
Hardware Trojan Detection
at Behavioral Level Using Inline
Assertions and Verification Using UVM

Aki Vamsi Krishna and E. Prabhu

Abstract Recently, hardware Trojan (HT) is posing a significant challenge to the
integrated circuit (IC) industry and has inspired various improvements in the Trojan
identification plans. This research studypresents the inline assertions for the detection
of hardware Trojan at the behavioral level of a system on chip (SoC). In the proposed
RTL design, a modified circuit design flow is suggested to incorporate inline asser-
tions into a SoC. Flexible inline assertions are developed in the RTL block within the
design module. The router IP design and inline assertions are synthesized and imple-
mented in Xilinx Vivado and Aldec Rivera Pro using Verilog HDL. The universal
verification methodology (UVM) is also used to verify the proposed design with the
different test case scenarios. The functional coverage and code coverage are analyzed
in Aldec Rivera Pro. Parameters such as power and area are analyzed in the Synopsys
design compiler (DC).

Keywords Hardware Trojan · Behavioral level · Inline assertions · Verilog HDL ·
UVM · Xilinx Vivado · Aldec Rivera pro · Synopsys design compiler

1 Introduction

With the recent increase in the ICproduction and the cost of profound sub-micrometer
innovation, many IC design houses are currently importing some modules and
outsourcing production to the third party (3P), which is considered as a typical
practice in the chip improvement cycle. The 3P IP cores and design automation tools
are extensively used to improve the circuits. Therefore, the integrity of manufac-
tured product could be undermined. The likelihood that an IC will be susceptible to
attack by HT has been increased. A chip, or otherwise a circuit, can be hacked and
attacked, resulting in certain modifications if an attacker accesses specific stages of
the IC design flow, as shown in Fig. 1 [1].

A. V. Krishna · E. Prabhu (B)
Department of Electronics and Communication Engineering, Amrita School of Engineering,
Coimbatore, Amrita Vishwa Vidyapeetham, Coimbatore, India
e-mail: e_prabhu@cb.amrita.edu

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
S. Smys et al. (eds.), Inventive Computation and Information Technologies, Lecture Notes
in Networks and Systems 336, https://doi.org/10.1007/978-981-16-6723-7_2

15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-6723-7_2&domain=pdf
http://orcid.org/0000-0003-0333-3719
mailto:e_prabhu@cb.amrita.edu
https://doi.org/10.1007/978-981-16-6723-7_2


16 A. V. Krishna and E. Prabhu

Fig. 1 IC design life cycle

A HT can be described as a malicious change or consideration to IC that changes
its functions or cause it to perform an extra malicious function [3]. These malicious
incorporations or modifications are mostly customized to activate under a specific
set of conditions formulated by an attacker and are extremely difficult to identify or
detect at the dormant state. Many different industries, for example, military, telecom-
munications, and business applications are continuously focused on expanding the
challenges faced by malicious circuits that are included for the design [13]. The
method proposed to overcome this vulnerability is to utilize HT detection methods
at different levels of chip IC design process [4].

The proposed research work is concentrated on one of the level of chip IC design
flow that is the RTL block. RTL is a hardware description language (HDL), which
is basically the detailed logical implementation of the entire IC and detailed design
or circuit specifications that are converted into Verilog or VHDL language. An RTL
modeling style is a synthesizable coding style, which could be a data flow model
or a behavioral model. The data flow model is a signal that is assigned through
the data manipulating equations; all such assignments are concurrent in nature. The
behavioral level is the highest level of design description that contains functions,
procedural statements, and design modeling. RTL style of coding is widely used
in synchronous designs, which involve both combinational and sequential designs.
RTL basically represents the data flow between combinational clouds and registers.

This paper focuses on the designing and implementation of router IP protocol
using Verilog HDL language. Also, the proposed research work introduces the appli-
cation of inline assertions in order to detect HT at the behavioral level of the design



Hardware Trojan Detection at Behavioral Level … 17

or system. The primary goal is to provide a dedicated RTL block that can be amodule
design with inline assertions in order to detect the HTs during runtime. The primary
objectives of this research work are as follows. (1) The inline assertions are proposed
within a design module dedicated to finding HT detection. (2) The proposed inline
assertions technique is applied on industrial protocols like router IP which contains
(FIFO, FSM, synchronizer, register). (3) The proposed router IP design and inline
assertions have very little power and area. (4) With different test cases, the proposed
design is verified with the latest methodology called UVM.

The paper shows some relatedworks on this concept in Sects. 2 and 3 shows a brief
introduction on router IP design and proposed detection method in Sect. 4, corre-
spondingly; Sect. 5 illustrates the UVM test bench. Section 6 shows the simulation
outputs, power, area values, and coverage report. Section 7 provides conclusion.

2 Background and Related Works

The authors stated that a better understanding of what HT may resemble and what
influence they could have on an IC are necessary. HT is a malicious module, which
is introduced inside the IC during the fabrication or design process. Further, they
present eight particular attack procedures by utilizing RTL HTs to bargain the safety
of an alpha encryption module [2].

HT is made out of a few gates and tries to change the functionality of the chip.
These types of HTs are difficult to detect with offline HT detection methods, for
example, digital systems tests and side-channel analysis techniques, and authors
proposed methodology focuses on an online method for quickly HTs at the runtime
[3]. The authors survey made on a different type of HTs present in IC, different
Trojans insertions at various stages of IC, and different techniques for detection of
the HTs [4].

The author proposed a secured netlist generation using obfuscation techniques
without modifying the functionality of circuits with reduced area and power [5].
The authors provide a technique that involves inserting observation sites into the
circuit to capture the most difficult-to-observe faults, which works in conjunction
with off-chip and on-chip structural testing to provide greater coverage [6].

The authors have implemented the hardware router IP design with different
protocol versions like IPv4 and IPv6 results in higher switching speeds of per packet
routing for two protocols by applying VLSI architecture techniques [7]. The time of
arrival is calculated by using two different time analysis STAs and statistical STAs.
The implementation was carried out in ISCAS-89 benchmark circuits with results
of the time improvement [8]. Proposed an efficient activity estimator which is fast
and accurate and a survey paper on switching activity estimations techniques, power
estimation was done in Synopsys DC tool gave a reduction in power for the circuits
[9].

The authors proposed a technique for the automated checker generation of the
PSL properties for the verification [10]. In this paper, assertions checkers are used



18 A. V. Krishna and E. Prabhu

for security of the processors designs during memory instructions, and also survey
made on PSL2HDL tool and code coverage techniques to detect malicious [11]. Ngo
et al. proposed a built-in assertion checkers that integrate into the design of general
useful designs to identify Trojan during runtime in which ACs selection happens pre-
synthesis [12]. The author proposed a reconfigurable assertion checker to detection
of the HTs at the SoC and demonstrated the mapping of ACs into RAC [13].

Demonstrating the UVM methodology for design verification, explain the UVM
test bench hierarchy, registration of factory, components, TLM, mailbox, and call-
backs. Different approaches are demonstrated for developing a test strategy and
test cases for design verification [14]. This paper describes the implementation of
various types of verification mechanisms that can be used with the UVM-based veri-
fication environment to improve the ability to protocol verify, hidden bugs, functional
checking of design under verification (DUV) [15].

3 Router IP Design

A router IP protocol that forward data packets between computer networks. Packet
header contains address based on that it drives the incoming packet to an output
channel. At the same time, three parallel connections will support in the router.
Router top-level block as shown in Fig. 2, which shows inputs and outputs signals
from source network to three client networks.

Router interface of input and out signals defined the functionality of each signal
is shown in Table 1. Router design features contain packet routing, parity checking,
reset, header, payload, and parity. Packet routing is driven from the input port and

Fig. 2 Block diagram of router top level



Hardware Trojan Detection at Behavioral Level … 19

Table 1 Router interface

Input/output Functionality

Clock Active high clocking event

pkt_valid Pkt_valid is an active high input signal that detects an arrival of a new packet from
a source network

Resetn Active low synchronous reset

data_in Eight-bit input data bus that transmits the packet from source network to router

read_enb_0 Active high input signal for reading the packet through output data bus data_out_0

read_enb_1 Active high input signal for reading the packet through output data bus data_out_1

read_enb_2 Active high input signal for reading the packet through output data bus data_out_2

data_out_0 Eight-bit output data bus that transmits the packet from the router to destination
client network 1

data_out_1 Eight-bit output data bus that transmits the packet from the router to destination
client network 2

data_out_2 Eight-bit output data bus that transmits the packet from the router to destination
client network 3

vld_out_0 Active high signal that detects that a valid byte is available for destination client
network 1

vld_out_0 Active high signal that detects that a valid byte is available for destination client
network 2

vld_out_0 Active high signal that detects that a valid byte is available for destination client
network 3

Busy Active high signal that detects a busy state for the router that stops accepting any
new byte

Err Active high signal that detects the mismatch between packet parity and internal
parity

is routed to any output port, based on the address of the destination network. Parity
checking is an error detection being transmitted between server and client. This
technique guarantees that the data transmitted by the server network is received by
the client network without getting corrupted. Reset is an active low-synchronous
input that resets the router, and three FIFO are made empty, and the valid out signals
go low indicating that no valid packet on the output data bus. Packet format consists
three parts parity, header, and payload; each packet has eight bits width and 1 byte to
63 bytes of the pay load length as shown in Fig. 3. Header destination address has 2
bits of packet, and length has 6 bits of the data. Payload was the data; it is in format
of bytes. Parity is used as security to verify of the packet.

The top-level block above as shown in Fig. 2 consists of 6 sub-blocks as shown
in Fig. 4, as followed three FIFO, synchronizer, register, and finite state machine.

• FIFO: In router design, three FIFO are used; each one consists of 16 bytes depth
and 8 bits width, depending on control signals given by FSM, and it stores the
data coming from the input port. The FIFO can be reset by a soft_reset signal;
that is, an internal signal is an active high signal of that block coming from the



20 A. V. Krishna and E. Prabhu

Fig. 3 Packet format

Fig. 4 Block diagram of top-level architecture

synchronizer module during a time out. Reset becomes low, then empty = 1, full
= 0, and data_out= 0.Write operation and read operation occur when write_enb,
read_end were high, the data_in, data_out sampled at the positive edge of clock,
and FIFO is not become full, empty state. Write and read operations can be done
at the same time. Full signal demonstrates that all the areas inside FIFO have been



Hardware Trojan Detection at Behavioral Level … 21

written. Empty signal demonstrates that all the areas of FIFO are empty and have
been read.

• Synchronizer: This block provides synchronization between FIFO nad FSM
modules. It also provides correct information between one input port and three
output ports.

• Register: This block implements four internal registers to hold, that is, packet
parity byte, internal parity, FIFO full state, header byte; all these are register
latched on the positive edge of the clock.

• FSM: This block was the controlled design of the router IP. When router gets the
new packet, this block generates all controlled signals; these signals are used to
transfer the packet to output by other design components.

4 Proposed Detection Method

4.1 Trojan-Free Implementation

In this router IP design, we implemented a HT in a FIFO block as shown in Fig. 5,
in order to demonstrate the uses of inline assertions to detect HTs. The HT effect
in a design is modification of functionality and leakage of critical information. The
FIFO can be reset by a soft_reset in that signal Trojan was added; that is, an internal
signal is an active high signal of that block coming from the synchronizer module
during a time out. Synchronizer block has three out signal, that is, vld_out_x, and this
signal is generate depending at the empty status of FIFO like conditions (vld_out_0
= ~ empty_0, vld_out_1 = ~ empty_1, and vld_out_2 = ~ empty_2). The
signals soft_reset_0, soft_reset_1, and soft_reset_2 are three internal signals for each
FIFOs, and these signals go high if the read_enb_x like (read_enb_0, read_enb_1,
read_enb_2) is not assert within the 30 clock cycles of the vld_out_x. As explained
functionality, now, after adding Trojan, the effect on those three internal reset signals
of this block, reset signal goes high after one clock cycle without read_enb_x signal
not assert within the 30 clock cycles of vld_out_x.

Fig. 5 FIFO block with
hardware Trojan



22 A. V. Krishna and E. Prabhu

4.2 Inline Assertions

Inline assertions are primarily used to validate the behavior of the design and capture
the knowledge about how a design should operate. Assertions are the properties,
which must be true. Assertion increases the controllability and observability of a
design. Controllability is the measurement of the ability to activate, stimulate, or
sensitize a specific point within the design. Observability is the measurement of the
ability to observe the effects of a specific, internal, stimulate point within the design.
Assertions monitor the expected behavior, forbidden behavior, and signal protocols
and also depend on the quality of the stimulus.

The objective of the proposed methodology of IC design flow is shown in Fig. 6
to detect the HTs at the behavioral level of RTL block using inline assertions and
verified by our IP design with UVM methodology. Inline assertions are embedded
check-in RTL code executable specifications, during the simulation phase asser-
tions monitor specific conditions that occur or a specific sequence of events occurs,
expected behavior, forbidden behavior, and signals protocols.

Fig. 6 Proposed IC design flow



Hardware Trojan Detection at Behavioral Level … 23

Mapping the property and sequence into the proposed design module of inline
assertions for Trojan detection. It also produces warnings and errors when a specified
condition fails and the sequence does not complete properly. Inline assertions depen-
dent on the clock cycles and test expression are evaluated at clock edges dependent
on the variables involved for the sampled values. A variable sampling, evaluations
are done at the preponed and observed region of the scheduler. Our inline assertions
are placed in a module, interface, procedural block. It can be used with both dynamic
and static tools.

5 UVM Verification

UVMmethodology is a standard framework to build the verification environment; it
has its base class library like uvm_component, uvm_sequence_item, uvm_object. In
UVM language, TLM is used as a standard communication mechanism to achieve
interoperability configuration of the test bench from the top level. It generates
scenarios independent of the test bench environment. UVM achieves reusability
in plug and play manner. Typical UVM test bench hierarchy is shown in Fig. 7.

Agent: UVM agent is also called universal verification component (UVC). An
agent can be encapsulated, ready to use, reusable, and configurable components. It
contains a driver, monitor, and sequencer. Test bench infrastructure can have more
than one agent. It can configure as an active and passive agents. Driver: It gets
data repeatedly from a sequencer; it drives the DUT based on the protocol using
the virtual interface. Derive a driver from the uvm_driver base class. Monitor: The
monitor extracts information from the bus signal and translates it into transactions.
It is connected to other components, via standard TLM ports. Drive a monitor from

Fig. 7 UVM test bench hierarchy



24 A. V. Krishna and E. Prabhu

the uvm_monitor base class. Sequencer: It creates stimuli depending on restrictions
and can do so on the fly or at zero time. A factory can be used to override sequences.
It is derived from uvm_sequencer. Environment: It is at top of the UVM test bench
architecture and contains one or more agents depending on the design.

6 Result and Discussion

The simulation output result of the router top IP design with Trojan implementation
is as shown in Fig. 8, and the result of the three data outputs is zero because of the
Trojan present in the FIFO block. The data packet could not able to find data coming
from source because read enable signal is not becoming high within the 30 clock
cycles of valid signal.

The simulation output result of the router top IP design without Trojan imple-
mentation as shown in Fig. 9.

The output results of router IP design as shown in Figs. 8 and 9 are synthesized
and implemented in Xilinx Vivado tool.

From, Table. 2 shows the output results of inline assertions, and it gives assertions
coverage results for each signal at particular sequence and property. As Trojan was
added in soft_reset signal, the inline assertions are failing at the soft_reset signal.
So, it shows that the Trojan has detected. Inline assertions are implemented in Aldec
Rivera Pro tool.

The simulation output result of the design under verification by using UVM is as
shown in Fig. 10.

Fig. 8 Router top simulation result with Trojan



Hardware Trojan Detection at Behavioral Level … 25

Fig. 9 Router top simulation result without Trojan

Table 2 Inline assertions result

Signal Assertions Assertions coverage (5) Result

Sequence Property

Reset reset_seq reset_prty 100 Passed

Busy busy_seq busy_prty 100 Passed

read_enb read_seq read_prty 100 Passed

ld_state pvld_seq pvld_prty 100 Passed

pkt_vld pvld_seq pvld_prty 100 Passed

vld_out vldo_seq vldo_prty 100 Passed

lfd_state deassert_seq deassart_prty 100 Passed

Empty vldemp_seq vldemp_prty 100 Passed

Full fifo_seq fifo_prty 100 Passed

soft_reset vld_soft_seq vld_soft_prty 0 Failed

parity_done psns_seq psns_prty 100 Passed

low_pkt_vld parity_seq parity_prty 100 Passed

Table 3 shows the result of power and area of router IP design with inline asser-
tions. Our design is synthesized in 90 nm technology with Synopsys DC. From
Synopsys DC tool, power and area results are obtained.

The code coverage results are as shown in Fig. 11; total cumulative is statement
coverage (SC) with 87%, branch coverage (BC) with 80%, expression coverage with
45%, condition coverage with 69%, and Toggle coverage with 48%.



26 A. V. Krishna and E. Prabhu

Fig. 10 DUV output result

Table 3 Power and area
result

Circuit

Parameter Router IP design

Total power (uW) 8.290

Total area (µm2) 2221.595629

Fig. 11 Code coverage report



Hardware Trojan Detection at Behavioral Level … 27

Table 4 Functional coverage
report

Coverage
type

Hits% (%) Goal/at least (%) Status

Coverpoint
coverage

100 100 Covered

Covergroup
coverage

80.555 100 Uncovered

From, Table 4 shows the result of the functional coverage, all test cases or test
scenarios have been passed, and all bins are covered.

7 Conclusion

This researchwork has successfully designed and implemented the router IP protocol
usingVerilogHDL language.Also, this researchwork has proposed the application of
inline assertions in order to detect HTs at the behavioral level of the design or system.
Router IP design with inline assertions occupied very little power and area. And also,
the proposed design is verified with different test cases using UVM methodology.
Assertionsmust be defined carefully; incurrent assertions can givemisleading results.
Debugging assertions will be difficult.

References

1. M. Tehranipoor, C. Wang, Introduction to Hardware Security and Trust (Springer, New York,
NY, USA, 2011)

2. Y. Jin, N. Kupp, Y. Makris, Experiences in hardware Trojan design and implementation, in
Proceedings of the 2009 IEEE International Workshop on Hardware-Oriented Security and
Trust, HOST ’09 (IEEE Computer Society, Washington, DC, USA, 2009), pp. 50–57

3. T.F.Wu, K. Ganesan, Y.A. Hu, H.-P.Wong, S.Wong, S.Mitra, TPAD: hardware Trojan preven-
tion and detection for trusted integrated circuits. IEEETrans. Computer-AidedDes. Integr. Circ.
Syst. 35(4), 521–534 (2016). https://doi.org/10.1109/TCAD.2015.2474373

4. M. Tehranipoor, F. Koushanfar, A survey of hardware Trojan taxonomy and detection. IEEE
Des. Test Comput. 10–25 (2010)

5. M. Hemachand, E. Prabhu, Secured netlist generation using obfuscation technique. J. Critical
Rev. 7(4), 878–881 (2020)

6. V. Veena, E. Prabhu, N. Mohan, Improved test coverage by observation point insertion for fault
coverage analysis. Proc. Int. Conf. Trends Electron. Inform. ICOEI 2019 8862789, 174–178
(2019)

7. C. Mattihalli, S. Ron, N. Kolla, VLSI based robust router architecture. Third Int. Conf. Intell.
Syst. Modell. Simul. 2012, 43–48 (2012). https://doi.org/10.1109/ISMS.2012.32

8. S.R. Ramesh, R. Jayaparvathy, Artificial neural network model for arrival time computation in
gate level circuits. Automatika 60(3), 360–367 (2019)

9. S.R. Ramesh, R. Jayaparvathy, Probabilistic activity estimator and timing analysis for LUT
based circuits. Int. J. Appl. Eng. Res. 10(13), 33238–33242 (2015). ISSN 0973-4562

https://doi.org/10.1109/TCAD.2015.2474373
https://doi.org/10.1109/ISMS.2012.32


28 A. V. Krishna and E. Prabhu

10. M. Boule, Z. Zilic, Efficient automata-based assertion-checker synthesis of PSL properties.
IEEE Int. High Level Des. Valid. Test Workshop 2006, 69–76 (2006). https://doi.org/10.1109/
HLDVT.2006.319966

11. M. Bilzor, T. Huffmire, C. Irvine, T. Levin, Evaluating security requirements in a general-
purpose processor by combining assertion checkers with code coverage. IEEE Int. Symp.
Hardware-Oriented Secur. Trust 2012, 49–54 (2012). https://doi.org/10.1109/HST.2012.622
4318

12. X.T. Ngo, J.-L. Danger, S. Guilley, Z. Najm, O. Emery, Hardware property checker for run-time
hardware Trojan detection. Proc. IEEE ECCTD, 1–4 (2015)

13. U. Alsaiari, F. Gebali, Hardware Trojan detection using reconfigurable assertion checkers.
IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 27(7), 1575–1586 (2019). https://doi.org/
10.1109/TVLSI.2019.2908964

14. IEEE Standard for Universal Verification Methodology Language Reference Manual, in IEEE
Std 1800.2-2020 (Revision of IEEE Std 1800.2-2017), pp. 1–458, 14 Sept. 2020. https://doi.
org/10.1109/IEEESTD.2020.9195920

15. R. Madan, N. Kumar, S. Deb, Pragmatic approaches to implement self-checking mechanism
in UVM based TestBench. Int. Conf. Adv. Comput. Eng. Appl. 2015, 632–636 (2015). https://
doi.org/10.1109/ICACEA.2015.7164768

https://doi.org/10.1109/HLDVT.2006.319966
https://doi.org/10.1109/HST.2012.6224318
https://doi.org/10.1109/TVLSI.2019.2908964
https://doi.org/10.1109/IEEESTD.2020.9195920
https://doi.org/10.1109/ICACEA.2015.7164768

	 Hardware Trojan Detection at Behavioral Level Using Inline Assertions and Verification Using UVM
	1 Introduction
	2 Background and Related Works
	3 Router IP Design
	4 Proposed Detection Method
	4.1 Trojan-Free Implementation
	4.2 Inline Assertions

	5 UVM Verification
	6 Result and Discussion
	7 Conclusion
	References




