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Abstract This article analyzes the standards, algorithms, and hash functions used
in electronic digital signature (EDS). It is determined that most of the modern hash
functions and algorithms used in EDS schemes are based on elliptic curves above
the field. Some of the collisions causes, methods, and algorithms for hash attacks
are covered in the article. A mathematical apparatus for estimating the probability
of hash functions breaking based on the "birthday paradox" is formed. The results
of the probability of breaking for hash functions used in EDS were obtained. It is
confirmed that in case of the same length of the hash, the probability of breaking the
hash by the breaking the resistance to collisions method is much lower than using
the method of breaking the strong resistance to collisions. It has been suggested that
it is dangerous to add a key at the beginning or end of a message when working with
key hash functions.
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1 Introduction

Today, electronic digital signatures (EDS) are a common technology for data integrity
protection. Some of its mechanisms (hash functions) are very widely used in cryp-
tocurrency generation systems. The presence of several different EDS schemes using
different hash functions in application systems makes it necessary to assess the level
of security of data that is protected using EDS. Many publications have studied the
problem of crypto resistance or the probability of breaking various elements of EDS
[1–7].We can single out the study of the probability of collisions of the first or second
kind in the generated values of hash functions [3–6]. To facilitate the assessment of
the detection of collisions (the appearance of two identical values of hash functions)
often use the paradox of birthdays [7, 8].

2 Steps of EDS Elements Reliability Evaluation

2.1 Estimation of the Probability of Break of EDS Elements

In some countries, including Canada, South Africa, the United States of America,
Algeria, Turkey, India, Brazil, Indonesia, Mexico, Saudi Arabia, Uruguay, Switzer-
land, Chile, Russia, Ukraine, and the European Union, electronic signatures have
legal significance. Therefore, the assessment of the probability of break of the EDS
elements is of great practical importance.

At present, the stability of almost all modern EDS standards is based on the
complexity of solving the problem of discrete logarithm in a group of points of
elliptic curves [9]. Moreover, the standards for obtaining the main element of infor-
mation security in EDS-hash functions are very similar. For example, now any EDS
scheme must define at least three functional algorithms, in particular, the algorithm
for generating a key pair for the signature and its verification, the signature algorithm,
the signature verification algorithm.

Consider the EDS standards of Ukraine, Russia, and theUnited States of America.
At present, the text of the specification DSTU 4145–2002 for the EDS algorithm
exists in the form of a corresponding document [10, 11]. This algorithm is based
on elliptic curves over the field F (2) (non-supersingular curves). The standard uses
curves in polynomial and optimal normal bases. Moreover, the curves in the polyno-
mial basis can be of the second and third types. The basis for the development of this
standard is the international standard IEEE 1363a. DSTU 4145–2002 is authentic
compared to IEEE 1363a, due to the use of its own hashing function. The interstate
standard GOST R 34.311–95 (formerly GOST 28,147–89 in the mode of imitation
insert) is used as an algorithm of the hash function. In the United States of America,
there is a regulatory document FIPS 202 which describes the requirements for the
hashing algorithm in EDS systems, whereas a hashing function it is recommended to
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use “SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions”
[12].

If we compare the state standards for EDS algorithms in countries where there are
legal requirements for algorithms and functions in EDS schemes, then, for example,
in Ukraine, Russia and the United States of America, they are similar but differ only
in some numerical parameters and details of key pair generation, calculation mech-
anism, and signature verification. Specifically, these three algorithms are variants of
the El Gamal scheme [13].

Therefore, taking into account the similarity of the mathematical apparatus of
cryptocurrencies when finding the basic in cryptographic algorithms EDS, it is
possible to extrapolate the obtained values of estimates of the probability of breaking
hash functions in EDS to the above schemes. Thus, in comparison with the existing
methods considered in the [7–9, 12], the described approach allows us to support the
possibility of using the existing mathematical apparatus for systems with an EDS.

2.2 Mathematical Apparatus for Estimating the Probability
of Breakage

The birthday paradox is an imaginary paradoxical statement that the probability of
coincidence of birthdays (dates) for at least two members of a group of 23 or more
people exceeds 0.5. For 60 or more people, the probability of such a match exceeds
0.99, although the probability of 1.0, it theoretically reaches only when the group
is at least 367 people. This statement may seem unobvious because the probability
of coincidence of birthdays of two people on any day of the year (1/365 = 0.0027)
multiplied by the number of people in the group of 23 gives only 23/365 = 0.063.
This reasoning is incorrect as the number of possible couples (253) significantly
exceeds the number of people in the group. There is no logical contradiction in this,
and the paradox is only the difference between intuitive perception andmathematical
calculation. However, under the conditions of using this paradox in cryptanalysis,
and especially if the attack is carried out on a set of known open messages, it allows
to estimate the probability of breaking a hash function with a fairly high accuracy
[14, 15]. This will allow a «birthday attack», in which random values are tried, until
two are found that work.

«Birthday attack» is used in cryptanalysis as a method of cracking ciphers or
finding collisions of hash functions. The essence of the method is to significantly
reduce the number of transmitted hash functions arguments required to detect the
collision, because if the hash function generates n—bit values, the number of random
arguments of the hash function, which is likely to detect at least one hash function
collision, is not 2n , but only about 2n/2 [16].

It should be noted that these conditions of “birthday paradoxes” do not necessarily
hold true in the real world. In particular, in the real world, people are not born with
uniform randomness. There may be accurate statistics on the days people are born.
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But this model is not an accurate reflection of the real world, its simplicity makes
it much easier to analyze the problem. In particular, in cryptanalysis, this model
has satisfactory accuracy. So, for example, this paradox can be applied to assess the
cryptographic strength of various elements of the blockchain technology due to the
fact that it also uses hash functions similar to those under consideration [17].

2.3 Methods and Algorithms for Hash Attacks

You can consider all possible underlying hash attacks related to value generation
collisions:

(1) Frontal attack. Having a convolution of type H(m1) of the message m1, the
cryptanalystmust use the searchmethod to find themessagem2 (m2 �= m1), for
which H(m1) = H(m2). If this condition is met, the cryptanalyst may declare
that the resulting convolution corresponds to the message m2, but not to the
message m1. If the hash function outputs an n—bit string, then the complexity
of this method of cryptanalysis is estimated as O(2n).

(2) Attack based on “birthday paradoxes.” This paradox is used for many applied
problems (including cryptanalysis problems). It is based on a well-known
statistical problem—“birthday paradox.”

Therefore, the general task of cryptanalysis can be reduced to the task of finding
collisions, namely howmany open messages the cryptanalyst needs to review to find
messages with the same hashes [17].

The probability of encountering the same hashes for messages from two different
sets containing, respectively, n1 and n2 plaintexts will be equal to:

P ≈ 1 − e
n1n2
l (1)

If in expression (1) n1 = n2 = 2l/2, then the probability of success of such an
attackwill be: P ≈ 1−e−1 ≈ 0.63, and the complexity of the attack can be estimated
as 2

l
2 +1. In order to determine the collision, it is necessary to generate two pseudo-

random sets of messages so that there would be 2n/2 messages in each set, and then
you need to find the corresponding hash values. Then, according to the “birthday
paradox,” the probability that among them, there will be a pair of messages with the
same hash values will be more than 0.5. Such an attack requires a large amount of
memory to store sets of plaintext and apply effective methods of sorting them [16].

The scenario of an attack on a hash function based on the “birthday paradox”
where the attacker A wants to attack party B and sign a contract that is unfavorable
for party B looks like this:

(1) Attacker A is preparing two versions of the contract—a “good” option M1

and a “bad” option M2. Then, he makes minor changes to each document,
manipulating periods, commas, other punctuation marks, and spaces.
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(2) AttackerAcalculates the values of hash functions for all versions of the contract
created by him, compares sets of hashes, and searches for identical pairs. If
the length of the hash is 64 bits, then for this purpose 232 pairs are enough.
Attacker A selects a pair of messages for which the value of the hash function
is similar.

(3) Attacker A selects the selected pair with similar hashes and passes the “bad”
version of the contract M2 for signature to party B. In this case, the attacker A
can prove in court that party B signed an unfavorable contract knowingly.

Thus, for a given hash functionH(m), the purpose of the attack is to find a collision
of the second kind.

The reliability of EDS is determined by the resistance to cryptological attacks of
its components, such as: (1) hash functions, (2) EDS algorithms.

Themain task ofEDScryptanalysis is to assess the probability of breaking the hash
function under the following attacks: (a) brute-force (rough selection); (b) selection
of the hash value, grouped per affiliation.

2.4 Methods and Algorithms for Hash Attacks

Based on the cryptanalysis apparatus formulated above, we estimate the probability
of breaking the hash function. To attackwith thismethod (brute-force),we considered
two methods:

(1) The method of breakage resistance to collisions. According to the known
value of the hash function H(M), the attacker creates another document M ‘

such that H
(
M ‘

) = H(M). An attacker tries to find two random messages M
and M ‘ such that H

(
M ‘

) = H(M).
Suppose that a hash function is absolutely reliable and unidirectional, and

there is no other method of breaking it than a complete search of its values.
At the output of this function, we obtain a number whose bit size is m. Then,
the number of output values of the function H = 2m . Let us denote P(n, k)
the probability that for a specific X value, at least one Yi value from the range
of values Y1 . . . Yk equality H(X) = H(Y ) is satisfied. For one Y , the prob-
ability of H(X) = H(Y ) will be 1/n. From here, it is easy to find that the
probability of identity of the expression H(X) �= H(Y ) will be (1 − (1/n)).
If we generate k number of values, then the probability that none of them
will be repeated is defined as the product of the probabilities, calculated as(
1 − (1/n)k

)
. Therefore, the probability of at least one match will be equal

P(n, k) = 1 − (1 − (1/n)). For the case of absolute break, the probability of
such a case is P(n, k) = 1.

Using the “birthday paradox” discussed above to estimate the probability of
a collision in a hash function, we can estimate the probability of such a case as
P(n, k) = 0.5, whence the value of the parameter k = n/2 = 2(m−1). Thus, it
can be argued that the relative probability of a successful attack by the method
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of breaking the resistance to collisions (finding such a hash generated for a
given value of an open message) is achieved with 2(m−1) random messages.
Then, the probability of breaking the hash function is 1/2(m−1) [14–16]. The
obtained values of the hash function breakage probabilities for different n-bit
message lengths (Table 1).

Functiongraph showing estimationof the probability of breaking the hash function
by the method of burglary resistance to collisions we can see in Fig. 1.

(2) The method of breaking the strict resistance to collisions. Let P(n, g) be
the probability that in a set of g elements, each of which can acquire n number
of values, there are at least two elements whose values are identical. Then, the
value that must acquire g in order for the condition to be fulfilled:

Table 1 Estimation of the probability of breaking the hash function by the method of burglary
resistance to collisions

Hash length, bits Probability of breaking the hash function

64 1,0842021724855044340074528008699e-19

128 5,8774717541114375398436826861112e-39

192 3,1861838222649045540577607955354e-58

256 1,7272337110188889250772703725601e-77

384 5,0758836746312984465480491116611e-116

512 1,4916681462400413486581930630926e-154

1024 1,112536929253600691545116358662e-308

2048 6,1886920947651565509603667399424e-617

Fig. 1 Estimation of the probability of breaking the hash function by the method of burglary
resistance to collisions
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P(n, g) > 0.5 (2)

In (2), condition for estimating the probability of meeting identical values is
formulated. From expression (2), it can be understood that the number of ways to
select elements such that there were no repetitions is n!(n − g)! The total number of
ways to select such elements is equal to ng . The probability that the elements are not
repeated is n!/[(n − g)!ng]. Expression (2) can be written to determine the cases of
probability of repetition:

P(n, g) = 1 − [
n!/((n − r)!)ng] (3)

In (3), overall probability estimate for cases of repetition of several elements is
formulated. If P(n, g) = 0.5, then g = √

nln2 = ln2
√
n ≈ n1/2. Let us assume that

the length of the hash is m—bit, then the number of values that the hash acquires
is equal to 2m , then g = √

2m = 2m/2. Therefore, to receive two messages with the
same content (collision), it is necessary to calculate a hash from 2m/2 random open
messages. The probability of breaking the hash function is estimated as (1/2)m/2 [14–
16]. Using expression (3), we can obtain the values of the probability of breaking
the hash function at different values of the bit size of the obtained hash (Table 2).

From the obtained results of comparisons of hash function break probabilities,
it is clear that under the same hash value length, the hash value break by collision
resistance break method is much lower than with the use of strict collision resistance
break method.

From the obtained results of comparisons of hash function break probabilities, it
is clear that under (Fig. 2).

On the first (Fig. 1) and second (2) graphs, you can see serious differences in the
probability of breaking hashes when using the first and second methods.

Suppose that for a given cryptographic hash function f , the aim of the attack is
to find a collision of the second kind. To do this, it is need to calculate function f
values for randomly selected blocks of input data until two blocks are found that
have the same hash. Thus, if f has N different equally probable output values and

Table 2 Estimation of the
probability of breaking the
hash function for an attack by
the method of strict resistance
to collisions

Hash length,
bits

Probability of breaking the hash function

64 0,00,000,000,023,283,064,365,386,962,890,625

128 5,4210108624275221700372640043497e-20

192 1,2621774483536188886587657044525e-29

256 2,9387358770557187699218413430556e-39

384 1,5930919111324522770288803977677e-58

512 8,6361685550944446253863518628004e-78

1024 7,4583407312002067432909653154629e-155

2048 5,562684646268003457725581793331e-309
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Fig. 2 Estimation of the probability of breaking the hash function for an attack by the method of
strict resistance to collisions

N is large enough, then from the birthday paradox it follows that, on average, after
enumerating 1,25

√
N different input values, the required collision will be found.

If the hash function generates an N—bit value, then the number of random input
data for which the hash codes are likely to give a collision is not 2 N , but only about
2 N/2. The light cells show the amount of input data at which a collision will occur
with a given probability (analogy with a paradox, the number of different output
chains is 365). This why there is no need to create data sets. Therefore, the goal
of this research is fully achieved. Thus, without forming data samples for a given
cryptographic hash function f , one can easily find a collision of the second kind. For
this, it is sufficient to use only expression (3).

3 Conclusion

Estimation of probabilistic modeling demonstrates a systematic approach to cryp-
tographic analysis of the method. The probabilistic approach makes it possible to
assess the dependence of input and output data during encryption, as well as the
selection of “bad” keys, which may not be reliable in practice. It can be concluded
that to increase the resistance of the hash function in the EDS scheme to break at
least to the level of 10–25, hashing of at least 192-bit or even greater should be used.

When working with key hash functions, it is dangerous to add a key at the
beginning or end of the message. This can be explained as follows:

• Let the key k be added at the beginning of the message, and the convolution
function be constructed according to theMercle-Dogmar scheme.Then, according
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to the message M known to the cryptanalyst and its convolution function can be
constructed.

• H = H(k‖M ), it is possible to determine the convolution value for all messages
of the type M

∥∥M ‘ , where after the message M any message M ‘ is added. Indeed,
due to the iterative nature of the hash function, there is no need to know the key
to determine H ‘ = H

(
k‖M‖M ‘

)
. It is enough to use the intermediate value of

the convolution H when calculating;
• Let the key k added at the end of the message H = H(M‖k). The collision value

for the hash function (pairM1,M2) provided thatM1 �= M2, but H(M1) = H(M2)

can be calculated through the hashes H(M1, k) = H(M2, k) for any k value.
From this we can conclude that the complexity of changing the message M1 is
no longer estimated by the value of O(2n). Due to the use of the paradox of
birthdays, the complexity will be significantly reduced and will be O

(
2n/2

)
. In

order to reduce the probability of successful cryptanalysis, it is recommended to
write the key when calculating the convolution in the hash function several times.
For example, as shown in an expression H = (k‖y‖M‖k) that can be rewritten
like H = H(k‖y1‖H(k‖y2‖M)) where y, y1, y2 is a complement of the key to a
size multiple of the length of the hashing block.

Keyless functions are built on this principle. They are extremely reliable for attacks
of collisions of the first and second kind, but their disadvantage is the large length of
the resulting convolution, which significantly complicates their use.

For example, the standards of the Russian Federation and Ukraine have not only
one, but several variants of hashes, because the cipher parameter is a set of replace-
ment nodes. In this case, we get our own hash for each set. This nuance has the advan-
tage of cryptanalysis complication, but creates compatibility problems, because each
of these algorithms determines the step hashing function, which receives two blocks
of data at the input:

• the current hash value from the previous step;
• another fragment of the input data array.

Thus, for a 128-bit hash function, the breakage probability differs for both
methods by 9,223,372,036,854,775,808 times. You can also estimate the machine
time required to break by thefirst and secondmethods. For example, the probable time
to find the collision by the firstmethod, provided that the hash has dimensionm= 128
it is necessary to calculate 2128 = 3, 4 ·1038 variants. Then using the «birthday para-
dox», the number of these options will be 2m/2 = 1, 8446744073709551616 · 1019
by the second method and 2m−1 = 1, 7 · 1038 by the first method.

The results obtained in this work can find practical application in solving a number
of problems of modern cryptography, for example, in evaluating the effectiveness
of parallel implementation of methods for determining multicollisions of hash func-
tions, as well as methods of discrete logarithm, similar to the Pollard ρ-method
[18].
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