Sign Language Recognition:)
A Comparative Analysis of Deep L
Learning Models

Aswathi Premkumar, R. Hridya Krishna, Nikita Chanalya, C. Meghadeyv,
Utkrist Arvind Varma, T. Anjali, and S. Siji Rani

Abstract Sign language is the primary means of communication used by deaf and
dumb people. Learning this language could be perplexing for humans; therefore, it
is critical to develop a system that can accurately detect sign language. The fields
of deep learning and computer vision with recent advances are used to make an
impact in sign language recognition with a fully automated deep learning architecture.
This paper presents two models built using two deep learning algorithms; VGG-16
and convolutional neural network (CNN) for recognition and classification of hand
gestures. The project aims at analysing the models’ performance quantitatively by
optimising accuracy obtained using limited dataset. It aims at designing a system that
recognises the hand gestures of American sign language and detects the alphabets.
Both the models gave excellent results, VGG-16 being the better. VGG-16 model
delivered an accuracy of 99.56% followed by CNN with an accuracy of 99.38%.

Keywords American sign language - Deep learning - Sign language - VGG-16 -
Convolutional neural network * Neural network - Feature extraction

1 Introduction

Sign language is a method by which the deaf and/or dumb individuals communicate
through visual gestures. It is expressed using hand gestures, movements, orienta-
tion of palm and face expressions executed by humans. It is the most expressible
way for communication for the individuals with hearing or speech impairment. Sign
languages have their sign grammar and lexicon. It is not common universally, and
thus, each country has its own sign language system. There are about 150 sign
languages as per the 2021 edition of Ethnologue. American sign language (ASL) is
one of the most leading sign languages of the deaf and dumb individuals of USA as
well as of Anglophone Canada. ASL uses ASL manual alphabet/ASL fingerspelled
alphabet. Fingerspelling is the method in which a particular word is spelled out

A. Premkumar - R. Hridya Krishna (<) - N. Chanalya - C. Meghadev - U. A. Varma - T. Anjali -
S. Siji Rani

Department of Computer Science and Engineering, Amrita School of Engineering, Amrita
Vishwa Vidyapeetham, Amritapuri, India

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022 1
S. Smys et al. (eds.), Inventive Computation and Information Technologies, Lecture Notes
in Networks and Systems 336, https://doi.org/10.1007/978-981-16-6723-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-6723-7_1&domain=pdf
https://doi.org/10.1007/978-981-16-6723-7_1

2 A. Premkumar et al.

using hand gestures. Each sign shown corresponds to a letter of the word. One of
the challenges faced is that normal people find it difficult to understand the gestures
of sign language, thus making communication burdensome. Deep learning models
have given efficient results in sign language recognition from hand gesture images
[1]. Much research has been done in deep learning to find an efficient method of sign
language detection. There are various neural networks such as the convolutional
neural network which comprises of various layers such as convolutional layers,
pooling layers and fully connected layers, fully convolutional network (FCN) in
which all learnable layers are convolutional, thus having lesser number of param-
eters and maintaining the spatial information of the input hand gestures images.
Considering the importance of sign language and its efficient recognition to help
deaf and dumb individuals to communicate with society, comparative research was
conducted in two different deep learning modes, namely VGG-16 and a CNN model,
by training and testing each model with hand gesture images.

2 Related Works

American sign language recognition and detection is not a novel concept. Over the
past two decades, researchers have made use of various classifiers that belong to
different categories such as linear classifiers, Bayesian, neural networks (Table 1).

3 Dataset

The initial step of the proposed system is to collect the data. The dataset consists of
17,113 American sign language hand gesture images from 27 classes (26 alphabets
+ 1 space class denoted as ‘0’) out of which 12,845 images were used for training
and 4268 images for validation (Fig. 1).

4 Data Augmentation

Image data augmentation technique is done using the ImageDataGenerator class
imported from K. This is used in expanding the dataset in order to boost the perfor-
mance and strengthen the model to generalise. Thus, more data result in better
accuracy and efficiency of the model.

Sign Language Recognition: A Comparative ...

Table 1 Related works

References

Classification model

Focus

(2]

SqueezeNet architecture

The system uses RGB images which are
then used to train the SqueezeNet
architecture, so that it could be run on
mobiles

(3]

SVM and ANN

Develops a system for Indian sign
language recognition using feature
extraction techniques, scale invariant
feature transform (SIFT) and histogram
of oriented gradients (HOG), and then
classifies

(4]

Support vector machine (SVM)

Researches explain skin segmentation
can be completed using YCbCr systems.
This was then classified using SVM

[5]

Histogram matching and ORB algorithm

Developed an android application that
captures the hand gesture and detects
the sign into digits and alphabets.
Proposed methodology involves
preprocessing the real-time image,
recognising gestures using histogram
matching and ORB algorithm

(6]

PNN and KNN

Hand gestures are recognised and
translated into text and speech (Hindi as
well as English) by using MATLAB.
The classification is done using two
models and results compared

(7]

SVM and ANN

Involves a review of various steps
involved in hand gesture recognition.
The methods used for data acquisition,
image processing, segmentation and
feature extraction were compared. And,
the models were then classified

(8]

HMM

Involves comparison of various vision
based sign recognition systems, which
mostly uses HMM as base. Detailed
common challenges of these models

[91

CNN (SignNet)

A CNN model, SignNet, is proposed by
combining high-and low-resolution
network CNNs. It works at various
spatial resolutions and detects hand
gesture images using a synthetic dataset

4 A. Premkumar et al.

Fig. 1 Dataset

5 Methodology

Two deep learning models were developed for the problem statement, and a compar-
ative analysis was performed on these models based on their training statistics and
results.

5.1 Model 1: CNN Model

Introduction

Convolutional neural network (CNN) is a class of deep neural networks that is used
in object detection, image recognition, image classification, etc. [10, 11] CNN archi-
tecture has a similar architecture to the nerve cells that communicate with the inter-
connected neurons in the body. The important core layers in the CNN architecture
include Input, Padding, Convolution + Activation/ReLLU, Pooling, Flatten/Dense,
Fully Connected + Softmax. In CNN, the input image is assigned importance to
certain features in it to differentiate one from another. Each input image was passed
through a series of convolutional layers followed by chosen parameters, and filters

Sign Language Recognition: A Comparative ... 5

Preprocessing

RGB to Gray | Image)J Gaussian blur

Input Im T
APMERTE .{ scale convertion Thresholding | filter

*

Data
Augmentation

Feature extraction
using CNN

Training the
Maodel

Gesture
Classification

Fig. 2 CNN flow process

with strides were applied and padded whenever required. It gives the highest accuracy
in comparison with other image processing algorithms.

Flow Process

A 2D convolutional neural network (CNN) with tensor flow library was developed
for training the required models in order to do the detection.

Steps for classification (Fig. 2): Step I: Importing Keras libraries and packages.
Step II: Data loading and preprocessing. Step III: Building CNN model with two
convolutional layers with rectified linear unit (ReLU), which is the activation func-
tion that extracts different features of the input, two MaxPooling layers to grad-
ually decrease the spatial size of the image representation in order to decrease
the number of parameters, thus decreasing computational complexity in the model
network, the flatten layer, and then, finally, a fully connected layer in which the last
dense layer has Softmax as activation function which will execute the classification
based on extracted features. Then, the CNN model was compiled with loss ‘categor-
ical_crossentropy’ and ‘adam’ as optimiser. Step I'V: Using ImageDataGenerator to
apply transformations and augmentation on images for training.

Preprocessing

Preprocessing of coloured images is necessary to extract features from the images.
The coloured images were first converted to grayscale as the grey scale images are
easier to process than coloured images which will take plenty of resources and time
for training the data. Image thresholding was applied to detect the boundaries, thus
separating the required object from the background pixels. This was followed by the
application of a Gaussian blur filter, which helps to reduce the random noise and for
cutting the extreme outliers [12].

Architecture

The images pass through the following layers (Fig. 3): (i) one convolutional layer of
size 126 x 126 x 32, succeeded by a pooling layer of size 2 x 2 that decreases the
height and width of the image into 63 x 63 x 32; (ii) one convolutional layer of size
61 x 61 x 32 succeeded by a pooling layer of size 2 x 2 that further decreases the
height and width of the image into 30 x 30 x 32; (iii) flatten layer; (iv) one dense

Fig. 3 CNN network
architecture

A. Premkumar et al.
Input
<

L sacomzz [<

N\

N

WV

Flatten

Vv

Dense 128

Dense 96

Dropout 0.40

\]/

Dense 64

Dense 27

J

Output

layer with 96 units and along with a dropout after that of 96 units; (v) two dense
layers, first one with 64 units and the second one with 26 units, 1 for each class.
The flatten layer and dense layer reduce the data into one dimension and identify the

class into which it belongs.

5.2 Model 2: VGG-16

Introduction

VGG-16 (OxfordNet), which stands for Visual Geometry Group, is an object recog-
nition model in deep learning [13]. It is a convolutional neural network architecture
that is 16 layers deep. The default input size of this model is 224 x 224 pixels with
three channels for the image in RGB format [14]. The receptive field used by the

Sign Language Recognition: A Comparative ... 7

Input Image Object r.nodel N Data .
creation Augmentation
Gesture Feature extraction | Training the
Classification using VGG16 Model

Fig. 4 VGG-16 flow process

convolutional layer in the VGG-16 model is very small, i.e., 3 x 3. To retain the
spatial resolution after convolution, the convolution stride is set to 1 pixel. It has
pooling layers of size 2 x 2. VGG-16 has three fully connected layers. The ReLLU
activation unit is used by all hidden layers.

Flow Process

The steps for classification are (Fig. 4): Step I: Imported Keras libraries and packages.
Step II: Loaded the dataset. Step III: The VGG-16 model was built. Convolutional
layers with small size convolution filters were added so as to have a large number of
weighted filters. After each block of convolutional filters, one max pooling layer was
added which helps to reduce the amount of data sent to the next layer by a factor of
4. After the 5 blocks of convolution and pooling layers, the flatten layer was added
in order to change the data dimension into a one-dimensional input into the dense
layers. Lastly the dense layers were added in which the neurons of different layers
are connected into a network. A sigmoid activation unit is added to the last dense
layer. Step I'V: Use ImageDataGenerator to apply transformations and augmentation
on images for training.

Architecture

VGG-16 architecture (Fig. 5) comprises 13 convolutional layers and 3 fully connected
layers, hence not a fully convolutional network.

The images pass through the following layers:

(1) two convolutional layers each of size 224 x 224 x 64 succeeded a pooling
layer of size 2 x 2, which thus decreases the image size into 112 x 112 x 64; (ii)
two convolutional layers each of size 112 x 112 x 128, succeeded by a pooling
layer of size 2 x 2 that further decreases the image size into 56 x 56 x 128; (iii)
three convolutional layers each of size 56 x 56 x 256 succeeded by a pooling layer
of size 2 x 2 that further decreases the image size into 28 x 28 x 256; (iv) three
convolutional layers each of size 28 x 28 x 512 succeeded by a pooling layer of
size 2 x 2 which further decreases the image size into 14 x 14 x 512; (v) three
convolutional layers each of size 14 x 14 x 512 succeeded by a pooling layer of
size 2 x 2 which further decreases the size of the image into 7 x 7 x 512; vi) flatten
layer; and (vii) three dense layers, first two with 4096 units and the last with 26 units,

8 A. Premkumar et al.

Fig. 5 VGG-16 network Input
architecture

Sign Language Recognition: A Comparative ... 9

1 for each class. The flatten layer and dense layer reduce the data into one dimension
and identify the class into which it belongs.

6 Result

After training the model, a set of validation images were passed to test the prediction.
Then, the performances of both the models were optimised by selecting the appro-
priate number of epochs and steps per epochs. More epochs give better accuracies,
but it could possibly increase the complexity of the model too. For the CNN model,
30 epochs and 200 steps per epoch were used, and for VGG-16 model, 10 epochs and
100 steps per epoch were applied which gave the best results that balanced between
accuracy and complexity.

6.1 CNN Model

The test set consists of 4268 images. The proposed model was trained using 30
epochs. From the tests done, an accuracy of 99.38 was obtained for the validation
set. The accuracies in various epochs varied from 57.10 to 99.95%. An evaluation
on these gave an average of 99.38%.

The train and test accuracy as well as losses were plotted across the number of
epochs (Figs. 6 and 7, respectively). Both the accuracies escalated as the number

Training and Validation accuracy

10 { — train _——
— test
08
> 06 1
o
5
%
04
02
0 5 10 15 20 25 30

epoch

Fig. 6 Plot of estimated training and validation accuracy (CNN model)

10 A. Premkumar et al.

Training and Validation loss

- frain
30 = test

25 1

20 1

loss

15

10 1

05

0.0 1

T

0 5 10 15 20 25 30
epoch

Fig. 7 Plot of estimated training and validation loss (CNN model)

of epochs progressed. The number of losses of both training and testing reduced in
subsequent epochs.

The plot of training and testing accuracy (Fig. 6) showed that the accuracy of
prediction got higher for higher epochs. The validation accuracy at the first epoch
was found to be 57.10%, and it increased sharply till the 5th epoch, with an accuracy
of 93.32% after which it increased smoothly till a maximum of 99.95%.

The validation loss decreased sharply (Fig. 7) from the first epoch till the 6th
epoch after which it decreased smoothly.

6.2 VGG-16 Model

The validation set (400 images) was passed through the model, and accuracies were
optimised by using 10 epochs. As a result, an accuracy of 99.56% was obtained. The
accuracies in various epochs varied from 95.88 to 100%. An evaluation on these gave
an average of 99.56%. The accuracies of the training and validation were plotted and
evaluated (Figs. 8 and 9, respectively). The graphs accuracy of both training and
testing increased with increase in the number of epochs. The losses occurred during
training and testing were also plotted and evaluated. The losses of both training and
testing decreased as the number of epochs got higher.

The plot (Fig. 8) shows that the validation accuracy at the first epoch was found
to be 98.62%, and it increased till the 3rd epoch. It then gave an accuracy of 95.88%
in the 4th epoch after which it increased sharply reaching a maximum of 100%. The
validation loss decreased sharply after the first epoch (Fig. 9).

Sign Language Recognition: A Comparative ... 11

Training and validation accuracy

100 1

0.95 1

0.90 1

0.85 1

0.80 A

0.75 4 :
= Taining accuracy

= Validation accuracy

0.70 -

T T T T T

0 2 - 6 8

Fig. 8 Plot of estimated training and validation accuracy (VGG-16 model)

Training and validation loss

200 1 —— Taining Loss

= Validation Loss
175 1
150 1
125 4
100 1
0.75 1
0.50 1

0.25 A

0.00 1

T T T T

0 2 - 6 8

Fig. 9 Plot of estimated training and validation loss (VGG-16 model)

7 Conclusion and Future Works

Considering the complexities of various combinations of hand gestures and its under-
standability to normal people, there are many challenges in this domain. With this
project, two efficient deep learning models were analysed for American sign language
detection and the best one was thus recognised. The accuracy of both the models
improved as the number of epochs got higher. This is because for each subsequent
epoch, the neural network updates the weight estimated in the first epoch with the

12 A. Premkumar et al.

values that reduce overall loss. Choosing an appropriate number of epochs, balancing
complexity and accuracy produced excellent results. The two models gave excellent
results in recognising the gestures correctly. The VGG-16 model with fixed residual
blocks gave a better result compared to the CNN model built from scratch. The
VGG-16 model fits the data more accurately as there are more weighted layers in
VGG which thus had much more parameters which extracted features better than the
CNN model, thus classifying better.

The project focuses on recognising the hand gestures that correspond to the
alphabet from A to Z using the dataset containing hand gesture images. This project
can be developed further to detect images in real time. This will involve the use of
LeapMotion API that would help in real-time data generation from hand gestures
of people. This could also be developed to recognise hand gestures for words and
numbers along with the finger spelling. The project has a scope in further develop-
ment by using various other models, such as ResNet, which has been proved to be
faster and efficient due to its deeper layers.

Acknowledgements The authors feel obliged in taking the opportunity to sincerely thank Anjali T.
(Assistant Professor, Computer Science Engineering, Amrita School of Engineering, Amritapuri)
for assisting time to time throughout the project duration as well as Amrita Vishwa Vidyapeetham
University to provide the golden opportunity to work on this outstanding project on the topic sign
language recognition. The authors are overwhelmed with gratitude and humility and acknowledge
gratitude to all those who have assisted in bringing these thoughts and ideas far beyond the simplicity
and into something substantial.

References

1. R.C. Gonzalez, R.E. Woods, Digital Image Processing, 2nd edn. (Prentice Hall, New Jersey,
2008), p. 693

2. N. Kasukurthi, B. Rokad, S. Bidani, A. Dennisan, American Sign Language Alphabet
Recognition using Deep Learning. arXiv:1905.05487 [cs.CV] (2019)

3. J. Ekbote, M. Joshi, Indian sign language recognition using ANN and SVM classifiers, in 2017
International Conference on Innovations in Embedded and Communication System (ICIIECS)
(2017)

4. S.Lahoti, S. Kayal, S. Kumbhare, I. Suradkar, V. Pawar, Android based American sign language
recognition system with skin segmentation, in 2017 International Conference on Advances in
Computing, Communications and Informatics (ICACCI) (2017)

5. M. Mabhesh, A. Jayaprakash, M. Geetha, Sign language translator for mobile platforms, in
2017 International Conference on Advances in Computing, Communications and Informatics
(ICACCI) (IEEE, 2017), pp. 1176-1181

6. U. Patel, A.G. Ambedkar, Moment based sign language recognition for Indian language,
in 2017 International Conference on Computing, Communication, Control and Automation
(ICCUBEA) (2017)

7. M.J.Z.Omar, M.H. Jaward, A review of hand gesture and sign language recognition techniques.
Int. J. Mach. Learn. Cyber. 10, 131-153 (2019)

8. N. Aloysius, M. Geetha, Understanding vision-based continuous sign language recognition.
Multimed. Tools Appl. 79, 22177-22209 (2020)

http://arxiv.org/abs/1905.05487

Sign Language Recognition: A Comparative ... 13

9.

10.
11.

12.

13.

N. Aloysius, M. Geetha, An ensembled scale-space model of deep convolutional neural
networks for sign language recognition, in Advances in Artificial Intelligence and Data Engi-
neering Advances in Intelligent Systems and Computing, vol 1133, eds. by N. Chiplunkar, T.
Fukao (Springer, Singapore, 2021)

J. Herazo, Sign Language Recognition Using Deep Learning (2020)

D.A. Sharath Kumar, Sign language recognition with convolutional neural network. Int. Res.
J. Eng. Technol. (IRJET) (2020)

S.A. Khan, A.D. Joy, S.M. Asaduzzaman, M. Hossain, An efficient sign language translator
device using convolutional neural network and customized ROI segmentation, in 2019 2nd
International Conference on Communication Engineering and Technology (ICCET), pp. 152—
156 (2019)

H. Qassim, A. Verma, D. Feinzimer, Compressed residual-VGG16 CNN model for big data
places image recognition, in 2018 IEEE 8th Annual Computing and Communication Workshop
and Conference (CCWC), pp. 169-175 (2018)

S. Masood, H.C. Thuwal, A. Srivastava, American sign language character recognition using
convolutional neural network, in Smart Computing and Informatics. Smart Innovation, Systems
and Technologies, vol. 78, eds. by S. Satapathy, V. Bhateja, S. Das (Springer, Singapore, 2018)

	 Sign Language Recognition: A Comparative Analysis of Deep Learning Models
	1 Introduction
	2 Related Works
	3 Dataset
	4 Data Augmentation
	5 Methodology
	5.1 Model 1: CNN Model
	5.2 Model 2: VGG-16

	6 Result
	6.1 CNN Model
	6.2 VGG-16 Model

	7 Conclusion and Future Works
	References

