheral Serum .............. 573
Zhenrun Zhan, Xiaodan Bi, Xu Tang, and Tingting Zhao



Medical Imaging



Optimizing the Non-local Means )
Filtering of CT Images L

Ivo Draganov® and Veska Gancheva

Abstract In this paper a general optimizing procedure is proposed for the non-
local means (NLM) filter. It involves finding the optimal degree of smoothing, the
size of the search window and the size of the comparison window for a series of
Computed Tomography (CT) images. All of them contain Additive White Gaussian
Noise (AWGN) with a particular variance and zero mean, both of which are prelimi-
nary unknown. Applying the optimization procedure over a single slice from the CT
packet appears to be efficient enough in finding the optimal parameters of the filter
for the rest of the CT images. Positive results are obtained from filtering a complete
set of CT images from a patient’s body and the quality of the filtration is higher than
that of the Gaussian and Average filters.

Keywords CT image - Additive White Gaussian Noise + Non-local means filter -
Optimization

1 Introduction

Computed Tomography (CT) images play a crucial role in medical diagnostics. Their
quality is a prerequisite for effective medical treatment and it should be maintained as
high as possible. The inherent noises from the principle of operation of the scanners
worsen the overall representation of the internal organs, both in their homogenous
areas and around the contours. Effective CT filtration could be established only if
the involved filtering techniques preserve the structure of the organs as a whole.

In [1] Zhang et al. propose adaptive non-local means (NLM) filter which uses
local principle neighborhoods (PC-NLM). Thus, they retain the structures of the
organs from low-dose computed tomography (LDCT) images. The latter are known

I. Draganov (X)) - V. Gancheva
Technical University of Sofia, 8 Kliment Ohridski Blvd., Sofia 1756, Bulgaria
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to have significant level of noise and artifacts although the body of the patient is less
affected by the radiation. The difference with the classical NLM filter is that Principal
Component Analysis (PCA) is initially run over the local windows so they become
decomposed to principal components. They are processes then by the NLM filter.
Adaptive estimation of the filtering parameter is also proposed so components with
higher Signal-to-Noise Ratio (SNR) are less changed than those with lower SNR. This
preserves the original structures in the image. The whole procedure happens several
times over typical LDCT images. The resulting Root Mean Square Error (RMSE)
from tests for PC-NLM is 10.35 while for NLM itis 13.53, the Correlation Coefficient
(CC) for PC-NLM is 0.9668, for NLM—0.8796, and the Structural Similarity Index
Measure (SSIM) for PC-NLM is 0.7551, for NLM—0.5191.

In another study [2], Zhang et al. suggest the combination of Tensor Decompo-
sition and Non-Local Means (TDNLM) for decreasing the extremely high levels of
noise in spectral CT. The image projections from all energy channels are grouped
together, forming a new image with higher SNR. Parameter selection strategy for the
proposed approach is developed in order to get optimal quality of the images. Exper-
imental results show decrease of RMSE from 0.225 to 0.0217 cm™! and increase of
SSIM from 0.633 to 0.987.

Chen et al. [3] developed high-definition neural visualization technique of rodent
brain. The authors use micro-CT scanning and the non-local means approach. This
combination is thought to be effective in phenotyping and for histological manip-
ulations. The NLM filter is applied as post-acquisition phase after the postnatal rat
brain micro-CT scans for both the ex vivo and in vivo methods. The ex vivo method
and the NLM filtering lead to 3D images close in details to 4 x light micrographs.
This method provides more details in the neural features than those from the in vivo
approach. On the other hand, the effect of the NLM filter on the in vivo samples is
more underlined. It has bigger increase of the SNR. Resolutions of < 2-3 pm/voxel
and scanning time > 15 h are thought suitable to get satisfactory SNR.

Multi-scale transform and NLM is used as denoising approach for Positron Emis-
sion Tomography (PET) in [4] by Bal et al. It turns out that the mutual application of
these two techniques preserves better both the isotropic and anisotropic components
of the image rather than the application of just one processing algorithm. Wavelet
and curvelet transform with Tree clustering NLM (TNLM) appears to be appropriate
solution. TNLM takes out the homogenous (isotropic) features while the curvelet
transform separates the edges and contours (anisotropic features). Filtration takes
place separately for these two sets of objects. At the end they are grouped up together
again. Positive results are reported from test with this approach with the additional
benefit of increasing the contrast of filtered images.

Al-antari et al. [5] use the NLM filter for denoising high and low energy images
obtained from Dual Energy X-ray Absorptiometry (DEXA). They adapted the filter
parameters from uniform phantoms. The noises present in the source and the detector
of the apparatus are modeled separately. SNR for high and low phantom images
increases with 30.36% and 27.02%, respectively. In the same time, tests with real
images of a spine reveal improvement of the SNR of 22.28 and 33.43%.
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Another approach that employs multi-scale transform and the NLM filter for
denoising PET images, in this instance dynamic ones, is proposed by Jomaa et al. [6].
Analyzing images of small animal hearts the authors take into account the correlation
in time among them, employing the Shearlet and wavelet transforms to reduce the
noise. Having noise level of 7.68% the chi-square parameter from the filtering is
4.06. Significant improvement in terms of the Peak Signal to Noise Ratio (PSNR)
equal to 74.38 = 9.2 and SSIM is also achieved as well as in contrast — 27.04 F
12.1.

A study on a wider set of images that aims denoising is described in [7] by
Panigrahi et al. In the base of the approach is multiscale NLM filtering using curvelet
transform and hard thresholding. In this case, ringing artefacts appear so additional
processing by guided filter needs to be applied. Thus, edges and textures could be
preserved better. The PSNR of the reconstructed images for noise with standard
deviation o = 40 is 29.089 dB. For the NLM alone it is 27.252 dB. In the same time,
SSIM is 0.777 for the composite technique and 0.691—for the NLM filter.

CT thoractic images are also being denoised by the NLM approach in a fast
implementation (FNLM) as described by Kim et al. [8]. Gaussian noise with standard
deviation of 0.002 is added to MASH phantom images and then filtered separately
by the FNLM, Gaussian, median and Wiener filters. Achieved PSNRs are 82.354,
79.537, 82.094 and 81.882 dB. The Contrast to Noise Ratios (CNR) are 236.635,
47.630, 50.527 and 67.125, respectively.

FNLM is also used in the detection of pulmonary nodules as proposed by Shim
et al. [9]. The processing is done over chest CT images. The & value of the filter is
set to 2 values—0.0001 and 0.001. In the first case the registered number of artifacts
is less. The Coefficient of Variation (COV) reaches in the best use case just above
2.5 and the Contrast to Noise Ratio (CNR)—around 22.

An adaptive NLM implementation is tried over Basis Material Images obtained
from dual-energy CT at low emitting doses [10]. In this version of the filter distribu-
tion map helps in obtaining proper weights of the averaging pixels taking into account
the decomposition error. The parameters of the filter in one of the experiments are
h = 0.02, r = 50 and the radiuses of the search and comparison windows are 5 and
2, respectively. Depending on the type of the basis material and the dose level the
PSNR changes between 20.35 and 31.61.

Obviously, there is large variety of implementations of the NLM filter and the
different combinations with other techniques. In most of the cases, they are adapted
for particular purposes. The main goal in this study is to propose a general scheme
for optimizing the main parameters of the filter over CT image sets. It will lead to
optimal results in the filtration process. The rest of the paper is organized as follows—
in Sect. 2 description of the algorithm is given, in Sect. 3—experimental results and
in Sect. 4—discussion, followed by a conclusion in Sect. 5.
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2 Algorithm Description

2.1 The Non-local Means Filter

Let us have a grayscale noisy image I, (i, j) with spatial coordinates of a pixel
i €{0,M—1}and j € {0, N —1}. The dynamic range is I,, € {0, I, }. The filtered
images are found according to [11]:

I, )= Y wii —k, j = DG, ), ()
k !

where k and [ are such that i —k) € {O,M — 1} and (j —1) € {0, N — 1} for
all possible positions within the image; w (i — k, j — [) are weights which are
estimated based on the similarity between neighborhoods around the pixels /,,(i, j)
and I,(i — k, j — ). Itis true that [11]:

O<wi—kj—0<1

2
S wli—k j—D=1 @)
The weights themselves could be estimated from [11]:
1 S22 o Uni=pj—a)—Tn —k=p.j—1-a)T
wi—k,j—1)= e w2 , 3
@i =D Ca ) 3

where p and g are temporal variables. They change within the boundaries of a compar-
ison window with a size of cxc pixels around the I, (i, j) and I,, (i — k, j — [) pixels.
Also, h is degree of filtering. As a lower index in the exponent nominator w denotes
that it is a weighted Euclidean distance by a Gaussian with a fixed standard deviation
of d. The parameter C (i, j) is coefficient of normalization, estimated as [11]:
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It could be shown that [11]:
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where K is the number of comparisons between each two pairs of windows during
the process of estimation of the similarity; c—standard deviation of the noise in the
image.

The comparisons are made within a search window with a bigger size of sxs pixels.
The third parameter that controls the filtration process is the Degree of Smoothing
(DoS).

2.2 Proposed Optimization Procedure

The optimization procedure is shown in Fig. 1. One input image I (i, j) is filled with
Additive White Gaussian Noise (AWGN) with variance o and zero mean. Thus, we
get the noisy image [, (i, j). All three control parameters of the filter DoS, s and ¢ are
varied in growing order with steps 1000, 2 and 2, respectively. There are 3 embedded
loops for the purpose. In each iteration the PSNR and SSIM of the filtered image
Ir (i, j) are calculated. After termination of all loops the maximal PSNR and SSIM
determine the optimal DoS ., $opr and ¢,y Then the actual filtration of all the images
from the CT set could take place.

The computational complexity of the proposed procedure with non-optimized
version of the NLM filter is O (T((2c + 1)*(2 s + 1)>-N-M)). In the last expression T
is the total number of iterations from all the loops shown in Fig. 1. Itis straightforward
to obtain such a relation given the considerations from [12].

3 Experimental Results

The test image set is excerpt of the DeepLesion dataset [ 13] and it is comprised of 103
CT images with dimensions 512 x 512 pixels taken at 16 bpp bitdepth. The testing
platform is IBM® PC® compatible computer with Intel® Core™ i7-6820HQ CPU
with 4 cores. They are running in hyperthreading mode at 2.70 GHz, 64 GB of RAM
and 1 TB HDD. The operating system is 64-bit MS® Windows® 10 Professional.
The test environment is Matlab R2022a.

The first experiment aims to determine the optimal value of the Degree of
Smoothing (DoS) which is varied between 1 and 65,535 with a step of 1000. The
processing is done over a single image which is being noised with Additive White
Gaussian Noise (AWGN) with a variance o> = 0.01 and zero mean. The resulting
PSNR and SSIM of the reconstructed image is given in Fig. 2. Both curves change
in such a way that saturation of the maximum value is reached at DoS = 19,000. It
is considered as the optimum.

The processing time of the whole image is changing according to the curve from
Fig. 3 with an average value of 0.1926s.

The second experiment consists of changing the size of the search window s
and the size of the comparison window c using the optimal value of the DoS as a
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Fig. 1 Non-local means filter optimization procedure
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Fig. 2 Variation of a PSNR and b SSIM at different DoS

constant. The range for s is from 1 to 43. It is double the size of the typical value
for this parameter as recommended in [14]. For each iteration with regards to s the
size of the comparison window ¢ changes from 1 to s — 1. Both windows’ sizes are
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Fig. 4 Variation of a PSNR and b SSIM at different s and ¢

always an odd number. The resulting PSNR and SSIM are given in Fig. 4. These two
parameters saturate to a maximum for ¢ = 5 and s = 43, which are the optimums.

The filtering time for all tested sizes s and ¢ are shown in Fig. 5. It is monotonically
rising function with the increase of both sizes.

The third experiment is related to filtering of all 103 CT images with DoS,, =
19,000, s, = 43 and ¢, = 5. First AWGN with o2 = 0.001, 0.01 and 0.1 is added
to the images. Apart from the NLM filter, a Gaussian filter with zero centered kernel
and corresponding to the noise standard deviation o is also used. Together with it,
an Average filter with size of the kernel of 3 x 3 pixels is also applied over all 103
images. The PSNR and SSIM of the reconstructed images as well as the execution
time in each case are presented in Table 1.
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Fig. 5 Filtering times at different s and ¢

Table 1 Efficiency of the applied filters

Parameter Filter
NLM Gaussian Average
6% =0.001 PSNR, dB 47.08 30.00 39.47
SSIM 0.9954 0.4941 0.9149
t, sec 1.2953 0.0028 0.0013
6% =0.01 PSNR, dB 45.46 20.00 29.52
SSIM 0.9939 0.0914 0.5374
t, sec 1.2899 0.0016 0.0014
6?2 =0.1 PSNR, dB 3221 11.18 20.44
SSIM 0.6555 0.0127 0.1316
t, sec 1.2923 0.0017 0.0014

4 Discussion

The highest value of the PSNR from the reconstructed images for noise variance
0.001 is obtained by the NLM filter. It is more than 7.6 dB than that of the Average
filter and 17 dB difference with the Gaussian filter. The difference in SSIM between
the NLM and the Average filter is relatively small—0.0805. It is considerably larger
with the Gaussian filter—0.5013. However, the execution time of the NLM filter is
462.6 times higher than that of the Gaussian filter and 996.4 times the processing
time of the Average filter. The latter is the fastest. These times remain almost constant
regardless of the noise variance.

For higher levels of the noise—o? = 0.01 the differences in PSNR between the
NLM filter and the Gaussian and Average filters is 25.46 and 15.94 dB, respectively.
These differences show increase in the efficiency of the NLM filter with the increase
of the noise level, compared to the other two filters. For the most degraded images at
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02 = 0.1 the NLM filter outruns the Gaussian and Average filters in PSNR by 21.03
and 11.77 dB. For the SSIM the differences are 0.6428 and 0.5239, respectively.

The visual comparison of the quality of the reconstructed images show relatively
small suppression of the noise for the Gaussian filter (Fig. 6¢). In this instance
the grainy structure over the whole image still persist. However, there is a little
improvement in contrast and the structure of the organs could be spotted better. The
Average filter (Fig. 6d) smooths the image more than the Gaussian filter. The contours
of the objects are blurred and the size of the grains, still remaining from the noise, is
bigger. The smoothest effect from the filtering comes from the NLM filter (Fig. 6d).
The grainy structure is totally absent, but the contrast is a bit lower.

The quality of the NLM filtered images depends non-linearly from the DoS (Fig. 2a
and b). After steep increase of both the PSNR and SSIM from values of 20 dB and
0.1 for DoS = 1, there is a zone of saturation starting around DoS = 19,000. There
the PSNR is around 44 dB and the SSIM reaches almost 1. The filtering time does not
seem to depend on the DoS. There is just a slight variation for it within the interval
0.15-0.22 s (Fig. 3). The change of the PSNR is upwards with the increase of the
search window with its side s reaching a maximum for 43 pixels of around 45.5 dB.
From s = 3 with PSNR =27.81 dB to s = 21 with PSNR = 33.86 dB there is the most
significant increase interval. In the interval ¢ = 3 with PSNR =29.43 dBup to ¢ =
11 with PSNR = 40.26 dB the quality of images rises the most entering a saturation
zone which ends at ¢ = 43 with PSNR = 45.55 dB. SSIM almost identically follows
the change of the PSNR with the lowest level of 0.5347 for ¢ = 3 and s = 3. Then it
goes to 0.9451 for s = 9 and ¢ = 3 and then follows the saturation zone with 0.9947
for s =43 and ¢ = 41 at its end. Filtering time steadily increases with the growth of
s and ¢ (Fig. 5). From 5 x 5 pixels search window and 3 x 3 comparison window it
is 0.0057 s and rises to 19.68 s for s = 43 and ¢ = 41.

5 Conclusions

In this paper a general optimization scheme is proposed for the control parameters of
the NLM filter. It is tested over a set of CT images. Experimental results show that the
Degree of Smoothing affects the quality of the reconstructed images. The increase
of this parameter leads to saturation of both the PSNR and SSIM. There is a minimal
value for DoS which could be found as an optimal at the beginning of the saturation
zone. The change of DoS has no significant effect on the filtration time. The sizes of
the search and comparison windows also have non-linear effect over the quality of
the reconstructed images. For both of them there are saturation areas in the PSNR and
SSIM functions. It is possible to select the minimum windows sizes, such that they
lay at the beginning of the saturation zone. Thus, they guarantee best quality of the
images at the lowest computational time. The computational time, itself, increases
monotonically with the increase of the surface of the search and comparison window.
The NLM filter provides better quality of the filtered CT images than the Gaussian
and Average filters for wide range of noise level of AWGN. The filtering time of all
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Fig. 6 Sample CT image: a original, b noisy, filtered by ¢ Gaussian filter, d average filter and
e optimal NLM filter (the representation of the images here is at 8 bpp, scaled down from 16 bpp)
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three filters does not depend on the noise level. The NLM filter is more than 2 orders
of a magnitude slower than the other two filters. There is no grainy structure in the
images, filtered by the NLM, but there is a little loss of contrast. As a future work
optimization of the NLM filter as processing time could be undertaken. Also testing
with other types of images could be accomplished, e.g. magneto-resonance imaging
(MRI), multispectral and hyperspectral.
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Exploring Structure-Wise Uncertainty )
for 3D Medical Image Segmentation L

Anton Vasiliuk, Daria Frolova, Mikhail Belyaev, and Boris Shirokikh

Abstract When applying a Deep Learning model to medical images, it is crucial
to estimate the model uncertainty. Voxel-wise uncertainty is a useful visual marker
for human experts and could be used to improve the model’s voxel-wise output,
such as segmentation. Moreover, uncertainty provides a solid foundation for out-of-
distribution (OOD) detection, improving the model performance on the image-wise
level. However, one of the frequent tasks in medical imaging is the segmentation of
distinct, local structures such as tumors or lesions. Here, the structure-wise uncer-
tainty allows more precise operations than image-wise and more semantic-aware
than voxel-wise. The way to produce uncertainty for individual structures remains
poorly explored. We propose a framework to measure the structure-wise uncertainty
and evaluate the impact of OOD data on the model performance. Thus, we identify
the best UE method to improve the segmentation quality. The proposed framework
is tested on three datasets with the tumor segmentation task: LIDC-IDRI, LiTS, and
a private one with multiple brain metastases cases.

Keywords Uncertainty estimation + Out-of-distribution detection -
Segmentation + CT + MRI

1 Introduction

Advances in Deep Learning (DL) allow solving a medical image segmentation task
with near human-level quality [1]. But predictions of DL models in medical imaging
could not be taken blindly and assumed to be accurate. Ideally, the model is required to
provide the uncertainty estimate of its output. Estimating uncertainty maps in medical
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image segmentation helps to solve a wide range of problems. The uncertainties are
desired for a better reception by medical experts [2], but the direct impact is hard to
measure in this case. Alternatively, one uses uncertainty on a voxel-wise level to refine
the segmentation map, thus improving the model’s performance [3]. Uncertainty
maps also could be aggregated on an image-wise level, forming a standalone out-of-
distribution (OOD) detection method [4].

In the case of multiple objects or structures per image (e.g., tumors, lesions),
clinical tasks also require analyzing the model’s output on the structure-wise level.
Such cases are common in medical, especially radiological [5], imaging: a brain
tumor, lung cancer, organ-at-risk, or liver tumor segmentation. However, the ways
of using or reporting the uncertainty on distinctly localized multiple structures are
poorly explored, rising acute questions. For example, using voxel-wise uncertainty,
as in [3], one can improve the segmentation quality of detected structures but cannot
filter individual false positive (FP) predicted objects. In image-wise uncertainty, as
in [4], we do not consider the segmentation of local structures and also rebalance FP
and true positive (TP) predictions in a sub-optimal way, filtering the whole image at
once.

Therefore, in this work, we study uncertainty for individual predicted structures,
i.e., connected areas of the predicted segmentation mask. We assume that treating
uncertainty maps in a structure-wise manner helps to remove the FP detections more
effectively, thus improving the detection quality. Secondly, we assume that structure-
wise uncertainty (SWU) value strongly correlates with the segmentation quality of
a given structure. If the latter assumption holds true, it’s possible to conduct quality
control to enhance the model segmentation performance in the human-in-the-loop
setup [6], where the human expert refines the most uncertain (thus, worst) predictions.
We validate and experimentally confirm both assumptions.

Partially, these assumptions were tested directly or indirectly in a prior work. We
detail the related studies and compare with their methodology in Sect. 2. We extend
these studies in several major ways and below we detail our contributions:

e Structure-wise uncertainty estimation. We evaluate different uncertainty estima-
tion (UE) techniques and local uncertainty aggregation functions. We show that
switching from predicted values space to the structure’s Entropy produces 3%
fewer FP predictions on average, up to 7% fewer on LiTS dataset, adding a negli-
gible overhead and being applicable to any segmentation network.

e Uncertainty under out-of-distribution. We propose to evaluate aleatoric and epis-
temic performance by testing on in-distribution (ID) and OOD data. We develop
three OOD aleatoric setups to demonstrate different SWU properties. We show
that Pairwise-Dice Uncertainty [7] excels in the OOD setups, filtering out 6% more
FP predictions than the baseline method, and itself in the ID setups.

e Extensive and robust evaluation. We compare state-of-the-art UE techniques on
three large datasets with volumetric medical images. The datasets relate to the
described problem and contain cases with multiple lesions.
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2 Related Work

One of the direct SWU applications is FP reduction. Pursuing this goal, Nair et al.
[8] improved performance of their model in the multiple sclerosis segmentation task.
The authors took a sum of logarithms (sum-Ilog) over a predicted structure uncertainty
as a score to filter them. We argue that the sum-log is biased towards small objects. In
a broader setup with the differently sized target structures, we show that the standard
aggregation techniques such as mean surpass sum-log with a great margin.

Another approach to filter FP is a dedicated postprocessing model. Ozdemir et
al. [9] trained a network to classify predicted structures and compared different
dropout and ensembling regimes for this network. Bhat et al. [10] reduced FP in the
liver lesion segmentation task by training an SVM classifier on predicted patches,
their uncertainties, and hand-crafted features. However, FP reduction with a separate
network is limited with strictly one structure per patch or image. Here, we consider
a more general setup.

Other studies explore the ability to predict quality from uncertainty. Roy et al. [7]
developed a Monte-Carlo-based approach to predict whole-brain segmentation and
uncertainty maps. The authors calculated mean entropy, pairwise Dice score, coef-
ficient of the volume variation, and intersection over union to predict structure-wise
Dice scores. Mehrtash et al. [11] proposed to use mean entropy to predict struc-
ture Dice scores and achieved a high Pearson correlation between them for different
tasks. Hoebel et al. [12] studied several setups for the whole image quality predic-
tion. They compared Deep Ensembles against Monte-Carlo dropout and Dice loss
against weighted cross-entropy in terms of pairwise Dice score, coefficient of volume
variation, and mean entropy value. DeVries et al. [13] trained a separate network to
predict image-wise segmentation quality and compared different uncertainty estima-
tion methods with this network. We extend these approaches by studying uncertainty
application in a structure-wise manner instead of the image-wise one and evaluate
all related UE techniques. Moreover, we introduce studying uncertainty in the OOD
setup.

SWU is also taken advantage of in other challenges. Seebock et al. [14] devel-
oped an anomaly detection method for retinal optical coherence tomography, but
the authors pursue the other goal of developing a weakly-supervised segmentation
model. Hiasa et al. [15] studied muscle segmentation in an active learning setting and
proposed to use mean structure-wise variance to predict the structure’s Dice score.
In our work, we identify the UE technique for the supervised segmentation problem.

Thereby, we conduct an extensive study of known uncertainty estimation tech-
niques on a structure-wise level. We perform unified experiments across individual
aggregation and uncertainty estimation techniques, emphasizing the importance of
studying both aleatoric and epistemic setups.
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3 Methods

In this section, we propose a general framework to estimate SWU. The estimation
process consists of three steps: (i) compute a voxel-wise uncertainty map, (ii) split
the segmentation map to obtain the individual structures, and (iii) aggregate the
uncertainty inside every structure. The SWU scores can be further used for the FP
filtration and quality estimation.

3.1 Structure Definition

The ground truth structure (e.g., lesion, tumor) is defined as a connected area of the
annotation mask. Similarly, a predicted structure is a connected area of the predicted
segmentation mask, which can be binarized with different probability thresholds. We
experimentally compared different threshold values and found out that either larger
(e.g., 0.75) and smaller (e.g., 0.25) ones give considerably worse results than the de
facto standard threshold of 0.5. We further use the probability threshold of 0.5 to
define a predicted structure and omit the comparison of thresholds for the clarity.

3.2 Uncertainty Estimation Methods

To obtain uncertainty maps, we use Deep Ensembles [16], which are considered
to be state-of-the-art for estimating uncertainty in the medical image segmentation
tasks [11, 17]. We construct an ensemble of 7" = 5 neural networks trained with
different weight initializations, during the inference time, T predicted probability
maps Py, ..., Pr are generated for an input image. If probability map is a multi-
channel (softmax) output, the different channels are denoted as Pf.

The conventional way to filter FP predictions is to threshold a predicted mask
with its maximum value; thus, we consider Pred (max) a baseline method. We also
use the output of the final layer before sigmoid activation instead of probabilities and
call this method Logit. As one of the standard UE methods, we include Entropy:
Ugn = — Y.<, P¢log P-.

The methods above can be applied both to a single and the ensemble’s (i.e., the
average) prediction by substituting P¢ with P, where P¢ = + Y[ | P¢. Alterna-
tively, we can apply averaging after calculating the entropy: Uag = —% Ztrzl ZCCZI
Pf log Pf. We call this method Average entropy (AE) and also include it into con-
sideration.

The following two methods are drawn from the related work on UE and operate
only on multiple predicted probability maps. The first is Mutual Information (MI)
or BALD [18]: Ui = — Yo, P<log P¢ + L 3°1 S°C | Pflog Pf. The second is
Voxel-wise variance of predictions [19]: Uy, = % Zthl Zle (Pf — Po)2,
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The last method that we consider is Pairwise Dice (PD) between predictions [7].
Unlike previous methods, it produces a single uncertainty score per structure instead
of a voxel-wise uncertainty map. This uncertainty score is the averaged dice score
between all pairs of T predictions and a given structure.

3.3 Uncertainty Aggregation Techniques

Assuming uncertainty map is given, we need to assign a single score for every
structure. In [8], the authors calculate sum-log of uncertainties for all voxels v in
the structure S: u = ) _¢log U,. We argue that sum-log is heavily unbalanced in
cases with differently sized structures, which are common. Therefore, we include in
comparison the standard and, in this case, balanced statistics: min, max, mean, and
median.

4 Experiments

4.1 Data

We study SWU performance on three different challenges. To explore a method’s
aleatoric performance compared to epistemic, we provide an OOD dataset in every
task. The model is trained only on the ID training set, and we compare its performance
on the ID test set and the OOD data. All OOD datasets share the same preprocess-
ing steps with their ID pairs; the preprocessing is disclosed in the supplementary
materials.

Mets (private ID dataset) includes 1554 T1-weighted head MR images with anno-
tated metastases masks. Besides, one may consider a recently published public alter-
native [20]. EGD (OOD for Mets) includes 374 images of brain MRI (4 different
modalities) with annotated glioblastoma masks [21]. We select 141 of them with Flair
as the primary modality. We consider it to have empty metastases masks. LIDC (ID)
includes 1018 chest CT images from LIDC/IDRI database [22] with annotated lung
cancer masks. MIDRC (OOD for LIDC) includes 110 chest CT images with anno-
tated COVID-19 lesion masks [23]. We select 98 of them with non-empty segmenta-
tion masks. We consider it to have empty lung cancer masks. LiTS (ID) includes 131
abdominal CT images with annotated liver and liver tumor masks [24]. LiTS-mod
(OOD for LiTS) is a synthetically created dataset from 13 LiTS images with empty
liver tumor masks, generating typical CT imaging artifacts [25, 26].

All considered ID datasets are diverse and have the multiple small structures
segmentation task, which satisfies the considered setup. Five out of six datasets are
publicly available, yielding the partial reproducibility of our experiments.
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4.2 Experimental Setup

In all our experiments, we use the same segmentation model based on nnU-Net [27].
The implementation and training details are provided in the supplementary materials
and they are also available in our repository.'

Metrics. To measure FP reduction capacity, we evaluate how many FP detections per
image are filtered at 95% recall level and compute average recall for high precision
values. Considering R,y is the maximum model’s recall value, and F, is the average
number of FP predictions for a recall value 1’.%0 X Rmax, we compute the FP reduction
metric as % to account for a different number of FP on the OOD setups. The

average recall is computed for precision values P from min(P) to %(min(P) +
max(P)), the same for each method on a setup, to obtain statistics only from the
more relevant high recall region. For quality control metrics, we report the absolute
value of the Spearman correlation coefficient between the individual structure Dice
scores and SWU values.

4.3 Results

FP reduction. Despite the solid performance of the baseline method, there are advan-
tages of using other uncertainty measures and aggregation techniques; see Table 1.
Using the Entropy measure or mean aggregation, one can produce fewer FP predic-
tions for most setups. Except for Variance, AE, and Entropy (sum-log) [8], the other
methods surpass the baseline. The most consistent methods are PD and Entropy,
allowing for up to 7% FP reduction with a single model and 11% with the ensemble
model.

A considerable rise in OOD performance is shown by the discrepancy meth-
ods (PD, MI, Variance) in comparison to the averaging methods (Pred, Logit, AE,
Entropy); see Fig. 1, Table 1. The discrepancy methods produce 6-8% fewer FP pre-
dictions on the aleatoric OOD setups while averaging methods do not exceed 3%
limit, with an even more apparent difference on individual datasets. Since the OOD
setups differ from the ID ones only in the additional FP samples, we can conclude
that the discrepancy methods are better at filtering OOD data.

Quality control. For most of the methods, mean aggregation is a better index of
a structure quality than min and max aggregations (Fig.2 and Table2). The only
exceptions are Variance, with poor performance in all setups, and Pairwise Dice,
which does not use the voxel space uncertainty. The Entropy (mean) is the best
method in all LIDC and Mets setups and the second best in ensemble LiTS setup,
while discrepancy methods generally show the weaker correlation.

! https://github.com/BorisShirokikh/u-froc.
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Fig. 1 FROC curves for the best methods in comparison with the baseline (the dashed line). For
visual clarity, the average number of FP per image is given in the log scale. The measures are
obtained on the ID data (row 1) and the ID and OOD data combined (row 2). Discrepancy methods
show better performance when OOD dataset is present

Note that we do not consider the OOD setups in this quality control study, since
OOD data only introduces FP instances and, thus, does not affect the correlation of
scores on TP instances.

Overall, the most consistent method to evaluate SWU is the mean Entropy. It
performs among the top methods, producing 2.5% fewer FP predictions on average
and giving a 0.77 Spearman correlation with the object Dice score for TP predictions.
In the presence of OOD data, Pairwise Dice score reduces FP predictions better than
others, filtering from 2 to 11% more FP structures, depending on the OOD setup.

4.4 Discussion

To construct OOD setups with positive samples, we had to include the ID data. That
means that the FP reduction metric shows an average between ID and OOD false
positives, and pure OOD performance remains unknown. One of the possible ways
to approach this problem is to create a domain-shifted setup which would contain
OOD data with the true-positive structures.

The other promising application of the SWU framework is a more efficient human-
in-the-loop control. Quality estimates might be a good measure to select images or
individual structures to show a medical professional, but the question of how to gain
the most quality given a limited amount of human interaction, combined with optimal
FP reduction remains open.
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Fig.2 Linear models for object Dice scores from SWU plotted on top of the structures’ heat-maps.
The purple and red lines are constructed for only TP and both TP and FP structures, respectively.
Single-dimensional distributions of the measures are plotted along the axes

Table 2 Spearman correlation coefficients between structure’s Dice score and SWU value for TP
predictions

Second | Ensemble |LiTS LiTS** | LIDC LIDC** | Mets Mets**

Agg.
Pred Max 0.86/0.81| 0.46/0.46| 0.68/0.62| 0.63/0.63| 0.79/0.65| 0.61/0.60
Logit Max 0.85/0.81| 0.46/0.46| 0.67/0.62| 0.64/0.63| 0.75/0.65| 0.61/0.60
Entropy | Min 0.86/0.81| 0.46/0.46| 0.69/0.62 0.64/0.63| 0.79/0.65| 0.61/0.60
Pred Max v 0.79/0.69| 0.66/0.66| 0.70/0.64| 0.66/0.66| 0.78/0.64| 0.61/0.59
Logit Max v 0.75/0.69| 0.66/0.66| 0.69/0.64| 0.67/0.66 0.74/0.64| 0.61/0.59
AE Min v 0.72/0.69| 0.55/0.65| 0.55/0.61| 0.58/0.65| 0.77/0.64| 0.53/0.58
Entropy | Min v 0.78/0.69| 0.66/0.66| 0.70/0.64| 0.67/0.66| 0.78/0.64| 0.61/0.59
Ml Min v 0.72/0.24| 0.64/0.48| 0.49/0.38| 0.48/0.40 0.57/0.27 0.50/0.33
PD Min v 0.76/0.74| 0.65/0.71| 0.67/0.66, 0.64/0.63| 0.74/0.76| 0.59/0.60
Variance | Min v 0.42/0.64| 0.44/0.60| 0.22/0.55| 0.22/0.55| 0.10/0.52| 0.22/0.54

Columns denoted by “**” show values for all predictions, including FP. The values separated by
“/” represent mean and extreme aggregation, respectively

5 Conclusion

In this work, we have conducted an extensive study of structure-wise uncertainty over
six different setups. We have shown that mean Entropy provides a solid baseline
in both false positive reduction and quality control tasks. Also, we have revealed
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the importance of studying uncertainty metrics under different origins of data. In
our experiments, the discrepancy SWU methods perform significantly better for FP
reduction in the presence of the OOD data, with the best results achieved by Pairwise
Dice. Provided results should serve as a solid baseline for future structure-based
analysis.

Acknowledgements The authors acknowledge the National Cancer Institute and the Foundation
for the National Institutes of Health, and their critical role in the creation of the free publicly available
LIDC/IDRI Database used in this study. This research was funded by Russian Science Foundation
grant number 20-71-10134.

Experimental Setup

Preprocessing

Here, we describe data preparation steps including datasets splits, normalization, and
interpolation.

Mets data is randomly split into train (1140 images) and test (414 images) sets.
We interpolate the images to have 1 mm x 1 mm x 1 mm spacing.

LIDC data is randomly split into train (812 images) and test (204 images) sets. We
clip image intensities between —1350 and 350 Hounsfield units (HU)—the standard
lung window. We interpolate images to have 1 mm x 1 mm x 1.5 mm spacing.

LiTS is presented as two subsets, so we use the first as a test (28 images) and
the second, excluding cases with empty tumor masks, as a train (90 images) set. The
images are cropped to the provided liver masks. The intensities are clipped to the
[—150, 250] HU interval—the standard liver window. Finally, we interpolate images
to have 0.77 mm x 0.77 mm x 1 mm spacing.

LiTS-mod is obtained by random changes of the reconstruction kernel to be
extremely soft (a = —0.7, b = 0.5) or sharp (a = 30, b = 3) using the implemen-
tation and notations of [26], and addition of “metal” artifacts (ball of radius 5 and
3000 HU) by substituting the parts of sinogram projection, as in [25].

Before passing through the network, we scale image intensities in [0, 1].

Training Setup

Although using cross-entropy loss has theoretical justifications of encouraging bet-
ter calibrated predictions [16], models trained with this loss function fail in our
segmentation task. For that reason we use Dice Loss [28] and its modifications in
our experiments. Thus, uncertainty estimates might be shifted in such tasks, and
experimental evaluation, as in our study, becomes even more relevant. All models
are trained in a patch-based manner: patches are sampled randomly so that they con-
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tain structures. We use SGD optimizer with Nesterov momentum of 0.9 and 103
initial learning rate, which is decreased to 10~ after 80% of epochs. For LiTS and
Mets segmentation the model is trained for 100 epochs (100 iterations per epoch,
batch size 20), while for LIDC segmentation there are 30 epochs (1000 iterations per
epoch, batch size 2).
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Abstract Image segmentation is crucial during the diagnosis and treatment plan-
ning of various liver diseases, especially hepatocellular carcinoma (hcc). We present
a new neural network, Res-PAC-UNet, employing Pyramid Atrous Convolutions
and a fixed-width residual UNet backbone resulting in low parameter count and of
course, good liver CT segmentation. We use medical segmentation decathlon dataset
to train the network. The resulting segmentation gives a Dice similarity coefficient
of 0.958+0.015 with less than 0.5 million parameters with 1.2 million parame-
ters.

Keywords Liver - Segmentation + Neural networks

1 Introduction

Outlining the human organs on medical images helps in proper planning and prevent
the clinicians from damaging the surrounding tissues. Furthermore, the segmented
images can have other applications, such as, in image fusion of ultrasound (US),
magnetic resonance image (MRI), computed tomography (CT), etc. to enhance visu-
alization. The fused images can be used in image guided surgeries or interventions.
There have been mainly two types of segmentation, automatic and semi-automatic.
The automatic ones face various challenges due to the nature of the method itself
and that of the complexity of intensity distribution caused by the cancer [1-3]. A few
challenges are: (1) the intensity distribution between liver and surrounding tissues is
such that sometimes it would be difficult for a non-clinician to discriminate, (2) use of
contrast enhancement sometimes results in increased noise level and artifacts on the
CT scans, (3) voxel spacing and axial resolution on CT scans cause loss of necessary
volumetric information for CT segmentation [4], (4) the liver tumors sometimes
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have complex features, such as varying intensity, varying shape and size making the
segmentation task daunting, and (5) additionally, the partial volume effect can’t be
neglected adding further ambiguity.

The literature in image segmentation is quite rich; still, new methods keep coming
to overcome the challenges posed by the input data and segmentation methods. Ear-
lier, these techniques include: region growing [5—7], model-based [8], clustering [9],
graph cut [10, 11], etc. However, the conventional methods have failed to perform as
per the expectation level of the clinicians, especially with respect to accuracy, robust-
ness, and automation, thus, neural network has presently taken the limelight [12].

The convolutional kernels in the neural network extract the relevant features in
the input data (image) reducing the user dependency and increasing the accuracy.
Ronneberger et al. [13] has revolutionized by proposing a network that has been so
popular that the modifications keep coming in every now and then. This is based on
an encoder-decoder concept, where the encoder learns to generate a dense feature
representation from the input data and the decoder creates the segmentation mask.
Repeated pooling causes a loss in spatial information; thus, the skip connection has
been introduced to minimize this loss.

Recently, a new network has been proposed, Thin-UNet [14], that achieves image
segmentation with less parameter count. In this paper, we especially focus on reducing
the model size, parameter count, and model usability keeping appropriate acceptable
segmentation accuracy.

2 Proposed Methodology

2.1 Network Architecture

Although UNet has been quite popular, there are some limitations with respect to
skip connections and large parameter counts [15]. Duplications of low resolution
feature maps are resulted from the encoder (E) and propagated to decoder (D) lead-
ing to smoothing the object boundaries. Thus, to overcome this problem, a novel
network, Res-PAC-UNet (Fig. 1), is proposed, where constant feature width (W) of
tuned backbone in addition to the residual (R) blocks are used minimizing the mem-
ory footprint and parameter count. This also improves the gradient and information
flow. We employ strided convolutions; the convolutional blocks are replaced by the
R blocks; this downscales the input features. We also aim to leverage multi-scale
volumetric features from the low-resolution feature maps of the encoder; Pyramid
Atrous Convolution Module (PAC) modules is deployed over the skip connections
to generate these. PAC modules are not placed at the top of the skip connections to
avoid large memory that is required for high resolution feature maps. It is shown in
Fig.2 on how the R block is being used in the tuned backbone. The feature map is
downscaled by half due to the initial convolutions in E residual blocks with a stride
of 2 (sp = 2). On the other hand, upscaling of the feature map occurs by the decoder
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Fig. 1 The Res32-PAC-UNet network for segmenting liver CT

after transposing convolutions and regular convolutions, where a 1 stride does the
job in the R blocks. The expression for regular convolutional operation and R blocks
may be provided as:

Convol ywuxu(xi, s, W;0) = f(w/ & xi +b/),Y1 < j<W,w/ €0,b/ €0,

1
where, xi, s, W, and u represent feature map, convolution stride, number of kernels,
kernels dimension, respectively; furthermore, the information on kernels weights
and biases are contained by 6. Additionally, the activation function, f(.), is applied
to the convolution result, ®; is the result of strided convolution operation. b/ and
w/ represent the jth kernel bias and the jth kernel weight, respectively. Thus, the R
block can be expressed as:

. i—1 i
oll = ConUOI_uxuxu(Cl ’ SO, W1 9{)9

oé = Convol_uxuxu(ci_l, S0, W; Gé), )

0§ = Conv()l_uxuxu(cl]a s1, Wi eé)a

o' =0, @ o,

where, o' ~! and o' are the R block input and output, respectively. o/, 0}, o} are the
3 convolutional operations, whereas, @ represents addition operation element-wise.

Modified Surface Loss There has been some popular loss functions, such as focal
loss, surface loss, binary cross-entropy (BCE) and others [18]. However, the distance
metrics do play crucial role to quantify the boundary errors, thus, Kervadec et al. [16]
present aboundary loss function that describes a graph-based optimization to estimate
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Fig. 2 a Residual block used to improve the gradient flow and information. b PAC building block
to capture the volumetric features of multi-scale nature at the encoder side

the flow of the gradient for curve evolution. Subsequently, the regional softmax
probabilities of the pixels (£2) are used to calculate the boundary loss in the ground
truth level-set function (¢ ) and predicted segmentation mask (My).

BL(Q2) = /¢G(P)M9(P)dp- 3)
Q

Kervadec et al. [16] combine the region-based loss (surface loss) with boundary
loss providing improvement in accuracy of 8%. Thus, we have modified the above
proposed loss function; we replace with a combo loss that is the sum of Dice loss
and focal loss. The objective is to emphasize the distribution with regards to area and
class of the regions of interests (ROI). This would certainly improve corresponding
metrics of class accuracy. In addition, a weight shifting strategy has been proposed
that shifts the weight from 0.01 to 0.75, and 0.99 to 0.25, of boundary loss and combo
loss, respectively. This strategy helps in achieving a decent portion of the net weight
after the training.

3 Setup for the Experiment

3.1 Data

In medical segmentation decathlon [17], liver CT scans were used to train the models.
The database accommodates 201 CT scans that are contrast-enhanced with 131 scans
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in the train set and 70 Scans in the test set. The scans’ spatial dimension was 512x512,
and number of slices was having a range (of 50, 1100). The scans are from patients,
who have hce or liver metastases. Performing training (101 scans) and validation (31
scans) on every original set was done on the CT scans to overcome the challenges in
the test set.

Nifti loader was used to read the file during the pre-processing stage and the scans
that were in the range [ 500, 500] HU were captured. The image intensities were then
recomputed to [—1, 1] by min-max normalization. To reduce VRAM consumption,
spatial measurements of input scans were resized to 256x256, and 64 slices from
each scan’s liver territory were resampled. The consumption of VRAM is a major
issue, when designing networks for 3D CT. The tumor label was then replaced with
liver label for training liver CT segmentation networks. Volumentations package was
applied to the refined CT scans to minimize overfilling.

3.2 Implementation Details

CT scans were stored in RAM before training to reduce input/output (I/O) as well
as computational costs. Neural networks in Keras' was also built using Tensorflow
dataset generator and prefetching, which makes certain the neural networks were
reliably supplied enhancing the scans together with ground truth. To establish model
convergence, the networks were trained for 150 epochs (Fig. 3). Three different loss
functions and modified surface loss function were used for training Res32-PAC-
UNet and other models, respectively. For network parameter updates, batch size of
1 and the Adam optimizer (learning rate = 0.0001) were used. The Keras callbacks
were used to save the model weights that produced an elevated Dice coefficient (DC)
on the test set and they were then applied for evaluating the model. We have used
a workstation (HP Z8), whose specifications are as follows: Intel®Xeon(R) Silver,
4216 CPU, 64 cores, 2.10 GHz base clock, and 128 GB of system memory.

4 Results

Table 1 displays the Res32-PAC-UNet model’s performance summary for three dis-
tinct loss functions. It depicts that using binary cross-entropy as well as focal loss
results in less reliable segmentation. This can be mitigated by focusing on the sig-
nificance of area/volume overlap information in training networks for segmentation
tasks, which increases segmentation reliability, and by region overlapping along with
class distribution in modified surface loss.

The Res32-PAC-UNet model’s 3-moving average DC, which is primed for the
initial 100 epochs utilizing disparate loss functions is shown in Fig.3. The sudden

I'F. Chollet et al., https://github.com/fchollet/keras, 2015.


https://github.com/fchollet/keras

32 M. Y. Ansari et al.

Table1 Quantitative performance of Res32-PAC-UNet with respect to different loss functions, the
bold figures indicate the significance of modified surface loss function

Loss DC IoU Sensitivity | Specificity | SVD VOE
function
Focal loss 0.898 0.815 0.95 (0.023) | 0.998 0.102 0.185
(0.024) (0.038) (0.002) (0.024) (0.038)
Binary cross | 0.949 0.903 0.965 0.997 0.051 0.097
entropy (0.016) (0.028) (0.028) (0.001) (0.016) (0.028)
Modified 0.958 0.92 (0.026) | 0.96 (0.026) | 0.997 0.042 0.08 (0.026)
surface loss | (0.015) (0.001) (0.015)
10 | . 10
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Fig. 3 On the test set, DC evolution in first 50 epochs of training: a the network trained with the
loss functions. b The network trained with the proposed loss function

changes in the DC curve produced due to stochastic network weight updates were
smoothed out by applying moving averages. By reaching an 80% DC in the first
initial epochs, modified surface loss offers high segmentation accuracy and speedy
convergence in earlier epochs. Res32-PAC-UNet can achieve excellent segmentation
accuracy due to the modified surface loss, which also hastens convergence among
the tested loss functions (Fig. 4).

An important feature of Res-PAC-UNet model is that it was designed for maximiz-
ing segmentation accuracy while reducing parameter count and disk utilization. The
Tuned-UNet overcomes UNet model’s 270 MB model weight by reducing parameter
counts and storage space by up to 4x. Parameter reduction accelerates segmenta-
tion completion, increasing DC from 91.9 to 95.5% when compared to UNet. The
Thin16-PAC-UNet, as well as Thin32-PAC-UNet models, advance towards Tuned-
Unet model’s segmentation conduct; the figures reach as much as 12x, 4.6 x fewer
parameters and storage requirements, respectively. Because of the PAC module in
thin fixed-width architectures, the segmentation performance of Thin-PAC-UNet
was found as better than Tuned-UNets. By confining the model size to 15.1 MB
and the parameters to 1.2 million, the Res32-PAC-UNet out-stands other versions
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Fig. 4 A qualitative comparison of the proposed neural network. The artifacts are marked by red
bounding oval marks. Overlapping of the predicted segmentation masks (yellow) on the ground
truth (red)

in the empiric study. The newly proposed Res-UNet++ [19] architecture has nearly
identical performance to Res32-PAC-UNet, but has almost 10x more parameters.
On the other hand, if segmentation accuracy was the goal, the Res32-PAC-UNet is
agreed upon more than UNet and Tuned-UNet models, as it attains best accuracy
with 18x%, 4.6 x fewer parameters.

5 Conclusion

It was suggested to employ an original Res-PAC-UNet architecture that combines
PAC modules with a customized fixed-width R backbone to achieve good segmen-
tation performance with minimal weights. The PAC modules located over the skip-
connection are helped in extracting pertinent multi-scale volumetric features by the R
backbone, which limits the exponential growth rate of the parameters while enhanc-
ing information and gradient flow. We have modified the surface-based loss func-
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tion and trained the network in order to enhance the performance of the segmen-
tation. Res32-PAC-UNet has proved to have maximized the segmentation perfor-
mance.

Acknowledgements This publication was made possible by NPRP- 11S-1219-170106 from the
Qatar National Research Fund (a member of Qatar Foundation). The findings herein reflect the work,
and are solely the responsibility of the authors. This research was also co-funded and supported by
the Medical Research Center, Hamad Medical Corporation, Doha, Qatar.

References

10.

11.

12.

. Dakua, S., & Sahambi, J. S., Weighting Function in Random Walk Based Left Ventricle Segmen-

tation, Proc. of 18th IEEE International Conference on Image Processing, Brussels (Belgium),
2133-2136, 2011.

Rai, P, Abinahed, J., Dakua, S., & Balakrishnan, S., Feasibility and efficacy of fusion imag-
ing systems for immediate post ablation assessment of liver neoplasms: Protocol for a rapid
systematic review, International Journal of Surgery Protocols, 1JS Press, 25, 1, 209-215, 2021.
Sarada, D., & Nayak, A., A Review on Treatments of Hepatocellular Carcinoma - Role of
Radio Wave Ablation and Possible Improvements, Egyptian Liver Journal, Springer, 12, 30,
1-10, 2022.

Akhtar, Y., Dakua, S., Abdalla, A., Aboumarzouk, O., Ansari, M. Y., Abinahed, J., Elakkad,
M. S. M., Al-Ansari, A., Risk Assessment of Computer-aided Diagnostic Software for Hepatic
Resection, IEEE Transactions on Radiation and Plasma Medical Sciences, 2021, https://doi.
org/10.1109/TRPMS.2021.3071148.

. Singh, A., Romeo, A., Scott, K., Wagener, S., Leibrock, L., Laux, P, Luch, A., Kerkar, P., Bal-

akrishnan, S., Dakua, S., & Park, B., Emerging technologies for in vitro inhalation toxicology,
Advanced Healthcare Materials, Wiley, 10, 2100633, 2021.

Dakua, S., & Sahambi, J., Modified Active contour Model and Random Walk Approach for Left
Ventricular Cardiac MR Image Segmentation, International Journal for Numerical Methods in
Biomedical Engineering, Wiley, 27, 1350-1361, 2011.

Singh, A., Laux, P, Luch, A., Balkrishnan, S., & Dakua, S., Bottom-UP assembly of nanorobots:
extending synthetic biology to complex material design, Frontiers in Nanoscience and Nan-
otechnology, 5, 1-2, 2019.

Singh, A., Maharjan, R., Kromer, C., Laux, P.,, Luch, A., Vats, T., Chandrasekar, V., Dakua,
S., & Park, B., Advances in smoking related in-vitro inhalation toxicology: a perspective case
of challenges and opportunities from progresses in lung-on-chip technologies, ACS Chemical
Research in Toxicology, 34, pp. 1984-222, 2021.

Dakua, S., & Sahambi, J. S., LV Contour Extraction from Cardiac MR Images Using Random
Walk Approach, In IEEE International Advance Computing Conference, Patiala, India, 228—
233, 2009.

Dakua, S., Abinahed, J., & Al-Ansari, A., A PCA based Approach for Brain Aneurysm Seg-
mentation, Journal of Multi Dimensional Systems and Signal Processing, Springer, 257-277,
2018.

Dakua, S., Abinahed, J., & Al-Ansari, A., Pathological Liver Segmentation Using Stochastic
Resonance and Cellular Automata, Journal of Visual Communication and Image Representa-
tion, ScienceDirect, 34, 89-102, 2016.

Ansari, M. Y., Abdalla, A., Ansari, M. Y., Ansari, M. 1., Malluhi, B., Mohanty, S., Mishra, S.,
Singh, S. S., Abinahed, J., Al-Ansari, A., Balakrishnan, S., & Dakua, S. P., Practical utility of
liver segmentation methods in clinical surgeries and interventions, BMC Medical Imaging, 22,
97, 1-17,2022.


https://doi.org/10.1109/TRPMS.2021.3071148
https://doi.org/10.1109/TRPMS.2021.3071148

Towards Developing a Lightweight Neural Network for Liver CT .. . 35

13.

14.

15.

16.

Ronneberger, O., Fischer, P, & Brox, T., U-Net: Convolutional Networks for Biomedical
Image Segmentation. In: Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds) Medical Image
Computing and Computer-Assisted Intervention MICCAI 2015. MICCAI 2015. Lecture Notes
in Computer Science, vol 9351. Springer, Cham, 2015.

Vaze, S., Xie, W., & Namburete, A., Low-Memory CNNs Enabling Real-Time Ultrasound
Segmentation Towards Mobile Deployment, journal of biomedical and health informatics,
1EEE, 24, 4, 1059-1069, 2020.

Ansari, M., Yang, Y., Balakrishnan, S., Abinahed, J., Al-Ansari, A., Warfa, M., Almokdad, O.,
Barah, A., Omer, A., Singh, A., Meher, P., Bhadra, J., Halabi, O., Azampour, M., Navab, N.,
Wendler, T., & Dakua, S., A Lightweight Neural Network with Multiscale Feature Enhancement
for Liver CT Segmentation, Scientific Reports, Nature, 12, 14153, 1-12, 2022.

Kervadec, H., Bouchtiba, J., Desrosiers, C., Dolz, E., & Ayed, 1., Boundary loss for highly
unbalanced segmentation. In International conference on medical imaging with deep learning,
285-296 (PMLR, 2019).

. Antonelli, M., Reinke, A., & Bakas, S., et al., The Medical Segmentation Decathlon, Nat

Communication, 13, 4128, 2022. https://doi.org/10.1038/s41467-022-30695-9

. Ramos, D., Javier, F., Alicia, L., & Joaquin, G., Deconstructing Cross-Entropy for Probabilistic

Binary Classifiers, Entropy 20, 3, 208, 2018.

. Jha, D., Smedsrud, P, Riegler, M., Johansen, D., Lange, T., Halvorsen, P., & Johansen H.,

Resunet++: An advanced architecture for medical image segmentation, In 2019 IEEE Interna-
tional Symposium on Multimedia (ISM), 225-230, 2019.


https://doi.org/10.1038/s41467-022-30695-9

NuRISC: Nuclei Radial Instance m
Segmentation and Classification er

Esha Sadia Nasir and Muhammad Moazam Fraz

Abstract Accurate segmentation and classification of nuclei instances is one of
the most challenging tasks due to wide occurrence of overlapping, cluttered nuclei
having blurred boundaries. Existing methods particularly focus on region proposal
techniques and feature encoding frameworks, however often fails to precisely iden-
tify instances. In this paper we propose a simple yet effective model that precisely
recognize instance boundaries as well as caters exhaustive class imbalance prob-
lems, thus yielding accurate class information for each nuclei. We have utilized
nuclei pixel positional information i.e. its distance from contours for accurate shape
estimation along with an object probability score for filtering true nuclei pixels from
background. The network comprises of a light weight multi head U-Net architecture
having separate instance probability, shape radial estimator and classification heads.
A compound classification loss function is used that minimizes loss by assigning
weighted loss to each class according to type occurrence frequency thus mitigating
major class imbalance issues existing in most of publicly available nuclei datasets.

Keywords Whole slide imaging - Nuclei + Segmentation - Computational
pathology + Deep learning + Classification * Detection

1 Introduction

Accurate segmentation and classification of nuclei is considered as a preliminary step
towards an intricate whole slide image analysis leading to circumstantial histology
images research. For instance, nuclei counts on digital pathology images have note-
worthy diagnostic importance in various cancerous stage particularly including
cancer grading, phenotyping, patients survival prediction, automatic nuclear pleo-
morphism scoring and mitosis detection. All of these deliberately relies on nuclei
instance appearances and structural variations [1]. Nuclei presence, size, shape,
staining and morphological characteristics are important indicators in estimation of
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Fig.1 Adrenal gland WSI from CryoNuSeg dataset along with labelled ground truth indicating
high number of occluded nuclei a image, b ground truth and ¢ occulsion

diseases severity. However, manually segmenting such structures is tedious as well as
error prone due to extreme inter as well as intra observer variability. Figure 1 shows
high number of occluded and overlapping nuclei from adrenal gland CryoNuSeg
Dataset. These occlusion later on hinders model training and yields poor perfor-
mance [2]. Contrary to this automated methods that reports high performance on
a particular WSIs data yields poor results on distinct datasets due to disparity in
organic cells with respect to different organ tissues as well as variation in acquisition
parameters including color inconsistency due to staining variations and occluded
nuclei boundaries [3]. Similarly, malignant cells growth rate is extremely high and
it’s density in malignant cells is also reported much higher compared to normal cells.
Squeezing these two often times yield large number of clumped nuclei instances [4].

2 Related Work

Nuclei segmentation and classification is an elemental task in computer aided disease
diagnosis and tumor micro environment analysis [5, 6]. Traditional approaches used
for segmentation of nuclei comprises of thresholding, watershed [ 7] segmentation [8],
level-sets [9], morphological operations [10], active contour models [11] and snake
energy optimizations [12]. A notable shortcoming of all these handcrafted tech-
niques is inadequacy to fully detect nuclei due to it’s dependency on low-level
features lacking significant structural details thus leading to degraded segmenta-
tion results [13, 14]. In past few years, convolutional neural networks based deep
learning techniques have surpassed traditional methods in nuclei instance segmen-
tation [15]. In 2017 Kumar et al. [16] proposed a convolution neural network based
on pixels classification, against every image pixel a probability score is computed
yielding 3 class output information for nuclei boundary, interior and exterior proba-
bilities. In 2018 [17] proposed a star convex polygons based cell localization network
considering better shape representation results of convex polygons compared to usual
bounding box based detection and thus do not need shape refinement. For this, they
trained a convolutional neural network for predicting every pixel within that polygon
cell instance at that position. Similarly, Graham et al. [18] proposed distance based
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nuclei identification and classification technique where nuclei instances estimation
is done using pixel to nuclei centroid distance maps in horizontal as well as vertical
directions. A joint attention model based on Neural Architecture Spatial and channel
weighting effect is proposed by Liu et al. [19] using NAS search strategy for atten-
tion module automation with the addition of multiple attention module architectures
searching within same network.

Above mentioned approaches though yield state of the art results however for
final segmentation instance primarily uses sophisticated post-processing modules
including watershed [20], conditional random fields (CRFs), morphological erosions
or dilations and clustering [21]. Recently, shape aware nuclei identification tech-
niques have been proposed, where a polygon is used for representing each individual
instance and is calculating via nuclei center and boundary pixels prediction.

3 Methodology

Nuclei segmentation and classification is one of the basic step yielding rich informa-
tion towards further cancer research including cancer grade estimation, phenotyping,
quantification and survival prediction. For exploiting these details, in this paper we
proposed a single stage probabilistic model for multi class nuclei instance segmen-
tation and type classification. The main aim of the architecture is identification of
nuclei instances using center of mass and contour features information. For pixel
at any point it calculates estimated inter space towards the nuclei edges using arc
gradients metrics. The block diagram of the framework is shown in Fig. 2.

3.1 Deep Regression Network

This model is an extension of the state of the art MRU-Net [22] encoder decoder
based segmentation network that regresses not just instance locations, confidence
scores and class probabilities for each instance, along with detailed shape encoding.

3.2 Instance Representation

We require a compact and interpretable object embedding representation embodying
higher understanding of each instance shape and overlapping patterns for the nuclei
shapes prediction. For this direction maps within each instance yields morphome-
tric information via decodable shape representations to radial vectors and object
probability and finally learned shape encodings.
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Fig. 2 a Shows data preparation and preprocessing using different augmentation techniques.
b Shows MRU-Net building block including ResPath and Multires blocks architecture. ¢ Show
NuRiSC architecture where preprocessed patches are given to Multiheaded MRU-Net as input and
it outputs distance maps, probability head and classification outputs followed by Shape proposal
generation and Non maximal suppression

3.3 Radial Distance Maps

Radial distance maps represents each instance as a line segment from a hypothetical
centre spot within the object and directs pixel distributed over nuclei contours. Model
finds contour points via finding pixels where radial direction cast away from the
central point intersecting the boundary at angles in range from 0 to 2r. For finding
optimal shape we construct multiple radial directions for every nuclei instance and
finally selects one on the basis of maximum IoU threshold.

3.4 Pre-processing

For enhancing model accuracy with fewer learning parameters we have applied pre-
processing for data preparation. During pre-processing stage, Structure preserving
color normalization is used for mitigating redundant variations including image
contrast and differences in reagent concentrations during scanning. Similarly, for
better training data augmentation including rotations, horizontal and vertical flips
and intensity variations are applied.
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3.5 Model Architecture

Initially, high and low resolution feature maps are generated via a backbone convo-
lutional neural network with 3 outputs prediction heads, each consisting of single
convolution layer yielding three specific details per pixel including (1) instance shape
direction map, (2) instance probability score and (3) class information respectively.
The CNN backbone is comprised of 5 levels having 16, 32, 64, 128 and 256 channels.
Similarly each encoding, decoding block comprises of two 3 x 3 convolution blocks
along with batch Normalization, ReLU activation function and a 2 x 2 max-pooling
or upsampling branch. The generated feature map has 256 channels and ReL.U acti-
vations. In probability estimation head single channel output with sigmoid activation
is used for separating object from background. Similarly, in the shape estimator
branch n output channels are produced for n vertex polygonal nuclei along with
ReLU activation. In classification head m channel output with soft max activation is
used where m indicates number of nuclei classes. In next stage pixels having proba-
bility score greater than thresholds are selected for nuclei shape formation. Similarly
for instances classification an additional classifier head is used in backbone CNN
along with other two heads including object existence probability head and shape
estimator head. Similar, to object probability head, classifier head yields class prob-
ability of pixel which is finally aggregated for all pixels thus representing finalized
class instance. Due to pixels surrounding multiple objects and voting for n instances
simultaneously, an IoU based non-maximal suppression is used for removing redun-
dant instances while keeping most matched one thus mitigating multiple similar
instance formations via eliminating false positive candidates. In this stage out of
several objects the one above a specific threshold is selected i.e. candidate having
best normalized intersection over union overlap threshold.

3.6 Loss Functions

Classification Loss: For alleviating huge class imbalance issue in majority of our
training datasets, we used a joint categorical Tversky loss metric that assign larger
weights to less frequent class pixels similarly, minimal weight to class having higher
occurrence. Loss is computed separately for initially for categorical cross entropy
and Tverksy and finally mean of generalized combined Dice and Cross-Entropy Loss
also regarded as unified focal loss [23] is returned thus minimizing imbalance effects.

Lem = ( 1 i ' (1
= TP +aFN + BFP

Lwce = —wt;ilog(P;) )

Lcls = LWCE + LFTL (3)
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Regression Loss: For estimation of each instance radii we have applied mean abso-
lute error(mae)loss functions, Similarly for object existence probability computation
we have used binary cross entropy loss function.

1
Lig=— Y ri—rf 4)
N
N
1 .
Ly = > =i *Log(pi) + (1 = ) x Log (1 = pi) (5)

i=1

3.7 Post-processing

In post processing, like other detection based methods, from multiple radii based
generated proposals, NuRISC removes redundant ones during inference via applying
IoU based non maximal suppression (NMS). It basically keeps proposals with higher
score while suppresses the ones with lower score and IoUs exceeding the specified
thresholds.

4 Experiments and Results

4.1 Implementation Details

For all experiments, we have used a work station equipped with an Intel Core 19 CPU,
32 GB RAM and GeForce V100 GPU. All experiments are done in Keras framework
having Tensorflow backend. For all applications, NuRiSC is trained for 300 epochs.
Adam optimizer with learning rate of 3 x 10* and weight decay of half after every
40 epoch was used during model training. Batch size of 4 is used for all datasets. We
have used following augmentation operations including: random flipping (horizontal
and vertical), elastic deformation, hue and brightness adjustment.

4.2 Evaluation Metrics

For validation study and testing, we have use metrics that are reported in the liter-
ature for nuclei instance segmentation and classification. Following five measures
have been used for comparative analysis of segmentation performance evaluation
for different models. Including Accuracy, Precision, Recall, F1-Score and Panoptic
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Table 1 Publicly available datasets used for training

S. no Dataset # Nuclei Mag Organs Source

1 CoNSeP [18] 24,319 40x 1 UHCW?
2 PanNuke [24] 205,343 40x 19 TCGA?
3 CryoNuSeg [26] 7596 40x 10 TCGAP
4 CPM-17 [27] 7570 40x 1 TCGA?
5 CPM-15 [27] 2906 20x 1 TCGA®?
6 TNBC [26] 4022 40x 1 TCGA®?
7 Kumar [25] 21,623 20x 7 TCGA*?

4The Cancer Genome Atlas
YUniversity Hospital Coventry and Warwickshire

Quality metric. Accuracy basically indicates the overall classification accuracy. Simi-
larly, Precision and Recall is True positive rate of identified instances while F1 score
is the weighted average of both Precision and Recall. For final performance eval-
uation we used Panoptic Quality metric PQ which basically comprises of sum of
F1 score i.e. detection quality DQ (H.M of Precision and Recall) and Segmentation
Quality SQ i.e. average IoU for all accurately matched instances. panoptic quality
PQ is defined as the product of detection quality DQ (F1 score, i.e. the harmonic
mean of precision and recall) and segmentation quality SQ (average intersection over
union of all correct matches).

4.3 Datasets

In this paper, we train and evaluate our proposed architecture on following publicly
available nuclei instance segmentation datasets including PanNuke [24], CONSeP !,
Kumar [25], CryoNuSeg [26], TNBC [17], CPM15 and CPM-17 [27] datasets. Table
1 shows organs, nuclei counts, magnification of datasets used in this paper. In Fig. 5
represent tissue wise datasets distribution in major datasets.

4.4 Baseline Methods

We have evaluated performance for the following state of the art models.

e Mask-RCNN: It is one of the most frequently used 2-stage instance segmentation
network proposed by He et al. [28] that generates region proposal for each target
object, applies non-maximum suppression for filtering and eventually yielding
masks for each object.

! University Hospital Coventry & Warwickshire.
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e U-Net: This network is based on an encoder-decoder based approach with lateral
skip-connections developed primarily for medical image analysis. In addition to
initial framework proposed by Ronneberger et al. [22] after each conv layer we
utilized batch normalization and finally classifying pixels into separate categories.

e Hover-Net: It is the first simultaneous segmentation and classification architec-
ture that uses 3 separate branches for semantic segmentation, clustered nuclei
separation and nuclei classification. For overlapping nuclei separation they have
utilized horizontal and vertical distances w.r.t center of mass. We have used official
repo of Graham et al. [18] that is available on GitHub.

4.5 Experimental Results

The results section is divided in two main parts including instance segmentation
qualitative and quantitative results in first part while classification result in second
part.

Instance Segmentation Results Table 2 shows the quantitative results comparison
of already existing state of the art networks and our proposed technique in terms of
Panoptic quality, precision, recall and dice similarity for all images from mentioned
datasets. Figure 3 shows predictions visualization and comparison on sample nuclei
patches with state of the art methods.

Classification Results: As shown in Table 3, the proposed model NuRiSC achieves
state of the art results not only on in instance segmentation but classification as well.
In particular, our method outperformed the best method till now i.e. HoVer-Net in
terms of bPQ and mPQ across all datasets (Fig. 4).

Figure 5 represents huge class imbalance issue in PanNuke and CoNSeP datasets
causing poor results for minority classes. We have catered this issue via using training
class weights on the basis of class frequency with respect to total number of instances
of each class and compound classification loss yielding better results compared to
previously proposed classification architectures.



NuRISC: Nuclei Radial Instance Segmentation and Classification

45

Table 2 Instance segmentation Panoptic Quality (PQ), Precision (Pr), Recall(Re) and Dice
Similarity Score (DSc) results comparison of proposed architecture with baseline networks

Datasets Methods PQ Pr Re DSc
CoNSeP [18] Mask R-CNN [28] 0.46 - - 0.74
U-Net [22] 0.33 - 0.72
Hover-Net [18] 0.547 0.85
Proposed 0.54 0.80 0.70 0.74
PanNuke [24] Hover-Net [18] 0.46 0.82 0.79 0.80
TSFD-Net 0.4456 - - -
MaskR-CNN 0.3688 0.76 0.68 0.72
Proposed 0.61 0.83 0.72 0.77
CryoNuSeg Mask R-CNN [28] 0.39 0.63 0.54 0.63
U-Net 0.38 0.62 0.51 0.64
Proposed 0.53 0.77 0.67 0.72
CPM-17 [24] Mask R-CNN [28] 0.67 - - 0.85
HoVer-Net 0.69 - - 0.86
Proposed 0.70 0.89 0.87 0.89
Kumar [25] Mask R-CNN [28] 0.509 - - 0.76
U-Net [18] 0.58 - 0.478
HoVer-Net 0.597 - - 0.82
Proposed 0.63 0.85 0.76 0.80
TNBC [17] Mask R-CNN [28] 0.443 - - 0.705
U-Net [18] 0.442 - - 0.681
HoVer-Net 0.578 - - 0.749
Proposed 0.65 0.86 0.83 0.85
CPM-15 [27] Mask R-CNN [28] 0.549 - - 0.764
U-Net [18] 0.446 - 0.720
HoVer-Net 0.606 - - 0.801
Proposed 0.65 0.88 0.83 0.86

The bold values indicates the best performance result in comparison to all model results

Figure 6 shows classification results for PanNuke and CoNSeP datasets having

example input images from the dataset, Hover-Net, Mask-RCNN and proposed

predictions (Left to Right). Each nuclei instance color reflects its specific class
labelled at the bottom.
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PanNuke [8] Kumar [18] CPM-15 [19] TNBC [17] CPM-17 [19] CryoNuSeg [13] CoNSeP [2]

Images

Labels

HoVer-Net

Mask-RCNN

Proposed

Fig. 3 Example input images results ¢ omparison with Proposed architecture, dataset images are
in top row with ground truth, Hover-Net [18] and proposed method predictions in subsequent rows.
From Left to right including PanNuke [24], Kumar [25], CPM-15 [27], TNBC [17], CPM-17 [27],
CryoNuSeg [26] and CoNSeP [18]
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Table 3 Classification results comparison of proposed architecture with baseline networks for
PanNuke and ConSeP dataset in terms of average Panoptic Quality(PQ) and F1 Score

Datasets Methods mPQ Fe. Fi. Fs. Fm,
CoNSeP Mask-RCNN [28] 0.450 0.595 0.590 0.420 0.098
HoVer-Net [18] 0.516 0.635 0.631 0.566 0.426
Proposed 0.55 0.65 0.61 0.58 0.43
Datasets Methods mPQ PQec PQic PQnc PQcc PQdc
PanNuke Mask-RCNN [28] 0.37 0.40 0.29 0.47 0.3 0.06
HoVer-Net [18] 0.46 0.49 0.41 0.55 0.38 0.14
Proposed 0.48 0.57 0.43 0.57 0.41 0.16

The bold values indicates the best performance result in comparison to all model results

Imbalanced Nuclei Type Categorization
PanNuke CoNSeP

u Epithelial u Neoplastic * Epithelial = Neoplastic
W Inflammatory 1 Connective
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Fig. 5 Categories distribution in PanNuke and CoNSeP indicates large class imbalance in majority
of Publicly available datasets. From sunburst plots we can visualize, high ratio of Neoplastic,
Epithelial and Inflammatory classes while rest of the classes constitute extremely less ratio of entire
dataset. Tissue wise data distribution of the nuclei categories in publicly available datasets
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Image Ground Truth HoVer-Net [2] Mask-RCNN [11] Proposed

roy o .i"' rw

B Neoplastic ﬂ Inflammatory [ Epithelial - Connective [lll Spindic i Misc.

Fig. 6 Comparative results visualization for nuclear classification on the CoNSeP and PanNuke
datasets

5 Conclusion

In this paper, we have introduced an orientation based shape estimation model for
dual nuclei instance segmentation and classification. NuRISC yields nuclei structural
information and occurrence probability using a light weight encoder decoder model
along with a compounded loss function that caters huge class imbalance issue via
assigning class weights during loss computation. Thus combining object probability
rate with shape estimates producing segmented instances and classification masks
thus alleviating the weaknesses of heavier models proposed earlier for dual task
performance.
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A Semi-supervised Framework )
for Automatic Pixel-Wise Breast Cancer oo
Grading of Histological Images

Kenglun Chang, Yanyuet Man, and Hailong Yao

Abstract Throughout the world, breast cancer is one of the leading causes of
female death. Recently, deep learning methods are developed to automatically
grade breast cancer of histological slides. However, the performance of existing
deep learning models is limited due to the lack of large annotated biomedical
datasets. One promising way to relieve the annotating burden is to leverage the
unannotated datasets to enhance the trained model. In this paper, we first apply
active learning method in breast cancer grading, and propose a semi-supervised
framework based on expectation maximization (EM) model. The proposed EM
approach is based on the collaborative filtering among the annotated and unan-
notated datasets. The collaborative filtering method effectively extracts useful and
credible datasets from the unannotated images. Results of pixel-wise prediction of
whole-slide images (WSI) demonstrate that the proposed method not only outper-
forms state-of-art methods, but also significantly reduces the annotation cost by over
70%.

Keywords Semi-supervised learning - Deep learning * Breast cancer grading *
Expectation maximization model

1 Introduction

Breast cancer is the most commonly diagnosed cancer for women, which is estimated
to account for 30% of new cancer diagnoses and 15% of cancer deaths in the United
States [1]. Early and precise diagnosis of breast cancer is crucial to improve the
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Fig. 1 An annotated whole slide image: The patches framed in red contour are invasive cancer.
Those framed in blue contour are In-Situ cancer. Those framed in green contour are Benign. The
rest part of the slide is normal

survival rate of patients [2]. Microscopic examination of stained tissue sections is
among the most accurate methods of diagnosing and classifying cancer. The cancer
effects can be observed in WSIs in the cellular and tissue levels.

Figure 1 shows an example of the cancerous cell’s distribution , which are clas-
sified into four categories, i.e., invasive cancer, In-Situ cancer, Benign, and normal.
Recently, many computer-aided systems utilize deep learning models to improve the
classification consistency and accuracy [3—5]. However, robust deep learning models
require large annotated datasets, which are costly to produce especially for medical
images. Recent studies integrate active learning with deep learning, which utilize
unannotated data to improve the performance of deep learning model [6-9]. Yang et
al. applied active learning method on fully convolutional network (FCN) to select the
most representative and uncertain areas for annotation [10]. One of the drawbacks
is that the FCN cannot be applied to high resolution images, such as WSIs. And it
is difficult to acquire iterative annotation on the high-resolution WSIs. Generative
Adpversarial Network (GAN) is widely applied to generate realistic images, which
overcomes the limitations of small training datasets. Mahapatra et al. applies condi-
tional generative adversarial networks (cCGANS) to generate informative and realistic
chest X-ray images, which enlarge the training datasets [11].

However, GAN generates subtle artifacts on the original images, which could
substantially alter the features of cells and tissues, and thus further mislead the
model and affect the convergence of parameters. Existing methods fail to provide an
efficient solution for automatically grading breast cancer on limited annotated WSIs.
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In this paper, we present a new semi-supervised framework based on expectation
maximization (EM). We leverage unannotated WSIs to adjust the deep learning
model on a limited annotated dataset, reducing the reliance on expensive pixel-wise
annotations. The main contributions of the paper are:

e To the best of our knowledge, we first apply active learning method in breast cancer
grading, and propose a semi-supervised approach based on EM to effectively
reduce annotated dataset for multi-classes pixel-wise breast cancer grading on
WSIs.

e We propose a sample selection method based on collaborative filtering, which
selects the credible and representative unannotated datasets for enlarging the train-
ing dataset.

e Using the proposed semi-supervise framework, significantly enhanced perfor-
mance on pixel-wise prediction of WSIs is achieved with only 30% of annotated
dataset.

2 Related Work

Recently, many researchers, as well as vendors of WSI scanning equipments, have
started to develop automated WSI image analysis methods to assist pathologists in
cancer diagnosis. However, WSI images are too large to be directly integrated into
the diagnostic process. The WSI images are typically at the level of tens of millions
or even hundreds of millions of pixels, which makes it difficult to store, transmit
and visualize. Therefore, traditional algorithms cannot directly process the WSI
images. Bejnordi et al. proposed an analytical algorithm at pixel level for automatic
detection of ductal carcinoma in situ (DCIS) [12], which detects DCIS across the
WSI and differentiates DCIS from good tissue. Balazsi et al. proposed a solution for
automatically detecting regions expressing invasive ductal breast carcinomas (IDBC)
inimages of microscopic tissue or whole digital slides [ 13]. The proposed method first
tessellated whole digital slides. Then image features were extracted and presented to a
random forest classifier, which confirms whether each region was cancerous. Cruz et
al. proposed a machine learning approach for automatic detection and visual analysis
of invasive ductal carcinoma (IDC) tissue regions in whole slide images (WSI) of
breast cancer [14]. The adopted convolutional neural network consists of 3 layers.
Due to computational limitations, this model is only used for training the images
subsampled by 16 times. Rezaeilouyeh et al. proposed a framework for breast cancer
detection and prostate Gleason grading using CNN, which was trained on images
along with the magnitude and phase of shearlet coefficients [15]. The framework fed
shearlet features along with the original images to the CNN consisting of multiple
layers of convolution, max pooling, and fully connected layers.
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3 Method

3.1 Semi-supervised Learning Framework Based on EM
Model

An overview of our semi-supervised learning framework is shown in Fig.2. In the
semi-supervised learning framework, only part of whole slide images is annotated,
which is defined as set D. The label of some slides is unknown, which is defined as
set U. Let y; denote the label for red patch x; € D. Let hidden variable z; denote
the label for patch x; € U. We initialize the CNN model on D and update the model
parameter to #°. We apply initial CNN model to produce the probability map P (z ilx5)
of x; € U. The EM algorithm alternates between the E-step for estimating the hidden
labels z; and the M-step for computing optimal model parameters with maximized
P(X|0, Z). The probability map P(z;|x;) is projected to a scaled value between 0
and 1, which is used to generate the consistent heatmap (see Fig. 2¢). The fixed vector
B* = (B, B2, B?) is applied on the heatmap to generate the classmap as shown in
Fig. 2d. Next, The most representative and credible patches based on collaborative
filtering are selected to train the CNN model in the next iteration.

Initialization: Assume the patches are independently and identically distributed
(i.i.d.). The initial parameter #° is obtained from the CNN model, which is trained
on annotated dataset D. Here, 6° is computed as:

0° <« arg max l_[ P(x;, yi10)

o x;€D

= arg max 1_[ P(yilxi; 0)P(x;10)

x;eD

(1)

Generate
normalized pix-
wise probability

i map with 8*
I P

]
(a) Unannotated (c) Heatmap
whole slide image .._—‘] l

3 Generate
classmap by the
class adaptive
parameter
vector

Select effective
patch to continue
train CNN model

Extract the label
z*' of unannotated
8 patch

Unannotated
patches with
generated label

(d) Classmap

Fig. 2 Overall flow of the EM model
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E-step: Based on the current parameters 6’ at EM iteration 7, we calculate the
probability maps P(z;|x;, 6") of unannotated patches, and then re-scale the prob-
ability maps to P,orm(zjlx;, 07) € [0, 1]. We generate the class label c(x;) based
on B* and then obtain the classmap.The ground truth of the unannotated patches is
then extracted as ¢/, and the effective dataset E’ is selected according to the method
described in Sect. 3.2.

M-step: The CNN model is retrained on the effective dataset E’ produced in
the E-step. The model parameter 6 is updated to maximize the likelihood defined
in Eq. (2).

6"t = argmax Q(6, 6)
9

K©.0) =[] PGi.yilo) x ] PGxj.210)

x;eD X;€E! (2)
= [T POilxi: O)P(il6) x [T Pzjlays 0)P(x;160)
x; €D X €E"

Assume that x;|0 follows an uniform distribution, we formulate the objective
function Q(9, 0") as:

00,0") =logK(©6,0")
oc ) log P(yilxis6) + ) log P(z;1x;: 6) 3

x;€eD x;eE!

3.2 Patch Selection

Patch selection part can be divided into two stage, Hard Example Mining and Col-
laborative Filtering.

Hard Example Mining: Hard example mining is used in the initialization step to
fully exploit the annotated dataset, especially those with wrong classification results.
An effective coefficient « is defined as in Eq. (4). The higher the value of « is, the
harder and more valuable the corresponding patch is for model training.

o = argmax p(y;) o = llex — ¢l x (") )
J

Here, ¢; denotes the class label of the patch x;, and P(yl.c ") denotes the probability
map.

For the initialization step, we first train our model on 50% of the annotated data.
Then, we apply this model on the rest of the data and calculate the effective coeffi-
cients. Patches with effective coefficient in the first quintile (top 20%) are selected
to retrain the model.
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Algorithm 1 Patch selection method.

Input:
U = {x;},i € [1, n] (Unannotated dataset)
D = {(yj,L;)}, j € [1, m] (Annotated dataset)
M, (CNN model in iteration )
o (Similarity threshold for patch selection)
Output:
&: (Set of unannotated patches in iteration ¢)
Functions:
feature <— F (M, x) {Output 512 x 1 x 1 feature of M given patch x}
prediction < P (M, x) {Prediction result of M for patch x }
s < sim(x,y) {s = W'y”y”}
label < argmaxindex (num) {Output label with largest number}
Initialize:
E <0
1: for each x; € U do
2: ai < F(M', x;)
3 pred; < P(M', x;)
4:  Set num to vector [0,0,0,0]
5: foreach (y;, Lj) € Ddo
6y < F(M'.y))
7 if sim(o;, y;) > o then
8: num[L;] < num[L;]+1
9: end if
10:  end for
11:  label; < argmax(num)
12:  if pred; = label; then
13: E &' Ux;
14:  end if
15: end for

Collaborative Filtering: In the E-step, patches are selected using Algorithm 1.
We first apply CNN to extract the features of all patches, and then calculate
similarity sim(x;, y;) between each unannotated patch x; and annotated patch
v;. For each unannotated patch x;, we compute the set of annotated patches as
{yjlsimy,ep(xi, y;) > t}. Then we apply the majority voting method on the above
computed patches to determine the label of the unannotated patch. If the assigned
label is consistent with the predicted one by the model, we insert unannotated patch

x; into E*.
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4 Experimental Results

4.1 Dataset for Training and Validation

The dataset for training and validation is from ICIAR 2018 Challenge'.

There are in total 400 images of size 1536 x 1536, which are obtained from
H&E stained breast histology microscopy. The images are labeled into four classes
as Normal, Benign, InSitu, and Invasive, respectively. Each class consists of 100
images. Besides, there are 30 whole-slide images, among which 10 images are pixel-
wise labeled, and 20 images are not labeled. After foreground extraction and patch
cropping, we finally obtained 6389 Normal patches, 695 Benign patches, 369 InSitu
patches, and 8182 Invasive patches, where each patch is of size 1536. We randomly
selected 30% patches from each class as test dataset, and merged the rest with the
above 400 images as the training dataset.

4.2 Data Preprocess

Foreground Patch Extraction on WSI Image: The high resolution images of WSIs
need to be converted into patches for use. However, a large part of WSI is background,
which produces uninformative patches in the datasets, and thus should be excluded.
The widely used foreground extraction method Ostu fails to extract certain parts of
the tissue from the slide for its complexity. It can be clearly recognized from Fig. 3
that the regions circled in red, blue and green bounds are different in their color
intensities.

Actually, after converting this image into gray image, the intensity of the pixels
circled in red bound is on average 0.76, in blue bound is 0.72, but in green bound is
only 0.50, yet the intensity in background is on average 0.86. The high variance in
foreground may well reduces the bimodality of the intensity distribution and leads
the Otsu method to output the wrong threshold. In the above example, the output
threshold by Otsu method (implemented by scikit-mage) is 0.68, which mistakenly
classify the region in red circle and blue circle to be background, which in fact are
valuable regions containing candidate tissues.

Our adopted method can tackle this problem by concentrating on the relative
difference between pixels instead of focusing on the global distribution of intensity.
The difference between foreground pixels and background pixels in RGB color space
can easily be detected regardless of the high variance in foreground pixels.

Specifically, we adopt the graph-based image segmentation method in [16]
for foreground extraction. For a given slide, we construct an undirected graph
G(V,E). In G, each node v; ; € V corresponds to a pixel. The edge set E =
{(vi, > vit1,j)s (Vi,j, vi, j+1))} correspond to the connection between adjacent pixels.

! https://iciar2018-challenge.grand-challenge.org/.
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Fig. 3 An example of whole slide image: The patches in the region circled by red, blue and
green boundaries are all foreground patches, whereas Otsu method fails to extract some of them as
foreground

(a) (b) (c)

Fig. 4 The foreground extraction of a WSI: a The original WSI, b Otsu method [18], and ¢ our
method

We set the edge weight tobe W (v; j, vi41,j) = |lvi,j — vi41, ;. Then we compute the
minimum spanning tree T using Kruskal’s algorithm [17], and delete the edges in T
whose weights are greater than a prespecified threshold (100 in the experiments).

The deletion of these edges produces a forest, i.e., a set of sub-trees (e.g.,
T\, T,, ---, T,). Now we compute the average RGB values for the sub-trees (e.g.,
RGB(Ty), RGB(T,), --- , RGB(T,)). Among the computed average RGB values,
assume the maximum value is u. Then all the sub-trees with average RGB value
greater than u — 45 are set as background. Then the foreground mask is obtained as
shown in Fig.4. According to the foreground mask, we crop the WSI into patches
with 50% overlap, where each patch consists of 1536 x 1536 pixels. Patches with
less than 40% foreground pixels are considered to be background, which are not used
for classification.

Patch Label Extraction: We assign the label of the patches according to the
ground-truth contour of WSI. In most cases, the label of the patch is obtained accord-
ing to the type of cancer (Benign, In-Situ or Invasive) with the largest area in the
patch. However, there are two special cases as follows:
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e If the cancer area in a patch is less than one-third of the whole patch area, this
patch is labeled as normal.

e If there are two or more types of cancer in a patch, and the corresponding tissue
areas are both greater than one-third of the whole patch area, this patch is consid-
ered to be a noisy patch and discarded. In the experiments, the number of such
patches is very few.

In Kwok’s work in [4], the class value of a patch is the mean of the class values of
all pixels in the patch. Our experiments show that the above method tends to generate
wrong labels, which disrupt the learning process. For example, when half of a patch
contains In-Situ areas and the rest is normal, Kwok’s method labels this patch as
benign even if there are no benign tissues at all. In contrast, our EM-based method
effectively avoids the drawbacks of Kwok’s method.

4.3 Patch Classification

Our neural network is a fine-tuned vgg19 network with batch normalization. Given
the large patches of size 1536 x 1536, we resize them into 512 x 512, and then feed
them into the network. For adapting to the fully connected layers, we add an average
pooling layer, which converts the 512 x 16 x 16 feature map into a 512 x 1 x 1
vector. The patch-wise experimental results are summarized in Tabel 1. we first apply
active learning method (ALM) to continually finetune the classification model with
informative and effective datasets instead of retrain the model with all datasets. ALM-
10%, ALM-20%, and ALM-30% refer to different models trained on corresponding
portions of annotated datasets. FSL is a model trained on all the annotated dataset.
Our-10%, Our-20%, and Our-30% are the proposed EM-based model trained on
corresponding portions of annotated datasets, in which situation we select the training
dataset randomly. For example, Our-30% denotes our proposed method using 30%
of the whole annotated dataset.

From the experiment, FSL obtains 0.76, 0.89 and 0.82 for F1 score, accuracy
and precision, respectively. Kwok’s method obtains similar results of 0.63, 0.77, and
0.57. However, with 30% of the whole annoatated dataset, ALM obtains 0.83, 0.90,
and 0.74, which outperforms FSL. This can be explained by the exclusion of the
uninformative data. In contrast, our proposed method obtains 0.86, 0.91, 0.79 for F1
score, accuracy and precision, respectively. Among the different methods, Our-30%
achieved the best results using only 30% of annotated data combined with unanno-
tated data. Moreover, our method significantly reduces the runtime for finetuning the
model as in ALM.



62 K. Chang et al.

4.4 Pixel-Wise Classification on WSI

To achieve pixel-wise classification and visualization. we first construct a heatmap
for the given WSI. Specifically, we compute the intensity of each foreground patch
as | = QT)'), where y is the output from the softmax layer, and 6 = (0.1, 0.2, 0.7, 1)
is the weight for each label. Notice that / indicates the level of severity, when it’s
closer to 0, the patch is more likely to be normal, but when it’s closer to 1, the patch
is more likely to have Invasive cancer. We are now able to generate a heatmap for
WSI with the intensity of every pixel set as the intensity of the foreground patch it
belongs to. Particularly, if one pixel belongs to the intersecting of several patches,
we take the mean of the intensities from all the patches as the pixel-level intensity.

Next, we map the heatmap to classmap by the fixed vector 8* = (0.1, 0.5, 0.75),
where a pixel is classified according to its intensity value as follows: (1) [0, 0.1]
for Normal, (2) (0.1, 0.5] for Benign, (3) (0.5, 0.75] for In-Situ, and (0.75, 1] for
Invasive. The pixel-wise classification results are summarized in Table 1 in terms of
score metrics defined on ICIAR aiming to penalize more on the predictions that are
further from the ground truth. The formula for the score is defined as:

ZiN=1 |pred; — gt;]

s=1- =
> dist; x mask;

®)

where pred is the predicted class, gt is the ground truth class, i is the index of a
pixel in the WSI, N is the total number of pixels, dist; and mask; are defined as:

dist; = max(|gt; — 01, [gt; — 3]) (6)

Table 1 Demographic Prediction performance comparison by three evaluation metrics

Metric Patch-wise Pixel-wise
Precision Accuracy Fl-measure Score metric

Kwok et al. 0.6798 0.8084 0.7391 0.7605
ALM-10 % 0.7205 0.8466 0.8078 0.7186
ALM-20 % 0.7350 0.8684 0.8082 0.7447
ALM-30 % 0.7477 0.9035 0.8303 0.7759
FSL 0.8239 0.8963 0.7698 0.7592
Our-10 % 0.7218 0.8856 0.8054 0.7675
Our-20 % 0.7499 0.8852 0.8048 0.7539
Our-30 % 0.7987 0.9197 0.8623 0.7858
iteration2-Our-30% | 0.8293 0.9210 0.8751 0.8027

Kwok [4] is a well-performed Multiclass classification method in whole-slide images which got
the first prize in the ICIAR 2018 Challence. The FSL is a model trained on all the annotated
datasets while the Our-xx% are the proposed EM-based model trained on corresponding portions
of annotated datasets. Moreover, the ALM-xx% methods are the classic active learning model
trained on different portions of annotated datasets. Iterating twice makes sense on the accuracy of
multiclass classification. Note that metrics in bold represent the best results with our method in a
single iteration
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Fig. 5 The pixel-wise classification results of slides A02 and AO8 (Green contour: Benign, Red
contour: Invasive, Blue contour: In-Situ, Others: Normal), a and e give the results of Kwok methods,
b and f give the results of the model trained on full annotated datasets, ¢ and g give the results of
our EM-based method trained on 30% of annotated datasets combined with unannotated datasets,
d and h give the results labeled by pathologist

mask; =1 — (1 — pred; pin)(1 — gti pin) (N

where bin donates the binarized value, which is O if the label is 0 and is 1 if the label
is 1,2 or 3.

Our method with 30% annotated dataset achieves the best performance with
a score of 0.785, where the best score of Kwok, FSL, and ALM methods are
0.771,0.759 and 0.775, respectively.

The three methods Kwok, FSL and ALM perform relatively well in detecting
large areas of cancer. However, for small areas of cancer, these methods usually fail.
Figure 5 shows an example of invasive tissues in AO8 slide, which consists of many
small cancer areas. Kwok’s method tends to classify small invasive tissues to In-Situ
tissues. On the other hand, FSL is unable to recognize lots of small invasive tissues
in AO2 and A0S slides shown in Fig.4. In contrast, the proposed EM-based method
is able to detect small areas of cancer, which are crucial for correct diagnosis.

4.5 FROC Acceptance

In the medical image processing field, we often use FROC curve instead of ROC
curve to validate the effectiveness of a certain model. Figure 6 shows the FROC
curves of both the Kwok method and our proposed method. It can be easily seen that
Our-30% obtains a much better FROC curve.
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Fig. 6 FROC curve of the Kwok method and our method: a Kwok, b Our-30%

5

In

Conclusion

this paper, we have proposed an effective semi-supervised approach based on

the EM model, which significantly reduces the reliance on the annotated dataset.
Experiment results show that the proposed method achieves remarkable performance
with only 30% annotated datasets. Moreover, the proposed method effectively traces
the small cancer areas, which is one of the key markers for cancer diagnosis. In the
future, more parameters and metrics will be introduced in the system, such as max
area of cancer, number of different types of cancer, degree of patient, etc. More prior
knowledge will be introduced for generating adaptive parameters in the proposed
EM framework.

References

. Rebecca L Siegel, Kimberly D Miller, and Ahmedin Jemal. Cancer statistics, 2019. CA: a

cancer journal for clinicians, 69(1):7-34, 2019.

. Walter O’Dell, Cristiane Takita, Katherine Casey-Sawicki, Karen Daily, Coy D Heldermon,

and Paul Okunieff. Projected clinical benefit of surveillance imaging for early detection and
treatment of breast cancer metastases. The breast journal, 25(1):75-79, 2019.

. Baris Gecer, Selim Aksoy, Ezgi Mercan, Linda G Shapiro, Donald L Weaver, and Joann G

Elmore. Detection and classification of cancer in whole slide breast histopathology images
using deep convolutional networks. Pattern recognition, 84:345-356, 2018.

. Scotty Kwok. Multiclass classification of breast cancer in whole-slide images. In International

Conference Image Analysis and Recognition, pages 931-940. Springer, 2018.

. David Tellez, Maschenka Balkenhol, Irene Otte-Holler, Rob van de Loo, Rob Vogels, Peter Bult,

Carla Wauters, Willem Vreuls, Suzanne Mol, Nico Karssemeijer, et al. Whole-slide mitosis
detection in h&e breast histology using phh3 as a reference to train distilled stain-invariant
convolutional networks. IEEE transactions on medical imaging, 37(9):2126-2136, 2018.



A Semi-supervised Framework for Automatic Pixel-Wise Breast Cancer Grading . . . 65

11.

12.

15.

16.

17.

18.

Hayit Greenspan, Bram Van Ginneken, and Ronald M Summers. Guest editorial deep learn-
ing in medical imaging: Overview and future promise of an exciting new technique. /[EEE
Transactions on Medical Imaging, 35(5):1153-1159, 2016.

Jiming Li. Active learning for hyperspectral image classification with a stacked autoencoders
based neural network. In 2015 7th Workshop on Hyperspectral Image and Signal Processing:
Evolution in Remote Sensing (WHISPERS), pages 1-4. IEEE, 2015.

Le Lu, Yefeng Zheng, Gustavo Carneiro, and Lin Yang. Deep learning and convolutional neural
networks for medical image computing. Advances in Computer Vision and Pattern Recognition;
Springer: New York, NY, USA, 2017.

Fabian Stark, Caner Hazirbas, Rudolph Triebel, and Daniel Cremers. Captcha recognition
with active deep learning. In GCPR Workshop on New Challenges in Neural Computation,
volume 10, 2015.

Lin Yang, Yizhe Zhang, Jianxu Chen, Siyuan Zhang, and Danny Z Chen. Suggestive annota-
tion: A deep active learning framework for biomedical image segmentation. In Medical Image
Computing and Computer Assisted Intervention, pages 399-407, 2017.

Dwarikanath Mahapatra, Behzad Bozorgtabar, Jean-Philippe Thiran, and Mauricio Reyes. Effi-
cient active learning for image classification and segmentation using a sample selection and
conditional generative adversarial network. In International Conference on Medical Image
Computing and Computer-Assisted Intervention, pages 580-588. Springer, 2018.

Van Diest P J et al Bejnordi B E, Veta M. Diagnostic assessment of deeplearning algorithms for
detection of lymph node metastases in women with breast cancer. Jama, 318(22):2199-2210,
2017.

. Zoroquiain P et al Balazsi M, Blanco P. Invasive ductal breast carcinoma detector that is robust

to image magnification in whole digital slides. Journal of Medical Imaging, 3(2):027501, 2016.
Gonzidlez F et al Cruz-Roa A, Basavanhally A. Automatic detection of invasive ductal car-
cinoma in whole slide images with convolutional neural networks. In Medicallmaging2014:
Digital Pathology, volume 9041, page 904103. International Society for Optics and Photonics,
2014.

Mahoor M H. Rezaeilouyeh H, Mollahosseini A. Microscopic medical image classification
framework via deep learning and shearlet transform. Journal of Medical Imaging, 3(4):044501,
2016.

Pedro F Felzenszwalb and Daniel P Huttenlocher. Efficient graph-based image segmentation.
International journal of computer vision, 59(2):167-181, 2004.

Joseph B Kruskal. On the shortest spanning subtree of a graph and the traveling salesman
problem. Proceedings of the American Mathematical society, 7(1):48-50, 1956.

Nobuyuki Otsu. A threshold selection method from gray-level histograms. IEEE transactions
on systems, man, and cybernetics, 9(1):62-66, 1979.



Lunatum Prosthetic Replacement: )
Modeling Based on Volume Rendering L
of CT Scan Images

Manal Hamda, Btihal El Ghali, Imane Hilal, Omar El Midaoui, Nabil Ngote,
Bahia El Abdi, and Kawtar Megdiche

Abstract Additive Manufacturing has immersed the medical field, especially in
reconstructive surgery, allowing the creation of a 3D model resembling the anatom-
ical structure of interest. Due to Osteonecrosis also referred to as Kienbock’s disease;
carpal bones especially the lunatum are concerned the most with those technologies
especially since a prosthetic replacement is an obligation when it comes to advanced
stages of this disease. In this article, we propose a method based on direct 3D recon-
struction based on volume rendering directly on patients’ medical images (CT scans)
to preserve the anatomical shape. For that purpose, we utilized 3D slicer software to
create a 3D model based on different cuts of CT scan images. The resulting model was
satisfactory, as it was similar to the lunate bone structure preserving all its anatomical
characteristics and dimensions. The proposed approach helps in creating a prosthetic
replacement with the exact anatomical shape and structure of the bone of interest
respecting the dimensions, curves, and facets.
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1 Introduction

Three-dimensional printing also called additive manufacturing; did take place in
the medical field, especially in reconstructive surgery, in other words, a three-
dimensional model can be built according to the real anatomical structure using data
taken from MRI and CT scans; this reduces the frequency of occurrence and severity
of any possible risk or complications arising from prosthetic implantation. This
technique is commonly used for total or partial joint replacement or limb salvation
surgeries.

Kienbock’s disease (KD) also known as lunatums osteonecrosis has and still
causes problems both in its etiology and management. Robert Kienbock, a radi-
ologist was the first to describe “lunatomalacia” clinical characteristics and radio-
graphic aspects in 1910; as a condition caused by the tearing of ligaments and vessels
enclosing the semi-lunar bone, which resulted in a fracture and subsequent collapse.
In 1843, Peste was the first to provide the characterization of lunatum collapses
associated with potential traumatism [1, 2].

In the early stages of Kienbock disease, non-operative measures are used for the
treatment of KD, such as anti-inflammatory and painkillers medicaments, physio-
therapy, and reducing activities intensity, although, in some cases, surgery is a must
to preserve the bone, especially for early-stage osteonecrosis stages [3]. In case of
lunatum collapse, prosthetic replacement is recommended to relieve the pain and
improve wrist function.

The anatomical structure of the carpal tunnel can be reconstructed and preserved
with lunatum arthroplasty, which will eventually reduce the pain and improve wrist
mobility [4-6]. However, some patients suffer from mild pain during intense activities
[4, 5].

According to the literature; lunatum replacement efficacy had been proved,
however, the failure rate cause wasn’t clearly explained. The possibility of mate-
rials type being the cause is weak; authors have mentioned the material type used for
modeling the prosthesis, those were biocompatible and clinically approved [4, 5].

The second possibility is the shape and size; very few literature reviews have
mentioned the implant type size wise and manufacturing process [5]; which have
high chances chance to be the main cause of failure, especially with the tendency
of multiple sizes kits that contain 3—-5 lunate prostheses of different sizes and the
final shaping retouch done by the surgeon. In this article, we propose a methodology
to modulate a prosthetic replacement for the lunatum bone which is a small bone
localized in the wrist (carpal bones) based on a direct segmentation after 3D recon-
struction of computed tomography images, the goal is to create a prosthetic module
similar to the anatomical structure of the bone of interest.
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Fig. 1 Lunatum anatomy and articular surfaces

2 Lunatum Anatomy and Associated Problems

The lunatum is a moon-shaped bone located between the scaphoid and triquetral in
the proximal row of carpal bones. The proximal facet that articulates with the radius
is convex, whereas the distal facet that articulates with the capitate is concave (Fig. 1)
[4].

With no muscular attachments and only a few ligaments to hold it in place [7], the
lunatum is more prone to injuries and orthopedic diseases such as fracture, disloca-
tion, and Kienbock disease (KD) which is also known as osteonecrosis or avascular
necrosis.

Osteonecrosis remains the principal cause of carpal bones alteration, especially in
the lunatum; it is a condition that impacts the blood flow deliberately causing bone
collapses; this is mainly caused by vascularization problems arterial disruption to
be exact, but may also occur after traumas causing venous congestion with elevated
interosseous pressure, it may happen due to a high-intensity traumatic injury or
spontaneously [8]. According to previous studies, KD’s occurrence is male-dominant
and most commonly affects the dominant hand in men aged 20—40 years [9].

3 Biomaterial Selection

Biomaterials have an essential role when it comes to implantable prostheses; in fact,
they may be the cause of failure rate, their selection is piloted by matching its prop-
erties with attended application requirements; in our case, biological requirements
have to be specially taken into consideration not to forget the mechanical and physical
aspects. Secondary to reactions arising from a foreign body (implants); requirements
such as biocompatibility, stress, bioactivity, osteoinduction, and more have become
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anecessity for biomaterials when it’s come to implantable devices such as prosthetic
devices [10].

Starting with Swanson (1970) was the first to introduce lunatum arthroplasty using
a silicone rubber implant for the case of KD [11], however, this was abandoned years
ago since it causes severe cyst formation due to silicone material with an incidence
of 78% [12].

Afterward, in 1984 Titanium lunate arthroplasty (TLA) was introduced to resolve
the problems common to silicone lunate implants, TLA clinical outcome was
promising with only 20% of failure cases [13]. Titanium and its alloys are initially
used for total hip arthroplasty (THA) [14], a + p titanium alloys, such as titanium-
6Al-4 V used in THA and TLA [13, 15, 16] has excellent corrosion resistance,
low density, and high mechanical strength and biocompatibility with bones [17].
Furthermore, vanadium-free titanium alloys with improved biocompatibility, such
as + titanium-6Al-7Nb alloy, have been developed by incorporating biocompatible
elements like Niobium [15, 18].

Pyrocarbon is another biomaterial used for lunate arthroplasty; according to a
short-term clinical review, Pyrocarbon lunate replacement results were satisfactory
for most patients [5, 15]. When compared with titanium prostheses, pyrocarbon is
more similar to cortical bone and effectively transfers the load.

Despite their higher tendency to break, pyrocarbon implants are biologically inert
and biocompatible, resulting in a lower tendency to tissue reactions when compared
to titanium implants [19].

Another biomaterial that has been introduced to orthopedic arthroplasty practices
is Polyethylene (PE), which has been widely used in knee arthroplasty since the mid-
twentieth century. Polyethylene lunate arthroplasty has a satisfactory outcome [7].
Progress in material manufacturing and processing has led to newer polyethylene
with different material properties over the last few decades [20].

Cobalt-chromium (co-Cr) alloys which are supporting metallic materials, were
initially used in dentistry, now considered one of the materials most used for
THA. Cobalt-chromium alloys characteristics such as strength, corrosion, and wear
characteristics make it a great option as an implant material [14].

Zirconia toughened alumina (ZTA or Al,O3-x% vol ZrO;) which was developed
in 2002 is a promising biomaterial used in hip and knee implants [21]; alumina
in particles is one of the most successful key materials for THA so far; it has a
significant advantage, including good biocompatibility, high mechanical strength,
and high fracture resistance. The ceramic material may also have drawbacks in its
counterpart, such as inflammatory reactions around the implant [22].

Those are a few examples of the many available clinically proven biomaterials
used for implantable prosthesis manufacturing; However, silicon, cobalt-chromium
(co-Cr) alloys and Pyrocarbon will be excluded. The first one was abandoned after
showing side effects, especially cyst formation, and the cobalt-chromium alloy
was labeled as a potential carcinogen according to new European regulation which
prohibits the use of implantable medical devices that include more than 0.1% (m/
m) cobalt [3, 23, 24], as for Pyrocarbon, only few literature reviews described the
clinical outcomes of Pyrocarbon lunate implants [6] which doesn’t prove the efficacy,
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Table 1 Biomaterial selection based on standards, biomedical use, printing technics, and weak-

nesses
Biomaterials | Standards/ Biomedical use 3D printing | Weaknesses
regulations technic
Titanium ISO Orthopedic prosthesis | Selective Osseointegration with
(Ti-6AI-4V) 5832-3:2021 | mainly in total hip joint | laser melting | the surrounding bone
and its alloys (SLM) tissue at the initial
stage of implantation
Dental implants Expensive material
Polyethylene | ISO Fabrication of porous | Fused Rare reactions after
5834:2019 high-density disposition | surgery
polyethylene implant | modeling
for facial and cranial (FDM)
reconstruction
Surgical implants
Zirconia ISO Dental implants Fused It’s may cause
toughened 5834:2019 disposition | reactions such as
alumina modeling inflammatory
Orthopedic implants (FDM) 'reactions around the
implant

longevity, and the functionality of this implant [19]. As shown in Table 1 titanium
and its alloys require a large investment being it an expensive material as well as
its required 3D printing method, in the other hand Zirconia, toughened alumina is
less expensive compared to Ti-6AI-4V as a material and the FDM printing method
requires less investment compared to SLM however; it is most likely can cause
a local reaction (tissues around the implants) which is not ideal. This leads us to
polyethylene, this one requires less investment compared to Ti-6AI-4V and rarely
has any reaction after surgery, nonetheless Polyethylene is commonly used in inva-
sive medical devices such as intravenous cannulas, tracheal intubation tubes, urinary
catheters, and more.

4 Material and Methods

4.1 Data Acquisition

The utilized database source was computed tomography (CT); a CT scan creates
cross-sectional images of the body using rotational x-rays which gives more detailed
information than typical X-ray images, it’s painless, non-invasive, faster, and less
expensive with lower risks than MRI with high accuracy. We based our work on the
Data acquired from two adult patients’ male and female, for automatic segmentation
mask and 3D reconstruction respectively.
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4.2 Segmentation

Segmentation is a process commonly used in image processing to divide an image
into multiple parts or regions, mostly based on the characteristics of image pixels
[25]. The main purpose of this part is to develop an automatic mask for Lunatum
segmentation in order to detect the lunatum and automatically segment it from the
rest of the hand bones allowing fast localization and diagnosis. For this purpose,
we utilized CT scan images of a male patient with a scaphoid fracture to create the
model using MATLAB [26].

4.3 3D Model Creation Based on Volume Rendering

Our approach is based on data’s direct reconstruction using the volume rendering
technique to display CT scan image volumes as 3D objects. After the 3D recon-
struction of the patient hand, we segmented the Lunatum bone directly from the 3D
model. Therefore, we used The 3D slicer software, an open-source flexible platform
designed for image visualization and analysis to create our model [27].

3D slicer is usually utilized for 3D reconstruction of anatomical structures such as
bones for studies and teaching proposes [28], or for prosthetic template medialization
[29]. In our case, we utilized this platform to create a 3D model of the Lunatum
bone, which is relatively a small bone localized in the wrist. The purpose is to test
the resulting model structure and compare its similarity with the actual anatomical
structure.

4.4 3D Printing (Fused Disposition Modeling FDM)

3D printing is the process to transfer digital data to physical objects, in our case
FDM or fused disposition modeling is the method of interest. In this case; the printer
machine works disposes of melted filament material (Polyethylene) layer by layer
until forming a completed object (Lunatum in our work) [30]. The saved digital
design of the Lunatum prosthesis was uploaded into the printer which subsequently
automatically transformed it into a physical object, in our case we utilized the stream
ultra 3D printer model [31].
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5 Results

Automatic segmentation: The main goal of this mask is to minimize the consumed
time on manual segmentation of the Lunatum bone from the rest of the carpal bones
which will allow better diagnosis and classification of KD.

For that, we utilized multiple filters and segmentation technics to reach the desired
results; as shown in Fig. 2 image (a) Thresholding results weren’t satisfactory, there-
fore, we used the K-means segmentation method. This one is a partitioned-based
algorithm which means dividing analyzed images based on similar features in data
to create groups without labels [24]. K-means results were better than Thresholding
Fig. 2b, however, the object of interest wasn’t fully segmented from the background
elements, therefore, we opted for applying K-means two times with different cluster
K values ranging from 2 to 5 successively to obtain better results Fig. 2c. The next
step was to extract the bone from the binarized image after hole filling Fig. 2d then
drew boundaries using the free-hand Roi segmentation method Fig. 2e [32].

Three-dimensional reconstruction: our approach reconstructs the 3D model using
volume rendering technics Fig. 3a. Therefore, different cuts of CT scan images
“sagittal, coronal, and axial” were utilized to visualize the data in 3D volume.

The lunatum 3D model was segmented directly from the previously created 3D
hand model using 3D slicer segmentation tools Fig. 3a. The resulting model Fig. 3b
was anatomically similar to the patient’s bone. The printed model Fig. 3¢ was similar
to the model created using 3D reconstruction Fig. 3b, respecting all its measurements,
dimensions, and curves (half-moon shape).

Fig. 2 Automatic segmentation mask: Thresholding (a) didn’t give good results, there for K-means
segmentation technic was applied with a cluster ranging from 2 to 5 (b, ¢), the regions of interest
were extracted after holes filling (d) and finally drew
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[——

Fig. 3 Prosthesis modeling process: a volume rendering using different cuts of CT scan,
b segmented 3D Lunatum model, ¢ printed lunatums’ model based on

6 Conclusion

Kienbock disease has always been a clinical challenge in the orthopedics field and
bone regeneration. In advanced stages, an arthroplasty is the only solution to decom-
press the carpal bones, reduce pain, and regain wrist function. Moreover, prosthetic
replacement itself is a challenge in terms of compatibility with the bone structure of
the wrist, hence the important role of 3D modeling and additive manufacturing. In
fact, those technics are mostly involved in prostheses creation and printing.

In this paper, we proposed a simple approach based on 3D reconstruction using
volume rendering technics to create a 3D model of the bones’ anatomical structure
then manually segmented the lunatum bone and printed it using the FDM 3D printing
technic. We utilized 3D Slicer an open-access software, simple, and with multiple
tools for DICOM data visualization, processing, and 3D reconstruction.

The resulting model was similar to the actual bone in terms of structure, dimen-
sions, curves, size, and facets. Since this method allows direct 3D reconstruction and
segmentation from patients’ CT scan images, we were able to preserve Lunatums’
features, to demonstrate that, we printed the digital model in two different sizes to
compare their shape with the original anatomical structure.

The developed automatic segmentation mask allows perfect extraction of the bone
from the rest of the carpal bones by drawing ROIs around each bone.

For efficacy evaluation purposes, we applied our segmentation mask to the data
of a patient’s case with a scaphoid fracture. The main goal was to evaluate the impact
of external perturbation (fracture, KD, or dislocation of one of the carpal bones aside
from Lunatum) and the possibility to impact the segmentation accuracy.

Since accurate clinical trials require at least 1 year of follow-up to evaluate the
outcome of the implant and patient satisfaction in terms of pain relief and movement
recovery, we are planning to assess the compatibility of the modulated prosthesis
biologically and mechanically in our future works.

For further work, we aim to generalize this technic and create a simple protocol
for implanted prosthesis creation, especially for small bones such as carpal bones
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and articulation since it allows the preservation of exact anatomical features of the
concerned structure.
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Using Deep Learning Algorithms

Jenna Seetohul, Mahmood Shafiee, and Konstantinos Sirlantzis

Abstract Significant breakthrough in the field of surgery has seen the integration
of augmented reality (AR) in standard robot operations, allowing anatomical objects
to be digitalized and overlaid onto a real-life scenario in-situ. This paper provides an
overview of the methodology used to reconstruct and register laparoscopic head and
neck image sequences for an AR tool. Deep learning (DL) algorithms are designed to
strategically place fiducial markers or labels in a dataset, hence enabling a virtual tool
path to be set up for guiding the end effector of a robot. We introduce a dataset of 271
images of patients from four different clinics in Quebec with a proven history of head-
and-neck cancer. We then propose a marker-based registration method for mapping
a trajectory during surgery, utilizing an unsupervised neural network for computing
the medical image transformations. During the training stage, we use an optimized
convolutional neural network (CNN) which warps a set of labels from the moving
image in contrast to their counterparts in the fixed image. To this end, we compare
the loss functions between warped moving labels and fixed labels with respect to
the ground truth. Finally, we propose a UNet architecture where we measure the
accuracies in label localization throughout the test sequences relative to the initial
output results. Our experiments showed that the UNet outperformed the initial CNN
architecture, with optimum performance outcomes in losses being closer to 1.0.
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1 Introduction

The use of Augmented Reality (AR) in surgery has plummeted over the past decade,
with the ability to provide in situ immersive visualization of a surgical scene in the
planning stage as well as during the intervention. Since the groundbreaking release
of the Microsoft HoloLens in 2016 [1], the way surgeons perform minimally inva-
sive surgeries has evolved, eliminating inherent challenges that narrow port access
and lack of depth estimation causes in the operation theatre. In surgical navigation,
most anatomical landmarks are generated in high definition within three dimensional
workspaces, from acquired preoperative CT or MRI datasets. The virtual model is
registered to the surgical site using fiducial markers, by removing the backend scenes
and overlaying a 3D image onto a see-through display [2]. To ensure the safety of the
patient and successful final outcomes of surgery, this method of 3D image overlay
is ideal for planning in a nonstructured environment. By combining AR with image-
guided robotic surgery, the areas of interest in the body can be displayed through
a visualization device in real time, improving a surgeon’s hand—eye coordination
when manipulating the robot end effector. Despite the plethora of studies in existing
literature, medical image registration for surgical guidance is still confronted with
valuable constraints such as accuracy of label correspondence throughout sequences
of images, computational burden on processing units depending on the DL archi-
tecture as well as external factors such as signal fluctuations, noise, and acquisition
settings.

Our proposed method is an extended framework on the use of two deep convolu-
tional neural networks to compare the output of an optimized registration procedure
of the head and neck data with an appropriate transformation which converges to
a zero value. In a threefold process, we aim to map the warped moving labels to
the fixed labels to earmark the danger zones around the brainstem and spinal cord.
We then calculate the dissimilarity between the dynamic and static labels in the CT
image sequence using a dice scoring system as well as sum-square-difference (SSD)
for intensity-based loss. Finally, we show that by performing a linear transformation
such as an affine registration on the network using an alternative DL model such
as UNet or probabilistic dense displacements, we can achieve greater accuracy as
compared to the existing DeepReg architecture. The output from this experiment can
eventually be used for rendering an estimated target trajectory.

2 Related Work

In this section, we briefly introduce the use of deep learning for medical image
registration, as well as the choice of contrasting models after comprehensive study.
We then describe the application of such output databases for AR use in surgery.
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2.1 Medical Image Registration Based on Deep Learning

The innate need for precision in surgical image guidance has seen a dramatic increase
in research across the academic community, proposing classic DL algorithms of CT/
MRI scans for medical image registration. Ronneberger et al. [3] described the use
of conventional neural networks (CNN5s) such as the U-Net, where spatial transfor-
mations are used to two or more images to a coordinate workspace via an encoder-
decoder style network; Qi et al. [4] implemented a modified neural network, PointNet
to extract point clouds from medical scans for semantic segmentation which are then
used for AR visualisation. Jaderberg et al. [5] proposed a method of applying STNs
during both rigid and deformable transformations using transform feature maps on
a grid generator. Sokooti et al. [6] described another method of registration called
Displacement Vector Fields (DVF) acting as the ground truth and utilized the RegNet
architecture for registering CT images of the chest. This enabled a higher accuracy
generation when using alternative real-life datasets, in line with the conventional B-
spline methods. De Vos et al. [7] proposed an unsupervised end-to-end network using
CNNs and STNs to register 2D images of the heart. Inspired by dice loss functions
for comparing accuracy in training models, authors such as Hering et al. [8] have
touched on existing algorithms for fixed to dynamic segmentation mapping whilst
combining CNN-based square difference loss and similarity scores. Balakrishnan
et al. [9] extended the work on Voxelmorph for calculating the Dice score between
fixed and warped moving segmented masks. Hansen et al. [10] found that the PDD-
Net architecture provided a 15% increase in accuracy during monomodal CT regis-
tration using a combination of probabilistic dense displacements and differentiable
mean-field regularization.

2.2 Augmented Reality Based on DL Image Registration

The application of AR based technology for surgical guidance has become increas-
ingly relevant in clinics. The use of image superposition for pre-planning of compli-
cated surgeries helps clinicians to transfer the reconstructed medical images from the
database to the operating room, for increased tool localisation and reduced operating
times. Most clinically approved studies use non-invasive fiducial markers displayed
through a visor, to track the position of an end-effector with respect to the patient’s
body using DL algorithms, libraries and software development kits [11]. Jiang et al.
[12] used the principle of medical data registration for detecting simple 2D recog-
nizable objects in a workspace using RGB cameras. Ma et al. [13] used preoperative
CBCT images for generating a trajectory during dental implant surgery, where the
naked-eye 3D reconstructions were superimposed in-situ to form an AR scene around
the patient’s mandible using matching markers on the patient’s body and the matching
CT scans. Wang et al. [14] used SDKs as a computing database for tracking 2D and
3D feature coordinates on medical images and create a calibrated coordinate system
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between the real scenario and the digital world. Jiang et al. [15] focused on an AR
guided navigation platform for dental implant surgery using mesh to point cloud
extraction for preoperative image registration, which achieved lower errors and (p <
0.05) for the surgery time.

3 Methodology

In this study, we propose the use of an existing framework based on deep convolu-
tional neural networks (CNN) for CT scan registration of the head and neck. The
unsupervised image registration framework consists of two branches as shown in
the block diagram below, one for the moving image, M and one for the fixed image,
R, each with their associated label. During training, a self-supervised set of labeled
data is fed through the neural network, generating a function F’ and is resampled to
obtain the warped moving image (Fig. 1).

3.1 Dataset and Implementation Details

CT image reconstructions of the head and neck were generated using a public dataset
from The Cancer Imaging Archive. The DeepReg open-source repository is cloned
onto the PC terminal to feed input data of 271 test images, each with 37 slices through
supervised network. We perform rigid registration of the dataset first where an image
coordinate system is initially mapped onto the other to align tissue deformations.
This means that only translation and rotation can be performed for target objects to
achieve correspondence. Our experiment involves multi-modal registration of real-
time CT scans with preoperative ones which will allow for marker-based planning of
a trajectory. We aim to use a displacement vector to project the moving coordinates
into the static coordinate space. This transformation is characterized as a combination
of vectors which allow for all voxels in a CT image to be equalized in a warping
procedure. Generally, the voxels within CT images have a wide range of intensity
values across their slices which are calculated using intensity histograms. We use
measures such as normalized cross-correlation (NCC), mutual information (MI) and
basic sum-square-difference (SSD) to measure the common features between moving
and fixed images.

3.2 Evaluation Metrics

It is to be noted that the computationally heavy datasets used for image processing
require high GPU processing speeds, which generate complex ground truth transfor-
mations and therefore DL algorithms such as weakly supervised methods are more
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Fig. 1 Flowchart of registration procedure

suitable for training them. This enables a pair of corresponding moving and fixed
labels to be computed, thus extracting the label dissimilarity during the registration.
For this experiment, we compare the prediction array to the mask array with the aim
of identifying the positive and negative outcomes as well as the mapping results to
calculate a loss function for the regions of interest (ROI). The input data includes a
probability map from the model, the mask array containing corresponding ground
truths and the base threshold predictions. The base image contains 37 slices, with a
dimension of 128 x 128 pixels, which is the same for the base label. The outputs
include a dense deformation ¢ which has an extra index (128, 128, 2) because at each
pixel, we require a direction vector. The output RGB CT images indicate areas of
overlap between masks and predictions. We observe that the labels have transformed
from the Oth slice at index 1. Upon magnification, a color-coded outcome chart is
used to distinguish among true positives from false positives (FP) and false nega-
tives (FN). The intensity-based loss between the images shown below is calculated
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using the mean difference per image tensor. Let dimensions; f and m be the fixed
and moving image parameters and let ¢ be the registration workspace that maps the
coordinates off onto that of m. This procedure is depicted as an optimisation problem
below:

¢ =arg,min L(f, m, ¢)
:arg<pmin Lsim (fv m - QD) + )‘Lsmooth(W) (l)

where m-@ represents the warping by ¢ onto m, function L, represents differences
in appearance, and Ly, shows local spatial variations in ¢. The constant A corre-
sponds to the regularisation trade-off variable. In the process of image registration, we
perform voxel-wise correspondence between the fixed and moving datasets whereby
we may use affine or non-rigid transformations depending on the degrees of freedom.
The function below

po=minL(Ty; It, In) @)

describes the optimization problem of registering CT images, where T is the desired
spatial transformation which maps m onto f and S is a measure of dissimilarity
between the fixed image and the warped moving image. For our experiment, we chose
a3 x 4 affine transformation matrix which is used to visualize the data registration on
the fixed images, and then analyze the displacements of consecutive pixels in labels
from the test sequence. This means that the straight and parallel lines in the image
remain intact but may be translated with a slight change of angle. We found that some
of the labels that appeared in the fixed and warped moving images had moved across
the slices in the sequence and therefore disappeared from the original moving image.
The same process applied for labels in the original moving images disappeared from
the fixed and warped moving images, which proved that the warping process was
successful (Fig. 2).

3.2.1 Control Experiment Using U-Net Module

We focus on the use of supervised learning techniques to predict the outcomes of a
particular interventional pathway through the brain. In the control experiment, we
use a weakly supervised method to compare the fixed images with their moving
counterpart. We then apply another CNN architecture from the VoxelMorph library,
adapted from the UNet, to compare the accuracy levels in locating labels in the fixed
and warped moving segmentations. U-Net (http://Imb.informatik.uni-freiburg.de/)
is commonly used for image segmentation tasks and provides accurate registration
results. It is developed from the FCN network and has multiple features such as
enhanced edge detection, minimized information loss, higher background weight
amongst others. In this experiment, we describe the network used with an encoder
input of size 16 x 32 x 32 x 32 but the framework parameters may vary depending
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Fig. 2 a Position of moving label with respect to the fixed label in a 128 x 128 pixel graph, b a
comparison between the positions of the moving label to the fixed label where TP = white, FP =
green and FN = red
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on the requirements. We apply three dimensional, 32-layer convolutions in both the
encoder and decoder stages using a kernel size of 3 and a stride of 2, where each
convolution is followed by a LeakyReLU layer. The process starts with a down
sampling step through different degrees of convolutions, followed by a series of up
sampling steps and concatenations to decode the network size after learning from the
encoding stages. Successive layers of the decoder operate on thinner spatial scaling
which enables accurate CT image alignment, whereby the softmax function activates
the pixels and generates a probability map.

3.3 Experiment Results

In this section, we present the results of each experiment and attempt to compare the
performance based on certain evaluation metrics.

3.3.1 Image Registration

The results of the prediction test (Fig. 3) are shown below in a warped label simu-
lation. We attempt to detect the dissimilarity (SSD) between the fixed label and the
moving label by calculating the dice score. In this case, the dice score is 0.517 for
32nd slice of the sequence, where white pixels indicate instances where the model
proved that the moving label was in fact located in the same position as the fixed
label. The green pixels indicate FP where the moving label was detected in the wrong
pixel segment compared to the fixed one and finally, the red FNs indicate a missed
segmentation between fixed and moving label. Detecting the image-based loss of
each moving tensor or vector compared to the fixed tensor enables us to visualize an
average difference between their positions.

3.3.2 Comparison Between U-Net and CNN

In Table 1, we compare the results of the medical image segmentation for the same
dataset using both architectures, using metrics such as accuracy, dice scores, SSD
and training speeds. The experiment shows clearly that the U-Net and CNN are
both suitable for medical image registration. We observed from Table 1 that the U-
net network performs better than the original CNN with a dice score of 0.621 on
the 32nd slice of the sequence, which was an increase of 10%. Figure 4 shows the
difference in intensities and contrasts of the moving label tracked throughout both
experiments i.e., the CNN architecture and the U-Net. It is observed that the label
appears in most slices in the UNet but appears to fade away during the CNN training,
which means that the UNet outperformed the CNN. We compare the accuracy of
mapping between fixed and warped moving images, the training speed (s), the F1
score, the SSD value as well as the dice score for each neural network. For control
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Fig. 3 CT image reconstruction after performing an SSD between the warped moving image and
the fixed image

purposes, we use different neural networks, including the U-Net, CNN, RNN and
RegNet to compare the performance of image registration using the aforementioned
parameters.

Table 1 Results of image registration

Parameters U-Net CNN RegNet RNN
Accuracy 0.71 0.65 0.60 0.77
Training speed (s) 10 30 40 57
Fl-score 0.86 0.81 0.751 0.55
SSD 30,450 32,3425 35,703 19,077
Dice score 0.75 0.51 0.65 0.78
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Fig. 4 Registration of the moving label after being warped throughout the 32-slice sequence during
training of the UNet and CNN architecture

&

4 Discussion and Conclusions

Deep learning algorithms have been at the core of medical image registration ever
since the concept of surgical visualization emerged in the clinical sector. The preci-
sion to which surgeons are now able to perform using image overlays and pre-
planning marker-based or marker-less trajectories is a steppingstone towards clinical
research in the academic community albeit requiring improvement in the medical
image quality for operations which involve morphological and volumetric differ-
ences, for example, in the resection of the lung in its deflated state using AR may
be impractical since 3D reconstructions are made upon inflated lung CT/MRI scans.
Medical image registration requires a high amount of accuracy and efficiency, espe-
cially when it comes to complicated cases in surgery where minimal invasion and
lower operation times are preferred for quicker convalescence. The use of fiducial
markers or “labels” for in-situ AR guidance is an evolving technique which can be
used to detect, remove, and alter anatomical landmarks precisely.

This paper uses a variant of the U-net network in parallel with a CNN network from
the DeepReg tutorial to analyze and compare the efficacy of label registration on a pre-
processed and pre-segmented cancer dataset. The optimized CNN architectures are
used for detecting the non-invasive markers throughout the sequence and finally, the
segmentation results are compared through relevant evaluation criteria. This method
is universal, which means that different datasets can be used for analyzing the perfor-
mance of both neural networks to obtain an efficient registration technique. However,
both methods have their flaws since there may be larger datasets whereby the results
are easily influenced by the number of training sets. We are continuously optimizing
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the use of neural networks for image and label registration through various super-
vised learning techniques. The performance of the CNNs can be improved by using an
image deformation method, hence reducing dice loss of the labels within a sequence,
followed by the generated anatomical path for the surgeon’s view.
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Transfer Learning Based Classification m
of Diabetic Retinopathy on the Kaggle L
EyePACS Dataset

Maria Tariq, Vasile Palade, and YingLiang Ma

Abstract Severe stages of diabetes can eventually lead to an eye condition called
diabetic retinopathy. It is one of the leading causes of temporary visual disability and
permanent blindness. There is no cure for this disease other than a proper treatment
in the early stages. Five stages of diabetic retinopathy are discussed in this paper
that need to be detected followed by a proper treatment. Transfer learning is used to
detect the grades of diabetic retinopathy in eye fundus images, without training from
scratch. The Kaggle EyePACS dataset is one of the largest datasets available publicly
for experimentation. In our work, an extensive study on the Kaggle EyePACS dataset
is carried out using the pre-trained models ResNet50 and DenseNet121. The Aptos
dataset is also used in comparison with this dataset to examine the performance of
the pre-trained models. Different experiments are performed to analyze the images
from the different classes in the Kaggle EyePACS dataset. This dataset has significant
challenges including image noise, imbalanced classes, and incorrect annotations. Our
work highlights potential problems within the dataset and the conflicts between the
classes. A clustering technique is used to get informative images from the normal
class to improve the model’s accuracy to 70%.
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1 Introduction

Diabetic retinopathy (DR) is an eye complication that can be developed in diabetes,
as high blood sugar levels in diabetes damage the eye’s retina with time. There are
two types of diabetes; Type 1, in which the body does not produce insulin, and Type
2, in which the body produces insulin but does not know how to use it [1]. DR is
one of the primary causes of the rise in blindness globally. According to the [1], 422
million adults (aged 20 to 79 years) in 2014 suffered from Type 2 diabetes. Both Type
1 and Type 2 patients are at potential risk of having DR. The population increased to
463 million in 2019 and was predicted to increase to 700 million adults by 2045 [2].
In 2015, there were 2.6 million people that were visually disabled because of DR,
and it is expected to rise to 3.2 million by 2020 [3], making DR the leading cause of
preventable blindness. The DR is reversible if proper treatment is carried out in the
early stages, but there is no permanent cure for this ailment in the later stages [4].

DR can be categorized into five stages; normal, mild, moderate, severe or non-
proliferative, and proliferative [5]. It progresses slowly through these stages without
proper screening and treatment. During DR, different lesions start appearing gradu-
ally in the eye, like microaneurysms in mild DR [6], hemorrhages and exudates in the
moderate DR, formation of new blood vessels in non-proliferative DR, and fragile
blood vessels and scar tissues in proliferative DR [5]. These lesions slowly distort
the retina and further harm the macula. Regular screening and proper treatment after
diagnosis are required to prevent this eye-threatening disease [7]. Detection of small
lesions is difficult in the initial stages, but it can be very helpful in reducing the risk
of severity. The other thing is the correct diagnosis of all five stages of DR to get
proper treatment [8]. Human experts and ophthalmologists are available to manually
diagnose the signs of DR, which is time-consuming and qualitative. In recent years,
much work has been done on the automated detection of DR with the development
of relevant technologies [9].

Deep Learning (DL) is an essential tool for processing medical images for clas-
sification, object detection [10], and localization [11]. It uses Convolutional Neural
Networks (CNNs) to extract features from the images automatically and then distin-
guishes between images of different classes [12]. In our work, in-depth research on
the Kaggle EyePACS dataset is performed to analyze the behavior of the largest avail-
able DR dataset. The eye fundus images are first processed through computer vision
using different techniques to improve the quality of images. Pre-trained models like
ResNet50 and DenseNet121 are trained through transfer learning for multiclass clas-
sification to assist human experts in diagnosis. Aptos dataset is used in comparison
with the EyePACS dataset to investigate the performance of the developed classifi-
cation models. In this paper, all experiments are mainly carried out on the Kaggle
EyePACS dataset, which has five classes of diabetic retinopathy, as shown in Fig. 1.
During classification, many challenges of the EyePACS dataset, such as noise, incor-
rect labeling, and imbalanced classes, are highlighted. However, this paper focused
on the behavior of this dataset, conflicted classes within the dataset, and the potential
steps taken to train the model and increase its performance.
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Fig. 1 Images of the five classes of the Kaggle EyePACS dataset

2 Related Work

Convolutional neural networks get along well with images but need much time for
training [13]. Meanwhile, transfer learning was introduced to achieve better accuracy
in less time. Itis used to train a previously trained model on an entirely different prob-
lem by transferring its learning. The model does not need to be trained from scratch;
instead, it learns new data in less time and with reasonable accuracy. GoogleNet
and AlexNet have been used for transfer learning on the Messidor dataset [14]. They
have done three experiments with two, three, and four classes to get a test accuracy of
74.5%, 68.8%, and 57.2%, respectively. They have also hypothesized that low accu-
racy in four classes is due to noise and incorrect labeling [ 14]. In [8], authors have used
Inception-v3 for transfer learning. They have trained their model to do binary classi-
fication with a small dataset and managed to get an accuracy of 90.9% with 3.94% of
the loss. Inception modules are considered to extract differently sized features of input
images in one level of convolution [8]. So, Gulshan et al. have also used Inception-v3
to train their model on binary classification. The model is trained on 0 and 1 as one
class and 2, 3, 4 as another class to suggest if the patient needs a referral or not [15].

While working with the Kaggle EyePACS dataset in [5], authors have used data
preprocessing and some traditional data augmentation techniques. They have per-
formed two binary classifications; one with healthy (0) and sick (1, 2, 3, 4 classes), and
the second with low (0,1) and high (2,3,4 classes). For first classification, they have
94.5% sensitivity and 90.2% specificity. For the second, they have got 98% sensitivity
and 94% specificity. For five classes, they have obtained 0.85 of Quadratic Weighted
Kappa and 0.74 of F1-score on their test set. In [16], authors have developed a CNN-
based system of DR classification using AlexNet, VGG16, and InceptionNet-V3.
They have used the Kaggle EyePACS dataset and mentioned the problems within this
dataset. The images were handpicked by domain experts to avoid the false labelling
of the dataset and achieved a 5-fold cross-validation with the average classification
accuracy of 37.43, 50.03 and 63.23% on AlexNet, VGG16, and InceptionNet-V3,
respectively. In [17], authors have trained and tested their model on the Kaggle Eye-
PACS dataset. They have achieved a relatively good accuracy of 70%, but on the
skewed dataset with the majority of images in class 0. In [18], authors have done
a predictive analysis on the Kaggle dataset using transfer learning techniques. It is
relatively similar to our work, in which we will perform an intensive analysis of the
eye fundus images from the Kaggle EyePACS dataset through different experiments
using pre-trained models.
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3 Pre-trained Models

Two pre-trained models were mainly used for the majority of experiments; ResNet50
and DenseNet121. ResNet50 was introduced with the increased network depth to
train more and achieve a reasonable accuracy on the images. We have achieved
92.1% top-5 accuracy and 3.57% top-5 error on ImageNet validation dataset. The
architecture of the model is updated and combined with two dense layers for five class
classification. DenseNet121 has more depth but slightly less accuracy than Inception-
v3, which is 92.3%, and the top-5 error is 7.83% on ImageNet validation dataset. The
DenseNet has dense connections between layers, fewer parameters, high accuracy,
higher computational efficiency, and memory efficiency. This network advanced
the previously developed network ResNet and improves its performance. Like the
identity block of ResNet, this network uses a “dense block™. The architecture of the
DenseNet121 model is updated, where the base model is combined with the average
global pooling layer and dense layer for five class classification in our DR detection
problem.

4 Dataset

The Kaggle dataset EyePACS was sponsored by the California Healthcare Founda-
tion in 2015, where they launched this competition with the support of a data science
team to introduce artificial intelligence in the detection of Diabetic Retinopathy. The
images were provided by EyePACS, which is a free platform for retinopathy screen-
ing. It consists of 88,696 images, which includes 35,126 images that are annotated
for training. Labels are given on the scale of 0—4, which represent the grades of Dia-
betic Retinopathy. Label O shows normal class which includes 25810 images, Label
1 shows mild symptoms of DR which includes 2443 images, Label 2 is moderate DR
which includes 5292 images, Label 3 shows symptoms of severe DR and has 873
images, and finally Label 4 shows proliferative DR with 708 images. These grades
are given according to the standards of International Clinical Diabetic Retinopa-
thy severity scale by a single specialist. The resolution of images is variable and
approximately 3000 x 2000 pixels.

The other dataset we have used is Aptos 2019 (4th Asia Pacific Tele Ophthalmol-
ogy Society Symposium). APTOS includes 5590 images, 3662 for training and 1928
for testing (Kassani et al., 2019). A clinician has rated each image with the same
severity of diabetic retinopathy as in the EyePACS dataset. The number of images
is 1805 in the normal class, 370 in the mild class, 999 in the moderate class, 193 in
the severe and 295 in the proliferative class. The resolution of images is variable.
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5 Methodology

In the proposed method, the dataset EyePACS is taken from the Kaggle public repos-
itory. This dataset contains images of different resolutions and grades in an excel file.
A desktop PC with Nvidia Tesla K80 GPU was used to train the five classes of DR.
TensorFlow was used as backend framework.

Data must be preprocessed to remove noise from the dataset and then fed into the
pre-trained model for further training. Some preprocessing techniques were applied,
which are discussed in this section. The Diabetic Retinopathy images were cropped
to the input size of the model, which varies from model to model. For ResNet50, we
need 224 x 224 which is quite low, but for DenseNet121, we have changed the input
layer of the model to accept the images of custom size 512 x 512.

5.1 Transfer Learning Details

Following are the hyper-parameter details used in these transfer learning experiments.
Loss Function Several experiments have been conducted using two different loss
functions. Categorical crossentropy loss is used for multiclass classification, but it
did not perform well on our dataset due to the imbalanced nature of the dataset or
small lesions in the images. The loss function is given below.

Loss = — Z yi - log(;)
i=1

This loss function shows the error between the actual and the predicted output. y;
is the probability for event i, which in total equals 1. n is the number of predictions
in the output list.

Sparse Categorical Focal Loss is an extension to categorical crossentropy with the
weighting factor (I —@),). y is the focusing factor used to adjust the rate smoothly.
This focal loss works better if the dataset is imbalanced and if there are small lesions
within the classes. In this work, focal loss is used with gamma equals to 2. The loss
function is below.

Loss = Z(l — )7 - yi - log(3)

i=1

Early Stopping Early stopping is used to stop training automatically based on
some metric. The metric is usually the validation accuracy or loss that needs to
be achieved for the performance evaluation of the model. When this metric stops
improving after some epochs, it waits until reaches the value of patience. Patience
is the number of epochs without any improvement in the metric. After these epochs,
it automatically terminates the training cycle. It increases the model’s performance



94 M. Tariq et al.

Table 1 Conflicting classes

Classes Model Epochs Accuracy Class 0 Class 2
(%)
Exp 1 0and 2 ResNet50 | 120 51 0.61 0.33
0and 2 ResNet50 | 200 50 0.32 0.61
Exp 2 0and 1 ResNet50 | 260 50 0.26 0.62
Oand 1 ResNet50 | 280 52 0.23 0.65

by avoiding overfitting and saving time. The metric used in this work is validation
accuracy and the patience value is 70.

Optimizer and Learning rate Anoptimizer calculates the change after each training
cycle and updates the model’s weights. It minimizes the loss value to increase the
accuracy. We have tested two optimizers, stochastic gradient descent (SGD) and
adam optimizer. SGD is calculated by going through all the training examples. This
optimizer did not work for our work; however, the Adam optimizer works well
and converges faster for our problem. It has less computation time and needs fewer
parameters to tune. The learning rate is set to 0.001, which is considered the best to
train the model.

Model Layers In the base model, the initial layers of the model have not been
trained and frozen to fine-tune the model. Only the last few layers have been trained
to extract informative features from the images. After the base model, the global
average pooling layer is used to down-sample a patch’s features by taking average
values from the feature map. It also reduces the problem of overfitting by learning
invariant features. We have used Softmax as an activation function [19], which is
used to transform the output before calculating loss in the training cycle. Softmax is
used with a dense layer of 5 neurons, and each neuron represents each class.

5.2 Training Using Pre-trained Models

EyePACS dataset is the one with the most number of images, but it has a lot of noise,
imbalanced classes, and false annotations. We will look into the problems of the
Kaggle EyePACS dataset through the conducted experiments.

Experiment on conflict classes: This dataset has two major classes, Class 0 and
Class 2, with 25810 and 5292 images, respectively. It was considered better to train
the majority classes initially and analyze the results. We resized our input images
to 224 x 224 for ResNet50 and randomly down-sampled Class 0—5292. The highest
accuracy in the two classes was 51%, and the accuracy seemed to be stuck at 50%
in the subsequent epochs, which can be seen in Table 1.
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Table 2 Experiments on three classes

95

Classes Model Resolution of | Epochs Accuracy (%)
images
Exp 3 0,1 and 2 DenseNet121 |224 x 224 80 99.9
(Majority), 3
and 4
(Minority)
Exp 4 0,3,and 4 DenseNetl121 | 224 x 224 160 66
Exp 5 1,2,and 3 DenseNet121 | 224 x 224 80 63.5
Exp 6 1,3 and 4 DenseNet121 | 224 x 224 80 69

The same experiment was repeated on Class 0 and Class 1; Class 1 is the next
majority class and has 2443 images, so Class 0 was randomly down-sampled to 2443
images. The model responded similarly to Class 0 and Class 1 as the accuracy stuck
at 51%. We can say that Class 0 (normal) conflicts with class 1 and class 2. There
can be two reasons for this conflict: a mixing between these classes with incorrect
annotations, or the model is not good enough to learn small lesions in the initial stages
of DR. If we combine conflict classes 0, 1, and 2 as one Majority class and 3 and 4
as Minority class, then it achieves good accuracy, which can be seen in Experiment
3 of Table 2.

Experiment on Three Classes: As illustrated in Table 2, it is noticeable that a good
accuracy is achieved in Exp 4 and 5. One class is taken from initial grades like 0, 1,
and 2, and the other class from severe classes like 3 and 4. It might be due to visible
lesions in the images. When the model is trained for minority classes in Exp 6, it can
be seen that the DenseNet121 model differentiates well between classes 1, 3, and 4,
minority classes. An accuracy of 69% is achieved in 80 epochs.

Experiment on Five classes: In Exp 7, DenseNet121 is trained to perform multiclass
classification on five classes of DR. The images are resized to a higher resolution
of 512 x 512. The accuracy achieved in five classes, with all the traditional image
preprocessing techniques, is 48%. The F1-score of each class shows the conflicting
nature between classes 0, 1, and 2. In order to defend the ability of the model to
learn the lesions, the Aptos dataset was taken to perform multiclass classification
on five classes. 80% percent of data was taken from each class for training, and
20% of data was taken for testing. Images were resized to 380 x 380. Our model
successfully learned the classes in experiment 8 and achieved a test accuracy of 93%
on five classes. The images have good quality, and it is easy to see the small lesions
and difference between those classes. Eventually, we can hypothesize that our model
is good enough to learn small lesions and differentiate well between five classes.
However, this dataset is relatively small, so we cannot standardize this dataset to
build a generalized model for DR classification.

In experiment 9, only 700 images were taken from each class to train a Support
Vector Machine (SVM). SVM is a non-parametric algorithm implemented to give
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Table 3 Experiments on five classes

Model Dataset Classes Accuracy (%) | Fl-score
Exp 7 DenseNet121 | EyePACS 5 48 Class 0 (0.31)
dataset Class 1 (0.48)

Class 2 (0.29)
Class 3 (0.56)
Class 4 (0.68)

Exp 8 DenseNet121 | Aptos dataset |5 93 Class 0: 1.00,
Class 1: 0.94,
Class 2: 0.84,
Class 3: 0.95,
Class 4: 0.92

Exp 9 Support vector | EyePACS 5 52.57 Class 0: 0.35,
machines dataset Class 1: 0.35,
Class 2: 0.36,
Class 3: 0.79,
Class 4: 0.79

the upper estimation of the model’s accuracy. The F1-score of the 0, 1, and 2 classes
is low, confirming the conflict between these three classes, and our highest accuracy
is 52.57%. The five-class classification accuracy is higher on SVM than on neural
networks. The results of these experiments can be seen in Table 3.

6 Discussion

In this section, the challenges in the Kaggle EyePACS datasets are highlighted and
discussed. It has a lot of noise and wrong labeling; however, it is the most used
dataset due to its large size. Different image preprocessing techniques have been
used to improve noise and increase the quality of images. Data augmentation is
implemented during training time to balance the classes of this dataset. Although,
the accuracy did not improve as expected. Two pre-trained models, ResNet50 and
DenseNetl121, were chosen because of their valuable contributions in the medical
field to perform multiclass classification. During the training, it was noticed that the
model successfully recognized mild classes (0, 1, and 2) from severe classes (3 and
4). However, it did not perform well in differentiating the mild classes (0, 1, and 2)
because of the negligible difference between those images. Moreover, class 0 is the
shared class that conflicts with both class 1 and class 2, which is why the accuracy
got stuck at 50% for these classes. Class O is the normal grade class, which holds
70% of the images from the training dataset. So, it can be considered that class 0 has
a higher chance of having junk data that requires to be separated.

‘We have also applied a k-means clustering on class 0 to distribute it into 3 clusters.
The purpose of clustering is to separate the informative images from the junk images
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Chaster 1 Cluster 2 Cluster 3

Fig. 2 Images from three different clusters

into one cluster. Each cluster is then investigated with the rest of the classes to see if
there is any one cluster that improves the accuracy of the model. After the K-means
clustering, the pre-trained model DenseNet121 is used to extract features from all
the images of class 0 divided into three clusters. These three clusters are considered
class 0 and then trained one by one with other classes 1, 2, 3, and 4. cross-validation
is performed to estimate the model’s error. One part of the data is kept for testing
from the beginning. The remaining part of the data is used for training the model
in a 10-fold cross-validation approach, where weights of the model from each fold
training are used to update in the next fold training. Then, the model is tested on the
test set partition kept aside from the beginning.

The model’s accuracy increases to 70% on five-class classification when trained
on 180 epochs. Our model successfully detects the mild stages of DR, especially class
1 with the small lesion (microaneurysms) of diabetic retinopathy with an F1-score
of 0.67. In addition, the detection for the severe stages of DR is also improved with
a comparatively better F1-score. The accuracy on the other two clusters is relatively
low, which is 42%.

In Fig.2, we can see some random images from the three clusters 1, 2, and 3. Our
model performed well on cluster 2 with 70% accuracy on five classes. It can be seen
in Table 4 that the model did well in classifying the four severity classes (1, 2, 3, and
4).

7 Conclusion and Future Work

In this paper, we have done a detailed predictive analysis of the Kaggle EyePACS
dataset. This dataset is important because it is the largest publicly available dataset
with five classes. However, this dataset has many challenges like poor quality, imbal-
anced classes, and incorrect labeling. In our analysis, we have highlighted the draw-
backs of this dataset through different experiments using transfer learning. ResNet50
and DenseNet121 were used as the deep learning models to perform five-class clas-
sification. The dataset has three conflict classes, considered to be incorrect-labeled
or confused classes; normal, mild, and moderate classes with very few initial symp-
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Table 4 K-means clustering on Class 0

Cluster Classes Accuracy (%) | Model Epochs F1-score

Exp 10 | Cluster 1 | 5 42 DenseNet121 180 Class 0: 0.01,

Class 1: 0.46,
Class 2: 0.22,
Class 3: 0.44,
Class 4: 0.62

Cluster2 | 5 70 DenseNet121 180 Class 0: 0.13,
Class 1: 0.67,
Class 2: 0.73,
Class 3: 0.85,
Class 4: 0.88

Cluster 3 | 5 42 DenseNet121 180 Class 0: 0.07,
Class 1: 0.48,
Class 2: 0.31,
Class 3: 0.41,
Class 4: 0.57

toms, which is why it is hard to distinguish between them. The Aptos dataset is
also used to perform multiclass classification and compared to the EyePACS dataset.
However, this dataset is small and insufficient to build a generalized model for DR
classification. In future work, it is essential to generate new images for the stages of
DR to make a new large dataset that will be good enough to be utilized in real life to
help experts in diagnosing Diabetic Retinopathy.
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Abstract Many novel biomaterials are recently investigated for use in spinal fusion
surgery, especially in lumbar interbody fusion. The X-ray microCT as a tool is widely
used for evaluating how successfully those biomaterials can perform a vertebral
fusion. However, the current methodologies of microCT image assessment are based
on visual evaluation by the operator. In this paper, we propose a methodology for how
such biomaterials can be investigated in pre-clinical studies by investigating fused
vertebrae morphology. We utilized microCT scans of pigs’ fused vertebrae to develop
a fully automatic approach, which can characterize the morphometry of the bone in
the fused region. A surface mesh model was created to extract the newly formed
bone tissue between fused vertebrae in the microCT data. Extracted bone tissue
was consequently evaluated according to the selected morphometric parameters.
Characterization of the newly formed bone properties in the intervertebral area can
be utilized to evaluate the osteogenesis function of implants used in lumbar interbody
fusion surgery.
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1 Introduction

Spinal fusion is a neurosurgical technique that connects two or more vertebrae to
prevent a motion between them. This technique is performed for the treatment of
various degenerative diseases to relieve back pain and pressure. Since the early
1900s, bone grafts have been used as a source of growth factors to reach a permanent
vertebral fusion. The bone graft (autograft) is surgically removed from another part
of the patient body, usually from the iliac crest. This method remains a standard up
to recent times. Currently, the huge expanse of biomaterials used in medicine brings
many new approaches to spinal fusion every year [1-4]. Usage of biomaterials is
beneficial in this case due to the possibility of fusion rate regulation and complicated
obtaining of the autografts. Evaluation of the vertebral fusion quality in order to
evaluate individual biomaterials is therefore fundamental.

Micro Computed Tomography (microCT) plays an important role in the fusion
quality assessment. Thanks to the 3D non-destructive visualization and quantitative
analysis of Lumbar Interbody Fusion (LIF) location, it is possible to evaluate bone
tissue properties. According to previous studies, the accuracy of microCT for bone
morphometry is closely correlated with histomorphometric techniques [5-7]. In the
case studies, which can proceed ex-vivo, the advantage of microCT can be taken. The
main benefit of microCT compared to a clinical CT scanner is the spatial resolution
of the scan in order of micrometers (dependent on the size of the sample).

In the case of LIF quality assessment using microCT, it is crucial to select an
objective and standardized approach for the LIF area analysis. Several automated
approaches for the LIF area were already introduced but usually require some
enhancement or are suitable for a method other than microCT, especially for clinical
applications (plain radiography, clinical CT, magnetic resonance imaging) [8—11].
Another category is visual methods, which are established but depend on the subjec-
tive evaluation by the operator [12, 13]. The development of a standardized approach
can facilitate the comparison of the vertebral samples, where vertebrae are fused with
different types of intervertebral implants, including bone grafts.

In this work, we extended analyses from [14] and analyzed the vertebral samples
after LIF in detail using quantitative parameters evaluating the newly formed bone
properties. The main motivation is to provide a tool which can easily and objectively
analyze LIF area structure, using different biomaterials used for vertebral fusion.
Such a methodology can consequently facilitate and accelerate the investigation of
biomaterials suitable for vertebral fusion. Automation of this process is crucial, since
manual methods are affected by bias caused by the operator.
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2 MicroCT Bone Tissue Evaluation

The formation of new bone after LIF surgery is possible thanks to the osteogenic,
osteoinductive, and osteoconductive properties of fusion materials used for vertebral
fusion [15]. Since bone fusion is artificially created, the properties of the newly
formed bone tissue may vary from individual to individual. Bone morphometry is
able to quantitatively describe the correlation between the growth and development
of the examined bone and the type of material used for spinal fusion.

Besides, microCT is capable to evaluate bone samples to study metabolic bone
diseases such as osteoporosis and characterize the efficiency of therapies for these
degenerative diseases [16]. The main benefit is the non-destructive evaluation of
bone fragility, microdamages, and density. Consequently, it is possible to create 3D
models of examined bones (vertebrae) for simulations of mechanical stress, and bone
fragility induced by loading [17].

There are several morphological parameters that characterize the bone and can be
derived directly from the microCT 3D image stack. These parameters are obtained by
image-processing methods using various software provided by microCT manufac-
turers or by applying mathematical methods in a programming environment. There
are four basic parameters characterizing the trabecular bone: Trabecular thickness
(Tb.Th), separation (Tb.Sp), number (Tb.N), and bone volume fraction (BV/TV)
[18]. Mean Tb.Th and Tb.Sp are evaluated using the sphere fitting method, where
in the case of Tb.Th the biggest spheres inscribed in the individual parts of the
segmented object are considered. In the case of Tb.Sp is the approach similar, but
spheres are fitted into the gaps between trabeculae (image background). Individually
fitted sphere diameters are consequently averaged to obtain a single representative
Tb.Th or Tb.Sp value. BV/TV is based on the ratio of voxels belonging to the bone
and to the volume of interest (VOI), and Tb.N can be derived as the proportion of
BV/TV and Tb.Th.

Further parameters evaluating trabecular bone are Connectivity Density (Conn.D)
and Degree of Anisotropy (DA). Connectivity is designed to estimate the number
of connected trabeculae in a trabecular network. The calculation of connectivity is
based on the Euler characteristics, which count the number of objects in VOI, the
number of marrow cavities surrounded by bone, and the number of connections that
must be broken to split the structure into two parts. A more convenient approach is
to relate the connectivity to the total volume of VOI and express this parameter as
connectivity density [19]. The Degree of Anisotropy describes the orientation of the
structural elements in the bone. DA specifies whether the trabeculae have a particular
orientation or are arranged randomly. The calculation is based on the mean intercept
length from various directions [20].
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3 Materials and Methods

3.1 Datasets Used

In this work, X-ray microCT data of 4-month-old pigs after LIF surgery were used.
One-level LIF surgery was conducted on Lumbar 2 and Lumbar 3 (L2-L3) verte-
brae. The samples were divided into three groups according to the material for LIF
used. A bone autograft from the iliac crest was used in the first group (group A).
In the second group (group B) was used a biodegradable nanocomposite implant of
biphasic calcium phosphate [2] modified with collagen/oxycellulose biopolymeric
foam, enriched with fibroblast growth factor 2 [21]. In the third group (group C),
similarly composed biomaterial as in group B was used, but the fibroblast growth
factor 2 was substituted by bioactive polyphosphate. All samples were after the LIF
surgery fixed with the pedicle screws [22].

The fused vertebrae were surgically removed, wrapped into the plastic foil to
avoid samples drying, and scanned on microCT system GE phoenix vitomelx L 240
(Waygate Technologies, USA). The voltage of the scan was 100 kV, the current was
300 A and the X-ray beam was filtered by a 1.5 mm aluminum filter. In total, 2200
projections were captured with the detector exposure time of 400 ms. For more about
the samples and their measurement, see [14].

3.2 Determination of Volume of Interest

All datasets were firstly registered in the coordinate system according to the top-
cranial and bottom-caudal orientation, where the L2 vertebra is located in the upper
part of the volume. Consequently, a prepared surface mesh representing the LIF
area was fitted on the sample using VG Studio MAX 3.4 (Volume Graphics GmbH,
Germany). The manually pre-fitted mesh was consequently automatically registered
using the best fit tool. The mesh fitted in the 3D volumetric data created the VOI.
VOI was consequently extracted and further analyzed (see Fig. 1b).

Preparation of the mesh representing the LIF area was conducted by manual
segmentation of the LIF area in 6 samples. Binary masks were consequently averaged
and smoothed using a gaussian filter (see Fig. 1a). This procedure was conducted in
Matlab (MathWorks, Inc).

3.3 Image Analysis

Evaluation of the newly formed bone in the LIF area is based on the quantification
of seven parameters: Trabecular In Growth Ratio (TIGR) acquired from [14], mean
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Fig. 1 a Surface mesh representing the LIF area. b Mesh registered into the sample in order to
extract the LIF area for further evaluation

Tb.Th, mean Tb.Sp, BV/TV, Tb.N, Conn.D and DA. TIGR value represents the ratio
between the fused area, and the area of facies intervertebralis.

Within a determined VOI was quantified a bone tissue volume (BV), using VG
Studio MAX 3.4. The suggested threshold according to the image histogram for
advanced surface determination was used. Since the mesh fitted into the LIF area of
individual samples always has the same volume, the total volume (TV) used in the
BV/TV parameter is determined in advance.

Extracted VOIs of each measured sample were processed in ImagelJ software using
the BoneJ plugin [23]. Three parameters were quantified by Bonel: Tb.Th, connec-
tivity, density, and anisotropy. Firstly, the samples were segmented to extract the
bone volume. Segmentation proceeded using Otsu thresholding, according to [24].
Consequently, the binary mask was purified to remove all particles. Purification is
based on the analysis of connected components and removes all particles surrounding
the largest component. Such particles may have been formed by potential noise in the
data. Lastly, Tb.Th, Conn.D, and DA were calculated using the Bone]—see Tb.Th
calculation in Fig. 2). Since the anisotropy calculation is a stochastic process, the
calculation proceeded three times, and the mean value was chosen as a representative.

Tb.N and Tb.Sp were calculated according to the following equations: (Egs. 1, 2
respectively):

Tb.N = (BV/TV)/Tb.Th (1)

Tb.Sp = (1/Tb.N) — Tb.Th 2)
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Fig. 2 Analysis of trabecular thickness. a Cross-section in the location of facies intervertebralis,
b Cross-section in the area of LIF. Brighter color depicts larger trabeculae

4 Results

Evaluation of the newly formed bone is characterized by obtained parameters in
Table 1. Samples are divided into three groups. Group A—bone graft, group B and
C—different biomaterials (see Sect. 3.1). According to the TIGR' value, vertebrae
fusion proceeded the best by the samples in group B, taking into account the average
value. The standard deviation, on the contrary, is the highest because sample 2 in
this group did not fuse at all. The TIGR value coincides with the mean Tb.Th value,
which is also the highest in group B, and also has the highest standard deviation.

In the samples where the bone graft was used (group A), trabeculae formed with
the greatest distance apart of all groups (mean Tb.Sp = 0.45), but the trabeculae had
the highest value of connectivity density (4.14 mm~3). The evaluation parameters
in group C manifest the lowest amount of newly developed bone. This is given by
insufficient osteogenesis function of the bioimplant used within this group. Especially
the TIGR value and Conn.D parameters indicate the fusion fragility.

The parameters characterizing the morphometry of the newly formed bone do not
manifest big differences among individual groups—see graph in Fig. 3. The largest
percentage difference is in Tb.N, where group B has the highest amount of trabecular
bone. This is related to the small Tb.Sp value in this group and thus the increased
BV/TV value. On the contrary, the smallest difference is in the mean Tb.Th value.

! Trabecular in Growth Ratio (TIGR) acquired from [14].
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Table 1 Morphometric parameters of analyzed bone tissue

Sample TIGR |Mean |Tb.Sp |BV/TV |Tb.N(l/ |Conn.D |DA (-)
(%) Tb.Th | (mm) mm) (mm™3)
(mm)

Group A |1 1.6 0.27 1.06 0.20 0.75 2.96 0.38
2 7.1 0.23 0.25 0.48 2.08 5.17 0.16
3 4.8 0.28 0.42 0.40 1.42 3.77 0.22
4 3.6 0.23 0.26 0.46 2.04 3.65 0.20
5 22.7 0.25 0.24 0.52 2.02 5.16 0.10
Average 8.0 0.25 0.45 0.41 1.66 4.14 0.21

GroupB |1 16.3 0.23 0.19 0.55 2.38 3.95 0.21
2 0.0 0.43 0.53 0.45 1.04 1.37 0.25
3 1.5 0.20 0.21 0.48 2.43 4.55 0.19
4 29.8 0.31 0.17 0.64 2.10 2.99 0.23
5 28.8 0.21 0.28 0.42 2.03 2.78 0.15
Average |15.3 0.28 0.28 0.51 2.00 3.13 0.21

GroupC |1 0.2 0.27 0.33 0.46 1.66 291 0.31
2 4.7 0.27 0.36 0.42 1.59 2.71 0.11
3 22 0.26 0.31 0.46 1.76 2.75 0.16
4 3.1 0.20 0.33 0.38 1.86 3.40 0.10
5 4.0 0.32 0.38 0.45 1.43 2.57 0.15
Average 2.8 0.26 0.34 0.43 1.66 2.87 0.17

This fact can indicate that the trabeculae have the same thickness within all groups
and do not affect the quality of intervertebral fusion.

5 Newly Formed Bone Evaluation

It is interesting to look into the relationship between the TIGR value representing
the amount of the fused area and morphometric parameters describing the bone
properties. There is evident a linear relationship between the TIGR value and Tb.N
and Conn.D, respectively. Increasing the fused bone ratio (the TIGR value) also
increases the number of trabeculae and their connectivity density. It means that the
bone in the LIF area expands as a connected unit. Bone expansion takes place so
that the newly formed bone attaches to both vertebrae (in high TIGR values). If the
newly formed bone were attached only to one vertebra, the TIGR value would be
small (Fig. 4).
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Characterisation of the bone morphometry
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Fig. 3 Graph comparing selected morphological parameters of newly formed bone in the location
of LIF area. Individual color bars represent individual groups of samples
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Fig. 4 Graphs depicting the relationship between the ratio of the fused bone (T/GR trabecular in
growth ratio) and the trabecular number, connectivity density respectively

6 Conclusion and Future Work

In this paper, we proposed a methodology to automatically characterize the
morphometry of the bone in the fused region after the LIF surgery. The study was
elaborated using the samples of porcine vertebrae, where the LIF was conducted using
three different types of implants. The main benefit of the proposed methodology is
an automatic 3D approach for the evaluation of bone tissue. Automated characteri-
zation of fused bone is suitable for accurate comparison of samples where vertebrae
are fused with different types of intervertebral implants. The analysis is not affected
by operator-induced inaccuracies and is therefore suitable for the inter-laboratory
evaluation of osteogenesis bioimplant function in preclinical studies.
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In the future, we would like to extend this methodology to the processing of
human fused vertebrae samples. Using clinical CT images cannot provide all infor-
mation mandatory for the analyses described in this paper, but we would utilize
the methodology for LIF area extraction and quantify different parameters, such as
bone mineral density, bone volume, and detection of fractures or abnormalities in
the newly formed bone. The utilization of CT is a standardized diagnostics tool in
the pre- and post-surgery diagnosis of LIF. An automated approach for assessing
the structure of bone formation between vertebrae may expand the possibilities of
diagnosing the success of LIF surgery.
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Community Detection in Medical Image )
Datasets: Using Wavelets and Spectral i
Methods

Roozbeh Yousefzadeh

Abstract Medical image datasets may contain a large number of images repre-
senting patients with different health conditions. When dealing with raw unlabeled
datasets, the large number of samples often makes it hard for experts and non-experts
tounderstand the variety of images present in a dataset. Here, we propose an algorithm
to facilitate the automatic identification of communities in medical image datasets.
We further demonstrate that such analysis can be insightful in a supervised setting
when the images are already labeled. Such insights are useful because health and
disease severity can be considered a continuous spectrum. In our approach, we use
wavelet decomposition of images in tandem with spectral methods. We show that
the eigenvalues of a graph Laplacian can reveal the number of notable communities
in an image dataset. Moreover, analyzing the similarities may be used to infer a
spectrum representing the severity of the disease (code is available at https://github.
com/roozbeh-yz/community_medical_images).

Keywords Unsupervised learning + Medical images - Wavelets + Spectral methods

1 Introduction

Analyzing the contents of medical image datasets is not a straightforward task. In
practice, it is useful to label images based on health or severity of the disease.
Although health and disease can be considered a continuous spectrum, for prac-
tical purposes, we usually need to divide that spectrum into specific groups/labels.
For example, in the case of analyzing chest X-ray images with respect to the COVID-
19 disease, it is useful to define labels such as healthy, mild, severe, and pneumonia.
This is not motivated by machine learning, rather by different categories of medical
procedures that should follow.
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Dealing with unlabeled image datasets. Annotating and labeling medical images
require medical expertise and it is an expensive procedure, prone to mistakes and
noisy labels [25]. This makes it sometimes prohibitive to create and analyze large
medical image datasets for machine learning and automation. Despite all these dif-
ficulties, medical institutions have plenty of raw medical images available, and
automating the process of analyzing such datasets and identifying groups of sim-
ilar images can be beneficial for two reasons.

First, such analysis provides insights about the variety of images present in a raw
dataset. For example, if we gather the chest X-ray images of all COVID-19 patients
in a given hospital at a given day, it would not be clear how much variety will be
present in the gathered data. It would be useful to estimate how many communities
of similar images are present in a dataset before having an expert looking over all
the images. We show that eigenvalue analysis of a graph Laplacian can provide an
estimate of the number of such communities.

Second, automatically detecting groups of similar images can facilitate the label-
ing process, because the medical expert can then review the groups of images, instead
of going through all the images one by one. Here, we show that wavelet decompo-
sition of images in tandem with clustering can facilitate that.

Dealing with labeled image datasets. After a medical image dataset is labeled,
or when we are given a labeled image dataset, it would be useful to analyze the
similarities within each class, and also analyze the cross-class similarities. Mistakes
in labeling are not unusual, even by experts, especially when dealing with large
datasets. Analyzing the similarities may be able to identify such mistakes. An image
that is isolated and dissimilar from other images in a class might actually be a
mislabeled image; and even when such images are correctly labeled, it would still be
useful to be informed about their existence, and understand the reason behind their
dissimilarity to other images of the class. In fact, identifying dissimilar images of the
same class are useful for efficient training of models, e.g., triplet mining [11, 24].
Moreover, analyzing the similarities of labeled images may help us automatically
infer a disease spectrum representing the severity of disease among patients as we
discuss in our results.

Related work. There are a few studies that have used community detection methods
to detect specific items in images [12, 16]. In those approaches, each community
consists of certain pixels inside an image and not a group of similar images inside a
dataset. Trivizakis et al. [20] used wavelets to extract features from images, and then,
used those features to train a classification model on histology images of colorectal
cancer. This shows the effectiveness of wavelets in extracting features. However, their
method is not comparable to ours as their focus is on training a classification model
on a labeled dataset, not identifying groups of similar images, analyzing in-class and
cross-class similarities, and inferring a disease spectrum.

There is a rich literature on community detection algorithms for tabular data and
networks [15, 19], but those methods are not readily applicable to image datasets.
In the object recognition literature, there are methods that create an embedding for
images, but their computational method significantly differs from ours. First, they
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are not for medical image datasets, rather for object recognition. Second, they are
not concerned with detecting communities of similar images in the datasets. Third,
they do not use spectral methods to analyze the abundance of similarities. Fourth,
they compare images either by solving expensive optimization problems [21], or by
comparing image representations in an inner layer of a trained deep network [3]. This
last approach requires a trained model in the first place which can be very expensive.

In previous work, we showed that for object recognition datasets, wavelet decom-
position of images can detect similar images in a dataset, the same way that a trained
deep learning model does [22]. We also used wavelet decomposition of images to
extract independent patterns from image datasets [23].

Recently, Das and Dutta [6] suggested a method to identify images in a medical
image dataset most similar to a specific query image. This method is specifically
designed for histology images of breast. It uses wavelets to identify specific patches
in images, and eventually trains a convolutional neural network and uses the rep-
resentations learned by the model to identify similar images to the query image.
Although this method has similarities to our method, it also has considerable differ-
ences. First, it requires training a neural network on images. Second, it is specific
to histology images of breast and detection of mitotic cells. Third, it only identifies
images similar to a single query image, and does not analyze the similarities in the
entire dataset while we perform that task by forming a graph Laplacian for entire
datasets and analyzing the eigenvalues.

2 Our Method

Wavelets. Wavelets are a class of functions and one of the most capable tools to sys-
tematically process images and extract features from them. The difficulty of working
with images and many signals arises from the spatial complexity of patterns and struc-
tures in them. What makes an X-ray image to represent signs of pneumonia cannot be
explained by one or a few pixels, rather, it may be explained by the specific patterns
that appear in various regions of an image.

Wavelets were developed building on the scientific knowledge of Fourier trans-
form in the context of image and signal processing. Notably, Daubechies [7]
showed that wavelets perform better than windowed Fourier transform on visual
signals, because wavelets handle the frequencies in a nonlinear way. The family of
Daubechies wavelets are one of the most successful types of wavelet transformation,
and we use them in this paper. The orthogonality of Daubechies wavelets is partic-
ularly useful for feature extraction, because orthogonality in this setting implies the
filters are independent and each filter is measuring a specific feature in the image
signals. To process images with wavelets, we use the function

[w, B] = wavedec(x, 2, N), (D)
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which takes as input an image x, a wavelet basis €2, and level number N. It returns
a vector of real numbers w, representing the wavelet coefficients obtained from
convolving x with €2, and a book keeping matrix 8 containing the dimensions of
wavelet coefficients by level. This operation is reversible, therefore, given w, 8, and
2, we can return to pixel space and reconstruct the image x, which we denote its
operation by

x = waverec(w, 8, 2). 2)

For a given N, B will be constant for all images of the same size.

Radiomics. Radiomics refers to an emerging class of computational methods that aim
to extract features from medical images that can be useful for clinical decision making
and outcome prediction [8, 18]. In certain applications, these methods have been
able to extract, from images, features that are not easily detectable by eye, and they
have been able to characterize clinically useful phenotypes, e.g., [14]. Computing
the radiomic features usually relies on statistical methods and consider the shapes,
intensities, textures of items in the images [ 18]. In a few occasions, more sophisticated
methods such as wavelets are used to extract radiomic features, e.g., [1].

Our Algorithm. First step is to decompose all images using a wavelet basis €2,
and organize them in a matrix C with rows corresponding to images and columns
corresponding to wavelet coefficients (lines 1-4). About the choice of €2, we have
observed empirically that Daubechies-1, 2, and 3, work well in extracting features
from images. Higher level wavelets can extract some extra features corresponding to
finer details in images, but those finer details are not always useful for analyzing the
similarities of images. In fact, when we use higher level wavelets, like Daubechies-5,
and extract more features from images, the feature selection part of our algorithm
discards those extra features. For each dataset, we recommend a few different wavelet
bases to be tested, starting from Daubechies- 1. Overall, the choice of €2 does not affect
our empirical results.

Next, our algorithm selects a subset of wavelet coefficients according to their
Laplacian score [9] and using the function fsulaplacian(-) (line 5). Laplacian score
is a feature selection method based on Laplacian eigenmaps and Locality Preserving
Projection [10], specifically designed for unsupervised settings. Wavelet coefficients
with scores less than the threshold T will be discarded (line 6). Feature selection with
Laplacian score is a standard method and there are standard recommendations for
the choice of . We recommend several values to be tested for 7 to make sure useful
features are not discarded. It is possible to use other feature selection methods as
well. In the past, we have used rank-revealing QR factorization [4], but we prefer the
Laplacian score because it relates to later steps of our algorithm where we derive the
graph Laplacian.

Our algorithm then computes a distance matrix, D, by applying the function
pdist(-) on C (line 7). pdist(-) measures the pairwise distances between the rows of
C and returns a symmetric square matrix D. To measure the distances, we use the
distance metric M. In practice, we have found the correlation distance to be an
effective metric. Other metrics such as cosine similarity may work as well. We then
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convolve the D with a Gaussian kernel to turn it into an affinity matrix, W (line 8).
In this line, szd(-) returns the standard deviation, exp(-) is the exponential function,
and © is the Hadamard product. The diagonal elements of W are set to zero.

Algorithm 1 Wavelet Spectral Decomposition for Community Detection
(WSDCD): Algorithm for detecting communities of similar images in datasets

Inputs: Dataset of images P, wavelet basis €2, distance metric M, feature selection threshold t,,,
eigenvalue threshold 7,
Outputs: Communities in the dataset idc

1: Count total number of images in P as n

:fori =1tondo
C(j,:, i) = wavedec(P{i}, Q)
: end for

: [idw, scorew] = fsulaplacian(C)

: C(,idw(scorew < 1)) =[]

: D = pdist(C, M)

P W= i exp(S O S)

9: L = glaplacian(W)

10: A =eig(L)

11: estimate the number of clusters, n., based on the eigen-gaps

12: idc = cluster(C, M)
13: return idc

© N L AW

Using the affinity matrix and the function glaplacian(-), we derive the graph
Laplacian of the data (line 9). The eigenvalues of the graph Laplacian will let us
identify the number of clusters in the data, n. (lines 10-11). This is a standard
method suggested by von Luxburg [17]. To estimate the number of clusters, it is
possible to use alternative methods as well. Finally, we cluster the images into 7,
clusters based on their affinities captured in W and using a clustering function of
choice (line 12). As a result, similar images will appear in each of the clusters and
we will be able to provide them to medical experts for further analysis.

3 Results

Dataset on COVID-19 Radiology. We use the dataset provided by Cohen et al.
[5] which contains a mixture of chest X-ray and CT-scan images of patients diag-
nosed with COVID-19. We proceed with analyzing the dataset by first decomposing
the images with Daubechies-3 wavelets. We then measure the cosine similarity of
wavelet coefficients of the images. Figure la shows the similarity matrix obtained
from this analysis. Using the similarity matrix, we then compute its normalized
graph Laplacian. Figure 1b shows the eigenvalues of the Laplacian. As we can see,
the number of large eigenvalues are not many. In fact, the eigenvalues beyond the
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Fig.1 Similarity matrix obtained based on wavelet decomposition of all images in the COVID-19
dataset and the distribution of its eigenvalues

Fig.2 a Similarity matrix in Fig. 1a after reordering the images based on spectral clustering. Images
of different mode appear in different clusters, so does images with different severity of disease. b
Subset of similarity matrix for images annotated with pneumonia

25th are very close to zero. Based on this, we choose the number of clusters (i.e.,
image communities) as 25, and proceed with spectral clustering of the images.

Figure 2a shows the same similarity matrix as in Fig. 1a after re-ordering the rows
and columns of the matrix based on the appearance of images in the clusters. Each
block along the diagonal of the matrix corresponds to one of the clusters in our
image dataset. The off-diagonal blocks reveal the similarity of clusters with each
other. Further examination of these clusters reveal that patients with pneumonia
appear only in 6 of the 25 clusters, as shown in Fig. 2b. We also see that images of
different modality appear in separate clusters.

Histological images of colorectal cancer (CRC). Here, we study the colorectal
cancer (CRC) histological image dataset [13]. This dataset contains labeled images
corresponding to 9 different types of tissue. We use our algorithm to understand the
variety of images within the last class of tissues labeled as colorectal adenocarci-
noma. Figure 3a shows the resulting similarity matrix. Using the eigenvalues of graph
Laplacian, we choose the number of clusters to be 15.

Figure 3b shows the reordered similarity matrix after the clustering and also sam-
ples from each of the cluster. Note that all images in all the clusters are considered
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Fig. 3 a Similarity matrix for the colorectal adenocarcinoma epithelium class. b Reordered simi-

larity matrix based on spectral clustering
COoVID

non-COVID

borderline

Fig. 4 Disease spectrum inferred from labeled images. Borderline separates COVID and non-
COVID patients. The far right of the spectrum implies high severity of disease, and the far left of
the spectrum implies no infection

one malignant type of cancerous tissue. But, there are still different varieties in their
patterns. Each cluster appears as a diagonal block in the similarity matrix. By look-
ing at the off-diagonal blocks of the matrix, we can identify which clusters are more
similar to each other. For example, note that cluster C3 is more similar to cluster C5
compared to other clusters.

4 Inferring the Disease Spectrum

Here, we leverage the similarities and dissimilarities among images to place them on a
spectrum representing the severity of disease. The idea is to analyze the similarities
of images from two different classes to automatically infer the disease spectrum.
Figure4 shows the disease spectrum we infer for a dataset of SARS-COV-2 CT-
Scans [2].

The disease spectrum in Fig. 4 has a borderline in the middle separating CT-scans
of patients with COVID from healthy patients. Images of each class that are similar
to images of other class will appear near the borderline. Images in one class that have
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IO

Fig. 5 Borderline images: images in the COVID class that are similar to images in the non-COVID

IO

Fig. 6 Borderline images: images in the non-COVID class that are most similar to images in the
COVID class

large similarities to images in the other class would be considered in the middle of the
disease spectrum, while images that have strong in-class similarities and weak out-
class similarities would be placed away from the mid-spectrum, i.e., the borderline.
This can be considered an unsupervised approach on labeled images with the aim to
extract extra information from them. Labels define which patients have COVID-19,
but they do not reveal severity.

To infer a disease spectrum, we investigate images that have considerable simi-
larities to images in the other class. For example, images in the COVID class that
are similar to images in the non-COVID class may correspond to patients that are
moderately ill. Similarly, images in the non-COVID class that are similar to images in
the COVID class may correspond to patients that have vague symptoms of infection.
So, we extend our analysis to measure the similarities across classes. Figure 5 shows
images in the COVID class that are most similar to images in the non-COVID class,
and Fig. 6 shows images in the non-COVID class that are most similar to images in
the COVID class. We consider these images to be at the borderline of the spectrum.

Additionally, Fig. 7 shows images in the COVID class that have the least similarity
to images in the non-COVID class. We can consider these images likely to correspond
to the infected side of the spectrum. Figure 8 shows images in the non-COVID class
that have the least similarity to images in the non-COVID class. We can consider
these images likely to correspond to non-infected side of the disease spectrum, far
from the borderline.

5 Conclusions

We considered a practical setting where a large dataset of medical images is gathered
in a medical institution and we need to detect communities of similar images in order
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Fig. 7 COVID images that are most dissimilar to non-COVID images. These may correspond to
the infected side of the spectrum, far from the borderline
- ‘
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Fig. 8 Non-COVID images that are most dissimilar to COVID images. These may correspond to
the non-infected side of the spectrum

A

to proceed with classifying/labeling them. Our algorithm has implications for both
unsupervised and supervised learning of medical images. For unsupervised learning,
itfacilitates the detection of communities of similar images in medical image datasets,
improving the expensive process of labeling raw datasets. For supervised learning,
our method can help in understanding fine-level similarities within each class and
across classes. Such fine-level similarities can be used for training tasks such as triplet
mining. Identifying images at the borderline of classes and flagging them for further
review by medical experts may reduce the false predictions of deep learning models
and make the automated process more reliable. Finally, we showed that analyzing
the similarities may be used to infer a disease spectrum.
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Non-pooling Network for Medical Image m
Segmentation oo

Weihu Song, Heng Yu, and Jianhua Wu

Abstract Existing studies tend to focus on model modifications and integration
with higher accuracy, which improve performance but also carry huge computa-
tional costs, resulting in longer detection times. In medical imaging, the use of time
is extremely sensitive. And at present most of the semantic segmentation models
have encoder-decoder structure or double branch structure. Their several times of
the pooling use with high-level semantic information extraction operation cause
information loss although there is a reverse pooling or other similar action to restore
information loss of pooling operation. In addition, we notice that visual attention
mechanism has superior performance on a variety of tasks. Given this, this paper
proposes non-pooling network (NPNet), non-pooling commendably reduces the loss
of information and attention enhancement module (AEM) effectively increases the
weight of useful information. The method greatly reduces the number of parame-
ters and computation costs by the shallow neural network structure. We evaluate the
semantic segmentation model of our NPNet on three benchmark datasets comparing
with multiple current state-of-the-art (SOTA) models, and the implementation results
show that our NPNet achieves SOTA performance, with an excellent balance between
accuracy and speed.
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1 Introduction

Medical image segmentation can promote the research and development of medical
field. It can help doctors analyse and take action using image features. The accu-
racy and speed of image segmentation is critical and existing research is carried
out from these two aspects. However, the relationship between accuracy and speed
in most models has not reached a relative balance. FCN [1], as the first semantic
segmentation model, undoubtedly attracted great attention. It changed the last full
connection layer of the classification network into convolution to achieve remarkable
performance on semantic segmentation. U-Net [2], the first segmentation network
proposed for medical images, is a typical encoder-decoder structure. In U-Net, skip
connections are used to effectively integrate shallow spatial information and deep
semantic information, thus making up for the loss of feature information caused by
multiple pooling operations in the encoder stage. Subsequently, a series of improved
models based on U-Net show up. More complex feature extraction modules are used
to extract as much feature information as possible from each level of the segmentation
network to weaken the influence of pooling operations on information loss. Although
such models improve certain performance, However, more redundant information,
even error information, was introduced, and the model size and computation cost also
increased significantly, creating a certain burden. SegNet [3] uses two lassification
networks as encoder and decoder respectively and proposes to use max pool index
to do up-sampling to better restore the impact of pooling. PSPNet [4] and DeePLab
series [5—8] both use image classification networks as the backbone. The former
proves the effectiveness of extracting multi-size feature information by pyramid
pooling module for the first time, while the latter proposes to use atrous convo-
lution to obtain feature information of larger receptive field, using atrous spatial
pyramid pooling (ASPP) to obtain rich feature information of multiple dimensions.
In addition, the attention mechanism introduced from NLP to computer vision has
also shown its dazzling brilliance, among which SENet [9] is undoubtedly the most
important representative, its excellent performance won the last imagenet champion.
Some other semantically segmented networks use dual branching structures [10]
to acquire semantic information [10], spatial information [10], and cascade struc-
tures [11] respectively. Above all, most of the semantic segmentation models have
encoder-decoder structure, use image classification network as the backbone, and
use the structure of the double branch or cascade structure. Pooling operation used
in these semantic segmentation models leads to information loss. And the complex
structure will also cause the burden of model and calculation. In addition, dilated
convolution, multi-dimensional feature extraction, and attention mechanisms are
proved to be effective. Therefore, we elaborately designed a simple and novelty non-
pooling network, which solves the information loss caused by the pooling operation
and uses improved ASPP and a new plug-and-play attention mechanism module. Our
contribution is in four aspects: (1) We propose a new plug-and-play attention mech-
anism module, which has better performance than the attention module in SENet.
(2) We propose an improved ASPP module and have better performance. (3) For the
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first time, non-pooling semantic segmentation model with only 1/50 of the number
of model parameters and computation costs of U-Net is proposed. (4) Our method
surpasses other state-of-the-art performance on three medical image segmentation
datasets.

2 Methodology

In this paper, we propose NPNet, a novel lightweight semantic segmentation model
for medical images. The network structure is described in Fig. 1. It is mainly
composed of the basic block, attention enhancement module shown in Fig. 1, and
feature enhancement module. In this model, all the convolution operations are 3 x 3
convolution kernel, followed by batch normalization(bn) and ReLU. There are three
basic blocks at the beginning of the network, and attention enhancement module is
added after each block, and a feature enhancement module is implemented in the
middle of the network. At the back of the network, 1 x 1 convolution is used to
output according to the classification number and bi-linear interpolation is used to
restore the original input size. In this section, we will talk about these components
in detail.

2.1 Basic Block

The basic block first uses 3 x 3 convolution operation with stride equal to 2, which
is equivalent to the function of reducing image size and computation achieved by
the pooling operation of stride equal to 2. Moreover, the convolution operation can
also effectively deal with the loss of feature information in pooling operation. Then,
two 3 x 3 convolution operations with stride equal to 1 are used to fully extract the
feature information of this layer, and also to obtain more abundant and useful feature
information which is conducive to the transmission of the information of the next
layer. The design of this basic block is to reduce the information loss and realize the
effective extraction of spatial feature information of images with different sizes.

2.2 Attention Enhancement Module

Attention enhancement module is an attention module integrated with 1 x 1 convo-
lution. First, the input image is transformed into a 1-dimensional matrix by adaptive
average pooling, and then the input dimension is transformed into the input dimension
divided by parameter reduction using 1 x 1 convolution. Like SENet, we also use



124 W. Song et al.
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Fig. 1 Proposed NPNet architecture

linear activation function ReLU and nonlinear activation function Sigmoid succes-
sively. The difference is that we use 1 x 1 convolution to replace the full connec-
tion layer. 1 x 1 convolution can effectively improve the nonlinear characteristics
and information interaction across channels, better extracting useful information in
feature information. Finally, the nonlinear activation function Sigmoid is used on
output and the result is weighted by multiplying the original input to achieve channel
adaptive weighting. This module is used after each basic block to further strengthen
the weight of useful information between different channels, thus providing better
characteristic information for the following steps.
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2.3 Feature Enhancement Module

The feature enhancement module is used after three basic blocks, and the image size
currently is 1/8 of the input size. This module is composed of four dilated convolutions
with the ratio of 1, 5, 15, 20, and two 1 x 1 convolutions. The atrous convolution
can obtain feature information from the large receptive field without increasing the
number of parameters, obtaining richer semantic information. The input image is first
output through four dilated convolutions according to 1/2 of the number of output
channels. Then the four outputs are superimposed through concatenation, and the
number of channels is 2 times the number of output channels. 1 x 1 convolution is
used to achieve dimension reduction, that is, the normal number of output channels
is obtained. At this point, the residual structure is introduced to concatenate the result
with the original input information to realize feature reuse. Finally, 1 x 1 convolution
is used for further dimension reduction.

3 Experiments and Results

3.1 Datasets

Lung Segmentation. Lung CT image segmentation is an important and initial step
in lung CT image analysis. This dataset comes from the Kaggle contest, Finding and
Measuring Lungs in CT datal (Luna for short). It consists of 267 2D images and
is randomly split into train set (80%) and test set (20%). Also, we use the original
image equally.

Skin Lesion Segmentation. Computer-aided automatic diagnosis of Skin cancer
is an inevitable trend, and Skin lesions segmentation as the first step is urgent.
The data set is from MICCAI 2018 Workshop—ISIC2018: Skin Lesion Analysis
Towards Melanoma Detection [12, 13] (Skin for short). It contains 2594 images and
is randomly split into train set (80%) and test set (20%). For better model training
and result display, we resize all the original images to 224 x 224.

Polyp Segmentation. Accurate detection of colon polyps is of great significance for
the prevention of colon cancer. CVC-ClinicDB [14] (CVC for short) includes 612
colon polyp images. We use the original size 384 x 288 of image and split it into
train set (80%) and test set (20%).

3.2 Experimental Settings

For three benchmarks and multiple segmentation models, we set consistent training
parameters. We set epochs as 100 in the three data sets. We use a learningrate (LR)
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equal to 1e-3 for Luna and Skin task and 1e-4 for CVC task. In addition, we use batch
size equal to 2 for Luna and CVC task, and 4 for the Skin task. Cross entropy loss and
Adam are used as loss function and optimizer, respectively. All experiments run on
the NVIDIA GeForce RTX 2080Ti GPU with 12 GB. Intersection over Union (IOU),
dice coefficient (Dice) and multiply—accumulate operations (MACs) are selected as
the evaluation metrics in this paper. We used these evaluation metrics for all datasets.

3.3 Experimental Results

In this section, we presented qualitative results on three data sets and compared with
other SOTA semantic segmentation networks to prove the superior performance of
our NPNet. We set up the same parameters for the same data set in different network
models, and all models were trained from scratch. Since U-Net is still the baseline
of many networks, we also introduce several SOTA models based on U-Net for
comparison. Table 2 shows that our model is superior to other SOTA models in
terms of performance and is 1/50 of U-Net in terms of model size and computation
costs. In all the figures demonstrating the qualitative results in Fig. 2, the sequence
are origin image, FCN8s, SegNet, PSPNet, U-Net, NPNet, mask, respectively. It can
be found from these figures that the model proposed can effectively reduce the loss
of information with our non-pooling module, so as to retain more details and achieve
better performance. Moreover, the model size and computation cost of this paper are
only 1/100 of U-Net++. Ablation Studies. The attention mechanism module in SENet
plays an important role, and many models insert this template into their models to
achieve better performance. Therefore, we conducted an experimental comparison
on three datasets of our proposed attention enhancement module. The difference
between the model size and the computation costs of these three models can be
negligible, the experimental results in Table 1 prove that our attention enhancement
module is better than SENet as a plug-and-play attention module.

4 Conclusion

In this work, we propose a novel semantic segmentation network with non-pooling
operation for the first time, which can effectively alleviate the problem of infor-
mation loss and difficult recovery caused by the pooling operation. Our proposed
network also gets rid of common encoding and decoding structures. In addition,
we also proposed an attention module to enhance feature information, which can
be easily inserted into other network models with fewer parameters, Experiment
results on three datasets show that our model can surpass state-of-art counterparts
with lightweight parameters and MACs.
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Fig. 2 Qualitative comparison of different segmentation results
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Table 1 Comparsion on CVC, Skin and Luna with seven models

Dataset Methods 10U Dice Params (M) MAC:s (G)
FCNSs [1] 0.6149 0.7249 14.72 33.89
SegNet [3] 0.7146 0.7933 29.44 67.67
PSPNet [4] 0.7159 0.8045 17.5 133.23
U-Net [2] 0.7439 0.8229 34.53 110.46
Attention U-Net [15] 0.7334 0.8153 34.87 112.27
U-Net++ [16] 0.7632 0.8356 36.63 233.88
NPNet 0.7766 0.8397 0.71 2.17

Skin FCN8s [1] 0.7828 0.8511 14.72 61.50
SegNet [3] 0.7897 0.8558 29.44 30.71
PSPNet [4] 0.8052 0.8708 17.5 60.45
U-Net [2] 0.8086 0.8691 34.53 50.12
Attention U-Net [15] 0.8028 0.8691 34.87 50.94
U-Net++ [16] 0.7901 0.8588 36.63 106.11
NPNet 0.8170 0.8757 0.71 0.99

Luna FCNSs [1] 0.9741 0.9802 14.72 80.32
SegNet [3] 0.9688 0.9789 29.44 160.41
PSPNet [4] 0.9732 0.9823 17.5 315.87
U-Net [2] 0.9749 0.9821 34.53 261.64
Attention U-Net [15] 0.9698 0.9794 34.87 266.11
U-Net++ [16] 0.9746 0.9831 36.63 554.37
NPNet 0.9785 0.9832 0.71 5.15
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Table 2 Evaluation of proposed attention enhancement module
Dataset Methods Attention 10U Dice
CcvC NPNet No 0.7439 0.8157
NPNet SENet 0.7448 0.8186
NPNet AEM 0.7766 0.8397
Luna NPNet No 0.9758 0.9807
NPNet SENet 0.9772 0.9820
NPNet AEM 0.9785 0.9832
Skin NPNet No 0.8131 0.8742
NPNet SENet 0.8091 0.8709
NPNet AEM 0.8165 0.8766
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Abstract Identification and quantification of pulmonary fibrosis and other anoma-
lies are challenging problems in Radiotherapy. This paper introduces a block match-
ing technique that characterises the voxel displacements as a geometrical relationship
between lung CT scans. The proposed block matching technique uses two-pass dis-
tance and orientation-based regularisation to restrict unnatural and unrealistic tissue
deformations. Also, this technique uses both texture maps and voxel intensities as
block matching criteria. This yields a displacement vector field whose predicted
motion vectors are closer to the actual displacements evaluated at every slice loca-
tion using image quality-based performance metrics-namely structural similarity
index (0.9959), mean squared error (0.0029), and peak signal-to-noise ratio (46.6).
Thus providing a quantitative approach to the clinicians aiding in identifying and
quantifying the clinically significant geometrical changes, eventually characteris-
ing the tumour degradation or pulmonary fibrosis in terms of volumetric and shape
changes.
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1 Introduction

The role of image processing techniques in Radiotherapy has become so important
that it is the fundamental framework for the Image-guided Radiotherapy (IGRT)
[2]. In particular, deformable image registration has been used to improve Image-
guided Adaptive Radiotherapy (ART) [11]. Among several negative side effects [1]
of ART, the toxicity in patients caused by therapeutic radiation is one of the key
limitations, and is therefore a focus of current research [3]. Geometric uncertainties
(anatomical changes) in patients is the one of the reasons for the toxicity of organs
nearby a cancerous tissue i.e. organs-at-risk (OAR) [5] which can be seen in the
scans acquired during the inter-fraction and intra-fraction time period. Therefore, by
having a method that characterises these anatomical changes using the geometrical
relationship between any two scans will aid in improving the benefits of ART. In that
perspective, image registration is used to characterise the geometrical changes and
estimate the geometric transform between two scans. This research is a part of the
study that assesses the ability to detect pre-treatment tumour cell free DNA (cfDNA)
in peripheral blood of patients with early stage lung cancer receiving Stereotac-
tic Ablative Body Radiotherapy (SABR) and the impact of SABR radiotherapy on
tumour cfDNA, cardiac cfDNA and lung cfDNA during radical radiotherapy for Non-
Small Cell Lung Cancer (NSCLC). In this study, two follow-up lung CT scans are
acquired after definite time intervals post therapeutic radiation. Using those follow-
up scans, the geometrical changes will be characterised using the image registration
techniques to assist the clinical experts to identify the onset of pulmonary fibrosis and
other clinically-significant changes. The disparity-regularised block matching based
non-rigid registration was able to geometrically characterise the organ deformations
occurring in the scans acquired at different time period by restraining unnatural defor-
mations during the motion vector estimation with the two-pass based distance and
orientation regularisation [13]. In that sense, the disparity-regularised block match-
ing is modified to identify clinically significant sites in the lung CT images. The
proposed modification uses the texture information as the block matching criteria.
Using texture information as a part of the block matching has been tried before [4,
16], however, very few investigations [10, 14] have been conducted in terms of esti-
mating a three-dimensional motion vector field for CT scans that has large area of
homogeneous and coarse texture like lung CT. In place of the traditional approach
of using texture as features in block matching cost function [9, 12], an alternative
approach of using them as maps [7] is proposed for the disparity-regularised block
matching. This modified disparity-regularised block matching based motion estima-
tion is able to detect movements in the lung CT, consequently, characterising the
clinically significant sites and their geometrical changes, with less computational
complexity. Therefore, identifying the regions where there are changes in the cur-
rent follow-up scan by comparing it with the previous follow-up scan is vital. This
comparison helps clinicians to assess the disease progression or detect abnormalities
that might have might have appeared within the time period of the scans.
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2 Methodology

2.1 Materials and Data Preprocessing

In the cfLungDNA dataset used in this study, there are follow-up CT scans for each
patient that were acquired on the 4th and 12th month after the radiation therapy.
The follow-up scan B was acquired on the 4th month post radiation treatment and
the follow-up scan A was acquired on the 12th month post radiation treatment. The
voxel size of 4th CT scan is 0.7559 mm x 0.7559 mm x 2 mm and the aspect ratio
is 512 x 512. The voxel size of 12th CT scan is 0.8926 mm x 0.8926 mm x 1 mm
and the aspect ratio is 512 x 512. From the voxel size and aspect ratio of both scans,
it can be observed that the array size and the physical co-ordinates of scans will differ
accordingly. Therefore, the follow-up scans A and B were rigidly registered to share
the same voxel co-ordinate system. Thus rigid registration becoming a pre-requisite
for the proposed technique.

2.2 Lung CT Analysis Using Extended DBLM

The disparity-regularised block matching technique (DBLM) as laid out in [13] was
able to propagate the contours from a planning scan to the on-the-day-of-treatment
scan using the geometrical relationship between the scans, provided they were from
the same modality. Also, the displacement vector field (DVF) estimation by DBLM
was compared with b-spline-a parametric, demons-a non-parametric, and pyramidal
block matching (BLMP) which were chosen from clinical evaluation studies [8, 15].
However, due to larger coarser regions in this CT scan, it is evident that the DBLM
cannot be used in the same form. Because, the image similarity metric ISM) i.e. mean
absolute error (MAE) calculated between the voxel intensities in the DBLM is very
sensitive to the intensity variance (texture). Therefore, the proposed modifications for
the DBLM to handle the large coarser regions is to use texture information as a part
of the block matching criteria (disparity function) along with the MAE of the voxel
intensities, hence the name, Extended DBLM. Instead of using the traditional gray-
level co-occurrence matrix (GLCM) as the texture features in the DBLM, texture
maps were used in the Extended DBLM. The texture filters are applied on the scan
slices and the filter output from these filters are the texture maps. The texture filters
chosen for this technique are entropy filter, range filter and standard deviation filter.
These three texture filters are chosen because of its common usage in the texture
based image analysis [6]. The filter outputs from these texture filters are labelled as
Texture Map 1, 2 and 3 in Figs. 1 and 2 to emphasise that any texture filter could
used be here and the suitability of other texture filters is yet to be investigated.

The entropy filter calculates the entropy for every kth slice in the volume and
generates the entropy texture map i.e. Texture Map 1. These slice-wise texture maps
are then stacked together as the three-dimensional entropy map /F. Using this range
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Fig.1 The displacement vector field estimation process using extended disparity-regularised block
matching
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Fig. 2 The exhaustive search based block matching used on texture maps in extended disparity-
regularised block matching
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filter on the slices of the scan volume, it generates slice-wise maps which are stacked
as three-dimensional coarseness map I X. Similar to the other texture filters, the stan-
dard deviation filter generates slice-wise maps and stacks them as three-dimensional
variability map /3. Finally, all the texture maps were normalised so that the hyper-
parameters of the DBLM could be reused in the Extended version. Then using the
3D normalised texture maps along with the scan volumes, the disparity regularised
block matching is performed to estimate the exclusive 3D displacement vector fields
for every slice location as illustrated in Fig. 1.

As per the cfLungDNA dataset, two follow-up scan 3D volumetric arrays say /74
and /g per patient are considered for the establishment of a geometrical relationship
between them using the Extended DBLM. Therefore, upon 14 and I;p, the said
texture filters are applied to obtain the three-dimensional entropy maps (/ f wand / fB),
three-dimensional coarseness maps (1 JfA and IJISB), and three-dimensional degree
of variability maps (/ ]‘? 4 and I;B) as inputs to the block matching criteria i.e. the
disparity function. Similar to the DBLM, the search space for a slice in follow-up
scan [ 7 4 slice is chosen from several slices in follow-up scan /s p. Figure 2, illustrates
all the texture map based search spaces and the voxel intensity based search space
required for motion vector calculation for one block in scan which can be compared
with the search space of DBLM [13]. In the Extended DBLM, a b4 [m, n] block
of size N x N belonging to a slice in follow-up scan Iy, is scanned over several
byglm, n, z]blocks of size N x N in the search area of size Ny x N; x N belonging
to the corresponding slices of follow-up scan Iyp, where Ny = N + p, p is the
search parameter and N, is the number of slices in follow-up scan g per group.
Similarly, the blocks from the texture maps belonging to the slice of follow-up scan
Ifpie., b?A[m, nl, bf;A[m, n], and bch[m, n] belonging to IfA, I.fA, and I;A are
scanned over several b’f;B [m, n, z], bJISB [m, n, z] and bS glm, n, z] belonging to the
texture maps of follow-up scan /g, say, / f f B and I3 7B respectively. The MAE
of all the blocks are aggregated and used as the ISM for all corresponding locations
(Candidate Displacements) in a search area giving a disparity cost matrix of size
2p+1x2p+ 1 x N, which are expressed in Egs. 1-5,

ISMy (G, j, k) = ||bgalm, n] = byplm, n, 2]|| @)
ISMg(, j, k) = |1bF,[m, n] = bglm, n, 21|l ©))
ISMR(, j, k) = |16 4lm, n] = b glm, n, 2l] 3)
ISMs(i, j, k) = |Ib} 4lm, n] = by glm, n, ]| )

ISMC(, j, k) =[ISM, + ISMg + ISMg + 1SMs]/4, (@)

where, bys[m,n] € Io[N x N1, byg[m,n, z] € Iyg[N; x Ny x N], bfA eIfA,
bEBeIfB,bRAeIfA,bRBGIfB,bSAeIfA,beeIfB,mlsablock’srows nis
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a block’s columns I, is a follow-up scan 3D array, I is another follow-up scan
3D array, I£ is a 3D Entropy (Randomness) Texture Map, IX is a 3D Coarseness
Texture Map, and I3 is a 3D Degree of Variability Texture Map. With these equations,
the motion vectors are estimated for the whole volume, making the collection of all
the motion vectors as the displacement vector field whose magnitude is used for
visualisation.

2.3 Parameters of Extended DBLM and Its Performance
Evaluation

Parameters selected for the proposed disparity-regularised block matching algorithm
are block size N = 5 pixels, search space parameter p = 5 pixels, and the step-size
for the search is 1 pixel. The number of slices per group N, chosen for the trans-
formation is 5. The DVF estimated by the Extended DBLM will be evaluated by
image quality based performance metrics namely—structural similarity index met-
ric (SSIM), normalised mean squared error (NMSE) and peak signal-to-noise ratio
(PSNR). Since the DVF estimated at every slice location of the volumetric stack,
the performance metrics are calculated between slices of the ground-truth follow-up
scan A with the slices of the geometrically warped follow-up scan B, i.e., the slices
of the estimated follow-up scan A. These metrics are defined in the following equa-
tions, where I and Iy represents each slices of the ground-truth 3D image and the
estimated 3D image.

NU

1 .
MSE =— > |Iu(x,y,2) — Iu(x, y, 21’ 6)
U n=x,y.z
_ MSE

NMSE = (7N

V \Y 1M
PSNR =10 x lo (MAXZ) (8)

= g10 MSE

3 Results and Discussion

The Extended DBLM obtains the texture maps using the texture filters, such as
entropy maps /7, and I f, coarseness maps I, and I, and degree of variability
maps / ; 4 and [ ; 5> from 3D volumetric arrays /¢4 and I ;p representing the follow-
up scans A and B. With N, as 5 here, for a slice location » in the follow-up scan
A, the slice locations of the corresponding search group in follow-up scan B were
n—2,n—1,n,n+1,and n + 2. Figure 3 shows a sample set of slices belonging to
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Follow-up scan B slice at |,=- Fallow-up scan B slkce at |, =-1 Follow-up scan B slice at | =0

Follow-up scan 0 slice at | =41 Follow-up scan 0 alice at |, =42

Texture map 1 at |, =-1

Texture map 1 st |,=-2 Texture map 1 at |, =0 Texture map 1 at |, =+1 Texture map 1 at | =+2

Taxture map 2 at | =2 Toxture map 2 atl =-1 Toxturs map 2 at |, =+1 Toxturs map 2 at | =42

Taxturs map 3 at | =2 Taxture map 3 at i =-1 Taxture map 3 at |,=0 Taxturs map 3 at | =41 Taxture map 3 at | =42

Fig. 3 A sample set of follow-up scan B slices with corresponding texture maps when extended
DBLM’s search space size N, = 5

a search space belonging in follow-up scan B. Also, in Fig. 3, the slices belonging to
the texture maps were shown. Similar to the follow-up scan B, the slices and texture
maps of the follow-up scan A were shown in Fig.4. IF,, Iy, Ify, I, I3, and
1 j§ g were the texture maps extracted from 7,4 and Iyp 3D arrays representing the
entropy, range and standard deviation maps respectively.

In order to illustrate the DVF estimation using the Extended DBLM, a sample
set of slices belonging to the follow-up scan B are shown in Fig.5. These slices are
annotated with the labels A to Q, where, A belongs to the non-anatomical region and
B belongs to the whole anatomical region in the slice locations i, = —2,i, = — 1,
i, =0,i, =41, and i; = 4 2. Similar to the sample set of the follow-up scan B,
the sample slice of the follow-up scan A at the corresponding slice location i, = 0,
is shown in Fig. 6a with the regions annotated as R, S, and T. Figure 5 illustrates the
estimated DVF overlaid on the origin of the displacement/motion activity in the slices
of the follow-up scan B, whereas Fig. 6a shows the estimated DVF that describes the
geometrical relationship of the corresponding slice in the follow-up scan A. The DVF
overlaid on the slices in Figs. 5 and 6a used the magnitude of the motion vectors in
its corresponding slice locations to highlight the origin of regularised displacements.

The displacement of the voxel blocks in the region R, i.e., the estimated motion
vectors in Fig. 6a are heavily influenced by the regions C, F, I, L, and O highlighted
in Fig. 6a. Similar to this, the DVF, i.e. motion vectors in the region S in Fig. 6a are
heavily influenced by the regions D, G, J, M, and P in Fig.5. Finally, the estimated
DVF in the region T in Fig.6a is heavily dependent on the regions E, H, K, N,
and Q which are highlighted in Fig. 5. The DVF estimation using Extended DBLM
was able to characterise the geometrical changes between the two follow-up scans
as discussed in Sect.2.2. However, in-terms of the clinical perspective, the results



138 D. A. Pannir Selvam et al.

Follow-up scan A slice at i = Texture map 1ati =0

Texture map 2 at i =0 Texture map 3 ati =0

Fig. 4 A sample follow-up scan A slice with corresponding texture maps

Q&>

(a) Follow-up (b) Follow-up (¢) Follow-up
scan B at i, = —2 scan B at i, = —1 scan Bati, =0

(d) Follow-up (e) Follow-up
scan B at i, = +1 scan B at i, = +2

Fig. 5 A sample set of follow-up scan B slices (a—e) with the regions of the activity overlaid when
N, =5
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51

O

T

(a) Estimated displacements (b) Biased DVF

Fig. 6 DVFs of extended DBLM in follow-up scan A slice ati, = 0

illustrated in Figs. 5 and 6a were insufficient to highlight areas of significance. There-
fore, a visualisation technique was applied to the estimated DVF, i.e. motion vectors,
to emphasise the regions of the activity. Since the DVF was biased with weights for
enhanced visualisation unlike the original, where only the magnitude of the motion
vectors was plotted, this was named as Biased DVF. Similar to the annotations in
Fig. 6a, the regions in Fig. 6b were marked in the same locations except the labelling,
where, to all those labels, a numeric ‘1’ was used as suffix. To highlight the motion
activity for the follow-up scan A, the absolute differences between the corresponding
slice of the follow-up scan A and the search group slices of the follow-up scan B were
calculated. Then, these absolute difference maps were then summed to become one
combined map. The voxel intensities from the combined map were then multiplied
to the magnitude of the motion vectors according to their corresponding locations,
thus generating a Biased DVF for a slice in the follow-up scan A as shown in Fig. 6b.
The region S1 in Fig.6b indicates there were no significant geometrical changes
whereas the regions R1 and T1 indicates significant geometrical changes of higher
magnitude as per the colour-bar beside it. For further verification, slice-wise SSIM
and NMSE scores were calculated between the warped scan B with the ground-truth
scan A. Table 1 provided the SSIM scores and the NMSE scores of the slices at every
slice locations in the 3D data. From this Table, it was observed that the structural
components of the estimated CT slice was very similar to the ground-truth CT slice
given by the averaged SSIM score with the value of 0.996. In terms of the intensity
based similarity, the averaged MSE and PSNR scores with values of &~ 0.003 and
~ 46 showed that the estimated CT slice was closer to the ground-truth. Also, from
the other descriptive statistics such as range and standard deviation, it was observed
that the DVF estimation was consistent with values closer to the mean and median
of the performance metrics. Thus, the Extended DBLM was able to establish a geo-
metrical relationship between two follow-up scans that had large coarser regions
by using texture information as maps rather than GLCM features as a part of two-
pass regularised disparity function without increasing the computational complexity.
Along with that, the Extended DBLM provides a quantitative approach to measure
the geometrical changes between two scans aiding the clinicians to characterise the
tumour degradation or pulmonary fibrosis in-terms of volumetric and shape changes.
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Table 1 Performance evaluation of DVF estimation using extended DBLM

Slice-wise averaged SSIM NMSE PSNR
descriptive statistics

Mean 0.9960 0.0029 46.4434
Median 0.9959 0.0025 46.9835
Std. 0.0006 0.0008 1.0864
Range 0.0027 0.0024 3.2281

4 Conclusion

Quantified characterisation of the pulmonary fibrosis and other anomalies in lung CT
have always been a challenge for clinicians. This paper has introduced a disparity-
regularised block matching technique that uses both texture maps and voxel intensi-
ties as ISM to establish geometrical relationship between scans. Using two-pass dis-
tance and orientation based regularisation, this technique constrained the estimated
motion vectors disallowing the unnatural and unrealistic deformations, particularly
for the scan that has large coarser regions. With the image quality metrics, it was
observed that the DVF was able to predict displacements that were closer to ground-
truth. Thus, this technique aids in identifying and quantifying clinically significant
geometrical changes in lung CT for SABR. Further investigations are yet to be con-
ducted to deduce the suitable texture feature maps that could improve the robustness
of this technique in identifying anomalies in the lung CT.
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Identification of Melanoma Diseases )
from Multispectral Dermatological i
Images Using a Novel BSS Approach

Mustapha Zokay and Hicham Saylani

Abstract In this paper we propose a new approach to identify melanoma diseases by
identifying the distribution of its main skin chromophores (melanin, oxyhemoglobin
and deoxyhemoglobin) from multispectral dermatological images. Based on Blind
Source Separation (BSS), our approach takes into account the shading present in
most of the images. Assuming that the multispectral images have at least 4 spectral
bands, it allows to estimate the distribution of each chromophore in addition to the
shading without any a priori information, contrary to all existing methods that use
3 bands, i.e. RGB images. Indeed, the fact of neglecting the shading degrades their
performance. To validate our method, we used a database of real multispectral derma-
tological images of skin affected by melanoma cancer. To measure our performance,
in addition to the classical criterion of visually analyzing the estimated distributions
with referring to the physiological knowledge of the disease, we proposed a new
criterion that is based on our independence hypothesis. Using these two criteria, we
could see that our approach is very efficient for the identification of melanoma.

Keywords Multispectral dermatological images - Chromophores + Melanin -
Hemoglobin - Oxyhemoglobin - Deoxyhemoglobin + Shading + Blind source
separation (BSS) - Melanoma

1 Introduction

The skin is the largest organ in the human body. It contains three main chromophores
which are melanin, oxyhemoglobin and deoxyhemoglobin. The distribution of these
chromophores is of great importance for dermatologists who use it for the identi-
fication and monitoring of skin diseases. An increasingly used technique that has
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proven to be effective for identifying the distribution of chromophores is multispec-
tral imaging [1]. However, the direct use of multispectral images tends to give erro-
neous information on the distribution of chromophores. Indeed, the light intensity
reflected by the skin does not only depend on these three chromophores but also on
the geometry of the skin surface, called shading. The multispectral images obtained
at different wavelengths can therefore be considered as mixtures of four constituents
which are the three chromophores and the shading. Thus, if we consider these con-
stituents as sources, this problem can be seen as a source separation problem, known
as an inverse problem that belongs to the field of signal processing. The idea behind
source separation is to estimate the sources exploiting only their mixture. Since it is
performed without any a priori information, neither on the sources, nor on the mixing
coefficients, it is called Blind Source Separation (BSS). It is easy to see that the BSS
problem is an ill-posed inverse problem that admits an infinite number of solutions.
Hence, it is essential to add hypotheses on the sources and/or on the mixing coeffi-
cients, which has led to 3 main families of BSS methods: Independent Component
Analysis (ICA), Sparse Component Analysis (SCA) and Non-negative Matrix Fac-
torization (NMF) (see [2] for more details). During the last decade, the use of BSS
methods for non-invasive identification of chromophore distributions has attracted
the interest of several researchers [3-9] who all adopted the same mixing model.
Knowing that most of these researchers were interested in RGB images and thus in
3 wavelengths A;, i € {1, 2, 3} which represent respectively the central wavelengths
of the Blue, Green and Red bands, and if we note j € {1, 2, 3} the index related to
the chromophores and which represents respectively melanin, oxyhemoglobin and
deoxyhemoglobin, then the classical mixing model is written:

j=3

L) =" ai;.8;@) + pa) +ni, i€{l,2,3}, )
j=1

where

e [, (u) is the logarithm inverse of the reflectance detected by the camera, at wave-
length A;, at the pixel of coordinates (x, y) = u,

o S;(u) represents the chromophore of index j,

e a;; represents the mixing coefficient which depends on the molar absorption coef-
ficient of the chromophore S;(u) and the light penetration depth in the skin at
wavelength A;,

e p,(u) represents the shading variation in the image,

e n; represents the characteristics of the sensor.

This mixing model has been adopted by all existing BSS methods [3-8], but they
differ in the assumptions made about the chromophores and the procedure followed
to reach the final objective, so that these methods can be grouped into two main
classes. The first class includes the BSS methods that consider oxyhemoglobin and
deoxyhemoglobin as a single source called hemoglobin [3-5, 9, 10]. Indeed, in [5,
10], the authors applied Principal Component Analysis (PCA) and then ICA on an
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RGB image of the skin, assuming that the shading is constant throughout the image
and that melanin and hemoglobin are independent. In [11], Madooei et al. proposed
a new 2-D color chromaticity to eliminate shading using the geometric mean color,
and then estimated the distributions of the two chomophores using /CA. In [9], Gong
et al. proposed to estimate the distributions of both chromophores from an RGB
image using NMF. In [3], Galeano et al. proposed to use a neural network-based
system and then applied NMF to separate the melanin from the hemoglobin, but in
their model they neglected the shading.

The second class includes the BSS methods which are based on a priori informa-
tion on the absorption spectra of the three chromophores and the light penetration
depth in the skin [6, 7]. The authors proposed to remove the shading and the specular
reflection from the RGB image using respectively white paper and polarizers, then
they relied on knowledge of absorption coefficients and estimates the light penetra-
tion depth in order to deduce an empirical mixing matrix to extract the distributions
of the three chromophores. It should be noted, that the weakness of this family lies
in the level of accurate estimation of light penetration depth into the skin.

In this paper, we propose a new method based on BSS to estimate the distribution
of all the three main chromophores separately, in addition to the shading distribution
which we consider as a full-fledged source, unlike all existing methods. Based on
more realistic assumptions and applying to multispectral images with at least 4
spectral bands, our new method exploits the intrinsic properties of each chromophore.
To validate our method we use a database of real multispectral dermatological images
of skin affected by melanoma cancer disease [12]. For the performance measurement,
in addition to the standard criterion that is based on the visual analysis of the three
estimated chromophore distributions, we propose in this paper a new numerical
criterion which is based on the measure of independence between the estimated
distributions of melanin and hemoglobin. The rest of this paper is organized as
follows. Section2 presents our new method for estimating the distribution of the
three chromophores and shading. Section3 presents the results of the tests carried
out followed by a last section devoted to a conclusion and perspectives for our work.

2 Proposed Method

The first idea behind our new method is to consider shading as a full-fledged source,
in addition to the three sources of interest, which allows us to avoid the unrealistic
assumption made by most existing methods that its contribution is the same at all
Wavelengths.l However, as the number of sources involved becomes equal to 4 we
are interested in this paper for the case where we have multispectral images with at

! Indeed, we found from the experimental curve obtained by PCA used in [13] that the contribution
of shading (py) is not equal to 1 in all mixtures.
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least 4 bands, said case determined.? From Eq. (1), we can see that the term n; does
not give any information on chromophore distributions. Thus, as in [5], we begin by
eliminating it from our mixtures based on the following hypothesis (H1).

(H1): There is at least one pixel in the 4 images where the concentrations of the three
chromophores and shading are all zero, i.e.:

du/n; = min(1y, (u)). )

So, the new mixture model is written:

j=3
Xiw) = ay - Sj@) +as- Saw). i€[l.4] 3)
j=1

where X;(u) = I,,(u) — n;, S4(u) = py(u) and a;4 € R.

In the same way as with all BSS methods, we produce a new set of 1D mixtures
(vectors), which we note X;(v), from the 2D mixtures (images) X;(u) by concate-
nating the rows of the latter. We then have:

j=4
Xi(v) = vee(X;(w) = Y ay; - S; (), i€[1,4] (4)

j=1

The second idea behind our method is to treat mixtures in two steps, unlike all
existing methods that treat all mixtures at the same time. Indeed, we start by treating
only two mixtures that contain only melanin and shading in order to separate them
first, and then we eliminate their contribution from the other two mixtures remaining
to keep only oxyhemoglobin and deoxyhemoglobin. These last two chromophores
are then separated in a last step. These three steps of our method are detailed below.

Step 1: Separation of sources S;(v) and S4(v)
In this step we exploit the properties of each chromophore concerning spectral absorp-
tion as a function of the wavelength. Indeed, based on data published in [14], we
found that light absorption at wavelengths greater than 620nm is dominated by
melanin, so the absorption coefficients a;; of oxyhemoglobin and deoxyhemoglobin
are all negligible, i.e. we have a3y = aszz = 0 and aqp = a4z = 0. Thus, the mixtures
corresponding to the red and infrared bands can be re-written as follows:

{X3(v) =az; - 51(v) + azs - S4(v) )

X4(v) = aq1 - S1 (V) + aqq - S4(v)

2 This is the case where we have as many mixtures as sources. On the other hand, in the case where
we have more mixtures than sources, called the over-determined case, we can easily return to the
determined case by applying a PCA.
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We can re-write the equation system (5) in a matrix form as follows:

X(v) = A - S(v), (6)

a1 A44
In this first step we assumed that the two sources S (v) and S4(v) are independent,
in which case we can use one of the /CA methods to separate them. We have opted
here for the AMUSE method [15] for its simplicity since it exploits only the second
order statistics of the signals. Indeed, the working hypotheses of this method are the
following.
(H2): The sources S (v) are auto-correlated and mutually uncorrelated, i.e.:

where X(v) = [X3(v). Xs@)]”, S) = [S1 (1), S (»)]” and A = <a3l a34>.

e {E[Sj(v)-Sj(v—‘C)];éO, je{l,4) o
“l ELSi(V) - Sa(v —1)] = E[S1(v)] - E[S4(v — 7)]

(H3): The condition of identifiability for the method is verified, i.e.:

E[Si()-S1(v —1)] | E[S4(v) - S4(v — 7)]

E 0
ek Ty E[S2(v)]

®)

The method AMUSE allows us to estimate the separation matrix A~! to a permu-
tation matrix P and a diagonal matrix D [15]. By noting this matrix C = PDA™!, we
obtain finally the source matrix S(v) with the same indeterminations as follows:

C-X(v) = (PDA™") - (AS(v)) = PDS(v). 9)

Indeed, by noting PDS(v) = Y(v) = [Y;(v), Y4(v)] and omitting the permuta-
tion® we have:
Yiv)=«a;-S;jv), j=14, (10)

where the o are the elements constituting the diagonal of the matrix D.

Step 2: Removal of S;(v) and S4(v) sources from mixtures

The goal of this step is to eliminate the contributions of the sources estimated S (v)
and S4(v) from the mixtures X;(v) and X,(v). For this we exploit the following
independence hypothesis.

(H4): S; (v) and S;(v) are mutually uncorrelated instantaneously, for i € {2, 3} and
je{l,4},ie.

E[S:(v) - S;(v)] = E[S;(v)] - E[S;(0)] =0, VG, Jj)e{2,3} x(1,4} (1)

3 Indeed, the permutation matrix P can be identified based on the visual analysis since the shading
source S4(v) is easily differentiable.
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where S;(v) are the centered versions* of the sources S;(v). By denoting respec-

tively X (v) and Y (v) the centered versions of the signals X;(v) and Y;(v), and by
exploiting the relatlons (10) and (11) we can write:

Edmmﬁwn=EK§;wimﬁ~@f$wﬂ (12)
k=1
=a;j-a; - E[S}(v)] (13)
On the other hand, according to the relation (10) we have:
[Yz(v)] = a E[Sz(v)] j=14 (14)

Thus, by exploiting the relations (13) and (14) we can generate two new mixtures
Z;(v)(i = 1, 2) which contain only the sources S,(v) and S;3(v) as follows:

Zi(w) = X;(v) - DX NOL Ly ) B0 BOL ) as)
E[V} ()] E[Y}(0)]
=X~ @ S 0) - 2 (- Siw) (16)
(03] (07}
= app - $2(v) + aiz - S3(v) 