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1 Introduction

Vibration-based damage detectionmethods arewidely used in structural healthmoni-
toring for the last few decades. Any damage in a structure leads to the change in the
eigen properties of the structure. However, it is very difficult to measure these modal
parameters of the higher modes in actual scenario. The damage can be localized
in case of shear buildings by observing the change in first mode shape slopes [1].
Discontinuity in the mode shape slope and curvature [2] can also identify damage
location of any structure. The damage quantification technique is the emerging field
of research over damage identification in the recent years. The flexibility matrix
of a structure can be estimated approximately by a few lower modes and is very
much sensitive to damage. Usually, a generalized flexibility matrix-based method
[3] detects damage with good accuracy while reducing the effect of higher-order
modes. The damage severity can be also determined by Flexibility Proportional
Coordinate Modal Assurance Criterion [4] (FPCoMAC) to identify how error due to
random variation propagates in the flexibility matrix of the structure by observing
the relative change in flexibility matrix with respect to the flexibility matrix of an
undamaged structure at any location.

Anewapproach todetect damagebasedon the change inflexibilitymatrix has been
proposed in this study. The approach involved derivation of the change in flexibility
matrix with respect to damaged story stiffness in terms of modal parameters using
weightage factor matrix correlations with mode shapes and its partial derivative for
both the first and second-order sensitivity of the flexibility matrix. The variation of
the change in the flexibility matrix of a structure due to damage has been identified by
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considering higher-order terms. Simulation has been performed on damaged shear
building to illustrate the effectiveness of the proposed method.

2 Methodology

The change in the flexibility matrix of a structure due to stiffness reduction at any
member has been derived for undamped free vibration of an n degrees-of-freedom
(DoFs) spring-mass system. The intact structure has been considered as the initial
model. The undamaged structure modal parameters are the only input variables
required to identify the change in the structure due to damage.Damage due to stiffness
degradation has been considered in this article.

The basic equation required for the formulation of the derivative of the flexi-
bility matrix F with respect to the change in stiffness in any member t is the eigen-
value problem for the total system. Consider K, M, and F as the stiffness matrix,
mass matrix, and flexibility matrix of an undamped freely vibrating n DoF spring-
mass system of respectively as shown in Fig. 1. λ(i) represents a square of circular
frequency, and φ(i)

p is the ith mode shape at the pth degree of freedom. The eigenvalue
problem of any system can be formulated as,

K� = M�� (1)

where � is the mass-normalized mode shape matrix and � is the eigenvalue matrix
with square of the circular frequencies as the diagonal. The mass-normalized mode
shape matrix implies,

�TM� = I (2)

The definition of flexibilitymatrix states that it is simply the inverse of the stiffness
matrix of the structure, such that

FK = I (3)

Pre-multiplying both sides of Eq. (1) with F and substituting Eqs. (2) and (3), a
simplified expression of the flexibility matrix in terms of mode shapes and circular
frequencies can be obtained as,

Fig. 1 Schematic diagram of an undamped spring-mass system [2] with damage between (t − 1)th

and tth oscillator
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F = ��−1�T (4)

Damage has been introduced between the (t − 1)th and tth masses by degrading
the stiffness by a small amount�K. The first and second derivatives of the flexibility
matrix with respect to damaged stiffness kt can be expressed as follows:

∂F

∂kt
= ∂�

∂kt
�−1�T + �

∂�−1

∂kt
�T + ��−1 ∂�T

∂kt
(5)

∂2F

∂k2t
=

(
∂2�

∂k2t
�−1�T + �

∂2�−1

∂k2t
�T + ��−1 ∂2�T

∂k2t

)

+ 2

(
∂�

∂kt

∂�−1

∂kt
�T + ∂�

∂kt
�−1 ∂�T

∂kt
+ �

∂�−1

∂kt

∂�T

∂kt

)
(6)

Both thefirst and secondderivatives of themode shapematrix canbe expressed as a
correlation with the mode shape matrix by a weightage factor � andG, respectively,
as given in Eqs. (7) and (8). The double derivative of the square of the natural
frequency with respect to the damaged story stiffness can be obtained in terms of
�, G, and 	 as given in Eq. (9). The expressions of �, G, and 	 and the detailed
calculation of the derivation ∂2�/∂k2t has been provided in the Appendix.

∂�

∂kt
= �� (7)

∂2�

∂k2t
= �
 (8)

∂2�

∂k2t
= (


T� + �

) − 2(�	 − 	� + ���) (9)

SubstitutingEqs. (7), (8), and (9) inEqs. (5) and (6), the first and secondderivatives
of the flexibility matrix can be expressed in the simplified form as,

∂F

∂kt
= �
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) − �−1 ∂�

∂kt
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�T (10)
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Substituting Eqs. (23–32) in Eqs. (10) and (11), the simplified expression of
the derivatives of the flexibility matrix in terms of only modal parameters can be
formulated considering h as the intermediate distance between t and (t − 1) mass
locations. If ()(i) and ()(j) represent two different modes and ()p and ()q represent index
of each element of the whole sensitivity matrix,

(
∂F

∂kt

)
p,q

= −h2

⎛
⎝ n∑

i=1

φ(i)
p φ(i)

q

(
φ′(i)t

λ(i)

)2

+
n−1∑
i=1

n∑
j=i+1

(
φ(i)
q φ

( j)
p + φ(i)

p φ
( j)
q

)
φ′(i)t φ′( j)t

λ(i)λ( j)

⎞
⎠ (12)

(
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∂k2t

)
p,q

= 2h4
(
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φ(i)
q
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)(
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)⎛
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)2
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⎞
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An infinite DoF spring-mass system can be considered as an axially vibrating bar
element of length L and shear wave velocity c with one end fixed [5].

λ(i) =
(

(2i − 1)πc

2L

)2

(14)

φ(i)(x) = b sin

(
(2i − 1)πx

2L

)
(15)

where b = √
2/m andm is the total mass of the bar to be discretized intoN number of

element. Equations (12) and (13) can be simplified into cosine form for a continuous
system by substituting Eqs. (14) and (15) depending on the stiffness k of each element
and the damage location of the system is xt . The expressions are obtained as shown
in Eqs. (16) and (17).

(
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= −
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The change in the flexibility matrix can be identified by only the diagonal terms
of the derived matrix. Thus, to reduce the complicacy of formulations, Eqs. (12) and
(13) can be simplified as,
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Similarly, Eqs. (16) and (17) for the diagonal terms of a continuous system can
be simplified into cosine form as,
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The flexibility matrix of the damaged structure Fd can be expressed in terms of
the flexibility matrix of the undamaged structure Fu by expanding in form of Taylor
series up to second order as shown in Eq. (22).

Fd = Fu − �K
∂F

∂kt
+ 1

2

∂2F

∂k2t
(�K )2 (22)

The proposedmethodology in the form of a flowchart has been described in Fig. 2.
The change in the flexibility matrix due to damage can be regarded as a severity-
sensitive parameter. It can provide a clear knowledge about the damage location and
its quantification for a specified problem by only considering the diagonal terms of
the global flexibility matrix of the structure.
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Fig. 2 Flowchart of the proposed methodology

3 Numerical Study

A simulation study has been performed on a 6-story shear building of uniform mass
and stiffness, i.e., m1 = m2 = … = m6 = 200 kg and k1 = k2 = … = k6 = 250
kN/m, respectively, as shown in Fig. 3(a). Eigenvalue analysis has been performed to
obtain the natural frequencies and mode shapes of the structure. A damage scenario

Fig. 3 Schematic diagram of the numerical model a 6-DoF and b 16-DoF
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has been introduced by reducing the stiffness between DoF#3 and #4 by 20%. The
flexibility matrix of both the intact and damaged structure has been evaluated using
Eq. (4). Substituting the results of the eigenvalue problem of the intact structure
in Eqs. (18) and (19), the first and second derivatives of the flexibility matrix with
respect to damaged story stiffness have been calculated.

A similar study has been performed on a 16-story shear building of same mass
and stiffness as the 6-story shear building. Damage has been introduced between
DoF#6 and #7 by 20% reduction in the initial stiffness as shown in Fig. 3b by using
Eqs. (20) and (21). The objective is to observe the effectiveness of the cosine form
of the derived formulation for systems with higher number of DoFs such that it can
be considered as a continuous system.

4 Results and Discussion

The change in flexibility matrix due to damage in a structure has been evaluated
from the proposed formulation, i.e., Eqs. (10) and (11) for a shear building as shown
in Fig. 4. It has been observed that the consideration up to the second derivative
of the flexibility matrix of the intact structure with respect to the damaged story
stiffness gave close to exact results, when compared to the conventional values.
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Fig. 4 Comparison of the change in flexibility matrix of the 6-story shear building due to stiffness
reduction at 4th story as obtained considering a all modes, b only first mode, c first 2 modes, and d
first 3 modes



610 S. Das and K. Roy

The percentage difference of results considering only up to the first derivative is
20%, whereas it reduces to 4% when the second derivative has been considered.
The damage location can be easily identified from the plot between DoF#3 and #4
as obtained by only considering the first derivative of the intact flexibility matrix.
However, the effect of damage to the flexibility of the structure can be accurately
determined using the proposed approach. These are observed when all modes are
considered numerically.

However, only the first few modes are available in the practical scenario. So the
proposed approach has been studied for the first few modes. It has been observed
that modal data of minimum first three modes are required to predict the damage
severity. The magnitude of the results is approximately equal to the results obtained
by considering the effect of allmodes. However, damage location cannot be identified
accurately. Instead, a range of location where the damagemay occur can be predicted
from the change in the slope of the plot.

A similar study performed for 16-story shear building with damage in between #6
and #7 DoFs using Eqs. (20) and (21) as shown in Fig. 5. A similar trend observed
that the expression for the second derivative of the flexibility matrix increases the
accuracy of the results. Modal data of minimum first three modes are required to
predict the damage severity as it provides result close to exact result.

Though the damage location cannot be identified accurately, the formulation for
the continuous system can quantify damage as can be obtained by considering all the
modes. Thus, damage quantification in continuous systems or higher DoFs systems
is possible by the proposed method.
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Fig. 5 Comparison of the change in flexibility matrix of 16-story shear building due to stiffness
reduction at 7th story as obtained considering a all modes, b only first mode, c first 2 modes, and d
first 3 modes
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5 Conclusion

Flexibility-based method is becoming a popular method for structural damage detec-
tion due to its easy measurement in a real structure. In this study, a simplified formu-
lation of the change in flexibility matrix between intact and damaged structure has
been derived using the first and second derivative of flexibility matrix of the intact
structure with respect to damaged story stiffness. The double derivative enhances the
accuracy of the results. Precise results can be obtained using the proposed method
when all the modes are considered. The damage severity can be predicted even by
considering modal data of minimum first three modes of the structure. Thus, the
proposed method can quantify damage in terms of the change in flexibility matrix
as observed from the simulation. However, its applicability needs to be validated
through experimental investigation in future.

6 Appendix

• Some expressions required for the formulation of the derivatives of the flexibility
matrix are summarized in the following equations:

� =
⎡
⎢⎣

λ(1) · · · 0
...

. . .
...

0 · · · λ(n)

⎤
⎥⎦ (23)

�−1 =
⎡
⎢⎣

1
λ(i) · · · 0
...

. . .
...

0 · · · 1
λ(i)

⎤
⎥⎦ (24)

Sensitivity matrix [1] of the square of the circular frequency with respect to the
damaged story stiffness is given as,

∂�

∂kt
=

⎡
⎢⎢⎢⎣

(
φ

(1)
t − φ

(1)
t−1
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⎤
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∂�−1

∂kt
= −�−1 ∂�

∂kt
�−1 (26)

The weightage factor matrix [2] � correlating mode shape matrix with the first
partial derivative is given as,
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The weightage factor matrix [1]G correlating mode shape matrix with the second
partial derivative is given as,
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• Derivation of ∂2�/∂k2t from the basic eigenvalue formulation:

Pre-multiplying both sides of Eq. (1) and substituting the property of mass-
normalized mode shapes, � will be obtained as

� = �TK� (30)

Differentiating Eq. (30) twice with respect to damaged story stiffness and
substituting Eqs. (7), (8), and (25), the expression of ∂2�/∂k2t is obtained as
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∂2�

∂k2t
= (


T� + �

) − 2(�	 − 	� + ���) (31)

Differentiating Eq. (26) with respect to damaged story stiffness and substituting
Eq. (9), the expression for ∂2�−1/∂k2t can be obtained as,
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