
Ensemble Model Ransomware
Classification: A Static Analysis-based
Approach

Shanoop Johnson, R. Gowtham, and Anand R. Nair

Abstract The growth of malware attacks has been phenomenal in the recent past.
The COVID-19 pandemic has contributed to an increase in the dependence of a
larger than usual workforce on digital technology. This has forced the anti-malware
communities to build better software to mitigate malware attacks by detecting it
before they wreak havoc. The key part of protecting a system from a malware attack
is to identify whether a given file/software is malicious or not. Ransomware attacks
are time-sensitive as they must be stopped before the attack manifests as the damage
will be irreversible once the attack reaches a certain stage. Dynamic analysis employs
a great many methods to decipher the way ransomware files behave when given a
free rein. But, there still exists a risk of exposing the system to malicious code while
doing that. Ransomware that can sense the analysis environment will most certainly
elude the methods used in dynamic analysis. We propose a static analysis method
along with machine learning for classifying the ransomware using opcodes extracted
by disassemblers. By selecting themost appropriate feature vectors through the tf-idf
feature selection method and tuning the parameters that better represent each class,
we can increase the efficiency of the ransomware classification model. The ensemble
learning-based model implemented on top of N-gram sequence of static opcode data
was found to improve the performance significantly in comparison to RF, SVN,
LR, and GBDT models when tested against a dataset consisting of live encrypting
ransomware samples that had evasive technique to dodge dynamic malware analysis.

Keywords Tf-idf · N-gram · Random forest · Opcode · SVM · Ransomware ·
Voting classifier

S. Johnson (B) · R. Gowtham · A. R. Nair
Department of Computer Science and Engineering, Amrita School of Engineering, Amrita
Vishwa Vidyapeetham, Coimbatore, India
e-mail: cb.en.p2cse19021@cb.students.amrita.edu

R. Gowtham
e-mail: r_gowtham@cb.amrita.edu

A. R. Nair
e-mail: r_anand@cb.amrita.edu

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
S. Smys et al. (eds.), Inventive Computation and Information Technologies, Lecture Notes
in Networks and Systems 336, https://doi.org/10.1007/978-981-16-6723-7_12

153

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-6723-7_12&domain=pdf
mailto:cb.en.p2cse19021@cb.students.amrita.edu
mailto:r_gowtham@cb.amrita.edu
mailto:r_anand@cb.amrita.edu
https://doi.org/10.1007/978-981-16-6723-7_12

154 S. Johnson et al.

1 Introduction

Around three hundred and fifty-sevenmillion newmalware sampleswere revealed by
early 2017, according to the Internet Security Threat Report conducted by Symantec
Broadcom [1]. Malicious software (malware) is capable of eroding or stealing data
and compromising computer systems. The earliest form of malware was observed
to have appeared in the beginning of the 1970s. The Creeper Worm in the 70s was
a program that replicates itself and attaches itself in the remote system and locks
it down [2]. The tremendous leap in technological advancements has contributed
to massive growth in malware risks with respect to the aspects such as magnitude,
numbers, type of operation. The wide-scale development in interconnected devices
like smartphones, systems, and IoT devices allows smart and sophisticated malware
to be developed. In 2013, more than 250,000 computers were infected with the Cryp-
toLocker ransomware, which then dramatically increased to 500,000 devices during
2014 [3]. In 2017, with an average attack growth rate of 350%, global organizations
financial losses due to this malware attack surpassed five billion dollars [4]. By the
year 2021, it is expected to reach 20 billion dollars [5]. Global ransomware security
agencies noted that the existing solutions are not successful in protecting against
attacks by ransomware and suggested the need for active solutions to be developed.

Ransomware analysis attempts to give information on the functionality, intent, and
actions of a specific type of software. Two kinds of malware analysis are available:
static analysis anddynamic analysis. Static analysis implies analyzing the source code
and related artifacts of an executable or malignant file without execution. Dynamic
analysis, on the contrary, requires analyzing the behavioral aspects of an executable in
action by running it. Both approaches have their own advantages and pitfalls which
we need to identify. Static analysis is quicker, but the method could prove to be
ineffective if ransomware is effectively hidden using code obfuscation techniques.
Machine learning approaches to detect such variants are still evolving. However,
conventional identification and analysis of ransomware are hardly able to keep pace
with the latest variants of evolved malware and their attacks.

Compared to all othermalware attacks, ransomware attacks are time-sensitive.We
need to identify and establish the files behavior within seconds in order to prevent
havoc to the system. Unlike other attacks, if we allow the ransomware attack to
manifest and then monitor and remove the ransomware, the effect of the attack will
be irreversible as is the intent of the attack. There are several dynamic analysismodels
available at present, andWindowsDefender service identifies awhole part of it within
its databases extensively. However, fresh attacks are seemingly hard to detect as it
might not correspond to any existing signature. For this, we need to establish the
files intent based on the opcode it executes in the system. We believe if we can
train the model with a satisfactorily large enough number of samples, the effect of
code obfuscation techniques and random opcode injection into the executable files
employed by themalware in order to confuse themodel can sufficiently be overcome.

Ensemble Model Ransomware Classification … 155

We have identified that static analysis of opcodes extracted from ransomware sam-
ples using disassemblers can perform well in classification. Compared to the tedious
dynamic analysis setup, our method is easily operable. We use open-source disas-
semblers to get the disassembled opcode sequences corresponding to the ransomware
executable. This study proposes a better ransomware detection model established on
static analysis of opcode sequences, which offers more efficient countermeasures
against ransomware attacks by detecting them early. The paper proposes a binary
classification of benign and malignant samples.

2 Related Work

Since ransomware is a particular genre ofmalware, to givemore insight to the scopeof
our research, several pieces of research onmalware are also cited in this section. First,
we present the most recent research initiatives that focus on time-sorted application
programming interface (API) call sequences and opcodes on the classification of
malware families, which are comparable to the classification methodology that we
propose.

In the early stages of malware detection and mitigation, signature-dependent
detection methods were suggested. At that point in time, it was assumed that auto-
matic generation of signatures of malware as much as possible was necessary, and
that it would increase the pattern-matching speed and performance [6, 7].

With respect to dependence on time-sorted API call sequences, in order to accom-
plish the malicious purpose intended by the malware, a particular sequence of API
calls, in that very order must be executed by attackers, and a study of time-sorted
API call sequences will help us better understand the intent of malicious codes [6].
A. Kharrazand and S. Arshad suggested methods based on sequences of API such
as dynamic analysis in a sandbox setting, and Kwon et al. [8] extracted time-sorted
API call sequences as characteristics and then using RNN to classify and so on.

Hansen et al. [9] considered time-sorted API call sequences as features. The aver-
age weighted F1-measure came out around eighty percent. Pekta [8] tookN-grams as
features from time-sorted API call sequences and measured term frequency-inverse
document frequency (tf-idf). The highest accuracy obtained was 92.5%, suggesting
that in terms of selecting meaningful sequences, N-grams have better ability to pin-
point on malicious behavior. Some malware could, however, mostly fingerprint the
dynamic analysis environment [8] and enforce steps, such as code stalling [10] to
avoid detection by an AV engine or human, making research more strenuous. So,
dynamic analysis does not detect malware/ransomware that can identify the system
or the sandboxing environment in which its being tested, which is the drawback of
dynamic malware analysis. Gowtham Ramesh and Anjali Menen proposed a finite-
state machine model [11] to dynamically detect ransomware samples by employing
a set of listeners and decision-making modules which identify changes in the system
within the specific set of use cases defined in the underlying system.

156 S. Johnson et al.

Samples of ransomwares belonging to seven families and samples of applications
(apps) associated to categories within the benign class were used in their technique to
performbasic classification [12].Not only did the systempredictswhether the sample
belonged to the safe class or the malignant class, but also grouped the sample into
the corresponding family. During dynamic analysis, the authors considered almost
one hundred and thirty-one time-sorted API call sequences obtained by executing
the samples in a sandbox and leveraged deep learning to build a model and tested it.
The experiment, thus, conducted outperformed almost all the existing models based
on machine learning algorithm classifiers. The precision was almost 98% in multi-
layer perceptron (MLP); the strongest true positivity rate (TPR) is just 88.9; and
83.3% is observed for several families of ransomware like CryptoWall. Because of
the limitation of dynamic analysis mentioned above, if ransomware is able to identify
the sandbox used, researchers will not be able to extract meaningful time-sorted API
sequences.

Classifyingmalwares based onmachine learning requires extracting features from
malware samples first. For that, we have static and dynamic analysis methods avail-
able. Static analysis does not require the sample to be executed. It basically extracts
opcodes, scans the format of PE headers, and disassembles the sample. Disassem-
blers like PEiD [6], IDA Pro [7] have their own databases containing file signatures
to identify packers and headers. VirusTotal [8] can detect known malware samples
using 43 antivirus engines. In this paper, we disassemble the samples using IDAPro
for the purpose of static analysis. In dynamic analysis, the sample which we exe-
cute has complete access to the system resources. But, the environment will be a
controlled one, probably a sandbox. In this, the software can modify registry keys
also. At the termination of execution, the sandbox reverts to its original state, and
the environment logs the behavior of the software.

In 2017, Chumachenko [13] proposed malware classification based on dynamic
analysis using a scoring system in Cuckoo sandbox. They identified features such as
registry keys, mutexes, processes, IP addresses, and API calls and formed the feature
vector to performmachine learning algorithms.But, thismethodwas time-consuming
and had a limited dataset. In 2015, Berlin and Saxe [14] used a histogram of entropy
values of opcode bytes as feature vector for a neural network-based classification.
Vu Thanh Nguyen [15] used an artificial immune network for classification. But,
both these methods leveraged a highly imbalanced dataset. Both comprised of over
80%malicious samples. Even with synthetic oversampling, the model will be highly
biased to one class.

3 System Design

Gathering a balanced dataset is the crux of any machine learning-based application.
Cleaning and pruning the data to be precise for the intended application can aid in
creating a very efficient model. We have to create a balanced dataset containing the
assembly language code (.asm files) corresponding to each sample belonging to the

Ensemble Model Ransomware Classification … 157

benign and malignant classes. We use IDA Pro to disassemble the executable (.exe)
files and convert them into .asm files. We have a command line feature available
with IDA Pro to perform this activity conveniently in batches so that we can obtain
a dataset corresponding to a large set of samples.

3.1 Dataset

For the purpose of this study, we collected ransomware samples from virusshare.com
repositorywhichhad a collection of over thirty-five thousand samples alongwith their
hash values. Around eight thousand samples were selected from this based on size of
the files. This is a relatively good number of samples used for study when compared
against other studiesmade inmachine learning classification areawhich is going to be
discussed in Section IV. These sampleswere fromvarious cryptographic ransomware
families, including TeslaCrypt, WannaCry, Petya, CryptoWall, and Cerber. Table1
gives the complete information about these families and samples such as encryption
technique, when the malware was released, and the sample count from each family
that is presenting the dataset.

Tomake a balanced dataset for binary classification, almost eight thousand benign
.exe files were taken from the local systems available at the various computer labo-
ratories and staff departments at the University. We included several types of benign
applications like basic file manipulation executables, DLLs, common tools, video
players, browsers, drivers Both benign and malignant files were disassembled using
IDA Pro into .asm files using command line interface.

Table 1 Ransomware families used

Family Year Techniques Target #Samples

CryptoLocker 2013 RSA User files 741

CryptoWall 2014 RSA 2048 bit User files 706

Cryrar 2012 RAR-sfx User files 583

Locky 2016 RSA 2048 bit User files 567

Petya 2016 AES-128MBR User files 593

Reventon 2012 N/A User files 617

TeslaCrypt 2015 ECC Games and
multimedia files

398

WannaCry 2017 RSA 2048 bit User files 436

Cerber 2016 RSA 2048 bit User files 263

158 S. Johnson et al.

3.2 Implementation

Figure 1 shows the complete system design. After creating a balanced dataset from
benign and malignant files, we generate N-grams of opcode sequences from disas-
sembled files. Then, N-gram sequences obtained are ranked, and top feature vectors
are chosen. We can also set a threshold to limit the number of feature vectors to be
chosen. In the next step, we compute the tf-idf for the chosen feature vectors. That
is, each N-gram sequence is given a probability factor which represents how well
they represent their classes.

3.3 Preprocessing

The collected .exe files need to be disassembled using any popular disassemblers.
We used IDA Pro and a snippet of IDA pro as shown in Fig. 2. In order to batch
process, we created a script file which runs sequentially and obtained disassembled
.asm files. The method proposed here takes advantage of static analysis; that is, the
samples are not needed to run on physical machines.

From the .asm files, we need to extract the opcode sequences in time-sorted order
so that we can confirm which sequences will cause harm. We then record these time-
sorted opcode sequences of all the benign and malignant files into a single text file
along with the corresponding class label.

Fromeach ransomware sample .asmfile, various continuous sequences of opcodes
of varying length (N grams of opcodes) are extracted from the original opcode
sequence. In malware, any one opcode execution may not harm the device, but it
may be detrimental to a machine if a sequence consisting of more than one opcode in
a particular order is executed. In addition, a short, contiguous series of N-opcodes is
called an N-gram. Hence, the N-gram can grab a few meaningful opcode sequences.

Fig. 1 Model diagram

Ensemble Model Ransomware Classification … 159

Fig. 2 Disassembled source code of a ransomware sample

The N-grams have the power to predict certain phenomena occurring if we obtain
enough samples to train. It is also prudent to have an equal mix of benign and
malignant samples to reduce bias toward any one class.

3.4 Computing Tf-idf Value

Out of all the ransomware families used in the study and the benign files, we obtained
a significant number of N-gram sequences. Now, we need an efficient method to
calculate the importance of each feature vector and rank them. Tf-idf uses a common
approach that utilizes principle of languagemodeling so as to classify essentialwords.
The heuristic intuition of tf-idf is that a word that is appearing in several corpuses
is probably not a good indicator of a specific corpus and may not be allotted more
points than the sequences that are found to turn up in fewer corpuses. By using Eqs.
(1), (2), and (3), we determine the tf-idf for every N-gram.

TFt,d = f (t, d)k f (t, d) (1)

160 S. Johnson et al.

Here, TF(t,d) represents the total number of times theN-gram t occurs in dthN-gram
sequence. f(t,d) shows the frequency of N-gram t occurring in N-gram sequence d,
and

∑
k f(t,d) denotes the total of N-grams in d. Then,

IDF(t) = log 2|N ||{d: t ε d|d ε N } (2)

Here, IDF(t) specifies if N-gram t is that uncommon in all sequences of N-gram,
whereas N is the collection of all sequences of N-grams. |d: t ε d|d ε N | represents
the count of sequences of N-grams that actually has N-gram t.

TF-IDF(t,Df) = TF(t,Df) × IDF(i) (3)

In above Eq. (3), we use every sequence of N-gram within malignant files f so as
to form a lengthy N-gram sequence Df . TF− IDF(i,Df) indicates the value of tf-idf
in N-gram t of the lengthy N-gram sequence Df.

In a ransomware family, tf-idf measures the value of an N-gram, which increases
as the count of aN-gram increases in a class. In addition, it is negatively proportional
to howmany times the exactN-gram is found to crop up in other ransomware families.
To a certain degree possible, tf-idf will differentiate each class from other classes
since the N-gram with a larger tf-idf score means that the number times it exists in
one class is more and the frequency of occurrences across the latter classes is very
low.

In each class, we arrange the N-grams as N-grams function in the descending
order of their respective tf-idf score and pick only the most potent N-grams from
both classes. To get the feature N-grams for one classifier, we combine b * t feature
vectors, i.e., t N-grams from each of the b classes. Since there are many similar
N-grams features derived from different classes, the repeating N-grams features are
eliminated.

By using Eq.1, compute the term frequency (TF) score of each N-gram feature
vector. In an N-gram, the values of the N-gram features are represented as one single
vector, which is the corresponding ransomware feature vector for the next step. In
the N-gram sequence, if the number of features present in the N-gram is 10, and the
number of occurrences of a particular N-gram, say (del, mov, sub) is 2; then, using
Eq.1, we compute the TF score of (del, mov, sub). In order to form one vector, we
calculate the TF score of each feature vector like this. We acquire all feature vectors
by performing the same procedure for all N-grams in order to obtain the feature
vector. The feature dimension is the count of all N-grams chosen. Table2 shows the
sample feature vector:

3.5 Training, Validation, and Testing

In the previous steps, for each class, we obtained the most indicative features. These
have the class label information as well that needs to be fed into the ML algo-

Ensemble Model Ransomware Classification … 161

Table 2 Sample 3-g sequence

Sample ID 1 2 3 4

Class label 1 1 0 1

add lock add 0.003764 0 0.00244 0.00276

add cmp mov 0.00084 0.01534 0.00140 0.00739

add mov mov 0.237791 0 0.03269 0.02501

rithm. During the training phase, we have trained the model using four machine
learning models, namely SVM, random forest (RF), logistic regression (LR), and
gradient boosting decision tree (GBDT) algorithms. We were able to conclude that
the random forest algorithm gave much better classification accuracy when trained
and tested with various feature lengths and N-gram sizes. We divided the dataset
into 80 to 20 ratios for training and validation. We employed a randomized search
on hyperparameters of all classification algorithms employed to find the optimum
hyperparameter values and then use those for final model.

We obtained validation accuracy as high as 99%with the random forest classifier.
Then, we use an ensemble learning model called voting classifier which predicts
the class based on their highest probability of chosen class. It simply aggregates the
findings of each classifier passed into voting classifier and predicts the output class
based on the highest majority of voting. At last, the trained classifier model can, with
a high degree of accuracy, predict the labels of unknown ransomware samples. By
measuring the classification accuracy, false positive rate (FPR), and false negative
rate (FNR), the performance of the model can be tested and compared. We tested
the model using various other active ransomware samples provided by SERB and
benign files, and it performed above par, yielding a testing accuracy of 94%.

4 Results and Discussions

Ransomware classification methods that rely upon dynamic analysis cannot fathom
the samples that can detect the sandboxing environment in which they are analyzed.
To cope with this limitation and to produce a model with a better binary classification
accuracy, here, we made use of a static analysis-based approach based on opcode
execution to classify ransomwares. We employ ensemble learning using voting clas-
sifier on top of fourmajormachine learning algorithms (RF, SVM,LR, andGBDT) to
model classifiers. We also experimented with varying lengths of N-gram sequences
(2, 3, and 4-g) and different threshold values to limit the number of features from each
class. Tf-idf is utilized to pick the most relevant features, which led to a very good
performance by the classification model. The model was used on diverse combina-
tions of the dataset, and it proves that random forest (RF) has a better performance
compared to other algorithms followed by support vector machine (SVM). We also

162 S. Johnson et al.

Fig. 3 Confusion matrix
voting classifier

Fig. 4 Assessment of the
experimental results

used randomized search cross-validationmethod to find the optimumhyperparameter
values for each algorithm used.

The highest validation accuracy obtained using ensemble model voting classifier
was noted to be 99.21% as shown in Fig. 3. The experimental results clearly show
that this model can detect ransomwares with a false positive rate of just 0.31% as
shown in Fig. 4.

We performed an extensive testing using different N-gram and feature lengths
on all the chosen classification algorithms. Owing to the excellent feature selection
technique, we got splendid results with an average of 98% classification accuracy in
all algorithms combined. Results are shown in Table3.

Table 3 Training accuracy

Classifiers 2-g 3-g 4-g

Random forest (RF) 99.07 98.64 98.98

Support vector
machine (SVM)

97.22 96.86 97.50

Extreme gradient
boosting (GBDT)

98.64 98.43 98.21

Voting classifier 98.76 99.21 98.86

Ensemble Model Ransomware Classification … 163

Table 4 Testing accuracy

Classifiers 2-g 3-g 4-g

Random forest (RF) 77.28 90.37 84.93

Support vector
machine (SVM)

69.13 86.17 77.28

Extreme gradient
boosting (GBDT)

61.97 89.87 80.24

Voting classifier 93.33 91.11 85.43

Table 5 Time required in seconds

Voting classifier 2-g 3-g 4-g

Calculating tf-idf
value

76.54 79.04 83.53

Model fitting 82.14 120.23 168.37

Model fitting 1.96 2.16 3.08

After training the model, we tested it using different sets containing a diverse
combination of ransomware samples and benign files. We were able to obtain classi-
fication accuracy of 90% using the random forest (RF) algorithm. The ransomware
samples used for testing were observed to contain different packers and had plenty
of obfuscation methods employed in them which were ascertained by testing the
samples using dynamic analysis methods. These results were further enhanced by
employing the ensemble voting method after optimizing the hyperparameter values.
We obtained model accuracy as high as 93.33%. Results are shown in Table4.

Training this machine learning model using any one classifier algorithm takes
almost negligible time. The time taken for each step, in seconds, is presented in
Table5. Since the disassembling step is common for all variations, it need not be
considered.

Loading the dataset created using disassembled opcodes into the Python notebook
takes an average 12s. Vectorization and selection of feature vectors were observed
to be the most time-consuming step during the implementation phase. It was noted
to have consumed over 3min for each variation. Time required for model fitting or
training using a voting classifier increases drastically with the increase in the number
ofN-grams. Once we fit themodel, it takes negligible time for making the prediction.
We trained and tested the model with various feature dimensions for all three chosen
N-gram sequences to select the optimum number of features. Then, further tests were
conducted based on the chosen feature dimension and N-gram size. The results are
shown in Fig. 5.

We can see from the results in above figures that in voting classifier, both 2 and
3 -g performances are better in classifying samples.

164 S. Johnson et al.

Fig. 5 Classification
accuracy of voting classifier
in varying feature
dimensions

We have also compared our work with existing dynamic analysis-based methods
as listed in Table6. The results tabulated are from the respective published papers.
The test samples that we have used in this study are active and live.

From the table, it is clear that our method proves to be more efficient than exist-
ing dynamic analysis models. This exempts us from designing complex sandboxes
to analyze ransomware behavior. This method proved to be less time-consuming
at the prediction phase. It will save countless working hours for any analyst who
tries to dissect and figure out the heuristic signatures of a ransomware sample and
then classify it manually. We were able to drastically reduce the false positive rate
(FPR), which means very few benign files were wrongly classified. Though the
false negativity rate (FNR) was negligible, while analyzing these samples that were
wrongly classified as benign using various malware analysis tools, it was inferred
that the samples employed code injection techniques. Those misclassified instances
also exhibited advanced encryption techniques because of which the disassembler
could not unpack the file properly.

5 Conclusion

Ransomware that can detect the virtualized sandboxing environment used to perform
dynamic analysis will dodge detection by employing various evasive tactics. We
proposed a static analysis methodwhich uses natural language processing techniques
to classify ransomware in order to address this disadvantage. In order to construct
classifiers, we use an ensemble learning model called voting classifier consisting of
four machine learning models (SVM, RF, LR, and GBDT). We use different lengths
of N-gram opcode sequences (2, 3, and 4-g) with various threshold values to limit
the number of features that represent each class. Tf-idf is used to determine the most
potent N-gram features that are highly indicative with respect to each class, which

Ensemble Model Ransomware Classification … 165

Table 6 Comparison with existing methods

Ransomeware
detection
model

Method Dataset used TPR (%) FPR (%) FNR (%)

Automated
dynamic
analysis of
ransomeware:
benefits,
limitations,
and use for
detection [16]

Algorithm:
regularized
logistic
regression
feature
selection:
MIC

582-
ransomeware

96.34 0.16 3.66

942-benign

Deep learning
for
ransomeware
detection [17]

Algorithm:
deep natural
network.
Detection
before
encryption
begins

155
ransomeware

93.92 38 7.08

Unknown
benign

Leveraging
machine
learning
techniques for
windows
ransomeware
network traffic
detection [18]

Algorithm:
J48 decision
tree. Feature
selection:
Tshark
extractor

210-
ransomeware

97.1 1.6 2.9

264-benign

Our method Algorithm:
ensemble
model.
Feature
selection:
N-gram, tf-idf

2983-
ransomeware

98.82 0.31 1.18

2682-benign

results in yielding a high validation accuracy. Detailed tests on real datasets show
that the other algorithms also perform as well as random forest, which prompted us
to employ the voting classifier strategy. The findings conclude that classifiers using
N-gram feature vectors of different lengths are a better model to effectively classify
ransomware. The results then comparedwith existing ransomware detectionmethods
that rely on dynamic analysis model prove that our static analysis model performs
better.

166 S. Johnson et al.

As the future enhancements to this model, we can introduce into our dataset,
malignant samples which have advanced code obfuscation capabilities such as code
rearranging, injecting garbage/benign opcodes into the source code in order to avoid
detection. We can also move to deep learning methods, probably, RNN for even
better feature selection and improved classification efficiency.

Acknowledgements This work was carried out as part of a research project sponsored by the Sci-
ence and Engineering Research Board (SERB), the Department of Science and Technology (DST),
Government of India (GoI). We express our sincere gratitude to DST-SERB for the support they
extended to us through the “Early Career Research” Award (Sanction No. ECR/2018/001709). We
aremuch obliged to theDepartment of CSE for having facilitated the seamless research environment
even during the adverse circumstances caused by COVID-19 pandemic. We sincerely thank all the
faculties at the Department of CSE and CTS Laboratory for their meticulous support.

References

1. J. Fu, J. Xue, Y. Wang, Z. Liu, C. Shan, Malware visualization for fine-grained classification.
IEEE Access 6, 14510–14523 (2018)

2. A. Ali, Ransomware: a research and a personal case study of dealing with this nasty malware.
Issues Inform. Sci. Inf. Technol. 14, 087–099 (2017)

3. B. Eduardo, D. Morat Oss, E. Magana Lizarrondo, M. Izal Azcarate, A survey on detection
techniques for cryptographic ransomware. IEEE Access 7, 144925–144944 (2019)

4. B.A. Al-rimy, M.A. Maarof, S.Z. Shaid, Ransomware threat success factors, taxonomy, and
countermeasures: a survey and research directions. Comput. Secur. 74, 144–166 (2018)

5. K. DaeYoub, J. Lee, Blacklist versus whitelist-based ransomware solutions. IEEE Consumer
Electron. Mag. 9(3), 22–28 (2020)

6. A. Pekta, T. Acarman, Classification of malware families based on runtime behaviors. J. Inf.
Secur. Appl. 37, 91–100 (2017)

7. J.O. Kephart, W.C. Arnold, Automatic extraction of computer virus signatures, in Proceedings
of the 4th Virus Bulletin International Conference (Abingdon, UK, 1994)

8. A. Kharraz, S. Arshad, C. Mulliner, W. Robertson, E. Kirda, UNVEIL: a largescale, automated
approach to detecting ransomware, in Proceedings of the 25th USENIX Conference on Security
Symposium (USENIX Security, 2016), pp. 757–772

9. S.S. Hansen, T.M.T. Larsen, M. Stevanovic, J.M. Pedersen, An approach for detection and
family classification of malware based on behavioral analysis, in Proceedings of 2016 Interna-
tional Conference on Computing, Networking and Communications. ICNC (IEEE, 2016), pp.
1–5

10. C. Kolbitsch, E. Kirda, C. Kruegel, The power of procrastination: detection and mitigation of
execution-stalling malicious code, in Proceedings of the 18th ACM Conference on Computer
and Communications Security (ACM, 2011), pp. 285–296

11. G. Ramesh, A. Menen, Automated dynamic approach for detecting ransomware using finite-
state machine. Dec. Support Syst. 138, 113400 (2020)

12. R. Vinayakumar, K.P. Soman, K.K.S. Velany, S. Ganorkar, Evaluating shallow and deep net-
works for ransomware detection and classification, in Proceedings of 2017 International Con-
ference on Advances in Computing, Communications and Informatics, ICACCI (IEEE, 2017),
pp. 259–265

13. H. Zhang, X. Xiao, F. Mercaldo, S. Ni, F. Martinelli, A.K. Sangaiah, Classification of ran-
somware families with machine learning based on N-gram of opcodes. Future Gener. Comput.
Syst. 90, 211–221

Ensemble Model Ransomware Classification … 167

14. I. Kwon, E.G. Im, Extracting the representative API call patterns of malware families using
recurrent neural network, in Proceedings of the International Conference on Research in Adap-
tive and Convergent Systems (ACM, 2017), pp. 202–207

15. A. Mohaisen, A.G. West, A. Mankin, O. Alrawi, Chatter: classifying malware families using
system event ordering, in Proceedings of 2014 IEEE Conference on Communications and
Network Security. CNS (IEEE, 2014), pp. 283–291

16. D. Sgandurra, L. Muoz-Gonzlez, R. Mohsen, E.C. Lupu, Automated dynamic analysis of
ransomware: benefits, limitations and use for detection (2016). arXiv:1609.03020

17. A. Tseng, Y. Chen, Y. Kao, T. Lin, Deep learning for ransomware detection. Internet Archit.
IA2016 Workshop Internet Archit. Appl. IEICE Techn. Rep. 116(282), 87–92 (2016)

18. O.M. Alhawi, J. Baldwin, A. Dehghantanha, Leveraging machine learning techniques for
windows ransomware network traffic detection, in Cyber Threat Intelligence (Springer, Cham,
2018), pp. 93–106

19. D. Bilar, Opcodes as predictor for malware. Int. J. Electron. Secur. Digital Forensics 1(2),
156–168 (2007)

20. R. Moskovitch, C. Feher, Y. Elovici, Unknown malcode detectiona chronological evaluation,
in IEEE International Conference on Intelligence and Security Informatics, 2008. ISI (IEEE,
2008), pp. 267–268

21. R. Moskovitch, et al., Unknown malcode detection via text categorization and the imbalance
problem, in 2008 IEEE International Conference on Intelligence and Security Informatics
(IEEE, 2008), pp. 156–161

22. R. Moskovitch et al.,Unknown malcode detection using opcode representation, in Intelligence
and Security Informatics (Springer, Berlin Heidelberg, 2008), pp. 204–215

23. I. Firdausi, et al., Analysis of machine learning techniques used in behavior-based malware
detection, in 2010 Second International Conference on Advances in Computing, Control and
Telecommunication Technologies (ACT) (IEEE, 2010)

24. L. Yi-Bin, D. Shu-Chang, Z. Chao-Fu, B. Gao, Using multi-feature and classifier ensembles
to improve malware detection. J. CCIT 39(2), 57–72 (2010)

25. I. Santos et al., Opcode-sequence-based semisupervised unknown malware detection, in Com-
putational Intelligence in Security for Information Systems (Springer, Berlin, Heidelberg,
2011), pp. 50–57

26. Z. Zhao, A virus detection scheme based on features of control flow graph, in 2011 2nd Inter-
national Conference on Artificial Intelligence, Management Science and Electronic Commerce
(AIMSEC) (IEEE, 2011 Aug 8), pp. 943–947

27. Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature 521, 436 (2015). http://dx.doi.org/10.
1038/nature14539

28. Y. Lecun, Generalization and network design strategies, inConnectionism in Perspective (Else-
vier, 1989)

29. S. Hochreiter, J. Schmidhuber, Long short-term memory. Neural Comput. 9(8), 1735–1780
(1997)

30. K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, Y. Bengio,
Learning phrase representations using RNN encoderdecoder for statistical machine translation,
in Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP) (Association for Computational Linguistics, Doha, Qatar, 2014), pp. 1724–1734.
http://dx.doi.org/10.3115/v1/D14-1179

31. M.Schuster,K.K. Paliwal,Bidirectional recurrent neural networks. IEEETrans. Signal Process.
45(11), 2673–2681 (1997)

32. N.Harini, T.R. Padmanabhan, 2CAuth: a new two factor authentication scheme usingQR-code.
Int. J. Eng. Technol. 5(2), 1087–1094 (2013)

33. G. Ramesh, I. Krishnamurthi, K. Sampath Sree Kumar, An efficacious method for detecting
phishing webpages through target domain identification. Dec. Support Syst. 61, 12–22 (2014)

34. N. Harini, T.R. Padmanabhan, 3c-auth: a new scheme for enhancing security. Int. J. Netw.
Secur 18(1), 143–150 (2016)

http://arxiv.org/abs/1609.03020
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.3115/v1/D14-1179

	 Ensemble Model Ransomware Classification: A Static Analysis-based Approach
	1 Introduction
	2 Related Work
	3 System Design
	3.1 Dataset
	3.2 Implementation
	3.3 Preprocessing
	3.4 Computing Tf-idf Value
	3.5 Training, Validation, and Testing

	4 Results and Discussions
	5 Conclusion
	References

