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Abstract By using lower bound finite element limit analysis technique with the
combination of conic programming, the present study computes the bearing capacity
of strip footing placed on the edge of a reinforced cohesionless soil slope and also
subjected to a surcharge load. The bearing capacity factors (i) Nq associated with
overburden pressure and (ii) Nγ associated with soil unit weight are computed by
varying footing setback distance (b), soil friction angle (φ), and placement depth of
reinforcement layer (d). The bearing capacity factors of the strip footing placed on the
reinforced slope are found to be higher than that obtained for a strip footing situated
on the unreinforced slope. The efficacy of the reinforcement layer is expressed in
terms of dimensionless factors, ηq and ηγ which are the ratio of Nq and Nγ values
obtained for the reinforced slope to the unreinforced slope. However, the maximum
effectiveness of the reinforcement layer (ηq-max and ηγ-max) is achieved when it is
placed at an optimum distance (dcr) from the footing base. The magnitude of the
efficiency factors increases if the reinforcement layer is embedded in a soil having
higher soil friction angle and it is also found that the increment is more in case of
ηγ-max. In contrast, the effectiveness of reinforcement is found to be maximum when
footing is placed at the slope edge. The use of conic programming is found to be
effective as the computational time reduces in comparison to linear programming
during the computation of Nq and Nγ.
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1 Introduction

Safe design of foundations for various structures such as buildings, bridge abutments,
electrical transmission towers etc. situated on foothills and sloping grounds is a chal-
lenging task. The reduction in the load-bearing capacity and increasing chances of
slope instability make these structures more vulnerable than the structures situated
on the level ground [1–3]. With the advancement of reinforced earth technology, a
number of laboratory-based model tests [4–6] as well as numerical studies [5, 7–10]
were carried out to investigate the effect of reinforcement on the performance of
both footing and slope. The laboratory-based experimental studies have shortcom-
ings regarding the generalization point of view; they were very much case specific.
On the other hand, Latha and Rajagopal [7] used finite element method; Alamshahi
and Hataf [5] used finite element software Plaxis; Halder and Chakraborty [8, 9] used
lower bound limit analysis method with linear programming. It is to be mentioned
that the lower bound limit analysis technique is found to be advantageous than other
methods on the following points: (1) the shape of the failure surface is not required to
be presumed before the analysis, (ii) only shear strength parameters of soil (cohesion
and friction angle) are required to be considered. The authors [8, 9] have used linear
programming in their earlier works where failure surface was linearized by a polygon
according to the formulation of Boterro et al. [11]. However, the linearization of yield
surface generates a large number of inequality constraints which in turn increase the
computational time. A non-linear programming technique can overcome the defi-
ciencies raised by the implementation of linear programming. Among the available
non-linear programming techniques, the second-order cone programming (SOCP),
formulated byMakrodimopoulos andMartin [12] is advantageous as in case of SOCP
formulation, the yield function is not required to be non-differentiable at some points,
and thus there is no need of smoothening of yield surface either on the corners of the
hexagon or at its apex [13]. Various researchers [13–15] used SOCPwith lower bound
limit analysis in solving various geotechnical problems in recent years. In addition
to that according to the authors knowledge, no research studies were conducted till
now for the computation of the bearing capacity factor (Nq) of a strip footing placed
on the reinforced soil slope and subjected to surcharge loading.

Therefore, the present study computes the bearing capacity factors (Nq and Nγ)
of a strip footing placed on the top of the reinforced cohesionless soil slope by
using the lower bound finite element limit analysis technique with the non-linear
programming. Reinforcement is modeled as per the formulation of Chakraborty and
Kumar [16]. The influence of soil friction angle (φ), footing setback distance (b),
and placement depth of reinforcement layer (d) on the computed values of Nq and
Nγ are studied.
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2 Problem Domain and Mesh Details

The two-dimensional plane strain problem domain used in the present study is illus-
trated by Fig. 1. The surface strip footing of width B is situated at a distance of b
from the slope edge. The footing is subjected to a non-inclined and non-eccentric
compressive load Qu. A uniform surcharge of q is also acted over the horizontal line
AB of the problem domain. The slope is inclined at an angle of 25°. A single layer of
reinforcement is laid at a distance of d from the footing base. The frictional soil fill
of the slope is assumed to followMohr–Coulomb constitutive model and associative
flow rule. Similar to Chakraborty and Kumar [16], the effect of reinforcement in the
analysis is considered by modifying stress discontinuities along the reinforcement-
soil interface layer. Figure 1 shows that the domain is extended up to 12.80B in the
horizontal direction and from 12.04B in the downward direction. While choosing the
size of the problem domain it is ensured that (i) failure stresses should not reach to
the domain boundary, and (ii) magnitude of collapse load should not change abruptly
with the change in the size of the problem domain. The normal and shear stresses
applied along the horizontal ground surface (GH and IJ) and slope face (JK) are equal
to q and zero, respectively. Roughness between footing and soil interface along HI
line is implemented with the help of equation

∣
∣τxy

∣
∣ ≤ (

c − σy tan ϕ
)

.
Three noded triangular elements are used to discretize the problem domain. A

relatively denser mesh is chosen near the singularity point below the two corners of
the footing edge while a coarser mesh is created near the boundary region. According
to the plane strain formulation of Sloan [17], each node consists of three unknown
stresses; (i) two normal stresses in x (σ x) and y (σ y) direction, and (ii) shear stress

Fig. 1 Problem domain
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Fig. 2 FE mesh used in the analysis

(τ xy). A typical mesh discretization of the slope having β = 25°, φ = 30°, and b/B
= 2 is shown in Fig. 2 where N, E, Dc, and Ni represent the total number of (i)
nodes, (ii) elements, (iii) discontinuities, and (iv) nodes along footing-soil interface,
respectively.

3 Methodology

The lower bound value of the collapse load of footing is obtained in the present study
by employing the plane strain lower bound formulation of Sloan [17]. According to
Sloan [17], the admissible stress fieldwould furnish the lower bound solution after the
satisfaction of (i) element equilibrium condition throughout the problem domain, (ii)
stress boundary conditions at the boundary edges, (iii) stress discontinuity conditions
along the line of stress discontinuity formed by two adjacent triangles, and (iv) yield
criterion at all the nodes of the elements. No external element is used to model the
reinforcement layer. The reinforcement modeling is done by following the formula-
tion ofChakraborty andKumar [16]. Chakraborty andKumar [16]modified the stress
discontinuities along the reinforcement-soil interface layer. Shear stresses were set
aside discontinuous along the reinforcement-soil interface layer, but normal stresses
were permitted. Whereas, in all other places, both the normal and shear stresses
were kept continuous along the edges of discontinuity. Due to the implementation of
element equilibrium, stress boundary, and stress discontinuity conditions, equality
constraints are generated.Asmentioned earlier, a non-linear programming technique,
SOCP is used in the present study instead of linear programming as suggested by
Sloan [17]. According to the SOCP formulation, the Mohr–Coulomb yield surface is
used in the form of a conic quadratic constraints with the use of auxiliary variables.
A set of inequality constraints are thus generated. After the generation of equality
and inequality constraints, the objective function (collapse load) is then maximized.
The expression of the objective function is obtained with the numerical integration
of normal stresses along the nodes representing footing. One can follow the work of
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Sloan [17] for the detailed formulation of lower bound finite element limit analysis
and the work of Tang et al. [13] for the SOCP formulation. Here, only the final form
of the optimization scheme is presented in Eqs. 1 and 2.

Maximize

{g}T {σ } (1)

subjected to

[A]{σ } = {B} (2)

whereas,

⎡

⎢
⎢
⎣
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ASC I

⎤

⎥
⎥
⎦

{b} =

⎧
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bEQ
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bSC

⎫

⎪⎪⎬

⎪⎪⎭

(3)

In the above expressions, {gT} is the vector consists of the coefficients obtained
from the objective function; {σ} is the global stress vector; [AEQ], [ASB], and [ADS] are
thematrices comprised of right-hand side coefficients from constraints obtained after
the employment of equilibrium, stress boundary, and stress discontinuity conditions.
[I] is the identitymatrix.Whereas, {bEQ}, {bSB}, and {bDS} are the vectors composed
of left-hand side coefficients of the constraints generated due to the fulfillment of
equilibrium, stress boundary, and stress discontinuity conditions. A code is written in
MATLAB [18] to carry out the lower bound limit analysis. An optimization toolbox
MOSEK [19] is used for carrying out non-linear programming.

4 Results

Figure 3 shows the variation between the efficiency factors (ηq and ηγ) and placement
depth of reinforcement for various combinations of φ and b/B. Two values of friction
angle (φ = 30° and 40°) of the cohesionless soil fill are considered. The strip footing
is placed at three setback distances (b/B) of 0, 2, and 4. The magnitudes of the
efficiency factors (ηq and ηγ) increase rapidly after a certain value of d/B, after that it
reduces drastically. The placement depth of reinforcement where efficiency factors
attain the maximum value (ηq-max or ηγ-max) is known as optimum depth of placement
of the reinforcement (dcr/B). The magnitude of the ηq-max and ηγ-max increases if the
reinforcement layer is embedded in a soil having higher soil friction angle. As an
example for a slope having β = 25°, b/B = 0, the magnitude of ηq-max increases from
1.56 to 1.71 and the value of ηγ-max enhances from 1.68 to 1.79 with the change in φ

value from 30° to 40°. Figure 3 shows that the optimum depth of placement required
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Fig. 3 Variation of ηq with d/B of a reinforced slope having β = 25°, φ = 30°, 40° and a b/B =
0; b b/B = 2; c b/B = 4; variation of ηγ with d/B of a reinforced slope having β = 25°, φ = 30°,
40° and d b/B = 0; e b/B = 2; f b/B = 4

to obtain the value of ηγ-max is found to be higher than that required to obtain the
value of ηq-max. The value of ηγ is found to be maximum when footing is placed on
the edge of the slope rather than at a distance from the slope edge. As an instance
for a slope having β = 25° and φ = 30°, the magnitude of ηγ-max reduces from 1.68
to 1.42 with the increment in the value of b/B from 0 to 4.
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Table 1 Comparison between the values of ηγ-max and dcr/B obtained from present study and
Halder and Chakraborty [8]

β = 25°, φ = 30°

b/B Present Study Halder and Chakraborty [8]

ηγ-max dcr/B ηγ-max dcr/B

0 1.68 0.37 1.70 0.31

2 1.44 0.26 1.49 0.31

4 1.42 0.26 1.46 0.31

4.1 Comparison

The magnitude of ηγ-max and dcr/B obtained from the present study is compared with
the obtained results from Halder and Chakraborty [8] for a slope configuration of β

= 25°, φ = 30°, and b/B = 0, 2, and 4 (refer Table 1). Halder and Chakraborty [8]
used lower bound finite element limit analysis technique with linear programming.
It is found that in all of the cases present value matches well with the reported results
of Halder and Chakraborty [8]. However, the present value is lower than the reported
value.

5 Failure Patterns

Failuremechanismsof both unreinforced and reinforced slopes are shown inFigs. 3a–
f after plotting the state of stresses of any point after failure in two-dimensional object
space. In the Fig. 3, a/f equal to one denotes the state of shear failure. By contrast,
for all those non-yielding points, the value of a/f is less than one. The value of a and
f is obtained from following equations:

a = (

σx − σy
)2 + (

2τxy
)2

, and f = [−(

σx + σy
)

sin ϕ
]2

(4)

Figure 4a–c show failure mechanisms of both unreinforced and reinforced slopes
when footing is positioned at the slope edge. For both unreinforced and reinforced
slopes (refer Fig. 4a–b), failure zone in the LHS of the footing is visibly truncated
and the failure zone in the RHS of the footing easily reaches to the slope face.

However, with the inclusion of a reinforcement layer, the plastic zone of the
failure surface propagates more in the downward direction, which in turn increases
the bearing capacity of the footing. Figure 4c shows that when reinforcement is
placed at a deeper depth, failure surface propagates over the reinforcement layer.
Figure 4d–f illustrate that when footing is placed at a setback distance of 4, plastic
zone develops on both sides of the footing, irrespective of unreinforced or reinforced
slope. It is quite similar to the failure patterns obtained for the footing placed on the
level ground.
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Fig. 4 Failure patterns obtained for a slope of β = 25°, φ = 30° with a unreinforced, b/B = 0; b
reinforcement at optimum depth, b/B= 0; c reinforcement at higher depth, b/B= 0; d unreinforced,
b/B = 4; e reinforcement at optimum depth, b/B = 4; f reinforcement at higher depth, b/B = 4

6 Conclusions

By using the lower bound finite element limit analysis techniquewith conic program-
ming, the bearing capacity factors (Nq andNγ) are obtained for a strip footing placed
on the top of the reinforced cohesionless soil slopes. The inclusion of a single layer of
reinforcement is found to be very effective as both the values of Nq and Nγ increase
by a significant amount. This increment is observed to be highest when footing is
placed on the slope edge. The magnitude of Nq and Nγ for strip footing situated on
the edge of a reinforced slope of β = 25° and φ = 30° increases by 1.56 and 1.68
times than that obtained for strip footing placed on the unreinforced slope.
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