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1 Introduction

For the construction of any structure on the rock mass, engineering properties
(strength and deformation characteristics) of the rock play an important role. These
properties are useful in planning andoptimizing theutilizationof thenatural resources
of the earth. The design of the structure resting on rock is influenced by the strength
and elasticity response under different stress conditions. Themajor influencing factor
is the stress–strain behavior and the elastic modulus (E). These are generally deter-
mined by the unconfined compressive strength test. Generally, these properties are
dependent on the point load strength index ‘Is (50)’, rebound number ‘Rn’, P-wave
velocity ‘VP’, and the porosity ‘n’ as reported in [1, 2]. It was reported by [3] that
the basic rock index tests, such as physical tests, ultrasonic velocity test, point load
index test, rebound number test, and Brazilian test, were easy to perform and were
economical. In the present study, the elastic modulus (E) of the rock was predicted
based on the index properties of the rock.

2 Background

Since the past decade, soft computing techniques have been becoming popular in the
field of civil engineering, especially in geotechnical engineering [4–7]. However, the
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application of artificial neural network (ANN) is one of the most popular research
areas in engineering applications due to its diversity. Though, asweknow,ANNshave
the ability to map the input to the output with the help of the anticipated independent
input parameters for the prediction of the desired output parameter. However, the
ANN is having the limitations such as the slow learning rate and entrapment of the
local minima, as reported by [8, 9]. The support vector machines predict accurately
in comparison to the ANN, M5P, and random forest regression [10–14]. Keeping the
above in view, the support vector machine with poly kernel and RBF kernel was used
in the present study to predict the elastic modulus for granite rock. These techniques
(SVM) have been successfully used in the different engineering application areas
[15–18]. To achieve the objective of the present study, the input parameters such
as porosity ‘n’, Schmidt hammer rebound number ‘Rn’, P-wave velocity ‘VP’, and
point load strength index ‘Is (50)’ were utilized to predict the output (modulus of
elasticity ‘E’).

3 Support Vector Machines

Support vector machines (SVMs) were introduced by [19] with an alternate ε-
insensitive loss function. It allows for regression problems to use the definition of
margin. However, the boundary is defined as the total of hyperplanes distances from
the closest point of two categories. The main aim of the SVM is to find out a function
having maximum ε deviation from the real target vectors for all the training data
provided and it must be as flat as possible [20]. However, a kernel function concept
was introduced by [19] for nonlinear SVM regression. The enthusiastic readers are
advised to refer for more descriptions of supporting vector regression [19, 20].

3.1 Details of Kernel

In SVM a kernel function concept was used, where the nonlinear decision surface
circumstances occurred [19]. A number of kernel functions are introduced in the past
decade, but the literature [21–23] suggests that the polynomial kernel and radial basis
kernels (RBF) perform better for geotechnical engineering applications. Hence, in
the present article, polynomial kernel K (x, y) = [(x .y)]d and RBF kernel e−γ |x−y|2

were used (where d and γ are the kernel parameters). In order to use SVM, suit-
able user-defined parameters have to be set first. These used-defined parameters are
playing a major role in SVM prediction. The SVM needs kernel-specific parame-
ters in addition to the selection of a kernel. The appropriate values of the regulatory
parameter C as well as the size of the error-insensitive zone ε should be determined.
A manual procedure was followed to select user-defined parameters (i.e. C, γ , and
d), which involves performing a series of trials by means of different combinations
of C and d for the polynomial kernel; C and γ for the RBF kernel support vector
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Table 1 Range of the parameters used in SVM modeling

Input parameters Total data set

Min Max Avg Standard deviation

Is (50) (MPa) 0.89 7.10 3.34 1.50

Rn 37.00 61.00 49.56 5.96

VP (m/s) 2823.00 7943.00 5580.74 1089.43

n (%) 0.10 0.57 0.37 0.13

E (GPa) 22.00 183.30 88.40 34.93

machines (SVMs). Correspondingly, several trials were conducted in order to find
the appropriate value for ε the error-insensitive zone having a fixed value of C and
defined kernel parameters. The value of C = 0.011 is found to be good for this
study. In this article, the radial basis function kernel and the polynomial kernel of the
support vector machines are represented as SVMRBFK and SVMPOLYK, respectively.

4 Data Collection

Data used in the present study are taken from an earlier study reported by [24] in
which an artificial neural network (ANN) enhanced with the imperialist competitive
algorithm (ICA) was used to associate the input index properties of the granite rock
to predict the modulus of elasticity (E). To achieve the objective of the present
study, a total of 71 data were collected from the literature [24]. It contains the point
load strength index ‘Is (50)’, rebound hammer number ‘Rn’, P-wave velocity ‘VP’,
porosity ‘n’, and Young’s modulus ‘E’. The range of these variables used for the
SVM model was shown in Table 1. The input parameters were Is (50), Rn, VP, and
n and the output parameter was the modulus of elasticity (E).

5 Statistical Testing Measures

The statistical testing measures (STMs) were used to assess the effectiveness of the
poly kernel and the RBF kernel models during the training and the testing phase.
The utilized STMs are correlations coefficient (r), coefficient of determination (R2),
mean absolute error (MAE), root mean square error (RMSE), mean absolute error
(MAE), andmean absolute percentage error (MAPE). The formulas for the statistical
testing measures were reported in [25]. The predictive models with an r and R2 equal
to 1, MAPE less than 20%, and MAE, RMSE, and MAE close to zero indicate a
perfect model [5–7, 25].
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6 Results and Discussion

The statistical testing measures are the key aspects that were used to assess the
performance of the SVMPOLYK and SVMRBFK models. The user-defined parameters
for the SVMPOLYK are C and d; for SVMRBFK C and γ were chosen with different
combinations to obtain the best performance of the models. The best user-defined
parameters were tabulated in Table 2.

Thebest statistical testing parameters obtained for bothSVMmodels are presented
in Table 3 for the training as well as for the testing. For SVMPOLYK, the measured
versus predicted plots for the training and the testing were shown in Fig. 1a and b,
respectively. Similarly, for the SVMRBFK, the training and the testing were shown in
Fig. 2a and b, respectively. From the study of Table 3 and Figs. 1 and 2, it has been
revealed that the SVMRBFK is predicting the modulus of elasticity of the granite rock
accurately as compared to the SVMPOLYK.

Finally, themeasuredmodulus of elasticity and the predictedmodulus of elasticity
from the SVMPOLYK and SVMRBFK were compared for the testing data and presented
in Fig. 3. From Fig. 3, the reader can note the difference between themeasured versus
the predicted variation.

However, the results of the present study were compared with the previous study
in terms of the coefficient of determination (R2) and the comparison is shown in
Fig. 4. This figure reveals that the present study models can predict the modulus of
the elasticity of the granite rock accurately in comparison to the previously reported
models which were developed using soft computing techniques, such as GA-NN,
ANFIS, GA, and ICA-NN, and reported in the literature works [24, 26–28] for the
rock masses.

Table 2 User-defined
parameters

Support vector regression (SVM)

SVMPOLYK SVMRBFK

C D C γ

1.2 5 1.5 7

Table 3 Statistical testing measures for the SVM polynomial kernel and SVM RBF kernel

Performance measures SVM polynomial kernel SVM RBF kernel

Training Testing Training Testing

R2 0.95 0.94 0.98 0.97

r 0.95 0.93 0.98 0.97

MAE 389.57 518.02 186.91 265.19

RMSE 19.74 22.76 13.67 16.28

MAE 13.45 16.98 7.27 13.32

MAPE 17.39 24.93 9.85 19.54
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Fig. 1 Scattered plot for the measured versus predicted modulus of elasticity by SVM poly kernel.
a Training and b testing
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Fig. 2 Scattered plot for the measured versus predicted modulus of elasticity by SVMRBF kernel.
a Training and b testing

6.1 Sensitivity Analysis

Generally, sensitivity analysis is conducted in soft computing techniques to see the
influence of each of the input parameters on the output. In the present study, the same
was carried out to see the individual input parameter influence on the output parameter
prediction.However, the radial basis functionkernelmodelwas used in this study.The
reason behind choosing the SVMRBFK is that its prediction performance is superior to
the polynomial kernel. The results of the sensitivity analysis are presented in Table 4.
The study of this table reveals that porosity ‘n’ and Schmidt hammer rebound number
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Table 4 Sensitivity analysis for the SVMRBFK

Input combinations Input parameter
removed

SVMRBFK

R2 r MAE RMSE MAE MAPE

n, Rn, VP, and Is (50) – 0.97 0.98 186.91 13.67 7.27 9.85

Rn, VP, and Is (50) n 0.94 0.97 296.85 17.23 11.55 16.27

n, VP, and Is (50) Rn 0.94 0.96 341.04 18.47 11.55 16.17

n, Rn, and Is (50) VP 0.96 0.97 224.36 14.98 8.89 11.61

n, Rn, and VP Is (50) 0.96 0.97 224.36 14.98 8.89 11.61
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‘Rn’ are the most influencing parameters in comparison to the P-wave velocity ‘VP’
and point load strength index ‘Is (50)’.

7 Conclusions

This study investigates the potential use of SVM polynomial and SVM RBF kernels
in predicting themodulus of elasticity of the granite rockmasses. The key conclusion
that can be drawn from this study is that the SVM RBF kernel model predicted the
modulus better than the SVMpolynomial kernel. However, both the proposedmodels
in the present study are suitable for predicting modulus of elasticity of granite rock.
The results of comparison with the previous studies using soft computing techniques
(GA-NN, ANFIS, GA, and ICA-NN) were inferior in comparison to the present
techniques (SVM RBF and polynomial kernels). Finally, the sensitivity analysis
reveals that the porosity ‘n’ and Schmidt hammer rebound number ‘Rn’ were the
most influencing parameters in comparison to the P-wave velocity ‘VP’ and point
load strength index ‘Is (50)’. The limitation of the present study is that the collected
data was limited to one country and the number of the data was also less.
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