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1 Introduction

Human emotion recognition has been an active research area for the past few years,
due to the increasing demand for applications in perceptual and cognitive sciences
and affective computing. It has become an essential component for fields such as
computer animations, sociable robots, and neuromarketing. Human emotions can
be recognized by using facial expressions and vocal tones. According to Kaulard
et al. [1], nonverbal components convey two-thirds of human communication,
while verbal components convey only one-third. Various kinds of data including
physiological signals, such as electromyograph (EMG), electrocardiogram (ECG),
and electroencephalograph (EEG), can also be considered as input for the emotion
recognition process. Among these, the facial image is the promising input type as it
is noninvasive and provides an ample amount of information for expression
recognition. Emotions can be categorized into three types: basic emotions (BEs),
compound emotions (CEs), and micro-expressions (MEs). Basic emotions cover
neutral, anger, disgust, fear, surprise, sadness, and happiness.

Two categories of approaches for facial expression recognition (FER) are in use:
conventional approaches and deep learning-based approaches. When compared to
deep learning-based techniques, conventional techniques are advantageous as they
require less computational power. Hence, no additional infrastructure is needed.
Input images having illumination changes, occlusion, and deflection of the head
may influence the face detection task performance and reduce the accuracy of FER.
Conventional techniques are not suitable for noisy input data. Deep learning-based
techniques address these issues. Of late, convolutional neural networks (CNNs)
were proven effective for face detection [2]. As CNNs contain deep layers and use
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elaborate designs, they can ably handle noisy data automatically [3]. CNNs proved
to exhibit better performance than conventional methods for the FER task [4, 5].
The performance of CNN highly depends on the choice of its hyperparameters. It is
possible to enhance the CNN’s performance by optimizing hyperparameters such as
the number of hidden layers, units in each layer, filters, size of the filter, batch size,
and learning rate. The present work considers the optimization of hyperparameters
that describe the CNN structure. Grid search and random search techniques are
commonly used for this purpose [6]. Each of these techniques has its limitations,
and both need more time and domain expertise for identifying ideal hyperparameter
values. Metaheuristic-based approaches can address these shortcomings as they are
stochastic approximation methods. The present work employed the differential
evolution (DE) algorithm for tuning the selected hyperparameters.

2 Related Work

Kim et al. [7] proposed to train multiple CNNs. They have shown an improvement
in training by changing the network topology and random weight initialization. An
interesting method for selecting the CNN structure was presented by Gao et al. [8].
They proposed gradient priority particle swarm optimization (GPSO) with gradient
penalties for tuning CNN architecture. Experimental results have shown that the
proposed method has gained competitive prediction performance for the emotion
recognition task. Bergstra and Bengio [6] proposed to employ a grid or random
search for tuning hyperparameters. Since the number of hyperparameters is large,
testing is computationally expensive. Snoek et al. [9] have addressed the limitations
of trial and error-based techniques for hyperparameter optimization. They have
proposed a Bayesian optimization framework. Bochinski et al. [10] have shown that
evolutionary algorithms can outperform the existing hyperparameter optimization
methods.

3 Methodology

Benchmark dataset for facial expression recognition is split into training set
(TS) and testing set (TE). For ensuring that samples of all classes get selected,
stratified sampling without replacement is used. Selected samples from TS generate
tuning set (TUS). Tuning set is further divided into TUS1 and TUS2. TUS1 is used
for hyperparameter optimization. TUS2 is used for validating the outcome of
optimization. Differential evolution is performed until the termination condition is
met. CNN is trained using the outcome of DE on TS. The holdout method is used
for assessing the performance of the trained model. After training, the model’s
performance is assessed by using TE. Table 1 specifies the architecture of the
convolutional neural network used in the present work (Fig. 1).
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Hyperparameter Tuning—Metaheuristic optimization techniques proved to
yield better results when the search space is large and complex [11]. Since the
number of hyperparameters is large in CNN, tuning them is computationally
expensive. Hence, the proposed model determines the optimal network topology by
using the differential evolution (DE) algorithm. A simple, yet powerful,
population-based stochastic search technique, differential evolution (DE) [12], has
gained much attention and a wide range of successful applications [13, 14], due to
its simplicity, ease in the implementation, and quick convergence.

The hyperparameters considered for tuning using DE include number of con-
volutional layers, filter size, stride, dropout rate, and batch size. A vector com-
prising the above-mentioned parameters is used as a chromosome for the DE
algorithm. Precision and recall values for each of the six basic emotions are

Table 1 Configuration of convolutional neural network

Convolutional
layers

Six convolutional layers are used with a filter size of 64 for first two
layers, 128 for next two layers, and 256 for the last two layers. The kernel
size is set to 3 � 3 for all convolutional layers. ReLU activation function
is used

Max pooling
layer

Two max pooling layers are used. First layer after 2 convolutional layers
and second layer after next four convolutional layers with a dropout rate of
20%. Each layer is two dimensional and uses a pool size of 2 � 2

Fully connected
layers

Two fully connected layers are used. Flattened output of previous layers is
given as input to first fully connected layer. A dropout rate of 40% is used.
The second fully connected layer with a softmax activation function is the
output layer

Fig. 1 Architecture of the proposed model
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calculated by using the confusion matrix. Fitness function is defined as
F = AvgPrec + AvgRec, where AvgPrec is the average of precision values com-
puted for each basic emotion. Likewise, AvgRec is the average of recall values. DE
aims to improve the existing solution using the techniques of mutation, recombi-
nation, and selection. The general paradigm of differential evolution is shown in
Fig. 2.

Initialization—Creation of a population of individuals. The ith individual vector
(chromosome) of the population at current generation t with d dimensions is as
follows

Zi tð Þ ¼ Zi;1 tð Þ; Zi;2 tð Þ; . . .; Zi;d tð Þ� � ð1Þ

Mutation—A random change of the vector Zi components. For each individual
vector Zk(t) that belongs to the current population, a new individual, called the
mutant individual, U is derived through the combination of randomly selected and
pre-specified individuals.

Uk;n tþ 1ð Þ ¼ Zm;n tð ÞþF � Zi;n tð Þ � Zj;n tð Þ� � ð2Þ

where the indices m, n, i, j are uniformly random integers mutually different and
distinct from the current index ‘k’ and F is a real positive parameter, called mutation
factor or scaling factor (usually � [0, 1]).

Recombination (Crossover)—Merging the genetic information of two or more
parent individuals for producing one or more descendants. Binomial crossover is
used in the present work. The binomial or uniform crossover is performed on each
component n (n = 1, 2, …, d) of the mutant individual Uk,n(t + 1). For each
component, a random number ‘r’ in the interval [0, 1] is drawn and compared with
the crossover rate (CR) or recombination factor (another DE control parameter),
CR € [0, 1]. If r < CR, then the nth component of the mutant individual Uk,n(t) will
be selected; otherwise, the nth component of the target vector Zk,n(t) becomes the
nth component.

Uk;n tþ 1ð Þ ¼ Uk;n tþ 1ð Þ; if randn 0; 1ð Þ \ CR
Zk;n tð Þ; otherwise

�
ð3Þ

Fig. 2 Differential evolution algorithm scheme
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Selection—Choice of the best individuals for the next cycle. If the new offspring
yields a better value of the objective function, it replaces its parent in the next
generation; otherwise, the parent is retained in the population, i.e.,

Zk tþ 1ð Þ ¼ Uk tþ 1ð Þ; if f Uk tþ 1ð Þð Þ[ f Zk tð Þð Þ
Zk tð Þ; if f Uk tþ 1ð Þð Þ\f Zk tð Þð Þ

�
ð4Þ

where f is the objective function to be minimized. It can be inferred that DE is a
powerful population-based heuristic search technique that has empirically proven to
be very robust for global optimization over continuous spaces. As the number of
control parameters in DE is very few compared to other algorithms, DE is effective
and efficient and thus can be treated as a widely applicable approach for solving
real-world problems [13, 14].

4 Experimentation

For experimentation, two benchmark datasets, CK+ and Japanese Female Facial
Expressions (JAFFE), are used.

CK+ Dataset: This dataset has 593 image sequences representing seven basic
expressions (happiness, sadness, surprise, disgust, fear, anger, and neutral) of 123
models. Since the work is focused on recognition of six basic expressions, neutral
expression images were ignored. Out of 593, 309 sequences have validated emotion
labels that belong to one of the six previously mentioned emotions. They were
selected by excluding other sequences. From each image sequence, last two frames
were selected making a dataset of 618 images.

Japanese Female Facial Expressions (JAFFE): The JAFFE dataset has 213
images of ten female Japanese models. Each image represents one of the seven
basic emotions (including neutral emotion). Images pertaining to neutral expression
are not used.

The proposed model is implemented using Keras with a TensorFlow back end in
Python 3.6. Experiments are conducted on the selected datasets. Seventy percentage
of the samples are used for training, and remaining 30% is used for testing. For
validating hyperparameter tuning, 20% of the samples from training dataset are
used. The samples are selected by using stratified sampling. Tables 2, 3, 4, and 5
show the confusion matrices of the two datasets used with and without hyperpa-
rameter tuning. Prediction accuracies for CK+ dataset and JAFFE dataset are
depicted in Fig. 3. For both the datasets, optimization of hyperparameters has
improved the accuracy of all basic emotions except fear. Fear has least impact of
optimization. For JAFFE dataset, accuracy is decreased by 1%. Proposed model has
improved the overall classification accuracy by 4.32% for CK+ dataset and 3.78%
for JAFFE dataset.
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Table 2 Confusion matrix for CK+ dataset without hyperparameter tuning

Anger Disgust Fear Happy Sad Surprise

Anger 0.7437 0.0834 0.0749 0.0428 0.0552 0

Disgust 0.0875 0.7535 0.0526 0.0187 0.0877 0

Fear 0.1476 0 0.7073 0 0.1019 0.0432

Happy 0.0425 0.0521 0.0472 0.7984 0.0582 0.0016

Sad 0.0637 0.0274 0.1126 0 0.7144 0.0819

Surprise 0.0553 0.0897 0 0.0404 0 0.8146

Table 3 Confusion matrix for CK+ dataset with hyperparameter tuning

Anger Disgust Fear Happy Sad Surprise

Anger 0.7943 0.1033 0.1024 0 0 0

Disgust 0.0948 0.7842 0.027 0 0.094 0

Fear 0.02 0 0.728 0 0.102 0.15

Happy 0.032 0.048 0.029 0.865 0 0.026

Sad 0 0.039 0.122 0 0.7451 0.0939

Surprise 0.0658 0.0597 0 0 0 0.8745

Table 4 Confusion matrix for JAFFE dataset without hyperparameter tuning

Anger Disgust Fear Happy Sad Surprise

Anger 0.6227 0.1026 0.0721 0 0.1789 0.0237

Disgust 0.1285 0.6815 0.0928 0 0.0427 0.0545

Fear 0.0098 0 0.6978 0 0.1352 0.1572

Happy 0.0236 0.0594 0.0587 0.7046 0.0216 0.1321

Sad 0.0252 0.1486 0.1734 0 0.6288 0.024

Surprise 0.0245 0.0438 0.0364 0.1058 0.0467 0.7428

Table 5 Confusion matrix for JAFFE dataset with hyperparameter tuning

Anger Disgust Fear Happy Sad Surprise

Anger 0.6543 0.1165 0.0687 0 0.1605 0

Disgust 0.1346 0.7374 0.0834 0 0 0.0446

Fear 0.0198 0 0.6878 0 0.1352 0.1572

Happy 0 0.0484 0.0297 0.8154 0 0.1065

Sad 0 0.1439 0.1839 0 0.6358 0.0364

Surprise 0 0.0361 0.0265 0.1278 0.0351 0.7745
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5 Conclusion

The present study proposes to optimize the convolutional neural network hyper-
parameters for improving the human emotion recognition rate from facial expres-
sions. Conventional techniques fail to offer good classification accuracy for noisy
input data. As CNNs contain deep layers, they can handle noisy data and are proven
suitable for facial expression recognition. However, CNNs demand high compu-
tation power making their applicability limited. The performance of CNN highly
depends on the choice of its hyperparameters. To enhance the CNN performance
for facial expression recognition, its hyperparameters are optimized using the DE
algorithm. CK+ and JAFFE datasets are used for assessing the tuned model’s
performance. The results obtained have shown that hyperparameter tuning has
improved the overall accuracy by 4%.
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