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Abstract It’s important for software practitioners to understand mutual exclusion
in different systems because most of the problems in concurrent systems boil down
to achieve mutual exclusion. Mutual exclusion for different types of concurrent
scenarios-multithreaded, parallel, distributed can be achieved in different ways by
the constructs provided by the programming language. For each of the mentioned
types, the performance (or behavior) varies in different ways. The performance of
mutual exclusion algorithms is measured by mainly six metrics. This paper shows
the comparison between the performance of a chosen synchronization algorithm by
analyzing the sequence diagrams obtained from Java Interactive Visualization Envi-
ronment (JIVE), a dynamic analysis framework for Java program visualization. This
paper also presents the results and observations obtained after comparing dining
philosophers problem in the above mentioned scenarios. The results are based on
the metrics - Message complexity, Synchronization delay and Response Time. The
analysis is done on low load performance.

Keywords Distributed mutual exclusion · Visualization · Comparison · Parallel ·
Analysis · Multithreading

1 Introduction

With technology rising on a never before seen scale, concurrent systems have been
playing an increasingly prominent role in software development. Three forms of con-
current systems have been widespread over the years, namely multithreaded, parallel
and distributed.While themultithreaded and parallel programs pertain to cooperating
processes/threads on a single system, distributed programs span multiple systems,
possibly spread over a large geographical area. It is a complex field that consists of
devices that communicate and organize tasks to act as a single-coherent system. It
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combines the power of multiple machines to improve the performance of a program
with unmatched scalability. The only reason that distributed programming is yet to
come to the forefront can be attributed to its increased complexity in deployment
and maintenance.

Concurrent systems are characterized by some challenges which are entirely dif-
ferent and non-existent in the sequential systems. Although each of these systems
throws its unique challenges, the fundamental theme underlying these challenges
revolve around safety, liveness and fairness. Dealing with these challenges by tech-
niques such as mutual exclusion and other forms of synchronization introduces sec-
ond level challenges such as message complexity, response time and other overhead.
However, despite the challenges and the overhead involved in concurrent systems,
they continue to play a dominant part in software development, due to the perfor-
mance and scalability benefits they provide.

In this paper, we have analyzed the performance of mutual exclusion in the case
of three different concurrent programming paradigms, namely multithreaded, par-
allel and distributed programming. There are predominantly six metrics used for
measuring the performance of mutual exclusion algorithms. These include message
complexity, synchronisation delay, response time, system throughput, low and high
load performance and best and worst case performance. Since our observations deal
with low load performance, more emphasis has been given to message complexity,
synchronization delay and response time.

The goal of this project is to directly contrast the performance of distributed pro-
grams against their parallel and multithreaded equivalent using sequence diagrams
obtained from Java Interactive Visualization Environment (JIVE) and further com-
pare them using the aforementioned three metrics. This analysis has been carried
out using the dining philosophers problem in all three programming implementa-
tions. The further observations and results based on this analysis are specified in the
upcoming sections with an array of scope for future work.

The rest of the paper is structured as follows. Section2 discusses some of the
closely related work. Section3 describes the implementation of multithreaded, par-
allel and distributed versions of the dining philosophers problem. Section4 provides
the analysis of the different concurrent versions providing key insights into their
implementations. Section6 summarizes the work and provides directions for future
work.

2 Related Work

In this section, some closely relatedworks of previous papers and their contribution to
the concurrent program analysis are summarized. Concurrency around the scenarios-
multithreaded, parallel and distributed systems are discussed. This is then, followed
by the significance of JIVE-an interactive visualization tool used for the analysis.
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Dining Philosophers problem [1] is addressed to acknowledge the working of
concurrent programs. Java Threads [2] is used for the implementation of multi-
threaded programming. MapReduce and Fork/Join are popular java based frame-
works for achieving parallelism. In the dining philosophers problem, there are only
five philosophers. Hence, the Fork/Join framework is a better choice for parallel
program implementation [3, 4]. RMI framework [5] is used to build remote com-
munication between Java programs that help to build distributed applications. But,
all these frameworks have a drawback that they can’t access shared objects at the
same time, which makes synchronization [6] a vital part in the implementation of
the concurrent program.

Sequence diagrams are interaction diagrams that record the relationships between
objects when the programs work collaboratively. Object-to-object interaction of a
program using sequence diagrams makes it easy to understand the workflow and the
complexity of the program [7–9]. Sharp andRountev [10] explain sequence diagrams
and their working principles. Various limitations of the UML Sequence diagrams are
pointed out and a set of techniques to overcome this limitation is highlighted. UML
diagrams are extremely large and clustered making them hard to interpret properly.
So the earlier unreadable UML sequence diagram is expanded upon to interactively
explore different aspects of the diagram, to focus on subsets of the expressed behavior.
Thus, the earlier sequence diagram can be elaborated for better understandability and
proper interpretation by the programmer.

The sequence diagram of Java programs can be obtained through the Eclipse plu-
gin tool Java Interactive Visualization Environment [11]. JIVE visually portrays both
the call history and the runtime state of a program. The call history can be seen in
the sequence diagram, where each execution thread is depicted in a different color,
simplifying the object interactions. JIVE also generates runtime models, verifies and
validates those models against design time models [12]. Ajaz et al. [13] already
presented the performance study of a parallel program using JIVE on multicore sys-
tems. Kishor et al. [12] emphasize a methodology to interpret the sequence diagram
in the form of a finite state diagram. The key state variables are annotated by the
user. This is later combined with the execution trace to obtain the sequence diagram.
Since state diagrams are smaller in magnitude compared to sequence diagrams, they
provide more insight into program behavior and detect subtle errors.

3 Program Implementation

To shed light and raise discussion on concurrency, the dining philosophers algorithm
has been implemented in this paper [14]. The dining philosophers problem is a
classical problem of synchronization. Five philosophers sit around a circular table.
Each of them has two states - thinking and eating. Five forks are placed on the
table. In order to eat, the philosopher must have two forks in hand. No two adjacent
philosophers can eat simultaneously.
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3.1 Multithreaded Programming

To start the thread, the start() method must be invoked. Java provides Thread class
to implement multithreaded programming. Thread class provides various methods
to create and perform operations on a thread. One of the methods to create a thread
process in Java, using Threads, is by extending the Thread class and overriding its
run() method.

public void run(){
while(true){

thinking ();
// Philosopher gets hungry
fork.take();
eating();
fork.release();

}
}

Code 1: run() method of the Philosopher class

Since in the dining philosophers problem, no two adjacent philosophers can get
hold of both the forks simultaneously, it’s important to have synchronization in the
availability of the forks.When several threads are trying to access a common resource,
it is necessary to have control over who has access. And this is what synchronization
does. In the multithreaded program, two synchronized methods, namely take() and
release(), are used. The synchronizedmethods lock an object for any shared resource;
in this scenario - the forks. Themessage complexity, the number ofmessages required
for the execution of the critical section, is 2(N-1), where N represents the number of
philosophers.

synchronized void release (){
Philosopher philosopher = (Philosopher)

Thread.currentThread ();
int number = Philospher.Number;
fork[number] = false;
fork[( number +1)%5] = false;
notifyAll ();

}

Code 2: synchronized method - release()

synchronized void take(){
Philosopher philosopher = (Philosopher)

Thread.currentThread ();
int number = Philospher.Number;
while(fork[number] || fork[( number +1) %5]){

try{
wait();

}
catch(InterruptedException e){}

}
fork[number] = true;
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fork[( number +1)%5] = true;
}

Code 3: synchronized method - take()

The program begins by initializing the threads of five philosophers. The threads start
executing the run() method, where the philosopher has to go to the thinking state for
a random period and then go to the eating state. The mutual exclusion part will be
handled by the two synchronized methods, while taking and releasing the forks.

3.2 Parallel Programming

Fork/Join framework is a framework in Java that sets up and executes parallel pro-
grams by taking advantage of multiple processors, which is accomplished by iden-
tifying the availability of processor cores and allocating the tasks accordingly. It
uses a divide-and-conquer strategy: divide a very large problem into smaller parts.
These smaller parts can be further divided into even smaller ones, recursively until a
part can be solved directly. In the parallel program, ForkJoinTask is used. Through
this mechanism, a small number of actual threads in ForkJoinPool controls a large
number of tasks to be executed. ForkJoinTask.invokeAll() method combines fork()
and join() in a single call and starts the instances of all the philosophers.

for (int i = 0; i < philosophers.length; i++) {
Object leftFork = forks[i];
Object rightFork = forks[(i + 1) % forks.length];
philosophers[i] = new Philosopher(leftFork ,

rightFork);
subtasks.add(philosophers[i]);

}
ForkJoinTask.invokeAll(subtasks);

Code 4: using invokeAll() method

To attain mutual exclusion, the concept of the synchronized block is used. For any
shared resource, the synchronized block is used to lock an object. Nested synchro-
nized blocks help to get hold of both the forks the philosopher needs. So, the message
complexity becomes 4(N-1). The instances of all the five philosophers are invoked
by ForkJoinTask.invokeAll() method. The instances then run the compute() method,
where the synchronized block is defined. Thus, mutual exclusion and concurrency
are achieved.

synchronized (leftFork) {
synchronized (rightFork) {

// eating
gotForks(leftFork ,rightFork);
try {

TimeUnit.MILLISECONDS.sleep ((int)(Math.random ()*50));
} catch (InterruptedException e) {}

}
}

Code 5: synchronized block
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3.3 Distributed Programming

Remote communication is an inevitable part of distributed programming. In Java,
Remote Method Invocation (RMI) helps to achieve this communication between the
systems. RMI allows an object running in one Java virtualmachine to invokemethods
on an object running in another Java virtual machine. In an RMI application, there
will be a client program and a server program. The server program will generate a
remote object and a reference of that remote object is made available for the client
(Code 6). The remote objects on the server can be accessed by client requests, and
thus, the client can invoke the server’s methods (Code 7).

public static void main(String [] args) {
try {

String name = "ForkServer";
ChopstickInterface server = new

ChopstickServer ();
Registry registry =

LocateRegistry .createRegistry (8000);
registry.rebind(name , server);

} catch (Exception e) {
e.printStackTrace ();

}
}

Code 6: main() method of the server program

Unlike multithreaded and parallel programs, synchronized keyword can’t be used
in distributed systems because they can only be used to control access over a shared
object within the same JVM. Hence, five semaphores have been used to keep track of
the availability of the five forks. A semaphore uses a counter to keep track of the status
of a shared resource and controls its access. The message complexity is 2(N-1) here.

public static void main(String [] args) {
try {

String name = "ForkServer";
Registry registry =

LocateRegistry.getRegistry ();
frk= (ChopstickInterface )

Naming.lookup("// localhost :8000/"+name);
for (int i = 0; i <= 4; i++)

new Philosophers(i, registry);
}
catch(Exception e) {

System.err.println(e);
}

}

Code 7: main() method of the client program

To execute the program, the server program has to run and then the client program.
By running the server, it creates an object. Then, using reBind() method, it registers
this object with the RMIregistry. To make use of the server methods, the client needs
a reference of the object that the server created.With the help of the lookup() method,
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the client fetches the object from the registry using its bind name. Remote communi-
cation is thus established. The server program includes getForks() and returnForks(),
methods to handle the forks, which were included in the remote interface. In the
client program, five philosophers are initialized using Java Threads and they run
simultaneously.

import java.rmi.Remote;
import java.rmi.RemoteException;

public interface ChopstickInterface extends Remote{
int getForks(int philNum) throws

RemoteException;
int returnForks(int philNum) throws

RemoteException;
}

Code 8: Remote interface of the program

4 Analysing Program Behavior

4.1 Multithreaded Program Sequence Diagram

There are five philosophers present in Fig. 1 namely Philosopher 1, Philosopher 2
and so on till Philosopher 5. As in Fig. 1, we can see that Philosopher 5 goes to
the thinking state for a while and then starts eating. After a certain amount of time
Philosopher 5 releases the fork which allows its adjacent Philosopher 1 to gain access
on one of the forks. The time gap between one process leaving the critical section and
the next process accessing it is known as the Synchronization delay. In this case, the
time interval between one philosopher exiting the eating state(releasing left and right
forks) and the next philosopher entering the eating state(gaining control over left and
right forks) is the synchronization delay. In Fig. 1, there is a time gap between take1
and eating1. This time gap between sending the request and then getting control over
both the forks is known as the Response time. When comparing Synchronization
delay and Response time, the delay is relatively lower and response time is very
high.

4.2 Parallel Program Sequence Diagram

Figure2 shows the sequence diagram on parallel implementation of the Dining
philosophers diagram. Philosopher 1, initially being in the thinking state, goes to
the hungry state (requests for forks) after a while. This time gap between sending a
request for forks(hungry 1) and getting access to it(getForks1) is known as Response
Time. Philosopher 1 then puts back the fork, i.e., returnForks(), making it available
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Fig. 1 Sequence diagram of multithreaded implementation

Fig. 2 Sequence diagram of parallel implementation

for adjacent philosophers. The time gap between returnedForks1 and GotForks4 is
the Synchronization Delay.When looking at the variations of Synchronization delay,
in most of the cases it is low. There are a few exceptions where the delay is drastically
high, but on an average it is low.When comparing the Response time, for most of the
cases it is relatively high. In this observation, there has been no low response time.
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Fig. 3 Sequence diagram of distributed implementation

Table 1 Comparison based on three metrics

Metrics Multithreaded Parallel Distributed

Message complexity 2(N−1) 4(N−1) 2(N−1)

Synchronization delay Low Low very low

Response time High High Low

4.3 Distributed Program Sequence Diagram

For distributed programs, the communication processes are distributed across differ-
ent hosts. So, different sequence diagrams will be obtained for the server program
and client program. But, here our main motive is to check upon the states of the
philosopher, only the client program is taken into consideration (Fig. 3). Initially,
all the philosophers will be in the thinking state and after some random amount of
time they will move to the hungry state. Mutual exclusion takes place at this point.
Philosophers check whether the forks are available for them. If both the forks are
free, it’s denoted by gotForks. By checking the diagram, it can be observed that
the time gap between hungry and gotForks is most of the time high. So, it can be
concluded that the response time of distributed programs is high. Comparing two
adjacent philosophers, the time gap between returnedForks of one philosopher and
gotForks of the other philosopher is very low, making the synchronization delay of
the distributed program too low (Table1).
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5 Results

The following are observed from the sequence diagrams obtained from the concurrent
programs:

• In the multithreaded program, the synchronization delay is low and the response
time is high.

• In the parallel program, the synchronization delay is mostly low, but in some cases
it is drastically high. Also, the response time is high.

• In the distributed programs, the synchronization delay and response time are low.

• When comparing synchronization delay of the three executions, Multithreaded
execution and parallel execution take relatively lower time, while distributed exe-
cution takes the lowest time.

• When comparing the response time of the three executions, multithreaded exe-
cution and parallel execution took higher time while distributed execution took
relatively lower time.

6 Conclusion

When the concept of mutual exclusion is taken into consideration, distributed pro-
gramming rarely springs to mind owing to its increasingly complex nature. So we
have directly compared the efficiency of distributed programming to its more fre-
quently used counterparts such as parallel and multithreaded programming. The
main observations were based on the comparison of performance metrics of Dining
philosophers problem, on a small load, run in three different ways-multithreaded,
parallel and distributed systems.

Java Threads are used for multithreaded programming and synchronization is
achieved by using the synchronized methods. The message complexity of the mul-
tithreaded program is 2(N−1), N is the count of the threads/philosophers. To attain
parallelism, Fork/Join framework is used and the synchronized blocks help in syn-
chronization. The message complexity of the parallel program is 4(N−1), N is the
count of philosophers. And, distributed programs are built using RMI framework and
semaphores are used to achieve synchronization. Its message complexity is 2(N−1),
N is the number of philosophers [14].

The performance analysis of the concurrent programs is done using the metrics
message complexity, synchronization delay and response time. The message com-
plexity is the number of messages required per execution of a critical section. It was
found that in terms of message complexity the program run in parallel was the most
complex while the programs run in distributed and multithreaded manner shared
the same complexity. Synchronization delay is the time required for a process to
enter the critical section after another process exits the critical section. It was also
observed that Synchronization delay for parallel and multithreading is almost similar
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but Synchronization delay for distributed systems is less compared to the other two.
Response time is the time interval a request waits for its critical section execution to
be over after its request messages have been sent out. When comparing the response
time of parallel and multithreaded programming, they have almost same response
time but, while comparing response time of distributed andmultithreading or parallel,
response time of multithreading is more than response time of distributed.

In conclusion, for a mutual exclusion program of low load, if RT is the response
time and SD is the synchronization delay then,

RT (Multithreading) ∼ RT (Parallel) > RT (Distributed) (1)

SD (Multithreading) ∼ SD (Parallel) > SD (Distributed) (2)

As part of future work, the paper can be extended by experimenting on high load and
comparing results.
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