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1 Introduction

Functionally graded (FG) materials due to their tailor-made properties find their
application in aerospace, automobile, and marine sectors. Structural member when
subjected to axial compressive load deforms in the transverse directionwhich reaches
a large value known as buckling when the load becomes critical. The buckling defor-
mation is nonlinear and takes place in a very short time and is called as post-buckling.
Hence, the post-buckling behavior of members subjected to axial compressive loads
is an important area of study. The elastic stability of isotropic and homogeneous
structures is thoroughly studied by Timoshenko and Gere [1]. Sankar [2] proposed
an elasticity solution for analysis of FG beams with assumed exponential variation of
modulus of elasticity across the thickness. The analysis is based on a simple Euler–
Bernoulli beam theory. Chakraborty et al. [3] developed new beam finite element for
the analysis of functionally graded materials and the exact solution for static part has
been arrived.

Analysis of post-buckling behavior of beam-column structures by stochastic
finite elements has been performed by Graham-Brady and Schafer [4]. Aydogdu [5]
analyzed the vibration and buckling of simply supported axial FG beams using the
semi-inverse method based on Euler–Bernoulli beam theory by varying the Young’s
modulus exponentially in the axial direction. Huang and Li [6] studied the effect of
radial gradient on buckling loads of elastic FG circular columns taking into account
the shear deformation. Li along with co-authors [7, 8] established the closed form
relations between buckling loads of FG Timoshenko beams and homogenous Euler–
Bernoulli beams by considering the variation ofYoung’smodulus andPoisson’s ratio
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in the thickness direction of the beams. Heydari [9] presented the exact analytical
solutions for buckling of functionally graded beams with rectangular and annular
cross sections and concluded the first buckling mode shape of prismatic FG beam is
similar to that of the prismatic homogenous beam. Saljooghi et al. and Ranganathan
et al. [10, 11] studied the free vibration and buckling nature of FG beams using
kernel particle method and perturbation method. Li et al. [12] investigated the crit-
ical buckling loads of FG Levinson beams (FGLBs) in comparison with those of
homogeneous Euler–Bernoulli beams considering the through-the-depth material
gradient. Alshabatat [13] estimated the buckling capacity of axially compressed FG
slender columns using trigonometric function and genetic algorithm for optimizing
the volume fractions. Zhang et al. [14] conducted detailed review of stability, buck-
ling, and free vibration analysis of functionally graded structures. The review of liter-
atures suggests that post-buckling behavior of FG columns with through the radial
direction gradation of ‘n’ sided polygon cross section has not yet been reportedwhich
provides the scope for further work. The polygon cross-sectional metal columns find
their application in high-mast poles and stadium light poles, and hence, the tall chim-
neys of power plant may soon adopt to polygon cross section and hence FG polygon
cross section are an important consideration. The present work is devoted on detailed
study of the post-buckling behavior of FG columns with through the radius material
gradation.

2 Theoretical Formulation

The geometry of functionally graded fixed-free hollow column considered for the
study is shown in Fig. 1a. The θ, S plane polar coordinate system has been used to
obtain the simple governing nonlinear differential equation. The coordinate frame of
axes as shown in Fig. 1a with measuring distance s along the axis of the column from
the origin O. The cross section of the FG column is a n-sided polygon displayed as
shown in Fig. 1b. The governing exact differential equation of the deflection curve
of the fixed-free column given as follows [1]

EI
dθ

ds
+ Py = 0 (1)

Differentiating Eq. (1) with respect to ‘s’ and using the relation dy
ds = sin θ , Eq. (1)

reduces to

EI
d2θ

ds2
+ P sin θ = 0 (2)

Non-dimensionalizing Eq. (2) using the relation ξ = s
L , where L = length of

column [15]
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Fig. 1 Schematic representation of a fixed-free cantilever FG column b cross section of the FG
column

θ ′′ + λ f sin θ = 0 (3)

where θ ′′ = d2θ
dξ 2 , the axial coordinate ξ = 0 at free end and ξ = 1 at fixed end, λ, f

are the buckling load and load parameter, respectively, given by

• λ = PL2

EI , a tip load at free end ‘P’ and f = 1

• λ = qL3

EI , a uniformly distributed axial load (UDL) ‘q’ and f = ξ

• λ = qL3

2EI a uniformly varying axial load (UVL) ‘q’ and f = ξ 2.

Now, expanding the sin θ term in the form of

Sinθ = θ−θ3

3! + θ5

5! −
θ7

7! + · · · = θ

(
1−θ2

3! + θ4

5! −
θ6

7! + · · ·
)

= f1θ (4)

where Eq. (3) reduces to θ ′′ + λ f f1θ = 0.
Thematerial property E for FG column varies continuously in the radial direction

of the cross section according to the power law [10]

E = E(r) = Er1 +
(
r − r1
r2 − r1

)m(
Er2 − Er1

)
(5)
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where r1 and r2 are internal and external radius of the cross section. Since the cross
section of the FG column is a n-sided polygon shape of radius ‘r’ whose moment of
inertia I is given by [16] while the flexural rigidity (EI) is given below

I = n

π
n∫

0

r2 cos( π
n )

cosφ∫
r1 cos( π

n )
cosφ

r3dr dφ and EI = n

π
n∫

0

r2cos( π
n )/ cosφ∫

r1cos( π
n )/ cosφ

E(r)r3dr dφ (6)

2.1 Finite Element Problem

Equation 4 is solved for large deflection analysis using weighted residual Galerkin’s
finite element (FE) method [17]. For such analysis, the following cubic displacement
polynomial is assumed over each element as follows

θe = α1 + α2ξ + α3ξ
2 + α4ξ

3 = [A]{α}e (7)

[A] = [
1 ξ ξ 2 ξ 3

]
, [α]Te = [

α1 α2 α3 α4

]

Defining the nodal parameters θ and θ ′, the nodal values {δ}e are related to {α}e
by

{δ}e = [T ]{α}e (8)

where

{δ}Te = [
θ1 θ ′

1 θ2 θ ′
2

]
and [T ] =

⎡
⎢⎢⎣
1 x1 x21 x31
0 1 2x1 3x21
1 x2 x22 x22
0 1 2x22 3x22

⎤
⎥⎥⎦

in which x1 and x2 are nodal coordinates of respective element with subscripts 1
and 2 denote the two ends of the element and [T ] is a transformation matrix

{α}e = [T ]−1{δ}e; {θ}e = [φ]{δ}e; [φ] = [A][T ]−1 (9)

Making use of the above Galerkin’s formulation, Eq. (4) can be written in the
residual form with the residue given by

Re = [φ]′′{δ}e + λ f f1[φ]{δ}e (10)
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Extremizing the residual Re yields the governing equation of the post-buckling
problem

∂

∂{δ}e
∫ θe Redξ = 0 (11)

[K ]{δ} + λ[G]{δ} = 0 (12)

where [K] is the stiffness matrix and [G] is the geometric stiffness matrix given by

[K ] = ∫[φ]T [φ]′′
dξ and[G] = ∫ f f1[φ]

T [φ]dξ

The function f 1 in geometric stiffness matrix [G] is evaluated using standard
iterative method for initial assumed value θ = 0 and maintained accuracy 10–6.
Equation (12) is solved using eigenvalues and eigenvectors solver of MATLAB after
imposing the following boundary conditions.

θ ′(ξ = 0) = 0 and θ(ξ = 1) = 0 (13)

3 Results and Discussions

The FE model-based MATLAB program developed in the earlier sections have been
used to predict the behavior of the FG columns. The material properties of the
constituent ceramic–metal properties of theFGcolumnare boronnitride ceramicwith
Young’s modulus EBN = 19.5GPa while aluminum metal with Young’s modulus
EAL = 70GPa, respectively. The property variation along the radial cross-sectional
direction of cross section for different material parameter (m) is displayed in Fig. 2.

The first step in the analysis to validate the FEmodel for which the following are
the three types of axial loads are accounted for:

• λ = PL2

EI , a tip load at free end P and f = 1

• λ = qL3

EI , a uniformly distributed axial load (UDL) q and f = ξ

• λ = qL3

2EI a uniformly varying axial load (UVL) q and f = ξ2.

In order to validate the present FE model for accuracy, a uniform cantilever
column with n = 100 resembling circular cross sections of isotropic material rich (m
= 0) is considered and a parametric study has been carried out and are compared with
the pioneering works of Timoshenko and Gere [1] and Rao and Raju [15]. Tables 1
and 2 show such comparisons with the pioneering works, and the entries to the table
show that the results are in good agreement with one another. Table 1 shows the
results of ratio of nonlinear buckling to linear (critical) buckling (λ/λcr), xa/L and
ya/L at various end rotations (β) for 8 elements. 8 element results have converged
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Fig. 2 Young’s modulus gradation through radial director (ceramic to metal)

Table 1 λcr and tip deflection of FG cantilever column subjected to a concentrated tip load

β λ/λcr λ/λcr* xa/L xa/L* ya/L ya/L*

0 1 1 1 1 0 0

20 1.0154 1.015 0.9697 0.970 0.2194 0.220

40 1.0637 1.063 0.8812 0.881 0.4220 0.422

60 1.1517 1.152 0.7410 0.741 0.5932 0.593

80 1.2939 1.293 0.5594 0.560 0.7195 0.719

100 1.5184 1.518 0.3490 0.349 0.7915 0.792

120 1.8848 1.884 0.1232 0.123 0.8032 0.803

140 2.5423 2.542 −0.1069 −0.107 0.7504 0.750

160 4.0302 4.029 −0.3403 −0.340 0.6246 0.625

176 9.0298 9.116 −0.5779 −0.577 0.4205 0.421

λcr = 2.4674 Present FE λcr = 2.4674* Timoshenko and Gere [1]

with closed form solution for tip load at free end. Similarly, Table 2 shows the results
of UDL and UVL and critical buckling load values.

In the present investigation, the post-buckling behavior of FG columns for various
material parameters m ranging from (10–2 to 102) with (nCM) for ceramic (at r1) to
metal (at r2) and (nMC) metal (at r1) to ceramic (at r2) is presented. For such analysis,
different regular polygon shapes have been considered and the results are displayed in
Fig. 3. The results show that post-buckling (λ) behavior of FGhollow regular polygon
column at different material parameters (m) and various end rotations (β) varies
from β = 0° to 176°, angle at the top of the column. The increase in end rotation β

also increases post-buckling load. Once buckling begins, the structure can withstand
maximum load before failure while the withstanding capacity increases with β. As
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Table 2 λcr and tip deflection of FG cantilever column subjected to a uniformly distributed axial
load (UDL) and uniformly varying axial load (UVL)

Load UDL UVL

β λ/λcr xa/L ya/L λ/λcr xa/L ya/L

0 1 1 0 1 1 0

20 1.0030 0.9633 0.2472 1.0023 0.9591 0.2650

40 1.0124 0.8564 0.4731 1.0093 0.8401 0.5053

60 1.0291 0.6882 0.6581 1.0215 0.6539 0.6985

80 1.0546 0.4729 0.7863 1.0400 0.4175 0.8264

100 1.0921 0.2279 0.8461 1.0666 0.1518 0.8769

120 1.1474 −0.0276 0.8312 1.1047 −0.1200 0.8438

140 1.2326 −0.2763 0.7392 1.1610 – −0.3762 0.7268

160 1.3811 −0.5081 0.5657 1.2542 −0.6019 0.5259

176 1.6574 −0.7089 0.3295 1.4196 −0.7770 0.2758

λcr 7.8373—present FE
7.8373*—Rao and Raju [15]

16.1010—present FE]
16.1010*—Rao and Raju [15]

Fig. 3 Post-buckling load versus material parameter m for different polygons (ceramic to metal)

the material parameter m varies from 0 to ∞, the post-buckling load decreases and
it may be clearly attributed to the fact of reduced stiffness of the column. The FG
column transforms from ceramic rich to metal rich as them increases whose stiffness
is proportional to flexural rigidity (EI) and with I constant E decreases and depicted
in Fig. 2. The reverse trend is observed for FG column transforming from metal rich
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to ceramic rich with increase in m and the same is displayed in Fig. 4. Figure 5 shows
the flexural rigidity effect on post-buckling load for different material parameters (m)
for a particular end rotation β. Figure 6 shows the influence of different axial loads
on the post-buckling load of the column.

The results show that the post-buckling load increases in the order as tip concen-
trated load, uniformly distributed load, and uniformly varying load. The above result

Fig. 4 Post-buckling load versus material parameter m for different polygons (metal to ceramic)

Fig. 5 Post-buckling load for different material parameter m at β = 176°
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Fig. 6 Post-buckling load variation with material parameter m for different loading conditions

may serve as reference for designing the structures composed of columns. Figures 7
and 8 show the horizontal deflections at various end rotations for end tip concentrated
load,UDL, and UVL. The curve AB is tangent to the horizontal line λ = λcr at point

Fig. 7 Post-buckling to critical buckling load ratios for tip concentrated load
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Fig. 8 Post-buckling to critical buckling load ratios for UDL and UVL

A where the deflection is zero. The λ/λcr increases when deflection increases up
to certain limit, once the FG column reaches the proportional limit (may be curve
AB), the resistance to bending of the FG column diminishes drastically and a curve
similar to BC and is indicated by a dotted line. The above results are shown in terms
of non-dimensional form, so that the changes are not noticed for different polygon
shapes. But the post-buckling load increases with increase of number of sides in
regular polygon.

4 Conclusions

The post-buckling behavior of FG column with different polygon cross sections
for various material gradation parameters is demonstrated successfully leading to
following conclusions:

• The post-buckling load increases with increase of end rotations
• The post-buckling load depends on flexural rigidity and hence the material

gradation.
• The λ/λcr increases with deflection increasing up to certain limiting value while

beyond proportional limit, the post-buckling increases rapidly before failure.
• The post-buckling load is maximum for UVL compared to other loadings.
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• The post-buckling behavior can be controlled with the cross section varying from
either ceramic to metal or metal to ceramic.

• The post-buckling behavior is also dependent on shape of the cross section.
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