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Abstract This paper summarizes the main results of a broader research activity
aimed at facilitating the use of gravel-rubber mixtures (GRMs) in geotechnical engi-
neering applications. Precisely, the results of direct shear tests carried out on three
GRMs having different aspect ratios (AR = 0.28, 0.57, and 0.66) and prepared at
different volumetric rubber contents (VRC = 0, 10, 25, 40, and 100%) are reported
and discussed. Additionally, an original 3D hybrid DEM numerical model (named
DEM4GRMmodel) for rigid-soft particle mixtures is presented, and its performance
is evaluated. Lastly, using newly proposed micromechanical equations, factors such
as fabric and force anisotropy, and strong-force chains are systematically examined
throughout the shearing process to gain insight on the particle-level behavior of
mixtures with varying VRC.
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1 Introduction

In Australasia, geotechnical engineers are increasingly expected to meet require-
ments for environmentally friendly design, construction, and innovation [1]. As
a result, reuse and recycling of construction and demolition materials, commer-
cial wastes and industrial by-products in geotechnical engineering applications are
progressively sought as it provides substantial benefits in terms of increased sustain-
ability and reduced environmental impacts [2–6; among others]. Specifically, to the
New Zealand context, due to the large number of waste tires produced annually
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[7] and the need to design more seismic resilient structures [8], the recycling of
tire-derived aggregates (TDAs) mixed with granular soils to produce lightweight
fill materials with excellent mechanical and energy adsorption properties is of great
significance [9].

A comprehensive literature review compiled by Tasalloti et al. [10] has shown that
much of the previous research on granular mixtures has focused on the mechanical
characterization of sand-rubber mixtures. Yet, in the selection of the soil type and
recycled rubber size to form soil-rubber mixtures for use in geotechnical applica-
tions, the availability and the cost efficiency of both materials should be carefully
considered [11]. In fact, to avoid inherent segregation of binary mixtures made of
large and small particles [12, 13], the recycled rubber should be cut into smaller
(sand size-like) pieces when mixed with sandy soils, which unavoidably increases
the implementation costs. Consequently, as an alternative, the use of gravel-rubber
mixtures (GRMs) has been increasingly recommended by researchers [14–20].

Nevertheless, compared to sand-rubber mixtures, the mechanical behavior of
GRMs is still largely unknown. Therefore, as a part of a research activity aimed at
facilitating, the use of GRMs is geotechnical applications in New Zealand [9, 15, 18,
20, 21], two subsequent steps were undertaken by the authors: (i) a number of direct
shear investigations were carried out on three gravel-granulated rubber composites
mixed at volumetric rubber content (VRC) of 0, 10, 25, 40 and 100% to evaluate
the combined effects of VRC, aspect ratio (AR = D50,R/D50,G) and applied normal
stress on the strength properties of GRMs; and (ii) a novel three-dimensional hybrid
discrete element method model (named DEM4GRM) able to accurately describes
the macromechanical direct shear response of rigid-soft particle mixtures was devel-
oped. Moreover, ad hoc equations defining key micromechanical features of such
synthetic materials throughout the shearing processes were established for GRMs.
In this paper, experimental findings are first summarized. Then, the newDEM4GRM
model [22] is briefly introduced and simulation results are shown. Finally, using the
newly proposed equations,microscale aspects such as fabric and force anisotropy and
strong-force chains are scrutinized throughout the shearing process and compared
among mixtures with varying VRC.

2 Experimental Study

2.1 Materials and Procedure

The strength properties of GRMs were estimated by means of a medium-size direct
shear box (100 × 100 mm in cross-section and 53 mm in height) under three normal
stress (σ n) levels of 30, 60 and 100 kPa. The horizontal displacement rate was
1 mm/min.

Three types of rigid-soft granular mixtures were prepared by mixing a uniformly-
graded rounded gravel (G) and three recycled rubber particle sizes: large (R1, D50 =
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Fig. 1 a Particle size distribution curves and b photographic images of the gravel and granulated
recycled tire rubber used in this study

3.74 mm), medium (R2, D50 = 3.23 mm), and small (R3, D50 = 1.61 mm). Figure 1
shows the particle size distribution curves and photographic images of each material.
The material properties are listed in Table 1. The aspect ratio of the mixtures is G-R1
(AR= 0.66), G-R2 (AR= 0.57), and G-R3 (AR= 0.28). The GRMswere prepared at
volumetric rubber contents (VRC) of 0, 10, 25, 40, and 100%, where VRC is defined
as the ratio between the volume of rubber and the total volume of solids.

All specimenswere tested in dry conditions andprepared at a degree of compaction
of 90–95% (by dry tamping method), which was calculated based on the values of
maximum dry density (ρmax—obtained by standard proctor compaction tests). For
completeness, the minimum dry density (ρmin) was also determined by carefully
pouring the materials in the compaction mold with zero depositional height. Note
that vibratory table tests were found not effective to obtain ρmax for GRMs. This is
obviously in contrast to the response of typical hard-grained stiff granular materials
for which vibratory compaction is most effective [23], but it can be attributed to the
high energy absorption nature of the rubber particles in the mixtures.

Table 1 Properties of gravel and recycled tire rubber

Material Gravel** Recycled tire rubber

Large** Medium*** Small**

Symbol G R1 R2 R3

Mean diameter, D50 (mm) 5.67 3.74 3.23 1.61

Specific gravity, Gs 2.71 1.15 1.15 1.14

Maximum dry density, ρmax (kg/m3)* 1753 649 634 602

Minimum dry density, ρmin (kg/m3) 1571 510 460 429

*by proctor compaction tests
**experimental data from Chiaro et al. [9, 21] and Tasalloti et al. [18, 20]
***experimental data from this study
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Segregation is an inherent difficulty in granular mixtures that may be triggered by
size, density, stiffness, and shape features [12]. Segregation in the GRM specimens
was prevented by minimizing any vibration and avoiding granular flow.

2.2 Test Results

The materials investigated in this study are essentially binary granular mixtures
consisting of rigid and soft particles of different size and shape. Their packing,
density, and mechanical behavior are influenced by the inherent properties of the
materials (i.e., size and shape), the proportion as well as the size ratio of large/small
and rigid/soft particles in the total volume of solids.

2.2.1 Packing and Density Characteristics of GRMs

The variation of dry density (ρd) is shown in Fig. 2 for G-R1 and G-R3 mixtures. As
the rubber particles aremuch lighter than the gravel grains (i.e., theGs of gravel grains
is more than twice than that of rubber particles), both the minimum and maximum
dry densities of GRMs decrease almost linearly by increasing VRC. However, at
VRC ≤ 40%, the dry density values of G-R3 are slightly above the linear trends.
This is due to the fact that at lower VRC, small rubber particles can occupy the voids
between large gravel grains (Fig. 2b) which results in an increase of the density state
of the mixtures [12, 13]. In contrast, because the size of R1 particles is almost similar
to that of the gravel, the rubber particles cannot fit in the voids between the gravel
grains, even at lower VRC, but rather their replace the gravel grains in the mixtures
(Fig. 2b).
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Macro and microscale Engineering Response … 15

2.2.2 Shear Strength Characteristics of GRMs

The stress–strain-volumetric behavior of G-R2 obtained by direct shear tests at σ n

= 30, 60, and 100 kPa is reported in Fig. 3. It can be seen that irrespective of σ n,
by increasing VRC, the material response gradually changes from dilative with a
clear peak shear state to contractive without peak shear state. Moreover, the peak
shear stress (τmax) increases with increasing σ n and decreases with decreasing VRC.
Similar tendencies were observed for G-R1 and G-R3 (due to page limitation, not
all the experimental data could be reported here but can be found in Tasalloti et al.
[18, 20]). The summary plot reported in Fig. 4a shows that τmax decreases with AR.
Moreover, it indicates that the effects of AR on the GRM strength are less significant
as compared to those due to VRC and σ n.

Figure 4b reports the values of the Mohr–Coulomb friction angle (φ′) for all
mixtures. Essentially, φ′ decreases significantly with increasing VRC (and only
slightly with AR) from about 54° (gravel) to 29° (graduated rubber). Notably,
excluding G-R2 and G-R3 with VRC > 85% and G-R1 with VRC > 95%, most
of the GRMs have a high strength (i.e., φ′> 30°) irrespective of the VRC and rubber
particle size making them suitable structural fill materials for many geotechnical
applications [2, 9].
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Fig. 3 G-R2 behavior in direct shear tests at 30, 60, and 100 kPa normal stress
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Fig. 4 a Maximum shear stress and b friction angle of GRMs in direct shear tests

Fig. 5 Compressibility of GRMs in one-dimensional compression tests with two-hour creep
loading stages

2.3 Key Aspects to Consider in the Selection of GRMs

2.3.1 Compressibility

Despite the adequate strength of GRMs, the ultimate adoption of GRMs as structural
fills in geotechnical application would depend also on their compressibility under
sustained loads. Typical results obtained for G-R1 and G-R3 by one-dimensional
compression tests with two-hour creep loading stages [21]. It is obvious that the
higher is the vertical stress applied on GRMs, the higher is the vertical strain devel-
oped, and the lower is the VRC that may be accepted in the mixtures to satisfy
compressibility requirements [18, 20]. Moreover, AR also plays a key role; in fact,
for any combination of VRC and vertical stress, it can be seen that the mixtures
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with small rubber particles (G-R3) experience large vertical strain as compared to
those with large rubber particles (G-R1). Therefore, to have GRMs with enhanced
compressibility, gravel and rubber particles with similar grain size should be used.

2.3.2 Environmental Implications

The introduction of new or alternative (recycled waste) materials in geotechnical
applicationsmayhave benefits in terms of cost reductions and increased performance.
However, it is essential to ensure that such innovations do not result in long-term
negative impacts on the environment, e.g., through the leaching of toxic chemicals
into the surrounding soil environment, groundwater, and surface water. The results
of leaching tests conducted by Banasiak et al. [24] on GRMs have indicated that the
leachate from smaller tire particles (R3) had a higher content of metals (e.g., Zn), as
compared to the large rubber one (R1), implying that particle size and surface area
influence the concentration of elements in tire-gravel mix leachate. To minimize the
leaching of metals, therefore, the use of large rubber particle size is desirable.

3 DEM Numerical Modeling of GRMs

The discrete element method (DEM) is a very useful tool to investigate particle-level
interactions and develop a better understanding of the macro and micromechanical
behavior of granular matters [25]. Due to the granular and discrete nature of GRMs,
DEM is indeed an ideal numerical modelingmethod to investigate the micromechan-
ical behavior of such materials. Yet, the soft and low modulus nature of the rubber
particles challenge one of the fundamental hypothesis of DEM by particle rigidity.
Based on this hypothesis, contact forces are determined from the overlap between
contacting bodies but the particles do not deform [25].While the rubber softness may
be accounted for by prescribing a low material stiffness, the volumetric behavior of
pure rubber (νrubber = 0.5) cannot be replicated easily in DEM using the particle
rigidity method.

To address this issue, Asadi et al. [26] implemented a deformable agglomerate
to model more accurate changes in the shape (deformation) of rubber particles by
using weak internal bonds between tire rubber particles, allowing the spheres within
a cluster to move and rearrange. In the following, Ren et al. [27] implemented
a deformable single rubber particle model that is able to describe the volumetric
behavior of rubber. It has been indicated that with sufficient rows of bonded spheres
packed in a body-centered cubic (BCC) arrangement, this model can consistently
and precisely capture the strength and volumetric response of a single rubber particle
as the nonlinear mechanical behavior of rubber is described by a piecewise linear
contact/bond model.

Taking advantage of both the well-established particle rigidity approach appli-
cable to rigid gravel grains and the possibility to capture the soft rubber behavior using
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BCC deformable particles, in this study, a 3D hybrid DEM model for GRMs (called
DEM4GRM model) was developed using the particle flow code three-dimensional
program (PFC3D, version 6.1 [28]). Such model makes it possible to explore the
micromechanical direct shear behavior of GRMs under varying VRC and normal
stress levels.

The framework in PFC3D is based on the DEM formulation by Cundall and
Strack [29], where an explicit numerical scheme is used to monitor the interaction
of particles individually and its corresponding contacts with neighboring particles.
Moreover, based on the particle rigidity approach, contact forces are evaluated from
the overlap between contacting bodies but the particles do not deform [25]. In this
study, the Hertz-Mindlin contact law [30] was used to define the particle interaction
at each contact. It is based on a nonlinear contact force-overlap relationship. The
DEM4GRMmodel input parameters defining the contacts are provided in Table 2. As
the gravel and rubber particles have different engineering properties, the surface prop-
erty inheritance functionality in PFC3D [28] was used to determine hybrid contact
properties between the gravel and rubber particles.

Table 2 DEM4GRM model: input parameters for G-R1 mixtures

Item Parameter Units Value

Gravel Particle density kg/m3 2710

Coefficient of friction 0.72

Shear modulus MPa 90

Poisson’s ratio 0.3

Rubber Particle density kg/m3 1150

Coefficient of friction 0.27

Rubber–bonds Shear modulus bonded spheres MPa 12

Bond elastic modulus MPa 20

Normal-to-shear stiffness ratio (kn/ks) 4.0

Tensile strength Pa 30E200

Shear strength Pa 30E200

Critical damping ratio 0.25

Wall Coefficient of friction 0.70

Shear modulus MPa 80,000

Poisson’s ratio 0.25

Global Damping coefficient 0.2
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3.1 Features of the DEM4GRM Model

3.1.1 Single Rubber Particles Model

Knowing the importance of accounting for the compressive volumetric behavior of
rubber, an improved tire rubber particle model was proposed in this study, which
builds on the studies from Asadi et al. [26] and Ren et al. [27]. Precisely, to attain
an accurate simulation setup and reduced computation time, the BCC rubber model
by Ren et al. [27] was enhanced and optimized. Figure 6a displays the proposed
rubber model consisting of a cluster of 35 balls, BCC packed, and bonded together
by linear parallel bonds [31]. The intercluster nonbond contacts, which would form
when in contact with external particles, are defined using the Hertz-Mindlin model
[30]. To guarantee that the compressive load is applied more evenly, an outer shell
was positioned on each side of the cubic assembly. The model elastic parameters
were defined using the results of a series of uniaxial compression tests on single

Fig. 6 Characteristics of the newly proposed DEM4GRM model
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tire rubber particles as shown in Fig. 6b. Full details of the proposed single rubber
particle model are available from Chew [32].

3.1.2 Gravel Particle Model

Due to the gravel particles size and shape variability, gravel grains were modeled
using a simple clump shapes (Fig. 6c) as those considered by Garzia and Bray [33].

3.1.3 DEM Modeling of GRMs

The GRM specimens were generated using the overlapping method [28, 34] based
on the particle size distribution of gravel and large rubber particles (R1) used in the
laboratory experiments (Fig. 1). The specimens were quasi-statically compressed
until reaching the required target degree of compaction.Thenormal stresswas applied
to the specimens by means of a force applied on the top plate. In the following, the
specimens were sheared by moving the lower box at a rate of 0.002 m/s (to maintain
quasi-static condition). Frictionless lateral walls were adopted tominimize k0 effects.
Figure 6d shows a typical DEM specimen obtained for VRC = 40%.

The model parameters for the reference materials were determined by simulating
the gravel (VRC = 0%) and rubber (VRC = 100%) behavior in direct shear tests
and fitting the shear and volumetric response that best match the experimental direct
shear results. No additional model parameters were defined for mixtures with VRC
= 10, 25, and 40%, but rather the shear and volumetric trends in the simulations
were merely defined by the proportion of gravel and rubber particles in the mixtures
and the normal stress level applied on the specimens.

3.2 Simulation Results

In Fig. 7a, b, typical DEM simulation results are presented for gravel and granulated
rubber specimens, respectively, sheared at σ n = 30, 60, and 100 kPa. It can be
seen that irrespective of the stress level, there is a very good agreement with the
experimental tests results, both in terms of stress and volumetric behaviors.

Moreover, the results obtained for GRMs sheared at σ n = 100 kPa are reported
in Fig. 7c. Despite no explicit model parameters were defined for the mixtures, there
is a good agreement with the experimental tests results, being the model capable
of capturing key futures of dilative (rigid gravel-like) and compressive (soft rubber-
like) mixture responses with varying VRC. Yet, while the stress response is perfectly
described, the volumetric response appears to be slightly overpredicted, although the
trends are correct (i.e., showing a more contractive behavior with increasing VRC).
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4 Micromechanics Analyzes and Discussion

4.1 Fabric and Force Anisotropy

The methodology proposed by Rothenburg and Bathurst [35] was used to quantify
the fabric and force anisotropy in the DEM4GRMmodel simulations during shearing
with somemodifications in linewith the latest research outcomes (e.g., [36]). A curve
fitting approach using second-order Fourier series yielded the following expressions
that best describe the (polar) distribution of different contact types considered in this
study. The shape of the distribution of the contact vector—fabric can be approximated
using the harmonic function:

E(θ) = {1 + a cos 2(θ − θa)}
2π

(2.1)

where a represents the magnitude or coefficient of anisotropy of the contact orienta-
tions, and θa is the principal direction of this anisotropy. Similarly, the contact normal
force distribution can be represented by

f n(θ) = f
o
n{1 + an cos 2(θ − θn)} (2.2)

where f
o
n is the average contact normal force, an is the parameter describing the

anisotropy of the contact normal force component, and θn is the direction of the
maximum average normal forces. The expressions in Eqs. (2.1) and (2.2) are found
to be similar to those used by Rothenburg and Bathurst [35].

The following expression was proposed to best approximate the tangential force
distribution for the GRMs considered in this study:

f t (θ) = f
o
t {1 + at cos 4(θ − θt )} (2.3)

where f
o
t is the average contact shear force, at is the parameter describing the

anisotropy of the contact tangential force component, and θt defines the direction
of the peak contact shear force. Note that this expression differs to that reported by
Rothenburg andBathurst [35], bywhich the tangential force approaches zero between
the peaks. This is due to the fact that Rothenburg andBathurst [35] considered perfect
spheres whereas in this study clumps were used. The interlocking effects introduced
by the clumps give rise to “background” tangential forces that are randomly orien-
tated, and thus, the tangential forces do not diminish along orthogonal planes. The
resultant tangential force distribution is akin to a superposition of an isotropic “back-
ground” tangential forces (Eq. 3), which forms a slightly different distribution to that
observed by Rothenburg and Bathurst [35].
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Figure 8 shows the comparison between polar histograms of the fabric, normal
force and tangential force distribution at different shearing stages obtained by the
proposed approximation functions, and DEM simulations for GRMs (VRC = 25%
at σ n = 60 kPa). For inclusiveness, the variation during the shearing process of the
force anisotropy coefficients (a, an, and at ) is also reported. Although not presented
here, it is important to mention that very similar trends were obtained at 30 and 100
kPa normal stress.

Generally, the fabric of the rubber (VRC = 100%) specimens is significantly
different from that of the gravel (VRC = 0%) and that of the mixtures look like one
or the other depending on the VRC content. Specifically, at VRC = 40%, the trends
in a, an, and at begin to be similar to that of VRC = 100%, suggesting that the
soft-like rubber-dominated behavior is expected for the mixtures with VRC ≥ 40%.
Contrarily, the peaks in a, an, and at coefficients trends during shearing are obvious
up to VRC = 25%, suggesting that rigid-like gravel-dominated behavior is expected
for the mixtures with VRC ≤ 25%. This was confirmed by the analysis of the force
network as described in the next section.
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Fig. 9 Behavioral zones for
GRMs in direct shear tests
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4.2 Force Network

It has been well established that the contact network can be separated into two cate-
gories: the strong force network and the weak force network [37]. The strong force
network consists of contact forces greater than the average force in the assembly and
represents the load-bearing force chains that form during shearing and is responsible
for the fabric and force anisotropy observed [36, 38, 39].

Figure 9 reports a typical distribution of the amount of gravel-gravel (g-g), gravel-
rubber (g-r), and rubber-rubber (r-r) contacts participating in the strong force network
for various GRMs. It can be observed that the proportion of r-r contacts in the
strong force network is irrelevant up to VRC = 25–30%, and more than half of
the strong contacts are g-g contacts. From VRC = 25% onward, the proportion of
strong r-r contacts increases significantly while the proportion of strong g-g force
chains decrease rapidly. At VRC = 40%, both the r-r and g-g contacts carry an
equal proportion of the strong contacts. Yet, the strong forces chains are primarily
transmitted via the g-r contacts, giving rise to an intermediate behavior where the
specimen displays primarily a dilative behavior during shearing. The peak shear
stress is also less pronounced. Above VRC = 60%, r-r contacts sustain most of the
strong-force chains in the assembly.

5 Concluding Remarks

In this paper, the results of direct shear tests carried out on gravel-rubber mixtures
(GRMs)—having different aspect ratios (AR = 0.28, 0.57, and 0.66), prepared at
different volumetric rubber contents (VRC = 0, 10, 25, 40, and 100%) and sheared at
30, 60, and 100 kPa normal stress—were reported and discussed. Moreover, an orig-
inal 3D hybrid DEM numerical model for rigid-soft particle mixtures was presented,



Macro and microscale Engineering Response … 25

and its performance was assessed. Finally, using newly proposed constitutive equa-
tions, microscale factors such as fabric, force anisotropy, and strong force chains
were systematically examined throughout the shearing process to gain insight on the
micromechanical behavior of mixtures with varying VRC.

The following main conclusions can be drawn from this study:

Macroscale

(i) Irrespective of the applied normal stress level and rubber particle size (or
aspect ratio, AR), the response of GRMs changed rapidly from dilative-like to
contractive-like with the addition of rubber in the mixtures;

(ii) Independently from AR, the friction angle (φ′) was found to be between 54°
(gravel) and 29° (rubber) indicating that the majority of GRMs are suitable
structural fill materials for most geotechnical applications (φ′ ≥ 30°);

(iii) The ultimate adoption of GRMs in geotechnical application depends also on
their compressibility that may limit the VRC in the mixtures, especially when
small rubber particles (or aspect ratios) are used to form GRMs%;

(iv) From an environmental viewpoint, the use of GRMswith large rubber particle
(free from steel wires) is desirable since it would minimize the leaching of
toxic metals (e.g., Zn) from granulated rubber.

Microscale

(v) Micro fabric and force anisotropy generally decreased with increasing VRC,
following a similar pathway observed for the macroscale strength behavior;

(vi) Based on the strong force network analysis, three distinct behavioral zones
were identified for GRMs:

• gravel-like rigid behavior zone: VRC ≤ 30%;
• intermediate behavior/transition zone: 30% < VRC < 60%; and
• rubber-like soft behavior zone: VRC ≥ 60%.

It is important to mention that the above is valid for the level of normal stress
considered in this study. In fact, at higher stress levels, the rubber-like behavior
could become more predominant even at lower VRC levels.
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