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1 Introduction

Inclusions greatly influence the physics and mechanics of materials. Hence, a deeper
understanding of inclusions and research in the field of inclusions play a substantial
role in the development of cutting-edge materials. Such research is also essential in
the enhancement of already existingmaterials used in aerospace,marine, automotive,
and numerous other applications [1]. The study of inclusions and inhomogeneities
was pioneered by J. D. Eshelby. The theory of ellipsoidal inclusions has been widely
used in homogenization schemes. These schemes, in turn, are utilized to predict
failures in composite materials. This theory has also been used to accommodate
imperfections and impurities inside material with significant thermal expansion in
the detailed design of a machine and its components. Moreover, it has been used in
a broad spectrum of research areas such as crack propagation and fatigue initiation
from micro defects, semiconductors, biomechanics, and geomechanics. It has also
been effectively used in themodeling of nanostructures like Quantum dots (QDs) and
Quantum wires (QWRs). A comprehensive review of current studies and researches
on this topic can be found in the work by Zhou et al. [1] (Fig. 1).

Eshelby formulated the elastic fields within an ellipsoidal inclusion subjected to
some uniform eigenstrain and embedded inside a homogeneous isotropic elastic infi-
nite matrix [2]. The eigenstrain is a non-elastic strain that the inclusion would show
if it is not surrounded by the matrix on the outside. It is also called ‘strain without
stress’ or ‘zero-stress strain.’ The non-elastic strain can be due to misfit, thermal
deformation, plastic deformation, and phase transformation. If the elastic modulus
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Fig. 1 a Homogeneous inclusion (aka inclusion in general): The subregion (Ω) contains an eigen-

strain
(
ε∗
i j

)
and has the same elastic moduli as the matrix. b Inhomogeneous inclusion: The subre-

gion (Ω) contains an eigenstrain
(
ε∗
i j

)
and has different elastic moduli than the matrix. For zero

eigenstrain, it is known as an inhomogeneity

of the subdomain (Ω) is the same as that of the matrix, then it is called a homoge-
neous inclusion or sometimes, inclusion in general. And if the elastic modulus of the
inclusion is different from that of the matrix, then it is known as an inhomogeneous
inclusion. When the eigenstrain inside the inhomogeneous inclusion is zero, it is
called an inhomogeneity [3].

A huge number of studies on ellipsoidal inclusion problems are already done and
published. However, a thorough literature review reveals that nearly all the studies
deal with elastic inclusions, and semi-analytical methods are also developed for the
same. Elasto-plastic inclusions undermonotonic loading are discussed in thework by
Jana and Chatterjee [4] while such problems under cyclic loading have not received
any attention in the research. A potential application of such studies on elasto-plastic
inclusions would be modeling of material damping and internal energy dissipation
due to elasto-plastic flaws in the material [5].

In this paper, we investigate the stress–strain behavior inside a single elasto-plastic
ellipsoidal inhomogeneous inclusion embedded within an infinite isotropic homoge-
neous elastic matrix under uniform sinusoidal far-field loading using ABAQUS. Two
different material models namely elastic/perfectly plastic and elastic/linear isotropic
hardening material behavior, along with J2 flow theory, are considered for the elasto-
plastic inclusion in the finite element simulations. Details of the simulations are
discussed in the following sections.
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2 Finite Element Analysis

It is a fact in the literature that the stress state inside an ellipsoidal inclusion becomes
uniform for an infinite unbounded matrix [2]. However, an infinite matrix is an
imaginary concept and cannot be thought of in real-world applications. Thus, we
work with limits, and hence the size of the inhomogeneity is taken very small such
that the matrix behaves as an infinite solid surrounding the inhomogeneity.

For finite element simulations in ABAQUS, the geometric model consists of a
cube from the outside that acts as a matrix and an ellipsoid embedded inside the
cube that acts as an inhomogeneity. The boundary condition is a uniform state of
stress applied on all six faces of the cube on the outside. The nodes at the matrix–
inhomogeneity, interface i.e., cube-ellipsoid boundary, are merged for appropriate
load transfer. Simulations are carried out for twodifferent aspect ratios of the ellipsoid
and two different material models for inhomogeneity. Details of the geometry, finite
element mesh, material models, and loading are discussed below. Figure 2 shows a
schematic representation of an ellipsoidal inhomogeneity embedded inside a matrix,
subjected to uniform far-field stresses.

2.1 Geometry and Mesh Details of the Inhomogeneity

In this article, we have taken two different aspect ratios for the ellipsoidal inhomo-
geneity. The first one is a general ellipsoidal inhomogeneity while the other one is
a spherical inhomogeneity. A cube is taken as the matrix and the size of the cube is
taken considerably larger in comparison to that of the inclusion such that the cube
behaves as an infinite material body for the inhomogeneity. Details of the geometry
and mesh are discussed below.

Fig. 2 Schematic of an
elasto-plastic ellipsoidal(

x2

a21
+ y2

a22
+ z2

a23
≤ 1

)

inhomogeneity embedded in
an elastic matrix under
far-field stresses σ 0

i j
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2.1.1 Ellipsoidal Inhomogeneity

The first model consists of a general ellipsoidal inhomogeneity, which is an ellipsoid
with semi-axes lengths of 1, 0.75, and 0.5 mm, centrally embedded inside the matrix
represented by a cube with an edge length of 20mm. Figure 3a shows a quarter of
the full meshed model. The mesh is highly refined near the matrix–inhomogeneity
interface to capture the interaction and better the accuracy. The nodes are merged at
the matrix–inhomogeneity interface. The complete meshed model consists of 84,032
eight-noded linear brick elements (C3D8R) (see ABAQUS documentation [6] for
details). The final mesh with 84,032 elements is arrived at based on a convergence
study, which is presented in Sect. 3.

2.1.2 Spherical Inhomogeneity

Similarly, the spherical inhomogeneity is a sphere with a radius of 1mm, centrally
embedded inside the matrix represented by a cube with an edge length of 20mm.

One fourth of the full meshedmodel for the same is shown in Fig. 3b. The full meshed
model consists of a total of 85,440 eight-noded linear brick elements (C3D8R), and
high mesh refinement is used for reasons mentioned in the previous subsection. As
mentioned earlier, the nodes at the matrix–inhomogeneity interface are merged.

Fig. 3 aOne quarter of the 3Dmeshedmodel consisting of an ellipsoidal inhomogeneity embedded
in a matrix. b One quarter of the 3D meshed model consisting of a spherical inhomogeneity
embedded in a matrix
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2.2 Material Models for the Inhomogeneity

The matrix and the inhomogeneity are considered to have isotropic material
properties. Moreover, the matrix is considered to have purely elastic material
behavior while that of the inhomogeneity is considered to have an elastic–plastic
behavior. Simulations are carried out for two different elastic–plastic behaviors,
viz., elastic/perfectly plastic behavior and elastic/linear isotropic hardening behavior.
Schematic representations of both models are shown in Fig. 4a, b.

2.2.1 Elastic/Perfectly Plastic Inhomogeneity

In a material model with elastic/perfectly plastic behavior, the elastic behavior is
linear and in the plastic region, the yield stress does not increasewith plastic strain but
remains constant throughout the loading process [7]. Thematerial properties used for
the combination of the elastic matrix and the elastic/perfectly plastic inhomogeneity
are given in Table 1. These material properties are chosen from the earlier work by
Jana and Chatterjee [4]. Moreover, it is assumed that the inhomogeneity material
follows the J2 flow theory of plasticity.

2.2.2 Elastic/Linear Isotropic Hardening Inhomogeneity

In an elastic/linear isotropic hardening material model, a linear elastic behavior is
assumed and in the plastic region, the yield stress increases linearly with increasing

Fig. 4 a Schematic representation of an elastic/perfectly plastic material model. b Schematic
representation of elastic/linear isotropic hardening material model
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Table 1 Material properties
used in analyses of the
elastic/perfectly plastic
material model

Elastic matrix material

Young’s modulus 100 GPa

Poisson’s ratio 0.3

Elasto-plastic inhomogeneity material

Young’s modulus 50 GPa

Poisson’s ratio 0.28

Initial yield strength
(
σ 0
yp

)
25 MPa

Table 2 Material properties
used in analyses of the
elastic/linear isotropic
hardening material model

Elastic matrix material

Young’s modulus 200 GPa

Poisson’s ratio 0.3

Elasto-plastic inhomogeneity material

Young’s modulus 120 GPa

Poisson’s ratio 0.28

Initial yield strength
(
σ 0
yp

)
40 MPa

Elasto-plastic modulus (H) 10 GPa

plastic strain throughout the loading process [7]. Table 2 shows the material prop-
erties used for the combination of the elastic matrix and the elastic/linear isotropic
hardening inhomogeneity. Thesematerial properties are chosen from the earlier work
by Jana [5] and the inhomogeneity material is also assumed to follow the J2 plasticity
flow theory.

2.3 Loading

In ABAQUS, a pseudo-static analysis is carried out for the sinusoidally applied far-
field stresses. We have used 200 steps for the sinusoidally applied far-field load in
our analyses. The load steps starting from 1 to ending at 200 are represented using an
artificial time that ranges from 0 to 1, and this representation of load steps is called a
normalized load step. The load at a normalized load step depends on the frequency of
the sinusoidally applied far-field load

(
σ 0

)
and amplitude of each component of the

far-field load. In this article, we have taken three cycles for the sinusoidally applied
far-field stresses. A schematic of the sinusoidally applied far-field load is shown in
Fig. 5a. The ordinate shown in the figure shows a multiplication factor k. If σ 0 is
the amplitude of a far-field stress component, then kσ 0 will be the pseudo-statically
applied far-field stress. Figure 5b shows the variation of a far-field stress component(
kσ 0

xx

)
with σ 0

xx = 75MPa used in the analyses.
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Fig. 5 a Schematic of a sinusoidally applied far-field load (three load cycles). b Variation of a
far-field stress component

(
kσ 0

xx
)
with σ 0

xx = 75MPa

Table 3 Far-field stresses used in analyses of the elastic/perfectly plastic material model

σ 0
xx σ 0

yy σ 0
zz τ 0yz τ 0zx τ 0xy

75 MPa −50 MPa 40 MPa 30 MPa −25 MPa 65 MPa

Table 4 Far-field stresses used in analyses of the elastic/linear isotropic hardening model

σ 0
xx σ 0

yy σ 0
zz τ 0yz τ 0zx τ 0xy

150 MPa 200 MPa −110 MPa 80 MPa −150 MPa −140 MPa

The amplitude of the far-field stresses considered in the analyses for the
elastic/perfectly plastic inhomogeneity and elastic/linear isotropic hardening inho-
mogeneity are given in Table 3 and Table 4, respectively.

3 Results and Discussions

Several caseswere simulated and studied for different aspect ratios of ellipsoid geom-
etry,materialmodels, and far-field stresses. Ellipsoidal and spherical elastic/perfectly
plastic inhomogeneitieswere studied for far-field stresses given inTable 3.Ellipsoidal
and spherical elastic/linear isotropic hardening inhomogeneities were studied for far-
field stresses given in Table 4. The inputs for the material properties and the loadings
are motivated and taken from the work done by Jana and Chatterjee [4]. The results
from all the analyses reveal that the stress state within the inhomogeneity remains
effectively uniform throughout the loading. This is true for both general ellipsoidal
and spherical inhomogeneities. The surface plots of different stress components at a
given normalized load step are shown in the following figures.
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There is a slight non-uniformity in the stress values inside the inhomogeneity,
mainly near the matrix–inhomogeneity interface, and this is a consequence of the
discretization of the model.

We plot all the stress components in an arbitrarily chosen element near the centroid
of the inhomogeneity against the normalized load step. All such plots from the
analyses are shown below.

3.1 Elastic/Perfectly Plastic Inhomogeneity

Figures 6b and 7b show that after the transition from the elastic phase to the plastic
phase, the normal stresses keep changing but the shear stresses tend to be constant

Fig. 6 a Surface plot of τ yz in a quarter of the model consisting of the ellipsoidal [1 mm, 0.75 mm,
0.5 mm] elastic/perfectly plastic inhomogeneity embedded in the elastic matrix, at a normalized
load step of 0.2. b Stress components inside the inhomogeneity for the samemodel under sinusoidal
far-field stresses are in Table 3

Fig. 7 a Surface plot of σ xx in a quarter of the model consisting of the spherical [1 mm]
elastic/perfectly plastic inhomogeneity embedded in the elastic matrix, at a normalized load step of
0.4. b Stress components inside the inhomogeneity for the same model under sinusoidal far-field
stresses are in Table 3
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(nearly flat lines). These results are in agreement with the J2 flow theory because
yielding is a result of deviatoric stresses and not hydrostatic stresses. It is also seen
that the amplitude of the stress components does not change. This is expected for an
elastic/perfectly plastic material.

3.1.1 Ellipsoidal Inhomogeneity

We studiedmesh convergence for all the simulations. Table 5 details themesh conver-
gence study for elastic/perfectly plastic ellipsoidal inhomogeneity embedded inside
an elastic matrix at 100th time step of the sinusoidal loading.

An element is chosen near the centroid in each of the coarser and the finer mesh
models. The stress values in the element are taken at the 100th time step. It is clear
from the table that the results obtainedwith the finermesh are closer to those obtained
with the coarser mesh. Thus, it is clear that the results have converged. Moreover,
the results with finer mesh are shown in this paper.

3.1.2 Spherical Inhomogeneity

See Fig. 7.

3.2 Elastic/Linear Isotropic Hardening Inhomogeneity

Figures 8b and 9b show that even after the transition from the elastic phase to the
plastic phase, the stresses behave in a non-linear fashion. It can be noticed that the
amplitude of the stress components increases with the normalized load step. This
behavior is expected for an elastic/linear isotropic hardening material.

3.2.1 Ellipsoidal Inhomogeneity

See Fig. 8.

3.2.2 Spherical Inhomogeneity

Table 6 details the mesh convergence study for elastic/linear isotropic hardening
plastic ellipsoidal inhomogeneity embedded inside an elastic matrix at 150th time
step of the sinusoidal loading. An approach similar to the one adopted earlier is used
in this case as well. Moreover, the results obtained with the finer mesh are closer
to those with the coarser mesh, and hence it can be said that mesh convergence has
been achieved.
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Fig. 8 a Surface plot of τ zx in a quarter of the model consisting of the ellipsoidal [1 mm, 0.75 mm,
0.5 mm] elastic/linear isotropic hardening inhomogeneity embedded in the elastic matrix, at a
normalized load step of 0.6. b Stress components inside the inhomogeneity for the same model
under sinusoidal far-field stresses are in Table 4

Fig. 9 a Surface plot ofσyy in a quarter of themodel consisting of the spherical [1mm] elastic/linear
isotropic hardening inhomogeneity embedded in the elastic matrix, at a normalized load step of 0.8.
b Stress components inside the inhomogeneity for the samemodel under sinusoidal far-field stresses
are in Table 4

4 Conclusions and Future Work

In this paper, the stress–strain behavior in a single elasto-plastic ellipsoidal inhomo-
geneity embedded inside an infinite isotropic elastic matrix subjected to sinusoidal
far-field stresses is investigated using ABAQUS. The study is done for two different
material models, viz., elastic/perfectly plastic material model and elastic/linear
isotropic hardening material model. The results for both material models are not
shown in a single plot because the simulations are done for different loadings in each
case, and the reason behind this approach is to validate this work with the work done
by Jana and Chatterjee [4]. Nevertheless, this serves its purpose, i.e., we can easily
distinguish between the two material behaviors from separate plots.

We also investigated two different shapes of the inhomogeneity namely a general
ellipsoid and a sphere, i.e., a special ellipsoid. Moreover, the results for both
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geometric models, viz., ellipsoidal and spherical are not shown in the same plot
because there is no difference in the mechanics since a sphere is a special case of
an ellipsoid. Similar stress behaviors are observed for both geometric models. The
major contribution of this work is the preliminary study of stress behavior inside the
ellipsoidal inhomogeneity, and this work can be extended to other material models
as well. In future, a semi-analytical method, based on Eshelby’s approach, can be
developed to study the stress behavior, and in that case, this work would be used as
validation for the results obtained from the semi-analytical method developed.
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