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Modulation of the immune system has a vital role in the management of health and
disease progressions in humans. The genesis of the immune system modulation is
from the necessity to eradicate and modulate pathogenic as well as nonpathogenic
microorganisms that could hamper the body’s capability to uphold homeostasis.
There are a variety of immunomodulators that originated from nature and of
synthetic origin. Scientists across the globe have endeavored to explore several
strategies for the treatment/cure of the diseases. Thus, it becomes quite essential to
have the adequate immunity level to combat challenging and devastating pathogens
so as to ensure a state of well-being of mankind. The present book entitled
“Immunomodulators and Human Health” is an attempt to pool the relevant
information contributed by authors around the world and update the readers about
fundamentals and recent advancements in the domain of immunomodulators. It is
noteworthy to state that some of the chapters have been exclusively devoted to
COVID-19 and its management strategies.

I am quite sure that readers would find it a fascinating piece of scholarly
compilation.

Best wishes.

National Institute of Immunology Amulya K. Panda
New Delhi, India



This book, “Immunomodulators and Human Health” depicts a full picture of the
state-of-the-art research and development of actionable knowledge in medical sci-
ence. As is evident from the latest discussions at various conferences and seminars
held across the globe based on diverse medical, biotechnology strategies in the
current scenario of the Covid-19 pandemic, people are more concerned about the
immune system and immune boosters. A major reason for the above situation, we
believe, is the gap between academic research and real-time clinical applications and
needs. The present book includes four parts (I, II, III, and IV) and among that Part I,
Neutraceuticals and Plant Metabolite, contains four chapters, Part II, Nanotechnol-
ogy and Cancer, includes three chapters, and Parts III (Infectious and Autoimmune
Diseases) and IV (Enzyme, Hormone, and Biomolecules) include five and four
chapters, respectively.

Neutraceuticals and Plant Metabolites

Chapter 1 entitled “Classification, Mode of Action and Uses of Various
Immunomodulators,” written by Kumar and colleagues, states that immunology is
the most fundamental area of pharmaceutical research, and it has fantastic guarantees
concerning the anticipation and treatment of a broad scope of disarranges, for
example, the provocative maladies of the skin, gut, respiratory tract, joints, and
focal organs. Immunomodulators are turning into a feasible assistant to build up
modalities that offer a novel methodology for treating irresistible ailments in the
coming many years of the twenty-first century.

Chapter 2 entitled “Potential Role of Herbs and Spices on the Immune System”
was written by Anandharamakrishnan and his coauthors that the natural body’s
defense system plays a critical role to keep away the person from infections and
minimize the risk of falling sick regularly. The smart way to improve immunity is by
changing the lifestyle by consuming food that has immunomodulatory activity.
Spices/herbs have been used as preservatives as well as traditional medicines since
ancient times due to their disease prevention capability. Numerous results from
preclinical and clinical trials over few spans have shown the beneficial role of
spices/herbs and their active components in the control and prevention of several
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complications such as arthritis, respiratory diseases, cancer, cardiovascular disease,
glucose impairment, and brain disorders.

Chapter 3 entitled “Immune Booster Activity of Prebiotics” is described by
Oyedepo and her associates that the key to good health is a functioning and strong
immune system. A lot of studies in dietary and food biotechnology are ongoing
about new alternatives for disease prevention. Extensive studies conducted on the
link between the gut microbiome and immunity have led to increased interest in
functional foods. The need to improve health and quality of life has brought forth the
concept of functional foods and nutraceuticals, which have nutritional value and
certain biological activities. This chapter highlights the interaction between the
immune system and functional foods/nutraceuticals in terms of modulation of
immune functions by a variety of mechanisms.

Chapter 4 entitled “Antioxidants and Immunomodulation” by Dubey and his
associates described that the immune system, one of the most sophisticated defense
systems of the body, is capable to recognize and eliminate the unlimited varieties of
foreign and undesirable agents. A strong defense mechanism is needed for a
balanced and disease-free body. But nowadays lifestyle and stress cause variations
in endogenous systems and physicochemical conditions triggering wreckage and
alteration in the immunity leading to the generation of free radicals, which subse-
quently causes several diseases like cancer, aging, and neurological and cardiologi-
cal diseases. In this chapter, the action of antioxidants on free radicals, their
mechanism of immunomodulation, sources, and occurrence along with classification
and potential health effects have been discussed.

Nanotechnology and Cancer

Chapter 5 entitled “Nanotechnology and Immunomodulators in Cancer” by Agop
and coauthors describes that since the last ten years, immunotherapy represents a
promising strategy for treatment in cancer without massive damaging normal cells,
by reprogramming and activating antitumor immunity. However, the adverse events
of immunotherapy related to the low specificity in tumor cell targeting represent
limits of immunotherapy efficacy. The potential of nanotechnologies is represented
by the possibilities of carrying immunotherapeutic agents by nanoparticles with
various material types, with different shapes, sizes, coated ligands, loading method,
hydrophilicity, elasticity, and biocompatibility. This chapter summarizes different
types of cancer immunotherapy already approved for cancer treatment or currently
studied in clinical trials which can be possibly correlated with nanotechnologies.
Chapter 6 entitled “Advancements in the Field of Oral, Intravenous and Inhaled
Immunomodulators Using Nanotechnology” by Parijat Pandey and coworkers
describes that, despite great progress in the field of conventional delivery of
immunomodulators, the development of newer techniques and drugs is greatly
required due to intrinsic instability of immunomodulators in vivo, related toxicity,
and the required multiple administrations. The focus of this chapter is on
summarizing the recent condition and developing a way in such nanotechnology-
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based oral, intravenous, and inhaled immunotherapies as well as the function of
nano-size particles as a carrier of immune-modulators, and depots for sustained
immunostimulation along with associated advantages and limitations.

Chapter 7 entitled ‘“Phytochemicals as the Source of Natural Immunomodulator
and Their Role in Cancer Chemoprevention” by Gupta et al. In the present chapter,
authors have depicted that a well-functioning immune system of the host body plays
a pivotal role in the maintenance of ordinary physiological and immunological
functions as well as internal environment. Balanced immunity enhances defense
mechanism against infection, diseases, and unwanted pathogens to avoid hypersen-
sitivity reactions and immune-related diseases.

Infectious and Autoimmune Diseases

Chapter 8 entitled “Immunomodulators and Autoimmune Liver Diseases,” written
by Prameela Kandra et al., describes that autoimmune liver disease (AiLD) is a series
of progressive and chronic inflammation to the bile duct and liver cells arising due to
impaired coordination between the components of one’s immune systems ultimately
leading to the destruction of the liver. This disease primarily constitutes autoimmune
hepatitis (AIH), primary biliary cirrhosis (PBC), and primary sclerosing cholangitis
(PSC) under its wing. Immunomodulatory therapy established itself as a robust
approach by providing a platform to treat such diseases. This chapter unfolds with
a brief perspective on the epidemiological, pathogenetic, and clinical studies of
AiLDs and dives deep into understanding the intricate dynamics of the immune
response during the pathogenesis of AIH. This study also highlights the numerous
immunomodulators emphasizing their therapeutic potential for treating AiLDs.

Chapter 9 entitled “Immuno-modulators Role in the Treatment and Management
of Tuberculosis,” written by Rao et al., discusses that tuberculosis is caused due to
Mycobacterium tuberculosis (M-tb), which leads to major therapeutic challenges
causing several immune dysfunctions by affecting various immune checkpoints.
Over the past decades, many research efforts have been made to control infections.
However, the etiology of tuberculosis reveals that M-tb has coevolved with human
immune response and hijacks various defense mechanisms of natural and synthetic
antimicrobial agents contributing to the development of multidrug resistance.
Henceforth, the strategy of immunomodulation, such as host-directed therapy
(HDTs), emerges as an important therapeutic modality in treating infectious diseases
like tuberculosis. Thus, the present chapter discusses the efficacy of various
immunomodulation against the etiology of M-tb infections and challenges in the
development of different classes of immunomodulatory agents.

Chapter 10 entitled “Role of Immunomodulators in Autoimmune Diseases” by
Das et al. narrates that the immune system comprising an intricate network of various
specialized cells and associated molecules is crucial to the extermination of
pathogens from the host’s body, and thus vital to human survival. Along with the
generation of an immune response, the immune system is also responsible for the
maintenance of tissue homeostasis in a continuously fluctuating environment.
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Autoimmune disorders have many manifestations and can either be localized such as
rheumatoid arthritis or be systemic such as systemic lupus erythematous to name
two. Current therapies for most autoimmune disorders include immune suppression
in general, aiding in the reduction of exaggerated immune response and inflamma-
tion. The current chapter is focused on the current strategies of immunomodulation
along with their advantages and disadvantages.

Chapter 11 entitled “Psychology, Epigenetics, Inmunomodulation, and Immune
Dysfunction: Understanding the Connection,” written by Goswami and coworkers.
This chapter explains in brief the essential concepts relating to health and diseases
that are important for having a complete understanding of immunomodulatory
processes and immune dysfunction. This chapter aims in addressing the knowledge
gap by pointing out the importance of considering the existence of natural
immunomodulators and their relevance in the regulation of immune system func-
tioning while designing and administering artificial immunomodulators.

Chapter 12 entitled “Immunomodulators Based Ayurvedic Plants: Against Viru-
lent Infectious COVID-19,” written by Rinki Kumari and colleagues, highlights the
role of traditional medicines in the management of COVID-19. The chapter
commences with a description of principles forming the basis of the relationship
of life with nature and spans through a variety of plant sources observed to be useful
to combat viral infections.

Enzyme, Hormone, and Biomolecules

Chapter 13 entitled “Role of Cytokines as Immunomodulators,” written by Kaur and
Ghorai, describes that the resilience of our immune system is remarkable. It is always
on guard against various pathogens that we encounter whether we eat, work, or
sleep. The chapter here deals with cytokines and their action as immunomodulators
at different levels of the immune system of our body and their role in
immunotherapies.

Chapter 14 “Immunomodulatory Properties of Proteins and Peptides: Food
Derivates Approach,” written by Gloria A. Martinez and associates, describes that
food represents a millennial source of multiple molecules with potential as health
enhancers, not only from a nutritional point of view, and proteins are described as
one of them. Proteins and their derived peptides could interact in a wide range of
biological levels but claim attention as immunomodulating agents. This chapter aims
to analyze the food-derived protein and peptide’s role in the immune response with
an emphasis on their employment as health promoters, the involved mechanisms,
and their potential incorporation in products.

Chapter 15 entitled “Fatty Acids and Immunomodulation,” authored by Shahrul
and Tasyriq, states that cells require energy as a source for survival. The chapter
describes the underlying molecular mechanisms concerning health and disease
pathogenesis. It addresses the importance of dietary intervention as a mode of
therapeutic lifestyle modification for chronic diseases such as metabolic syndrome,
cardiovascular disease, and several other diseases. Additionally, clinical strategies of
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targeted therapy to modifying fatty acids to overcome the increasing burden of
chronic diseases as well as emerging diseases are also presented.

Chapter 16 entitled “Immunomodulatory Effects of Endocrine Disrupting
Chemicals” by Kaur and Ghorai entails about endocrine-disrupting chemicals
(EDCs) and their role in immunomodulation states that EDCs have become an
integral part of the human environment, be it in cosmetics, food, plastic packaging
materials, toys, pesticides, and numerous other amenities. The nexus between
environmental EDCs and epigenetic regulation of genes has also been underlined.
The article also stresses the need for enhanced research on existing and emerging
EDCs along with advocating the involvement of individual and scientific society and
its stakeholders in communicating and implementing changes in public policy and
awareness.

Prayagraj, India Rajesh K. Kesharwani
Prayagraj, India Raj K. Keservani
Gurugram, India Anil K. Sharma
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and Dheeraj Chitara

Abstract

Immunomodulators are substances found in nature that aid in immune system
regulation. They are concoction operators that take partin insusceptible frameworks
of theimmune system. Commonly presentimmunomodulators were less significant
compared to therapeutic immunomodulators. Immunomodulatory medicines, like
6-mercaptopurine and mycophenolate mofetil, conceal the safe framework and
minimise irritation in the stomach tract in persons with inflammatory bowel disease
and ulcerative colitis Crohn’s disease. Their advantages come from their capacity to
invigorate conventional and versatile safeguard systems, a kind of cytokines that
empower the whole body. Immunosuppressants and immunostimulants are two
categories of immunomodulators. Immunosuppressants are involved in smothering
theinvulnerable framework and handle neurotic safe reactions in the immune system
like sickness and unite dismissal. Immunostimulants are agents that enhance the
body’s resistance in case of infections. It also improves the immune response, and
people with the depletion of response are immunotherapeutic operators. For
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example, variousscatters, suchasimmunodeficiency state,immune systemsickness,
malignant growth, and viral contamination, can be treated with immunostimulants.
In the subsequent decades of the twenty-first century, immunomodulators will
become a viable assist in generating modalities that will provide a unique approach
for treating irresistible diseases.

Keywords

Antigen - Antibodies - Transplantation - Immunomodulators -
Immunosuppressant

1.1 Introduction

Immunology is characterised as natural defence mechanism against many diseases or
disorders. The invulnerable framework is the body’s most complex biological
mechanism. The term insusceptibility characterises the natural defence system
against the many diseases. The human immune system is very sophisticated and
highly advanced among vertebrates; this immune framework is capable of
generating boundless variety of cells and caught enormous spectrum of infections
and foreign particles. The substances capable of inducing, amplifying or restraining
any component or phase of the invulnerable framework are referred to as
immunostimulators. Immunostimulators and immunosuppressants are two types of
immunomodulators are known for use. Immunopharmacology is a more current
branch of pharmacology concerned with immunomodulators (Patil et al. 2012).
Administration of immunostimulators as in the case of AIDS and the utilisation of
immunosuppressor in the cases of an exaggerated response of a safe framework are
appreciating to reconstitute the normal resistant framework and increase the longev-
ity of life. Immunomodulator intake, along with antigen, is meant to support the
insusceptible framework. The modulator is the resistant framework’s key role in
distinguishing self from non-self. Immunisation can take place in two ways: actively
or passively. In inactive immunisation, an antigen is stimulated to aid the body’s
development of immunological defences against potential exposure. Passive
immunisation entails administering antibodies that have been preformed to the
person who has already been exposed or is soon to be exposed to antigen. The
activity of immunostimulant has been reported in several plants, and these plants
utilised traditionally for rejuvenation of the immune system and treatment of chronic
diseases in India, China and European countries. Currently, some stimulation of
antigen-specific or non-specific invulnerability is evidenced by an increase in
haemagglutinating antibody (Ha) titre and plaque-forming cells treated with half
ethanolic extract of these plants in mice. The studies prove that these plant products
play a vital role in rejuvenation therapy and chronic ailments of Indian traditional
medicine (Patil et al. 2012). Around 122 chemicals inferred from plants have been
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identified as therapeutic substances that are also used in commercial drugs. For
example, the bark of the willow tree is rich in salicylic acid, which is also an active
metabolite of aspirin, and this bark has been identified as a therapeutic substance
(Goodman 1996). Some of the medications which are as often as possible utilised by
the physicians are also determined from plant sources, for example, aspirin, digoxin,
quinine, opium, etc. (Goodman 1996). They have been used as an herbal
tranquilliser for a long time. There is a growing interest in using these medicinal
plants as modulators of the complex safety system. Many chemical forms of
alkaloids, flavonoids, terpenoids and polysaccharides have been discovered through
many sorts of research conducted in the area (Puri et al. 2013); lactones and
glycosides are the main factors for modification in the immunomodulatory
properties.

1.2  Subtypes of Inmunomodulators
Immunomodulators are divided into the three subtypes:

(a) Immuno-adjuvants improve vaccine efficacy and can be employed as particular
immunostimulants. Immuno-adjuvants are the actual modulators of the fast
response, acting as selectors between immune-protective and immune-
destructive T1 (Th1) and T2 (Th2) cells (Dias et al. 2012).

(b) Immunostimulants are inalienably non-specific resistant to infection. These
immunostimulants work in both innate and adaptive invulnerable responses.
These immunostimulants serve as prophylactic and promoter compounds such
as immunopotentiators—the immunostimulants with invulnerable response,
which act as immunotherapeutic compounds (Wadood et al. 2013).

(c) Structurally and functionally, immunosuppressants are a diverse class of drugs
frequently used in combination regimens to treat various autoimmune and
allergy diseases (Billiau and Matthys 2001). Immunosuppressant decrease in
resistance to infections may occur as a result of chemotherapeutic factors
(Billiau and Matthys 2001).

Immunosuppressant clinical applications are as follows:

¢ To prevent transplanted organs and tissues from being rejected

* To treat graft-versus-host disease in bone marrow transplants

* To treat myasthenia gravis, systemic lupus erythematosus, rheumatoid arthritis,
psoriasis and ulcerative colitis, which are not entirely understood autoimmune
components in their pathogenesis

¢ Avoiding Rh haemolytic disease in newborns with selective immunosuppression
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1.2.1 Immunostimulant

The immunostimulation comprises a therapeutic concept which stimulates the
non-specific immune system; this means that non-antigen-dependent stimulation
is used to boost the efficacy of granulocytes, macrophages and natural killer cells.

Immunomodulator Drug Side Effects
Pulmonary toxicity, myelosuppression, alopecia and an increased risk of infec-
tion have been reported as side effects of these drugs (Kremer et al. 1994).

1.2.1.1 Pharmacognostic Approaches
Pharmacognostic approaches are briefly discussed in Table 1.1.

1.2.1.2 Chemistry of Phytoconstituents Used as Inmunostimulants

1.2.1.2.1 Glycosides

These are organic compounds derived from plant and animal sources that, when
hydrolysed by enzymes or acids, give one or more sugar moieties known as glycone
parts. When water is lost, they create acetals and ether forms that connect with the
hydroxyl groups of sugar and non-sugar moieties. Many glycosides are available for
the ideal immunomodulatory action, such as:

* Picrorhiza scrophulariiflora, anthraquinone glycosides.

* Three novel sesquiterpene glycosides have been isolated from the stems of
Dendrobium  nobile:  Andrographis  paniculata, = Dendroside  and
Dendronobilosides.

1.2.1.2.2 Flavonoids
Flavonoids are 15-carbon (6-3-6) skeletons with two phenyl rings that bind three-
carbon.

Various forms of flavonoids, including apigenin, exhibit immunomodulatory
activities.

¢ Oligomeric proanthocyanidins.
* Isoflavonoids, flavones and anthocyanins such as flavonoids are found in
Terminalia arjuna.

1.2.1.2.3 Coumarins

Glycosides derived from benzo-a-pyrone are known as coumarins. Furanocoumarins
are made by fusing furan ring to a coumarin at the 6 and 7 positions or the 7 and
8 positions (Leung et al. 2005), and these molecules show immunomodulatory
activities. 6,7-Dihydroxycoumarin (esculetin) is a coumarin derivative extracted
from a range of plants, including Artemisia capillaris, Citrus limonia and Euphorbia
lathyris. It shows pleiotropic biological activities, such as inhibition of lipoxygenase,
suppression of the oxidative reaction that damages DNA, inhibition of tyrosinase
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activity and antitumour activities (Thanh et al. 2004). The root of Angelica dahurica
is used to assess cytotoxic coumarins (Jafarian et al. 2010).

1.2.1.2.4 Sapogenins

Sapogenins such as triterpenoid saponins and diterpenes modulate a broad spectrum
of immunomodulatory activities. Some examples are Gymnema sylvestre,
Chlorophytum borivilianum, Boswellia spp. and Randia dumetorum.

1.2.1.2.5 Alkaloids

These essential compounds, found in natural and synthetic forms, contain one or
more nitrogen atoms. These alkaloids are found in heterocyclic form and have
particular physiological effects on humans or animals. Some well-known alkaloids
are Achillea millefolium, Murraya koenigii, Cissampelos pareira and Actinidia
macrosperma.

1.2.1.2.6 Thiosulphinates
These compounds, such as Allium hirtifolium, have potent immunomodulatory as
well as adaptogenic effects (Alamgir and Uddin 2010).

1.2.1.2.7 Volatile Oils and Terpenoids

Terpene is a hydrocarbon (C5HS8) chain, while terpenoids are hydrocarbons with
oxygenated derivatives. Terpenes and terpenoids are plant and animal origin volatile
oils. Many plants show immunomodulatory activity with terpene moiety display,
e.g. eugenol derived from Ocimum sanctum.

1.2.1.2.8 Polysaccharides

The regulation of innate susceptibility and, more particularly, the macrophage
characteristic of polysaccharides has several therapeutic advantages. Both microbial
and botanical polysaccharides bind to the surface receptors in macrophages that
induce immunomodulatory responses. Both forms of organisms share these evolu-
tionarily conserved polysaccharide structural features. The evaluation of botanical
polysaccharides reveals beneficial immunomodulatory properties, providing a rare
opportunity to discover novel therapeutic compounds—polysaccharides activate
monocytic cells and induce monocytic cell differentiation into macrophages (Allison
2000; Rios 2010).

1.2.2 Immunostimulant Synthetic Drugs

Immunostimulants are attractive substances that activate the invulnerable framework
of animals to improve the natural resistance to many bacterial and viral infections.
These biologically active substances are derived from natural sources or synthesised
using various chemical properties and action mechanisms. In general,
immunostimulants induce the amalgamation of specific antibodies and cytokines
for the treatment of infectious diseases. These immunostimulants are divided into
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two groups: first, specific immunostimulants that function as antigens for the stimu-
lation of immune responses (e.g. vaccines) and, second, non-specific
immunostimulants that have no antigenic properties yet enhance healthy responses
to other antigens (e.g. adjuvants and non-specific immunostimulants).

The origin and mode of action of these immunostimulants are classified (Labh
and Shakya 2014).

1.2.2.1 Functions of Inmunostimulants

Immunostimulants activate various components of the insusceptible framework in
animals and humans. They develop the non-specific immunotherapy and
immunoprevention by stimulating the significant factors of the resistant framework
including phagocytosis, properdin and complement frameworks protective secretory
Iga antibodies, a- and y-interferon release, T- and B-lymphocytes, combination of
specific antibodies and cytokines, and blend of pulmonary surfactant (Petrunov et al.
2007). There are several reasons to use immunostimulants to treat various infectious
diseases, including bacteria’s antibiotic resistance, allergic reactions to antibiotics,
immunosuppressive effects of antibiotics and poor effects of antibiotics in viral
infections (Petrunov et al. 2007).

1.2.2.2 Types of Inmunostimulants

Immunostimulants were divided into seven groups for better understanding: bacte-
rial products, complex carbohydrates, vaccines (antigens and adjuvants), cytokines,
immunoenhancing products, plant extracts and animal extracts. Few
immunostimulatory  drugs (endogenous immunostimulants or  synthetic
immunostimulants) have been developed to induce humoral or cellular fast
responses against bacterial or viral infections, immune deficiency diseases and
cancer. They were classified as follows:

1.2.2.2.1 Levamisole (Ergamisol)

Levamisole is a synthetic immunostimulant that stimulates B- and T-lymphocytes, as
well as monocytes and macrophages. It was used in adjuvant therapy with
5-fluorouracil after surgical resection in patients with colon cancer. Allergy, nausea,
influenza and muscle pain are some of the common disadvantages. Levamisole has
been successfully used in combination with polymers to treat dermatological
disorders. For example, it was combined with cimetidine to treat recalcitrant warts
and with prednisolone to treat aphthous ulcers of the mouth (Patil et al. 2012;
Biswajit et al. 2014).

1.2.2.2.2 Thalidomide

Thalidomide or immunoprin (C13HION201) is an immunomodulatory drug. In
patients with erythema nodosum leprosum, thalidomide can reduce circulating
TNF-a. In HIV-positive patients, however, it increased TNF-a. Furthermore, it
was able to overcome its therapeutic effects in severe rheumatoid arthritis and
angiogenesis. Isoprinosine (Inosiplex/Imunovir): Isoprinosine (C52H78N10017)
is a combination of inosine, acetamidobenzoic acid and dimethylaminoisopropanol.
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Isoprinosine could enhance the levels of cytokines, including IL-1, IL-2 and IFN-y.
In response to mitogenic or antigenic stimuli, it boosted lymphocyte proliferation.
Isoprinosine also augmented active T-cells and induced T-cell surface markers on
prothymocytes. It was utilised to treat Herpes simplex infections, Epstein-Barr and
measles infections. Its disadvantages include a milder CNS depressant, temporary
nausea and higher serum and urine uric acid levels (Patil et al. 2012).

1.2.2.3 Immunocynin

Immunocynin is a stable form of hemocyanin, a copper-containing protein, which is
found in molluses and arthropods. It was utilised to treat urinary bladder cancer with
reduced side effects, such as rare yellow fever (Patil et al. 2012).

1.2.2.3.1 Bestatin

Bestatin, a dipeptide [(2S, 3R)-3-amino-2-hydroxy-1-phenylbutanoyl]-L-leucine, is
a low-toxicity immunostimulant that binds to lymphocytes and macrophages and
enhances both humoral and cellular safe responses. It is an inhibitor of leucine
aminopeptidase and aminopeptidase-B—bestatin possesses antitumour activity and
also increases the antitumour activity of bleomycin and adriamycin. Bestatin was
effective in preventing the metastasis of P388 leukaemia when the antibiotic was
regularly injected after tumour inoculation (Tsuruo et al. 1981); the dipeptide was
immunorestorator in the elderly and cancer patients and HIV-infected subjects.
In vitro enhanced granulocytopoiesis and thrombocytopoiesis, which might restore
them in myelohypoplastic men (Mathe 1991).

1.2.2.3.2 Bacterial Products

The effect of immunostimulatory are due to the release of cytokines from bacteria.
Its immunostimulatory mechanism is caused by bacteria that (a) induce a granulo-
matous reaction at the site of administration and (b) prevent and treat carcinoma
forms. This mechanism causes phagocytosis and resistance to infection through B-
and T-cell-mediated responses. Some disadvantages are excessive touchiness, fever,
shock and complex insusceptible disease (Patil et al. 2012).

1.2.2.3.3 Recombinant Cytokines

Many interferons and interleukins stimulate immune reactions. After stimulation
with mitogens, interferons could be obtained from trout leucocytes. It could cause
in vitro resistance to pancreatic necrosis infection in trout cells. Low doses of
interferon could induce stable positive outcomes in mammals without causing side
effects. On the other side, vaccination of animals with the recombinant IL-2
increased the protective effects against specific infections. In large dosages, IL-2,
on the other hand, was a highly hazardous compound, causing symptoms, such as
fever and diarrhoea. The cleaned cytokines produced unsatisfactory results in clini-
cal trials because the resistant responses were produced by a blend of cytokines
generated by the safe cells rather than against a single cytokine. In this way,
non-specific cytokine amalgamation enhancers will develop safe responses and
solve the problem (Galeotti 1998). Thus, recombinant cytokines are produced
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recently in various expression frameworks (e.g. plants) and utilised in clinical trials,
such as interferons, TNF-a and IL-2 (Sirko et al. 2011).

1.2.2.4 Complex Carbohydrates
Several types of complex carbohydrates were described as follows:

1.2.2.4.1 Glucans
The p-(1—3)-linked chain of glucose wunits is an essential class of
immunostimulants.

There are f-(1—6)-branched glucose units in the main chain. The B-glucans were
derived from unusually well-preserved structural components of cell walls in
organisms, algae and yeast and have a wide range of molecular weights ranging
from 5 to 200 kDa. Depending on the source, the length and frequency of these
branches vary. B-glucan has been used to stimulate antitumour mechanisms
(e.g. increased macrophage activity) and to improve host resistance to a variety of
microbial pathogens in mammals. Glucan may also be beneficial in preventing
aflatoxin’s carcinogenic effects. The B-glucan was thought to be a stimulator of
cell invulnerability. In fact, in the presence of glucans, mammalian macrophages or
monocytes have specific receptors for glucans and their precursors, such as
cytokines (e.g. IL-1, IL-9, TNF-a) and prostaglandins (Sahoo and Mukherjee
2001; Madrigal-Bujaidar et al. 2015). In Japan, B-glucans such as lentinan, derived
from shiitake mushroom, and Polysaccharide-K, derived from Coriolus versicolor,
were licensed as anticancer drugs. Lentinan may induce protective Thl insusceptible
responses to control the proliferation of malaria parasites in red blood cells by
stimulating the maturation of Dcs; increasing the expression of MHCII, CD80/
CD86 and Toll-like receptors (TLR2/TLR1) and the level of IL-12; and forestalling
the adverse effects of Tregs. The primary roles of glucans have been discovered in
the treatment of cancer, infection resistance, stress reduction and the restoration of
damaged bone marrow. Zymosan, a combination of polysaccharides isolated from
the cell walls of Saccharomyces cerevisiae, could potently stimulate macrophages
and induce neutrophil cytokine release. In reality, p-glucan in zymosan was
recognised as its active component for non-specific immunomodulation. Also,
B-glucan may also be able to reverse myelosuppression generated by chemothera-
peutic medicines by targeting the C3 fragment of complement and circulating
antibodies. Recent studies have shown that daily therapy with soluble or insoluble
B-glucan reduced tumour size by 70-95%. To be sure, after the coupling of
antibodies on the surface of cancer cells, C3 fragments of complement could coat
the cancer cells at that point, p-glucan-prepared cells, such as neutrophils,
macrophages and NK cells, correctly recognised these complement-antibody
complexes and executed the tumour cells. The cooperation of fB-glucan with
antitumour antibodies is a practical approach in combination treatment (Vetvicka
2011).
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1.2.2.4.2 Trehalose
Trehalose dimycolate (TDM), muramyl dipeptide (MDP) and lipopolysaccharides
(LPS) as bacterial products promote the production of antibodies, stimulate lympho-
cyte activation and elicit specific susceptibility to bacterial infections. Trehalose
dimycolate, a glycolipid found in Mpycobacterium’s cell wall, is a potent
immunostimulant that inhibits tumour growth and improves resistance to bacterial,
parasitic and viral infections. Because of their amphipathic properties, they can
interact with membranes. TDM primes murine macrophages to produce nitric
oxide (NO) and develop the antitumour activity. TDM, as an adjuvant, enhances
both cellular and humoral invulnerability while eliciting a more robust cellular
response. TDM could induce potent safe responses against malaria antigens in
comparison to groups infected with malarial antigens and Freund’s adjuvant. The
results showed that in macrophage-drained mice injected with silica particles, the
protective effect of TDM is reduced, indicating the role of macrophages.
T-lymphocytes were not required for TDM to activate peritoneal macrophages.
Trehalose diesters could activate IL-12p10 and IFN-y mRNA (Parant et al. 1978;
Oswald et al. 1997).

1.2.2.4.3 Prebiotics

Prebiotics are inedible filaments that increase beneficial gut commensal bacteria,
improving the health of the host. Prebiotics, such as fructooligosaccharide, mannan
oligosaccharide, inulin or B-glucan, are known as monosaccharides. They signifi-
cantly boost innate insusceptible reactions, such as phagocytic activation, neutrophil
activation, alternative complement framework activation and increased lysozyme
activity. Immunosaccharides interact with pattern recognition receptors (PRR) con-
veyed on innate invulnerable cells to directly activate the innate safe framework. In
order to activate innate safe cells, they can also be linked to microbe-associated
molecular patterns (MMPs). Probiotics activate the innate safe framework in
two ways: (a) by directly stimulating the innate invulnerable framework and (b) by
boosting the growth of commensal microbiota (Song et al. 2014).

1.2.2.5 Immunostimulants Used in Vaccines

Vaccines include a vast variety of immunostimulants; for example, an adjuvant heat-
labile enterotoxin from Escherichia coli (LT), administered in the form of
immunostimulant (LT-IS) patch on the skin, may improve insusceptible responses
to influenza vaccination in the elderly. The invulnerable activation induced by LT-IS
enhanced the potency of generating Alzheimer’s disease (AD)-specific vaccination
reactions as an adjuvant in the clinical trial (Davtyan et al. 2014). Co-administration
of a potent adjuvant in IS patches containing heat-labile enterotoxin from E. coli.
The anti-influenza antibody insusceptible response was significantly increased when
E. coli was applied to the skin at the location of DNA vaccination (Mkrtichyan et al.
2008); adjuvants enhance and modulate resistant responses to antigens. This is
important when the sanitised antigens do not elicit effective innate or adaptive
resistant frameworks. Adjuvants are diverse in the sorts and levels of invulnerable
responses. Expected advantages of adjuvants contain more robust resistant
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preparing, effective invulnerable responses in low-response populations (e.g. the
older or immunocompromised patients), the utilisation of smaller amounts of the
antigen and safety profile (Garcon et al. 2011). New adjuvants have already applied
to more efficient influenza vaccines, as well as vaccines targeting hepatitis B (HBV)
and human papillomavirus (HPV) (Frech et al. 2005). On the other hand, CpG
oligonucleotides and imiquimod drugs (an antiviral compound) could activate den-
dritic cells, induce in situ maturation and migration of Dcs and augment both
humoral and cellular insusceptible responses (Frech et al. 2005). The unmethylated
CpG motif in bacterial DNA was recognised as a B-cell stimulating adjuvant, and
synthetic oligodeoxynucleotides (ODNSs) containing the CpG motifs were shown to
induce potent therapeutic activities in various infections and tumour animal models.
Imiquimod was topically utilised for patients with anogenital warts as well as basal-
cell carcinoma. The investigations indicated that CpG ODNs and imiquimod
(resiquimod) drugs act as synthetic ligands for TLR9 and TLR7, respectively, and
both stimulate Dc maturation efficiently (Frech et al. 2005).

1.2.3 Immunosuppressant

1.2.3.1 Synthetic Drugs: Manufactured Medications

Medications to smother human response against resistant have been used for couples
of the decade. Such compounds were used for patient treatment undergoing organ
transplantation or suffering from autoimmune diseases. The major stumble back of
primitive immunosuppressive compounds was due to absence of specificity. Wide
suppression of safe cell replication and cell function sometimes leads to extreme
toxicities and related adverse symptoms. As the knowledge of invulnerable frame-
work response for molecular and cellular level evolved, more current with specific
compounds were developed which target particular component with its safe
response. These modern immunosuppressive compounds do not have potential
adverse effects with their efficacy and safety had significantly risen above to there
predecessor compounds (Allison and Eugui 2005).

1.2.3.2 Immunosuppression for Organ Transplantation

Medications that suppress the human resistive response are widely used to prevent
the rejection of transplanted organs (alloimmunity) and to treat autoimmune disease
(autoimmunity). Solid-organ transplantation mostly involve the heart, liver, kidney
and lungs (Libby and Pober 2001). The main objectives of transplant
immunosuppression are:

* To forestall rejection of transplanted organs
* To limit sedate toxicity along with side effect
¢ To limit hazard of infection

In an ideal condition, these three goals could be fulfilled utilising most minor
medications and the minimum possible dosage that could be effective in patients
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along with graft survival. Transplantational tissue rejection occurs in three phases:
hyper-acute, acute and chronic. Hyper-acute rejection includes a spontaneous
(in practically no time) response from the recipient’s an resistant framework against
transplanted tissue and, which is expected due to measures taken by antibodies
counter to donor H.L.A (human leukocyte antigen or A.B.O antigen-6 Eradication
of transplanted tissues could be quick and broad. Precise matching between donor
and recipient tissues can forestall this rejection type. Acute rejection type is most
likely to incur inside initially 1-3 months post-transplant. Acute rejection is caused
primarily due to host T-cells. When triggered by foreign antigens on the donor
tissue, cytotoxic T-cells enter the organ and begin disintegration by releasing
cytotoxic catalysts and proteins (e.g. perforins). Treatments that decrease T-cell
activity work effectively for this type of acute rejection. In acute rejection,
humoral-mediated rejection is crucial because host B-cells sharpen to donor tissue
by producing antibodies against it. Antibodies directed against endothelial cells of
the heart tissue can cause vasculature damage in acute rejection. This method of
treating acute rejection is not particularly well known.

1.2.4 Inhibitor of Lymphocyte Gene Expression

Immunosuppression is used in transplant patients for various reasons, including
preventing acute rejection in the days following the transplant. In order to do this,
induction therapy is started during the transplantation surgery and lasts typically for
7-10 days. The infusion of a robust immunosuppressive antibody that blocks T-cell
activation is typically used in induction treatment. Daclizumab and basiliximab, two
of these drugs, are antibodies to the T-cell D25 (D 5 cluster of differentiation)
receptor. Interleukin-2 has a high affinity for activating this T-cell receptor (IL-2).
Even though activated T-cells can only transmit D25, these agents are very selective
for T-cells already activated by MH. Daclizumab is a “humanised” antibody with
90% human components and is expected to be less antigenic than basiliximab, which
has 75% human components. For both induction and acute rejection therapy, two
polyclonal anti-thymocyte globulins are available. The first antibody, tgam, is
generated from horses, while rabbits determine the second (Thymoglobulin). Both
are linked to lymphocyte D receptors in a variety of ways. Once bound,
antithymocyte globulins promote complement-mediated lysis of T-cells, resulting
in their depletion. Both compounds are robust immunosuppressants, and
transplanted patients might be exposed to a variety of infections because of their
broad mechanism. Restriction of the globulins can cascade a chain of release for
cytokines from T-cells, leading to “cytokine release syndrome”, which causes
headaches, fever, cold and vomiting in patients. The murine-inferred monoclonal
muromonab (OKT3) is the third type of immunosuppressive antibody. This globulin
binds to the CD3 cell surface receptor on T-cells, crucial in T-cell activation. Patients
may produce donor organ trustworthiness and function since OKT3 is a murine
protein. Cellular and humoral processes appear to be involved. Chronic inflamma-
tion of the donor tissue is a central feature of chronic rejection. T-cells release
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cytokines when they are activated, which attract and activate macrophages. The
donor tissue is then infiltrated by macrophages, which attack it with cytolytic
compounds. Continuous antibody production by activated B-cells and the resulting
activation of complement proteins may lead to chronic rejection. The retransplanting
approach is the only option because there is no effective pharmacologic therapy for
avoiding chronic rejection.

1.2.5 Antibodies Against Specific Inmune Cell Molecules

Antibodies are Y-shaped proteins produced by the immune system in response to
infection. For example, they help remove disease-causing bacteria from the body by
crushing them or preventing them from contaminating cells. Antibodies function
profoundly by perceiving and adhering to particular proteins, such as those present
on the surfaces of pathogens and microorganisms, when the body encounters an
organism simply because insusceptible cells develop antibodies that directly per-
ceive proteins relevant to that specific microorganism. In the wake of recouping from
a disease or getting an immunisation, few of these counteracting agents creating
resistant cells, for the most part, stay in the body as memory cells, furnishing
insusceptibility to future contaminations with a similar bug. Since memory cells
and antibodies are now present, the body experiences a similar organism; the
invulnerable reaction is quicker and can prevent the disease from grabbing hold.
Antibodies that perceive the body’s proteins rather than proteins from irresistible
organisms can cause hurt. In immune system ailments, such as lupus, numerous
sclerosis and rheumatoid joint pain, individuals produce antibodies that adhere to
their body’s proteins and assault solid cells.

Hypersensitivities include an exceptional class of antibodies called immunoglob-
ulin E (IgE). When these antibodies recognise allergens, they cause invulnerable
cells to release histamine and other irritating particles, resulting in severe side effects
from unfavourably susceptible responses. Antibodies are mostly used in biomedical
research because of their unique ability to recognise and cling to specific proteins,
such as determining whether a given protein is present in a sample or where a
specific protein is located within a cell.

1.2.5.1 Polyclonal Antibodies Antithymocyte Globulin (ATG)
Antithymocyte globulin is a pure type of gamma-globulin derived from rabbit serum
immunised against human thymocytes (Sharma and Sharma 2007).

1.2.5.1.1 Mechanism of Action

Antithymocyte globulins have cytotoxic antibodies that will bind to CD2, CD3,
CD4, CD8, CDl11a, CD18, CD25, CD44 and CD45, as well as HLA class I and IT in
the surface of human T-lymphocyte cells. The antibody drains circulating lympho-
cyte by direct cytotoxicity of complement and cell-mediated, which in turn block
lymphocyte function by binding to the cell surface molecule engaged in cell activity
regulation (Katzung 2012).
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1.2.5.1.2 Therapeutic Uses
One of the major uses is in severe renal transplantational rejection.

1.2.5.1.3 Adverse Effects

Rigors, hypotension, serum sickness, glomerulonephritis, leucopenia with thrombo-
cytopenia and increased risk of infection with malignancy are some of the main
effects when several immunosuppressive compounds are used together (Golan et al.
2011).

1.2.5.2 Monoclonal Antibodies: Muromunab (Anti-CD3 Antibodies,
OKT3)

An antibody targeting CD3, a trimeric structural molecule adjacent to the T-cell

receptor in the surface of human T-lymphocytes, has been used in human transplan-

tation with remarkable success since the early 1980s (Sharma and Sharma 2007).

1.2.5.2.1 Mechanism of Action
Muromonab-CD3 binds to the CD3 chain, a monomorphic component of the T-cell
receptor complex involved in antigen recognition, cell signalling and preference.
The use of antibodies induces a rapid internalisation of T-cell receptors, which
prevents antigen recognition. The antibody is administered by depleting and
extracting full T-cells from peripheral lymph organs (Carlos and Harlan 1994).
The lack of traceable T-cells from individual lymphoid organs leads to secondary
T-cell death, characterised by implementation activation, activation-induced T-cell
passing and the marginalisation of T-cells in the vascular endothelial wall as well as
redistribution of T-cells to the non-lymphoid organs. Muromonab-CD3 reduces
T-cell function, as explained by a lack of interleukin-2 production coupled with
massively reduced production of several cytokines, except interleukin-4 and
interleukin-10 (Katzung 2012).

1.2.5.2.2 Therapeutic Uses
Cases of severe organ transplant rejection.

1.2.5.2.3 Adverse Effects

High fever, cold with headache, tremor, nausea, diarrhoea, abdominal pain, malaise,
myalgias and arthralgias along with generalized weakness; minor effects such as
skin allergy, cardiorespiratory issues and central nervous system disorders including
aseptic meningitis; and potential fatal severe pulmonary oedema and acute respira-
tory distress syndrome (Tortora Gerard and Derrickson Bryan 2008).

1.2.6 Inhibitors of Inmune Cell Adhesion
Cell-cell and cell-lattice attachments are known to assume critical jobs in the

enlistment and enactment of insusceptible T-cells. Noticeable among the subatomic
attachment parts are integrins (Bl and p2) that intercede the collaborations of an
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assortment of insusceptible cells to extracellular frameworks and other resistant
cells, separately (Adutler-Lieber et al. 2014).

Adhesion molecules can be classified into four major groups: integrins, selectins,
cadherins and immunoglobulin superfamily (IgSF), including nectins and mucins
(Samanta and Almo 2015). Along with the conventional adhesion molecules, the
specific enzyme vascular adhesion protein 1 (VAP-1) plays an important role in cell
adhesion (Jalkanen et al. 2007). Compounds that block leucocyte adhesion, transmi-
gration with expression of related CAMs present therapeutic model as immunosup-
pressive and anti-inflammatory drugs (Hynes 1992).

For the most part, a cell adhesion inhibitor are classified as target site for cell-cell
adhesion with expression of cell adhesion molecules (Jia et al. 2015), though certain
small molecules such as flavonoids (Kobuchi et al. 1999) and others (Mun et al.
2011). When the affecting experience of a cell adhesion molecule is known, specific
inhibitors for cell-cell contact is limited (Jin et al. 2010).

1.2.6.1 Efalizumab

Efalizumab (lymphocyte function-associated antigen-1 inhibitor) is a humanised
g¢G1 mAD that targets the CD11, a chain of the LFA-1 (lymphocyte function-
associated antigen).

1.2.6.1.1 Mechanism of Action

Efalizumab attached to lymphocyte function-associated antigen-1 and blocked the
lymphocyte function-associated antigen-1-ICAM (intercellular adhesion molecule)
interaction to avoid T-cell adhesion, trafficking and onset.

1.2.6.1.2 Pharmacokinetics

Efalizumab offers a certain saturation with 80 per cent modulation of CD11 within a
time frame of 24 hours of administration, according to pharmacokinetic and phar-
macodynamic studies.

1.2.6.1.3 Therapeutic Uses
Survival of murine skin, heart allografts and psoriasis along with renal transplanta-
tion (Sharma and Sharma 2007).

1.2.7 Tolerogens or Inhibitors of Inmune Cells

A tolerogen is a foreign antigen that suppresses the immune response or induces
immunological tolerance, unlike an immunogen that stimulates an immune response.
Instead of inducing the immune system to be active, the tolerogen binds to the
lymphocytes’ antigen receptor to suppress it.
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1.2.8 Inhibitors of Lymphocyte Gene Expression to Reduce
Inflammatory Response

1.2.8.1 Mechanism of Action

Cell-cell and cell-cross-section connections are known to expect principal employ-
ment to select and establish immune T-cells. Observable among the subnuclear
connection parts are integrins (1 and 2) that intervene in the joint efforts of various
invulnerable cells to extracellular systems and other safe cells independently
(Adutler-Lieber et al. 2014).

Along with the conventional adhesion molecule, the enzyme ex-vascular adhe-
sion protein 1 (VAP-1) plays a vital role in cell adhesion (Jalkanen et al. 2007). The
compound that inhibits leucocyte adhesion, transmigration and expression of
associated CAM presents in a therapeutic model for immunosuppressive and anti-
inflammatory drugs (Hynes 1992).

Cell adhesion inhibitor will be classified for target for cell-cell adhesion along
with expression of cell adhesion molecules (Jia et al. 2015). With impact on
expression of cell adhesion molecules is known, specific inhibitors for cell-cell
contact are very little (Jin et al. 2010).

1.2.8.2 Therapeutic Uses

Transplant rejection, graft-versus-host disease in bone marrow transplantation,
rheumatoid arthritis, SLE and various conditions of skin, asthma, allergic disorders,
inflammatory bowel and ophthalmic diseases (Sharma and Sharma 2007).

1.2.8.3 Adverse Effects
Some major effects are growth retardation in minor, avascular bone necrosis,
osteopenia, cataract, hyperglycaemia and hypertension.

1.2.9 Inhibitors of Lymphocyte Signalling to Prevent Immune Cell
Activation and Proliferation: Calcineurin Inhibitors

1.2.9.1 Cyclosporine

Cyclosporine (cyclosporin A) is a cyclic polypeptide chain with a total of 11 AA
produced by the fungal species Beauvera nivea. Cyclosporine overpowers T-cell
subordinate immune system pathways as transplant rejection and pathway for
autoimmunity. It also prevents T-lymphocytes from receiving antigen-triggered
signals, effectively reducing the expression of numerous lymphokines, interleukin-
2 and anti-apoptotic proteins. Cyclosporine binds to make a complex with
cyclophilin, a specific type of cytoplasmic receptor present in target T-cells. This
complex binds to calcineurin, inhibiting Ca2+-stimulated dephosphorylation of the
cytoplasmic component of the nuclear factor of activated T-cells (NFAT). When
NFAT is dephosphorylated and translated, it attaches to the nuclear component
required for complete T-cell activation, including the activation of the L-2 and
other lymphokine genes. After physical interaction with the cyclosporine/
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cyclophilin complex, calcineurin phosphatase activity is stopped. This inhibits
NFAT dephosphorylation, resulting in NFAT not entering the nucleus transcription
activated and the T-lymphocyte failing to respond to antigenic stimulation.

1.2.9.1.1 Pharmacokinetics

Cyclosporine administered orally or IV. Oral bioavailability is less around 30%.
Food stops its absorption. It is metabolised by CYP3A, resulting in drug-to-drug
interaction. Inactive metabolite is ejected primarily through the bile and faeces but
minimally in urine (Chaudhuri 1997).

1.2.9.1.2 Therapeutic Uses
Organ transplantation, rheumatoid arthritis, psoriasis, early engraftment, extending
kidney graft survival and cardiac and liver transplantation (Sengupta 2009).

1.2.9.1.3 Adverse Effects

Renal dysfunction, tremor, hirsutism, hypertension, hyperlipidaemia, gum hyperpla-
sia, hyperuricaemia, hypercholesterolaemia, nephrotoxicity, diabetogenic and
increase in LDL cholesterol.

1.2.9.2 Tacrolimus
Tacrolimus (PROGRAF, FK506) is a macrolide antibiotic synthesised by Strepto-
myces tsukubaensis.

1.2.9.2.1 Mechanism of Action

T-cell activation is inhibited via blocking calcineurin. Tacrolimus binds to an
intracellular protein FK506-binding protein-12 (FKBP-12), an immunophilin,
which is structurally linked to cyclophilin. A complex of tacrolimus-FKBP-12,
Ca2+, calmodulin, calcineurin forms and calcineurin phosphatase activity is
stopped. As described for cyclosporine, the inhibition of phosphatase activity
inhibits dephosphorylation and nuclear translocation of NFAT and stops T-cell
activation.

1.2.9.2.2 Pharmacokinetics
Tacrolimus can be administered orally or IV; the liver metabolises 99% by CYP3A
and has plasma half-life of 7-8 h (Singhal 2007).

1.2.9.2.3 Therapeutic Uses
Prophylaxis of solid-organ allograft rejection, kidney transplantation and paediatric
liver transplantation.

1.2.9.2.4 Adverse Effects
Nephrotoxicity, GI  complaints, diabetes, neurotoxicity, hypertension,
hyperkalaemia and hyperglycaemia.
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1.2.10 Mammalian Target of Rapamycin (mTOR) Inhibitors:
Sirolimus

1.2.10.1 Mechanism of Action

Sirolimus blocks T-lymphocyte activation and proliferation downstream of the
interleukin-2 and other T-cell growth factor receptors. Sirolimus formation of a
complex with immunophilin FKBP-12, but the sirolimus-FKBP-12 complex does
not affect calcineurin activity. It binds and blocks protein-kinase targeted mamma-
lian target of rapamycin (mTOR), which is a key protein in cell-cycle progression.
Regulation of mTOR stops cell-cycle progression at the G1- to S-phase transition
(Goodman 1996).

1.2.10.2 Pharmacokinetics

Oral bioavailability 15% Protein binding 40—45% is against albumin, where it is
metabolised by the liver with the help of CYP3A4. Sirolimus excreted 91% through
faeces and 2.5% through urine with a plasma half-life of 62 h.

1.2.10.3 Therapeutic Uses
Organ transplant inhibitor is incorporated into stents to inhibit local cell proliferation
and blood vessel occlusion.

1.2.10.4 Adverse Effects
Increased level in serum cholesterol, triglycerides, impaired renal function, prolong
postponed unite function, lymphocele and anaemia with leucopenia.

1.2.11 Cytotoxic Agents to Reduce Lymphocyte Proliferations

1.2.11.1 Antimetabolites: Azathioprine
Azathioprine (Imuran) is a purine antimetabolite and imidazolyl derivative of
6-mercaptopurine.

1.2.11.1.1 Mechanism of Action

With the exposure to nucleophiles is cleaved to 6-mercaptopurine, which result in
conversion to extra metabolites which prohibit de novo purine synthesis. 6-Thio-
IMP is changed into 6-thio-GTP, which is incorporated into DNA. Cellular prolifer-
ation leads to dysfunction a type of lymphocyte function.

1.2.11.1.2 Therapeutic Uses
Allergenic kidney transplantation and organ transplant rejection.

1.2.11.1.3 Adverse Effects

Bone marrow suppression, leucopenia, thrombocytopenia (not common) and/or
anaemia (not common) along with increased susceptibility to infections, hepatotox-
icity, alopecia, nausea, vomiting, abdominal pain, mucositis and pancreatitis.
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1.2.11.2 Mycophenolate Mofetil
Mycophenolate mofetil (CellCept) is a 2-morpholinoethyl ester of mycophenolic
acid (MPA).

1.2.11.2.1 Mechanism of Action

Mycophenolate mofetil is pro-medicate which is hydrolysed into active tranquilise,
i.e. mycophenolic acid (MPA) that is a selective, non-competitive and reversible
inhibitor of inosine monophosphate dehydrogenase (IMPDH), which is an integral
part in the de novo pathway of guanine nucleotide synthesis. B- and T-lymphocytes
are dependent on this pathway, while other cell types use salvage pathway for cell
proliferation; MPA therefore selectively inhibits lymphocyte proliferation along
with some vital function, i.e. antibody formation and cellular adhesion along with
migration (Rang 2007).

1.2.11.2.2 Pharmacokinetics

Mycophenolate mofetil undergoes rapid complete metabolism to MPA after oral/
intravenous administration of MPA, which results in metabolising to an inactive
phenolic glucuronide MPAG. Out of which 87% is excreted through urine as MPA.

1.2.11.2.3 Therapeutic Uses
Prophylaxis of transplant rejection and renal transplant.

1.2.11.2.4 Adverse Effects
Various adverse effects can be seen, such as leucopenia, diarrhoea, vomiting and
sepsis associated with cytomegalovirus (Finkel et al. 2009).

1.2.12 Alkylating Agents

1.2.12.1 Cyclophosphamide
Cyclophosphamide is a unique immunosuppressant, and its function is to enhance
T-cell responses despite suppressing B-lymphocyte proliferation.

1.2.12.1.1 Mechanism of Action

Alkylating agents add alkyl groups by forming covalent bonds with nucleophilic
moieties ex-phosphate, sulfhydryl, hydroxyl, carboxyl, amino and imidazole groups
occuring in DNA/RNA. By forming cross-links between the strands of DNA, they
prevent the method of cell division as well as protein synthesis. These drugs are
lethal to rapidly reproducing tissues and inducing cell death until they are exposed to
the division method. The abovementioned drug’s cytotoxicity deals with a degree of
DNA alkylation (Goodman 1996).
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1.2.12.1.2 Therapeutic Uses

Autoimmune disorder in patients having acquired factor-XIII antibody, bleeding
syndromes, antibody-induced unadulterated red cell aplasia and Wegener’s
granulomatosis.

1.2.12.1.3 Adverse Effects
Pancytopenia, haemorrhagic cystitis, unite-versus-host disease syndrome, nausea,
vomiting, cardiac toxicity and electrolyte disturbances (Mythili et al. 2004).

1.2.13 Cytokine Inhibitors (Anticytokine Antibodies)

Tumour necrosis factor-a and IL-1 are pro-inflammatory cytokines found in the
pathogenesis of rheumatoid arthritis and Crohn’s disease. Activated T-lymphocytes
link to the IL-2, swhich promotes its proliferation (Hilmer and Ford 2009).

1.2.13.1 TNF-« Inhibitors

Activated cytotoxic THI1 cells secrete tumour necrosis factor-o that to tumour
necrosis factor receptors (TNFR1 or TNFR2) are present in fibroblasts, neutrophils
and vascular endothelial cells except for these; there are soluble forms of tumour
necrosis factor-a receptor present in serum and synovial fluid. Release of cystine
L-1, L-6 and adhesion molecules caused by tumour necrosis factor activation, which
promotes leucocyte activation and trafficking (Golan et al. 2011).

1.2.13.2 Etanercept

It’s a genetically modified fusion protein made up of two soluble tumour necrosis
factor p75 receptors connected to the Fc portion of human-IgG1. The medication
works on external administered soluble tumour necrosis factor-a receptor, which
provides artificial binding sites to tumour necrosis factor-a, leading to inhibition of
tumour necrosis factor-a from attaching to the film-bound TNFR-1 and TNFR-2.
The medication is mainly used for treatment of rheumatoid arthritis along with
psoriatic arthritis (Saif 2005).

1.2.13.3 Infliximab

It’s chimeric monoclonal antibody produced of exposure from mice to human
tumour necrosis factor-o. The resultant antibody is fused to constant region IgG-1,
which lowers the drug’s antigenicity. The medication cross links with film bounded
tumour necrosis factor-o receptor on cell surface to block T-cell and macrophage
function forcing to stop the release of other pro-inflammatory cytokines. It has
longer half-life and does not bind tumour necrosis factor-f. Infliximab is used to
treat Crohn’s disease and rheumatoid arthritis (Rang 2007).
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1.2.13.4 Adalimumab
It is a human recombinant monoclonal antibody to tumour necrosis factor-a, which
is significantly less antigenic than infliximab since it lacks the foreign component. Its
serum half-life is 2 weeks.

1.2.14 Miscellaneous: Immunostimulants

Indifferent to immunosuppressive agent that blocks the rejection of immune
response and autoimmunity, different immunostimulatory drugs are designed with
different functionality to infection, immunodeficiency and cancer. They work on
both cellular and humoral immune system.

1.2.14.1 Bacillus Calmette-Guerin (BCG)
Live bacillus Calmette-Guerin (BCG: TICE BCG, TheraCys) is made from live
culture from the bacillus of Calmette and Guerin strain of Mycobacterium bovis.

1.2.14.1.1 Mechanism of Action
At the site of granulomatous reaction.

1.2.14.1.2 Therapeutic Uses
Prophylaxis along with treatment for urinary bladder carcinoma and T1 papillary
after transurethral resection.

1.2.14.1.3 Adverse Effects
Shock, hypersensitivity, chills and fever (Goodman 1996).

1.2.14.2 Levamisole
Levamisole (Ergamisol) is manufactured as an anthelmintic yet promises to repair
weak immune response.

1.2.14.2.1 Therapeutic Uses
Adjuvant treatment with the help of 5-fluorouracil after surgical resection in patients
suffering from Duke’s stage C colon cancer and agranulocytosis.

1.2.14.2.2 Adverse Effects
Symptoms related to influenza, nausea, allergic reactions and body ache.

1.2.14.3 Thalidomide

1.2.14.3.1 Mechanism of Action

Thalidomide is proven to lower circulation of tumour necrosis factor-o of patients
dealing with erythema nodosum leprosum yet to elevate it in subjects who are HIV
seropositive. Indifference to it had been suggested that the medications result in
angiogenesis.
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1.2.14.3.2 Therapeutic Uses
In rheumatoid arthritis (Heidari 2011).

1.2.14.3.3 Adverse Effects
One of the effects is teratogenicity.

1.2.15 Recombinant Cytokines

Therapeutic uses of recombinant cytokines and their effects (Parnham and Nijkamp
2005; Sharma and Sharma 2007; Katzung 2012):

* Interferons: e.g. alpha, beta and gamma interferons work by induction of various
enzymes along with inhibition of cell proliferation, increased phagocytosis by
macrophages and augmentation of specific cytotoxicity. They are used in hairy
cell leukaemia, malignant melanoma, follicular lymphoma, Kaposi’s sarcoma and
chronic hepatitis B. They have certain adverse effects such as hypotension,
arrhythmias, myocardial infarction, gastrointestinal distress, loss of apetite and
weight loss.

 Interleukins: e.g. aldesleukin and des-alanyl-1, serine-125 human IL-2. Cellular
immunity is profoundly activated via lymphocytosis, eosinophilia and thrombo-
cytopenia with the release of several cytokines. It has many adverse effects such
as capillary leak syndrome, hypotension, reduced organ perfusion and death.

Colony stimulating factors: e.g. filgrastim works by increasing the number and
differentiation of myeloid progenitors. It is used in leucopenia and ganciclovir-
induced neutropenia. It has many adverse effects such as myocardial infarction
and anorexia.

1.2.15.1 Isoprinosine
Isoprinosine aka inosiplex is the complex of the pacetamido-benzoate salt of N,
N-dimethylamino-2-propanol and inosine in a molar ratio of 3:1.

1.2.15.1.1 Mechanism of Action

Isoprinosine promises to enlarge production of cytokines as IL-1, IL-2 and IFN-y. It
also increases proliferation of lymphocytes in response to mitogenic or antigenic
stimuli, increases active T-cell rosettes and induces T-cell surface markers on
prothymocytes.

1.2.15.1.2 Therapeutic Uses
Herpes infections, subacute sclerosing panencephalitis, Epstein-Barr and measles
viruses.
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1.2.15.1.3 Adverse Effects
Minor CNS depressant and transient nausea along with rise of uric acid in serum and
urine (Parnham 2005).

1.2.15.2 Immunocynin
It is a balanced form of haemocynin, which is a non-heme oxygen carrying along
copper-containing protein present in arthropods and molluses.

1.2.15.3 Therapeutic Uses
Used to treat some form of urinary bladder cancer.

1.2.15.4 Adverse Effects
Uncommon mild fever. The main three classes of drugs currently utilised for
maintenance therapy are antimetabolites, lymphocyte signalling inhibitors and
corticosteroids, which are all examples of antimetabolites. Older compounds such
as azathioprine and methotrexate as well as more recent compounds such as
mycophenolate mofetil and leflunomide are all examples of antimetabolite
immunosuppressants. Tamper with critical metabolic pathways in a variety of safe
cells, which can stifle their proliferation and induce apoptosis. Azathioprine was the
first compound of its kind to be used for immunosuppression in relation to organ
transplants. It is a mercaptopurine prodrug and a tranquiliser that interferes with
purine nucleic acid metabolism and, as a result, lymphoid cell replication. One major
disadvantage of using older drugs such as azathioprine is their lack of specificity and
potential for suppressing replication in other highly proliferative tissues, including
the bone marrow and stomach. When azathioprine is used in conjunction with
allopurinol, increase in drug blood levels is observed (Brooks et al. 1982).

These are the immunosuppressive drugs used for solid organ transplant (Rifle
et al. 2005):

* Glucocorticoids inhibit inflammatory gene transcription and induce lipocortins.
They are used in maintenance therapy and treatment of acute rejection. They
cause hyperglycaemia, osteoporosis, hypercortisolism, growth impairment and
impaired wound healing.

* Cyclosporine inhibits IL-2 expression and lymphocyte activation. It is used in
maintenance therapy. It causes nephrotoxicity, neurotoxicity, hypertension, hir-
sutism and gingivital hyperplasia.

* Tacrolimus inhibits IL-2 expression and lymphocyte activation. It is used in
maintenance therapy. It causes nephrotoxicity, hypertension, hyperglycaemia,
gastrointestinal disturbances and myelosuppression.

» Sirolimus suppresses IL-2 signalling as well as lymphocyte activation. It is used
in maintenance therapy and treatment of acute rejection. It causes hypertension,
peripheral oedema, hyperlipidaemia and myelosuppression.

e Mycophenolate mofetil inhibits lymphocyte guanosine synthesis. It is used in
maintenance therapy and causes hypertension, gastrointestinal disturbances and
myelosuppression.
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* Azathioprine inhibits purine nucleic acid metabolism. It is used in maintenance
therapy. It causes gastrointestinal disturbances and myelosuppression.

* Monoclonal antibodies (e.g. muronomab) inhibit purine nucleic acid metabolism.
They are used in maintenance therapy. They cause cytokine release syndrome,
pulmonary oedema and hypersensitivity.

These are the immunosuppressive drugs used to treat autoimmune diseases
(Libby and Pober 2001):

¢ Methotrexate inhibits lymphocyte and folate metabolism. It is used in inflamma-
tory bowel disease. It causes nausea, diarrhoea and alopecia.

* Leflunomide is an inhibitor of lymphocyte and pyrimidine synthesis. It is used in
rheumatoid arthritis. It causes hepatotoxicity, renal impairment, teratogenic and
gastrointestinal disturbances.

¢ Etanercept, infliximab and adalimumab are TNF-a inhibitors. They are used in
rheumatoid arthritis, psoriasis and inflammatory bowel disease. They cause
infection and myelosuppression.

* Glucocorticoids inhibit inflammatory gene transcription and induce lipocortins.
They are used in rheumatoid arthritis and inflammatory bowel disease. They
cause hyperglycaemia, osteoporosis, hypercortisolism, growth impairment and
impaired wound healing.

1.3 Conclusion

Immunology, it was reasoned, is presumably the most rapidly developing sector of
clinical biotechnology. It’s a great way to prevent and cure a variety of problems,
including inflammatory skin, gut, respiratory system, joints and specific organ
disorders. Immunomodulators would be a major part of medicine in the twenty-
first century. Helping the system help itself by enhancing the insusceptible frame-
work is of focal significance in the general public so pushed, horribly supported and
presented to poisons that a large portion of us are probably going to have
undermined invulnerable frameworks. Immunomodulation, on the other hand may,
is a normalising method that corrects feeble invulnerable frameworks and temper
insusceptible frameworks that are overactive, yet it does not help the safe frame-
work. Immunomodulators are becoming a viable addition to established modalities,
providing a unique methodology for treating incurable diseases in the next decades
of the twenty-first century.
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2.1 Introduction

In recent days, plants have been studied for their immunomodulating action against
various infectious diseases. The term “herbal medicine” or “phytotherapy” refers to
the therapeutical application of the plants or plant-derived compounds for treating
infectious diseases. These agents include either the whole plants or parts of the plants
including fruits, stem, leaves, bark, seeds, etc. (Khanal et al. 2020a; Prajapati and
Kumar 2020). The World Health Organization (WHO) stated that about three-
quarters of the globe relies on herbal medicine for their health care (Kumar et al.
2012). The natural body defence system plays a critical role to keep away the person
from infections and minimize the risk of falling sick regularly. The simple method
that can be adopted to improve immunity is by consuming a balanced diet.
Ayurvedic (India), Greco-Arab, or Unani-Tibb (South Asia), Egyptian, Chinese,
and Kampo (Japan) are the natural or traditional medicine that has been commonly
practiced for a long time to improve the health status in different regions. Spices/
herbs are typically characterized as aromatic plant parts, including seeds, roots, pods,
leaves, and bark, which not only provide versatility in the human diet but also
contribute to hedonic response (Shantilal et al. 2018).

Spices and herbs contain a considerable amount of phytochemicals such as
phenylpropanoids, isothiocyanates, terpenes, sulfur, and diarylheptanoids
compounds, which might be helpful to protect the human body against various
diseases including parasitic diseases, viral infections, dermatological disorders,
inflammation, etc. (Dhama et al. 2016; Hannen 2018; Anywar et al. 2020). Based
on the phytochemicals’ existence, extensive research has been conducted to explore
the immunomodulatory response of species/herbs against numerous cancer cell lines
including pancreas, colon, breast, and lung. Namrata Singh and colleagues have
claimed that Indian medicinal plant extracts with proper dosage stimulate the
immune response against bacterial, viral, and other diseases. The major Indian
medicinal spices and herbs with immunostimulant properties include Withania
somnifera, Morus alba Linn, Sophora subprosrate, Acacia catechu, Jatropha curcas
L., Achillea wilhelmsii, Picrorhiza scrophulariiflora, Plantago asiatica L., Panax
ginseng, Allium sativum, Cynodon dactylon, Schisandra arisanensis, Rhus
toxicodendron, Pteridium aquilinum, Actinidia erantha Benth, Boerhaavia diffusa,
Dioscorea japonica, Andrographis paniculata, Curcuma longa, and Tinospora
cordifolia (Singh et al. 2015, Singh et al. 2016). This chapter reviews the immuno-
modulatory effects of some traditional spices and herbs mostly used in India.

2.2  Immunity and the Immune System

The immune system in humans is an extremely complex linkage of specialized cells,
which through modulating, moderating, and engulfing malignant and foreign cells
prevent infections and diseases. Besides, the bone marrow and lymph nodes corre-
spondingly contribute to the immune system by storing and generating different
antigens that shape an immune cell. Depending on the function, the immune system
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was divided into two different groups, such as the adaptive immune system (specific
or acquired immune system) and the innate immune system (nonspecific immune
system) (Vesely et al. 2011). T cells and B cells are the major types of immune cells
of which B cells can transform into plasmocytes and are responsible for producing
antibodies (Abs), whereas T cells destroy the antigens through cell immunity. In the
adaptive immune system, T cells play a critical role and thus develop and induce
tolerance against antigens and cause an appropriate immune response. Phagocytes
(macrophage, granulocytes, and natural killer cells) release interferon bodies, which
ultimately brought out immunoregulatory function during infection. Cytokines such
as monokines and lymphokines are chemical mediators that attract the neutrophils
through chemotaxis and thereby regulate immune reactions (Jantan et al. 2015).
Some natural or synthetic compounds modulate the immune system positively or
negatively and are categorized as “suppressors” or “stimulants” or “adjuvants” are
recognized as “‘immunomodulators.” Considering the way they influence the
immune system, immunomodulators can modify different cellular functions such
as antigen presentation, protein synthesis, apoptosis, inducing transcription of genes,
and thereby enhances immune response. Various studies conducted in different
experimental models suggested that phytochemicals in spices and herbs have been
shown to modulate this signalling, which resulted in improving the immune system.

2.3  Spices/Herbs and Their Active Components

Spices/herbs added to foodstuffs not only impart flavour and taste but also provide
enormous nutritional advantages (Opara and Chohan 2014). Numerous findings
from research studies on human subjects over the last few decades reported the
beneficial effects of spices/herbs and their key phytochemicals components in the
prevention and control of various illness, including asthma, arthritis, cardiovascular
disease, cancer, diabetes, and neurodegenerative diseases (Opara and Chohan 2014).
Commonly used culinary spices that exhibit beneficial biological activity include
black pepper, cardamom, cloves, fennel, turmeric, garlic, ginger, onion, cinnamon,
rosemary, cumin, thyme, etc. Turmeric (Curcuma longa) is a widely used spice in
the world for cooking. Curcumin, a yellow-coloured phytochemical of the turmeric
(2%-5%) produced from the rootstalk, gives the turmeric a golden colour and was
first extracted from turmeric by Vogel in 1842 (Gupta et al. 2013). It has a wide
range of health benefits, namely antimicrobial, anti-mutagenic, anti-inflammatory,
insecticidal, and anti-cancer activities. In addition to curcumin, turmeric also
contains other phytochemicals including bisdemethoxycurcumin, triterpenoids,
demethoxycurcumin, diterpenes, and sesquiterpenes (Aggarwal and Kunnumakkara
2009; Gupta et al. 2013). Ginger (Zingiber officinale), another widely used spice in
Asian countries, has been documented for its various biological activities such as
antioxidant, antiproliferative, and anti-inflammatory activities. 6-gingerol is the
chief phytochemical of this spice that has many biological activities (Surh 1999).
In addition to 6-gingerol, ginger also contains zingiberene, bisabolene, 6-gingerdiol,
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cineol, B-phellandrene, 6-paradol, shogoal, gingerdione, zingerone, a-farnesene, etc.
(Jolad et al. 2005).

One more frequently used spice is the black pepper (Piper nigrum), which is well
established for its properties like anti-inflammatory, antioxidant, anti-carcinogenic,
anti-ulcer, anti-asthmatic, and immunomodulatory activities (Meghwal and
Goswami 2013). Piperine is the principal component in black pepper. In addition
to piperine, black pepper also contains a-pinene, terpinolene, limonene, -pinene,
B-caryophyllene, myrcene, a-phellandrene, etc. (Musenga et al. 2007). The red
pepper (capsicum) is another spice commonly used worldwide to improve the
spice level of the dishes, which predominantly contains capsaicin. Additionally,
red pepper also holds lutein, caffeic acid, B-carotene, capsanthin, and zeaxanthin.
Another important spice is cardamom, which contains myrcene 1,8-cineole,
terpinolene, o-terpinyl acetate, linalool, limonene, and linalyl acetate (Auti and
Kulkarni 2019). Garlic (Allium sativum) is the most frequently used spice for the
Asian medicinal system. It has anti-inflammatory, gastro-protective, and anti-cancer
properties due to the phytochemical presence of allicin, ajoene, diallyl disulfides,
diallyl trisulfide (DATS), alliin, diallyl sulphides (DAS), S-allylcysteine, cycloalliin,
methiin, S-allylmercaptocysteine, and isoalliin (Kimbaris et al. 2006; Srinivasan
2014). In addition to the abovementioned spices, cinnamon (cinnamaldehyde,
humulene, cineole, cinnamyl acetate, ethyl cinnamate, coumarin, t-cadinol, linalool,
and f-caryophyllene) (Zare et al. 2019), clove (eugenol) (Aggarwal and
Kunnumakkara 2009; Gupta et al. 2013), fenugreek (resins, diosgenin, choline,
yamogenin, trigonelline) (Srinivasan 2019), kokum (xanthochymol, garcinol,
1,2-dihydroxy propane-1,2,3-tricarboxylic acid, isoxanthochymol), black cumin
(y-terpinene, 4-dien-7-al, p-cymene, cuminaldehyde, 3-diene-7-al, p-mentha-1,
thymoquinone, f-pinene) (Abd El-Hack et al. 2016), rosemary (camphene,
a-pinene, rosmarinic acid, borneol, carnosol, bornyl acetate, limonene, carnosic
acid, camphor, cineole, (Z)-linalool oxide), star anise (trans-anethole, estragole,
and limonene), and saffron (crocin and crocetin) (Shen et al. 2017) contain sample
of beneficial phytochemicals that furnish immense health benefits. Various spices/
herbs that improve the immune system have been listed in Table 2.1.

24 Role of Spices as Effective Inmune Mediators
24.1 Turmeric

Turmeric has been widely used for its traditional value as medicine in Southeast
Asia. It is not only used as a principal spice for cooking but also is an important
component of religious ceremonies. Turmeric contains numerous bioactive
compounds, and its most important bioactive compound is curcumin. For decades,
curcumin has been used to treat a variety of progressive neurodegenerative problems
(multiple sclerosis, neurodegenerative diseases), heart disease, metabolic-related
diseases, respiratory-related disorder, rheumatoid arthritis, and autoimmune
disorders (Upadhyay et al. 2009). Curcumin is a potent antioxidant that helps to
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prevent oxidative damage and also improves the body’s antioxidant enzymes.
Oxidative damage resulted from the action of free radicals to biomolecules, which
exhibits central function in the aging process and other diseases. Thus, these kinds of
reactions inside the body are very important to understand the defence mechanism of
our immune system. Numerous studies have reported that turmeric exhibits anti-
inflammatory effects by inhibiting TNF- a production (Kesharwani et al. 2018;
Crivelli et al. 2019; Giiran et al. 2019; Porro et al. 2019; Shimizu et al. 2019).
Besides, curcumin has shown a significant reduction in the p38 mitogen-activated
protein kinases (MAPK), a stress-sensitive kinase responsible for the inflammatory
responses (Mohammadi et al. 2019).

Studies have shown that curcumin exhibits immunomodulatory effects not only
through the interaction with immune cells but also through communication with
other signalling proteins such as cytokines and various transcription factors with
their downstream signalling pathway. Curcumin inhibits the immunostimulatory
action of dendritic cells and impedes the maturation of myeloid dendritic cells.
These effects can be achieved by the inhibition of CD80 and CD86 expression,
which provides signals for T-cell activation. Furthermore, increased circulatory
immunoglobulin G (IgG) and immunoglobulin M (IgM) has been observed in rabbit
supplemented with curcumin-rich diet, suggesting that curcumin improves immune
function (Alagawany et al. 2016). The Janus kinase (JAK)-signal transducers and
activators of the transcription (STAT) pathway through the modulation of a wide
range of biomolecules including cytokines and growth factors strongly influence
immune responses (Jang and Baik 2013). Studies reported that curcumin inhibits
IL-2 production, nitric oxide (NO) generation, T-cell proliferation elicited by
phytohaemagglutinin (PHA), nuclear factor-kappa beta (NF-xf) activation by
lipopolysaccharide, and increases NK cell cytotoxicity in multiple cell lines
(Yadav et al. 2005). Studies conducted in rats reported that curcumin supplementa-
tion increases antibody synthesis and NK cell activity in splenocytes (South et al.
1997; Antony et al. 1999; Singh et al. 2015). IL-12 plays a salient function in the
enhancement of the immune system by increasing Thl-type cytokine production
against microbes. Curcumin through the inhibition of IL-12 production attenuated
Th1 cytokine production in CD4+ T cells in the mouse splenic macrophages (Kang
et al. 1999). Furthermore, it is also documented that the upregulation of nuclear
transcription factor NF-kf has been inhibited by curcumin supplementation without
influencing the proportion of constitutively expressed NF-kf (Kang et al. 1999).
Thus, from the study, it is evident that curcumin intake has been effectively
improving the immune system by affecting various signalling events in our body
(Singh et al. 2016; Kesharwani et al. 2018).

24.2 Ginger

Ginger is one of the classic spices in cooking but also confines remarkable medicinal
significance. Being a root spice, ginger is enriched with a lot of beneficiary
compounds especially vitamins, minerals, antioxidants, and nutrients that are
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responsible for health-related effects. Several studies have claimed that ginger has
bactericidal and anti-inflammatory action. Ginger is enriched with a lot of bioactive
molecules including a-farnesene, 6-gingerol, a-curcumene, paradol, p-bisabolene,
zingerones, 6-shogaol, a-zingiberene, etc. (Mao et al. 2019). Since ginger is rich in
phytochemicals, it has been employed in Chinese and Ayurvedic medicines. Ginger
is consumed as a natural immunoregulatory and has been documented in several
research publications (Choi et al. 2018). The bioactive components in ginger have
the potential in reducing the risk of liver, skin, colorectal, gastric, and ovarian
cancers (Semwal et al. 2015). Studies conducted by Zhu et al. (2020) suggested
that mixed polysaccharides obtained from ginger along with shiitake mushroom,
Poria cocos, and tangerine enhance immune efficacy and attenuate lung inflamma-
tion in mice immunized with H;N; vaccine (Zhu et al. 2020). It has also been
reported that consumption of ginger extract significantly increases IgM levels in
non-smokers, thereby showing a powerful antibody response against respiratory
infections. Besides, ginger supplementation raises the level of red blood cell
(RBC) counts and haemoglobin levels in smokers, which was stated to have
favourable effects for smokers with anaemia (Mahassni and Bukhari 2019). Further-
more, supplementation of 3% ginger powder in zebrafish enhances immunological
and biochemical responses as well as upregulates genes related to antioxidant and
immune systems (Ahmadifar et al. 2019). Numerous research evidence support that
constituents of ginger exhibit anti-inflammatory actions in various research models
(Habib et al. 2008; Jeena et al. 2013; Jalali et al. 2020).

Ginger exhibits its anti-inflammatory property through multiple pathways includ-
ing by attenuating arachidonic acid-instigated platelet aggregation; synthesizing
thromboxane B; enhancing histone H3 acetylation; inhibiting histone deacetylase
1 expression (Shen et al. 2017); inhibiting IL-8, IL-1p, and TNF-a production; and
suppressing cyclooxygenase 2 (COX-2) and inducible NO synthase (iNOS) gene
activation by the suppression of NF- kf. Besides, ginger also exhibits anti-
inflammatory effects through the activation of cellular stress-sensitive kinases such
as extracellular signal-regulated kinases 1 and 2 (ERK1/2), c-Jun N-terminal kinase
(JNK), and MAPK (Semwal et al. 2015). Active compounds present in ginger
include gingerol; shogaol has been found to inhibit prostaglandin and leucotriene
production by attenuating the expression of 5-lipoxygenase. Furthermore, studies
documented that active components in ginger attenuate the production of
pro-inflammatory cytokines such as TNF-a, IL-8, and IL-1 B (Tjendraputra et al.
2001). Similarly, 6 and 10-gingerol and 8 and 10-shogaol in ginger suppress [-kBa
phosphorylation and COX-2 nuclear factor-kB (NF-xB) activation and thereby
downregulate iNOS and TNF-a expression (Oyagbemi et al. 2010; Zhang et al.
2019). Research evidence suggests that ginger extract can attenuate NF-kf3 activation
and TNF-a synthesis in ethionine-induced hepatoma rats. The upregulation of NF-
kP has been associated with numerous inflammatory diseases like atherosclerosis,
osteoporosis, multiple sclerosis, asthma, and human immunodeficiency virus (HIV)
infection (Aggarwal and Kunnumakkara 2009). It has been found that
lipopolysaccharide-induced COX-2 activation has been inhibited by the
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administration of gingerols stating that ginger is capable of attenuating prostaglandin
E2 (PGE2) synthesis (Lantz et al. 2007).

Studies reported that intraperitoneal administration of ginger extract lowers
eosinophil levels along with the reduction in IL-5, IL-4, and eotaxin levels in
experimental models (Choi et al. 2018). Further pieces of evidence have also
reported that 6-gingerol (25-50 mg/kg) attenuated formalin-instigated licking time
and acetic acid-instigated writhing response in experimental models. However, a
huge dose of 6-gingerol (50-100 mg/kg) is needed to retard carrageenin-induced
paw oedema. The anti-inflammatory properties of ginger will be supportive to
control health problems like respiratory infections, arthritis, allergic diseases, and
gout (Yatoo et al. 2018). Thus, from the research evidence, it is crystal clear that
ginger and its components can be recommended to improve immunoregulatory
response.

2.4.3 Garlic

Traditionally garlic has been widely used as a medicinal agent to improve health
(Talib 2017). Garlic has been recommended as a potential candidate for regulating
the homeostasis of the immune system including activation of immune-related
pathways, diminishes platelet aggregation, and is used in the chemoprevention
of cancer (Shang et al. 2019). The biological actions of garlic have been attained
mainly due to the presence of organosulfur compounds including DAS,
Sallylmercaptocysteine (SAMC), DADS, S-allyl-L-cysteine sulfoxides, non-starch
polysaccharides, and o-glutamyl-S-allyl-L-cysteine (Percival 2016; Shang et al.
2019). Various garlic formulations like aqueous garlic extract, aged garlic extract
(AGE), and an oil extract from garlic are being used by different regions for various
health benefits. Studies conducted in Balb/c mice post infected with plasmodium
stated that garlic administration effectively modulates the Thl cytokine profile
during the initial phase of malarial infection. It has been reported that allicin, an
active principle in garlic, has been shown to exhibit reduced parasitemia and
prolonged life expectancy due to the increased interferon-gamma secretion (Feng
et al. 2012).

Garlic and its extracts can quench reactive oxygen species and thereby exhibit its
antioxidant activity. Furthermore, it enhances antioxidant enzyme activity, such as
catalase, glutathione peroxidase, glutathione S-transferase (GST), and superoxide
dismutase (Fallah-Rostami et al. 2013). Studies reported that garlic usage results in
the increase of leucocytes, as well as the characteristics of blood homeostasis in
experimental models. Studies reported that garlic usage will help in viral and
proliferative diseases by increasing the synthesis and release of nitric oxide and by
enhancing IFN-a secretion in humans (Chung et al. 2016). Moreover, garlic
attenuates NF-kf activation and thereby exerts its anti-inflammatory activity in
humans. Studies documented that AGE improves immune response in opposition
to implanted tumours in mice. Besides, AGE along with naltrexone-enhanced
survival time attenuates tumour growth and interferon-y production (Fallah-Rostami
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et al. 2013). Moreover, some garlic-derived compounds like S-allyl-L-cysteine,
caffeic acid (CA), uracil, DATS, and DAS can attenuate the transcription factor
NF-kB, a master regulator, thereby downregulating the expression of several cyto-
kine genes related to pro-inflammatory responses, including IL-1f3, TNF-a, 1L-12,
IL-6, and monocyte chemoattractant protein 1 (MCP-1) (You et al. 2013; Ho et al.
2014).

The most significant action of garlic is to protect the human from the risk of
cancer (Shang et al. 2019). Studies documented that supplementation of garlic and
its formulations protects the skin, colon, prostate, mammary glands, and lungs from
the development of cancer. (Shen et al. 2017). Organosulfur garlic compounds
inhibit carcinogenic gene activation, improve phase II detoxification mechanism,
trigger cell cycle arrest mainly in the G2/M phase, activate the apoptotic mitochon-
drial pathway, promote histone acetylation, and suppress tumour multiplication,
which clearly stated that garlic supplementation reduces the risk of multiple common
cancers (Mandal et al. 2019). Formulations like fresh garlic juice and aged garlic
extract have a hold tendency to attenuate cell proliferation, thereby leading to
apoptosis (Shen et al. 2017). The research documented that the DAS, DADS, and
DATS would trigger sequential signalling cascades, which ultimately leads to cancer
cell apoptosis (Mandal et al. 2019). Thus, garlic can be believed to be one of the most
promising spices for improving the immune system, enhance the body’s antioxidant
status, and protect the body from free radicals damage, inflammation, and cancer.

2.4.4 Black Cumin

Black cumin seeds were used in herbal medicine to cure and prevent a variety of
diseases (Abd El-Hack et al. 2016). Studies conducted in humans documented that
supplementation of 1 g of Nigella sativa twice a day improves the immune system by
modulating the T4/T8 ratio and by improving natural killer cell activity (Elluru et al.
2007). In another study, researchers noticed that N. sativa increases the production of
IL-1 beta indicating that it influences macrophages (Haq et al. 1999). Moreover,
because of the existence of free radical scavenging activity, it has been involved in
the protection of the central nervous system’s parts such as the medulla spinalis and
brain tissues against autoimmune encephalomyelitis (Ghasemi et al. 2014). It was
reported that black cumin seed essential oil exhibits a remarkable analgesic effect in
acetic acid-mediated writhing and light tail-flick tests. Moreover, the anti-
inflammatory effects of black cumin have been observed in paw oedema mediated
by carrageenan in rats and ear oedema caused by croton oil in mice (Hajhashemi
et al. 2004). Thymoquinone (2-Isopropyl-5-methyl-1, 4-benzoquinone) is an impor-
tant bioactive principle of N. sativa, which exhibits several beneficial activities such
as antioxidant, renoprotective, hepatoprotective, antitumour, neuroprotective, and
anti-ischemic (Ahmad et al. 2019). Tekeoglu et al. (2008) reported that arthritis
induced by adjuvant has been attenuated by thymoquinone (active essential oil
ingredient) through the inhibition of leucotrienes (LTs), by modulating the synthase
activity of 5-lipoxygenase and leucotriene C4 (LTC,4) in experimental rats. Another
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black cumin active ingredient is a-hederin, which potentially attenuates the metasta-
sis of breast cancer cells by decreasing the mitochondrial membrane potential and by
reducing the mitochondrial Apaf-1 and cytochrome c levels in mammary cancer
cells. Besides, a-hederin upregulates caspase-3 and caspase-9 activity in mammary
cells. Besides, a-hederin also exhibits antitumour activity in B16 cells of melanoma,
Lewis carcinoma of the lung, hepatocellular carcinoma (HepG2), and P388 cells of
murine leukaemia by scavenging the reactive oxygen species (ROS) (Saadat et al.
2015). Thus, it is evident that the addition of black cumin in the diet may enhance the
immune system.

2.4.5 Cinnamon

Cinnamon and its essential oil have been used as a natural food spice and traditional
herbal ingredient. It has been reported that its powder, extracts, and essential oil
contain trans-cinnamaldehyde, which exhibits anti-cancer, anti-inflammatory, anti-
microbial, antioxidant, anti-diabetic, arteriosclerosis, cardiovascular, Alzheimer’s
disease, and beneficial effects on arthritis (Han and Parker 2017a; Abdel-Tawwab
et al. 2018; Shishehbor et al. 2018; Arangannal et al. 2019; Zare et al. 2019).
Besides, cinnamaldehyde exhibits anti-inflammatory properties by activating toll-
like receptor 4 (TLR4) in gut microbiota, resulting in downregulated cytokine IL-10
and upregulated pro-inflammatory cytokine synthesis (tumour necrosis factor
[TNF]-a, IL-6, IL-1p) (Li et al. 2020). Studies have been documented that cinnamon
essential oil exhibits the anti-inflammatory effects against inflammatory bowel
disease (IBD), and furthermore, it has antimicrobial property (Li et al. 2020).
Hence, cinnamon essential oil has been extensively used for intestinal microflora
control. Results showed that mice fed orally with cinnamon essential oil highly
influence gut microbiota population, which resulted in reduced in Helicobacter and
Bacteroides and a rise in Bacteroidales S24-7 and short-chain fatty acids (SCFA)
synthesizing (Alloprevotella and Lachnospiraceae_NK4A136_group) bacteria.
Moreover, the study showed that TLR4 and TNF-o had a positive relationship
with Helicobacter but a negative relationship with bacterial SCFA (Li et al. 2020).

Several studies conducted in various experimental models documented that
cinnamon is effective against arthritis, an autoimmune disorder in which our
body’s immune system targets joints resulting in inflammation and pain in joints.
Clinical conditions of arthritis include rheumatoid arthritis and juvenile rheumatoid
arthritis. Many natural foods have been used to treat arthritis, one of which is
cinnamon (Catrina et al. 2016). Studies conducted in various rat experimental
models stated that polyphenol fraction from cinnamon bark effectively reduces
inflammation in rheumatoid arthritis and adjuvant-induced polyarthritis. Likewise,
cinnamon supplementation has been shown to be effective against allergy
(Shishehbor et al. 2018). Studies conducted in mouse cell lines revealed that
treatment with cinnamon polyphenol extract induces tristetraprolin; thereby, it
reduces the inflammatory-related genes like TNF-a and COX-2 (Cao et al. 2008).
Studies have been performed to examine the role of cinnamon nanoparticles on
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antioxidant enzymes and innate immunity of Nile tilapia. Results showed that
dietary cinnamon nanoparticles are able to enhance the activities of antioxidant
enzymes and enhance the innate immunity in Nile tilapia against pathogenic bacteria
(Aeromonas hydrophila) infection (Abdel-Tawwab et al. 2018). Besides, supple-
mentation of fish with cinnamon significantly reduces histamine production, which
resulted in the protection of fish from allergic reactions (Shakila et al. 1996).
Experiments conducted in humans documented that cinnamon supplementation
effectively reduces nasal allergy symptoms and prostaglandin D, (PG Dy, release
in seasonal allergic rhinitis (Khan et al. 2003). Thus, cinnamon intake might be
effective in the management of inflammation and immune-related disorders.

2.4.6 Cardamom

Cardamom is an essential spice and is considered as a salient source of flavonoids,
alkaloids, terpenoids, anthocyanins, and phenolic compounds. It has been widely
used for many years in Ayurveda medicine to treat asthma, blood pressure, dysuria,
indigestion, and so forth (Aggarwal and Kunnumakkara 2009). It has been reported
that cardamom has nutritionally rich metabolites including catechin, myricetin,
quercetin, kaempferol, lutein, and p-carotene (Ashokkumar et al. 2020). Experimen-
tal pieces of evidence suggest that cardamom exhibits anti-inflammatory,
antiproliferative, antioxidant, immunomodulatory, and detoxification properties
(Auti and Kulkarni 2019). Experimental pieces of evidence suggest that cardamom
exhibits great potential to act as an immunomodulatory agent through the inhibition
of inflammation. It has been observed that the treatment of splenocytes
and macrophages with aqueous extracts of cardamom in the presence of
lipopolysaccharides and interferon-y significantly inhibited the secretion of IL-6
and TNF-a, suggesting that cardamom exhibits immunomodulatory action by cyto-
kine release (Majdalawieh and Carr 2010). Experiments conducted in skin cells
confirmed that cardamom essential oil (CEO) exhibits anti-inflammatory and immu-
nomodulatory activities.

Eucalyptol, an important active principle of CEQ, is documented to downregulate
the influence of NF-kB and its downstream signalling cascades (Proshkina
et al. 2020). A study reported that treatment with eucalyptol attenuates
lipopolysaccharide-mediated TNF-a, IL-6, and IL-1f production through the inhibi-
tion of NF-kB. Studies conducted in mice reported that attenuation of IL-1p, NF-xB,
TNF-a, and IL-6 has been found with the treatment of eucalyptol (Zhao et al. 2014).
Another research conducted in human bronchial epithelial cells documented that
eucalyptol inhibited Dermatophagoides pteronyssinus-induced macrophage colony-
stimulating factor (M-CSF) IL-6 and IL-8 production, supporting the anti-
inflammatory activity of cardamom (Han and Parker 2017b). Besides, treatment of
inflamed human dermal fibroblasts with CEO effectively suppresses vascular cell
adhesion molecule 1 (VCAM-1) and M-CSF, which strongly supports the anti-
inflammatory and immunomodulatory properties of CEO (Han and Parker 2017b).
Thus, the overall anti-inflammatory and immunomodulatory properties of the CEO
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were exhibited by attenuating the NF-kB signalling cascade and other signalling
pathways. Another study was conducted to evaluate the effect of Elettaria
cardamomum distillate (ECD) on the immune system based on lymphocyte,
CD4+, and CD8+ number in rats. Results suggest that treatment with ECD improves
the number of CD4+ and CD8+ cells by increasing the leucocyte, lymphocyte, and
neutrophil numbers (Raksamiharja et al. 2012), which strongly supports that carda-
mom administration greatly modulates the immune cells in experimental models.

2.4.7 Fenugreek

Fenugreek (Trigonella foenum graecum L.) is a plant abundantly cultivated in India
for its multipurpose. It finds application in culinary and traditional medicine as well.
Fenugreek has been used in India for a long time as a seasoning agent and flavouring
agent for soups and pancakes. In India, the leaves of fenugreek have been frequently
used and consumed as green leafy vegetables, which are a good source of calcium,
iron, p-carotene, and other vitamins. Besides, fenugreek contains phytochemicals
such as trigocoumarin, alkaloid trigonelline, trigomethyl coumarin, diosgenin, and
steroidal saponin such as gitogenin and traces of trigogenin, which result in its
beneficial action as herbal medicine.

In the past few decades, researchers have focussed on the potential benefits of
fenugreek seeds in humans. Studies have reported that fenugreek has been used
as hypoglycaemic, anti-ulcerogenic, hypocholesterolaemic, and antihypertensive
agents (Kirtikar et al. 1975; Sharma et al. 1996; Zia et al. 2001). Besides, experi-
mental evidence strongly suggests its immunomodulatory actions in various experi-
mental models. Studies have reported that 7. foenum administration stimulates
lymphocytes and bone marrow haematopoietic cells and thereby increases thymus
mass in experimental mice. The stimulatory effect of the extract might be due to the
presence of saponins, which has a mitogenic effect that may elicit stimulatory effects
on immune-competent cells (Liu et al. 1995). Studies conducted in macrophages
harvested from male albino rats reported that fenugreek galactomannan with alkali-
extracted polysaccharide B exhibits phagocytic activity along with the secretion of
IgM in HB4CS5 cells (Ramesh et al. 2002). Some previous studies documented that
there was an increase in the immune system and growth in fish after supplementation
of a diet enriched in fenugreek. It was observed that there was an upregulation in the
level of immune-related genes (IL-8, colony-stimulating factor 1 receptor (CSF-1R),
and major histocompatibility complex 1 (MHC1)) and antioxidant enzyme genes
(superoxide dismutase and catalase) in fish supplemented with fenugreek diet.

Furthermore, there was an increase in the secretion of IgM and WBC in experi-
mental fish models (Awad et al. 2015). Additionally, dietary supplementation of
fenugreek seeds improves mucosal immune parameters by increasing IgM levels and
by modulating some enzymatic activities (peroxidase, anti-protease, protease, ester-
ase) and ceruloplasmin after 8 weeks of feeding in gilt-head sea bream (Guardiola
et al. 2018). Moreover, researchers have claimed that fenugreek seed has been shown
to modulate intestinal microbiota and immunological responses in piglets after
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Fig. 2.1 Various spices to support the immune system

weaning. The supplementation of fenugreek greatly influences immunological
variables such as increased relative concentration of the T-cell population in the
circulation with a concomitant depletion of antigen-presenting cells (Hossain et al.
2015). Studies showed that the treatment of crude fenugreek seeds greatly increases
haemoglobin, lymphocyte percentages, and the total leucocyte count and was found
to have low mortality in Nile Tilapia with or without cadmium contamination.
Moreover, there was an increase in IL6 and IL8 gene expressions in the groups
treated with crude fenugreek seeds (Yao et al. 2019). Thus, from the experimental
results, it has been confirmed that fenugreek could be also considered as a promising
plant to be used as an immune booster for humans. Figure 2.1 depicts various spices
involved in the improvement of the immune system.

2.4.8 Guduchi

Guduchi (Tinospora cordifolia) is shrub that is native to India, which has great
importance in Ayurveda since ancient times, and is also termed as ‘devine nectar’ or
‘heavenly elixir’ in traditional medicine. It has various health benefits such as
antioxidant, anti-diabetic, cardioprotective, neuroprotective, anti-ulcer, radio-protec-
tive, anti-anxiety, anti-inflammatory, anti-diarrheal, antimicrobial, anti-cancer, and
thrombolytic agent. Different plant body parts are reported to contain numerous
bioactive compounds belonging to various classes like alkaloids, steroids,
diterpenoid lactones, aliphatics, and glycosides (Upadhyay et al. 2010). Addition-
ally, nutritionally, it is a rich source of macro and micronutrients such as
polysaccharides, protein, iron, zinc, copper, calcium, phosphorus, and manganese
(Saeed et al. 2020). The presence of these metabolites exhibits various
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immunomodulatory properties in multiple ways. Studies reported that the ethyl
acetate in water fraction from 7. cordifolia upregulates the phagocytic function of
human neutrophils. Experimental evidences showed that ROS generation has been
significantly increased in polymorphonuclear leucocyte while using ethyl acetate
fraction. Furthermore, it was confirmed that the synergistic effect of a group of
compounds is responsible for the immunomodulatory activity (Sharma et al. 2012).
Studies conducted by Gupta et al. (2017) revealed that the polysaccharide G1-4A
extracted from 7. cordifolia exhibits the immunomodulatory action through the
activation of various intracellular signalling molecules. The study confirms that
incubation of G1-4A polysaccharide with murine macrophages upregulates nitric
oxide production and MHC-II and CD-86 cells through the activation of p38, ERK1/
2, and SAPK/ JNK MAPK signalling events. It has been documented that herbal
extract from 7. cordifolia showed a significant increase in various immunomodula-
tory cells like IFN-vy, IL-2, IL-4, and IL-1 levels in the peripheral blood mononuclear
cells (PBMCs) of chickens developed with infectious bursal disease (Sachan et al.
2019). Kalikar et al. (2008) reported that the root extract of 7. cordifolia improves
the immune system of HIV-infected subjects. The stem extract of the plant lowers
the eosinophil count and increases B lymphocytes, macrophages, haemoglobin, and
polymorphonuclear leucocytes. Experimental evidences reported that alcoholic
extract of T. cordifolia exhibits wound healing effects through collagen synthesis
(Shanbhag et al. 2005). T. cordifolia has also been shown to treat endocrine and
metabolic disorders and is well known for its immune booster property (Dhama et al.
2016).

2.4.9 Panax Notoginseng

Panax notoginseng (common name: sanqi), is a perennial herb belonging to the
family Araliaceae and has been widely used in traditional Chinese medicine. With
progress in research, several polysaccharides from the plant have been identified to
possess immunomodulatory activity through modulation of immune cells like
lymphocytes, macrophages, dendritic cells (DCs), and natural killer (NK) cells.
Liu et al. (2020) reported that a novel polysaccharide (PNPS-0.3) isolated from
P. notoginseng residue exhibits strong immunomodulatory activities towards bone
marrow dendritic cells (BMDCs) by inducing their maturation. This can be
visualized by changes in the morphology of cells, promotion of expression of surface
phenotypic markers (CD40, CD80, CD86, and MHC II), and stimulated secretion of
TNF-a and IL-12 proinflammatory cytokines. The mechanism behind this reaction
involved binding of PNPS-0 with TLR4 of BMDCs, which in turn activates the
TLR4/Myd88/NF-xB signalling pathway resulting in the maturation of DCs, which
has been illustrated in Fig. 2.2 (Liu et al. 2020).

In another report a heterogalactan polysaccharide isolated from P. notoginseng
was evaluated for immunomodulatory properties. In vitro analysis revealed the
ability of the polysaccharide to activate RAW?264.7 macrophages resulting in
increased macrophage phagocytosis, release of nitric oxide, and secretion of
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Fig. 2.2 The immunomodulatory mechanism of PNPS-0.3 isolated from P. notoginseng responsi-
ble for maturation of BMDCs (Source: Liu et al. 2020)

TNF-a, IL-6, IFN-y, and IL-1f cytokines. Further, studies conducted in mice model
documented that this compound resulted in enhancement of immunity in cyclophos-
phamide (CTX)-induced immunosuppressed mice (Cui et al. 2021). Li et al. (2016)
studied the antitumour activity of polysaccharide from P. notoginseng on the
proliferation of H22 live cancer cells. The incorporation of polysaccharide resulted
in an increase in activated CD4+ T cells and elevation of serum IL-2 level, which
ultimately showed antitumour activity with increase in survival rate of mice. In a
study on mice, Choi et al. (2017) confirmed the ability of P. notoginseng root water
extract against influenza A virus infection. This was mediated through elevated
secretion of pro-inflammatory cytokines TNF-a and IL-6. Along with this, stimula-
tion of NK cell activity plays a major role in providing protection against the virus.
Additionally, the treatment also inhibited viral proteins and viral mRNA. Apart from
these properties, these polysaccharides also possess antioxidant and anti-ageing
properties as well (Feng et al. 2019).



56 V. Evanjalin Monica et al.

2.4.10 Ashwagandha

Withania somnifera is an important herb and traditionally is being used as a
medicine in many South Asian countries for millennia. The root of the herb forms
part of more than 200 formulations in Ayurveda, Siddha, and Unani medicine
(Palliyaguru et al. 2016). Withania somnifera possesses a unique blend of diverse
phytochemicals including steroidal alkaloids and lactones. The pharmacological
properties of the plant are attributed to bioactive compounds such as
withanolide A, withanolide D, withaferin A, and withaniamides. Apart from these,
proteins such as Withania somnifera glycoprotein and withania lectin like-protein
are associated with antimicrobial and anti-snake venom properties (A Dar et al.
2016).

Studies documented that a marked increase in the level of total leucocyte count
has been observed in normal Balb/c mice and in gamma-irradiated mice upon the
administration of 75% methanolic extract (Kuttan 1996). The pharmacological effect
of the roots is mainly attributed due to presence of withanolides, which are naturally
occurring C-28 steroidal lactones and plays a major role in its immunomodulatory
effect (Girme et al. 2020). Studies on giant freshwater prawns Macrobrachium
rosenbergii (de Man) have shown that W. somnifera extract enhances the innate
immune response against Aeromonas hydrophila. This caused increase in
phenoloxidase enzyme activity resulting in melanization, which is a sign of cellular
defence reactions. Apart from this, superoxide anion production and superoxide
dismutase activity were also enhanced (Harikrishnan et al. 2012). Study has shown
that Withania somnifera increases total platelet count in animals treated with cyclo-
phosphamide. In a study on mice, attenuation in delayed type hypersensitive
reactions and significant elevation in phagocytic potential of macrophages were
observed (Agarwal et al. 1999). The plant extract is reported to provide strong
immunity against intracellular bacterial proliferation through its influence on T
cells. Moreover, oral administration of extract resulted in increased neutrophil
count and stimulated phagocytosis. Withania somnifera extracts also increases
IL-7 in IEC-6 expression in the intestinal cells, which in turn resulted in
immunoprotection (Siddiqui et al. 2012).

In another study, supplementation of the root extract of the plant showed
immunoenhancing effects in broiler chicken infected with E. coli (Kumari et al.
2020). A group supplemented with root extract showed higher E. coli-specific
antibody titer and enhanced lymphocyte proliferation response than that of the
non-supplemented group. Along with this, cellular and humoral immune responses
were enhanced, which resulted in reduced severity, mortality, and recovery period of
the infection (Kumari et al. 2020). Increase in nitric oxide production was also
reported, which enhances the cell-mediated immune response, which ultimately
increases the pathogen-destroying ability of the immune cell. This is mediated
through the upregulation of iNOS expression through NF-xB transactivation in
macrophages (Iuvone et al. 2003). These immunoenhancing properties are crucial
considering the increased antibiotic resistance of pathogens. Along with these,
W. somnifera is also linked with many immunosuppressing properties, which mainly
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include anti-inflammatory action. Another study on Balb/c mice reported the role of
W. somnifera in protection against zinc oxide nanoparticle-mediated toxicity. The
administration of W. somnifera extract and Withaferin A in experimental models
reduces the toxic effect through the suppression of TLR6 overexpression and resto-
ration of phagocytic activities (Kumar et al. 2019). It also proved that by treating
animals with W. somnifera, there is an outstanding growth of the bone marrow cell
(Davis and Kuttan 2000). Withanolides contain many activities like anti-
inflammatory and analgesic because of cyclooxygenase-2 diffidence behaviour. In
W. somnifera, a glycol protein known as WSG (glycowithanolides) is also liable for
antimicrobial activities (Girish et al. 2006). Apart from all these, W. somnifera has
been found to be useful in treating many brain disorders (Zahiruddin et al. 2020),
cancer (Palliyaguru et al. 2016), tuberculosis (Kumar et al. 2018), and HIV-AIDS
(Maurya et al. 2019). Based on the coronavirus disease (COVID-19) trend, a recent
study has indicated that the Withania somnifera, a medicinal plant, contains a major
compound called Withanoloid. A docking study points out the importance of the
W. somnifera; among the number of Withanoloid, D, G, M, and Q were found to
have the highest drug-likeness score inhibiting multiple proteins via multi-
compound-multiprotein interaction necessary for boosting up the immunity and
inhibition of COVID-19 infection (Khanal et al. 2020b).

2.5 Other Herbs and its Immune Response

Marjoram (Origanum majorana), sage (Salvia officinalis), thyme (Thymus vulgaris),
oregano (Origanum vulgare), and rosemary (Rosmarinus officinalis) have been
employed as herbal remedies for years especially in the management of inflamma-
tion and immune-related disorders. In ancient times, Greeks and Romans employed
these herbs to manage dermal problems like skin sores and muscle-related
complications like relieve aching muscles. Furthermore, it has been used as
antiseptics (Han et al. 2017; Marrelli et al. 2020). Herbs like sage and thyme are
commonly meant to manage acute inflammation and to treat obesity-related
complications. A lot of research evidence strongly supports that apart from culinary
applications many herbs and spices are associated with multiple health benefits due
to their pharmacological properties. An independent study has shown the potential
effect of commercial herbal medicines in immune stimulation with the inhibition of
platelet reactivity. The suppression of platelets immensely acts on the risk of
bleeding (Mothibe et al. 2019). Ginseng stem-leaf saponins (GSLS) have been
identified as an immune booster and supplemented into the oil phase of adjuvant
CV13 which has an excellent potential for foot and mouth disease (FMD) vaccine
production (Xu et al. 2020). Ginseng roots and leaves act as herbal medicine and
help improve fatigue syndrome, heal bronchial disorder and chronic fatigue, and
boost the immune system and its anti-cancerous property (Kathal and Rawat 2016).
Echinacea purpurea, well-known herb in America, contains alkamides, CA
derivatives, and polysaccharides, which is used to treat respiratory infections includ-
ing chemotherapy for upper and lower respiratory infections. Additionally,
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Fig. 2.3 Representation of the immunomodulatory mechanism of BAK (Kumar et al. 2021)

alkamides are known for their immune-stimulant effect, and polysaccharides are
known for their anti-inflammatory effect (Samuel and Priyadarshoni 2019). Astrag-
alus is found as an edible immunomodulatory herb and is a good source of polysac-
charide constituent. This will play a critical role in exhibiting a strong immune
response and thereby stabilizing the immune system against severe infections (Chen
et al. 2020).

The immunomodulatory activity of Psoralea corylifolia is mainly attributed to
the compound Bakuchiol (BAK) phenol, which is primarily found in plant seeds.
Chemically BAK is a meroterpene and consists of aromatic ring in its structure. The
compound is found to have numerous applications in treating several diseases in
traditional Indian and Chinese medicine (Kumar et al. 2021). It has also been
reported to provide protection for the human red blood cells and retina from
oxidative damage. A recent study demonstrates the immunosuppressive action of
BAK where the expression of proinflammatory cytokine is significantly
downregulated, which further resulted in delayed hypersensitivity (Kumar et al.
2021). Its immunoregulatory mechanism is elucidated in Fig. 2.3. On the other
hand, in another research, the immunoenhancing effect of Psoralea corylifolia is
reported. A polysaccharide (PCp-I) isolated from the plant is able to upregulate the
expression of iNOS, TNF-a, and IL-6 mRNA in RAW?264.7 macrophages resulting
in enhancement of NOS, ROS, TNF-a, and IL-6 levels and increase in phagocytic
activity (Wang et al. 2021).
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Another computational analysis indicated the importance of Astragalus
membranaceus and Panax ginseng in the immune system (Liu et al. 2019).
According to the study, in Astragalus membranaceus quercetin, kaempferol and
formononetin were found to be a major regulate compound to immune response and
rules cytotoxic activity of NK cells, thymus, and spleen index enhancement and
proliferation of lymphocytes (Liu et al. 2021). In Panax ginseng, ginsenoside Ral,
ginsenoside Rh1, and kaempferol play a critical role (Sharma and Lee 2020).

2.6 Dietary Intake and Bioavailability

The quantity of spices consumed and the bioavailability of the bioactive compounds
present in it strongly determines their health benefits. Usually, the spices are
consumed in small amounts as part of a diet, and the consumption patterns are
also region and cuisine dependent (Fairweather-Tait and Southon 2003). However, it
also has to be noted that the bioactive compounds are present in higher concentration
in spices. Though these compounds are characterized by low bioavailability, which
is significantly influenced by several factors, they exert their beneficial health
impact. For example, consumption of 10-100 mg of a polyphenolic compound
results in its plasma concentration of maximum 1 pM.

Besides, the bioavailability varies from one compound to another. Therefore,
even the most abundant bioactive compound in spices may not result in its higher
levels in target tissues (Bi et al. 2017). Moreover, having these compounds as being
heat sensitive, food processing operations such as cooking may result in a significant
loss in their bioactivity and potency. Suresh et al. (2007) studied the effect of thermal
treatment on bioactive compounds, namely, curcumin from turmeric, capsaicin from
red pepper, and piperine from black pepper. Curcumin and capsaicin reported the
thermal loss of 27%—-35% and 18%—-36%, respectively, whereas piperine reported a
loss of 16%-34%. Nonetheless, there is a possibility of adverse effect, which
depends on the amount consumed and drug interactions (Suresh et al. 2007).

Although these natural spices are Generally Recognized as Safe (GRAS),
researchers have conducted safety assessment in order to define the recommended
dietary intakes. In the case of curcumin, a dose of up to 12 g/day was known to be a
safe consumption and did not show any side effects in clinical trials (Gupta et al.
2013). Ginger is generally considered as safe, and several studies conducted on
human and animals did not report any adverse effects (Rong et al. 2009). Similarly,
there have been no adverse effects reported for garlic. Overconsumption of cinna-
mon is reported with many adverse health effects, and it is concluded that larger
doses for longer duration must be clinically monitored (Hajimonfarednejad et al.
2019). In a safety assessment study of Withania somnifera extract on rats, acute and
sub-acute toxicity studies were conducted. In both studies, no adverse effect was
reported even at the highest dose of 2000 mg/kg of body weight (Patel et al. 2016).
For Tinospora cordifolia, Chandrasekaran et al. (2009) performed safety assessment
for four genotoxicity tests on Balb/c mice. Oral administration of 7. cordifolia
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extract did not display clastogenicity and DNA damage in bone marrow erythrocytes
and peripheral blood lymphocytes, respectively.

2.7  Market Share Insights of Spices/Herbs

The global spice industry includes diverse subsectors and different applications of
herbs and spices involving many domestic and international players. In 2019, the
market size was worth 13.77 billion USD and is forecasted to grow with CAGR of
6.3 from 2020 to 2027. The Asia Pacific region asserted dominance in global spices
and herbs market sharing more than 30% of the revenue. High demand and con-
sumption have been observed in Southeast and South Asian countries, which can be
attributed to their traditional practices of extensive application of spices in daily
cuisine for flavour purpose and medicinal applications as well. India recorded the
highest production, consumption, and export of the spices across the world, account-
ing more than 65% of volume followed by other countries such as Bangladesh,
Turkey, China, Ethiopia, Sri Lanka, Jamaica, and Pakistan. Apart from this, North
America is emerging as a potential market in upcoming years with USA and Canada
as major players. Increased demand of salad dressings and sauces in these countries
is the reason behind this. Furthermore, consumer interest towards ethnic foods and
easy availability of spices will be a key factor in the growth of this market (Sharma
and Lee 2020). Increased awareness about the therapeutic benefits of spices is
mainly responsible for increasing the demand in the near future. Furthermore,
several other efforts by major industrial players such as new convenient products,
improved export portfolios, and geographical expansion mergers and acquisitions
are responsible to fuel the growth of the market.

2.8 Conclusion and Future Directions

Traditional spices and herbs provide several remedies for improving the body’s
resistance against diseases by modulating the immune system components. Unlike
allopathic medicines like antibiotics, which can have serious side effects, most of
these herbs and spices are relatively safe. These plant products contain a variety of
phytochemicals, which not only kick off the flavour but also improve our immune
system. Some compounds of spices and herbs exhibit immunomodulatory functions
in cells and animal models, indicating that they could be effective in improving the
immune system. Several components of spices show their effects on other health-
related complications, indicating that these plant materials could be a healthy dietary
means for preventing other diseases. Although the margin of safety for these spices
and herbs are large, more scientific experiments are needed to understand the
advantage of using herbs to improve immune-related infections.
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Abstract

The key to good health is to have a functional and strong immune system. A
strong immune system is characterized by the ability to protect the body from
infection and any form of invasion by foreign objects. The strength of an immune
system is also exhibited by the ability to prevent allergy and autoimmune
diseases. The two major components of immune responses are innate and
acquired immune responses which work together in synergy. Recent advances
in medicine use diverse immunomodulators of natural origin, which can evoke
biological reactions and reinforce body’s natural defense mechanisms. A lot of
studies in dietary and food biotechnology are ongoing about new alternatives for
disease prevention. The need to improve health and quality of life has led to the
discovery of certain food substances, which have nutritional value as well as
biological activities. These are classified as either nutraceuticals or functional
foods. Extensive studies, which have established that there is a relationship
between gut microbiome and immunity, have spurred many research and studies
on functional foods. Majority of the nutraceuticals and functional foods have
been known to possess multiple therapeutic benefits against a variety of disease
conditions. Their biological activities include antioxidant, anti-inflammatory,
antimicrobial, anti-tumor, hepatoprotective, immunomodulatory, and many
more. This chapter aims to discuss immune boosting activities of functional
foods and nutraceuticals as well as narrate the mechanism of the immune
modulation.
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3.1 Introduction

Scientific evidence have established the fact that diet and eating habits have a lot of
influence on health at every stage of life. Specific bioactive compounds in food can
help to prevent diseases by modifying the pathological mechanisms that lead to
disease development (Panico et al. 2014). Fundamentally, all foods can be regarded
as functional because they provide one nutritional benefit or the other. However,
nutritional science has gone beyond eating for nutritional benefits alone. Nutritional
studies is now paying a lot of attention to improving health and quality of life
through diet.

A lot of times, the two words, functional foods and nutraceuticals are used
interchangeably. The term “functional foods” was not commonly used until the
early 1990s (Ramesh and Jamuna 2012), and several definitions have been proposed
for them. Functional foods are those that contain nutrients with biological activities
(Olaiya et al. 2016). Martirosyan and Singh (2015) defined functional food as those
that contain bioactive compounds, which not only supply food nutrients but are also
very useful for maintaining good health. This means that functional foods have a
potentially positive effect on health beyond basic nutrition when they are consumed
as part of a varied diet on a regular basis. Functional foods include conventional
foods such as whole grains, fruits, vegetables, etc. They also include modified foods
such as fortified or enhanced foods like yogurt.

Nutraceuticals are the food components (e.g., polyphenols, flavonoids,
carotenoids, saponins, sulfides, etc.) with potential health benefits in addition to
their nutritional values. In many countries, nutraceuticals are taken as part of dietary
supplements.

The immune system is vital for protecting the body from most of the disease
conditions, including cancer, cardiovascular, neurological, microbial infections, and
many more. Unfortunately, the immune functions are often affected when there is
malnutrition, physical stress, and mental stress. Immunity is also depleted by aging
and unwholesome lifestyle. Hence, consuming foods that can boost immune
activities will help to prevent myriads of infections and also help to prevent cancer
(Kaminogawa and Nanno 2004). Since it is important to correct nutritional defi-
ciency or insufficiency in order to boost immune functions, many recent studies have
suggested that increased intake of some nutrients above recommended levels may
improve immune function and at the same time maintain tolerance (Wu et al. 2019).
In addition to the six nutrients, there are myriads of phytochemicals and other
functional foods that can also help with immune system optimization. These
phytochemicals are not necessary for normal cell function and metabolism, so
there is no recommended daily intake yet.
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Several studies have established the beneficial effects of nutraceuticals and
functional foods against different disease conditions. One of these is their role in
maintaining and improving immune function, which helps with prevention and
treatment of diseases.

3.2 Nutraceuticals and Functional Foods

The concept of functional foods and nutraceuticals is being promoted globally due to
their overall nutritional value and biological activities. Some nutraceuticals are
registered in many countries as dietary supplements or pharmaceuticals, while
many others which are not registered yet are being used by people for self-
medication.

Nutraceuticals are a sector of dietary supplements made only from whole foods to
promote good health. Functional foods on the other hand are similar in appearance to
natural food. Some of them are foods that are regularly consumed and have been
established to contain bioactive compounds that can prevent chronic diseases. The
difference between functional food and nutraceutical is that nutraceutical contains
defined bioactive compounds isolated from food and put in a simple matrix, while
functional food contains bioactive compounds, often not well defined, in a complex
food matrix. Any functional foods that assist in preventing or treating diseases
(beyond deficiency condition) are classified as nutraceuticals.

3.2.1 Nutraceuticals

The concept of nutraceuticals is the midpoint for food and drugs. What makes the
difference between nutraceuticals and pharmaceuticals is their origin.
Pharmaceuticals have synthetic origins, while nutraceuticals have natural origins.
Nutraceuticals have powerfully claim their own legal space in medical sciences,
since their characteristics and therapeutic potential are getting defined (Keservani
et al. 2015; Aronson 2017). Nutraceuticals are therefore used for the purpose of
improving health, of which prevention of chronic diseases is paramount. Addition-
ally, they help to delay the aging process and increase life expectancy (Zhao 2007).

Hence, nutraceuticals are those substances that are carefully extracted from nature
so as to prevent denaturation. Biological properties of the extracts are determined
and documented through in vivo and in vitro studies before they are registered for
marketing. These may be marketed as dietary supplements, isolated nutrients or
specific diets, processed foods, beverages, genetically engineered foods, and herbal
products (Prakash et al. 2004; Keservani et al. 2017). Most of the nutraceuticals help
with the maintenance of optimal immune response. Scientific studies have also
demonstrated the potentials of nutraceuticals in preventing arteriosclerosis (Madihi
et al. 2013)), metabolic diseases (Khosravi-Boroujeni et al. 2012; Baradaran et al.
2013), cancer (Shirzad et al. 2013), as well as neurological disorders (Keservani
et al. 2010a, b; Roohafza et al. 2013).
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Nutraceuticals are classified based on:

(1) Food source: Plant, animal, or microbial food source.
(i) Mechanism of action: Nutraceuticals can have anticancer activity,
hypolipidemic activity, anti-inflammatory activity, etc.
(iii) Chemical nature: Nutraceuticals may be carotenoids, collagen hydrolysate,
dietary fibers, fatty acids, flavonoids, etc.

3.2.2 Functional Foods

Health Canada has defined functional food as those with similar appearance to a
conventional food or a regular food, which have physiological benefits and prevent
chronic diseases (Corzo et al. 2020). These foods are designed in such a way that
their presentation to consumers is close to their natural state (Keservani et al. 2017).
They are prepared to provide the required amount of macronutrients and
micronutrients for the body. To be classified as functional food, the following
characteristics must be present in such foods:

(a) They exist in their natural form.

(b) They are an essential part of the daily diet.

(c) They are able to initiate mechanisms that modulate the physiological systems
that prevent or control diseases (Keservani et al. 2010a, b; Patil et al. 2016).

3.2.3 Types of Functional Foods
Functional foods are generally categorized into three:

(i) Conventional: These are natural food items that have health benefits and the
ability to prevent diseases in addition to their primary function of delivering
nutrients. They are rich in important nutrients like vitamins, minerals,
antioxidants, and polyunsaturated fatty acids (PUFA). Some examples of
conventional functional foods are fruits, vegetables, nuts, seeds, legumes,
whole grains, seafood (e.g., salmon, mackerel), fermented foods, herbs and
spices, beverages, etc. (Keservani et al. 2010a, b).

(i) Manipulated (via biotechnological processes): This involves production
processes that convert standard food to functional food. They are usually
fortified with additional ingredients, such as vitamins, minerals, probiotics, or
fiber in order to increase the food’s health benefits. One example is that of eggs
rich in omega-3 which were produced by modifying the feed of chickens.
Another example is the production of genetically modified tomato strain with
a higher lycopene content. Lycopene has been demonstrated to have anticancer
properties, and it can also reduce the incidence of cardiovascular diseases.
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(iii) Processed or modified: This has to do with the modification of foods during
production processes in food factories. This may be by adding or extracting
certain compounds or microorganisms. The dairy factory is particularly
dominated by artificially enriched functional products. For example, yogurt
has been successfully transformed into a functional food through the addition of
a range of health beneficial bacteria (probiotics) that can be consumed to
improve body functions.

Prebiotics and probiotics are functional foods obtained from plant sources like
vegetables, cereals, dairy, etc., as well as meat products (Ashaolu 2020; Das et al.
2020; Green et al. 2020; Silva et al. 2020). Prebiotics and probiotics confer many
health benefits on the host, and this may include reduced macular degeneration and
decreased risk of prostate cancer and colon cancer. These functional foods also
demonstrate antioxidative properties, which promotes reduction in the incidence of
certain chronic diseases (Silva et al. 2020). Prebiotics and probiotics have the
capacity to boost the immune status of consumers (Guimaraes et al. 2020). Prebiotics
and probiotics have immunomodulatory and immune boosting benefits.

There are many types of prebiotics, and majority of the these are oligosaccharide
carbohydrates. Prebiotics are not available in large quantities in foods, so they are
largely manufactured industrially. Lactose, sucrose, and starch are usually the
preferred raw materials for such industrial processes (Bouhnik et al. 2006).
Organisms from Bifidobacteria, Enterococci, Lactobacilli, Leuconostoc, and Sac-
charomyces species are among the common probiotics that are often used for
producing functional foods (Wan et al. 2019). The market for probiotics has risen
spontaneously due to their immune-enhancing benefits.

3.3 The Immune System

The immune system is a complex network of defense systems that protect the host
from invading microorganisms and malignant cells. Different types of cells, tissues,
and organs are involved in the immune system. Cells of the immune system are
referred to as lymphocytes (T-cells, B cells, and NK cells), neutrophils, and
monocytes or macrophages. The immune system is broadly classified as innate
immunity (nonspecific) and adaptive immunity (specific).

3.3.1 Innate Immunity

Innate immunity is the body’s first line of protection against invading pathogen. This
type of defense mechanism is not specific in action, rather it is characterized by
physical and biochemical barriers that evolve immediately or within hours of an
attack by an antigen. It includes macrophages and other cells that engulf and destroy
foreign material. It also includes various mechanisms such as inflammation, coagu-
lation, and complement (Kumar et al. 2020). This depends on the ability of the body
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to recognize certain molecules found in the pathogens, which are absent in the host.
In vertebrates, such pathogen-specific molecules are recognized by complement
proteins. Complement proteins act by disrupting the membrane of the invading
pathogen and target them for phagocytosis. This is what produces inflammatory
responses.

3.3.2 Adaptive Immunity

Adaptive immunity is a specific immune action which provides long-term defense
against invading pathogens. This long-term defense is made possible through the
activities of immunological memory cells that are created from B and T lymphocyte
in response to infection. Immunological memory is the ability of the immune system
to swiftly recognize an antigen that the body has previously destroyed and swiftly
generate an efficient and dramatic immune response (Pancer and Cooper 2006).
Immunological memory can also be artificially achieved through vaccination.
Vaccines are made with antigens that imitate the activities of a pathogen. The
vaccination will activate an adaptive immunity (Kumar et al. 2020). Moreover, T
lymphocytes can generate cellular immunity as a result of the activation by
cytokines, which are discharged from helper T cells (Moser and Leo 2010).

Many substances derived from food can activate either innate or acquired immu-
nity. What is desirable for optimal health is a balance of innate and acquired
immunity (Kaminogawa and Nanno 2004).

3.3.3 The Gut Immune System and Its Microbiota

The intestinal immune system is very important since gut microbiota generally
reside in the lower region of the GIT. The function of the intestinal immune system
is to protect the gut from several types of antigens that may get into the body through
foods, commensal, and pathogenic bacteria. Additionally, several intestinal cells
help to activate the production of IgA isotypes that also increase gut immunity
(Atarashi et al. 2011).

At birth, the human gut is predominantly inoculated, but colonization of the
baby’s gut by microbiota begins immediately after birth through contact with the
environment and breastfeeding. Depending on certain feeding and dietary patterns,
the diverse microbiome in children continues to develop until a child reaches
3-5 years of age, when it would be similar to what is found in adults (Rodriguez
etal. 2015). These microbiota disturb the production of many cells and tissues within
the gut so as to confer immunity on the system. However, aging, diet, infection, or
indiscriminate use of medications may upset this microbial makeup and also affect
their fermentation products. Disruption of the gut microbiota is responsible for many
acute and chronic disorders like obesity, inflammatory bowel disease (IBD), etc.
(John et al. 2018; Yoshida et al. 2018). These days, gut microbes are continuously
being engineered into commercially available probiotics.
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3.3.4 Immunomodulation

Optimal functioning of the immune system is determined by the action of biological
or synthetic molecules that modulate, suppress, or stimulate elements of the immune
system. These molecules are termed immunomodulators (Jantan et al. 2015). Byrne
et al. (2020) define immunomodulation as changes that occur in the immune system
after exposure to any substance that either induces or suppresses immunity.
Immunomodulation is therefore a very broad term, which includes any process
that modify or regulate the immune response therapeutically. Hence,
immunomodulation includes processes such as:

* Reduction of inflammation that accompanies immune response to injury or
infection
* Combating diseases arising from microbial infections or cancer

Immunomodulation may involve induction, enhancement, amplification, or sup-
pression of any part or phase in the immune response toward a particular disease
state. Hence, it may involve strengthening or suppression of the indicators of cellular
and humoral immunity. Immunomodulators are natural or artificial agents which
could stimulate, suppress, or modulate any of the elements of the immune system,
whether innate or adaptive immune response (Wen et al. 2012). There are three
(3) types of immunomodulators:

* Immunoadjuvants
¢ Immunostimulants
e Immunosuppressants

3.3.4.1 Immunoadjuvants
Adjuvant is an agent that stimulates the immune system by enhancing immune
response to vaccines without producing specific antigenic effects. They act as
adjuvant to pharmacological treatments, most importantly in viral infections and
cancers (Hui et al. 2018; Temizoz et al. 2016).

Adjuvants perform any of the following three functions:

(a) Serve as the place where antigens are stored and from which they are slowly
released.

(b) Assist in targeting antigen to immune cells and thereby facilitate phagocytosis.

(c) Enhance and exert a modifying influence on the type of immune response
induced by the antigen (Feng et al. 2020).

Sometimes, adjuvants may give warning signal required by the immune system in
order to be responsive to an antigen just like it would respond to an active infection.
Additionally, immunoadjuvants have been proposed for solving a critical challenge
to vaccine designers by choosing between cellular and humoral immune responses;
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Thl and Th2; immunoprotective and immunodestructive; and immunoglobulin E
versus immunoglobulin G type of immune responses (Shantilal et al. 2018).

3.3.4.2 Immunostimulants
Immunostimulants are also known as immunoenhancers since they enhance the
body’s resistance to infections, allergy, autoimmunity, or cancer. Immunostimulants
work with both innate and adaptive immune response. Immunostimulants can serve
as prophylactic agents, i.e., as immune potentiators in healthy individuals. Immune
potentiator activates innate immune cells directly through pattern recognition
receptors (RRRs). In individuals with compromised immune conditions,
immunostimulants work as immunotherapeutic agent (Chandua and Kailash 2011).
However, these agents have no effect on immunological memory cells which makes
their pharmacological effect to fade away quickly. Hence, immunostimulants need to
be renewed by administering the drug either periodically or continuously (Seyed
2019). On the other hand, immunostimulants boost endogenous immune defenses,
which helps the body to restore or maintain homeostasis (Wen et al. 2012).
Immunostimulants can be successfully used as immunotherapeutic agents for
people with comprised immune system. Additionally, they can serve as suitable
prophylactic treatment in healthy individuals especially those who easily succumb to
viral infections (Wen et al. 2012). For instance, the trained immunity by vaccines,
which induce heterologous protection, has been proposed as a logical strategy to
boost antiviral defenses and reduce susceptibility to COVID-19 infection Further-
more, immunostimulants can be used as adjuvant anticancer treatments, to counter-
act the immunosuppressive side effects of cancer therapy (Mohamed et al. 2017).

3.3.4.3 Immunosuppressant

Immunosuppressants restore normalcy either by inhibiting immune response activa-
tion or decreasing the activities of its components. Immunosuppressants are used to
control pathological immune response that may occur in instances like organ
transplantation or autoimmune diseases (Manu and Kuttan 2009; Wen et al. 2012).
Rejection processes are the major cause of morbidity in organ transplantation, and it
also leads to graft loss. For this reason, immunosuppression in organ transplantation
serves the purpose of blunting the immune response of the patient to the allograft and
at the same time maintain adequate resistance that will prevent opportunistic
infections and malignancy.

The effect of a compound on dendritic cells (DCs) activity is one important factor
that is usually considered in immunomodulation because DCs are the link between
innate and adaptive immunity (Wen et al. 2012). Any compound that can stimulate
DC activities will have great therapeutic potential because they will be able to
strongly enhance T cell responses. Such compounds will be immunostimulatory
and can serve as good vaccine adjuvants. Meanwhile, compounds that downregulate
DC function can induce immune tolerance. Such compounds will be of therapeutic
purpose in treating autoimmune diseases and allergies as well as promote transplant
tolerance.
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Acute inflammation is a key component of immune response which is usually
initiated by immune-associated disorders such as autoimmune diseases, microbial
infections, and other chronic diseases (Pawelec and Gupta 2019). Unfortunately,
chronic inflammatory responses can impact the immune function negatively. Innate
immune cells including T-lymphocytes and B-lymphocytes are usually affected by
chronic inflammation. For this reason, anti-inflammatory immunomodulators are
very important and have attracted a lot of attention as potential chemopreventive
agents (Pawelec and Gupta 2019). These immunomodulatory substances have been
documented to ameliorate chronic inflammation, which is responsible for the transi-
tion of normal cells to cancer cells (Mohamed et al. 2017).

Anything that disrupts gut microbiome may stimulate diseases as they play an
important role in maintaining immune function (Zheng et al. 2020). The implication
of this is that immune defense can be strengthened by promoting activities of the gut
microbiome through supplementation with prebiotics or probiotics. Supplementa-
tion with prebiotics or probiotics is an appropriate preventive measure to disruption
of microbial communities, which represents an alternative immunomodulatory strat-
egy (Michel et al. 2018).

3.3.5 Modulation of Immune Function by Foods

The function of food is beyond growth and development; food is also essential for
the maintenance of a good state of health and a host’s ability to resist detrimental
changes by foreign and pathogenic substances. Much like any other cell, cells of the
immune system require appropriate nutrition for proper functioning (Childs et al.
2019). Through feeding, individuals are frequently exposed to foreign proteins and
other substances that are immunologically significant (Farias et al. 2014). Therefore,
it may be expected that the influence of food components on the immune system may
be beneficial or detrimental.

A healthy immune system does not only involve an adequate response exclu-
sively to pathogens but also a moderation of that response to prevent damage to
innocuous proteins (Jeurink et al. 2019). During an immune response, there is an
increased demand for both nutrient and energy, and adequate nutrition is essential to
meet these demands (Childs et al. 2019). The beneficial effect of food on the immune
system could either be by stimulating a host’s defenses (against infection) or
suppressing immune response (in allergies and chronic inflammation) (Hachimura
et al. 2018). In addition to stimulating the host’s defenses, appropriate food intake
also helps to resolve the immune response quickly in order to prevent chronic
inflammations that may have further deleterious effects (Childs et al. 2019).

In order for the body to maintain cell homeostasis and for the cells to perform
their respective functions, there is a need for sufficient supply of various nutrients to
the body. One of the key purposes of immunology research in nutrition is to establish
dietary factors that are needed for maintaining strong immunity that will strengthen
the body’s defense for protection against pathogen. It is also important to define what
their optimal intake should be. The immune system can therefore be regulated by
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functional foods, and this can be either through immunostimulation or
immunosuppression.

3.4 Immunomodulatory Properties of Probiotics

Probiotics are beneficial living microorganisms, which can be administered through
diet or pharmaceuticals to boost the health of the host (Hill et al. 2014). That means
that the benefits of probiotics are beyond mediation of gut microbiota. Probiotics are
now being used in health management as alternative therapy. They are also used to
complement foods and pharmaceutical agents in lifestyle medicine (Sanders et al.
2019). An important indicator for measuring the effectiveness of probiotics is its
ability to stick to the gastrointestinal tract without passing out via gut motility. This
makes it possible for the probiotics to multiply and eventually colonize the gut,
thereby modulating the immune system in every part of the body through the
provision of competitive restraint on the pathogens (Guimaraes et al. 2020).

3.4.1 Mechanism of Probiotics’ Action

Probiotics usually interfere with the composition and function of gut epithelial cells
including that of immune cells. Probiotics can boost human immunity by inhibiting
the activities of pathogens in the gastrointestinal system. The mechanisms by which
they exert their activities on their host include the following:

¢ Release of antimicrobial compounds

* Stimulating intestinal barrier function

* Competitive exclusion for adhesion sites and nutritional sources
¢ Immunomodulation (Wan et al. 2019)

Probiotics are very potent for stimulating the production of sIgA (secretory
immunoglobulin A), which enhances barrier function (Wang et al. 2016). sIgA
acts by promoting the clearance of antigens and pathogenic microorganisms from
the intestinal lumen. This is done in three steps:

(1) Hindering the access of antigens and pathogenic microorganisms to epithelial
receptors
(i1) Entrapping antigens and pathogenic microorganisms in mucus
(iii) Facilitating the removal of antigens and pathogenic microorganisms by peri-
staltic and mucociliary activities

Nevertheless, probiotics can also interact with the intestinal immune system and
other specific immune cells leading to production of selected cytokines.

Selected species of Lactobacilli and Bifidobacteria have outstanding probiotics
coupled with anti-inflammatory properties. They suppress pro-inflammation by
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increasing interleukin 10 (IL-10) and Thl-type cytokines. The administration of
probiotics can induce both T cell and B cell hyporesponsiveness and can
downregulate Th1, Th2, and Th17 cytokines without causing apoptosis.
Inflammatory immune disorders can be treated with probiotics, which stimulates
the generation of regulatory DCs and T-regs (Kwon et al. 2010). Probiotics have the
potential to suppress intestinal inflammation through the following mechanisms:

(1) Downregulation of Toll-like receptors (TLRs) expression
(i1) Secretion of metabolites that can prevent tumor necrosis factor-o from entering
blood mononuclear cells
(iii) Inhibition of NF-kB signaling in enterocytes (Wells 2011)

The underlying mechanisms through which probiotics can combat allergies
include modulating the lymphocyte Th1/Th2 ratio to favor Thl response. Hence,
there will be decreased secretion of Th2 cytokines. Moreover, IgE concentrations are
decreased, and production of C-reactive protein and IgA is increased (West et al.
2015).

3.4.2 Production of Antimicrobial Substances by Probiotics

Probiotics produce different types of antimicrobial substances that can inhibit both
Gram-positive and Gram-negative bacteria. Some of the substances produced by
probiotics include bacteriocins, short-chain fatty acids (SCFA), and hydrogen per-
oxide. Many strains of Lactobacillus spp. secrete both low-molecular-weight
bacteriocins (LMWB; molecular weight < 1000 Da) and high-molecular-weight
bacteriocins (class III) (molecular weight >1000 Da). The LMWB have been
documented to have antimicrobial activities. The mechanism of action of LMWB
involves either destruction of the target pathogenic cells through pore formation or
inhibition of cell wall synthesis (Hassan et al. 2012).

Another mechanism for the production of antimicrobial substances involves the
production of short-chain fatty acids, which helps with acidification and reduction of
the intestinal pH. Reduced intestinal prevents the growth of pathogens. Conse-
quently, the intracellular pH is reduced, and the cytoplasm becomes acidic, leading
to the collapse of proton motive force. Ultimately, these will lead to inhibition of
nutrient transport which have bactericidal effects (De Keersmaecker et al. 2006).
Another factor is that probiotic bacteria release microcins, which binds iron
siderophore receptors for cell entry. Once they are inside the cell, probiotic bacteria
may also produce harmful substances. The overall effect of all these probiotic
activities often lead to inhibition of many intracellular enzyme activities. Conse-
quently, the functions of these enzymes are also inhibited, e.g., mRNA translation.
All these will lead to the pathogen’s cell death.

The role of probiotics is reinforced by the changes in fecal short-chain fatty acid
(SCFA) or branched-chain fatty acid (BCFA) concentrations as observed in children
with diarrhea (Hemalatha et al. 2017). As a result of the roles that probiotics play in
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the modulation of the immune system, they have the potential to prevent certain
childhood diseases like eczema and allergies.

3.5 Immunomodulatory Properties of Prebiotics

Prebiotics are nondigestible food substances, which encourage the growth of
probiotics and induce their action (Gibson et al. 2017). This means that prebiotics
include noncarbohydrate materials, such as polyphenols, and their action goes
beyond the gastrointestinal tract. Prebiotics are usually obtained from the
nondigestible fiber in certain plant-based foods. There are many types of prebiotics,
and the key compounds in prebiotics are galactooligosaccharide, oligosaccharides,
and inulin.

Probiotics can make use of dietary fiber and polyphenols, which are present in
food to produce health-promoting short-chain fatty acids (SCFA) as well as phenolic
acid metabolites. This is the microbiota-mediated activity that is responsible for the
prevention and management of chronic diseases. The composition of gut microbiota
can change gut barrier and affect regulation of energy metabolism and adipose tissue
proliferation. Several metabolic dysregulations that often lead to inflammation of the
brain, liver, and intestine can be traced to the gut microbiota (Geurts et al. 2014).
With the proper use of prebiotics, this inflammation can be prevented because
prebiotics have the ability to lower endogenous pathogens found inside the gastro-
intestinal (GI) tract and maintain homeostasis of the immune system. This
encourages the immune system to keep pathogens under control. This is in addition
to swift reaction to eliminate infections from external sources (De Sousa et al. 2011).

The details of well-known prebiotic effects on the immune systems are discussed
below:

Oligofructose and inulin mixture: Oligofructans and inulin mixture can stimu-
late antibody responses toward viral vaccines (Chen et al. 2017).

Fructo-oligosaccharides (FOS): FOS consumption improves antibody response
to influenza vaccine and also reduces the side effects that accompany the vaccine
(Ford et al. 2018; Pandey et al. 2015). This category of prebiotics can also reduce the
diarrhea-associated fever in infants and reduce the need for use of antibiotics. FOS
consumption can also shorten duration of diseases and reduce the incidence of
febrile seizures in infants (Carroll et al. 2012).

Galacto-oligosaccharides (GOS): Consumption of GOS can increase the level
of interleukin 8 (IL-8), interleukin 10 (IL-10), and C-reactive protein. However, it
decreased IL-1p in the blood of adults. Similarly, consumption of GOS improves the
function of natural killer cells (Joossens et al. 2011).

Acidic oligosaccharides (AOS): AOS can reduce the possibility of atopic der-
matitis in low-risk infants.
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3.5.1 Mechanism of Prebiotics’ Action

Prebiotics encourage the growth of probiotics that compete with species which are
detrimental to energy sources. Prebiotics exclude such detrimental organisms by
promoting the production of beneficial fermentation substances, such as SCFAs.
SCFAs have immunomodulatory properties (Van der Beek et al. 2017).

A novel mixture of GOS, prepared from a probiotics plus GOS produced by
industrial p-galactosidase (f-GOS), plays a significant role in immune modulation.
B-GOS supplementation has the potential to increase the immunoregulatory cytokine
IL-10 while reducing IL-1p expression (Vulevic et al. 2015). B-GOS is also able to
improve natural killer (NK) cell activity and increase the blood level of interleukin
8 (IL-8) and C-reactive protein (Vulevic et al. 2015).

3.6 Immunomodulatory Properties of Nutraceuticals from
Selected Plants and Phytochemicals

Plants produce diverse secondary metabolites, which belong to different phytochem-
ical classes. Plants produce these metabolites and use them for their protection from
predators. They are responsible for the characteristic color, flavor, smell, and texture,
which has been linked to many biological activities. Phytochemicals, which have
nutraceuticals importance, are bioactive constituents of plants that have various
biological activities. One of the attributes of these phytochemicals is that they
display immunomodulatory properties that may include immunosuppression,
immunostimulation, and tolerogenicity through dynamic regulation of the target
immune systems (Spelman et al. 2006).

These phytochemicals, either alone and/or in combination, have enormous medi-
cal benefits. They have various biological activities that are of pharmacological
significance in human health. They also prevent unhealthy aging, cancer, DNA
damage, diabetes, osteoporosis, and heart diseases. Phytochemicals also exhibit
robust immunomodulatory and carminative effects (Chen et al. 2005; Kure et al.
2017). Diterpenoid alkaloids from Aconitum laciniatum (Ranunculaceae), terpenes
and flavonoids isolated from Ajania nubigena (Asteraceae), isoquinoline alkaloids
isolated from Corydalis crispa (Fumariaceae) and Corydalis dubia (Fumariaceae)
have all demonstrated immunomodulatory bioactivity in dendritic cell line
(Wangchuk et al. 2018).

Epidemiological data have established the fact that intake of foods rich in certain
phytochemicals can protect the onset of many chronic diseases (Lu and Zhao 2017).
These epidemiological data also confirmed that there is a potential effect of
phytochemicals on immune function.
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3.7 Bioactive Polysaccharides

Polysaccharides are found naturally in plants (seeds, stems, and leaves) as well as in
animal body fluids, extracellular fluids, bacteria cell walls, yeast, and fungi. Various
polysaccharides such as heteroglycans and proteoglycans can modulate both innate
and adaptive immune responses. Polysaccharides such as glucans, mannans
(glucomannan, galactomannan, and galactoglucomannan), pectins, fucoidans,
galactans (arabinogalactans, carragenans), fructans (inulin, levan), and xylans are
the most studied polysaccharides (Ferreira et al. 2015; Oyedepo and Kayode 2020).
Naturally derived polysaccharides have specific broad-ranged immunomodulatory
properties. Many of these polysaccharides do have interactions with the immune
system to upregulate or downregulate specific parts of the host’s immune response.
This is the reason why they are classified as immune modulators (Wang et al. 2013).
Chemical structure, molecular weight, branching, conformation, and the presence of
functional groups are some of the structural features that are responsible for the
immunostimulatory properties of these polysaccharides. Another major advantage of
plant polysaccharides is that they have low toxicity (Albuquerque et al. 2020;
Oyedepo and Kayode 2020). Therefore, they are an ideal alternative for immune
modulation.

The immunomodulatory activity of polysaccharides includes activation of the
following:

e Macrophages/monocytes

¢ Natural killer (NK) cells

* Lymphocyte- activated killer cells

¢ Dendritic cells (DC)

¢ Tumor-infiltrating lymphocytes and other lymphocytes

Polysaccharides also stimulate the release of various cytokines such as
interferons, interleukins, tumor necrosis factor (TNF), and colony-stimulating
factors. For this reason, polysaccharides are considered to be multicytokine inducers
due to their potentials to elicit gene expression for diverse immunomodulatory
cytokines as their receptors (Novak and Vetvicka 2008).

B-glucans are polysaccharides with potent immunomodulatory activities, which
can affect both innate and adaptive immunity (Tian et al. 2013). Glucans can have
either linear or branched chain because of the different glycosidic bonds such as
Bl —4),pl1 - 3),and B1 — 6) or (al — 3), (x 1 — 4), and (o 1 — 6) present in
the polysaccharide. The (B1 — 3)-D-glucan are the moiety, which are particularly
involved in immunostimulatory activity (Ferreira et al. 2015). A type II transmem-
brane protein receptor known as dectin-1 can bind f-1,3 and f-1,6 glucans and
thereby initiate as well as modulate the innate immune response (Schorey and
Lawrence 2008). Dectin-1 is expressed on many of the cells that are responsible
for the innate immune response (Schorey and Lawrence 2008). Dectin-1 recognizes
B-glucans present in bacterial and fungal cell wall. This has a lot of health benefits for
humans because p-glucans are absent in human cells. This results in effective
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immune responses such as phagocytosis and production of pro-inflammatory factor
that eliminates infectious agents in humans (Oyedepo and Kayode 2020).

The immunomodulatory activities of polysaccharides have a direct relationship
with their structures. Generally, bioactivities of polysaccharides have a relationship
with their composition, molecular weight, tertiary structure, or conformation.
Polysaccharides with.

B-1-3, 1-4, or 1-6 branch chains have substantive biological activities, but
complex branch-chained polysaccharides with higher molecular weights and anionic
structures have higher immunostimulating activities (Kim and Kim 2017). These
differences in bioactivity may be as a result of their differences in receptor affinity or
receptor-ligand interaction on the cell surface (Li et al. 2016, 2017). Numerous
studies have confirmed the immunostimulatory activities of many polysaccharides in
animals and humans (Tian et al. 2013).

3.7.1 Mechanism of Action

Immune modulation by plant polysaccharides can be through direct or indirect
mechanisms. Direct mechanism is by activating the immune cells, while the indirect
mechanism has to do with formation of short-chain fatty acid (SCFA).

Plant polysaccharides can activate the macrophages by interacting with specific
receptors on cells. These receptors are known as pattern recognition receptors.
Macrophages are involved in immune regulation, and they play a critical role in
all phases of host immune response (Zhao et al. 2015a, b). They play a vital role in
various types of complex microbicidal functions on the target organisms (Niu et al.
2017). They could bind and interact with polysaccharides through toll-like receptor
4 (TLR4), CD14, dectin-1, mannose receptor, etc. (Hollmig et al. 2009). After the
activation of the receptors, downstream signal and production of pro-inflammatory
factors will usually follow.

Hence, the immunomodulatory action of plant polysaccharides on macrophages
can be through any of the following:

(1) Production of reactive oxygen species (ROS) and reactive nitrogen
species (NOS)
(i) Modulation of cytokines secretion
(iii) Enhancement of cell proliferation
(iv) Activation of macrophage phagocytic activity (Yin et al. 2019)

The immunomodulatory activity of plant polysaccharides is achieved by
modulating cytokine release from intestinal dendritic cells. For instance, pectin
was documented to hinder the release of IL-6 and IL-10 through induction by
synthetic lipopeptide P3CSK4 (Sahasrabudhe et al. 2018). Similarly, p-glucan,
arabinoxylan, inulin, and pectin can also increase IL-10/IL-12 ratio and slow down
the expression of IL-1, IL-6, IL-8, IFN-y, IL-12, monocyte chemoattractant protein
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(MCP)-1, macrophage inflammatory proteins (MIP)-1a, RANTES, and TNF-a by
dendritic cells (Bermudez-Brito et al. 2016).

Another important process that contributes to the immunomodulation activity of
polysaccharides is the activation of natural killer (NK) cells. Polysaccharides of
Astragalus membranaceus (a popular immunomodulatory herb in Chinese medi-
cine) can intensify the activity and killing effects of NK cells. The herb can also
promote the proliferation of NK cells (Li et al. 2009). Polysaccharides were also able
to boost CD3-CD4-CD8" NKs in peripheral blood lymphocytes (Li et al. 2011).

Plant polysaccharides have also been documented to modulate adaptive immu-
nity. Polysaccharides from Astragalus membranaceus was documented to signifi-
cantly upregulate the proliferation of B lymphocytes. This action may be through
their interaction with immunoglobulins that are found on the surface of B cells (Fan
et al. 2012; Hong et al. 2018). Furthermore, A. membranaceus polysaccharides also
enhanced the number of CD3*CD4*CD8* memory T helper (Th) cells and
CD3*CD4 CDS8" cytotoxic T cells (Li et al. 2011). The polysaccharides also
improved CD4*/CD8" T cell ratio (Abuelsaad 2014). An in vitro study by Novak
and Vetvicka (2008) established the fact that B-glucan microparticles enhance T-cell
activation and proliferation. Polysaccharides are now being explored as a suitable
adjuvants for vaccines due to their ability to induce Th1 and/or Th2 type of immune
response (Aguilar and Rodriguez 2007).

Some of the immunomodulatory properties of polysaccharides are exhibited
indirectly. For instance, dietary fibers are metabolized anaerobically by intestinal
bacteria in the cecum and colon to generate SCFA (Luu and Visekruna 2019). These
SCFA molecules can cross the gut epithelium and have interactions with surface
receptors on immune cells. They interact with surface receptors like G-protein-
coupled receptors (GPRs) 41 and 43 (Koh et al. 2016). This activation of GPRs by
SCFA is responsible for the modulation of inflammatory signaling pathways, e.g.,
NF-B, ERK, and p38 MAPK (Kim et al. 2013).

SCFA are also able to reach the nucleus of T lymphocyte and modulate many of
their functions by histone deacetylase (HDAC) inhibition. SCFA can also induce
metabolic alterations in T cells through the stimulation of mTOR complex activity.
Upon absorption into T cells, SCFA may stimulate activity of mTOR complex and
promote conversion of pyruvate into acetyl-CoA. Additionally, the acetyl groups
from SCFA are usually linked to CoA and then enter tricarboxylic acid cycle.
Subsequent increase in the levels of citrate from TCA cycle is exported from the
mitochondria into the cytoplasm. In the cytoplasm, the enzyme ATP citrate lyase
converts citrate into acetyl-CoA, which is then used by histone acetyltransferases
(HATs) for histone acetylation in addition to the regulation of cytokine gene
expression (Luu and Visekruna 2019).

B-Glucans also have anticarcinogenic potentials. They inhibit oncogenesis
through their action against potent genotoxic carcinogens (Novak and Vetvicka
2008). Antiangiogenesis may be one of the pathways through which p-glucans
reduce tumor proliferation and disrupt tumor metastasis. Hence, p-glucan can
serve as an adjuvant to cancer chemotherapy and radiotherapy (Moreno-Mendieta
et al. 2017). Additionally, the mechanism of immunotherapy using monoclonal
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antibodies (a novel strategy of cancer treatment) could be elicited in the presence of
B-glucans (Carvalho et al. 2016).

3.8 Immunomodulatory Properties of Mushrooms

Immunostimulating activities, which is one of the numerous health benefits of
mushrooms, have been documented in many Eastern countries (Friedman 2016).
Mushrooms are good prebiotic source since they are rich in bioactive
polysaccharides (Singdevsachan et al. 2016). These nondigestible polysaccharides
in mushrooms have the potential to induce the growth of probiotics bacteria in the
gut resulting in the inhibition of pathogens’ proliferation (Bhakta and Kumar 2013).
They also boost host immune defense through the activation of complement system,
enhancement of macrophages, and promotion of natural killer cell function
(Friedman 2016). Mushrooms therefore have a significant role in immune response
during the treatment of respiratory diseases, atherosclerosis, cancer, and other
metabolic diseases (Varshney et al. 2013).

Compounds of mushrooms in crude and pure form have effectively demonstrated
antitumor and immunomodulatory activities (Krishnamoorthy and Sankaran 2016).
Many polysaccharides, which have been isolated from mushrooms, have been
classified as biological response modifiers (BRM), which modify immune responses
(Kim et al. 2006). Biological response modifiers (BRMs) have been prepared from
the fruiting bodies of mushrooms as well as stalk, spores, and mycelium. They can
also be isolated from fermentation broth that is cultivated in submerged culture.
Some studies applied BRMs simultaneously with conventional cancer treatments
like chemotherapy and radiotherapy to increase the efficiency of treatment (Oyedepo
and Morakinyo 2020). Mushroom BRMs have been classified into four major
categories going by their chemical structure:

(i) Lectins
(i1)) Terpenoids
(iii) Polysaccharides
(iv) Fungal immunomodulatory proteins (FIPs) (El Enshasy 2010)

Immunological alterations which are induced by mushroom polysaccharides
include:

(i) Inhibition of prostaglandin synthesis
(i) Reduction in pro-inflammatory cytokines
(iii) Activation of immune cells
(iv) Increased antibody production
(v) Increased interferon production
(vi) Increased immune activity against a range of cancers,
(vii) Inhibition of tumor metastasis (Saman et al. 2016).



88 T. A. Oyedepo et al.

Mechanism of action: Mushrooms produce chemical compounds, which are
able to boost the activities of the immune system (El Enshasy 2010). They induce
cellular responses through their specific interaction with different cell surface
receptors such as dectin-1, complement receptor 3 (CR3; CDI11b/CD18),
lactosylceramide, and other selected scavenger receptors. Mushrooms
polysaccharides (mainly a- or f-glucans and glycoproteins) demonstrated immuno-
modulatory activities through:

(a) Activation of cytotoxic lymphocyte, i.e., natural killer (NK) cells

(b) Regulation of cytokines production by dendritic cells

(c) Increased production of TNF-a, IL-1, IL-6, IL-8, IL- 12p40, and NO
(d) Expression of iNOS by macrophages (Borchers et al. 2008)

3.8.1 Immunomodulatory Properties of Polysaccharopeptides
Extracts from Coriolus
Versicolor

The bioactive components of Coriolus versicolor mushroom extracts include two
polysaccharopeptides (PSPs) derived from two different strains of C. versicolor:

(a) COV-1 (PSP): used in China
(b) Polysaccharide Krestin (PSK): used in Japan

These protein polysaccharides have a molecular weight of about 100 kDa. The
carbohydrate component of each compound includes mannose, xylose, galactose,
and fructose (in PSP) or arabinose and rhamnose (in PSK).

3.8.1.1 Mechanism of Action

3.8.1.1.1 Induction of a Predominantly pro-Inflammatory Cytokine Profile

This is the most common immunomodulatory effect of PSP that has been reported
(Saleh et al. 2017). PSP produces remarkable effect on both in vivo and in vitro
expressions of tumor necrosis factor (TNF)-a, which induces apoptosis and
tumoricidal activities (Bradley 2008). Human peripheral blood mononuclear cells
(PBMCs) demonstrated large TNF-a expression and protein production resulting
from PSP intake (Lee et al. 2006). This effect is not disrupted by blockade of toll-like
receptor 4 (TLR4) and is an indication that PSP does not depend on TLR4 activation
(Wang et al. 2013). PSP is also able to induce cytokines related with TNF-a through
its stimulation of IL-12 (Ho et al. 2004; Wang et al. 2013). Meanwhile, IL-12 is an
established inducer for interferon (IFN)-y, which is an active potent
immunostimulatory cytokine. That is the reason why PSP always promotes IFN-y
expression especially when used with phytohemagglutinin (PHA), a mitogen (Lee
et al. 2006). Furthermore, C. versicolor can increase the sensitivity of cells to other
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stimuli and work in synergy with other factors to enhance immune response
(Singdevsachan et al. 2016).

3.8.1.1.2 Effect of PSP on Immune Cell Populations

The stimulatory effects of polysaccharopeptide on many immune cells are diverse,
and these include enhancing their proliferation and cytokine release (Ho et al. 2004).
PSP is also able to increase the number of monocytes and macrophages such as
CD147CD16”MHCII* monocytes (Sekhon et al. 2013; Sze and Chan 2009). In vitro
treatment of purified murine splenic B cells with C. versicolor extract resulted in
significant proliferative response. The response can, however, be inhibited by BCR
blocking antibody, indicating that it has a role in C. versicolor-mediated B cell
activation (Yang et al. 2015).

3.8.1.1.3 Effects on Adaptive and Innate Immune Responses

PSP enhances immune responses by inducing the production of immunoglobulin
and the activities of diverse pattern-recognition molecules (Yang et al. 2015). PSP
can also be used as an adjuvant to conventional cancer treatments. They mediate
humoral responses via T cell-dependent stimulation of B cell activity and generation
of nonspecific polyclonal antibody response (Sze and Chan 2009). B-glucan
polysaccharides from C. versicolor were documented to activate many pattern-
recognition receptors (PRRs), and this is very important for initiating the innate
immune response when there is an encounter with a pathogen-associated molecular
pattern (PAMP) (Barsanti et al. 2011). Dectin-1 is another PRR that is usually
stimulated by f-glucans and expressed by monocytes, macrophages, dendritic
cells, and certain T cells (Kang et al. 2013).

3.8.1.1.4 Induction of Superoxide Dismutase (SOD)

SOD is the enzyme that catalyzes the generation of oxygen or hydrogen peroxide
from superoxide radicals (O,"). This activity of this enzyme is often disrupted in the
tumor microenvironment following myelotoxic regimens. Myelotoxicity leads to a
decreased production of cells responsible for providing immunity (leukocytes).
Extracts from Coriolus versicolor can therefore modulate immune responses and
control tumor progression by reducing the stress generated by superoxide radicals in
the tumor environment (Parascandolo et al. 2017). The Japanese strain of
C. versicolor extract demonstrated significant radical scavenging activity similar to
that of SOD in vitro (Saleh et al. 2017; Kotsafti et al. 2020). Treatment with PSK
(or SOD) can restore the activity of NK cells, which normally would decrease in the
presence of free radicals (Kotsafti et al. 2020). Under oxidative stress, lymphocyte
surfaces are thought to become anionic, pointing to a potential mechanism by which
SOD reverses this surface charge imbalance and rescues their ability to bind targets
(Kotsafti et al. 2020). Finally, many of the PSP-induced cytokines (TNF-a, IFN-y,
IL-1, and IL-6) have been linked to increased SOD activity (Saleh et al. 2017).
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3.9 Immunomodulatory Compounds from Microalgae

Microalgae are photosynthetic microorganisms, which are naturally living in both
marine and freshwater habitats. They can also survive in extreme weather
conditions. This ubiquitous capability is the reason why there are able to produce
so many interesting natural and bioactive substances (Plaza et al. 2009) with
industrial and pharmaceutical interest (Mimouni et al. 2012; Riccio and Lauritano
2020). Extracts, fractions, and pure compounds obtained from microalgae have
established biological activities, and immunomodulation is one of such activities
(Manzo et al. 2017). Their immunomodulatory effect has two major mechanisms:

(a) Modification of macrophage activation
(b) Release of pro- and anti-inflammatory mediators (Kong et al. 2016)

Diet supplementation with microalgaec has been associated with
immunostimulatory activities. A diet supplemented with commercially prepared
D. salina in mice led to greater NK and macrophage activation, and the survival
rate of the leukemic mice increased (Kwak et al. 2012).

Immunomodulatory compounds that have been obtained from microalgae
include:

(i) Sulfate polysaccharides: These are responsible for the stimulation of macro-
phage cells (Bahramzadeh et al. 2019).

(ii) Sulfolipids: Sulfolipids can potentiate the immune system and are thus used as
vaccine adjuvants (Manzo et al. 2017).

(iii) Polyunsaturated fatty acids (PUFAs): In addition to using microalgae as
substitutes for fishery and seafood resources, they have been identified as
sustainable and eco-friendly PUFA producers (Khozin-Goldberg et al. 2016).
PUFAs are well known for their immunostimulatory and anti-inflammatory
properties.

(iv) Astaxanthin: Astaxanthin (ASX) is a carotenoid pigment. ASX-containing
products are now broadly used as human health food supplements. The com-
mercially available astaxanthin approved by the Food and Drug Administration
(FDA) is mainly produced from the microalgae Haematococcus pluvialis. ASX
can enhance immune response through increased NK cell cytotoxic activity and
increased total T and B cell subpopulations (Park et al. 2010; Davinelli et al.
2019).

3.10 Immunomodulation Activity of Functional Fatty Acids

Among all the classes of fatty acids, short-chain fatty acids (SCFA) are produced by
gut microbiota enzymes such as propionate-CoA transferase and propionaldehyde
dehydratase. These enzymes produce SCFA during the metabolism of
polysaccharides or peptides containing branched-chain amino acids (Feng et al.
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2018). Bacteroidetes are the gut bacteria that solely produce acetate and propionate,
while Firmicutes produce butyrate. Meanwhile, some other bacteria such as Lacto-
bacillus and Bifidobacterium spp. can also produce SCFA (Feng et al. 2018).

Long-chain fatty acids and not SCFA are responsible for immune-modulating
properties. Oleic acid, which represents 49% to 83% of total fatty acids in olive oil, is
a widely distributed fatty acids, but unfortunately it is not available in appreciable
quantity among other oils (Servili et al. 2013). Essential PUFA include linoleic acid
(LA) and alpha-linolenic acid (ALA). Omega-3 and omega-6 fatty acids have been
found in several natural sources, although in different amounts (Saini and Keum
2018). Certain vegetable oils (e.g., rapeseed and sunflower oils) contain higher
amount of linoleic acid than alpha-linolenic acid. This same trend is also seen in
soybean, corn, dried walnuts, and Brazil nuts. On the other hand, higher alpha-
linolenic acid to linoleic acid ratio are reported in flaxseed oil (Saini and Keum
2018). Interestingly, green leafy vegetables are good sources of ALA (Kim et al.
2018). Another good source of omega-3 PUFA is fish oil. They are especially rich in
DHA (docosahexaenoic acid) and EPA (eicosapentaenoic acid) with lower amounts
of docosapentaenoic acid (omega-6 PUFA) (Saini and Keum 2018). However,
marine species from the wild habitat are richer in ®3 PUFA when compared to
farmed ones, which may be as a result of the feed composition (Saini and Keum
2018).

The immunomodulatory potential of fatty acids is mainly due to their ability to
get incorporated into the cell membrane. By this action, they are able to alter
membrane composition and change membrane fluidity. These two action lead to
modulation of membrane-protein interaction and signal transduction (Di Sotto et al.
2020).

3.10.1 Monounsaturated Fatty Acids (MUFA)

MUFA, especially oleic acid, can modulate the immune system by influencing both
innate and adaptive immune response (Yaqoob 2002). It can diminish NK cell
activity and also reduce expression of leukocyte adhesion molecules (Jeffery et al.
1997). Leukocyte adhesion molecules are responsible for certain pathophysiological
conditions like theumatoid arthritis (Jeffery et al. 1997). For the adaptive response,
oleic acid can inhibit the proliferation of immune cells, probably through cell cycle
regulation (Kim et al. 2017; Llado et al. 2010). Furthermore, oleic acid can activate
proapoptotic effects in T lymphocyte and B lymphocyte cells. The possible mecha-
nism of this action may be mitochondrial depolarization and ROS production (Llado
et al. 2010).

3.10.2 Polyunsaturated Fatty Acids (PUFA)

A conjugated PUFA (18:3) known as punicic acid found in pomegranate seed oil has
been shown to improve the immune system development through the stimulation of
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CD4* and CD8* lymphocyte-mediated immunity. Punicic acid can also increase the
immune response against viruses (Zhao and Wang 2018).

Omega-6 PUFAs can increase neutrophil function thereby promoting innate
immunity. However, their action may promote inflammation coupled with increas-
ing ROS levels (Radzikowska et al. 2019). Arachidonic acid, which is an omega-6
PUFA, is a precursor of other fatty acids such as prostaglandins, leukotrienes, etc.,
which function as regulators of inflammation. When there is substantial addition of
long-chain omega-3 PUFA to diet, there will be a partial replacement of arachidonic
acid in cell membranes by eicosapentaenoic and docosahexaenoic acids. Effectively,
there will be a reduction in the production of arachidonic acid-derived mediators.
This action is responsible for the anti-inflammatory potential of omega-3 fatty acids.
Omega-3 fatty acids can also suppress the production of pro-inflammatory cytokines
(Calder 2005).

Dietary omega-3 PUFA can activate macrophage function, by activating G-
protein-coupled receptors (GPR) and promoting anti-inflammation (Radzikowska
et al. 2019). This action can also affect leukocyte function. Furthermore, omega-3
PUFA can inhibit pro-inflammation responses in dendritic cells and T cells
(Radzikowska et al. 2019).

Omega-3 PUFA can positively affect the microbiota composition, which will
increase the production of anti-inflammatory compounds, especially short-chain
fatty acids (Costantini et al. 2017). Another anti-inflammatory benefit of omega-3
PUFA is their ability to restore impaired barrier function and reduce the production
of pro-inflammatory mediators in epithelial cells during inflammation (Radzikowska
et al. 2019). Moreover, a strong relationship has been reported between omega-3
fatty acids, gut microbiota, and immunity. This tripartite relationship is an essential
factor for maintaining the integrity of intestinal wall.

3.11 Conclusions

When there is nutritional inadequacy, there will be an impairment of the immune
function. Conversely, adequate nutrient intake will positively modulate immune
function, reduce chronic inflammation, eliminate autoimmune conditions, and
decrease the risk of infection. Functional foods and nutraceuticals can maintain or
improve immune function. They also improve communication between the innate
and adaptive immune systems.

Even though many of these natural immunomodulators are cheap and quite
effective, many of them lack proper standardization of the active ingredients.
Moreover, lack of analytical test for efficacy and qualitative and quantitative changes
in preparations have all contributed to inconsistencies in published results and proper
documentation. Randomized, double-blind clinical studies should be conducted on
many of the functional foods and nutraceuticals as well as their bioactive
compounds. This will help to provide more evidence on the mechanisms responsible
for their biological/pharmaceutical activity and document clinical efficacy and safety
of these products. In order to have a complete understanding of these functional
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foods/nutraceuticals as well as their implications for therapeutic purposes, their
mechanism for cellular signaling networks and the nonlinear relationship between
dose and effectiveness have to be explored.
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Abstract

The immune system, one of the most sophisticated defence systems of the body,
is capable of recognizing and eliminating the unlimited varieties of foreign and
undesirable agents. A strong defence mechanism is needed for a balanced and
disease-free body. However, modern lifestyles and stress generate changes in
the endogenous system and physicochemical circumstances, which causes dam-
age and modifies immunity, resulting in the beginning of free radicals, which
causes diseases such as cancer, ageing, neurological and cardiovascular disorders.
The simple remediation to these perturbations might be progressively used
antioxidants which possess the strong potential to scavenge these free radicals.
Several compounds like vitamin A, E, C along with lipoic acid and various
enzymes possess rich antioxidant properties aiding and improving our body’s
immune system from several diseases and ageing. The health-promoting capacity
of the antioxidants along with its immunomodulatory effects makes them suitable
for use in developing antioxidant-based therapeutics. This chapter focuses on the
mechanism of antioxidant immunomodulation, as well as the sources, incidence,
classification, and potential health implications.
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4.1 Introduction

Every human wish to have a long, youthful, and disease-free health and disease-free
life. When confronted with physical, emotional, or social challenges, being healthy
is a state in which one is more likely to cope and adapt (Huber et al. 2011). Having a
strong immune system in good working order is necessary to sustain good health,
and a remarkably sophisticated defence mechanism is the key for a balanced state
and satisfactory biological defence against infection, any harmful biological inva-
sion, and diseases, with tolerance to evade allergies and autoimmune diseases. It is
hard to believe that some indispensable elements participating in the immune system
can be the basis for severe deleterious effects on the body. The immune system
basically involving innate or adaptive immunity majorly plays the protective role in
preventing the body from any foreign pathogen invasion and inflammations. The
immune system functions such as phagocytosis clues the generation of several
reactive molecules which if left unchecked may cause severe harm by inducing
oxidative damage followed by a chain reaction profoundly occurring in ageing and
inflammatory cells. This problematic situation generated by the immune system can
be fixed with the help of antioxidants exerting immunomodulatory effects at the
molecular level.

Antioxidants, along with a variety of other oxidising chemicals, have the ability
to destroy free radical intermediates; they can block a variety of undesired oxidation
reactions by oxidising, effectively halting the chain reaction. Numerous enzymes
that scavenge free radicals are found in antioxidants, while glutathione (GSH),
tocopherols, ascorbic acid, and thioredoxin are well known for repairing and
preventing immunological processes (Devasagayam et al. 2004).

Various vitamins, such as vitamins A and D, ascorbic acid and tocopherols, along
with micronutrients like Zn and Se, pro-oxidant metal as iron, copper and low- and
high-molecular-mass agents are documented to prevent several immune diseases.
Various studies have shown that catalase helps in H,O, detoxification and ethanol
metabolism. Glutathione activates several transcription factors, such as AP-1 and
NF-xB (Smith et al. 2004). Ascorbic acid plays a critical role in shielding the thiol
protein group from oxidation by raising intracellular glutathione levels and decreases
ROS and DNA damage along with decrement of tumour necrosis factor-o and
interleukin-6 in complete blood cells preventing disease like community-acquired
pneumonia (Naziroglu and Butterworth 2005). Being fat-soluble, the a-tocopherol
plays a significant role in lipid oxidative degradation chain events in the cell (Pryor
2000). Zinc and selenium both reduce the damage by counteracting ROS produced
during oxidative stress and prevent any harm to antioxidant proteins (Maggini et al.
2008, 2018). Antioxidant molecules, both non-radical and free radical quenchers,
guard the body from any oxidative destruction by lowering, inhibiting or entirely
removing the free radicals, thus preventing any cellular damage and providing a
disease-free immune system (Lobo et al. 2010).
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4.2 Free Radical Generation

Free radicals and other oxidants have gained prominence in recent years due to their
critical involvement in a variety of biological functions and their link to a variety of
diseases. Endogenously, reactive species are created as a consequence of regular
metabolism in different cell organelles and exogenously as a result of other events.
These can be either positively or negatively charged but neutralize themselves by
reacting with another molecule resulting in oxidation and reduction (Cheeseman and
Slater 1993). Reactive oxygen species (ROS), reactive nitrogen species (RNS), and
reactive sulphur species (RSS) are the most common reactive species (Fig. 4.1).

The free radicals from ROS/RNS/RSS include several radicals (Halliwell 2001),
which are weak, short-lived and highly reactive resulting in a chain reaction that
damages the living cell (Bahorun et al. 2006). Acids, organic peroxides, aldehydes,
oxygen-rich molecules, nitrogen-rich molecules, and sulphane from reactive sulphur
species are among the non-radical species (Kohen and Nyska 2002; Halliwell 2001).
These reactive species show a dual character in being beneficial as well as toxic for
the living system. At low or moderate levels, they show the beneficial effects in
immune function in the cellular signalling pathways, mitogenic response, redox
regulation, apoptosis of affected or defective cells, detoxification of xenobiotics by
cytochrome p450 and in oxygenases for the generation of prostaglandins and
leukotrienes (Valko et al. 2007; Nordberg and Arner 2001). However, at greater
concentrations, they produce severe damage, resulting to oxidative stress and dam-
age to the stability of numerous biomolecules such as lipids, proteins and DNA
(Yla-Herttuala 1999; Marnett 2000; Stadtman and Levine 2000), further resulting in
various disorders like cancer, cardiovascular disorder, diabetes, liver damage, neph-
rotoxicity, rheumatoid arthritis, neurological disorders, inflammation and ageing
(Patel and Patel 2011; Vana 2017).

Endogenous sources reported to produce reactive species are the mitochondria,
peroxisomes, endoplasmic reticulum and phagocytic cells. Intracellular ROS are
generally produced from the mitochondria and result in the formation of superoxide
(O,77) via electron transport chain by the fast intake of oxygen and NADPH oxidase
activation. Other enzymes, which can produce superoxide, comprise of

Fig. 4.1 Types of reactive
species

N
Reactive sulphur

Reactive oxygen =
species (ROS) species (RSS)

Reactive
nitrogen species
(RNS)



104 S. Gururani et al.

lipoxygenase, cyclooxygenase, xanthine oxidase and NADPH-dependent oxidase
(Granger 1988) (Egs. (13.1) and (13.2)).

20, +NADPH Oxidase 20, " 4+ NADP' + H" (13.1)

Hydrogen peroxide is formed as a result of dismutation of superoxide in the
presence of superoxide dismutase (SOD).

20, +2H* SOD H,0, + 0, (13.2)

The respiratory route in peroxisomes produces H,O, by p-oxidation of fatty acids
and various enzymes such as acyl Co-A oxidases and urate oxidase (De Duve and
Bauduhuin 1966). The reactive species can be generated by myeloperoxidase
(MPO)-halide-H,0, system. MPO is an enzyme found in the neutrophil cytoplasmic
granules. In the presence of a chloride ion and MPO, hydrogen peroxide is
transformed to hypochlorous acid (HOCI), which is a powerful oxidant that kills
microorganisms in the airways and is a rich antimicrobial agent (Babior 1984;
Klebanoff 2005). Research show that hypochlorous acid (HOCI) is a causative
agent for diseases like atherosclerosis (Van der Veen et al. 2009), Alzheimer’s
disease and arthritis (Wyatt et al. 2014) (Eq. (13.3)).

Cl™ + H,0; + H* MPO HOCI + H,0 (13.3)

Haber—Weiss and/or Fenton Reactions can also produce ROS from H,0, and
superoxide produced by respiratory burst (Haber and Weiss 1934) (Egs. (13.4) and
(13.5)).

H,0, + Fe’" — "OH 4 OH™ + Fe*' (Haber — Weiss reaction) (13.4)
0, " + H,0, — "OH+ OH™ + O, (Fenton reaction) (13.5)

(NO"), an important RNS, is created enzymatically from arginine by nitric oxide
synthase (NOS) (Eq. (13.6)).

L-Arginine + O, +NADPH NOS NO® + L-Citrulline + NADP* (13.6)

NO’ can be transformed into nitrate, nitrogen dioxide, trioxide and a range of
other reactive nitrogen compounds since it is a lipophilic free radical diatomic gas
(Lamattina et al. 2003). NO" can also produce RSS when it reacts with thiols. By
interacting quickly with superoxide radicals, NO" can generate the highly reactive
ONOO™ (Eq. (13.7)).

NO" +0,"~ — ONOO™ (13.7)

ONOO™ is recognised to play a role in the aetiology of a variety of disorders,
since it causes the synthesis of nitrotyrosine by interacting with aromatic amino acid
residues, resulting in enzyme deactivation and immediate cell death in Escherichia
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Fig. 4.2 Several exogenous factors (a) and the effects of radicals (b)

EXOGENOUS
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coli (Ischiropoulos et al. 1992; Zhu et al. 1992). NO°, on the other hand, is a
cytotoxic effector molecule that protects against fungi, helminths, mycobacteria,
and tumour cells.

Several enzymes in the endoplasmic reticulum produce ROS, including cyto-
chrome p-450, b5 enzymes, diamine oxidase, thiol oxidase and thiol reductase
(endoplasmic reticulum oxidoreductin lenzyme, Erol). Mental stress, infection,
inflammation, prostaglandin synthesis, immune cell activation, cancer, ageing and
ischaemia are some of the other variables that contribute to ROS formation
(Cheeseman and Slater, 1993). Because reactive species have been linked to the
genesis of a number of degenerative diseases, it is vital to control their activities so
that they do not contribute to the increase in oxidative stress.

Exogenous causes such as smoking, pollution or ozone exposure, radiation and
hyperoxia deplete enzyme activities and induce cellular damage, resulting in the
activation of numerous activator proteins-1 (AP-1), c-Jun N-terminal kinase (JNK),
nuclear factor-B (NF-B) and p53 (Fig. 4.2). Heavy metals such as lead and arsenic
can cause cellular damage by depleting enzymatic activities via reactions with
nuclear proteins and DNA via lipid peroxidation, whereas metal-catalysed reactions
generating ROS can modify DNA bases, causing diseases such as cancer, ageing,
diabetes and cardiovascular, neurological and autoimmune diseases.

4.3 Antioxidants as Inmunomodulators

To cope up with pro-oxidant production, humans have evolved complex immuno-
modulatory strategies. Immunomodulatory activity normalises or modifies patho-
physiological processes by activating or inhibiting, and ultimately changing, an
organism’s immune system. Immunostimulants stimulate the immune system by
improving vaccination response, whereas immunosuppressants —suppress
it. Immunoadjuvants stimulate the immune system by enhancing vaccine response
without having any exact antigenic effect (Alfons and Patrick 2001).
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Immunopharmacology, a new and rapidly growing discipline, is gaining popularity
as a result of its implications in the search for immunomodulators. Many research
studies have identified the critical role of immunomodulatory mechanisms in
controlling oxidative damage caused by endogenous and exogenous sources. In a
healthy body system, the normal health status is maintained intelligently by
upregulating and downregulating immuno-oxidative responses. As part of the
defence system, antioxidant molecules can assist in decreasing, reducing or
inhibiting the oxidation of other molecules. They protect the cell at various levels
from free radical damage by inhibiting or completely scavenging the action of
oxidants and free radicals to protect the body from any oxidative damage (Lobo
et al. 2010). They either directly destroy the oxidising agents or indirectly degrade it
by increasing antioxidant substances. By contributing an electron to the free radical
and converting it to a harmless non-reacting molecule through a chain-breaking
mechanism, or by healing damage and reconstituting membranes, they either lower
free radical energy or inhibit radical formation (Yang et al. 2018).

4.3.1 Mechanism of Antioxidants
The body has two defence mechanisms against oxidative damage:

* The first technique is to use electron donors like glutathione (GSH), vitamins E
and C and thioredoxin to scavenge free radicals, and the second is to use enzymes
like catalase, glutathione peroxidase and superoxide dismutase (SOD) to elimi-
nate free radicals and reactive species. Metal ion binds to certain metallic proteins
such as transferrin, metallothionein, ceruloplasmin and haptoglobin (Wang et al.
2019).

* Antioxidants can counterpoise the effects of oxidants before they attack the cells.
In doing so, the antioxidants themselves become oxidised by the process of
oxidation. It can be done by breaking the chain cascade with the help of various
antioxidants such as vitamin A, ascorbic acid and tocopherols.

4.3.2 Classification of Antioxidants

Antioxidants can be natural, plant based, or synthetic in nature. Enzymatic,
non-enzymatic, low-molecular-weight and high-molecular-weight proteins are all
types of natural antioxidants. Glutathione peroxidase (GPx), catalase (CAT) and
superoxide dismutase (SOD) are the most common enzyme antioxidants. Enzymatic
activity is the initial line of antioxidant protection, and it plays a critical part in the
host biological system’s overall defence mechanisms as well as the entire antioxi-
dant defence grid (Ighodaro and Akinloye 2018; Yang et al. 2018). Vitamins A
and D, tocopherols and ascorbic acid, as well as peptide and some minerals and ions
(zinc, copper, selenium), are the most common non-enzymatic antioxidants. Both
low- and high -molecular-weight protein and antioxidants help in binding and
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Fig. 4.3 Classification of antioxidants

capturing the free radicals. Several research findings suggest that medicinal plants
and spices are good sources of antioxidants (Agarwal 1999). Synthetic antioxidants
have been widely utilised in recent years to inhibit unsaturated fatty acid oxidation
and prevent cellular damage by free radical scavenging, owing to their superior
performance and wide range of availability.

A detailed classification and sub-classification of antioxidants have been
displayed in (Fig. 4.3).

4.3.2.1 Natural Antioxidants

4.3.2.1.1 Enzymatic Antioxidants

The human body consists of a set of antioxidant enzymes that serve as the primary
line of defence in destroying free radicals. Enzymes including biliverdin reductase,
glutathione reductase (GRx), catalase (CAT), glutathione peroxidase (GPx), haeme
oxygenase, superoxide dismutase (SOD) and thioredoxin reductase play important
roles in the host biological system’s defence mechanisms.

1. Catalase (CAT): It is found in the blood and helps in the decomposition of H,O,
to H,O and O, (Aslani and Ghobadi 2016). CAT acts catalytically whenever the
H,0, concentration is higher and acts peroxidically when H,O, concentration is
lower. The hydrogen donating atoms (ethanol, methanol and phenol) removes
H,0, and oxidises the substrate through peroxidation reaction (Eq. (13.8)).

2H;0, CAT 2H,0 + O (13.8)

2. Superoxide dismutase (SOD): Superoxide dismutase is a putative enzyme

discovered by Irwin Fridovich in 1968. Superoxide dismutase (SOD) reduces

superoxide anions (O, ") to hydrogen peroxide (H>O,) and helps in repairing
cells from any kind of damages (McCord and Fridovich 1969) (Eq. (13.9)).
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20, +2H' SOD H,0, + O, (13.9)

3. SOD has several families that are found in the cytosol and mitochondria. Cu-Zn-
SOD is a unique and significant free radical scavenger that exists in both
prokaryotes and eukaryotes, including higher plants, and plays a crucial part in
the defence system against the toxic effects of oxygen radicals. It protects
enzymes and proteins from oxygen toxicity (Peskin et al. 1977; Scandalios
1992). It is an apoptosis inducer, and conjugating it with polyethylene glycol
(PEG) has resulted in a stronger and more visible defence against low oxygen
levels.

4. Glutathione peroxidases (GSHPx) and glutathione reductase (GRx)

It consists of a group of enzymes that are selenium dependent. The selenocysteine
(Sec) residue is found in four of its isoforms (Lubos et al. 2011).

(a) Cytosolic GSHPx

(b) Plasma GSHPx

(c) Phospholipid hydroperoxide PHGSHPx

(d) Gastrointestinal GSHPx-GI

All secondary glutathione peroxidases enzymes, such as glutathione reductase
(GRx) and glucose-6 phosphate dehydrogenase (G-6-PDH), require GSH as a
cofactor for effective action. G-6-PDH uses GSH as a cofactor to catalyse the
reduction of H,O, to H,O and alcohols and then creates NADPH to recycle the
GSH (Birben et al. 2012). Glutathione reductase is a cytosolic protein that reduces
oxidised glutathione by using NADPH (GSSG). It also aids in the maintenance of
the GSH/GSSG ratio, as large levels of GSSG inside the cell can cause protein
denaturation, DNA breakage and lipid peroxidation (Zitka et al. 2012). With the help
of the enzyme glutathione peroxidase (GPx), Lipid hydroperoxides (LOOH) are
converted into corresponding alcohols (LOH) (Egs. (13.10) and (13.11)).

LOOH + 2GSH GPx LOH + GSSG + H,0 (13.10)

GSSG + NADPH + H" — NADP* + 2GSH (13.11)

4.3.2.1.2 Nonenzymatic Antioxidants
1. Glutathione

Glutathione, also known as glutamyl-cysteinyl glycine, is a non-enzymatic
antioxidant made up of cysteine, glycine and glutamic acid that is found
throughout the body. It supports intracellular redox equilibrium in either
reduced (GSH) or oxidised form (GSSG). GSH scavenges reactive oxygen
species (ROS) such as H,O,, O,, and OH (Misak et al. 2018). It aids in the
restoration of vitamin C via the ascorbate-GSH cycle, protects cells by
neutralising (i.e., reducing) ROS through increased metabolic detoxification
and immune system control and acts as a barrier against hydroperoxide-induced
oxidation (Noctor and Foyer 1998).
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2. Vitamin A
Vitamin A aids in the regulation of pro-inflammatory TNF and the creation of
IL-2, boosting macrophage microbial action in the oxidative burst and phago-
cytic activity. These macrophages are primarily active during inflammation, Th1
and Th2 cell growth, and differentiation. It keeps the usual antibody-mediated
Th2 response going by preventing Thl cells from producing IL-12, IFN and
TNF (Maggini et al., 2008).

3. Vitamin C
Vitamin C (ascorbic acid) is a six-carbon lactone that works as a reducing agent
to keep proteins, lipids and DNA from oxidising (Harats et al. 1998; Niki 1987).
During oxidative bursts, vitamin C maintains redox equilibrium inside the cells
and defends against reactive species (ROS, RNS) (Maggini et al. 2008). It can
repair and sustain vitamin E levels in the cell membranes, as well as the
antioxidant glutathione, which is important for controlling cytokine production
and lowering histamine levels (Wintergerst et al. 2006). It is an effective
ONOO™, NO' free radical scavenger that quenches O, ', OH with HOCI,
and reduces H,0O; to H,O through the ascorbate peroxidase reaction.

4. Vitamin D
Calcitriol upsurges macrophage anti-inflammatory cytokine expression, oxida-
tive burst potential and superoxide production (Wishart 2017; Sly et al. 2001;
Tanaka et al. 1991; Maggini et al. 2008). It inhibits B cell antibody synthesis and
reduces the generation of proinflammatory cytokines (Lin and Li 2016; Zhang
et al. 2012; Topilski et al. 2004).

5. Vitamin E
The lipophilic vitamin E is a strong antioxidant that shields cells from free
radicals by acting as a chain reaction breaker in lipid peroxidation of cell
membranes (Bayani et al. 2009). It increases the synthesis of IL-2 and decreases
the production of prostaglandin E2 (PGE2), which protects T cell activity
indirectly (Droge 2002; Haryanto et al. 2015). Nuts, seeds, whole grains and
vegetable oils are the best sources of vitamin E.

6. Zinc (Zn)
Zinc is an important mineral with anti-inflammatory and antioxidant properties
that defend against reactive oxygen and nitrogen species (ROS and RNS), as
well as affecting antioxidant protein activity (Jarosz et al. 2017; Maggini et al.
2008). By limiting the production of pro-inflammatory Th 9 and Th17 cells, it
regulates the creation and control of cytokine release such as IL2, IL6 and TNF
(Kitabayashi et al. 2010; Foster and Samman 2012; Wessels and Rink 2019).

7. Iron (Fe)
It is one of the most significant ions in a biological system, as it is involved in the
control and production of cytokines, as well as the generation of pathogen-
killing ROS by neutrophils during an oxidative burst (Haryanto et al. 2015). It
boosts cytotoxic T cells by activating NF-B if reactive oxygen intermediates are
produced (Bubici et al. 2006). It reduces the activity of natural killer (NK) cells,
decreases lymphocyte bactericidal activity and compromises cellular immunity
by reducing T helper cells (Calder et al. 2007) (Maggini et al. 2008).
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Copper (Cu)

Copper homeostasis is important for IL2 synthesis, response and oxidative
burst, and it accumulates at the inflammatory sites (Saeed et al. 2016). It keeps
the intracellular antioxidant balance in check and aids in the inflammatory
response (Maggini et al. 2008).

. Selenium (Se)

It acts as redox regulator and cellular antioxidant. It is essential for the function
of seleno-proteins, which potentially counteract ROS produced during oxidative
stress (Maggini et al. 2018). Numerous studies show that Se helps in the
enhancement and proliferation of activated T cells (cytotoxic lymphocytes)
(Rayman 2000). Selinium along with the combination of glucan activates the
immune system but inhibits the immunomodulatory effects of glucan in
tumourigenesis. It reduces NK-cell cytotoxicity, improves T cell differentiation
and proliferation and maintains the ratio of cytotoxic T cells to T helper cells
(Haryanto et al. 2015). Furthermore, it improves the immunological response to
virus infection in those who have weak immune system (Maggini et al. 2008;
Calder et al. 2007).

Thiol Antioxidants

Thioredoxin, also known as “moonlighting protein” (Jeffery 1999), is a
disulphide reductase protein that functions as an oxidative stress biomarker
and a rich electron source for various enzymes including ribonucleotide reduc-
tase, methionine sulfoxide reductase, and thioredoxin peroxidase. It maintains
thyroxin levels by controlling redox reactions in signal transduction pathways
(Armér and Holmgren 2000).

The primary thiol-disulphide redox, glutathione (GSH), is an intracellular
soluble antioxidant that interacts with pro-apoptotic and anti-apoptotic signal-
ling pathways, protecting cells against apoptosis. It controls and activates
activator protein 1 (AP-1), nuclear factor kappa B (NF-kB) and specificity
protein 1 (Sp-1) (Masella et al. 2005). It may also enhance vascular endothelial
growth factor (VEGF) synthesis by stimulating hypoxia-inducible factor-1
(HIF-1), tumour angiogenesis and treatment resistance by increasing hypoxia-
inducible factor-1 (HIF-1) (Welsh et al. 2002).

Carotenoids (p-Carotene)

The basic colouring pigments present in plants and microorganisms consist of
carotenoids (f-carotene). Its antioxidant activity is due to their delocalized
unpaired electrons (Mortensen et al. 2001). It helps regulate many transcription
factors (Niles 2004), protects lipophilic compartments from damage and
suppresses oxidant-induced NF-kB activation, interleukin (IL-6) production
and tumour necrosis factor (TNF-alpha) production (Stahl and Sies 2003).

4.3.2.1.3 Low-Molecular-Weight Antioxidants

Water-soluble antioxidants and fat-soluble antioxidants are two types of
antioxidants. Vitamin C, uric acid and other polyphenols are water-soluble
antioxidants, whereas fat-soluble antioxidants include vitamins E and A, quinones
and bilirubin, among others. They scavenge free radicals, which slows or prevents
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Tocopherols

Tocotrienols

Fig. 4.4 Structure of tocopherols and tocotrienols

cellular damage. Vegetable oils are high in tocopherols and tocotrienols and have a
high level of oxidative stability (Fig. 4.4). Tocopherols (200—2000 ppm) decompose
the hydroperoxides and may potentially undergo spontaneous oxidation at greater
quantities.

4.3.2.1.4 High-Molecular-Weight Proteins

Albumin, ceruloplasmin, transferrin and haptoglobin are plasma proteins that estab-
lish bonds with redox metals and regulate metal-catalysed free radicals. Haptoglobin
molecules binds with haeme-containing proteins permitting them to circulate in the
body. Copper particles can tie to albumin, and ceruloplasmin and transferrin bind to
free iron. By quenching the free radicals, these molecules reduces the danger of
production and liable movement of reactive radicals throughout the body.

4.3.2.2 Plant-Derived Antioxidants

Various in vivo studies revealed that dietary phytochemical antioxidants can remove
free radicals. Phenolics are large, varied categories of secondary plant metabolites
found across the plant kingdom. Free radicals can be removed by dietary phyto-
chemical antioxidants, according to many in vivo investigations. Several studies
have established that natural phenolic compounds have a high antioxidant capacity,
e.g. combining tocopherols with citric acid or isopropyl citrate improves antioxidant
characteristics. Phenolic antioxidants (PhH) react with ROO" to produce ROOH and
an unreactive phenoxyl radical (Ph®) (Egs. (13.12) and (13.13)).

ROO" + Ph H — ROOH + Ph° (13.12)

Ph’ undergoing chain termination reactions with ROO" (Hashim et al. 1993).
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Fig. 4.5 Structure of various phenolic acids

ROO" + Ph" — Non — radical products (13.13)

Cinnamic acids, vanillic acids, sinapic acids and caffeic acids are all mono-
hydroxylated phenolic acids that compete with the substrate (RH) for the chain
carrying peroxyl radicals and operate as a chain-breaking antioxidant (Taruscio et al.
2004). The structure of different phenolic acids is depicted in the diagram (Fig. 4.5).

One of the main phenolic compounds consists of flavonoids and tannins
(Rababah et al. 2005). Polyphenolic chemicals found in edible plants, such as
flavonoids and catechin, have been discovered to have powerful antioxidant
properties in previous research (Fang et al. 2002). They aid in the removal of reactive
free radicals such as hydroxyl, peroxyl and superoxide radicals (Hopia and Heinonen
1999). Their presence in blood plasma reduced LDL cholesterol oxidation and
inhibited the activity of lipoxygenase and cyclooxygenase enzymes (Wang et al.
2005).

These findings suggest that antioxidants derived from plants could be used as an
effective immunomodulator for preventing chronic diseases. Several structures
resulting from substitutions in the R1 and R2 groups of flavonoids are depicted in
(Fig. 4.6) (Bors et al. 1992).

4.3.2.2.1 Medicinal Plants and Spices Having Antioxidants
Exploration of rasayana (medicinal plants) has always been an interesting area in
Indian traditional medicinal system, i.e. ayurveda and also for all scientist worldwide
as these rasayanas or medicinal plants exhibit a wide range of activities like antioxi-
dant, anti-inflammatory, hepatoprotective, anti-asthmatic, hypocholesterolemic,
antifungal, cardiotonic, diuretic and other medicinal activities.

One of the magnificent herb of Lamiaceae family Ocimum sanctum commonly
known as tulsi helps in delaying hypersensitive response and possesses stimulatory
effect on humoral immunity, and research proves that due to prolonged exposure to
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Fig. 4.6 (a) Flavonoid structure. (b) Derivatives of flavonoids based on R1 and R2 substitutions

acute and chronic stress, it exhibits changes in plasma levels of corticosterone along
with its antispasmodic, anti-asthmatic, hepatoprotective, hypocholesterolemic, and
diuretic functions (Vaghasiya et al. 2010; Singh et al. 2007; Khare 2008; Nadkarni
and Nadkarni 2007). Ganoderma lucidum belonging to the Polyporaceae family
commonly called Reishi mushroom shows antioxidant activity (Habijanic et al.
2001), and its extract enhances the enzymatic antioxidant activity in different body
parts of mice (Hasnat et al. 2013). It has anti-tumour immune responses (Pan et al.
2013), and it could become a popular food supplement for cancer patients and others
undergoing treatment. It is currently being employed in the research and develop-
ment of new nutraceutical and pharmaceutical formulations.

Asparagus racemosus of the Liliaceae family commonly called shatavari is used
as an ulcer healing agent, nervine tonic and an anti-gout (Nadkarni and Nadkarni
2007; Bopana and Saxena 2007). Being a strong immunomodulatory agent and
antioxidant, it provides defence from all kinds of stress (biological, physical and
chemical). It also shows myelosuppressive effects when given with different doses
of cyclophosphamide (Nadkarni 2005). It demonstrates the immunoadjuvant impact
of the diphtheria, tetanus and pertussis vaccine (Gautam et al. 2004). Eclipta alba of
the Compositae family commonly called bhringraj possesses anticancer, antileprotic,
analgesic, antioxidant and antimyotoxic properties (Jayathirtha and Mishra 2004).
Moringa oleifera of Moringaceae family, commonly called sahijan, is a rich source
of vitamins A, B and C, carotenoids and saponins and acts as a strong immunomod-
ulator (Gupta et al. 2010; Kumar et al. 2005). Piper longum, commonly called
pippali of the Piperaceae family, shows extraordinary antioxidant property (Sunila
and Kuttan 2004). Being an ayurvedic herbal medicine, it is used in the treatment of
chronic dysentery and worm infestation, increases macrophage migration and shows
a phagocytic activity (Sunila and Kuttan 2004).

Chamomile is one of the world’s oldest medicinal plants, with a wide range of
healing properties ranging from inflammation to serious wounds (Reis et al. 2008).
Apoptosis induction in cancer cells is a path paved by Chamomile (Srivastava and
Gupta 2007). The plant is often used to treat toothaches, neuralgia and earaches, as
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well as external swelling (Hamon 1989). It reduces cyclooxygenase (COX-2)
enzyme activity without affecting cyclooxygenase-1 activity and suppresses prosta-
glandin E2 production generated by lipopolysaccharide (LPS) (Srivastava et al.
2009). Studies revealed that it inhibits the growth of skin, prostate, breast and
ovarian cancer (Way et al. 2004; Birt et al. 1997; Patel et al. 2007; Gates et al.
2007; Shukla et al. 2005).

Curcuma longa is a well-known spice from the Zingiberaceae family, commonly
referred to as haldi. The essential oil extracted from the plant rhizomes contains
phenolic components, which contribute to its antioxidant activity and greater scav-
enging characteristics (Singh et al. 2010; Maizura et al. 2011). It prevents inflamma-
tion by inhibiting numerous ROS (reactive oxygen species) enzymes such as COX
(cyclooxygenase), LOX (lysyl oxidase) and XDH (xanthine dehydrogenase). It
protects against oxidative species (OS), mitochondrial and protein malfunction,
and inflammation (Kim et al. 2012). Curcumin has been found to be beneficial in a
number of investigations. Curcumin decreases intracellular ROS and oxidative
damage and activates nuclear factor erythroid 2-related factor (Nrf2) targeting
genes in primary spinal cord astrocytes, according to numerous research (Jiang
et al. 2011).

4.3.2.3 Synthetic Antioxidants

Butylated hydroxyanisole (BHA), tertiary butyl hydroquinone (TBHQ), propyl
gallate (PG), nordihydroguaiaretic acid (NDGA), 2.,4,5-trihydroxy-butyrophenone
(THBP), octyl gallate (OG) and 4-hexylresorcinol (4HR) are the most common
synthetic antioxidants used in edible vegetable oil and cosmetics (Fig. 4.7) (Guan
et al. 2005; Sindhi et al. 2013; Guo et al. 2006). The suppressive activity of propyl
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Fig. 4.7 Structure of different synthetic antioxidants
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gallate and butylated hydroxyanisole in chain initiation and production of oxidised
unsaturated fatty acids is the highest. Most fats and oils are dissolved by BHA.
TBHQ is one of the most effective antioxidants for delaying the oxidation of
unsaturated lipids.

44  Medicinal and Immunomodulatory Applications
of Antioxidants

4.4.1 Significance of Antioxidants in Red Cells

According to studies, having an uneven mixture of enzymes and antioxidant system
increases oxygen free radical formation. The defective haemoglobin in sickle cell
anaemia (HbS) has a good sensitivity for the red blood cell membrane and is prone to
membrane lipid peroxidation. They reveal decreased glutathione levels, reduced
catalase function and enhanced superoxide dismutase and glutathione peroxidase
activities, which are all typical. A stringent diet, supplementation and treatment of
antioxidants, as well as immunomodulation, are essential to control this condition
(Li Bing 2009).

4.4.2 Treatment of Acute Central Nervous System Injury Using
Antioxidants

The rise in reactive oxygen species production results in cell and tissue damage via a
variety of cellular and molecular processes. Acute central nervous system (CNS)
impairment caused by oxidative stress can result in ischemia or haemorrhagic stroke
or trauma. Furthermore, acute brain injury raises glutamate levels, which leads to the
production of reactive oxygen species (ROS), which promotes destruction.
Antioxidants have been proven to increase survival and related neurological
outcomes in various animal models and modest clinical investigations, and they
play a significant role in overall wellness and therapeutic ageing.

4.4.3 Use of Antioxidants in Cancer Therapy

In a multifactorial disease such as cancer, tumour cells show elevated levels of ROS.
Increased level of oxidative stress created via ROS in cancer cell as compared to
normal cells causes an alteration in pro-oncogenic signalling pathways ultimately
leading to activation of the oncogenes of cells. ROS being the main culprit for
causing carcinogenesis alters various signalling pathways leading to genetic insta-
bility, DNA damage and the development of drug resistance (Kumari et al. 2018).
Several studies have revealed that combining tannins (a type of polyphenol)
with doxorubicin reduces the drug’s cardiotoxicity while maintaining the
antioxidant’s anticancer activity. In recent research, combining a nitro-oxide
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(3-carbamoylpyrroline nitroxyl derivative pirolin) with docetaxel and doxorubicin to
reduce oxidative stress was found to be helpful (Stanner et al. 2004). Several studies
proved that quercetin acts as an adjuvant with cisplatin in ovarian tumour cells and
showed similar results when taken with other antioxidants 5-FU (5-fluorouracil),
taxol and pirarubicin (Ferda et al. 2016). Selenium is also important in the prevention
of cancer and the management of heart failure (Hamid et al. 2010). Lycopene, a
pigment present in tomatoes, has been demonstrated to reduce and prevent cancers of
the prostate, pancreatic, rectum, oesophagus, cervix and mouth. It also aids in the
prevention of heart disease and solar damage to the skin (Sharoni et al. 2000). Thus,
appropriate antioxidant intake can quench free radicals in the body, lessening the risk
of cancer, atherosclerosis and numerous neurological and autoimmunological
illnesses.

4.5 Conclusion

Many crucial biological molecules lose their form and function via free radical
production. Such adversarial changes lead to severe disease conditions. Antioxidants
are important in this disturbance because they scavenge reactive species (ROS, RNS,
RSS), chelate and inactivate non-heme-containing lipoxygenase, prevent lipid per-
oxidation and quench photosensitizers. Dietary sources rich in vitamins A, C, D and
E and Zn, Cu and lipoic acid serves as a strong antioxidant and can act as stimulant,
suppressant or an adjuvant exerting immunomodulatory activities. Ischemia, athero-
sclerosis, diabetes, neurodegenerative disorders, autoimmune illnesses and cancer
are just a few of the complicated diseases that antioxidants are being used to regulate
and cure. Scientific studies claim that antioxidants are the potent stimulator of the
immune system, thereby enhancing immunomodulation. However, much more
research is needed to fully comprehend the mechanism of these antioxidants’
immunomodulation in order to use them as a viable therapeutic treatment.
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Abstract

In the last years, immunotherapy represents a promising strategy for treatment in
cancer without massive damaging normal cells, by reprogramming and activating
antitumor immunity. However, the adverse events of immunotherapy related to
the low specificity in tumor cell targeting represent limits of immunotherapy
efficacy. In this regard, nanotechnologies implemented in medicine can represent
new opportunities to deliver different immunotherapeutic drugs with high
responses and low side effects for specific tumors. The potential of
nanotechnologies is represented by the possibilities of carrying immunotherapeu-
tic agents by nanoparticles with various material types, with different shapes,
sizes, coated ligands, loading method, hydrophilicity, elasticity, and
biocompatibility.

In this review are summarized different types of cancer immunotherapy
already approved for cancer treatment or currently studied in clinical trials,
which can be possibly correlated with nanotechnologies. Also, the immune-
editing process, nanoparticles design strategy in cancer immunotherapy, and
types of most promising nanoparticles, including lipid nanocarriers, dendrimers,
polymeric and inorganic nanoparticles, magnetosomes, virus-like particles, and
carbon nanomaterials, will be discussed. The influences of nanoparticles on
enhancing the efficacy of immunotherapeutics in cancer and nanoparticle media-
tion of immune chemotherapy or combination of immunotherapy with other
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medical procedures are presented also. Various immune regulation mechanisms
were described, revealing a complex network consisting of different immune
cells, which can be engineered to work cooperatively to destroy tumor cells,
taking account of the metabolic status of cancer cells and immunosuppressive
tumor microenvironment (TME) as factors that influence immunomodulation
using nanosystems. Furthermore, the possibilities of nanotechnologies to influ-
ence the local immune tolerance and many steps of the metastatic cascade process
are presented.

Keywords

Nanotechnology - Nanomedicine - Cancer immunotherapy - Immune checkpoint
blockade - Exosomes

5.1 Introduction

The somatic mutation theory (SMT) is the most accepted theory of carcinogenesis
that considers cancer a genetic disease and tumor cells are being initiated by
mutations that stimulate oncogenic drivers (Sigston and Williams 2017). It is
supposed that one cell can experience more than 20,000 damaging events of DNA
and more than 10,000 replication errors per day. The replication errors are usually
repaired by specific DNA repair pathways (Lindahl and Wood 1999, Preston 2005).
A few of not repaired cells acquire potential malignant changes and are recognized
and destroyed by the immunosurveillance system as nonself. A cancer cell can
express almost 11,000 genomic mutations and, also, can have new tumor-associated
antigens (TAA), including products of overexpressed tumor suppressor genes or
proto-oncogenes, antigens produced by oncogenic viruses, altered glycoproteins, or
glycolipids (Stoler et al. 1999).

These new tumor-associated antigens can be presented with their major histo-
compatibility complex molecules on the cell surfaces. The antigen-MHC complexes
are recognized by the T cell receptor, but for the activation of naive T cells,
additional co-stimulatory signals are required. These are represented by a so-called
immunological synapse, represented by CD28 receptor from the surface of T cell and
B7 ligand molecules from antigen-presenting cells (APC). The functions of the
immune system in cancer were underestimated for a long time because tumor cells
suppress the immune response by enhancing negative regulatory pathways
(checkpoints) involved in immune homeostasis or adopting features that prevent
detection by the immune system. The two well-known checkpoints are CTLA4
(cytotoxic T lymphocyte protein 4) and PD-1 (programmed cell death protein 1).
CTLAA4 is a negative regulator of T cells involved in the control of T cell activation,
being in competition with CD28 and CD86, that are co-stimulatory factors. PD-1
binds to ligands PD-L1 or PD-L2 and represents a cell surface receptor expressed by
T cells. These ligands are currently expressed on a diversity of cells, but PD-L2 is
found to be expressed especially on dendritic cells in normal tissues. An antitumor
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response in mice was demonstrated by blocking CTLA4 and PD-1(Iwai et al. 2002;
Blank et al. 2004). It was demonstrated that the inhibition of the interaction PD-L1-
PD-1 by some antibodies can obtain clinical tumor responses in various
malignancies (Zou et al. 2016). These clinical responses frequently for a long time
suggest that many patients with cancer have T cells already suppressed by PD-L1/
PD-1. However, the axis PD-L1/PD-1 is not the single mechanism of inhibition of
immune response. There are intrinsic features (genetic factors, cytokine secretion)
and extrinsic factors (microbiota, exposure to sunlight) of the tumor that are com-
bining to develop a cancer-immune set point, defined as an equilibrium established
between promotors or suppressor factors of immunity. These factors are involved in
various responses of treatment in patients with similar tumors. Immunotherapy is a
dynamic process, targeting simultaneously different abnormalities specific to cancer
cells.

5.1.1 Immune Cell Functions in Cancer

The presence of a significant number of leukocytes within a tumor described by
Virchow has supposed a possible correlation between inflammation and cancer
(Grivennikov et al. 2010). Actually, it is confirmed that the inflammation is the
hallmark of cancer, including the presence of inflammatory cells and mediators
similar to those reported in chronic inflammatory responses (Mantovani 2018).

The tumor microenvironment (TME) includes immune cells from innate and
adaptive immunity. T cells identified in TME from different tumors are represented
by tumor-infiltrating lymphocytes (TILs) and have an essential role in tumor initia-
tion and progression (de Visser et al. 2006). TILs can have both pro-tumoral and
antitumoral activity. As an example, inhibition of tumor growth is achieved by
CD4+ T helper 1(Thl) and T helper 2 (Th2), CD8+ T cells, and natural killer
(NK) T cells, by stimulating the production of interferon gamma (IFN-y), which is
activating macrophages for cancer cell phagocytosis. Macrophages are producing
interleukin-2 (IL-2) that enhance Th1 cell differentiation (Lin and Karin 2007). The
balance of Thl and Th2 cells is critical in various immune responses and also in
antitumor immune responses. Th1 cells stimulate IFN-y and IL-2 production, which
are essential for the induction of cellular immunity eradicating the tumor mass,
whereas Th2 cells play a major role in stimulating the humoral immunity by
inducing tumor necrosis (Nishimura et al. 1999).

The antigen-presenting cells (APC) are stimulated by the released IFN-y and
activate CD8+ cytotoxic cells, followed by immediate recognition of peptide
antigens presented by the tumoral MHC class I molecules. The majority of tumors
are positive for MHC class I and negative for MHC class II. It was demonstrated by
some studies that Th2 can also exhibit, together with T regulatory (Treg) cell’s
pro-tumoral functions, by repressing CD8+ cytotoxicity. Th2 releases IL-4, IL-5,
IL-10, and IL-13, inducing anergy to T cells and Tregs that inhibit the CD4+ and
CD8+ synthesis (DeNardo and Coussens 2007; Mailliard et al. 2002).
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A various group of immature myelomonocytic cells is represented by myeloid-
derived suppressive cells (MDSCs) that have enhanced immunosuppression on T
cells.

ARG-1 (arginase-1) and IDO (indoleamine 2,3 dioxygenase) are enzymes
expressed by MDSCs, producing depletion of tryptophan, cysteine arginine in
TME. These enzymes generate T cell receptor complexes with lack of expression
on Ag-activated T cells (Srivastava et al. 2010; Gabrilovich et al. 2012) and also are
involved in the production of TGF-p, oxygen species, IL-10, and nitric oxide,
responsible for suppressing antitumoral immunity (Gabrilovich and Nagaraj 2009).

Other major players in cancer progression are macrophages that have different
types of activation related to different signals: 1. The classical activation of
macrophages (M1) is correlated with the production of proinflammatory cytokines,
which generate reactive oxygen species with cytolytic activity on cancer cells
(Mantovani and Sica 2010). and 2. Alternative activation of macrophages (M2) is
associated with the production of anti-inflammatory cytokines that promote tissue
repair and angiogenesis, favoring tumor progression (Solinas et al. 2009). IFN-y is
stimulating M1 and IL-4 is stimulating M2, leading to the description of a
bipolar axis.

The macrophage activation along the bipolar M1/M2 axis involves the participa-
tion of several factors as prostaglandin, IL-10, and free fatty acids (Nielsen
and Schmid 2017). TME immunosuppression can be promoted also by CTLA-4
and PD-1, both expressed by activated T cells. PD-1 impedes the activation and
functions of the effector T cell, preventing the interaction with its ligands PD-L1 or
PD-L2. Also, CTLA-4 binds CD80 and CD86 (on the surface of APCs) with more
affinity than CD28 and sends an inhibitory signal to T cells (Buchbinder and Desai
2016).

5.1.2 Immunoediting: The Response of the Immune System
to Tumor Growth

Cancer immunoediting is a framework consisting of three distinct stages: elimina-
tion, equilibrium, and escape. This concept was developed during the experimental
observations that the immune system can find and eliminate cancers during their
development, maintain some cancer cells after tumor destruction in a dormancy
state, and reduce the immunogenicity of cancer cells, providing a mechanism of
escape. Understanding these characteristics of the immune system is followed by the
recent development of successful tumor immunotherapies.

5.1.2.1 Elimination Phase

The elimination phase represents a modern landscape of cancer immunosurveillance,
where the cells of innate and adaptative immunity are working together to identify
the presence of a tumor and eliminate it. Sometimes, variants of tumor cells may not
be completely destroyed but enter another phase, specifically equilibrium phase,
where the immune system is controlling the tumor cell growth. The components of
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the immune system that participate in the elimination phase include cytokines
(IFN-o/p, IFN-y, IL-12, and TNF), dendritic cells, macrophages, cells of innate
immunity (NK, NKT), cells of adaptive immunity (CD4+ and CD8+ T cells), and
immune effector molecules (perforin, TRAIL).

The alert mechanism of the immune system by the presence of a tumor is not fully
known. It is supposing that a developing tumor stimulates the production of “danger
signals,” which are cytokines, such as type I IFNs, that activate the dendritic cells,
natural killer, and macrophages. The cells of the immune system recognize the
presence of a growing tumor, causing local tissue damage and stromal remodeling.
There are generated inflammatory signals to recruit various immune cells as natural
killer, macrophages, and dendritic cells are directed to the tumor site. However,
various molecules are released from dying tumor cells (e.g., high-mobility group
box) or damaged tissues (fragments of hyaluronan). The immune cells are
recognizing the presence of a growing tumor, causing local tissue damage and
stromal remodeling. This process is generating inflammatory signals to recruit
immune cells (NK, macrophages, dendritic cells) to the tumor site.

Another possibility for the activation of the immune system is the expression of
stress ligands (e.g., MICA/B), which are activating the receptors of innate immune
cells and, as a result, are releasing pro-inflammatory and immunomodulatory
cytokines (Schreiber et al. 2011) that stimulate NK T cells and NK cells to produce
IFN-y, which induces partial tumor death by inhibiting the tumor angiogenesis, and
are activating the production of chemokines (CXCL11, CXCL10, CXCL09). Dead
tumor cells are ingested by dendritic cells, which are migrating in lymph nodes,
recruiting new immune cells. Tumor-specific dendritic cells from regional lymph
nodes trigger the differentiation of T helper cells, which improve the development of
cytotoxic CD8+ T cells (Vesely et al. 2011). In the elimination phase, highly
antigenic cancers are frequently destroyed before clinical detection. The tumor
cells, which are less immunogenic, are able to escape.

5.1.2.2 Equilibrium Phase

In the second phase of cancer immunoediting, the innate immune system cannot
completely eliminate the cancer cells but keeps them in a state of immune-mediated
tumor dormancy. Tumors in the equilibrium phase represent a category of dormant
tumors. These tumors are selectively controlled by some components of the immune
system. The tumor cells and immune system exist in a dynamic balance, where the
immune system does not completely eradicate the heterogeneous tumor. Some of the
tumor cells are evading from immune-mediated recognition and destruction (Vesely
et al. 2011).

There is experimental evidence that the balance between IL-23 and IL-12 decides
which immune cell is present at the tumor site and dictates the transition of occult
tumors from the equilibrium to the escape phase. High IL-12 increases the stability
of tumors developing in the equilibrium phase, allowing cancer cells to maintain the
state of immune-mediated dormancy and preventing cancer cell elimination. High
IL-23 is suppressing both innate and adaptative antitumor effector responses
(Wu et al. 2013). In conclusion, equilibrium represents a model of tumor dormancy
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where the immunity of the host controls the tumor growth, both for primary tumors
and metastasis for a long time, sometimes for the life span of the individual (Loeser
et al. 2007; Eyles et al. 2010). Also, it was demonstrated that the most resistant
tumors are staying longer in equilibrium (Wilkie and Hahnfeldt 2013).

5.1.2.3 Escape Phase

Tumor escape from the immune control represents a dramatic result of
immunoediting. The escape phase can be considered as a miscarriage of the immune
system to destroy or to control the cancer cells, enabling the survival of cell variants,
in an unrestricted manner.

The genetic and epigenetic changes of cancer cells can be followed by critical
modifications developed to mislead the immunity. The immune system contributes
to tumor progression in one of the following ways: selection of the more aggressive
tumor types, suppression of the antitumor immune response, or promotion of tumor
cell proliferation. A multitude of mechanisms have been reviewed elsewhere
(Poschke et al. 2011), but a frame of how tumor cells translate into the phase of
immunological escape can be described including two main possibilities: (1) tumor
cells achieve cellular modifications that allow the avoidance of immune detection
and destruction, and (2) tumor cells are generating an immunosuppressive tumor
microenvironment with a substantial slowing effect on immune cells.

It is generally accepted that the immune cells directly suppress the tumor recog-
nition or cytolysis, having demonstrated a little impact on tumor progression due to
central or peripheral tolerance induced by tumor cells. In the central tolerance
mechanism, self-reactive T cells from the thymus are eliminated or converted to a
regulatory phenotype (Kyewski and Klein 2006). As a result of this process, tumors
may not be recognized by the adaptive immune system. Peripheral mechanisms of
tolerance involve the deletion or nonresponsiveness of T cells in the periphery
(Willimsky and Blankenstein 2005). Also, tumor cells can express defects in the
pathways of processing and presentation of antigens, enhancing the evasion from
adaptive immune recognition. The defects in MHC class I antigen presentation are
frequently found in human tumors. The loss of TAP1 (transporter associated with
antigen processing) and MHC class I molecules and the inhibition of IFN-y or
IFN-o/f are some examples of these defects. It has been hypothesized that the escape
mechanism is due to the camouflage of malignant cells against the immune cells and
is considered a consequence of malignant transformation. One of the dreadful
cancers, malignant melanoma, was reported two types correlated with the response
to immunotherapy according to the pattern of HLA class I expression. The first type,
which progresses after immunotherapy, was described as low levels of HLA class I
antigens, and the second type, with regression lesions after immunotherapy, was
reported with high levels of HLA class I molecules. A plausible hypothesis would be
that the tumor microenvironment exerts selection pressure on malignant cells
(Carretero et al. 2008). The majority of MHC class I defects were described in
carcinomas. Breast cancer, where there is little evidence of immunosurveillance, is
an example of high levels of MHC class I defects and also damages in antigen
processing and presentation (Georgopoulos et al. 2000).
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5.1.3 The Importance of TME (Cancer Inmunity Phenotypes)

The immune phenotypes of the TME (tumor microenvironment) have a major
influence on immunotherapy and can be classified into three principal phenotypes:

5.1.3.1 Immune-Desert Phenotype

This phenotype has some specific characters like immunological tolerance (losing
the response to antigen presentation), ignorance (lack of antigen), and lack of T cells
priming (Chen and Mellman 2017). These tumors have a low response to ICI with a
worse outcome comparing with other phenotypes, due to the lack of preexisting
cytotoxic T cells and a poor clonal collection of T cell receptors. The mechanisms of
this phenotype include the inhibition of dendritic cell maturation by the angiogenic
growth factor and thereby are reduced the extend of antigen presentation (Veglia and
Gabrilovich 2017). Hypoxia is stimulating the expression of chemokines responsible
for recruiting regulatory T cells (Tregs) that suppress anticancer immunity and
promoting tumor development and progression (Togashi et al. 2019).

5.1.3.2 Immune-Excluded Phenotype

Within this phenotype, the immune cells from the tumor periphery or stroma are
hampered by extravascular stroma and immature vessels. Also, the expression of
TGF-f and the density of CAFs are enhanced (Chen et al. 2019a, b, ¢; Chauhan et al.
2019). The tumors with this phenotype are more responsive to immune checkpoint
inhibitors than those tumors with immune-desert phenotype due to CD8 + T-effector
cell phenotype existing in the stroma, which can proliferate and become active. The
major cause of this phenotype is desmoplasia, represented by the secretion of TGF-f§
and stromal cell-derived factor-1a by CAFs, which prevent the antitumor immunity
by restricting cytotoxic T cell to migrate to malignant cells (Mariathasan et al. 2018).
A Treg phenotype is developed in naive CD4+ T cell precursors, induced by the
TGF-p. Regarding angiogenesis, the expression of adhesion molecules on the vessel
walls is dysregulated by angiogenic signals, hampering the leukocyte binding and
the migration into hypoxic regions of the tumors (Fukumura et al. 2018).
Desmoplasia and angiogenesis are demonstrating to cause hypoxia and to slow
down the approach of leukocytes to tumor cells (Hatfield et al. 2015; Rytelewski
et al. 2019).

5.1.3.3 Inflamed Phenotype
In the inflamed phenotype, pro-inflammatory cytokines are expressed by T cells
from parenchyma, representing a failure of the activity of immune response (Chen
and Mellman 2017). They present a large amount of T cells with receptors against
tumor-associated antigens but also many immune cells suppressed by hypoxia. This
phenotype is considered to have the most potential for sensitivity to ICI
(Mariathasan et al. 2018).

Immunosuppressive cells as Treg cells, myeloid-derived suppressor cells, and
M2-like tumor-associated macrophages (TAMs) are recruited by VEGF signaling
and hypoxia. Immune checkpoint molecule expression is an essential feature of the
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inflamed phenotype. The expression of these molecules on immune checkpoint
receptors or their ligands on myeloid-derived suppressor cells, DCs, TAMs, and
cancer cells are upregulated by VEGF and hypoxia. The pro-tumoral factors like
acidity, CAFs, and collagen density are factors that decrease the cytotoxic effect of T
cells from parenchyma (Calcinotto et al. 2012). Angiogenesis promoted by tumor
cells in all cancer-immune phenotypes can enhance immunosuppression, but certain
immune cells can induce also angiogenesis. Monocytic or granular myeloid-derived
suppressor cells (M-MDSCs and G-MDSCs, respectively), TAMs (tumor-associated
macrophages), and TANs (tumor-associated neutrophils) are common and often
associated with increased intratumoral vessel density. Various proteases are
expressed by TAMs and TANs, including matrix metalloproteinase-9 (MMP9),
which is responsible for releasing extracellular matrix-sequestered VEGF or alterna-
tive mechanisms for enhancing VEGF activity (Mazzone and Bergers 2019).

The three main phenotypes of TME described above can be superposed on a new
proposed classification of tumors into two categories, “hot” and “cold” tumors,
referring mainly to T cell infiltration, and recently a classification of tumors in
four categories was suggested: hot, altered, excluded, and cold (Galon and Bruni
2019). This concept for patient stratification is related to the type, density of immune
cells within the tumor site, and location that can provide a more accurate information
than the classical TNM system in any type of cancer (Mlecnik et al. 2011). The
classification in “hot” and ‘“cold” tumors was followed by the development and
implementation of the Immunoscore, which is a consensus, standardized scoring
system based on the evaluation of two populations of lymphocytes — CD8 and CD3
(Galon et al. 2013; Angell and Galon 2013). The ranges of Immunoscore are from
0 to I4.

Expanding this classification, a new concept of “immune contexture” was devel-
oped, which combines the immune parameters that correlate the density, nature,
immune functional distribution, and orientation of immune cells within the tumor.
These variables are associated with the prediction of response to treatments and
long-term survival. Three main coordination profiles were described recently—hot,
altered, and cold—that can be translated to the three TME phenotypes in close
accordance with the balance between tumor escape and immune coordination,
based on the cytotoxic T cell types within a tumor. The altered phenotype was
separated into two distinct types—“immunosuppressed” and “excluded” (Camus
et al. 2009).

There is a great variety in the TME composition within various cancer types and
among patients with the same cancer and even in different tumor sites of the same
patient (Mlecnik et al. 2018). This diversity of TME is a result of various factors:
deregulation of oncogenes, driver mutations, type of passenger mutations in tumor
cells, and the presence or absence of immunosuppressive components of TME
(TGF-B, PD-1, PD-L1, IL-15) that interfere with cytotoxic T cells, being suggested
that TME has different development according to disease progression and recurrence
(Yoshida et al. 2016).

It was demonstrated that the tumor cells and their microenvironment are in close
communication represented by stimulating and repressive signals. Distinct
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metastatic sites have different anatomically and temporally features and exhibit
different clinical responses, genomic architectures, and immune characteristics. It
was suggested that immune editing, tumor burden, and Immunoscore represent three
major factors that have an essential impact on metastatic disease progression. The
metastases with the highest probability of recurrence had, as main characteristics, a
large size, low Immunoscore, and no immunoediting. On the contrary, the lowest
risk group comprised of immune-edited metastases with high Immunoscore and
small burden (Angelova et al. 2018).

5.2  Overview on Actual Inmunotherapy in Cancer

There is certain evidence that tumors can escape from the immune system attack and
the modulation of the functions of immune cells represents the main way of
immunotherapy to recognize and destroy the tumor cells (Mellman et al. 2011).
Cancer immunotherapy is focused on developing agents that promote the strategies
of recognition and destroying tumor cells by the immune system and represents a
new option to classical therapies (Sharma et al. 2011).

A classification of cancer immunotherapy can be the following:

(a) Synthetic immunotherapy, programmed to generate new immune responses
directed toward targets expressed by tumors, such monoclonal antibodies
(MoAbs) and chimeric antigen receptors (CARs)

(b) Molecules designed to enhance the natural immune responses, such as immune
checkpoint inhibitors (ICIs) (Majzner et al. 2017)

5.2.1 Cytokines

In the early years, several cytokines were investigated, leading to US Food and Drug
Administration (FDA) approval of IFN-a for the treatment of hairy cell leukemia and
high-dose IL-2 for the treatment of advanced renal cell carcinoma and metastatic
melanoma (Waldmann 2018).

However, the use of cytokines in cancer treatment as a single treatment did not
meet expectations because of high systemic toxicities, low intratumoral
concentrations for cytokines administered parenterally, the inducing humoral or
cellular checkpoints, and activation of MDSCs and Tregs (Conlon et al. 2019). An
IL-2 pathway agonist, bempegaldesleukin (NKTR-214 or BEMPEG), was found to
induce activation of CD4+ and CD8+ T cells and NK cells over Tregs in blood and
TME, increasing the expression of PD-1 on the malignant cell surface. In a phase I
study with the combination of BEMPEG and nivolumab in solid advanced tumors,
manageable and generally reversible adverse events (AEs) were found, compared
with IL-2 treatment. BEMPEG also improves the CD8+ T cell-mediated tumor
elimination induced by PD-1 blockade. In the phase II study (PIVOT-02) of
bempegaldesleukin plus nivolumab in advanced melanoma, NSCLC, urothelial,
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and kidney tumors, a response rate (RR) of 53% in the melanoma cohort was
obtained (Adi Diab et al. 2020). BEMPEG plus nivolumab was evaluated in separate
phase II and III pivotal studies [PIVOT-10 (urothelial cancer; NCT(03785925),
PIVOT-09 (RCC; NCT03729245), PIVOT IO 001 (melanoma; NCT03635983),
and PIVOT IO 009 (bladder cancer; NCT04209114)].

IL-6 is another cytokine characterized by overexpression in some aggressive
cancers (Kumari et al. 2016) that activate the JAK/STAT3 signaling pathway,
which has an inhibiting effect that promote an immunosuppressive TME (Johnson
et al. 2018). Chemotherapy agents frequently upregulate IL-6 and determine thera-
peutic resistance to anticancer therapy. Consequently, the downregulation of IL-6
can be a potential therapeutic approach for treating cancer. There are three molecules
approved by the FDA for Castleman disease, chimeric antigen receptor (CAR) T
cell-induced cytokine-release syndrome, and myelofibrosis/polycythemia vera:
siltuximab (IL-6 inhibitor), ruxolitinib (JAK1/JAK2 inhibitor), and tocilizumab
(IL-6 receptor inhibitor).

5.2.2 Immune Checkpoint Inhibitors (ICls)

The discovery of immune checkpoint inhibitors (ICIs) represented an opportunity for
an important breakthrough in cancer immunotherapy. Immune checkpoints are
receptors of cell surface which modulate the immune system, inducing T cell-
mediated antitumor responses against antigenic peptides, which are existing in
cancer cells. Inhibitory checkpoints have an essential role in the downregulation of
the immune system and overexpression of inhibitory checkpoints in T cells
(Simpson et al. 2013). PD-1 and CTLA-4 are the most known of the class of immune
checkpoints, which suppress T cell response to cancers and target the tumors to
enable antitumor immunity. The success of CTLA-4 and PD-1/PD-L1 inhibitors in
treating cancer has developed an extensive area of preclinical and clinical
investigations. James Allison demonstrated that cancer immunotherapy can target
the suppressive signal mediated by CTLA-4 (Leach et al. 1996). Also, Tasuku Honjo
had proved that the mechanism of activation-induced cell death in lymphocytes is
mediated by PD-1, which is an important negative regulator of T cell function
(Ishida et al. 1992). For these revolutionary concepts, Allison and Honjo were
awarded the Nobel Prize in 2018.

5.2.2.1 Mechanism of Action of Immune Checkpoints (ICs)

T cell function combines in a perfect balance the positive and negative signals
followed by the elimination of transformed cells. The identification and destruction
of damaged cells imply the binding of the T cell receptor (TCR) to peptide-major
histocompatibility complexes (MHC) on tumor cells and antigen-presenting cells. IC
molecules are involved in the equilibrium of the individual’s immune homeostasis,
by adjusting the level of physiological immune responses. Various ICs are involved
in limiting tissue damage and enhancing self-tolerance, slowing down the inflamma-
tory activity of T cells. Coinhibitory pathways that control the magnitude and
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duration of response of T cells to avoid tissue damage and to maintain self-tolerance
were developed.

5.2.2.1.1 PD-1
PD-1 is modulating the limit of antigen responses and maintains peripheral toler-
ance, actioning as an adjustment mechanism of the immune response. In this context,
PD-1 (programmed cell death 1, CD279) is an important regulator of programmed
cell death of lymphocytes and has a critical role in improving peripheral self-
tolerance through its ligands, PD-L1 (CD274) and PD-L2 (CD273) (Freeman et al.
2000). Also, PD-1 is a key coinhibitory receptor expressed on T cells upon T cell
activation. PD-L1 is found in different tissues, including lymphoid organs and
non-hematopoietic tissues, in contrast with PD-L2, expressed only in lymphoid
organs (Hori et al. 2006). T cell activity is disturbed by the interaction between
PD-1 and PD-L1, resulting in the inhibition of T cell, cytokine production, altered
functions of cytotoxic T lymphocytes killer, metabolic dysfunctions, and finally
death of activated T cells (Butte et al. 2007). PD-1 is found in the subsets of T cells,
B cells, myeloid cells, natural killer (NK) cells, and cancer cells (Sharpe and Pauken
2018). Coinhibitory pathways that control the response of T cells to reduce tissue
damage and to preserve self-tolerance were developed by hosts. There are various
pathways involved, including PI3K, VAV, RAS, phospholipase Cy, and ERK
pathways (Riley 2009). Immunocompetent T cells are hijacked by tumor cells to
prevent host immune surveillance, enhancing the expression of PD-L1. This is the
reason for the clinical use of checkpoint inhibitors in oncology (Ai et al. 2020).
The aberrantly overexpression of PD-L1 in the TME provides multiple
activations of oncogenic signals and also an induction of IFN-y. T cell functions
have different responses to PD-1 signaling. The high expression of PD-1 slows down
the production of the inflammatory protein 1p by the macrophage, while a low-level
expression of PD-1 is blocking IFN-y production, and a very low level is inhibiting
IL-2 and TNF-a synthesis. It was observed that the high expression of PD-L1 on
P815 tumor cells slows down the cytolytic activity of CD8+ T cells (Iwai et al.
2002). PD-L1+ cells stimulate PD-1+ T cells, which determine the overexpression of
interleukin-10 (IL-10) and the apoptosis of T cells. PD-L1 is generating a “don’t eat
me” signal sent to the immune system that protects PD-L1+ cancer cells from the
destruction mediated by CD8+ T cells. Also, T cell malfunction was described as a
hallmark of the majority of cancers (McLane et al. 2019; Syn et al. 2017). Also,
PD-L1 can send back to T cells and tumor cells, affecting their survival (Azuma et al.
2008). These observations were the scientific basis to develop drugs to inhibit the
PD-1 pathway. Several drugs targeting the PD-1 pathway are approved until now by
the FDA, to treat various tumors: monoclonal antibodies nivolumab (anti-PD-1),
pembrolizumab (anti-PD-1), atezolizumab (anti-PD-L1), durvalumab (anti-PD-L1),
and avelumab (anti-PD-L1).

5.2.2.1.2 CTLA-4
(CD152) is a T cell surface glycoprotein, a member of the CD28 immunoglobulin
family (Ig) and can interact with antigen-presenting cell-derived B7—1 and B7-2.
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The proliferation of IL-2 secretion by T cells can be reduced by cross-linking of
CTLA-4 and CD28. These are delivering opposing signals to T cells, influencing the
response to activation. CD28 through co-stimulatory signals enhances the antigen
receptor of T cells, while CTLA-4 promotes inhibitory signals (Krummel and
Allison 1995). CTLA-4 is in competition with CD28 to bind to the same ligands,
CD86 and CD80, with a greater affinity than CD28 and blocking immune responses
against self. It was described as a dampening effect of CTLA-4, through which it
becomes a fundamental regulator of T cell self-tolerance and homeostasis.

There are two inhibitory mechanisms performed by CTLA-4: a cell-intrinsic
mechanism that affects the cells expressing CTLA-4 and a cell-extrinsic mechanism
that affects the secondary cells. Early researches have demonstrated that CTLA-4
was shown to remove CD86 and CD80 from the membranes of APCs by trans-
endocytosis, inhibiting the CD28 co-stimulation (Qureshi et al. 2011). Intrinsic
CTLA-4 signaling is responsible for T cell regulation of CTLA-4. Furthermore, it
was demonstrated that CTLA-4 using intrinsic mechanism inhibits early T cell
activation, being expressed by regulatory T cells (Tregs), which are stimulating
the PI3K/Akt pathway, thereby promoting the activation of mTOR (Syn et al. 2017,
Ai et al. 2020).

This function of CTLA-4 to influence the T cell activity was followed by the
genesis of the concept of immune checkpoint blockade. Ipilimumab is found as a
CTLA-4 inhibitor and was approved by the FDA for the treatment of advanced
melanoma in 2011, following durable clinical responses and improved median
overall survival (OS) (Hodi et al. 2010). The approval of ipilimumab was the first
step in the development of other T cell inhibitory molecules. Strong evidence
obtained from a variety of clinical trials led to evaluate the efficacy of PD-1/PD-
L1 blockade by other monoclonal antibodies (Brahmer et al. 2015), and the FDA
granted accelerated approvals of more immune checkpoint inhibitors. The current
estimation of ICI benefit is <13% of patients with cancer, and a part of patients
receiving immune checkpoint blockade (ICB) therapies will develop immune-
related adverse events (Haslam & Prasad 2019).

5.2.2.1.3 Clinical Trials with Checkpoint Inhibitors

Various ICB therapies are currently used in clinical trials in different stages of
neoplasms. Camrelizumab, pidilizumab, sintilimab, BMS-936559 (MDX-1105),
and toripalimab (JS001) are undergoing clinical trials, being investigated for their
efficacy and safety profiles (Huang et al. 2019; Fried et al. 2018; Ishizuka et al.
2019). Efforts are being made in finding and determining new immune targets,
dosage regimens, and strategies for combining of ICBs with targeted therapy,
chemotherapy, radiotherapy, and other immunotherapeutic modalities, to obtain an
improvement of therapeutic efficacy. Possible obstacles in obtaining therapeutic
efficacy of ICB include tumor resistance, found when cancer cells decay the
bioactivities that are connected with cell signaling, immune recognition, gene
expression, and DNA damage and/or extrinsic resistance (Fares et al. 2019).
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5.2.2.2 New Immune Checkpoints

Two types of novel immune checkpoints were described: one type is represented by
co-stimulatory T cells (e.g., GITRL), and the second type includes molecules that
have functions of suppressive factors (e.g., VISTA).

5.2.2.2.1 Co-Stimulatory Targets

GITR and GITRL

Glucocorticoid-induced tumor necrosis factor receptor-related protein (GITR)
demonstrates a high expression on Foxp3+ Tregs. GITRL represents the specific
activate ligand of GITR. Human (h)GITR is described as a type I transmembrane
protein that has a sequence identical to murine (m)GITR. GITR has a low expression
on effector CD4+ and CD8+ T cells but is overexpressed when these cells are
activated, being enriched on Tregs. But GITR also can be expressed on
macrophages, DC, and NK cells. The expression of GITRL is reported on APCs.
A major factor of GITR regulation on Tregs is represented by Foxp3, but NF-«xB,
NFAT, and CD28 signaling are also regulators of GITR in T cells (van Beek et al.
2019; Zhan et al. 2008). MAPK and NF-xB pathways are majorly involved in
modulating GITR signaling and growing of Bcl-xL expression on CD8+ cells and
can suggest a possible role for GITR in promoting cell survival. GITR and GITRL
expressions are found on hematopoietic cells, epidermal keratinocytes, and osteo-
clast precursors, and the axis GITR/GITRL is involved in various cytological
functions other than immune modulation (Xuan 2020).

GITRL-Fc demonstrated an effective antitumor immunity in vivo and in vitro.
The therapy with GITR agonists could activate the T cells by enhancing IFN-y
synthesis. There are three molecules related to GITR/GITRL axis under phase I
clinical trials. TRX518 is a fully humanized Fc-dysfunctional glycosylated IgGlx
monoclonal antibody that regulates hGITR signaling. There are two phase I trials —
NCTO01239134 study in melanoma and NCTO02628574, where TRX5018 is
associated with an anti-PD-1 drug in patients with advanced refractory solid tumors.
These trials demonstrated that TRX518 treatment is safe and with acceptable side
effects, and further investigation is warranted. MK-4166 is another IgG1 agonist
anti-GITR mAb with high-affinity interaction with GITR that promotes TCR and the
proliferation of TILs, decreasing in vitro the suppressive functions and proliferation
of Tregs (Sukumar et al. 2017). There are several phase I studies in combination or
not with pembrolizumab (NCT02132754 and NCT02553499). BMS-986156 is an
anti-GITR antibody investigated in phase I trials, single or combined with
nivolumab in solid cancers (NCT02598960).

4-1BB and 4-1BBL

4-1BB (CD137) is a surface glycoprotein from the tumor necrosis factor receptor
family activated by binding on its ligand, 4-1BBL (CD137L), with a co-stimulatory
function on various immune cells (Tregs, NK cells, NK T cells). 4-1BBL is
expressed on APCs, including B cells, dendritic cells (DC), and macrophages.
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The 4-1BB/4-1BBL pathway activation produces co-stimulation signals by JNK,
NF-B, and p38 MAPK pathways and has the consequence of CD4+ and CD8+ T
cell activation and proliferation followed by IFN-y and IL-2 production. Also,
4-1BB promote the cytotoxicity of CD8+ T cells and is involved in IL-15- and
IL-21-driven NK cell proliferation (Vidard et al. 2019). Hypoxia-induced factor-1a
(HIF-1a) can mediate the high expression of 4-IBB on the surface of TILs, and
blocking 4-IBB is followed by a depletion of CD8, CD4, B cells, and NK cells, being
considered a possible therapeutic target for cancer treatment (Chester et al. 2018).

Urelumab was the first anti-4-IBB fully human IgG4 monoclonal antibody that
demonstrated a cancer treatment potential. In phase I-Ib trials, in combination with
nivolumab in melanoma patients, ORR was promising, but it suggested that it was
correlated with nivolumab activity, although ORR also included PD-L1 negative
cases (NCT01471210 and NCT02253992) (Segal et al. 2017).

Utomilumab is an IgG2 monoclonal antibody that triggers 4-1BB and seems to be
safe in phase I clinical trials, without dose-limiting toxicity reported. The same
safety profile was described in combination with pembrolizumab, and also some
CR and PR confirmed (Tolcher et al. 2017). Other ongoing trials are combined
utomilumab with other molecules in various solid or hematologic cancers:
avelumab, rituximab, and ibrutinib in lymphomas (NCT03440567); trastuzumab
and chemotherapy in breast cancer (NCT03414658); cetuximab and chemotherapy
in colorectal cancer (NCT03290937); or anti-OX40 antibody in triple negative breast
cancer (NCT03971409).

OX40 and OX40L

Other members of the TNF receptor superfamily is OX40 (CD134) and its ligand
OX40L (CD252), usually found on APCs (Willoughby et al. 2017). OX40 is
responsible for the promotion of the survival and proliferation of CD4 and CD8 T
cells. Other functions of OX40 are leading to the genesis of Th1 and Th2 cells and
regulating IL-17 production. OX40L is the ligand of OX40 and is expressed on B
cells, endothelial cells, epithelial cells, APCs, NK cells, and other activated T cells
(Fu et al. 2020). OX40/0X40L interaction results in promoting of T cells and also
decreases the suppressive capacity of Tregs (Polesso et al. 2019). OX40 is also
involved in reactivations in memory T cells, having demonstrated an increased
number of memory cells after OX40 agonist supplementation. Based on the
decreased tumor growth, improved antitumor responses, and prolonged survival in
different cancer models after treatment with OX40 as monotherapy or combined
with other treatments, multiple clinical studies were initiated, still ongoing, at
different stages to evaluate the safety and efficacy of OX40/OX40L agonists
(Fu et al. 2020).

5.2.2.2.2 Inhibitory Targets
LAG-3 (Lymphocyte Activation Gene 3)

LAG-3 (CD 223) is a molecule located nearby CD4. Similar to CD4, LAG-3 is
binding to MHC-II on APCs (Workman et al. 2002) and is expressed on CD8+ and
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CD4+ effector T cells, Trl cells, CD4+Treg, pDCs, B cells, and some NK cells.
LAG-3 is an MHC-II ligand and suppresses CD4+ T cell proliferation and slows
down the cytokine response (Huard et al. 1995). The enhanced level of LAG-3 is
stimulated by IL-12, IL-7, and IL-2 on human-activated CD4+ T cells. LAG-3
enhances the proliferation of LAG-3-positive T cells and NK cells. LAG-3 and
PD-1 are both expressed and upregulated on TILs in the tumor microenvironment,
and also LAG-3 has a high expression in regulatory IL-10. It was demonstrated that
LAG-3 suppresses the effector T cell responses (Long et al. 2018). IMP321 is a form
of LAG-3 that can increase IL-12 production. In a phase I clinical trial of IMP321
combined with paclitaxel in metastatic breast cancer patients was obtained an 50%
objective response rate. This optimistic result has determined the initiation of a phase
2b clinical trial, which is ongoing (NCT02614833).

VISTA (B7-H5)

VISTA (PD-1H, Gi24, Diesl, SISP1) is expressed on myeloid cells, macrophages,
DCs, and neutrophils. VISTA is highest expressed also in initiated T cells, including
memory CD4+ T cells and Tregs. There is no expression of VISTA in B cells and
low expression in NK cells and CD8+ T cells (Xu et al. 2018).

Based on its expression, VISTA exerts both receptor and ligand functions.
VISTA actions as a ligand but also as a receptor to slow down T cell activity.
VISTA can be enhanced on myeloid-derived suppressor cells (MDSCs) from acute
myeloid leukemia (AML) patients, decreasing the inhibition of CD8+ T cell activa-
tion (Wang et al. 2018). Decreased induction of Tregs can be a consequence of
VISTA blockade, reducing the functions of natural Tregs. Can be concluded that
VISTA may slow down Tregs and promote naive T cell resistance to Tregs’
suppression. It has been found that tumor regression has been reported when
administered an anti-VISTA monotherapy in some preclinical studies in melanoma
models (Le Mercier et al. 2014). Some molecules are tested actually on early-phase
clinical trials: JNJ-61610588 (an anti-VISTA monoclonal antibody) and CA-170
(a small-molecule antagonist that selectively targets VISTA and PD-L1) (Xu et al.
2018; Lee et al. 2017).

TIM-3

Tim-3 (T cell immunoglobulin and mucin domain 3) is an Ig superfamily protein and
has ligands represented by galectin-9 (Gal-9), HMGB1, CEACAM-1, and PtdSer
(Banerjee and Kane 2018). Tim-3 has different interactions with its ligands, resulting
in different results ranging from inhibition of innate immune responses to promotion
of apoptosis of Th1 cells, promotion of cross-presentation by dendritic cells (DCs),
and the tolerance of T cell (Du et al. 2017). Tim-3 was reported as being active in
advanced head and neck cancers, where it is expressed together with PD-1 on TILs
after PD-1 blockade (Das et al. 2017). Several clinical studies, related with the safety
and efficacy of anti-Tim-3 antibodies, are still ongoing.
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TIGIT

Also known as VSig9, Vstm3, or WUCAM, TIGIT is a member of the CD28 family,
with actions similar to LAG-3 as a co-inhibitory receptor (Joller et al. 2011). TIGIT
represents part of the ligand/receptor network, in which it binds with high affinity on
its ligands, PVR2 and PVR3. These ligands are expressed on APCs and tumor cells
and shared with DNAM-1. The TIGIT binds with PVR ligands, resulting in inhibi-
tion of IFN-y production followed by downregulation of NK cells. The expression of
TIGIT is correlated with IL-10 level and CTLA-4 and PD-1 in Tregs (Stamm et al.
2018).

It was described as a dynamic axis TIGIT/DNAM-1/PVR/CD96, where the
signals from TIGIT and CD96 are opposing to stimulatory signals from DNAM-1
(Blake et al. 2016). An in vitro synergistic effect on the proliferation of immune cell,
followed by tumor removal and stimulation of protective memory responses due to
the inhibition of TIGIT and TIM-3 or PD-1, was demonstrated. Also, it seems that
the functions of TIGIT in TME can be correlated with the microbiome. An anti-
TIGIT candidate drug, OMP-313M32, was found, which realized a reduction of
tumor volume in humanized NSG mice. Another TIGIT antibody, OMP-313R12,
was demonstrated to promote tumor growth suppression in a murine colorectal
cancer model. The combination of OMP-313R12 with an anti-PD-L1 improved
the overall survival in the mice model. Phase 1/2 clinical trials are initiated with
anti-TIGIT antibodies, BMS-986207 combined with nivolumab and MTIG7192A
combined with atezolizumab (Xu 2020).

5.2.3 Vaccines

Cancer vaccines are designed for the patients to elicit the immune response to fight
cancer. Cancer vaccines can be classified into several classes: neoantigen, nucleic
acid, dendritic cell, and whole tumor cell vaccines. Neoantigens are proteins with
individual specificity, which are generated by mutations in the tumor cell genome
antigens that have originated from somatic DNA alterations. Due to their strong
immunogenicity and lack of expression in normal tissues, neoantigen vaccines are
designed to have specific immunogenicity and tumor properties that can virtually
eliminate the risk of off-target side effects while hardening the immune response to
destroy cancer cells (Li et al. 2017a, b).

Neoantigens are different from the traditional tumor-associated antigen (TAA).
TAA is present in normal tissues but is not unique in tumor tissue, especially in
proliferating tumor cells expressing MART-1, HER2, MAGE, and MUCI.
Neoantigens express stronger immunogenicity than TAA and higher affinity toward
MHC, not being able to be affected by central immunological tolerance. For
neoantigen recognition from tumor cells and normal cells, high-throughput sequenc-
ing techniques, such as whole-exome sequencing technology, are used. Different
types of software applications for the identification of neoantigens were described
(Yadav et al. 2014; Ott et al. 2017; Sahin et al. 2017). As foreign antigens,
neoantigens can not only promote the antitumor immune response but also decrease
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the risk of autoimmunity. Neoantigen-activated T cells can generate highly active T
cells, which receptors have a powerful affinity toward MHC-neoantigen-peptide
complexes, avoiding the clearance by central immune tolerance (Stone et al.
2015). Due to the fast development of sequencing technology and the highlight of
bioinformatics algorithms, it is now possible to accurately find tumor neoantigens
and also to predict their immunogenicity and MHC affinity. Also, nucleic acid
vaccines that contain mRNA or DNA encoding neoantigens were developed. The
delivery to APCs can be intracellular (nNRNA) or intranuclear (DNA), producing an
antigen expression (Kreiter et al. 2010). These antigens are presented to T
lymphocytes, which destroy tumor cells that express antigens with the same epitope.
RNA vaccines can bypass the integration into the host cell genome. Various clinical
trials of DNA and RNA vaccines have failed actually to demonstrate the efficacy due
to the delivery barriers and immunogenicity (Hilf et al. 2019).

Tumor cell lysate-derived vaccines represent other cancer therapy and are classi-
fied into two classes: autologous cancer vaccines and allogeneic cancer vaccines.
Tumor cell lysates derived from patients (autologous cancer vaccination) or another
member of the same species (allogeneic cancer vaccination) are presented by MHC
(major histocompatibility complex) molecules to trigger immune responses
(Robbins et al. 2011). DC-based vaccines contain engineered DCs derived from
patients. These vaccines express TAAs (tumor-associated antigens) that stimulate
the antitumor activity of T lymphocytes. An FDA-approved DC-based vaccine is
sipuleucel-T (Provenge®) that was developed using autologous peripheral blood
mononuclear cells and activation with PAP-GM-CSF (Yang et al. 2019).

5.2.4 Cellular Adoptive Immunotherapy

Cellular immunotherapy represents collection, activation, expansion, modification,
and administration of tumor-infiltrating lymphocytes, engineered natural killer cells,
T cells, or chimeric antigen receptor (CAR) T cells. There are three major types of
cellular therapy described, including TILs, T cell receptor-modified cells (TCRs),
and CAR T cells. The fourth, NK cell therapy is developing (Barrett et al. 2015).
Engineered T lymphocytes that express chimeric antigen receptors have shown
promising antitumoral effects in hematologic cancers, such as chronic lymphocytic
leukemia and non-Hodgkin lymphoma and relapsed or refractory acute lymphoblas-
tic leukemia.

The success of CAR T cell therapy in solid tumors has been limited due to
heterogeneity of antigen expression, presence in the tumor microenvironment of
networks involved in immunosuppression, limiting CAR T cell function, and mobil-
ity (Mirzaei et al. 2017). In solid tumors, typical tumor-associated antigens, such as
CEA, GD2, MSLN, HER2, EGFR, and many other tumor antigens like MUCI,
PSMA, PSCA, FAP, and IL-13Ra2, have different expression on the surface of
different cancer cells (Townsend et al. 2018).

Actually, four generations of CAR-Ts were developed, and the difference among
each generation is generally related with the construction of the intracellular domain.
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The first-generation CAR consists of CD3-{ or Fc receptor y (FcRy) in an intracel-
lular motif, which triggers a temporary T cell activation (Brocker and Karjalainen
1995). The second and third generations of CARs were made following the principle
of the first generation, where one or more co-stimulatory molecules (0OX40, CD28,
4-1BB) were added. These signaling domains enhance the proliferation of T cells
and promote the cytokine secretion, increasing the antitumoral effect (Finney et al.
2004). The fourth generation of CAR T cells involves “armored T cells” and is
designed by adding an inducible cytokine-producing cassette that includes cytokines
(IL-12, IL-15, IL-18, IL-21) and ligands of receptors on other immune cells or tumor
cells (CD40L) (Van Schandevyl et al. 2020). These cytokines can trigger TILs, CAR
T cells, and other cells, such as macrophages and NK cells (Avanzi et al. 2018).

5.2.5 Mechanisms of Resistance to Inmune Checkpoint Blockades
in Cancer

Unprecedent results in clinical trials of cancer immunotherapy were obtained by
ICIs, which target CTLA-4 and the PD-1/PD-L1 axis. But an overwhelming obstacle
to durable responses to therapy or nonresponses is represented by innate or acquired
drug resistance. It was demonstrated that resistance could appear in every stage of
the tumor. Molecular mechanisms for the resistance of immune checkpoint
blockades (ICB) can be classified into the following: 1. tumor-derived mechanism,
2. T cell-based mechanism, and 3. TME-determined resistance.

5.2.5.1 Tumor-Derived Resistance

Tumor cells develop epigenetic and genetic alterations to avoid the immune cell
recognition and destruction and enhance immune evasion, recurrence, growth, and
metastasis during the ICI treatments. The following strategies are generated by
tumor cells:

5.2.5.1.1 The Lack of Antigenic Proteins on the Tumor Cell Surface

The most direct factor of avoiding recognition by immune cells is the lack of
antigenic proteins, such as viral antigens (VAs), cancer-testis antigens (CTAs),
tumor-specific antigens (TSAs), and tumor-associated antigens (TAAs). The
acquired resistance to immune checkpoint therapy can be generated by the lack of
cell surface antigens, such as genetic deletion and genetic and epigenetic modifica-
tion of T cells. Intrinsic resistance was reported to be generated by low mutational
burden and overlapping surface proteins (Gubin et al. 2014).

5.2.5.1.2 Modulations and Mutations in the Oncogenic Signaling Pathway

Some oncogenic signaling pathways can undergo mutations that lead to resistance of
tumor cells. For example, Wnt/p-catenin pathway can suppress the dendritic cell-
recruiting cytokine CCL4, preventing T cell infiltration (Spranger et al. 2015). The
expression of CD47 and PD-L1 can be upregulated by MYC and STAT3 oncogenes,
by directly binding to their promoters to intrude the antitumor immunity (Atsaves
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et al. 2017). Also, the activation of MAPK pathway can be suppressed by proteins,
like VEGF and IL-8, followed by the inhibition of the recruit and improve the T cells
(Liu et al. 2013). Mutated or suppressed molecules from IFN-y pathway could
promote tumor cells’ escape from its destroying effect (Dunn et al. 2005).

5.2.5.1.3 PD-L1 Expression

The main important element involved in therapeutic resistance to ICI treatment is
represented by the immunosuppressive cell surface ligand PD-L1, which makes
tumor cells block the activated T cells to find the tumoral neoantigens. Several
molecules and signaling pathways were found to be correlated to PD-L1 expression,
including mutation of EGFR, MYC overexpression, suppression of PARP, aberrant
IFN-y pathway, CDKS disruption, amplification of PDJ, loss of PTEN, and PI3K/
AKT mutations (Akbay et al. 2013). These disorders are influencing the antitumor T
cell responses. New data reveals that there are some variants of PD-L.1 generated by
tumor cells that can be “decoys” of PD-L1 targeted antibody and may promote
resistance to PD-L1 blockade in NSCLC (Gong et al. 2019).

5.2.5.2 Innate PD-1 Resistance (IPRES)

A cluster of genes correlated to mesenchymal transition (WNTSA, TWIST2, AXL,
FAP, and TAGLN), immunosuppression (VEGFA, VEGFC, IL-10), and monocyte
and macrophage chemotaxis (CCL7, CCL8, CCL2) that were overexpressed in
nonresponding tumors was reported (Hugo et al. 2016).

5.2.5.2.1 Epigenetic Modifications

The abnormal epigenetic modification is the main cause of disturbing gene expres-
sion. It was proved that histone deacetylase inhibitors promote the expression of
MHC and tumor-associated antigens and, in consequence, are improving the
antitumor effect of ICI treatment. It was supposed that histone deacetylase inhibitors
are involved in the promotion of immune treatment resistance (Vo et al. 2009).

5.2.5.2.2 Absence of Antigen Presentation

Impaired cell surface expression of MHC class I can be produced by the loss of B2M
expression and is followed by a damage of antigen presentation to cytotoxic T cells.
It was demonstrated in a study of 4512 tumors from 11 types of cancer that deletions
and harmful alterations in B2M and HLA class I alleles are correlated with a gene
expression signature of cytotoxic immune cells, followed by evasion of cytotoxic T
cells’ antigen-specific response by tumor cells. In another study of ICI-resistant lung
cancer, loss of B2M and MHC-I expression was reported in 75 patients with
colorectal carcinoma. The identified B2M mutations and protein loss were proposed
as causes of resistance to ICI treatment (Middha et al. 2019).

5.2.5.2.3 T Cell-Based Resistance
T cells can recognize portions of specific antigens on tumor cells, which are
presented by dendritic cells with their MHC. The activation of T cell receptors and
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signaling pathways are controlling this function of T cells, activating the recognition
and killing of cancer cells.

5.2.5.2.4 Absence of T Cells

Loss or absence of T cell function or cells is followed by nonresponsiveness/
resistance to the immune checkpoint blockade. The lack of T cells in the regional
TME can be the reason of the failure of tumor infiltration and abnormal distribution
of functional T cells. It was suggested that the p-catenin pathway suppresses CD8+ T
cell proliferation in colorectal cancer (Xue et al. 2019).

5.2.5.2.5 Inhibitory Immune Checkpoints

Alternative inhibitor checkpoints, like LAG-3, TIGIT, TIM-3, CD73, CD38, B7-H3,
and A2A receptors, were also involved in ICI treatment resistance. LAG-3, VISTA,
and TIGIT checkpoint inhibitors are expressed on the surface of T cells function as
compensatory inhibitors of T cell function (Topalian et al. 2015).

5.2.5.2.6 Impaired Formation of T Cell Memory

Some subtypes of effector T cells turn into effector memory T cells being assisted by
the DCs and helper CD4+ T cells for obtaining long-term immune memory. In this
context, the impairment of the genesis of T cell memory due to epigenetic
modifications could be followed by the failure of ICI therapy. In patients with
burden tumors, it demonstrated limited reacquisition of memory T cell response
with a shorter time of persistence of the information (Pauken et al. 2016).

5.2.5.3 Tumor Microenvironment-Determined Resistance

TME represents a separate pool containing first-value modulators of immune
activities against tumors, separate from tumor cells and T cells. These modulators
are represented by immunosuppressive cells, cytokines, chemokines, and other
molecules.

5.2.5.3.1 Immunosuppressive Cells

Tregs, TAMs, MDSCs, and CAFs are crucial non-tumor cellular components of the
tumor-extrinsic mechanisms of primary and adaptive resistance to ICI treatments.
MDSCs stimulate tumoral functions, such as invasion, metastasis, and angiogenesis,
and they suppress the responses of T cell through reactive oxygen production, local
nutrient depletion, and nitrosylation of local chemokines. Normally, MDSCs are
positive for CD33 and CD11b, and it was observed that granulocytic MDSCs are
CD15+ and monocytic MDSCs are CD14+ (Gabrilovich et al. 2012; Yang et al.
2008). The presence of MDSCs in TME negatively influences the survival in
patients with breast and colorectal cancer. A small proportion of intratumoral
MDSCs in the TME may enhance the responses to ICI treatments (Solito et al.
2011; Meyer et al. 2014). Tregs are a category of CD4+ T cells existing in TME,
which reduce the proliferation and function of local effector CD8 T cells (Teffs).
This function is fulfilled through cell contact or by secreting cytokines, such as
TGF-B, IL-35, and IL-10.
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The depletion of Tregs in TME recovers antitumor immunity (Sakaguchi et al.
2008; Viehl et al. 2006). A poor response to ICI treatments has been correlated with
an increased Teff/Treg ratio. The majority of human tumors are infiltrated by Tregs,
and the presence of Tregs in TME is related to a weak immunologic antitumor
response. In a retrospective study, it was reported that cancer patients have better
outcomes of CTLA-4 therapy when demonstrated with the existence of a high
amount of FoxP3+ Tregs (Hamid et al. 2011). Tumor-associated macrophages
(TAMs) are also involved in the response to immunotherapy. TAMs may exist as
classically activated macrophages (M1 macrophage) or alternatively activated
macrophages (M2 macrophage) within different microenvironments. M1
macrophages promote an antitumor response by the immune system, while M2
macrophages enhance tumorigenic activities (Chanmee et al. 2014). It was observed
that TAMs can slow down T cell responses through B7-H4 in ovarian carcinoma and
PD-L1 in hepatocellular.

Also, a low frequency of TAMs enhances IFNs and suppressed tumor develop-
ment (Kryczek et al. 2006; Kuang et al. 2009). Cancer-associated fibroblasts (CAFs)
positive for fibroblast activation protein-o (FAP) enhance the ICB resistance by
influencing the distribution of T cells in the tumors. CAFs are involved in extracel-
lular matrix production that physically separates T cells and tumor cells. Also,
FAP + CAFs recruit MDSCs into TME by secreting CXCL12, followed by the
suppression of T cells (Feig et al. 2013; Yang et al. 2016).

5.2.5.3.2 Immunosuppressive Molecules
The cytokines released in TME by macrophages can develop the local suppression of
immune responses. TGF-f was described as a potent negative regulator of effector T
cells (Teff) (Park et al. 2018; Lin and Zhao 2015). In a clinical trial in bladder cancer
patients, where the disease was resistant to PD-L1 blockade, was found that TGF-§
can be upregulated by CAFs and collagen-rich extracellular matrices, which sup-
press the recruitment of CD8+ T cells into TME (Mariathasan et al. 2018).
Another immunosuppressive molecule is indolaimine-2, 3-deoxygenase (IDO),
which might be promoted by IFN-y and slow down the functions of T effector cells
(Teff). IDO inhibitors express antitumor effects when are combined with ICBs
(Spranger et al. 2014). Furthermore, other molecules involved were reported poten-
tially competent in ICB resistance: CD73, CEACAMI, adenosine, TIM-3, and
CDKs (Gray-Owen and Blumberg 2006; Koyama et al. 2016). Some chemokines
may recruit MDSCs and Tregs in TME. For example, CCR4 is expressed in TME by
Tregs, and CCR4 inhibitors can suppress the recruitment of Tregs. CCR4 and other
molecules, such as CXCL12, CCL5, CCL7, and CXCLS, promote ADCC, decreas-
ing the level of Tregs (Chang et al. 2012; Gil et al. 2014).

5.2.5.3.3 Aberrant Regulation of Signaling Pathways

The PI3K/AKT/mTOR pathway is implicated in the modulation of various cellular
functions, including survival, proliferation, and motility. The dysfunctions of PI3K/
AKT/mTOR pathway are correlated with the innate resistance to PD-1/PD-L1
blockade (Bai et al. 2017). Also, it was found that the loss of PTEN in melanoma
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patients may be followed by the overexpression of cytokines, thus modulating the
resistance to ICBs. The suppression of the PI3Kp could enhance the efficiency of
PD-1/PD-L1 blockades. Other studies demonstrate that the activation of
Whnt/B-catenin axis may promote T cell exclusion from TME and induce resistance
to PD-1/PD-L1 activities (Peng et al. 2016; Spranger et al. 2015).

ICB resistance also includes other cellular signaling pathways like JAK/STAT/
IFN-y and ERK/Erk MAPK pathways (Shin et al. 2017; Hugo et al. 2015).

5.2.5.4 Microbiome Modulation

The gut microbiota is represented by a large number of microorganisms, consisting
of essential and opportunistic microorganisms, generally hosted in the gastrointesti-
nal tract as viruses, bacteria, fungi, protozoa, phages, and also archaea. Gut
microbiota composition might be useful to explain the various effects of treatment,
and manipulating gut microbiota in the appropriate future could be a hopeful
adjuvant treatment for cancer immunotherapy. The regulatory effect of gut
microbiota on the gut mucosal immune system is currently accepted. It has been
demonstrated that Bacteroides fragilis promote the CD4+ naive T cell to be
transformed into Treg and induce the production of cytokines (Round and
Mazmanian 2010). It was found that most Treg cells from the colon belonged to
Tregs derived from the thymus, which recognized the antigens from bacteria, such as
Clostridiales, Lactobacillus, and Bacteroides, that could favor the tolerance to these
bacteria.

It was showed that antibiotics which are decreasing mainly the members of the
Clostridium family in gut microbiota composition, produce a decreased number of
colonic Tregs (Cebula et al. 2013). Some commensals such as Escherichia coli can
enhance the pro-inflammatory gut immunity in a “love-hate” relationship (Ivanov
et al. 2009; Tomkovich and Jobin 2016).

The regulatory effect of gut microbiota can enhance a regulatory effect on the
localized mucosal immune system and also on host systemic immunity via lympho-
cyte homing, cytokine secretion, cross-reactivation, and recirculation. The detection
of immune cells demonstrated that increased gut Faecalibacterium is related to an
elevated number of CD4+ or CD8+ T cells (Gopalakrishnan et al. 2018). The
influence of gut microbiota on the efficacy of anti-PD-1 treatment in metastatic
melanoma patients was also noticed. Some bacteria, such as B. longum,
Bifidobacterium adolescentis, Enterococcus faecium, Klebsiella pneumoniae,
Parabacteroides merdae, and Lactobacillus species, were found significantly ele-
vated in responders at anti-PD-1 treatment, while Roseburia intestinalis and
Ruminococcus obeum were enriched in nonresponders. The influence of gut
microbiota was widely studied, and some evidences demonstrate these interferences.
A group of bacteria, including B. adolescentis and B. longum, is enhancing PD-1 by
elevating the secretion of IFN-y and increasing CD8+ tumor-infiltrating T cells
(Sivan et al. 2015; Matson et al. 2018).

Bifidobacterium are enhancing the function of DC, upregulating tumor-specific
CDS8+ T, increasing pro-inflammatory cytokine, and enhancing PD-1 blockade.
Other enhancers of PD-1 blockade are Faecalibacterium, which increase CD8+
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and CD4+ T in circulation and tumor, and Akkermansia muciniphila, which promote
CXCR3 + CCR9 + CD4+ T cell and the ability of DC with the production of IL-12
(Routy et al. 2018). Ruminococcus obeum and Roseburia intestinalis were found
elevated in patients resistant to anti-PD-1 treatment. The promotion of CTLA-4
blockade by Bacteroides fragilis and Faecalibacterium was also demonstrated
(Vétizou et al. 2015).

5.3  Nanotechnologies in Cancer Immunotherapy
5.3.1 The Value of EPR Effect in Nano-Immunotherapy

The enhanced permeability and retention (EPR) effect was first reported during the
studies of inflammation related to bacterial infection (Matsumoto et al. 1984). The
EPR effect represents a unique phenomenon of solid tumors that is correlated to
anatomical and pathophysiological characteristics. These features can be the inade-
quate architecture of the vessels; large gaps between endothelial cells in blood
vessels; vascular mediators in excess, such as bradykinin, carbon monoxide, nitric
oxide, and vascular endothelial growth factor; and defective lymphatic recovery,
leading to significant extravasation of plasma components and nanomedicines. EPR
effect provided an accelerate development of macromolecular antitumoral drugs,
called nanomedicines (Maeda 2010). Different EPR effects were observed in differ-
ent tumors or different areas of the same tumor, especially in large tumors. Also,
EPR effect is a dynamic phenomenon involving pathophysiological factors,
biological events inside the body, tumoral growth, and inflammatory processes.

EPR effect represents the basic concept of tumor targeting with nanomedicines
and is related with the size, biocompatibility, and conformation of macromolecules.
The surface of charge and halftime in circulation are other critical points for the
tumor-targeting nanomedicines (Zhao et al. 2005; Campbell et al. 2002). The
concept of EPR-based tumor targeting was investigated in recent studies, and the
potential of exploring transcytosis for tumor targeting by nanomedicines, especially
in highly stromal solid tumors such as pancreatic cancer with low EPR effect, was
described (Liu et al. 2019). The EPR effect and nanomedicine effectiveness can be
improved by pharmacological and physical treatments employed for the remodeling
of the tumor microenvironment. The improvement of the EPR effect can be obtained
by incorporating more strategies, such as physical alteration, additional molecular
targeting, or physiological modulating of the tumor microenvironment (Park et al.
2019).

5.3.2 Nanoparticles Designed for Modeling Cancer
Immunotherapy

Nanotechnology is emerging as a multidisciplinary area that is changing the treat-
ment of many diseases including cancer in the twenty-first century (Farokhzad and
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Langer 2009). Also, in the last decade, immunotherapy represents a turning point in
cancer treatment. Actually, an interaction between immunotherapy and cancer
nanomedicine be described, whixh is demonstrated in various preclinical studies.
In the last years, there was an expansion of applications of nanotechnology in the
field of medicine, which have also developed novel design concepts to cancer
immunotherapy, the so-called nano-immunotherapy (Peer et al. 2007). Various
types of materials have been experimented for biomedical applications, including
metals, carbon structures, lipids, polymers, and inorganic materials, that can be used
for NP production. The delivery of the nanoparticles (NPs) containing bioactive
molecules has the goals to increase therapeutic efficacy and reduce side effects of
these molecules with improving pharmacokinetics and biodistribution.

There are various applications for which NPs can be used for enhancing immu-
notherapy in cancer. Some examples are the delivery of antigens and adjuvants as
vaccines and the delivery of molecules, antibodies, and viruses, targeting specific
cells, such as APCs or dendritic cells that interact for modifying the tumor
microenvironment.

Generally, NPs are classified in different categories related with their physical and
chemical properties, such as material size, shape, type, charge, and surface chemical
modifications elasticity, and now it is generally accepted that all these properties
influence their kinetics, bio-distribution, cellular uptake, immunogenicity, and load-
ing efficiency (Grimaldi et al. 2017; Goldberg 2015; Fan and Moon 2015;
Kesharwani et al. 2020). Certain properties must be taken into account in choosing
the appropriate nanoparticles. The particles of approximately 100 nm, a surface zeta
potential between + and - 10 mV, and a PEG surface layer are typically preferred for
their optimal pharmacokinetics and biodistribution. Not only the functions of NPs
can be drug delivery but also the target of the immune system. The main advantage
of nanomaterials is derived from their size, facilitating the intake of immune cells.
Various types of NPs that direct target the immune system to generate cytokines and
induce humoral and cellular immunity are described (Fontana et al. 2017; Mahjub
et al. 2018).

The advantages related to the administration of nanocarriers are the following:
their size, facilitating the intake of immune cells; the delivery of therapeutic
compounds to a specific target; and in addition, the improvement of
immunostimulatory compounds safety profile, allowing an increase in the dosage.
Also, the nanocarriers themselves may work as an adjuvant, reducing the need for
the coadministration of adjuvants and antigens. Nanoparticles can action as a
protective delivery vehicle for many types of cargo related with stability, solubility,
and period of half-life. (Qiu et al. 2017).

5.3.2.1 Classification of Nanotechnologies for Cancer Inmunotherapy
At present, nanomaterials used in cancer immunotherapy can be classified into
polymeric NPs, lipid nanocarriers, metal NPs, mesoporous silica NPs (MSN5s),
exosome, carbon nanotubes (CNTs), and virus-like particles (VLPs) (Rosalia et al.
2015; Hassan et al. 2016; Wong et al. 2006, Gupta et al. 2014).
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5.3.2.1.1 Polymeric Nanoparticles

Polymeric NPs, such as PLGA, dendrimers, and micelles, have been used in several
drug delivery and targeting vehicles. These polymeric nanoparticles have some
advantages such as versatility in morphology, size, and surface functionalization.
Also, they can display high loading of the therapeutics, form hydrogels, or self-
assembly into micelles. The disadvantages are the following: proinflammatory
molecules’ production upon degradation of the polymer and the uncertain degrada-
tion and inactivation of the therapeutic payload in the preparation process.

5.3.2.1.2 PLGA

PLGA (poly lactic-co-glycolic acid) is an FDA-approved frequently used polymer,
which is biocompatible and biodegradable and can encapsulate many biologically
active compounds with low toxicity. PLGA microspheres can target the pathways
for MHC class I and II molecules and enhance the maturation of dendritic cells
(Waeckerle-Men and Groettrup 2005). PLGA nanoparticles interact with DCs with-
out any recognition of this specific character. PLGA for siRNAs, cytokine agonists,
or CpG-coated tumor antigen transportation were designed to enhance the DC
uptake of antigens and activation of immune responses of both CTL (CD8+) and
Th (CD4+) (Kim et al. 2018; Kokate et al. 2016).

Another nanomolecule, PEGylated IL-10 (pegilodecakin), releases high
concentrations of IL-10, increasing the infiltration of TME and cytotoxic activity
of CD8+ T cells (Mumm et al. 2011). IL-10 is acting on TILs and determines the
upregulation of MHC molecules in the TME followed by tumoral rejection.
Antitumor activity was reported as monotherapy in renal cell carcinoma, in uveal
melanoma (Naing et al. 2016), and also combined with a PD-1 inhibitor in NSCLC
and with FOLFOX in pancreatic tumors (Hecht et al. 2018). It was demonstrated that
pegilodecakin promotes a sustained elevation in serum of Th1l and Th2 cytokines
and simultaneously leads to a reduction of the cytokines Th17 and TGF-p, responsi-
ble for tumor-associated inflammation. As a consequence, pegilodecakin stimulates
the expansion of CD8+ T cells. This mechanism associated with the induction of
immunologic memory is responsible for the prolonging tumor responses, without
severe adverse events. Clinical trials assessing the safety and activity of
pegilodecakin combined with anti-PD-1 antibody inhibitors in patients with solid
tumors are ongoing (Naing et al. 2019).

DCs are taken up by the PLGA NPs without any recognition of this specific
character. The development of an efficient delivery system that incorporates
trastuzumab and doxorubicin into poly(lactic-co-glycolic) acid nanoparticles, capa-
ble of inhibiting the regulatory pathways of cancer cells and stimulate the ADCC,
was reported (Colzani et al. 2018) [258]. In vitro results showed that PLGA
nanoparticles are more suitable to target DCs than PLGA microparticles are, with
a 100-fold higher efficiency in the delivery of hD1 for nanoparticles (Cruz et al.
2010).

NP can be designed with a modification of the surface with more densities of
monoclonal antibody (mAb) to target the cluster —205 (DEC-205) receptor,
followed by DC immune stimulation with a higher interleukin-10 (IL-10) production
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and an enhanced antitumor response and prolonged survival. In this manner, PLGA
NP containing antigenic peptides can target DCs for vaccine delivery, followed by
the cytotoxic T cell response and blocking the immune escape mechanism of tumor
cells (Bandyopadhyay and Fine 2011). Tumor cells develop genetic and epigenetic
alterations to prevent being recognized and destroyed by immune cells and promote
immune evasion (Luo et al. 2018).

5.3.2.1.3 Dendrimers

Dendrimers are extensively branched macromolecules, composed of a core and
cavities to entrap drugs. Dendrimers are suitable for modified drug delivery due to
their well-defined chemical structure, with water solubility (Nanjwade et al. 2009). A
direct interaction of dendrimers and immune cells was described. Poly
(phosphorhydrazone) dendrimers have developed a preliminary activation of
monocytes followed by a selective proliferation of NK cells with anticancer activity
(Perise-Barrios et al. 2015). Tumor reduction by chemo-immunotherapy, using
dendrimers as carriers, was reported. CpG oligonucleotide as an immune-stimulating
agent interacted with doxorubicin, and this complex was targeted by prostate-
specific membrane RNA aptamer (Lee et al. 2011).

5.3.2.1.4 Lipid Nanocarriers

Lipid nanocarriers are represented by liposomes, solid-lipid NPs, and phospholipids
micelles. Liposomes are characterized by high biocompatibility and are vesicles
compounded of one or more bilayers of natural or synthetic phospholipids. The
structure of liposomes has many similarities with a cell membrane: hydrophobic tails
of phospholipids cluster together while hydrophilic heads. The existence of a
hydrophobic and hydrophilic compartment causes the liposomes to have the ability
to cargo different kinds of compounds and release them safely, without affecting
their metabolism (Torchilin 2005). Liposomes are spherical vesicles with one or
more lipid layers containing a watery core so that they can transport both hydrophilic
and lipophilic agents (Bulbake et al. 2017; Bozzuto and Molinari 2015).

Ovalbumin (OVA) can deliver IFN-encoding pDNA to the DCs via liposomes.
There is a combining efficacy of OVA and the action of IFN-encoding pDNA in
mice tumors that enhance the antitumor effect through the CTL activation (Yuba
et al. 2015). Other pH-sensitive liposomes are curdlan and mannan used as
bioactive polysaccharides, which deliver antigenic proteins into the cytosol of
dendritic cells (Yuba et al. 2017). 2030-cyclic guanosine monophosphate-adenosine
monophosphate (cGAMP) was included in liposomes and its delivery facilitates the
improving the activity of STING agonists results in immunological memory that
stimulate the tumor cells rechallenging (Koshy et al. 2017).

Gene delivery for enhancing immunotherapy is represented by the delivery of
RNA lipoplex to DC cells that trigger the immune mechanisms of IFN-a, resulting in
DC maturation. PEGylation is frequently used for the delivery of siRNA. An
example is pH-sensitive cationic lipid named YSKO5 that was developed as a
multifunctional envelope-type nanodevice (MEND). PEGylated YSKO05-MEND
promotes gene silencing when administrated intratumorally (Sato et al. 2012).
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5.3.2.1.5 Micelles

Micelles are vesicular particles with many opportunities as carriers for imaging or
cancer therapeutics. The synthesis of micelles is relative easy compared to other
nanocarriers, being also biodegradable and nontoxic and with the facility to deliver
intracytoplasmatic (Peng et al. 2018; Volovat et al. 2020). They are used to carry
ovalbumin (OVA) or regulating metabolism-related enzymes such as IR780,
resulting in the slowing down of IDO followed by the activation of T lymphocytes
and consequently inhibition of distal tumor growth (abscopal effect) (Li et al.
2017a, b). Micelles containing zinc and protoporphyrin IX target TAMs and stimu-
late the immune system, resulting in the promotion of ROS and inhibition of STAT3
expression. The stimulation of T lymphocytes by the repolarization of TAMs is
followed by tumor regression (Liu et al. 2018).

5.3.2.1.6 Metal NPs

Gold Nanoparticles (AuNPs)

These nanoparticle systems can be carriers for antigens and gene or oligonucleotide
to specific sites. The surface of Au NPs can create covalent and non-covalent
interactions with various biomolecules, such as DNA, peptides, and antibodies
(Kong et al. 2017).

There is an impact of AuNPs on some subcellular organelles as the mitochondria
and the nucleus with its subcompartments of cancer cells, these organelles being
related to cancer cell growth, survival, proliferation and death. The combination of
AuNPs with photothermal ablation is a promising concept and is searched in
different trials (Kodiha et al. 2015). Gold NPs are used in delivering CgP
oligonucleotides that promote the infiltration of macrophages and dendritic cells
followed by the inhibition of tumor growth (Lin et al. 2013).

Delivery of adjuvants such as OVA or CpG for immunotherapy is made by
different sizes and shaped of gold nanoparticles, such as nanoshells, nanostars and
nanorods, and it was remarked that the sizes of 15 nm have the best efficacy for the
immunotherapeutic delivery of antigens (Dykman et al. 2018).

Iron Oxide Nanoparticles

These nanoparticles are powerful carriers for vaccine delivery. They can have a
direct effect by polarization of immune cells, such macrophages and DCs, increasing
immune response, or can be used as a delivery system of OVA with a function of
immune potentiator (Zhao et al. 2018). FDA has approved supplementation with
ferumoxytol in mammary cancer, due to an intrinsic therapeutic effect. In vitro, it
was demonstrated that adenocarcinoma cells incubated together with ferumoxytol
and macrophages can increase the activity of caspase-3. Also, macrophages exposed
to ferumoxytol can induce pro-inflammatory Thl-type responses in macrophages
(Zanganeh et al. 2016).



152 C. Volovat et al.

5.3.2.1.7 Inorganic Nonmetallic NPs

Mesoporous Silica NPs (MSNs)

MSNs are solid materials with a porous honeycomb-like structure containing
hundreds of empty mesopores capable of absorbing large quantities of bioactive
molecules (Slowing et al. 2008). Mesoporous silica materials can trigger various
interactions with biosystems being related to physical and chemical properties.
These properties are particle size, porosity, shape, and surface functionality of the
materials and contribute to biodegradation, biodistribution, and, more importantly,
their interaction with immune cells (Nguyen et al. 2019).

Mesoporous silica materials are degradable in physiological conditions via
hydrolysis in the silica matrix, being related to the profile of guest molecules, particle
size, surface functionality, concentration, porosity, and morphology.

Also, mesoporous silica can be released to body tissues and have a renal excre-
tion. Mesoporous silica materials are nontoxic because of its compound, the silicic
acid (Croissant et al. 2017).

Vallhov et al. demonstrated that the smaller particles and lower concentrations of
mesoporous silica affected human monocyte-derived dendritic cells MDDC to a
minor degree compared to the larger particles and higher concentrations, being
suggested the hypothesis of use in vaccines therapy terms of viability, uptake, and
immune regulatory markers, as a component of cancer vaccines (Vallhov et al.
2007). A mesoporous silica (XLMSNs+OVA+CpG-ODN) platform was developed
and successfully induced dendritic cells (DC) maturation with high levels of CD86
expression, and elevated secretion of cytokines (Kwon et al. 2017). MSNs were
found useful for the transportation of drugs and siRNAs, which induce the secretion
of cytokines (Guo et al. 2012).

Carbon Nanotubes (CNTs)

CNTs represent cylindrical models composed of carbon and showed multiple
potentials as tumor antigen nanocarriers. CNTs are multiwalled carbon nanotubes
(MWNTs) and were successfully used to deliver OVA and cytosine-phosphate-
guanine oligodeoxynucleotide (CpG) to antigen-presenting cells (APCs) (Hassan
et al. 2016). Also, photothermal ablation of primary tumors with single-walled
carbon nanotubes was demonstrated to stimulate immune responses in combination
with anti-CTLA-4 therapy, to prevent the process of metastasis (Wang et al.
2014a, b).

5.3.2.1.8 Exosomes (EXOs)

Exosomes are extracellular vesicles with the size of 30-100 nm released by the
majority of cells, with functions of communicators among cells to cargo lipids,
proteins, and nucleic acids among cells and organs, being involved in the progres-
sion of cancer. The biogenesis of exosomes takes place via the invagination of
plasmatic membrane to form endosomes. The maturation process of exosomes
happens during the intracellular moving of endosomes from the PM to the center
of the cell, with the participation of lipids and tetraspanins, with the formation of
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multivesicular bodies (MVBs) that carry mRNA, noncoding RNA, and DNA.
Exosomes are vesicles involved in various physiological and pathological processes
in the immune system; their roles are as activators, mediators, and modulators. The
secretion of exosomes is a characteristic of both lymphoid and myeloid lineages and
also of many types of cells involving TME and cancer cells, the so-called tumor-
derived exosomes containing growth factors and microRNAs (e.g., miR-423-5p and
miR-675) (Raposo et al. 1996; Yang et al. 2018). A combined use of GM-CSF
treatment and exosomes derived from ascites demonstrated the potency of combined
therapy in inducing tumor-specific cytotoxic T cell, which determined the responses
in a phase I trial. Another trial has demonstrated the safety and therapeutic efficacy of
DC-derived exosomes carrying tumor MAGE peptides, resulting in the improve-
ment of antitumor immunity and responses in patients with advanced non-small cell
lung cancer (Morse et al. 2005).

Exosomes loaded with IFN and MHC class I and II administrated in patients with
advanced lung cancer improved the NK cell-mediated antitumor response, with
prolonged overall survival of the patients in a phase II clinical trial (Besse et al.
2015). Chimeric antigen (CAR) T cell-derived exosomes also showed benefits in
controlling the immune-related adverse event such as cytokine storm syndrome and
in improving the clinical responses (Tang et al. 2015; Chen et al. 2019a, b, c).

5.3.2.1.9 Engineered Viruses

Virus-like Particles (VLPs)

VLPs have a 20-100 nm in size and are artificial nanostructures containing viruses
without the ability to replicate. VLPs can stimulate immune responses, being
immunogenic, and can target immune cells as an engineered vaccine. A
VPL-based vaccine using cowpea mosaic virus used as a delivery vehicle and also
as an immunotherapeutic agent was reported. VPLs specifically target TME cells and
tumor cells and can be used as a nanocarrier for tumor antigens and drugs (Smith
et al. 2013; Lizotte et al. 2016).

Oncolytic Viruses

Oncolytic viruses seem to be “the new wave” in designing nanotechnologies. These
viruses selectively infect tumor cells and determine cell lysis. The targets of these
treatments are to initiate a local change in TME and, also, to have a systemic effect
on tumor cells with minimum side effects (Guo et al. 2014).

The first-in-class FDA-approved oncolytic virus is talimogene laherparepvec,
used in advanced melanoma. Many clinical trials are underway with various
modified viruses, including adenovirus, poliovirus, reovirus, vaccinia virus, Seneca
Valley virus, parvovirus, coxsackie virus, measles, Newcastle disease virus, and
vesicular stomatitis virus (Fountzilas et al. 2017).
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54 A Possible Mathematical Model for Cellular
Communications Mechanisms

Intercellular communication has been closely scrutinized, because it enhances the
swapping of data between cells, either through direct contact or by employing
diverse secreted molecules. The secretion of extracellular vesicles (EVs) is a regu-
larly occurring process, because they have been detected in assorted biological
fluids, including blood. These are cell-derived constructions that make possible the
swapping of nucleic acids, lipids, and proteins between cells, having a function in
cell signaling (Colombo et al., 2014).

Cell communication and the microenvironment have a vital role in cancer devel-
opment and tumor growth (Kahlert and Kalluri, 2013). Exosomes are a category of
EVs secreted by most types of cells, playing a role in cell communication with other
nearby or distant cells, immune response, cancer developing, and organ-specific
metastasis (Liu et al., 2016). They are constructed of a phospholipid double layer and
their dimensions revolve around 50-100 nm in diameter (Wang et al., 2014a, b).
They embed all molecular constituents of a cell, such as DNA, miRNA, mRNA, or
proteins. Although exosomes have been initially defined 50 years ago (Wolf, 1967),
their fledgling role in cancer development as well as a potential biomarker has been
thoroughly studied for the past 10 years.

Regularly used models are most of the time based on the rather unreasonable
assumption that variables depicting the dynamics pertaining to any cellular complex
system are differentiable (Mitchell, 2009). As such, the successful employment of
the previously mentioned models should be viewed as sequential—that is, on
domains in which differentiability and integrability still hold true. The differentiable
and integrable mathematical processes are defective when the dynamics of any
cellular complex system encompass nonlinearity, as well as chaoticity. Nevertheless,
in order to explain such dynamics—but still being able to make use of differential
mathematical procedures—it is imperative to specifically insert the concept of scale
resolution into the description of physical variables and, furthermore, into the
expression of fundamental equations which control these dynamics. This implies
that that any variable controlled by space and time coordinates, in a classical sense,
will rely on both space and time coordinates as well as on scale resolutions in this
new mathematical sense (which is one of the non-differentiability and
non-integrability). To put it differently, instead of working with a variable explained
by means of a non-differentiable function, approximations of said mathematical
function will be employed, acquired by its mediation at diverse scale resolutions.
Subsequently, any variable purported to depict the dynamics of any cellular complex
system will operate as the boundary of a collection of mathematical functions, this
being non-differentiable in the case of zero scale resolution and differentiable for the
case of nonzero scale resolutions (Nottale, 2011; Mandelbrot, 1983).

This procedure of portraying the dynamics of any cellular complex system
involves the elaboration of new geometrical constructs and of new mathematical
models. For the said developments, the motion laws, which are invariant to spatial
and temporal transformations, are integrated with scale laws, which are invariant to
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the transformations of spatial and temporal scales. In the author’s view, the sought-
after geometrical construct can be established on the notion of a “multifractal,” and
the corresponding mathematical model can be established with the help of the Fractal
Theory of Motion, in a random but constant fractal dimension. In the case of
biological complex systems, the analysis of dynamics is comparable to the one
explained in Merches and Agop (2016).

The basic hypothesis of the considered model states that the dynamics of struc-
tural units of any cellular complex system can be described by means of continuous
but non-differentiable motion curves (multifractal motion curves). Said multifractal
motion curves display the trait of self-similarity in every one of their points, which
can be equated into a characteristic of holography (every part mirrors the whole).
Basically, the discussion revolves around “holographic applications of structural unit
dynamics pertaining to any cellular complex system” by means of multifractal
“regimes” of Riccati-type equations (i.e., depicting the dynamics of structural units
belonging to any cellular complex system by means of Riccati-type equations at
diverse scale resolutions).

As such, the Fractal Theory of Motion in the shape of scale relativity for
describing the communication mechanisms becomes operational through the scale
covariant derivative (Agop and Paun, 2017; Agop and Merches, 2019):
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In the previous equations, x’ represents the fractal spatial coordinate; 7 represents
I

the non-fractal time, with the function of an affine parameter of the motion curves; V
represents the complex velocity; VlD represents the differential velocity nondepen-
dent of the scale resolution df; V} represents the non-differentiable velocity depen-
dent on the scale resolution; D represents the fractal dimension of the motion curve;
D" represents the constant tensor connected to the differentiable-non-differentiable
transition, /11+ (4£) is the constant vector connected to the backward differentiable-
non-differentiable physical processes; and s (/111 ) is the constant vector connected
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to the forward differentiable-non-differentiable physical processes. A variety of
modes exists, and along with them, a diverse collection of definitions of fractal
dimensions: more specifically, the fractal dimension in the expression of
Kolmogorov, the fractal dimension in the expression of Hausdorff-Besicovitch,
etc. (Mandelbrot, 1983). By choosing one of said definitions and working with it
in the context of the cellular complex system dynamics, the value of the fractal
dimension has to be constant and random for the totality of the dynamical analysis:
as an example, it can be frequently found that Dy < 2 for correlative processes,
Dy > 2 for non-correlative processes, etc. (Mandelbrot, 1983).

Furthermore, acquiescing the functionality of the principle of scale covariance
(i.e., employing the operator (1) to the cell mass M, in the lack of any external
restraint), the dynamics can be described though the differentiable equation:
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This means that the temporal variation of the cell mass (0,M), the “fractal

~1
convection” of the cell mas (V 0;M), and the “fractal dissipation” of the cell mass

= -1
G (dr) (D f) D0,0,M ) achieve their equilibrium in any point belonging to the
fractal curve. Particularly, if the dynamics are expressed by stochastic processes of
Markov type (Mandelbrot, 1983), then:
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where / is a coefficient linked to the differentiable-non-differentiable shift and §%is
the Kronecker’s pseudo tensor:
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In these circumstances, the differential Eq. (5.3) is simply expressed:
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or by separating the cell dynamics on scale resolutions:

oM+ VaM=0 (5.7)

at differentiable scale resolution and
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~VLOM — 2(dr) () 0'oM =0 (5.8)

at non-differentiable scale resolution. Since the cell dynamics implies complex
dynamics (self-structuring, Fickian and non-Fickian-type diffusion, etc.) at a
differentiable-non-differentiable scale (i.e., at a mesoscopic scale), from (7) and
(8) by adding them, the fractal diffusion equations are obtained:

oM + (Vi — Vi) O:M = A(dt) (%) “oom (5.9)

Moreover, if the VID = V} condition is employed, which specifies the synchroni-
zation of the cell kinetics at the two scale resolutions (differentiable and
non-differentiable), (5.9) can be simplified as follows:
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In the one-dimensional stationary case, (5.10) becomes:
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In (5.12), 1 is a variable separation constant and my, is the residual mass of the
cellular structure unit. The solution of (5.11) may be expressed as:

M(x) = he'*o ¥+0) 4 fro=ilko x+0) (5.13)

where & is the complex amplitude, / is the complex conjugate of &, and @ is a phase.
As such, h, h, and @ mark each structural unit contained in a possible cellular system,
which exhibits, as a “fundamental property,” the same k.

Equation (5.11) has a “hidden” symmetry by means of a homographic group of
fractal type. Assuredly, the ratio € of two independent and linear solutions of (5.11)
is a solution of Schwartz’s differential equation of fractal type—for the classical
case, see (Cartan, 1951):

{e,x} = % (Z) —% <§>2 =2k} (5.14)
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The left part of (5.14) is invariant in relation to the homographic transformations

of fractal type:
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with a, b, ¢, and d real parameters (of fractal type). The relation (5.16), which is
corresponding to all probable values of said parameters, outlines the group SL
(2R) of fractal type.

As such, all the cellular structural units containing the same kg are in biunivocal
correspondence with the transformations of the group SL(2R) of the fractal type.
This enables the construction of a “personal” parameter of fractal type e for each
cellular structural unit, separately. Thus, as a “guide,” it is selected in the general
form of the solution of (5.14), which is expressed as

¢ =1+ m tan (kox + 0) (5.17)

Indeed, by means of /, m, and @, it is possible to depict any cellular structural unit.
In such a context, recognizing the phase from (5.17) together with the one from
(5.13), the “personal” parameter of multifractal type is expressed as:

h + he
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The fact that (5.17) is also a solution of (5.14) implies, by expliciting (5.16), the
group of SL(2R) fractal type:
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(5.19)

In group (5.19), the phase of k is moved, taking into account the amplitude of the
cellular structural units at the transition between the different structural units of any
cellular. This shows the fact that this group functions as “synchronization modes,” a
process in which both amplitudes and phases participate. Delaying amplitudes and
phases represents the usual “synchronization,” but in this model, it must be a
particular case.

The structure of group (5.19) is typical of SL(2R) one, which can be taken in the
standard form

[A1,Az] = Ay, [A2, A3] = A3, [A3,A1] = =24 (5.20)

where Ay, k=1, 2, 3 are the infinitesimal generators of the group. Due to the fact that
the group is simple transitive, these generators can be easily calculated as the
components of the Cartan coframe of multifractal type from the relation
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where " are the components of the Cartan coframe of fractal type, which can be
calculated from the system:

d(f) = %dx" = (5.21)
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As a consequence, both the infinitesimal generators and the coframe of the fractal
types can be calculated, by identifying the right-hand side of (5.21) with the standard
dot product of SL(2R) algebra of fractal type:
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It should be taken into consideration that, in (Agop and Merches, 2019), the
process does not work with the previous differential forms but with the absolute
invariant differentials:

y o dk ) l(dk dh+dh) o Kdh (5.26)
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The advantage of this depiction is that it highlights the connection with the
Poincaré representation of the Lobachevsky plane. Indeed, the metric here is as
follows:
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where g is a constant.
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These metrics minimize that of Poincaré in case when @” = 0, which describe the
variable 0 as the “angle of parallelism” (in Levi-Civita sense) of the hyperbolic plane
of fractal type—the connection of the fractal type (Agop and Merches, 2019). Now,
it is a favorable moment to return to homographic transformation of fractal type
(5.16). Taking into consideration the previously presented implications of this
transformation, each structural unit of any cellular system can be located with the
help of four homogeneous coordinates (a, b, ¢, d) or three nonhomogeneous
coordinates, when a parallelism of direction in Levi-Civita sense becomes functional
on the manifold induced by SL(2R) group of fractal type. Now, the simultaneity
condition of the free structural units of any cellular system can be distinguished
using different methods, from a Riccati equation of fractal type in pure differentials
of multifractal type (this can be named Riccati gauge of fractal type):

ag+b
ce+d (5-28)
which implies
de = 0'e® + o’e + &’ (5.29)

where w', w*, and w* are the components of the Cartan coframe of fractal type given
through the relations (5.25). Therefore, in order to describe the dynamics of any
cellular system as a succession of states of an ensemble of simultaneous structural
units, as it were, it is more than enough to have three differentiable 1-forms,
representing a coframe of SL(2R) algebra of multifractal type. Therefore, a state of
a cellular system in a given dynamics can be arranged in a systematic way as a metric
plane space, i.e., a Riemannian three-dimensional space of multifractal type.
According to this last idea, the geodesics of Riemannian space of fractal type are
given by particular conservations of equations of fractal type:

o' =d'dr, o* =d*dr, @® =d’de (5.30)

where a', a®, and a® are constant and 7 is the affine parameter of the geodesics, so
that, along these geodesics of differential Eq. (5.29), it represents an ordinary
differential of Riccati type:

de

de _ 12 2 3
o GE +2w°e+a (5.31)

Let us take into account the following form of the previous equation:

A%—8+238+AC:0 (5.32)

where
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1 a? a
—,B=-2—,AC=—— .
AC : (5.33)

A=—,

As long as the roots of the polynomial

P(e) = €* 4 2Be — AC (5.34)
can be written in the form
2
1 = B+iAQ e, = B — iAQ, @ :%— (g) (5.35)
the change of variable
_E— €
l—— (5.36)
converts (5.32) in
Z = 2i8z (5.37)
of solution
2(7) = z(0)e* (5.38)

As such, if the initial condition z(0) is easily expressed, then it is possible to
establish the general solution of (5.31), by writing the transformation (5.36) as
follows:

e+ reZiQ<T*TO)

= (5.39)

where r and 7, are two integration constants. Using (5.35), we can write this result in
real terms:

z=B8

+AQ- ( 2r sin [2Q(t — 19)] 1_ 2 )

1472+ 2r cos [2Q(t — 1p)] T + 12 +2r cos[2Q(t — tp))
(5.40)

In Fig. 5.1a,b, we can notice a periodic release of specific information to the cell
through a controllable period of time. In Fig. 5.1c,d, transitions of these dynamics
into more complex behaviors can be distinguished. It is possible to detect a damped
periodical scenario useful to control the high doses of the specific cell. The intermit-
tence communication of cells is based on a controllable modulating frequency
(which is selected as a control parameter). By controlling the concentration and



162 C. Volovat et al.

w=1
0 20 40 60 80 100
—r0.9 ' '
105 3
) 2
E 5
= 7.0 £
3 <
£
< 35
0.0
1.62
]
3 1.08
=
€ 054
<
0.00
0.192
8
2 0128 8
s =}
< 0.064 g
<
0.000
2.24
1,68
3 L1177
2 2
2112 =
2118
g €
0.56 <
0.59
0.00 0.00
15 184
o) 0 13.8
AU E
= S 92
£ 5 E
<
46
0
0.0
11 108
[0}
o °
E 74 2 nf
g g
£ 37 < 36
0 0
Time Time
<) d)

Fig. 5.1 Dependences with time of Rez for different values of the w and r: a) o = 1, r = 0.1; 0.5;
09;b)w=142,r=0.1;0.5;09;¢c) = 10,r=0.1;0.5;0.9; d) @ = 15, r = 0.1; 0.5; 0.9. Cell
dynamics through multifractal self-modulation at a non-differentiable scale in the form of period
doubling, quasi-periodicity, damped oscillations and intermittency (Ailincai et al., 2020)
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the frequency of information release, a modulated response to the system is finally
reached. In the fractal paradigm, various scenarios for the cell communication
mechanism have been acquired. These support in understanding the behavior of
cells that may benefit from such complex scenarios.

The 3D and 2D (contour plot) dependences of Rez on £2 and ¢, for a constant value
of r, are shown in Fig. 5.2. In a situation like this, the communication dynamics
involve multifractal self-modulation (at different non-differentiable scale resolutions
appointed by the maximum values of @) of the network dynamics. The comprehen-
sive evolution of the system is clearly presented in Fig. 5.2. There, the damped cell
communication scenario for various concentrations of information (controlled in the
model by ®) can be observed. For various non-differentiable scale resolutions,
different scenarios such as modulated information noticed in Fig. 5.2b were
obtained, while an intermittent communication can be observed in Fig. 5.2c. The
latter scenarios reveal complex communication scenarios and depend strongly on the
physical properties of the cell matrix and the biological communication conditions.
Finally, the model anticipates the presence of unwanted regimes with a quasi-chaotic
communication. It is worth paying attention to the fact that the complete chaotic
dynamic is never reached; instead, the adjustments made through the control param-
eter o will force the system in doubling period state. Thus, even when the dynamic
can apparently be chaotic, it can be very well rectified toward a more controllable
state.

5.5 Nanomedicine to Enhance Immunotherapy

The aims of nanomedicine in cancer are to improve the direct destroy of cancer cells
by enhancing the delivery of therapeutic drugs to tumors and metastases.
Nanomedicine formulations improve anticancer immunity and to synergize with
clinically established immunotherapeutics, existing some principal directions to be
explored: to target cancer cells, to target the tumor immune microenvironment
(TIME) and to target the peripheral immune system. Current cancer
immunotherapies are often based on the use of ACT, therapeutic cancer vaccines,
and monoclonal antibodies.

5.5.1 Cancer Cell Targeting

Nanomedicines can be used to enhance the induction of immunogenic cell death
(ICD). ICD represents a specific mode of cell death, associated with the releasing of
tumor antigens and danger-associated molecular model. This model is an important
trigger and enhancer of anticancer immunity. ICD can be induced by chemotherapy
(e.g., oxaliplatin, doxorubicin, cyclophosphamide) or radiotherapy, magnetic fluid
hyperthermia, photodynamic therapy, or other stimuli (Duan et al. 2019). The
nanoparticles designed for ICD provide a new way to enhance immunotherapy to
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Fig. 5.2 3D and 2D dependences of Rez for different values of w and ¢ at a constant value of: a)
wo=1,r=05b)w=12,r=0.5;¢c) w =27, r =0.5;d) @ = 46, r = 0.5. (Ailincai et al., 2020)
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be more efficient, by combining with ICD-inducing modalities, such as radio-,
photo-, and chemotherapy.

This immunogenic cell death (ICD) is characterized by the release of TAAs and
DMAPs, such as pro-inflammatory cytokines, which enhance the presentation of
TAAs to immune cells. ICD can promote immune-stimulatory or annihilate immune
suppressive effects for the activation, proliferation and tumor infiltration of T cells to
synergize with current immunotherapies. ICD is characterized by the translocation of
calreticulin (CRT) to the cell surface and releasing ATP and the high mobility group
box 1 protein (HMGB1) into the extracellular environment. These modifications
alert the immune system, resulting in the processing of tumor antigens by APCs and
generation of cytotoxic T cells, which eradicate tumors and metastases.
Doxorubicin-loaded liposomes (Caelyx/Doxil) can increase the efficacy of immuno-
therapy when combined (Rios-Doria et al. 2015). Doxil was combined with anti-PD-
1, anti-PD-L1, and anti-CTLA4 antibodies and tumor necrosis factor receptor-o
agonists. Doxil administration enhances CD80 expression on mature dendritic
cells in the tumor. Also, in monocytic and granulocytic myeloid cells, the CD80
expression was increased, suggesting that Doxil may induce these tumor-infiltrating
cells, activating an antitumor T cell response. It is supposed that Doxil through ICD
promotes the proliferation of DC and CD8+ T cells. It was demonstrated that the
immunopotentiation is higher for Doxil compared with doxorubicin administered in
the same dose. Similar results were reported with oxaliplatin-loaded PLGA
nanoparticles that induce ICD and are more efficient to activate the immune system
than free oxaliplatin (Zhao et al. 2016).

For tumor-targeted delivery, immunotherapeutic agents combined with photody-
namic therapy-radiotherapy were also used. It was demonstrated that pyrolipidic-
loaded inorganic nanoparticles enhance the immunoactivation and ICD induction via
photodynamic therapy when combined with anti-PD-L1. This ICD induction is
promoting the serum levels of cytokines as TNF-a, IL-6, and IFN-y and is also
improving the tumor infiltration of CD8+ and CD4+ cells, eradicating primary
tumor, and preventing lung metastasis through the abscopal effect (Duan et al.
2016).

Currently, it is confirmed that the abscopal effect represents a phenomenon,
whereby local radiotherapy induces a systematic immune response and the regres-
sion of metastatic lesions (Min et al. 2017) [316]. Blocking TGF-f activity during
radiation therapy was observed to generate CD8+ T cell responses to endogenous
tumor antigens in poorly immunogenic mouse carcinomas. It was supposed that
TGF-f activity is a major obstacle for radiotherapy to generate an in situ tumor
vaccine. The addition of anti-PD-1 and/or anti-CD137 antibodies extended survival
achieved with radiation and TGF-p blockade (Rodriguez-Ruiz et al. 2019). An
example of nano-radio-immunotherapy is the administration of lipid nanoparticles
loaded with rhenium-188 in combination with radiotherapy in gliomas at rats, being
found that the nanoparticles increased the levels of circulating cytokines and tumor-
infiltrating immune cells (Yang et al. 2017). Nanomedicines are inducing ICD
followed by improving the immunity by inhibiting the systemic lymphocyte toxicity,
which also potentiates the immunotherapy outcomes (Mathios et al. 2016). Also,
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nanoparticles can be locally injected or locally activated and can induce systemic
immunity via abscopal effect (Mulder and Gnjatic 2017). The European Medicines
Agency approved the intratumoral administration of NBTXR3 hafnium oxide
nanoparticles induced abscopal effect induced by radiotherapy for patients with
locally advanced soft-tissue sarcomas (Bonvalot et al. 2019).

5.5.2 Tumor Immune Microenvironment (TIME) Targeting

Immunosuppressive pathways and mediators are currently upregulated in the TIME,
by increasing infiltration of immunosuppressive cells, such as tumor-associated
macrophages (TAM) and MDSC, into tumors and by enhancing the levels of soluble
inhibitors, such as indoleamine 2,3-dioxygenase (IDO) and transforming growth
factor beta (TGF-f).

5.5.2.1 Targeting Antigen-Presenting Cells: Dendritic Cells (DCs)
Dendritic cells (DCs) are the most efficient APC in the body, being multifunctional
regulators of immunity. It is well recognized that antigen endocytosed by DCs is
presented by MHC class II molecules and restricted to CD4+ T cell presentation
(Naing et al. 2016). The antigen is released from the endosome into the cytosol
during the cross-presentation process and, through alternative pathways, presented
on MHC class I molecules to CD8+ cytotoxic T cells (Sallusto and Lanzavecchia
1994). Therapeutic cancer vaccines consist of tumor-associated antigens and
adjuvants that target dendritic cells (DCs) and tumor-specific T cells for enhancing
antitumor immunity.

Positive therapeutic outcomes in preclinical and clinical investigations by immu-
notherapy with exogenously manipulated DCs were reported (Kandalaft et al. 2013).
This was demonstrated by the first DC-based vaccine for cancer immunotherapy,
sipuleucel-T, approved by the FDA in patients with castration-resistant prostate
cancer.

Promising strategies in the targeted delivery of immunomodulatory factors to
DCs in vivo are the nano- and microparticles of various shapes, sizes, and
compositions (e.g., lipids, polymers, metals), which have been extensively studied
as vehicles for in vivo drug delivery (Moon et al. 2012). There were developed
strategies for APC targeting that bind surface moieties to increase retention and
uptake, to minimize off-target drug interactions, and to produce more potent immune
responses due to selectively taken up by APCs. Specific formulations with surface
moieties include a-CD40, a-DEC205, and a-CD11c¢ antibodies (Cruz et al. 2014).
Microparticles modified with antibodies against CD11c or DEC-205, highly
expressed on DCs, or functionalized with peptides P-D2 or RGD, targeting intercel-
Iular adhesion molecule-4 and surface integrins, respectively, were demonstrated to
be efficient in targeting DCs (Lewis et al. 2012). Targeting ligands have been also
studied to improve uptake by DCs. It showed that covalent coupling of a-CD40 to
PLGA nanoparticles containing antigens, Pam3CSK4 and poly(I:C), a TLR2 and
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TLR3 agonist, respectively, enhance selective DC uptake and activated DCs in vivo
(Rosalia et al. 2015).

RNA modulation was also involved in DCs targeting by nanomedicines. In a
study on specific delivery systems, SIRNA carried by liposomes was targeted to DCs
for silencing CD40 expression in vitro. Consequently, this co-stimulatory protein
has a low expression on the surface of DCs, leading to the generation of Treg cells
involved in immunosuppression (Zheng et al. 2010).

Also, in clinical testing for vaccines, low-immunogenicity lipid-based RNA
nanoparticles, designed for delivering mRNA into DCs, were developed. These
widely used cationic lipid materials (DOTMA, DOTAP, and DOPE) and anionic
mRNA form RNA-lipoplexes to ensure an efficient and precise DC-targeting mRNA
delivery without the need for molecular ligands, such as antibodies (Kranz et al.
2016).

Nanoparticle-mediated hyperthermia enhances various proinflammatory
cytokines within treated tumors and activated DCs. Combination therapy of mag-
netic nanoparticle-induced hyperthermia, radiotherapy, and a virus-like particle
adjuvant was found effective in dogs with spontaneously arising oral melanoma
(Hoopes et al. 2018).

5.5.2.2 Targeting Tumor-Associated Macrophages (TAM)
Nanomedicines are first collected in tumors through passive/active targeting
mechanisms and then are involved in local tumor immunosuppression mediated by
MDSC, TAM, and/or soluble inhibitors, reducing the immunosuppression in the
TIME with the increasing of the infiltration, maturation, proliferation, survival,
and/or activity of effector immune cells. TAM represents a major population of
immune cells with an M2-like phenotype in tumors, which have pro-tumoral
functions, reducing the infiltration of effector T cells (Prendergast et al. 2017). It
was demonstrated that ferumoxytol, a superparamagnetic iron oxide nanoparticle
formulation FDA-approved for the treatment of iron deficiency anemia, changes
M2-like TAM into M1-like TAM and inhibits the growth of primary and metastatic
tumors in the liver and lungs. In another study, it was found that cyclodextrin
nanoparticles are targeting a small-molecule toll-like receptor 7/8 agonist to
macrophages in the TIME, producing an induction of M2 to M1 polarization,
enhancing the efficacy of checkpoint-inhibiting immunotherapy (Rodell et al. 2018).
The increasing and macrophages M1 phenotype is followed by improving the
outcome of checkpoint blockade therapy were obtain with CaCO3 nanoparticles
functionalized with anti-CD47 antibodies. These nanoparticles were locally
administrated as an in situ forming hydrogel during tumor surgery, and it was
observed that CaCO3 reacted with protons in the TIME. The anti-CD47 antibodies
were incorporated also to block the “don’t eat me” signal on tumor cells (Chen et al.
2019a, b, ¢). Two immunosuppressive molecules from TIME, IDO, and TGF-f were
also targeted by nanoparticles.



168 C. Volovat et al.

5.5.2.3 Targeting Indoleamine 2,3-Dioxygenase (IDO)

IDO enhances the conversion of tryptophan to kynurenine, a T cell suppressing
metabolite (Prendergast et al. 2017). Small-molecule IDO inhibitors, incorporated in
nanomedicine formulations, were tested in preclinical and clinical trials, and synergy
between IDO inhibitor-loaded nanomedicines and photodynamic therapy and radio-
therapy was shown (Lu et al. 2016). An IDO inhibitor was combined with the ICD
inducer oxaliplatin in lipid-coated mesoporous silica nanoparticles, followed by
tumor reduction in a mouse model of pancreatic ductal adenocarcinoma (Lu et al.
2017). Another IDO inhibitor was used together with a peptide that blocked PD-L1
in peptide-based nanoparticles. This inhibitor effectively inhibited melanoma growth
in mice by stimulating anticancer immunity (Cheng et al. 2018).

5.5.2.4 Targeting TGF-{3

TGF-f was found to be an important immunosuppressive factor in tumors that slow
down the efficacy of checkpoint-inhibiting immunotherapy (Tauriello et al. 2018). A
small-molecule TGF-f inhibitor encapsulated in PEGylated immune-liposomes was
demonstrated to increase the expression of T cells triggering receptors CD90 and
CD45 (Zheng et al. 2017). TGF-p siRNA-containing nanoparticles, which slow
down TGF-f expression in tumors and synergized with cancer vaccination, were
developed (Xu et al. 2014).

5.5.3 Peripheral Inmune System Targeting

Immune compartments located outside of tumors, represented by the peripheral
immune system, are of increased interest in the last years for nanomedicines. The
peripheral immune system mainly composed of secondary lymphoid organs, such as
the lymph nodes and the spleen, is the place where antigen presentation and
cytotoxic T cell generation happen. These compartments are frequently impaired
in cancer occurrence and progression. Restoring the functions of the peripheral
immune system can be conducted by potentiation of antigen presentation and by
engineering T cells. Subcutaneous or intradermal administration of antigen-
containing nanoparticles drains in lymph nodes and is more efficiently processed
by APCs (Swartz et al. 2012). CpG conjugated in nanoparticles or loaded together
with peptide antigens in nanodiscs was administered in local injections targeting
lymph nodes for promoting anticancer immunity (Kuai et al. 2017). Also, molecule
toll-like receptor 7/8 agonist imidazoquinoline entrapped in nanogels or CpG
bounded with albumin was injected locally or systemically to reach the lymph
nodes. Such vaccines demonstrate the tolerability of the adjuvants (Nuhn et al.
2016).

Another antitumor vaccine was developed using PLGA nanoparticles containing
antigens, which were administrated targeting the lymph nodes to deliver the antigens
to DCs. A significant improvement of immunotherapy and the abscopal effect
ex vivo in tumor-bearing mice receiving oPD-1 immunotherapy treatment were
demonstrated (Molino et al. 2017; Min et al. 2017). Was reported a nanovaccine,
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including a mixture of an antigen and a synthetic polymeric nanoparticle, PC7A NP
which after administration deliver the antigens to antigen-presenting cells from
lymph nodes activating type I interferon via stimulator of interferon genes
(STING). This vaccine in combination with anti-PD-1 antibody demonstrated
great synergy, with a 100% survival over 60 days in a TC-1 tumor model (Luo
et al. 2017). Another strategy is generating cytotoxic T cells to replace APCs.
Synthetic APCs were designed based on polypeptide modified with anti-CD3
antibodies included in the polymer chain, which enhanced the expression of CD69
and promoted the production of IFN-y (Hammink et al. 2017). Were also prepared
magnetosomes as versatile artificial APCs based on clusters of iron nanoparticles
with a coat of leukocyte membranes including peptide-loaded MHC complex class I
and anti-CD28 antibodies as co-stimulatory ligands. These synthetic APCs produce
activation of cytotoxic T cells, and they promote tumor inhibition when administered
together with T cells in tumor-bearing mice (Zhang et al. 2017). Liposomes, loaded
with the cytokines IL-15 superagonist and IL-21 or cytokine-based nanogels
modulating the release of IL-15, were also studied (Stephan et al. 2010). Antigen-
encoding mRNAs, within a lipoplex, have already been studied in clinical trials, in
monotherapy or combined with immunotherapeutics (Kranz et al. 2016).

Talimogene laherparepvec (T-VEC) is a type I herpes simplex virus (HSV-1),
which preferentially replicates in tumor cells and is inducing a systemic antitumor
immunity capable of eradicating tumor at distance. Locally, T-VEC influences the
immunosuppressive tumor microenvironment, followed by the local release of
interferons, chemokines, pathogen-associated molecular pattern (PAMP), and
danger-associated molecular pattern (DAMP) factors. It enhanced the migration
and maturation of dendritic cells that migrate to regional lymph nodes and present
the antigens to CD4 and CDS cytotoxic T cells. Also, it influenced the evolution of
distant metastasis, lower than in injected tumor, this being the reason for combina-
tory T-VEC-checkpoint inhibitors (Kohlhapp and Kaufman 2016).

In clinical studies, OPTiM trial in stage IIIB-IVMla melanoma patients
demonstrated a 4.4-month longer median overall survival (OS) in patients receiving
T-VEC compared with GM-CSF, and an estimated 5-year survival for the T-VEC
arm was 33.4% (Andtbacka et al. 2019). A phase III trial of T-VEC/placebo plus
pembrolizumab in unresectable stage IIIB-IVMIlc melanoma is ongoing
(MASTERKEY 265; NCT02263508) (Long et al. 2015). Another phase II
randomized trial in resectable stage IIIB/C or IV melanoma treated with T-VEC in
neoadjuvant demonstrated a higher percentage of recurrence free (33.5%) and a
higher overall survival at 1 year (95.9%) (NCT02211131) (Dummer et al. 2019).

New viruses used in oncolytic vaccines are the following: coxsackieviruses,
Cavatak®; adenovirus, Telomelysin (OBP-301); reovirus: Reolysin®; and Newcastle
disease virus (Trager et al. 2020). Oncolytic virus therapy remains a promising
treatment option for locally advanced melanoma and also for metastatic disease in
combination with checkpoint inhibitors.
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Abstract

Despite a great progress in the field of conventional delivery of
immunomodulators, development of newer techniques and drugs is greatly
required due to intrinsic instability of immunomodulators in vivo, related toxicity,
and the required multiple administrations. Nanotechnology has emerged as an
effective platform for overcoming these problems associated with conventional
delivery of immunomodulators. Oral, intravenous, or inhalation route is used for
the administration of immunomodulators during lung diseases or cancer for the
release of different types of peptides, nucleic acids, as well as drugs to the site of
action, and this efficacy is further enhanced by implementation of nanotechnol-
ogy. Nanosized drug delivery systems create an occasion to enhance the cellular
and humoral immune responses. Nanoscale size particles also facilitate uptake by
the mucosa as well as gut-associated lymphoid tissue and the phagocytic cells that
efficiently recognized and present an antigen. A number of studies on various
types of lung diseases have shown advantages of inhaled and intravenous
nanomedicines by direct local deliverance of immunomodulators specifically to
the diseased cell. Other advantages of using nanoparticles include greater surface-
volume ratio and variable surfaces for specific delivering of the
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immunomodulators to specific cells. The focus of this chapter is on summarizing
the recent condition and developing way in such nanotechnology-based oral,
intravenous, and inhaled immunotherapy as well as the function of nanosize
particles as a carrier of immunomodulators, and depots for sustained
immunostimulation along with associated advantages and limitations.

Keywords

Immunomodulators - Nanotechnology - Immunostimulation - Nanovaccines -
Autoimmune diseases - Inhaled nanomedicines

6.1 Introduction

Immune system is ordinarily a complicated protective system in birds, fish,
amphibians, reptiles, and mammals (vertebrates) that protects them from disease-
causing or harmful agents. It is capable of producing different types of molecules
and cells that are able in recognizing and eliminating different types of unknown or
foreign cells (Manu and Kuttan 2009). Immune system modulation denotes some
alteration in the immune reaction which may participate in the involvement of
expression, induction, inhibition, or amplification of any kind of part or phase of
the immune response. Therefore, immunomodulator is a kind of substance that is
used for its effect on the immune system (Manu and Kuttan 2009). In targeted
populations, macrophages, dendritic cells (DCs), and monocytes are various sites of
immunomodulation. The first innate protective lines which are circulating or staying
in tissues and apoptotic cells and reimbursing pathogens are monocytes and
macrophages that are capable of changing over the stimuli of immune system and
discharging antigens and cytokines (Manu and Kuttan 2009).

Immunopharmacology is a division of pharmacology having intention to find out
new thing for immuno-modulator. On the basis of effects, the immunomodulators
are classified into two different types of classes that are immunostimulators and
immunosuppressants. The agent that prevents or suppresses response of immune
system is known as immunosuppressants, e.g., interferons, mycophenolic acid,
fingolimod, TNF-binding proteins, prolonged use of opioids, etc. These
immunosuppressants are used in transplantation of organ during that they prevent
rejection of transplanted organ and also used for treating autoimmune disorders
including psoriasis, rheumatoid arthritis, and crohn’s disease. Several cancer
treatments work as immunosuppressants. On the ther hand, those substance that
encourage or stimulate the response of immune systems by increasing or inducing
response of its constituents such as the recombinant cytokines, monoclonal
antibodies, monoclonal antibody cytokine antagonists, and granulocyte- macro-
phage colony-stimulating factors are known as immunostimulators (Roshan and
Savitri 2013)

A lot of immunostimulatory and immunomodulatory substrates like chemokines,
cytokines, and antibodies acting on specific sites are recognized for their vital
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function in response to the enhanced immunosuppressive cancer micromilieu.
Interleukin-2 is a type of cytokine that helps in growth of effector potential of
cytotoxic T lymphocyte (CTL) and has exposed scientific effectiveness in malignant
tumor. Renal carcinoma interleukin-2 has revealed improved effectiveness of some
other immunotherapies. Interleukin-21 and interleukin-18 are some kind of
cytokines which alter adaptive and innate immune responses via stimulation of
natural killer (NK) cells, CD4"/CD8" T cells, and B cells although as suppressing
Tyeg cells (Shukla and Steinmetz 2016). In biomedical research, specific targeted
treatments have been established to be a major challenge owing to the multifaceted
regulatory setup of the immune processes. In such sense, nanotechnologies propose
the opportunity for the precise release of the antigen or drug to the preferred cell
population and the co-discharge of the specific drugs along with plenty of immuno-
modulatory molecules. Moreover, nanotechnologies also decrease the chance of
degradation of drug and enhanced the half-life of drugs (Irvine et al. 2015; Shukla
and Steinmetz 2016).

Switching of immune system acts as the base of novel and promising treatment
for several severe diseases which are mainly prevalent of our time like HIV, diabetes,
and cancers. The contribution of nanotechnology is exponentially growing, and also
the modulation field is expanded due to development of treatments (Smith et al.
2013; Irvine et al. 2015). Physicochemical property and composition of nanocarriers
play a major role in influencing their interaction with immune cells. Incorporation of
key molecule in nanoform mimics the size of microorganisms that have involvement
in immune processes like cytokines, TLR agonists, etc., and thus the immune cells
take up these nanocarriers which further alter the responses of immune cells. Also,
the nanocarriers are capable of targeting the specific sites and can support the
favored entry of key molecules to precise population of immune cell (Getts et al.
2015; Gutjahr et al. 2016; Gause et al. 2017). Prominently, because of same kind of
nature, the nanotechnology proposes the chance to strengthen the preferred facet of
immunomodulation, which maybe (i) the initiation of immunotolerance against
immunoactive drugs and antigens, or (ii) the commencement of immune system to
produce an immune reaction in opposition to a definite disease-causing agent. The
first choice progresses the chances of scheming communicable diseases which don’t
react very well to conventional vaccines like HIV and tuberculosis, along with others
(Delany et al. 2014). The subsequent or second, and less explored, choice focuses
mainly on improving the vaccines for autoimmune diseases and developing the
targeted delivery of immunomodulators. The ability of nanotechnology to obtain
various response outcomes from its versatility, added through the definite mixture
and particular option of its molecular constituents and commencing physicochemical
characteristics of nanosystems (Serra and Santamaria 2015). A number of immuno-
modulatory and immunostimulatory molecules such as cytokines, chemokines and
targeted antibodies have been identified for their important roles in countering the
extremely immunosuppressive tumor microenvironment.
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6.2  Role of Nanotechnology in Delivery of Inmunomodulators

Immunomodulatory molecules loaded nanoformulations enhanced bioavailability
because of significantly extended movement of transporter carriers, in vivo stability
of against enzyme degradation and serum deactivation (Christian and Hunter 2012).
For example, i/v administration of liposomal formulation having cytokine like IFN-
o, IFN-g, TNF-a, or IL-2, increases the plasma residence time (Veen et al. 1998;
Petros and DeSimone 2010; Kedar et al. 2000). Moreover, intramuscular, intraperi-
toneal, intranasal, or subcutaneous administration of liposomal formulation with
cytokine and polymeric nanoparticles produces local depot and raises transit time
of their payloads at target site (Anderson et al. 1991).

Particularly, nanoparticles-based drug deliverance encourages their superior
retention and accumulation in tumor owing to enhanced permeability and retention
(EPR) effect, whereas diminishing off-target complete toxicity, thus enhancing
prospective for clinical transformation of these treatments (Maeda et al. 2013).
Building on enhanced permeability and retention effect-mediated nanoparticle habi-
tat and nanotechnology is experiencing progress in specific target and transformation
of immunosuppressive tumor micromilieu to accomplish efficiency of
immunotherapies. On the basis of passive tumor homing characteristics, lipid-coated
calcium phosphate nanoparticles (LCP-NPs) are utilized for immunomodulation by
transporting TGF-p siRNA and thus losing regulation level of immunosuppressive
TGF-f inside tumor. These nanoparticles are also utilized to release a wide spectrum
of anti-inflammatory triterpenoid-methyl-2-cyano-3, 12-dioxooleana-1, 9(11)-dien-
28-oate that considerably decreased T,., and MDSC’s populations. The deliverance
of immunostimulatory candidates by these are combined with vaccination strategy
by means of LCP vaccine releasing Trp 2 peptide (tumor antigen) and CpG oligo-
nucleotide (appurtenant) to DCs. This combinational therapy showed superior
efficiency over vaccine-only uses for treatments (Xu et al. 2014).

In the same way, EPR-mediated accretion of liposomes’ encapsulated polymer
nanogels is used for intra-tumoral release of IL-2 and TGF-f receptor-I inhibitor-
SB505124, resulting into inhibition of TGF-p receptors I and successive develop-
ment of NK cells and T cells (Park et al. 2012). Also, by transporting PD-L1 siRNA
via polyethyleneimine (PEI) liposomes, PD-L1 levels have been taped down fore-
most to immunosuppressive to immunostimulatory phenotype mutation in mouse
and human ovarian tumor-allied DCs with following augmentation in CD8" T cell
counts and enhanced survival of mice (Cubillos-Ruiz et al. 2009). Deliverance of
liposomal IL-2 also indicated improved therapeutic potential with decreased toxicity
in a mixture of other tumors as well as lung and liver cancers foremost considerable
diminution in tumor growth (Neville et al. 2001).

Immunostimulatory liposomes conjugated with interleukin-2 and anti-CD137
antibodies, targeted to activate T cells that direct to increase dosing of IL-2 inside
tumor when they were administered directly through  systemic
injections vs. intratumorally. The intratumoral administration outcome showed
elevated ratios of tumor-infiltrating CD8p T cells over regulatory T cells in conven-
tional melanomas (Kwong et al. 2013). Similarly, PEGylated liposomal preparation
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has been employed to inject agonistic anti-CD40 antibodies and TLR agonist CpG
compounds by means of intratumoral administration resulting in considerable inhi-
bition of tumor although appropriating sufficient amount to targeted sites and
decreasing systemic leakage, consequently diminishing off-target inflammatory
activity (Kwong et al. 2011). Likewise, intratumoral injection of CpG payloads on
gold nanoparticles has revealed to stimulate considerable macrophage and DC
infiltration in tumors, extensively influenced growth of tumor due to accumulation
of CpG oligonucleotides, and decreased enhanced dose necessities of i/v injections
(Lin et al. 2013).

Tumor-associated macrophages (TAMs) efficiently captured CpG oligonucleo-
tide and anti-IL-10 and anti-IL-10 receptor antisense oligonucleotides by their
encapsulation in nanocomplexes and changed macrophage phenotypes that resulted
in significant antitumor effect (Huang et al. 2012). To improve this, mannose-
modified polymeric micelles that contained acid-sensitive PEG modifications are
formulated for improving partition in TAMs over macrophages associated with the
mononuclear phagocyte system (Zhu et al. 2013). RGD-targeted single-walled
carbon nanotubes have revealed improved accumulation of tumor via administering
Ly6Chi monocytes in systemic flow (Smith et al. 2014). Mouse vascular endothelial
growth factor (VEGF)-siRNA with TAM-targeting M2 peptide were loaded into
gold nanoparticles that highlighted effectiveness of nanoparticles for targeting of
phagocytic cells for activation of immune, tissue, and cell specificity (Conde et al.
2015; Kumar et al. 2015). Self-assembled nanoparticles obtained from viruses
produce powerful immune response against weakly immunogenic tumors by rising
generation of inflammatory cytokines within activated leukocytes (Lizotte et al.
2016).

Particular cytokines, growth factors, or a mixture of immune stimulants for
making better immune cell functions can be delivered by nanoparticles. With recent
advancements in genome editing, nanoparticles can be employed for deliverance of
nucleic acids like siRNA to repair particular syndrome related genes in vivo (Smith
et al. 2017).

Biological interactions among antigen-presenting cells and T cells can be mim-
icked by liposomes or polymeric nanoparticles because these are designed to directly
mimic functions of immune cell (Gao et al. 2015). Modification of
polydimethylsiloxane (PDMS) particles with activation of antibodies to CD3 and
CD28 is valuable in improving growth of CD*" and CD®* T cells in vitro. Polymeric
nanoparticles of multivalent synthetic dendritic cells can increase the efficiency for
activation of T cells (Lambert et al. 2017).

The identification or engineering of nano-constructs for modulation of specific
steps along the immune activation cascade is a new area in this field of nanomedicine
such as ferumoxytol, a nanoparticle of iron oxide approved by USFDA for cure of
anemia. Its systemic injection drastically declined the growth of tumor (Zanganeh
et al. 2016). Fucoidan-dextran-loaded magnetic nanoparticles were modified with T
cell activators and PD-LI1 inhibitors to develop a multifunctional complex
(termedlO @FuDex3). Its magnetic core helps in vivo magnetic map-reading for
improving tumor targeting and minimizing off-target effect. Their surface was
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modified with polyethylene glycol and folic acid, for improving intracellular uptake
and capability to specific cell targeting (Chiang et al. 2018).

Nanodiscs loaded with immunogenic cell death (ICD)-inducing agent enhanced
their pharmacokinetic profiles and growth of cancer (Kuai et al. 2018).
Polyacrylamide-loaded NPs prepared by Birrenbach and Speiser are considered as
the primary proof for possibility of nanotechnology in vaccination. This vaccine
increased the response of immune cells against antigen IgG and tetanus toxoid when
administered subcutaneously to guinea pigs (Birrenbach and Speiser 1976). The idea
of “single-dose vaccines” was proposed by Preis and Langer which was based on
chance for controlling discharge of proteins through polymeric beads which lead to
the base for designing of nanovaccines and controlled antigen delivery systems
(Preis and Langer 1979).

Almeida et al. developed microspheres of tetanus toxoid with PLA for nasal route
with particle sizes of 500 and 800 nm. These nanosystems resulted in more and long-
acting anti-tetanus Ig titers because of their capability to cross the nasal epithelium.
They observed that tetanus toxoid-loaded chitosan nanoparticles resulted in an
increased mucosal and humoral response through intranasal route in contrast to the
administration of free antigens or the antigen associated with alum (Almeida et al.
1993). Various researches are carried out for development of nanotechnology-based
vaccines for a variety of diseases. Some of them are discussed below.

The recombinant hepatitis B surface antigen (rHBsAg) was developed for intra-
muscular route as a nanoformulation by its association with chitosan NPs. It resulted
in greater IgG immunogenic response than the control alum formulation (Prego et al.
2010). This antigen was also developed as chitosan-based nanocapsules for intra-
muscular administration (Vicente et al. 2013). Recent approach on layer-by-layer
strategy was employed for encapsulation of this antigen with protamine or
polyarginine (cationic polymer). After intranasal and intramuscular administration,
this formulation revealed greater balanced Th1/Th2 ratio (Correia-Pinto et al. 2015).
Currently, the most promising vaccine for development of an HIV vaccine is under
clinical trial that is based on the combination of antigen (Gag) and protease (Pro),
HIV gpl120 envelope recombinant gp adsorbed onto alum (Rerks-Ngarm et al.
2009). Kasturi et al. developed PLGA-based NPs by using adjuvants (TLR 4/7/
8 ligands) as with SIVsmE660 for intravaginal administration. This formulation
showed improved shield of nonhuman primates for 12th low-dose challenge (Kasturi
et al. 2017).

Carbon nanotube-polymer nanoparticle complexes were formulated as an APC
mimic proposal. In this, scientists attached on carbon nanotubes pMHC and
anti-CD28. These were associated with interlukein-2 and magnetite coloaded
PLGA nanoparticles. The developed complex facilitated magnetic separation
subsequent to incubation with T cells (Fadel et al. 2014; Zhu et al. 2017a, 2017b).
A variety of nanovaccines employed for cancer treatment are enlisted in Table 6.1.
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Table 6.1 Nanovaccines for cancer treatment

Formulation

Functionalized PLGA-PEG
nanoparticles, PLGA
nanoparticle, DOTAP-coated
PLGA nanoparticles
Nanodisc

Nanoparticles of PEG-b-PC7A
copolymers

Microrods of PEI-absorbed
mesoporous silica
Nanocapsules of self-
assembled intertwining
CpG-stat3 shRNA and PPT-g-
PEG copolymers
Nanoparticles of BI16F10 cell
membrane-coated PLGA

Liposomes of dying cancerous
cells modified with hyaluronic
acid

Nanoparticles of
superparamagnetic FeO,
Fucoidan, and aldehyde-
functionalized dextran
Nanoparticles of hydrogel of
hexapod such as CpG-gold

6.3

Remark

Tumor-derived
protein antigens
liberate in
radiotherapy
Neoantigen
peptide, CpG

Antigen peptide
BI16F10
Neoantigen
peptides, CpG
Neoantigen
peptide, CpG,
stat3shRNA

Tumor cell
membrane, CpG

Dying cancerous
cells, CpG

Anti-PD-L1, anti-
CD3, anti-CD28

CpG

Mechanism

Increases abscopal effect,
associated with anti-PD-1

Mimics high-density
lipoprotein, associated
with anti-PD-1 and anti-
CTLA-4

Associated with anti-PD-
1

Combined with anti-
CTLA-4

Associated with anti-PD-
1 and anti-CTLA-4

Associated with anti-PD-
1

Combined with
photothermal therapy

Delivery for Inmunomodulators
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Reference

Min et al.
(2017)

Kuai et al.
(2017)

Luo et al.
(2017)
Liet al.
(2018)
Zhu et al.
(2017a,
2017b)

Kroll
et al.
(2017)

Fan et al.
(2017)

Chiang
et al.
(2018)

Yata et al.
(2017)

Advantages of Nanotechnology over Conventional Drug

Nanoformulations of immunomodulators illustrated various benefits in increasing
therapeutic window. Encouragingly, nanotechnology helps in achieving the desired
therapeutic effect by solving the existing issues. Various investigations have
demonstrated that nanoplatforms’ several beneficial evident features are as follows

(Feng et al. 2019):

* Co-administration of adjuvants and antigens to same antigen-presenting cells
(APCs) or intracellular compartments and extended t1/2 of bioactive cargo
molecules by prevention of enzymatic degradation in systemic circulation.

* Size-dependent EPR effect consequences in higher growth in tumor tissues.

» Target to specific tissues/cells via surface modifications.

» Safe trafficking and smart drug discharge via stimuli-sensitive behavior.
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Fig. 6.1 Advantages of nanotechnology-based drug delivery systems

e Lessening of accumulation at off-target organs and tissues results in higher
tolerant doses of drugs.

e Activation of potent T cell and surface coupling of both antigens and
costimulatory molecules can be done by engineering artificial APCs (aAPCs).

* Microneedle patches can be employed for diversified drug delivery routes like
intranasal or subcutaneous.

» Engineered nanoparticles can act as intrinsic immunomodulator.

Opsonization is avoided by PEGylation of nanoparticles. These nanoparticles are
filtered through mononuclear phagocytic system and can improve deposition of drug
within tumor through active and passive targeting. EPR effect occurs for accumula-
tion and absorption of these infiltrating nanoparticles inside tumors. These
nanoparticles actively target the cancer cells through binding of surface moieties
and a ligand/receptor manner. Various researches based on nanoformulations have
revealed considerable progress in condition of the patients, indicating a drawback of
the EPR effect. A valuable benefit of these formulations is controlling over their
transport kinetic that helps in deliverance of antigens to specific/target site (Petros
and DeSimone 2010). The various benefits of nanotechnology-based drug delivery
are summarized in Fig. 6.1. Descriptions of different diseases in which
immunomodulators are used are listed in Table 6.2.

Mechanism—The first one is the development of nanocarriers that can act either
by passive or active targeting of immune cells. The second one is use of
immunomodulators. These molecules transform the response produced for a specific
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Table 6.2 Treatment options for selected autoimmune diseases (Dacoba et al. 2017)

Syndrome

Multiple
sclerosis

Type

1 diabetes
Rheumatoid
arthritis

Inflammatory
bowel disease

Systemic
lupus
erythematosus

IM Intramuscular, /V, Intravenous, SC Subcutaneous

Treatment
IFN-B

Glatiramer acetate

Natalizumab
Immunosuppressants
Insulin injection
NSAIDs
Corticosteroid

TNFa antagonists
Disease-modifying

antirheumatic drug
Amino salicylate

Corticosteroid

TNFa antagonists
Antibiotic
NSAIDs

Antimalarial drugs

Corticosteroids

Immunosuppressive
agent

Route
IM/SC

Ne

v
Oral/lV
SC

Oral
Oral/
intra-
articular

SC/v

Oral/
SC/IV

Oral

Oral

sciv

SC/v

Oral

Oral

Oral

Oral

Sc/iv

Mechanism of action (MOA)

In the brain, it balances expression of
pro-inflammatory as well as anti-
inflammatory agents and declines the
number of inflammatory cells crossing the
BBB

Strong binding to major histocompatibility
complex molecules that act competitively
for antigens of myelin

Inhibition of immune cell extravasation
and inhibition of a-4 integrin

Inhibition of immune responses at various
levels

Decline in glucose level

Prevent the production of prostaglandins
and thromboxane

Suppression of immune response and
regulation of inflammation related genes

Inhibition of TNFa or its receptor
Slowed down progression of diseases by
various processes of biomechanics
Expression of gene changeover and
inhibition of COX and NF-kf and its
downstream signals

Inflammation and immune response
suppression related genes are regulated
Suppression of immune responses at
various levels

Inhibition of TNFa or its receptors
Bacterial concentration decline in the gut
lumen, intestinal microbiota composition
alteration

Prevent the production of prostaglandins
and thromboxane

Alter lysosome stability, suppressing
antigen presentation, prevent synthesis of
PGs and cytokine, affect toll-like receptor
signaling

Inflammation and immune response
suppression related genes are regulated
Inhibition of immune responses at various
levels
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immune cell by activating various receptors that result in cellular or humoral
immune responses (Dacoba et al. 2017).

The immune system contains circulating cells (dendritic cells, macrophages, and
monocytes) and more static cells (B and T lymphocytes). These cells target the
desired type of response by using specific immunomodulator.

Nanotechnology is beneficial for improving the pharmacological potential of
cancer immunotherapy chiefly by three aspects (Feng et al. 2019):

*  When nucleic acid is used, antigens and adjuvants are protected.

e Proficient deliverance to APCs and beginning of antigen-specific immune
responses.

* Reprogramming of TME.

6.4 Different Routes of Administration
6.4.1 Mucosal Administration

This route is best for vaccination and inducing mucosal and systemic immune
responses. M cells are associated with mucosa-associated lymphoid tissues
(MALT). Activated T and B cells from mucosal are very important for vaccination
via mucosal (Brandtzaeg 2007). Moreover, tolerance production can be accessed via
administration of nanocarriers for this route (Kim et al. 2002).

6.4.2 Parenteral Administration

The main routes of vaccination are i/m, s/c, and i/v. Formulations of NPs can be
administered directly to the nearby lymph node relying upon physical and chemical
features and composition of nanoparticles. From literature review, it is summarized
that formulations of particle size up to 100 nm can be easily drained to the nearby
lymph node. However, particles of diameter less than 10 can be directly transferred
to blood capillaries (Kourtis et al. 2013). Several researchers have demonstrated that
the drainage of NPs with negative charge drains to LN is aided by their repulsive
behavior with extracellular matrix (negative charge) that helps in their lymphatic
transportation (Rao et al. 2010). However, after parenteral administration of cationic
nanosystems, formation of a depot occurs (Vicente et al. 2014).

Generation of a tolerogenic effect by antigen-loaded nanocarriers occurs through
intravenous (I'V) administration (Hunter et al. 2014).

6.4.3 Oral Spray Immunization

Globally, development of noninvasive needle-free vaccines is an enormous task
done by health division formulators and scientists. Avtushenko et al. (1996)
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developed a vaccine for a non-replicating viral vector (tonsils of rhesus macaques)
by spraying, and they named this method as tonsillar immunization. This results in
the cellular and humoral immune responses that are stimulated by simian immuno-
deficiency virus (SIV) antigens (Avtushenko et al. 1996). It was found that the
reduced level and protection level of viral RNA are nearly equivalent after systemic
immunization of the vaccine. For systemic and respiratory tract infections, oral
immunization with viral vectors is a novel strategy to consider to evade the issues
related with syringes and needles. Furthermore, these viral vectors can be employed
for deliverance of vaccines to mucosal lymphatic tissues, removal of epithelial
barrier, and prevention of induction tolerance. In the same way, Ankara vaccines
for a subtopical delivery into palatine tonsils of rhesus macaques via needle-free
injections apparatus induced a significant response and inhibition of viral burden
post challenges of SHIV89.6P (Amorij et al. 2007).

6.4.4 Nasal Delivery of Vaccines

The nanocarriers have found considerable advantages for mucosal vaccine delivery
in the nanotechnology sector. Indeed, the majority of vaccines containing protein
antigens and DNA vaccines are highly unstable in biological milieu. They require
protection against degradation and designing of suitable antigen carriers to tackle
their poor crossing capability for biological barriers (Hobson et al. 2003). For nasal
delivery of vaccines, polymeric nanocarriers are the best alternative/solution for
these types of issues. Very weak immune response is induced via nasal delivery of
naked plasmid-DNA vaccines because of their efficient and considerable physical
and chemical defensive barrier (Zhao et al. 2014). Chitosan-based NPs are employed
for enhancing immunogenicity by mucosal deliverance of DNA vaccines. Recently,
chitosan NPs were employed for pneumococcal DNA vaccine carrier. Xu et al.
(2011) evaluated efficiency of chitosan-encapsulated psaA-NPs that immunized the
BALB/c mice via intranasal route. They observed that the cellular, systemic, and
mucosal immune responses were improved with chitosan-encapsulated psaA-NPs
but decreased the nasopharyngeal carriage in the immunized mice. These findings
suggest utility of nasal delivery for deliverance of DNA vaccines against pneumo-
coccal infections (Xu et al. 2011). Moreover, there are various nanovaccine delivery
systems that are in clinical phase as shown in Table 6.3. At present, autoimmune
disorders are major areas of focus due to their fatal impact on the threat of life.
Various nanoformulations approaches have been developed for these disorders as
enlisted in Table 6.4.
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6.5 Overcoming Antidrug Antibodies: The Next Challenge
in Imnmunomodulation

Biodrugs or biotherapeutics are biological products. These are the recent trending
vaccines in this era. The recombinant DNA technology was introduced in the 1970s
that launched recombinant insulin in the market which was the base for the utility of
biomolecules as therapeutic agents. Biomolecule-based therapies are already in use
and also in trials clinically for a number of diseases that show the great possibility of
their biotherapeutics. The undesired immunogenicity during preclinical and clinical
trial is the major safety concern for their development. Prolonged immunosuppres-
sive treatment is the most frequent therapy for “Pompe disease,” a lysosomal storage
disorder. However, this treatment can increase the chances of infections and other
complications because of systemic immunosuppression (Petros and DeSimone
2010).

6.6 Pros and Cons of Nanotechnology-Based
Immunotherapies

T-VEC (immunostimulatory) is a nanotechnology-based platform that has been
clinically approved. It is an attenuated version of herpes simplex virus. It particularly
divides in tumor cells and shows anticancer potential by stimulating cytokine
GM-CSF. This product is available in injectable dosage form that has been accepted
for treatment of melanoma patients (Zhang 2015). Formulation of nanoparticles
results in undesirable immunotoxicity (due to production of IL-6 and TNF-a and
inflammasome response), adverse interactions, and deposition at targeted sites after
long-term use. For example, nanoparticles of mesoporous hollow silica and carbon
nanotubes cause immunotoxicity, harm the liver, and activate Kupffer cells (Liu
et al. 2012). In the same way, nanosize TiO, particles result in oxidative stress,
activation of neutrophil, and inflammation in lungs (Shvedova et al. 2005; Moon
et al. 2010).

6.7 Conclusion

During the last two decades, nanotechnology has exposed vital prospective in the
immunotherapeutic field. It can be employed for the modulation of various immune
processes that will show good results in vitro and in vivo. In this chapter, a variety of
nanotechnology-based formulations have been discussed for activating the immune
system and generating tolerance. In such cases, physicochemical properties and
composition of formulations play a crucial importance for desired immune response.
Use of a particular subset of immune cells can increase specific target by using
ligands for specific cell receptors. For the polarization of immune response, use of
immunomodulators is a valuable strategy.
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Some of the nanoformulations (nanotechnology-based approaches) are currently
available in the market. And a variety of nanoformulations for deliverance of
vaccines and tolerance generations are being tested in the clinical trial phases.
Nanoformulations are being developed for the treatment of some of the most
threatening illnesses. There is rapid development in development method and
designing strategies in this field during the last decade.
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Abstract

A well-functioning immune system of the host body plays critical role in the
upkeep of regular biological and immunological functions as well as inner milieu.
Stable immunity augments protection mechanism against infection, diseases and
undesirable pathogens to elude hypersensitivity reactions and immune-related
diseases. Immunomodulation is a very wide word which denotes to any
alterations in the immune response and may comprise induction, manifestation,
magnification or inhibition of any part or stage in the immune response. Recently,
the curiosity towards the immune system increased as important objective of
injuriousness due to revelation of compounds, medications and environmental
toxins. Phytochemicals are naturally occurring compounds with bioactive poten-
tial to modulate the immune system, such as alkaloids, polysaccharides, lectins,
glycosides, phenolic compounds, flavonoids, anthocyanins, tannins, saponins,
terpenoids and sterols. The precise mechanism by which phytochemicals imple-
ment anticancer roles is still a matter of investigation. This chapter would thus
focus on the various phytochemicals as a source of natural immunomodulators
and their role in cancer chemoprevention.
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7.1 Introduction

Conferring to the National Center of Health Statistics, cancer was the perpetrator of
approximately 600,000 deaths in 2016 in the USA. It is by far one of the most
diverse illnesses to treat. So far, the cancer problem and the disappointment of
conservative chemotherapy to attain a decrease in the death rates for collective
epithelial malignancies, such as cancer of the lung, colon, breast, prostate and
pancreas, shows an acute need for fresh methodologies to govern cancer develop-
ment (Takuji et al. 2012). One of these tactics is chemoprevention, which is a
pharmacological methodology to involvement with the objective of arresting or
retreating the course of multistep carcinogenesis. The carcinogenic process may be
compelled by mutation(s), and trailed by preceding modifications in phenotypic,
epigenetic and genetic events. Pharmacologic inflection of these governing
pathways, comprising the actual use of drugs, micronutrients and non-nutrients
that hunk mutational injury of DNA, thus deals great prospective for cancer
hindrance.

There is a strong relation between dietary intake or dietary habits and cancer
growth in man (Russo 2007). Nutritive risk reasons have graded higher than
smoking and much higher than pollution or industrial exposures in their relationship
with loss due to cancer. However, a quantity of combinations naturally befalling in
foods, predominantly anti-oxidative compounds in plants, have shown ability as
prospective chemopreventive agents (Peng et al. 2011). These phytonutrients
include the yellow, orange and red carotenoid pigments that have just been explored.

In latest years, natural compounds called “phytochemicals”, which are existent in
fruits, vegetables and plants, have established distinct consideration due to their
probability to inhibit with tumour formation and enlargement. Several of these
phytochemicals are being used in chemoprevention approaches.

Phytochemicals are actually the non-nutritive plant chemicals’ bioactive
ingredients that endure or endorse health and befall at the intersection of food and
pharmaceutical productions. They have either self-protective or illness defending
properties. They are supplementary nutrients and primarily created by plants to
provide them defence. Such constituents may array from secluded nutrients, dietary
supplements and exact regimens to genetically engineered designer foods, herbal
products, processed foods and beverages.

Phytochemicals also unveil strong biological actions such as antioxidant, anti-
inflammatory and immunomodulatory when they are directed by the persons. The
prospective activities exerted by these agents upkeep the controlling of assured long-
term diseases (cancer, cardiovascular diseases) (Koche et al. 2018; Xiao and Bai
2019). In the last two spans, phytochemicals have been normally considered by
using few facts of in vivo and in vitro mock-ups, which provided the favourable
effects of these compounds in improving the numerous ailments and improving the
quality of lifespan.

Phytochemicals are largely defined as polyphenols, flavonoids, isoflavonoids,
anthocyanidins, phytoestrogens, terpenoids, carotenoids, limonoids, phytosterols,
glucosinolates and fibres. They have remarkable effect on the healthcare scheme
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and may offer therapeutic health aids including the preclusion and/or management of
ailments and biological maladies. The use or ingestion of carotenoids, such as
lycopene, alpha-carotene and beta-carotene, leads to decrease in the threat of cancer,
such as breast and prostate tumours. For breast cancer, beta-carotene even lessens the
threat of relapse. The usage or ingestion of soybean isoflavones has managed a
decline in the threat of lung, prostate, colon (in women only) and breast cancers,
although this has been governed by menopausal and oestrogen receptor prominence.
The usage or intake of isothiocyanates and indole-3-carbinol also seems to decrease
the risk of cancer, such as breast, stomach, colorectal, or prostate tumours. The
acceptance of a diet rich in phytochemicals is related with an alteration of cancer
threat (Ruiz and Hernandez 2016).

Popular foods, such as whole grains, beans, fruits, vegetables and herbs, comprise
these phytochemicals. Midst these, fruits and vegetables add to the substantial
sources of phytochemicals. These phytochemicals, whichever alone and/or in mix-
ture, have major beneficial prospective in curing numerous conditions. The pertinent
health profits are based on science and principles, for fitness rights, functional foods
and occurrence of certain phytochemicals. They play affirmative pharmacological
properties in human well-being as antioxidants, antibacterial, antifungal, anti-
inflammatory, anti-allergic, antispasmodic, chemopreventive, hepato-protective,
neuroprotective, hypo-lipidemic, hypotensive, diuretic, CNS stimulant, immuno-
modulator, carminative and analgesic; prevent aging, diabetes, osteoporosis, DNA
damage, cancer and heart diseases; induce apoptosis, and guard from UVB-induced
carcinogenesis (Singh et al. 2015). Cancer chemoprevention comprises the usage of
different natural or biologic agents to impede or inverse tumour progress. Initial
studies have shown that these compounds are able to disturb cell production and cell
cycle regulation, and usually contribute in multiple signalling paths which are often
disturbed in tumour instigation, production and spread (Howes and Simmonds
2014).

Epidemiological and pre-clinical data endorse that numerous probable
phytochemicals and dietary compounds embrace chemopreventive properties, and
in vitro and animal studies back that these compounds may control signalling paths
involved in cell multiplying and apoptosis in malformed cells, augment the host
immune system and alert malignant cells to cytotoxic agents. Regardless of encour-
aging results from investigational studies, only a restricted number of these
compounds have been confirmed in clinical trials and have shown inconstant results
(Kotecha et al. 2016).

7.2  Phytochemicals as Inmunomodulator

A stimulus of the body’s defence is anticipated for certain people such as immuno-
compromised patients including cancer patients, whereas dominance of the immune
response is looked-for others such as transplant receivers or patients with
autoimmune or inflammatory diseases (Venkatalakshmi et al. 2016). Clinically,
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immune-modulants are distributed in three key classes:
immuno-stimulant, immunosuppressant and immunoadjuvant.

Immuno-stimulants are used to help the immune responses against numerous
contagions (autoimmunity, allergy, cancer) by quickly triggering both innate and
adaptive immune systems. Apparently, these agents display prophylactic action in
the healthy persons by exciting the primary immune response and act as an immu-
notherapeutic agent in patients having primary and secondary immunodeficiency
(Clement et al. 2010; Naik and Hule 2009).

Immunosuppressants are used to subdue the pathological immune reactions in
autoimmune diseases, hypersensitivity, graft-versus-host-rejection, graft rejection
and other immune-mediated ailments. They have the power to lessening the potential
of human body which reject the transferred organs, for example, the kidney, liver
and heart; hence, these molecules can also be termed as antirejection agents (Yatim
and Lakkis 2015)

Immunoadjuvants are used to smooth the immune system by cumulative
magnitudeand extent and stimulation of antigen-specific immune response while
they do not contain any unusual antigenic activity. These molecules are mainly
directed in amalgamation with definite vaccine antigen. In the lack of vaccine, these
constituents do not show any antigen activity (Petrovsky 2006)

Inflection of the immune system can be spoken through a range of specific and
non-specific tactics. Many agents of synthetic and natural origin have stimulatory,
suppressive and controlling activities. Plants are the biosynthetic workroom of
phytochemicals.

Natural compounds with probable immune-stimulating activity can be
categorized as high- and low-molecular compounds. Terpenoids, phenolic
compounds and alkaloids lead among low-molecular immunomodulatory
compounds, while polysaccharides lead among high-molecular weight compounds
(Venkatalakshmi et al. 2016).

The natural foods, spices and medicinal plants are good sources of antioxidants.
Compounds with strong antioxidant activity are also worthy immunomodulators.
The immune-modulating activity of numerous phytochemicals such as alkaloids,
polysaccharides, lectins, glycosides, phenolic compounds, flavonoids, anthocyanins,
tannins, saponins, terpenoids and sterols also explicates the role of antioxidants as
immunomodulators and in cancer chemoprevention.

7.2.1 Alky3esaloids as Inmunomodulator

* Piperine (Piper longum) increases total WBC count, bone marrow cellularity,
total antibody making.

» Berberine (Hydrastis canadensis) substantially decreases plasma TNF-o, IFN-y,
and NO levels.

e Tetrandrine (Stephania tetrandra) destroys cytokine production and impedes
NF-kB facilitated release of inflammatory factors.

e Sinomenine (Sinomenium acutum) grafts persistence.
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7.2.2 Glycosides as Inmunomodulators

Glycosides are the plant secondary metabolites comprising a sugar moiety that is
attached with non-sugar portions. These metabolites perform numerous beneficial
activities in animals and humans; however, many plants store these substances in
inactive form which can be stimulated by the help of enzymes existent in the body
(Brito-Arias 2007). Pharmacologically active glycosides contain anthocyanin and
anthracene. These compounds are primarily involved in the stimulus of central
nervous system, cardiac system and immune system. Furthermore, glycosides also
show strong antimicrobial action (Nenaah 2013).

Pandey and co-workers studied the immunosuppressive action of eupalitin-3-
O-p-p-galactopyranoside (Bd-I) obtained from Boerhaavia diffusa root. Peripheral
blood mononuclear cells (PBMCs) were treated with or without
phytohaemagglutinin (PHA) and Bd-I. Treatment of Bd-I displayed a noteworthy
inhibition of TNF-a and IL-2 and production of human PBMCs (Pandey et al. 2005).
Chiang and colleagues analysed the immunomodulatory effects of aucubin derived
from Plantago major on PBMCs. ELISA assay was done to analyse the expression
of interferon-gamma (IF-y). Data revealed that management of aucubin enhanced the
proliferation of lymphocytes and formation of IL-y. Thus, aucubin can be a strong
immune-stimulatory agent (Chiang et al. 2003).

Examples of some glycosides as immunomodulators are as follows:

* Isorhamnetin-3-O-glucoside (Urtica dioica) in vitro immunomodulatory
prospective.

* Eupalitin-3-O-f-D-galactopyranoside (Boerhaavia diffusa) subdued
PHA-stimulated production of peripheral blood mononuclear cells IL-2 and
TNF-a.

* Aucubin (Plantago major) augments lymphocyte proliferation and excretion of
IFN-y.

e Mangiferin (Mangifera indica) boosts the production of IgG1 and IgG2b.

7.2.3 Phenolic Compounds as Inmunomodulators

Polyphenols are the naturally derived ancillary metabolites which are extensively
found in fruits, vegetables, beverages and cereals. Dependent upon their antioxidant,
antimicrobial and anti-inflammatory activities, polyphenols have proved notable
effects in many prolonged sicknesses such as neurodegenerative diseases, diabetes
and cardiovascular diseases (Mohamed 2014). Presently, an extensive diversity of
these molecules are presenting immunomodulatory activity by changing develop-
ment of nitric oxide and eicosanoids and constraining pro-inflammatory cytokines
and gene expressions (Keservani et al. 2010; Chuang and Mclntosh 2011).
Kalsum et al. stated the immunomodulatory efficiency of Propolis trigona extract
by using Sprague-Dawley rats’ model. Treatment of ethanolic extract of propolis
amended the formation of nitric oxide, phagocytic index and IgG antibodies,
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accordingly improving the immune responses (Kalsum 2017). Plantago species
have been broadly used in the therapy of inflammation, infection and cancer. Chiang
et al. assessed the immunomodulatory activity of five phenolic compounds extracted
from Plantago major on human PBMCs. ELISA and BrdU immunoassay were done
to analyse the action of phenolic chemicals on cytokine expressions. Data discovered
that treatment of aucubin, ferulic acid, vanillic acid, p-coumaric acid and chlorogenic
acids considerably increased the activity of lymphocyte proliferation and making of
IFN-y. Ellagic acid derivative from Punica granatum presented both anti-apoptotic
and antiproliferative activities against the HT-29 and HCT116 colon cancer cell lines
when treated with a dose of 100 pg/mL (Seeram et al. 2005).

Examples of some polyphenols with immunomodulatory activity are as follows:

* Gallic acid propagates B-cell and inhibits mast cell degranulation.

» Ellagic acid (Punica granatum) has anti-proliferative and antioxidant activities.

¢ Chlorogenic acid (Plantago major) increases lymphocyte proliferation and excre-
tion of IFN.

e Ferulic acid (Plantago major) boosts lymphocyte proliferation and excretion
of IFN.

* P-coumaric acid (Plantago major) improves lymphocyte proliferation and excre-
tion of IFN.

e Vanillic acid (Plantago major) augments lymphocyte production and excretion
of IFN.

e Curcumin (Curcuma longa) improves bone marrow cellularity, o esterase posi-
tive cells and phagocytic activity hinders IL-2 expression and NF-kB.

7.2.4 Flavonoids as Immunomodulators

Flavonoids are considerably dispersed polyphenols found in plant-based foods or in
beverages. Above 8000 flavonoid compounds have been recognized which are
mostly present in grapes, berries, cranberries, cherries and plums. They are found
together in free-state as well as in glycoside form (Marzocchella et al. 2011).
Kaempferol, quercetin, myricetin, hesperetin, naringenin, epicatechin gallate and
anthocyanin are the chief flavonoid compounds that have definite influence on
human healthiness dependent upon their natural activities. Flavonoids have likely
protective activity against oxidative cell destruction and also anticancer action. Also,
they have also capacity to chunk all the courses of induction, stimulation and
progression of tumour. Flavonoids have been used for the regulation of various
chronic diseases like atherosclerosis, diabetes and Alzheimer’s disease
(Marzocchella et al. 2011). Presently, investigators are discovering their influence
on immune system activity to make as the strong immunomodulators.

Chang et al. reported the immunomodulatory efficacy of centaurein flavonoid
obtained from Bidens pilosa by regulating the expression of IFN-y in Jurkat cells.
Additionally, centaurein also controls nuclear factor of activated T-cell activity and
NF-xB enhancers which portray it as a strong immunomodulator (Chang et al.



7 Phytochemicals as the Source of Natural Immunomodulator and Their Role in. .. 215

2007). Another study analysed the immunomodulatory strength of Ziziphus lotus on
oxazolone-induced contact-delayed hypersensitivity (DTH) in mice at a dose of
200 mg/kg. Cytotoxicity assay was made and discovered that methanolic extract
of flavonoids remarkably blocks the DTH stirred by oxazolone (Borgi et al. 2008).
Additionally, Abd-Alla and colleagues piloted a study to discover the immunomod-
ulatory effects of flavonoid compounds extracted from Jatropha curcas on 1-day-old
specific pathogen-free (SPF) chicks. A substantial stimulus in both humoral- and
cell-mediated immune responses was observed when treated with methanolic extract
containing apigenin 7-o-f-D-neohesperidoside, orientin, vitexin and apigenin
7-0-B-p-galactoside flavonoids (Abd-Alla et al. 2009).
Examples of some flavonoids used as immunomodulators are:

* Centaurein (Bidens pilosa)—Increase of IFN-y promoter activity.

* Apigenin 7-o0-pf-D-neohesperidoside (Jatropha curcas)—Stimulus of humoral-
and cell-mediated immune response.

e Apigenin 7-O-B-D-Galactoside (Jatropha curcas)—Stimulus of humoral- and
cell-mediated immune response.

e Orientin (Jatropha curcas)—Stimulus of humoral- and cell-mediated immune
response.

e Vitexin (Jatropha curcas)—Stimulus of humoral- and cell-mediated immune
response.

e Luteolin (Plantago major)—Augments lymphocyte proliferation and secretion
of IFN.

* Baicalein (Plantago major)—Increases lymphocyte proliferation and secretion
of IFN.

¢ Quercetin-3-O-rutinoside (Urtica dioica)—Immunomodulation.

¢ Kaempherol-3-O-rutinoside (Urtica dioica)—Immunomodulation.

7.2.5 Immunomodulatory Potentials of Anthocyanins

Anthocyanins, a type of polyphenols, are the water-soluble pigments and can have
colour change from red to yellow in several fruits and vegetables. These compounds
have revealed encouraging antioxidant and anti-inflammatory activity by controlling
several signalling pathways. These favourable effects tend to explore the immuno-
modulatory activity of anthocyanin (Khoo et al. 2017). A study explored the
immunomodulatory and antioxidant effectiveness of anthocyanins resulting from
cherries on adjuvant-induced arthritis (AIA) in rats by analysing the expressions of
IL-6, prostaglandins E2 (PGE2) and TNF-a. In a study including the administration
of anthocyanin extract containing cyanidin, delphinidin, petunidin, malvidin and
peonidin with a dose of 75, 150, 300 mg/kg, daily for 28 days, data showed that
anthocyanin content unusually suppressed paw swelling and cytokines expressions
including IL-6, TNF-a and PGE2 (Behl et al. 2021). An ex vivo human study
performed by Rechner and Kroner informed the anti-inflammatory activity of
cyanidin-3-glycoside, peonidin, by improving the platelet function (Rechner and
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Kroner 2005). Furthermore, Xu et al. showed a comparative study to assess the
immunomodulatory activity of anthocyanin fraction on LPS-induced human
monocytes mono mac 6. Facts showed that there is no significant difference between
the immunomodulatory and antioxidant activity of both anthocyanin fraction and
resveratrol (He et al. 2005). Lately, many other studies also testified the antioxidant
and immunomodulatory activity of anthocyanins including cyanidins, delphinidin,
peonidins and malvidins by reducing levels of IL-6 and TNF-a and refining the
insulin sensitivity (Dragano et al. 2013; Karunarathne et al. 2020).
Examples of some anthocyanins with immunomodulatory properties are:

e Cyanidin-3-glycoside  (blackberry)—Antioxidant and anti-inflammatory
mechanism.
* Peonidin (blackberry)—Antioxidant and anti-inflammatory mechanism.

7.2.6 Immunomodulatory Potentials of Tannins

Tannins are great molecular-weight, water-soluble compounds, frequently existing
in plants as a complex with proteins, polysaccharides and alkaloids. Apple, grape,
berries, peach and walnuts are the main sources of tannins (Onaolapo and Onaolapo
2019). Many preclinical studies have revealed the immunomodulatory activity of
these composites.

Punicalagin (PCG) is an ellagitannin which shows many valuable effects on
human body. Lee et al. explored the immunosuppressive activity of PCG resulting
from Punica granatum reliant upon its action on nuclear factor of activated T-cells
(NFAT). Facts showed that treatment of PCG suppressed the expression of IL-2,
leukocyte reaction as well as CD3+ T-cell infiltration. Furthermore, PCG also
displayed some free radical scavenging activity which advocates that PCG could
be a powerful immunosuppressant (Lee et al. 2008). Additional study directed by
Reddy and Reddanna described the immunosuppressive activity of chebulagic acid
(CA) derived from Terminalia chebula on LPS-induced RAW 264.7 cell line.
Treatment of CA significantly weakened the expression of IL-2 and TNF-a and
ROS production. In addition, a dose-dependent pattern was also realized in inhibi-
tion of NF-xB activation, p38, JNK and ERK ! phosphorylation (Reddy and
Reddanna 2009). Additionally, methanolic extract of Pongamia glabra (PGE)
revealed the immunomodulatory activity in cyclophosphamide-induced
myelosuppressed mice when it was treated with a dose of 250 and 500 mg/kg,
daily for 13 days. On the 14th day, data discovered that PGE increased the WBC,
platelet and DLC counts in a dose-dependent manner (Heroor et al. 2013).

Examples of some tannins with immunomodulatory potential are:

* Chebulagic acid (Terminalia chebula)—Downregulation of TNF-a and IL-6.
e Corilagin (Terminalia chebula)—Neuroprotection.
* Punicalagin—Free radical scavenging and immunosuppressive action.
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7.2.7 Saponins as Inmunomodulator

Saponins are the class of naturally arising glycosides which are commonly present in
diverse parts including leaves, flowers, shoots, roots, tubers and seeds (Oleszek and
Oleszek 2020). Several investigators have confirmed the prospective of plant-
derived saponins to prompt immunogenicity of various vaccines, under in vivo
and in vitro studies. The usage of saponins as the immunoadjuvants, for their ability
in controlling the cell-induced immune system and encouraging the production of
antibodies, is one of the most noticeable activities of saponins (Sparg et al. 2004).
Various saponin compounds have capability to impede the cancer cells by arresting
cell cycle and apoptosis. Ablise et al. assessed the immunotherapeutic activity of
glycyrrhizin resulting from Glycyrrhiza glabra on rat liver microsomes. Treatment
of 1.0 mg/mL glycyrrhizin knowingly impeded the classical complement pathway
and boosted the antioxidant activity (Ablise et al. 2004). Another study accom-
plished by Punturee et al. testified favourable effects of asiaticoside saponin
extracted from Centella asiatica. Figures showed that treatment of 100 mg/kg
asiaticoside considerably phagocytic index and total WBC count when linked to
not treated group. Additionally, it also increases the cellular and humoral immune
responses (Punturee et al. 2005).
Examples of some saponins with immunomodulatory potential are:

* Asiaticoside (Centella asiatica) — Improves phagocytic index and total WBC
count.
* Glycyrrhizin (Glycyrrhiza glabra) — Hinders classical complement pathway.

7.2.8 Terpenoids as Imnmunomodulator

Terpenoids, which are secondary metabolites, are the naturally occurring
compounds often recognized as isoprenoids because of presence of isoprene units.
Carvone, retinol, perillyl alcohol, betulinic acid, f-carotene and a-carotene are the
most common examples of terpenoids. In plants, triterpenoids have defensive and
microbial protecting activities. These compounds also display many beneficial
activities such as antiviral, anti-diabetic, anti-inflammatory, antispasmodic and
immunomodulatory activities. The favourable effects of terpenoids on immune
system mostly arose due to either making of antibodies or improving T-cell response
suppression (Ludwiczuk et al. 2017). Chiou and colleagues assessed the immuno-
modulatory activity of andrographolide extracted from Andrographis paniculata. A
dose-dependent activity of andrographolide (1 & 100 mM) in subduing the making
of NO and iNOS was detected (Chiou et al. 2000). Alternative study stated the
cytokine modulating activity of boswellic acid resulting from Boswellia serrata in
paw oedema rat models. Facts showed that the treatment of boswellic acid at a dose
of 0.25 mg/paw downregulated the activity of pro-inflammatory mediators and also
indicated anti-arthritic activity (Singh et al. 2008). Podder et al. described the
immunosuppressive effects of ursolic acid (UA) in macrophage THP-1 cell line.
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Treatment of UA considerably dropped the intracellular Mycobacterium count by
producing NO and ROS. In addition, it also stimulates the phagocytosis process in
human monocyte cells and THP-1 cells which proposes the intracellular killing
effects of UA in Mycobacterium tuberculosis infection (Podder et al. 2015).
Examples of some terpenoids with immunomodulatory potential are as follows:

* Andrographolide (Andrographis paniculata) increases the expression of IL-2
Inhibition of NO in endotoxin stimulated macrophages.

» Boswellic acid (Boswellia serrata) substantially inhibits mast cell degranulation.

e Ursolic acid stimulates intracellular killing effect of macrophages during Myco-
bacterium tuberculosis infection.

7.2.9 Immunomodulatory Potentials of Sterols

The introduction of glucocorticoids into our armoury of drugs transformed the line
for the control of prolonged inflammatory- and immune system-associated ailments.
Several in vitro studies have described their immunomodulatory activity by chang-
ing the cellular proliferation of T-cells and augmenting the activity of NK-cells in
some types of cancer. It has also been anticipated that sterols and sterolins have
capability to control the levels of Thl- and Th2-mediated cytokines which further
aids in the enhancement of immune responses. Even very little concentrations of
phytosterols, p-sitosterol and its glycoside have capability to mend the proliferative
reactions of T-cells which make them powerful immunomodulators (Bouic 2002;
Patel 2008).

Rasool et al. studied the immunomodulatory activity of withanolide extracted
from Withania somnifera by using albino Wistar strain rats. Administration of
withanolide to the rats considerably curbed the classical complement pathway,
hypersensitivity reactions and mitogen-stimulated lymphocyte production. Thus,
the study favours the development of withanolide as an effective immunosuppres-
sive agent (Rasool and Varalakshmi 2006). Additionally, f-sitosterol and
daucosterol also exhibited the immunomodulatory activity by refining the Th1l and
Th2 immune responses against candidiasis spread in mice (Lee et al. 2007). An
additional study done by Lee and colleagues testified the immunomodulatory
activities of phytosterols extracted from Clinacanthus nutans by using murine
cells. Mitogen-induced B- and T-cell proliferation and discharge of helper T-cell
cytokines were scrutinized to analyse the immunosuppression of phytosterols (stig-
masterol, shaftoside, p-sitosterol). Figures showed that usage of phytosterols con-
siderably reduced the T-cell production and enhanced the Thl- and Th2-mediated
cytokine expression (Le et al. 2017).

Examples of some sterols with immunomodulatory potential are:

e Withanolide (Withania somnifera)—Stimulates murine macrophages, phagocy-
tosis and lysosomal enzyme activity.
* B-Sitosterol—Triggers human peripheral lymphocyte proliferation.
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7.3  Carcinogenesis and Phytochemicals

Carcinogenesis is a multi-step progression described by an advancement of distinc-
tive molecular alterations that eventually reprogram and convert a cell to endure
uninhibited cellular division (Loeb and Harris 2008). With each disturbance, cells
experience alterations primarily characterized by tumour instigation, advancement
and evolution (Tokarz and Blasiak 2014).

Tumour beginning is a fast and permanent progression that starts with an expo-
sure to a carcinogenic agent, followed by its spreading and transference to tissues
triggering non-lethal mutations in cellular DNA. These “instigated cells” activate to
store further irreversible genetic changes which continue with each new cycle of
propagation (Barcellos-Hoff et al. 2013). Tumour advancement is a quite extensive
and flexible course in which vigorously multiplying preneoplastic cells start to
distribute and spread.

More recent data has highlighted the critical part of the tumour microenvironment
on the survival and mutation of preneoplastic cells (Quail and Joyce 2013).

Cancer chemoprevention relies on the identification of causes that exactly influ-
ence initial phases of cellular transformation (Sapienza and Issa 2016). Naturally
occurring phytochemicals have been found to have a wide array of cellular effects.
Phytochemicals may check carcinogens from attaining targeted places and upkeep
detoxification of very reactive molecules (Royston and Tollefsbol 2015). Some
phytochemicals also boost innate immune scrutiny and recover the elimination of
transformed cells (Luis Espinoza et al. 2013). Finally, phytochemicals have numer-
ous influences on basic DNA repair mechanisms and may impact tumour
suppressors and inhibit cellular propagation pathways (Sapienza and Issa 2016).

7.4  Chemoprevention: Types and Approaches

There are numerous kinds of approaches for cancer chemoprevention.

Primary chemoprevention targets to stop the growth of disease in the overall
populace or in specific high-risk peoples. This sort of chemoprevention typically
emphasizes on interventions on smoking population (for lung cancer), colorectal
cancer and breast cancer.

Secondary chemoprevention emphasizes on persons who have been detected with
some kind of tumour or premalignant abrasions that may headway to invasive
cancer. This approach objects to limit the progress and advancement of malignant
lesions.

Tertiary chemoprevention is directly targeted at checking the relapse or entrance
of the new secondary tumours in individuals who have developed a malignance.
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7.5  Nutritive Phytochemicals: Part in Malignancy
Chemoprevention

Phytochemicals establish a varied set of bioactive compounds classified by chemical
structure and comprise polyphenols, alkaloids, carotenoids and nitrogen compounds
(Howes and Simmonds 2014). Plants produce phytochemicals to defend themselves
against outside pressures and environmental means such as ultraviolet rays and
producers of detrimental free radicals. The incorporation of these types of foods
into our diet could provide us with the defence that the phytochemicals deliver for
the plant (e.g. the ability to nullify free radicals in the body).

The various in vitro and in vivo studies have established added properties of
phytochemicals, outside their antioxidant activity. These agents may also impact the
production, progression and metastasis of tumours (Vauzour et al. 2010). These and
other plant-derived substances may signify natural anticancer drugs. The extent of
phytochemicals that we consume is directly associated with the kind of diet that is
embraced, so recognizing foods that contain high amounts of phytochemicals might
be the beginning for a cherished cancer deterrence approach.

These composites are naturally present in fruits, vegetables, grains and other plant
products and are often liable for distinctive plant characteristics such as colour
pigment and aroma. Moreover, many are fundamental for host safeguard against
viruses, parasites and other outside detrimental agents.

The list of some cancer chemopreventive phytochemicals is mentioned in
Table 7.1.

7.6  Phytochemicals: Cancer Chemopreventive
7.6.1 «-Linolenic Acid (ALA)

Alpha-linolenic acid (ALA) is one of the vital omega-3 fatty acids and organic
compounds present in seeds (chia and flaxseed), nuts (notably walnuts) and many
common vegetable oils. ALA has also been shown to downregulate cell multiplica-
tion of prostate, breast and bladder cancer cells (Chamberland and Moon 2015).
ALA, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) can differen-
tially obstruct mammary tumour growth by altering the cell membrane fatty acid
composition, subduing AA-derived eicosanoid biosynthesis and prompting signal-
ling transcriptional pathways to obstruct cell proliferation and prompt apoptosis.

Animal studies have shown that omega-3 fatty acids may thwart or impede the
growth of cancers, signifying that omega-3 fatty acids are vital in cancer physiology.
In a study, it was perceived that treatment with 1-5 mM of ALA inhibits cell
proliferation, adhesion and invasion in both human and mouse colon cancer cell
lines. Remarkably, ALA did not reduce total colony numbers when related to
control. By disparity, it was found that size of colony was considerably altered by
ALA treatment when matched to control in all colon cancer cell lines (Chamberland
and Moon 2015).
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Table 7.1 List of some cancer chemopreventive phytochemicals

Phytochemicals
o-Linolenic
acid (ALA)
Allicin

Apigenin

Carotene

Curcumin

Ellagic acid

Ferulic acid

Gallic acid

Genistein

Lutein

Lycopene
Resveratrol
Silymarin
Stigmasterol
Sulforaphane,
glucosinolates

Ursolic acid

Withaferin,
withanolides

Plant source
Flax seeds

Garlic, onion

Apple, artichoke, basil, celery,
Cherry, grapes, nuts, parsley

Carrots, leafy greens and red,
orange and yellow vegetables,
pumpkin

Turmeric

Cranberry, grapes, pecans,
pomegranates, raspberry,
strawberry, walnuts

Oats, rice, orange, pineapple, peanut

Tea, mango, strawberries, soy

Alfalfa sprouts, red clover,
chickpeas, peanuts

Kale, spinach, red pepper, mango,
papaya, kiwi, peaches, squash,
honeydew melon, plum, avocado
Apricots, papaya, pink guava,
tomato, watermelon

Blueberry, peanuts, red grapes and
red wine

Milk thistle (Silybum marianum)

Soybean

Broccoli sprouts, cabbage,
cauliflower, collards, cruciferous
vegetables, kale, radish, turnip
Apple, basil, cranberry, lavender,
oregano, rosemary

Withania somnifera

Role in cancer chemoprevention

Cancer protective, lessen danger of
coronary heart disease (CHD) (Dave
et al. 2020)

Cancer protective, anti-inflammatory,
liver protective (Koh et al. 2020)
Chemopreventive,

encourages apoptosis and impedes
breast and ovarian cancers, anti-
inflammatory, antioxidant (Koh et al.
2020)

Cancer preventive, increases
discharge of immunogenic cytokines
IL-1 and TNF-alpha, affords cornea
guard against UV light, excites DNA
repair enzymes (Koh et al. 2020)
Cancer preventive, anti-inflammatory,
antioxidant (Kesharwani et al. 2015;
Dave et al. 2020)

Cancer preventive and antioxidant
(Dave et al. 2020)

Cancer protective, bone deterioration
(Dave et al. 2020)

Cytotoxic and anti-oxidative
activities, anti-leukemic,
antineoplastic, anti-inflammatory
(Dave et al. 2020)

Antioxidant, anticancer agent (Koh
et al. 2020)

Protects against colon cancer, absorbs
damaging blue light (Dave et al.
2020)

Decreases threat of prostate cancer
(Koh et al. 2020)

Antioxidant, cancer preventive and
aged (Dave et al. 2020)

Guards from UVB-induced
carcinogenesis (Dave et al. 2020)
Cancer preventive

Antioxidant, check DNA damage,
decrease threat of breast and prostate
cancers (Dave et al. 2020)
Anti-inflammatory, antitumor (Koh
et al. 2020)

Cancer preventive, immunomodulator
(Dave et al. 2020)
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The cytotoxic and anti-growth effects of conjugated linolenic acid (CLN) were
also detected in other human cancer cell lines, DLLD-1 (colorectal adenocarcinoma),
HepG2 (well-differentiated hepatocellular carcinoma), A549 (lung alveolar cell
carcinoma) and HL-60 (acute promyelocytic leukaemia). A fatty acid mixture rich
in CLN (a-elcostcaric acid; 9c,11 t,13 t-18:3) presented dose-dependent growth
inhibitory effects via initiation of the apoptotic pathway (Tsuzuki et al. 2004).

The anti-carcinogenic effects of CLN and conjugated linoleic acid (CLA) have
been more established by Yasui et al. (2005). In their study, free fatty acids prepared
from BGO (BGO-FFA) comprising more than 60% a-eleostearic acid (9¢,11 t,
13t-18:3) exhibited strong tumour growth inhibition and apoptosis induction in
three human CRC cell lines, DLD-1, HT-29 and Caco-2, the effects being greater
than CLA (9c,11 t-18:2). The study also proved that the inhibitory effects of CLN
were related with modulation of peroxisome proliferator-activated receptor gamma
(PPAR-y) expression, which is one of the target molecules for subduing growth of
cancer and other chronic diseases (Yasui et al. 2009).

Thus, these fatty acids are undeniably testified to be unique biomolecules having
prospective health benefits, but it generally only occurs in very small amounts
(<1%) in products of natural origin. The high amount of naturally occurring
conjugated linolenic acid present in certain plant seed oils advocates it as much
more manageable and easily obtainable for dietary use than formerly supposed. It
can be used as a prospective biomolecule and multi-biological function that can be
associated with its oxidative stability (Tanaka et al. 2011).

7.6.2 Allicin

Allium intake specifies some associations of Allium vegetable consumption with
decreased risk of cancer, predominantly cancers of the gastrointestinal tract. Limited
intervention studies have been showed to back these links. The bulk of supportive
proof on Allium vegetables’ cancer preventive effects arises from mechanistic
studies. These studies highlight probable mechanisms of single sulphur-containing
compounds and of many preparations and extracts of these vegetables, including
reduced bioactivation of carcinogens, antimicrobial activities and redox alteration.
Allium vegetables and their components have effects at each stage of carcinogenesis
and affect many biological processes that alter cancer risk. The major garlic
thiosulfinate produced is allicin (thio-2-propene-1-sulfinic acid S-allyl ester). Allicin
and its oil-soluble metabolites are mainly accountable for garlic’s odour.

A latest meta-analysis of 19 case-control and 2 cohort studies revealed that eating
of great amounts of total Allium vegetables decreased risk of gastric cancer when
associating the top and bottom feeding groups (odds ratio (OR): 0.54; 95% CI
0.43-0.65) (Zhou et al. 2011). The World Cancer Research Fund/American Institute
for Cancer Research (WCRF/AICR) skilled panel also piloted a meta-analysis using
14 case-control studies that studied Allium vegetables and stomach cancer and
5 case-control studies that inspected garlic and stomach cancer. Their summary
OR was 0.59 (95% CI 0.47-0.74) per 100 g per day for total Allium vegetable intake
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with high heterogeneity, and 0.41 (95% CI 0.23-0.73) per serving of garlic per day
(World Cancer Research Fund 2007). They also conducted meta-analyses of two
cohort studies that examined total Allium vegetables and cancer, which made a
summary effect estimate of 0.55 (95% CI 035-0.87) per 100 g per day with no
heterogeneity. They established that due to steady evidence, dose-response relation-
ship and plausible mechanisms, a cancer protective connection between Allium
vegetables and vegetables was possible (World Cancer Research Fund 2007).

In humans, eating 5 g of garlic per day completely blocked the enhanced urinary
excretion of nitrosoproline, an indicator for the synthesis of potentially carcinogenic
nitrosamines, that occurred as an outcome of eating supplemental nitrate and proline.
More latest data suggests that as little as 1 g of garlic may be sufficient to subdue
nitrosoproline formation. Allium allyl sulphur compounds are also effective in
blocking DNA alkylation, an early step in nitrosamine carcinogenesis (Nicastro
et al. 2015).

7.6.3 Apigenin

Apigenin is a naturally occurring plant flavone (4'°,5,7-trihydroxyflavone) plenti-
fully present in common fruits and vegetables including parsley, onions, oranges,
tea, chamomile, wheat sprouts and some seasonings. Apigenin has been shown to
hold notable anti-inflammatory, antioxidant and anti-carcinogenic properties. In the
last few years, substantial progress has been made in studying the biological effects
of apigenin at cellular and molecular levels. In recent years, apigenin has been
progressively accepted as a cancer chemopreventive agent. Apigenin has been
shown to possess anti-mutagenic properties against nitropyrene-induced
genotoxicity in Chinese hamster ovary cells. Apigenin has also been shown to
inhibit benzo[a]pyrene and 2-aminoanthracene-induced bacterial mutagenesis. Lab-
oratory studies have verified that apigenin supports metal chelation, scavenges free
radicals and stimulates phase II detoxification enzymes in cell culture and in in vivo
tumour models. Exposure to apigenin prior to a carcinogenic insult has been shown
to afford a defending effect in murine skin and colon cancer models. Apigenin is a
strong inhibitor of ornithine decarboxylase, an enzyme that plays a main part in
tumour advancement. Further, apigenin has been shown to upsurge the intracellular
concentration of glutathione, enhancing the endogenous defence against oxidative
stress. The anti-carcinogenic effect of apigenin has been validated in a skin carcino-
genesis model. Topical application of apigenin inhibited dimethyl benzanthracene-
induced skin tumours. Apigenin also lessened UV-induced cancer incidence and
improved tumour-free survival in related trials. Other significant targets of apigenin
include heat shock proteins, telomerase, fatty acid synthase, matrix
metalloproteinases and aryl hydrocarbon receptor activity HER2/neu, all of which
have applicability to cancer development and progression (Patel et al. 2007).

The probable health benefits of apigenin have increased owing to its potent
antioxidant and anti-inflammatory activities observed in vitro. There is a growing
proof from epidemiological and case-control studies that greater consumption of
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plant flavonoids decreases the threat of chronic diseases including cancer (Mennen
et al. 2004; Xu et al. 2004). In contrast, intake of flavonoid-free diets by healthy
human volunteers has been described to lead to a reduction in markers of oxidative
stress in blood, viz. plasma antioxidant vitamins, erythrocyte superoxide dismutase
(SOD) activity and lymphocyte DNA damage normally related with enhanced
disease risk, signifying the beneficial effects of flavonoids on human health (Kim
et al. 2003a, 2003b). Apigenin has been shown to have anti-proliferative effects on
human breast cancer cell lines with different levels of HER2/neu expression.

The plant species and their parts comprising the highest amounts of apigenin are
Achillea millefolium (yarrow plant), Apium graveolens (celery plant), Artemisia
dracunculus (tarragon plant), Camellia sinensis (tea leaf), Chamaemelum nobile
(perennial chamomile plant), Coriandrum sativum (cilantro fruit), Digitalis
purpurea (purple foxglove flower), Echinacea sp. (coneflower leaf), Gingko biloba
(biloba leaf), Glycyrrhiza glabra (liquorice root), Linum usitatissimum (flax plant),
Marrubium vulgare (horehound plant), Matricaria recutita (annual chamomile
plant), Mentha spicata (spearmint leaf), Ocimum basilicum (basil plant) and Origa-
num vulgare (oregano plant) (Patel et al. 2007).

7.6.4 Carotene

Carotenoids covering carotenes and oxy-carotenoids as two main groups are
fat-soluble pigments, broadly dispersed in nature. The unique arrangement of
alternating single and double bonds in the polyene backbone of carotenoids is
accountable to quench reactive oxygen species (ROS), while the nature of specific
end groups on carotenoids may impact their polarity. The electron-rich character of
carotenoids makes them attractive to radicals, thus sparing other cell components
(DNA, RNA, carbohydrates, lipids, proteins) from harm. Carotenes along with
xanthophylls, astaxanthin, lycopene and lutein seem to offer defence against lung,
colorectal, breast, uterine and prostate cancers. They support in prevention of heart
disease and supplementation along with vitamin C and E, decrease the danger of
developing diabetes and combat Alzheimer’s disease. They are generally regarded as
safe (GRAS), but increased consumption of carotenoids may cause the skin to turn
orange or yellow, known as “carotenodermia”. This incidence is completely benign
and is unrelated to jaundice that can result from liver disease or other causes. Dietary
carotenoids are found in a number of fruits and vegetables, such as green leafy
vegetables, spinach, carrots, peaches, apricots and sweet potatoes. Human diet
enhanced with carotenoids is useful in decreasing chronic conditions related to
coronary heart diseases (CHD), certain cancers and macular degeneration (van het
Hof et al. 2002; Prakash and Gupta 2014).

The supplementation with the amalgamation of pB-carotene, vitamin E and sele-
nium may impede cancer growth. It has been found that high supplemental intakes of
lutein, zeaxanthin, cryptoxanthin, a- and p-carotene, etc. reduced the risk of breast,
cervical and lung cancer. Lycopene acts to be particularly effective against cancers
of the prostate, digestive tract and lungs and may also protect the body against the
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effects of chemotherapy or radiation. They protect against sun damage because of
their effect on the immune system, scavenger role towards oxidative substances and
shield-like effect on the skin (Prakash and Gupta 2014).

7.6.5 Curcumin

Curcumin is a yellow polyphenol (diferuloylmethane) that is found in the rhizomes
of turmeric (Curcuma longa Linn). Extensive experimental and clinical works over
the earlier span have talked its beneficial effects against numerous ailments including
diabetes, cardiovascular disease, arthritis, gastrointestinal ulcers, nephropathy and
hepatic disorders. The useful actions of curcumin are linked to its anti-inflammatory,
antioxidant and cyto-protective properties (Hosseini and Ghorbani 2015). Further-
more, it has been signified that curcumin has anticancer effects through its manifold
activities on mutagenesis, cell cycle regulation, apoptosis, oncogene expression and
metastasis. Diverse stages of cancer including origination, advancement and evolu-
tion can be affected by curcumin. It was found that this compound enhanced
histologic parameters in one out of two patients with resected bladder cancer, one
out of six patients with intestinal metaplasia of the stomach and one out of four
patients with uterine cervical intraepithelial neoplasm. In a nonrandomized open-
label study, 25 patients with pancreatic cancer were registered in an oral curcumin
administration. Among them, two patients showed clinical responses: one had stable
disease for >18 months and the other had tumour reversion (Dhillon et al. 2008). In a
study by Sharma et al. (2001), consumption of curcumin was accompanied by a
noteworthy reduction in lymphocytic glutathione S-transferase (GST) activity. The
GSTs are a family of phase II detoxification enzymes and have been shown to be
involved in the growth of resistance to chemotherapy drugs (Townsend and Tew
2003). The antitumor action of curcumin is facilitated via its anti-proliferative effect
in multiple cancers, inhibitory action on transcription factors and downstream gene
products, modulatory effect on growth factor receptors and cell adhesion molecules
involved in angiogenesis, tumour growth and metastasis (Wilken et al. 2011). Recent
data have suggested that curcumin may act by subduing the Sp-1 activation and its
downstream genes, including ADEM10, calmodulin, EPHB2, HDAC4 and SEPPI
in a concentration-dependent manner in colorectal cancer cell lines; these results are
steady with other studies, which have testified that curcumin could subdue the Sp-1
activity in bladder cancer and could reduce DNA binding activity of Sp-1 in
non-small cell lung carcinoma cells. Latest data support that ER stress and
autophagy may as well play a role in the apoptosis process, which is encouraged
by the curcumin analogue B19 in an epithelial ovarian tumour cell line and that
autophagy inhibition could surge curcumin analogue-induced apoptosis by
prompting severe ER stress (Vallianou et al. 2015).
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7.6.6 Lycopene

Lycopene is a naturally occurring carotenoid found in many fruits and vegetables,
mainly with high concentration in tomatoes and tomato-based products. They are of
great importance because of their potential activity in decreasing the menaces of
tumours such as breast and prostate cancer. The way of action of their anticancer
activity is due to their strong antioxidant and anti-proliferative activity and modula-
tion of immune function (Liu 2004; Elliott 2005).

These phytochemicals are found in high amounts in carrot and tomatoes. Lyco-
pene is the most abundant carotenoid in tomatoes (Lycopersicon esculentum L.) with
concentrations ranging from 0.9 to 4.2 mg/100 g dependent upon the variety.
Tomato sauce and ketchup are concentrated sources of lycopene (33-68 mg/
100 g) equalled to unprocessed tomatoes (van Breemen and Pajkovic 2008). Other
edible sources of lycopene comprise rose hips (Bohm et al. 2003), watermelon,
papaya, pink grapefruit and guava (Mangels et al. 1993).

Lycopene was related with a 30—40% decrease of prostate cancer particularly in
progressive stage of disease. Positive results were also observed with patients
suffering from breast cancer. It was found that women with high plasma levels of
carotenoids showed the statistically significant 18-28% decrease in the threat of
breast cancer (Eliassen et al. 2012).

Lycopene has been found in a number of epidemiologic studies to be related with
a lesser risk of prostate cancer (Thompson 2007). There are various studies backing
the intake of lycopene and tomato products as a probable contributor to the lessening
of prostate cancer risk (Giovannucci et al. 2002). In a forthcoming, case-controlled
clinical trial, Chen et al. and Kim et al. established that regular consumption of
commercial spaghetti sauce (30 mg of lycopene in 200 g of sauce) in pasta dishes for
3 weeks prior to radical prostatectomy caused considerably reduced oxidative DNA
damage in prostate tissue matched to controls and improved apoptosis of prostate
cancer epithelial cells (Chen et al. 2001; Kim et al. 2003a, 2003b; Konijeti et al.
2010).

In yet another preclinical study, it was proved that administration of antioxidants
(including lycopene, selenium and vitamin E) in the diet of Lady transgenic mice
subdued prostate cancer development and improved disease-free survival
(Venkateswaran et al. 2004).

In an alternative study, the result of food processing on lycopene content in
processed tomato products was compared with the raw ones. It was found that
lycopene is more bioavailable in processed tomato products than in raw tomatoes,
since arrangement of cis-isomers of lycopene during food processing and storage
may raise its biological activity (Soares et al. 2019).

7.6.7 Resveratrol

Resveratrol (RES, 3,5,4'-trihydroxy-trans-stilbene) is a naturally arising polyphenol
present in plenty of dietary stuffs, such as grapes, wine, nuts, berries and many other
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human foods (Berman et al. 2017). It frequently occurs as a white powder with
moderate water solubility (0.03 mg/mL). The molecular skeleton of RES is made by
two phenolic rings, one with a para hydroxyl group and the other with an ortho
double hydroxyl groups. The two benzene rings are linked through a double bond
that gives isomers with cis and trans configuration. Generally, the most mentioned
RES is the trans isomer, which is the most plentiful and biologically active complex.
It is described that the total content of RES is around 50-100 pg/g in fresh grape
skin, 5.1 pg/g in boiled peanuts, 0.31 pg/g in peanut butter and 0.98-1.80 mg/L in
red wine (Cal et al. 2003). Besides, a great amount of RES is also found in Itadori
plants and tea, and the commercial grape juice contains about 4 mg/L of RES (Burns
et al. 2002).

Various studies have revealed that RES possessed chemo-protective effects, such
as cardioprotective activity and neuroprotective activity (Cho et al. 2017; Riba et al.
2017; Sarubbo et al. 2017; Cai et al. 2018). Upon co-administration with chemo-
therapeutic agents, RES could lessen the associated side effects while boosting the
healing efficiency related with cancer chemotherapy. The hostile effects induced by
chemotherapeutic agents are all the time the hurdles for their wide-ranging applica-
tion in clinic. As a naturally occurring multifunctional molecule, RES has been
reported to be capable of performing shielding effects to lessen the associated side
effects brought by chemotherapeutic drugs.

Resveratrol shows cardioprotective, nephro-protective, hepato-protective and
gastrointestinal protective effects in UVR-induced skin cancer and as a synergistic
agent in cancer chemotherapy (Xiao et al. 2019).

RES controls numerous pathways involved in cell cycle, apoptosis and inflam-
mation. In addition to the chemopreventive and chemo-protective effects, RES also
validates strong anticancer activity (Sarkar et al. 2009). It is known that a solitary
treatment often validates weak activity, partial efficiency and drug resistance. The
amalgamation therapy newly established through concurrently coalescing more than
two drugs often carries improved healing results. As a naturally occurring small
molecule, RES has been shown to be capable of facilitating cancer therapy via
aiming multiple pathways involving cancer origination, advancement and evolution
(Elshaer et al. 2018). Cancer initiation is the primary stage in cancer growth, and a
critical biomarker for this event is the raised level of oestrogen-DNA adducts in
tissue, which specifies a high risk of cancer, such as in the aetiology of breast cancer
and prostate cancer (Pruthi et al. 2012). RES can hinder stimulating enzymes such as
CYP19 (aromatase) and CYP1B1 (a kind of cytochrome P450 enzyme), and induce
the manifestation of detoxification enzyme of NQO1 (NAD(P)H: quinone oxidore-
ductase 1), thus delaying the formation of oestrogen-DNA adducts to safeguard
against oestrogen-initiated cancer. The synergistic effect of RES-mediated chemo-
therapy is also moderately accredited to the interfering action to cancer beginning. In
addition, RES-induced cell sensitization and the involvement of RES in the modula-
tion of cell cycle, particularly in S-phase, also play important roles for its synergistic
effects (Lee et al. 2013).
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7.6.8 Silymarin

As a usual product acquired from the fruits and seeds of the milk thistle plant
(Silybum marianum L.), silymarin is a compound that contains silibinin,
isosilybin-b, silydianin and silychristin, which are flavonoids. For numerous years,
it has been used as a functional food in liver protection and in dealing with chronic
epilepsy (Hackett et al. 2013; Chen et al. 2009).

Latest studies have shown that silymarin modifies the manifestation of proteins
correlated to cell cycle regulation and apoptosis and thus controls the equilibrium
between cell viability and apoptosis and displays anti-inflammatory, vascularization
inhibitory, anti-oxidative and anti-metastasis effects (Surai 2015; Katiyar 2005). It
has also been described to unveil anticancer effects in liver (Féher and Lengyel
2012), colorectal (Eo et al. 2016), breast (Hajighasemlou et al. 2014), lung (Wu et al.
2016) and prostate cancer (Deep et al. 2006).

Humanoid scientific trials have examined milk thistle or silymarin mainly in folks
with hepatitis or cirrhosis, although minor studies have been recounted about
individuals with acute lymphoblastic leukaemia, prostate cancer, breast cancer,
head and neck cancer and hepatocellular carcinoma.

In a study, silymarin (100 mg/kg) considerably reduced the AGS tumour volume
and improved apoptosis, as measured by the TUNEL assay, approving its tumour
inhibitory effect. Immunohistochemical staining showed a preeminent expression of
p-JNK and p-p38 as well as reduced manifestation of p-ERK1/2 associated with
silymarin treatment. Silymarin was shown to decrease tumour growth through
inhibition of p-ERK and stimulation of p-p38 and p-JNK in human gastric cancer
cells. These effects showed that silymarin has likely to advance as a cancer thera-
peutic due to its growth inhibitory effects and generation of apoptosis in human
gastric cancer cells (Kim et al. 2019).

Laboratory trials conducted using cancer cell lines have proposed that silibinin
improves the efficiency of cisplatin and doxorubicin against ovarian and breast
cancer cells (Scambia et al. 1996). Silibinin appears to have straight anticancer
effects against prostate, breast and ectocervical tumour cells (Bhatia et al. 1999).
Silibinin may also disturb the cell cycle in cancer cells by slowing down cell growth,
as confirmed with prostate cancer cell lines (Zi and Agarwal 1999). Laboratory
studies using leukaemia cell lines established that silibinin did not encouraged the
growth of leukaemia cells (Duthie et al. 1997).

Activated protein-1 (AP-1), a composite containing homo- or heterodimers of the
members of jun and fos family of proteins, controls the expression of numerous
genes involved in malicious alteration. In particular, AP-1 is known to endorse
epithelial to mesenchymal transition of tumour cells that is reflected as a key step
in cancer metastasis. Our preceding studies have shown that silibinin subdues
UVB-induced AP-1 and NF-kB instigation in mouse skin models (Deep et al.
2006). Newly, a study has testified that silibinin decreases PMA-induced invasion
of MCF-7 cells through the specific inhibition of AP-1-dependent MMP-9 gene
expression. These outcomes recommend that by overpowering the cancer cell
invasion through the precise inhibition of AP-1-dependent MMP-9 gene expression,
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silibinin epitomizes a likely anti-metastatic agent. Together, the anti-invasive as well
as anti-metastatic prospective of silibinin could be of great importance in the
development of a budding cancer therapy (Féher and Lengyel 2012).

7.6.9 Stigmasterol (Phytosterol)

Stigmasterol, a naturally occurring 6-6—-6-5 mono-hydroxy phytosterol, possesses
anti-inflammatory activities and has been projected as entrant for anticancer agents.
The effect of stigmasterol on tumour and endothelial cells in vitro and their antican-
cer activities in vivo was explored. The outcomes confirmed that stigmasterol
inhibited cell viability, migration and morphogenesis of human umbilical vein
endothelial cells (HUVECs) but not cholangiocarcinoma (CCA) cells. Expression
analyses disclosed that the treatment of both complexes considerably reduced the
transcript level of tumour necrosis factor-a (TNF-a), and Western blot analyses
additionally showed a decline in downstream effector levels of VEGFR-2 signalling,
including phosphorylated forms of Src, Akt, PCL and FAK, which were released by
TNF-a treatment. In vivo, stigmasterol dislocated tumour angiogenesis and reduced
the growth of CCA tumour xenografts. Immunohistochemical analyses established a
decrease in CD31-positive vessel content and macrophage recruitment upon treat-
ment. These findings show that stigmasterol successfully targets tumour endothelial
cells and suppresses CCA tumour growth by their anti-inflammatory activities and is
an attractive candidate for anticancer treatment of CCA tumours (Kangsamaksin
et al. 2017).

In a latest study, the anti-proliferative effects of normally consumed phytosterol
“stigmasterol” against human cancerous breast (MCF-7) and liver (HepG2) cells and
non-cancerous human embryonic kidney (HEK293) cells were assessed. The cyto-
toxicity concentration of stigmasterol against the MCF-7 (IC50; 27.38 uM) and
HepG-2 (IC50; 25.80 pM) cells were greater than the HEK29 (IC50; 421.74 pM)
cells, as determined by MTT assay. The cytotoxicity outcome was also established
by the LDH assays (r > 0.983). The anti-proliferative potential of stigmasterol was
also calculated at the molecular level. The RT-PCR results exhibited high expression
levels of pro-apoptotic genes, whereas negative expression of anti-apoptotic genes
(bcl-2). Both stigmasterol-treated cancerous cell lines revealed a growth in expres-
sion of the gene of caspase-9 and caspase-3. Conferring to the gene expression
analysis outcomes, stigmasterol possibly stimulates the apoptosis signalling path-
way, and hence genomic DNA fragments were perceived through gel electrophore-
sis. From the results, it was established that stigmasterol has apoptosis-inducing
property and therefore to be assessed as an anticancer therapeutic in the animal
model (Al-Fatlawi 2019).



230 C. Gupta and D. Prakash

7.6.10 Sulforaphane (SFN)

Sulforaphane is an isothiocyanate (ITC) complex that has been derived from crucif-
erous vegetables. It was revealed in several studies to be dynamic against numerous
cancer types including pancreatic, prostate, breast, lung, cervical and colorectal
cancers. Sulforaphane applies its therapeutics action by a range of mechanisms,
such as by detoxifying carcinogens and oxidants through obstruction of phase I
metabolic enzymes and by arresting cell cycle in the G2/M and G1 phase to hinder
cell proliferation. The most prominent observation was the ability of sulforaphane to
potentiate the activity of several classes of anticancer agents including paclitaxel,
docetaxel and gemcitabine through additive and synergistic effects (Kamal et al.
2020).

SEN can be found in cruciferous vegetables, such as broccoli, cauliflower,
Brussels sprouts, cabbage, kale and kohlrabi (Xia et al. 2019). SFN is stated to
control cancer cell persistence via inhibition of cell multiplying and spur of apoptosis
in a range of cancers (Bernkopf et al. 2018; Kan et al. 2018). It has the prospective to
treat breast cancer also. Among the ITC members, SFN has been the most exten-
sively explored regarding its pathological roles and molecular mechanisms both
in vivo and in vitro.

Several researchers trust that the anticancer effects of SFN in bladder cancer
(BC) are mainly related with caspase- and mitochondria-associated pathways.
Nonetheless, there are other cancer-related factors convoluted. For example, SFN
can impede DNA damage prompted by chemical carcinogens in BC T24 cells (Ding
et al. 2010). Additionally, SFN-induced oxidative stress through ROS has been
proposed as a key modulator (Park et al. 2014; Jo et al. 2014). Nuclear factor-
erythroid 2-related factor-2 (Nrf2) regulation and endoplasmic reticulum (ER) stress
are also related with SFN and carcinogenesis, pathological behaviour and cell
persistence in UC. Unusually, these Nrf2 and ER signalling pathways are important
features in the answer to oxidative stress and anti-oxidative activities (Leone et al.
2017). A study revealed that an enhanced insulin-like growth-factor-binding protein-
3 (IGFBP-3) and curtailed nuclear factor-kappa B (NF-kB) expression by SFN are
linked with the anti-proliferative effect of SFN in the BC cell line BIU87. Remark-
ably, the authors also established that SFN kindles apoptosis and cell cycle arrest at
the G2/M phase, resulting from IGFBP-3 and NF-«B regulation (Dang et al. 2014).
As IGFBP-3 and NF-xB are recognized to have pro-apoptotic and anti-apoptotic
functions, respectively, in numerous malignancies (Patel et al. 2018), this spur of
apoptosis by SPN via increased IGFBP-3 and decreased NF-kB levels is in agree-
ment with proven findings. Additional report on the association between
SEN-induced anticancer effects and growth factors confirmed that 20 pM SFN
leads to a 2.6-, 3.0- or 3.1-fold increase in the G,/M phase compared with that of
controls in three BC cell lines (RT4, J82 and UM-UC-3, respectively) (Abbaoui et al.
2012). In addition, SEN prompts apoptosis in RT4 and UM-UC-3 cells. Thus, these
findings show that upregulation of caspase-3/caspase-7 and PARP activity and
downregulation of survivin, EGFR and HER2/neu are the fundamental molecular
mechanisms (Mastuo et al. 2020).
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Studies have revealed SFN hinders cell production, induces apoptosis, rests cell
cycle and has antioxidant activities. Growing reactive oxygen species (ROS) yields
oxidative stress and stimulates inflammatory transcription factors, and these end in
inflammation leading to cancer. Growing antioxidant potential of cells and
ascertaining new targets to lessen ROS creation diminishes oxidative stress, and it
eventually condenses cancer risks. In short, SFN efficiently disturbs histone
deacetylases intricate in chromatin remodelling, gene expression and Nrf2 antioxi-
dant signalling.

7.6.11 Glucosinolates (Isothiocyanates)

Isothiocyanates (ITCs) are natural compounds of high medicinal value that are
existing in cruciferous vegetables such as broccoli, watercress, Brussels sprouts,
cabbage, cauliflower and Japanese radish. They are existent as conjugates in the
genus Brassica of cruciferous vegetables (Lai et al. 2010). ITCs are recognized for
their chemopreventive activity and facilitate anti-carcinogenic activity by subduing
the initiation of carcinogens and growing their detoxification. The high content of
glucosinolates, which accumulates ITCs in cruciferous vegetables, confers
anti-cancerous effects. ITCs destroy tumour growth by initiation of oxidative
stress-facilitated apoptosis, making cell cycle arrest and impeding angiogenesis
and metastasis (Wu et al. 2009).

Benzyl isothiocyanate (BITC) is one of the main classes of ITCs that employ
potential health aids to humans. It is widely found in Alliaria petiolata, pilu oil,
watercress, garden cress and papaya seeds (Nakamura et al. 2007). BITC impacts
several key signalling pathways which are deliberated to be the symbols of cancer. In
addition, BITC alerts tumours to chemotherapy and has significant anticancer effects
against several human malignancies like leukaemia (Xu and Thornalley 2000),
breast cancer (Sehrawat et al. 2013), prostate cancer (Cho et al. 2016), lung cancer
(Wu et al. 2010), pancreatic cancer (Sahu and Srivastava 2009) colon cancer (Lai
et al. 2010) and hepatocellular carcinoma (Zhu et al. 2017). A printed study
established that BITC prompts DNA damage in human pancreatic cells. It was
also revealed that DNA damage originates G,/M cell cycle arrest and apoptosis
(Zhang et al. 2006). Another study proved BITC facilitated inhibition of the migra-
tion and invasion of human colon cancer cells. The anti-invasive effect of BITC was
through downregulation of MMP-2/MMP-9 and urokinase-type plasminogen acti-
vator (uPA) associated with protein kinase C (PKC) and MAPK signalling pathways
(Lai et al. 2010). BITC also showed antitumor effects by potentiating p53 signalling
in breast cancer cells.

Phenethyl isothiocyanate (PEITC) is an additional isothiocyanate largely existing
in cruciferous plants. PEITC is one of the vigorous ingredients of cruciferous
vegetables that has been widely studied for its anticancer properties in glioblastoma,
prostate cancer, breast cancer and leukaemia (Gupta and Srivastava 2014).
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Numerous readings have specified that ingesting of cruciferous vegetables such
as broccoli, watercress and garden cress leads to chemoprevention in many rodent
models (Wang and Chiao 2010).

7.6.12 Ursolic Acid

Ursolic acid is a plant-derived pentacyclic triterpenoid originating from several
medicinal herbs and fruits. An accumulative amount of proof supports the anticancer
effect of ursolic acid in several cancer cells. Ursolic acid (UA) is extensively found
in fruits and vegetables having the capability to impede breast cancer (BC) spread,
angiogenesis and metastasis, halt cell cycle, prompt apoptosis, forage free radicals
and control numerous anti-apoptotic and pro-apoptotic proteins.

UA may be a powerful inhibitor of nuclear factor kappa-light-chain-enhancer of
activated B-cells (NF-kB), and downregulates the manifestation of apoptosis sup-
pressor proteins, such as B-cell lymphoma-2 (BCL2) and BCL-XL in numerous
cancer cell lines, comprising human colorectal carcinoma. UA shows the role of an
anticancer agent through numerous signalling paths, plus the STAT3 pathway
(Prasad et al. 2012). But whether UA can hinder human colorectal carcinoma
cancer-initiating cells has not been testified to our information.

UA has also shown probable anticancer, anti-inflammatory and antioxidant
activities in some human breast cancer (BC) cells. It has generated clinical interest
owing to its anti-inflammatory, anti-oxidative, anti-apoptotic and anti-carcinogenic
effects.

UA has showed chemopreventive and healing effects of cancer mainly through
prompting apoptosis, hindering cell proliferation and checking tumour angiogenesis
and metastasis. UA nano-formulations could increase the solubility and bioavail-
ability of UA as well as show improved inhibitory effect on tumour growth and
metastasis (Zou et al. 2019). Numerous data have also verified that UA inhibited
tumorigenesis and cancer cell proliferation, moderated apoptosis and cell cycle
development and encouraged autophagy (Kashyap et al. 2016; Jiang et al. 2018).

7.6.13 Withaferin and Withanolides

The anticancer property of W. somnifera was first stated by Devi and colleagues
(Devi et al. 1992), who presented that intraperitoneal administration of alcoholic root
extract of the plant totally retreated the growth of sarcoma-180 cells inoculated in
naked mice. Following studies have confirmed that the hydroalcoholic root extract of
the plant weakened 20-methylcholathrene (20MC)-induced development of fibro-
sarcoma in Balb/C mice when directed intraperitoneally or by gavage (Prakash et al.
2001). Davis and Kuttan (2001) have further stated the inhibitory effect of
W. somnifera extract on chemically induced mouse skin tumour growth. According
to a latest study, regular administration of root extract of the plant distinctly abridged
methylnitrosourea-induced rat mammary tumorigenesis (Khazal et al. 2013). These
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anticancer properties of Ashwagandha are attributable to withanolides, a class of
bioactive constituents isolated from W. somnifera. Withaferin-A (4p,58,68,22R)-
4,27-dihydroxy-5,6-22,26-diepoxyergosta-2,24-diene-1,26-di one) is the first
antitumor withanolide that was extracted from leaves of the plant back in 1967.

Yang et al. first described the mechanism-based anticancer activity of withaferin-
A, which abridged the progress of human prostate cancer (PC3) cells’ tumour
xenograft in naked mice by hindering the tumour angiogenesis and prompting
intra-tumoural apoptosis (Lahat et al. 2010).

Withaferin-A has been informed to subdue mouse melanoma (B16F1) tumour
growth in vivo. In additional skin cancer xenograft model using 92.1 uveal mela-
noma cells, about 29% of mice treated with withaferin-A showed an ample clinical
response, while 43% of the animals exhibited cancer advance upon termination of
treatment. Li and colleagues have lately informed that withaferin-A reduced the
tumour diversity, though not the occurrence, of DMBA-initiated and 12-O-
tetradecanoylphorbol-13-acetate (TPA) helped mouse skin tumour development
partly by obstructive the expression of acetyl-CoA carboxylase-1 (ACC1) and the
instigation of activator protein-1 (AP-1) (Li et al. 2016).

7.7 Conclusion

Dealing with metastasized cancers rests a challenge regardless of contemporary
diagnostics and treatment procedures. Therefore, substitute methodologies are
required. Chemoprevention using dietary phytochemicals such as a-linolenic acid,
allicin, apigenin, carotene, curcumin, ellagic acid, ferulic acid, gallic acid, genistein,
lutein, lycopene, resveratrol, silymarin, stigmasterol, sulforaphane, glucosinolates,
ursolic acid, withaferin and withanolides in the preclusion of start and/or evolution
of cancer poses an encouraging alternate approach.
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Abstract

Autoimmune liver disease (AiLD) is a series of progressive and chronic inflam-
mation of the bile duct and liver cells arising due to impaired coordination
between the components of one’s immune systems ultimately leading to the
destruction of the liver. This disease primarily constitutes autoimmune hepatitis
(AIH), primary biliary cirrhosis (PBC) and primary sclerosing cholangitis (PSC)
under its wing. Immunomodulatory therapy established itself as a robust
approach by providing a platform to treat such diseases. Although tremendous
efforts have been put forth for instituting immunomodulatory therapy for PSC,
the lack of positive results in a majority of the experimental studies prevailed with
intense research is currently underway. This chapter unfolds with a brief perspec-
tive on the epidemiological, pathogenetic and clinical studies of AiLDs and dives
deep into understanding the intricate dynamics of immune response during the
pathogenesis of AIH. This study also highlights the numerous
immunomodulators emphasizing its therapeutic potential for treating AiLDs.
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8.1 Introduction

The fundamental task of the immune system is to recognize self-cells from non-self-
cells. If the immune system fails in discriminating those cells, it may cause autoim-
mune diseases. Significant damage causing a chronic and progressive inflammation
to the hepatocytes and biliary ducts induced by the lack of coordination between the
regulatory and effector cells of one’s own immune system is a characteristic hall-
mark of autoimmune liver disease (AiLD). It constitutes primary biliary cirrhosis
(PBC), autoimmune hepatitis (AIH) and primary sclerosing cholangitis (PSC) under
its umbrella. In 1950, Waldenstrom observed liver cirrhosis in young females as a
consequence of increased gamma globulins in the patient’s serum, jaundice and
amenorrhoea and described it to be autoimmune hepatitis (Lowe and John 2018).

In general, any imbalance of Tregs (regulatory T cells) which commonly play a
major role in homeostasis and hindering unwanted autoimmune reactions causes
autoimmune liver disease. The foremost requisite for diagnosing autoimmune hepa-
titis involves eliminating some of the possible causes of chronic hepatitis, for
example, drug-induced liver injury (DILI), hepatitis caused by viruses and
non-alcoholic steatohepatitis (NASH), as there is a high possibility of these to
respond to immunotherapy. Some of the tangible characteristics of autoimmune
hepatitis (AIH) involve the presence of a large concentration of ANA (antinuclear
antibodies) and specific immunoglobulins (hypergammaglobulinemia) in the
patient’s serum, lymphoplasmacytic infiltration and death of limiting plates in the
liver called piecemeal necrosis. As previously mentioned, hepatic injury is most
commonly associated with AIH, whereas intra-hepatic damage to the bile ducts is
observed as in primary biliary cirrhosis (PBC) and primary sclerosing cholangitis
(PSCO).

As early as in the 1950s, it was observed that corticosteroids were successful in
causing a therapeutic response added with an early relapse potential. In the coming
years, its beneficiary prospects combined with specific immunomodulators might lay
the foundation for newer approaches. The main motive behind treating AIH by
immunomodulation involving immunomodulators such as prednisolone and
tacrolimus under the first line and second line of therapy is to achieve suppression
of the patient’s immune system. The only reason causing a setback to the current
advancements in clinical trials of AIH is the limited incidence and substantial
variations found during clinical studies. Apart from these, anti-CD20 monoclonal
antibody and antitumour necrosis factor therapies are used for immunomodulation.
Immunomodulation by using UDCA (ursodeoxycholic acid) and latest therapies
such as obeticholic acid is employed for treating primary biliary cirrhosis. Generally,
immunoglobulin infusion treatment is used for treating patients suffering from
itching, a symptom of PBC which occurs in people aged 40-60 years. PBC com-
monly occurs in association with ulcerative colitis and may involve both intra- or
extrahepatic injuries in male patients with a high probability of the development of
dangerous cancers like bowel and gall bladder cancer (Wang and Zheng 2013; Than
and Oo 2015). Further differentiation among the key aspects of the three diseases has
been listed out (Table 8.1).
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Table 8.1 Major differences between the different forms of AiLDs

Description

Specific disease
incidence according to
age

Specific disease
predominance
according to gender
Elevated Ig levels in
serum

Liver test transaminase
levels

Occurrence of
granulomas

Autoantibodies
detected

Treatment with first
line of therapy
(immunosuppression)

Causes a damage to

Possible disease
development

ATH
At any age

Females

IgG

Fivefold rise in AST,
ALT
Onefold rise in ALP,
GGT

No

ANA, SMA, LKM1
SLA/LP (10-30% of
AIH patients)

Corticosteroids and
UDCA

Hepatocytes

Hypothyroidism
Coeliac disease
Diabetes
Arthritis
Vitiligo

RA

PBC

In people
between 40 and
60 years of age
Females

IgM

Stable single
fold rise in ALT,
AST

Threefold rise in
ALP, GGT

Yes

AMA, gp210

UDCA only

Intra-hepatic
biliary duct

Hypothyroidism
Coeliac disease
Diabetes
Arthritis

247

PSC

Common around
40 years of age

Males

Onefold fluctuated rise
in ALT, AST
Threefold fluctuated
rise in ALP, GGT

Has been found to
occur very rarely in
<10% of total cases
P-ANCA

UDCA only

Both intra-hepatic and
extrahepatic biliary
ducts

IBD

Some of the factors that could cause autoimmune liver disease has been put forth
through the ‘multiple hit hypothesis’, that explains the possible interplay between
genetic components such the X-chromosome and human leucocyte antigen, envi-
ronmental factors, broadly classified as infectious and non-infectious agents, epige-
netic, a person’s immune system involving innate, etc. and have been depicted
(Liberal and Grant 2016) (Fig. 8.1).
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8.2  Autoimmune Hepatitis (AIH)
8.2.1 Epidemiological Characteristics

Autoimmune hepatitis is found to be more prevalent in women with nearly four
females getting affected per male and can affect females of any age right from
children to senescent. AIH can also be associated with other deadly diseases such as
diabetes, arthritis and thyroid disorders. Therefore, before diagnosing potential AIH
patients, it is a prerequisite to check the patient’s family history with regard to such
diseases. As shown through various studies, the incidence of AIH and the necessary
clinical course varies depending on the ethnicity. For example, a study conducted
showed that the people from North America were affected in higher numbers
compared to their Caucasian counterparts where nearly 20 people were affected
among one lakh of people. Another study proved black population to be severely
affected by this disease resulting in cirrhosis. However, the people from Asia had
higher mortality rate and generally contracted the disease at the later stages in their
lives. In the United States, the ratio of incidence of this disease when analysed
between females and males was 3.5:1, with another study showing women to
constitute a total of 76 per cent among the total number of people to get diagnosed
with AIH. Heterogenous trends in clinical studies showed the difference in ethnic
groups and factors such as genetic traits and environmental factors to have a crucial
role in outcome (Werner et al. 2008; Wong et al. 2012; Blachier et al. 2013; Czaja
2013).

8.2.2 Disease Pathogenesis and Mechanism of Imnmune Response
in AIH

Unravelling the true cause and understanding the progression and development of
such a disease is a very complex process and is yet to be fully understood. As
mentioned before according to multiple hit hypothesis, it is presumed that several
genetic and environmental factors such as viral induced infection are directed
towards the liver antigens causing considerable inflammation and scarring (Liberal
et al. 2011). As described, one may also develop AIH by using drugs such as
adalimumab during anti-TNF procedure and antibiotics such as minocycline or by
using rosuvastatin (statins). However, in response to either self- or non-self-antigens,
adaptive immunity aided by the B lymphocytes and T lymphocytes (specifically, the
glycoproteinaceous cluster of differentiation 4 and 8 T cells) plays a critical part in
the disease’s immunopathogenesis with the NK (natural killer) cells and
macrophages mediating the effector responses (Oo et al. 2010a; Makol et al. 2011;
Czaja 2011a; Liberal et al. 2013). A vital performer under the umbrella of the CD3
subset making up nearly 2 per cent is the Tregs (regulatory T cells). It is further
classified into three distinct subsets, namely, CD4+, 25 and 127, that help in
preventing autoimmune diseases and sustaining homeostasis (Wang and Zheng
2013; Muratori and Longhi 2013). Development of the regulatory T cell lineage
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takes place at the surface epithelium of the medullary thymus as a consequence of
self-antigens being presented. The constitutional characteristics and progression of
Treg cells are mediated by a transcription factor, forkhead box P3 (Foxp3). In
Autoimmune hepatitis, this Treg function is corrupted (Oo et al. 2010b; Muratori
and Longhi 2013).

As discussed earlier, the genetic predisposition of a person, mainly HLA (human
leucocyte antigen) haplotypes, determines the presentation of the autoantigenic
peptides and recognition of T helper cells, for example, the binding of a peptide to
DRB1*0301. The T cells then recognize them within the liver, thus becoming
autoreactive. One crucial evidence suggesting the immune response mediated
through T cells causing severe inflammation and condition such as fibrosis is the
association of autoimmune hepatitis with several heterogenous haplotypes such as
HLADR3 or HLA DRB1*0301 (Caucasian population), HLA DRB1*0401
(European population) and HLA DRB1*0405 (Japanese population). Apart from
various haplotypes which pose to be a strong genetic predisposition, other vital
co-stimulators of T cells, namely, CTLA-4 (cytotoxic lymphocyte antigen-4) and
AIRE (autoimmune regulator) gene, which are necessary for imparting tolerance
have shown strong associations with AIH (Lowe and John 2018). A detailed outline
of the internal dynamics of the immune response that occurs during ATH has been
represented in Fig. 8.2.

8.2.3 (linical Features (Serum Autoantibody Studies)

For diagnosing autoimmune hepatitis, serologic tests are vital as the occurrence of
autoantibodies in the patient’s serum is what distinguishes this disease from others.
In the case of AIH, some of the significant biochemical deformities observed are a
substantial rise in transaminase, hyperbilirubinemia quantities along with a heterog-
enous rise in the levels of immunoglobulin G and alkaline phosphatase in the
patient’s serum during clinical studies. Some of the serological antibody markers
essential for diagnosing AIH are antinuclear antibodies (ANA) which are found to be
most useful for diagnosis when expressed along with anti-smooth muscle antibodies
(ASMA) with a diagnostic accuracy of nearly 74 per cent. As mentioned, ASMA is
important as it reacts against cytoskeletal elements such as F-actin. Another highly
accurate antibody for diagnosing AIH is anti-soluble liver antigen (anti-SLA) or liver
pancreas (LP) antibody coupled with ELISA for testing and has an accuracy of
99 per cent. But it is present only in 15-20 per cent of the patients in the United
States. Apart from type 1 AIH diagnosing antibodies, the anti-LKM1 antibody to
liver/kidney microsome type 1 is a marker for type 2 and is mainly found in children
and rarely found in adults. It is similar to the antigen of hepatitis C targeting
CYP2D6 antigen and is associated with DRB1#0701 allele which is highly prevalent
in the southern parts of Europe (Washington 2007). Around 80% of the patients
diagnosed with AIH may have ANA or smooth muscle antibodies (SMA) or
sometimes both.
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ANA mainly reacts with DNA and histone molecules which constitute a major
chunk, and such a scenario is also seen in the case of the disease lupus. The accuracy
of the diagnostic tests mainly depends on the type of technique used. For instance,
solid phase enzyme immunoassay and indirect immunofluorescence assays are
highly employed for better results. However, ELISA is not preferred because the
recombinant antigens differ from antigens detected in immunofluorescence assay.
One advantage solid phase immunofluorescence assay has when compared to
indirect immunofluorescence is its antigen specificity and very rapid post-testing
results which is found to be lacking in the latter method (Hennes et al. 2008b; Czaja
2011b).

8.2.4 Classification of AIH

Autoimmune hepatitis is mainly classified into three types, namely, Type 1, Type
2 and Type 3, depending on the type of antibody profile. In AIH, antibody profile is
of vital importance for distinguishing the distinct groups during pathogenesis but is
not much useful in terms of clinical trials. However, Type 1 AIH is distinguished by
ANA or SMA or sometimes both. It is more prevalent in the ages between 15 and
20 years or higher at 70 years. It is commonly found in Type 2 AIH patients. Type
1 AIH is found to be commonly associated with a human leucocyte antigen DR3
(also named as HLADRB1*0301) and DR4 (named HLADRB1*0401), with
patients of type DR3 mostly recommended with liver transplantation (LT). On
other hand, Type 2 AIH consists of anti-LKM1 antibodies expressing conditions
such as dysplasia, candidiasis, etc. showing a strong correlation with Type 1 autoim-
mune polyglandular syndrome which typically occurs in children between the ages
2 and 4. Lastly, soluble liver antigen or LP antibodies are pertaining to Type 3 AIH,
and the clinical features of this type are highly similar to Type 1 AIH and are quite
indistinguishable (Washington 2007).

8.2.5 Treg Cells as Mediators in AlH

The main function of regulatory T cells in modulating the immunotolerance is by
hindering the effector mechanisms of several cell types. Their improper functionality
may be one of the causes of such autoimmune diseases. One such study conducted in
London proved this in the case of paediatric autoimmune hepatitis. Another study
proved the failure of Treg cells in inhibiting the IL-17 which is produced by CD+4 T
cells. Till date the exact mechanism and role of Treg cell in AIH has not been
understood. This may be due to the lack of understanding the true pathway of how
Treg cells act by intracellular and extracellular markers (Sakaguchi et al. 2008;
Longhi et al. 2010; Grant et al. 2014). Initially, Tregs were thought to be CD4+
and CD25+ T cells, but gradually, it has been proved that only cells having a high
expression of CD25+ such as the transcription factor Foxp3 have the potential to
suppress effector mechanism and used as a trustworthy marker. However, usage of
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several Treg markers is efficient compared to Foxp3, and transient expression by the
effector cells showed that a peripheral number of Tregs have not been impaired. It
has been further elucidated and supported in the case of liver inflammation, where a
tremendous increase in the number of Tregs was observed (Speletas et al. 2011;
Peiseler et al. 2012).

8.2.6 Potential Triggers for AlH

One mechanism behind the major triggers for AIH is molecular mimicry, which is
seen during hepatitis B/C infection. Here, autoimmunity plays a crucial role when a
person’s immune system instead of reacting against the foreign antigen in turn reacts
with one’s own immune components through structural homology and starts pro-
ducing autoantibodies. In one of such studies investigating the generation of
autoantibodies, it has been found out that in around 10 per cent of the patients
diagnosed with hepatitis C virus infection, there has been a surge in the generation of
anti-LKM-1 antibodies and direct correlation with disease severity. However, in
Type 2 AIH, the body’s own cytochrome CYP2D6 has been found as an autoantigen
for anti-LKM-1 antibodies (Liberal et al. 2016). Apart from viral triggers, there are
other environmental factors such as anti-TNF agents like infliximab and antibiotics
like minocycline as depicted earlier in Fig. 8.1 of multiple hit hypothesis.

8.3 Primary Biliary Cirrhosis (PBC)
8.3.1 Epidemiological Characteristics

PBC results in a chronically progressive damage to the hepatic ducts as a conse-
quence causing hepatic and portal inflammation along with hepatic dysfunction.
Biliary cirrhosis is found to be more prevalent in females compared to males with a
predominance ratio of 10:1, and among those over the age of 40 years, one out of a
thousand women is likely to get diagnosed. Such a scenario has been observed in
regions such as Britain and the United States. The incidence of PBC has bumped
from nearly two cases per 1 lakh of population to nearly 3.2 within a span of 8 years
in the United Kingdom starting from 1976 (Hirschfield and Invernizzi 2011; Bowlus
and Gershwin 2014; Than and Oo 2015).

8.3.2 Disease Pathogenesis

As illustrated by the multiple hit hypothesis, apart from pathogens, etc., one study
showed that in around 6 per cent of the cases, they had a minimum of one PBC
diagnosed person in the near family. In the case of monozygotic twins, the percent-
age diagnosing for PBC having the same attributes among the two is nearly 63.
Innate and adaptive immunity plays a major part in correlation with occurrence to
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PBC because conventionally, class II human leucocyte antigens were thought to be
associated. But after the advent of the genome-wide technology, apart from HLA,
other risk loci like interleukin-12A, CTLA-4, etc. have identified. Another probable
trigger might be through the anti-mitochondrial response as seen by the presence of
self-reacting CD4 PDC-E2 T cells in hepatic cells and lymph nodes of the patient
(Lindor et al. 2009; Hirschfield and Invernizzi 2011).

8.3.3 Clinical Features (Serum Autoantibody Studies)

After screening the patients who are diagnosed with biliary cirrhosis, raised levels of
serum alkaline phosphatase have been observed, and some tend to exhibit symptoms
such as fatigue, excessive bile salts and itching after a period of 2—4 years though
some of the patients yet remain asymptomatic. UDCA as the first line of therapy, in a
quarter percentage of patients, had no positive response over the span of 4 years,
whereas nearly 30 per cent of the patients had shown significant improvement upon
carrying out the liver biopsy and other enzymatic tests. One study showed that by
treating patients of stage 1 and 2 with UDCA for an average time period of 8 years,
they were showing features of a normal healthy population. On the other hand, the
average time for the patients who underwent LT was found out to be nearly 9 years
after treatment. Without any treatment, complete dysfunctionality of the liver was
observed in an average of 5 years (Prince et al. 2002; Corpechot et al. 2005).

8.3.4 Stages of PBC (Histological)

Staging based on histological characteristics in the early stages of progress in this
disorder is a challenge due to the fact that there might be hepatic duct loss with
development of fibrosis. In the stage I PBC, damage to the lobes in the bile ducts is
observed in the form of lesions without any fibrosis. In the case of stage II PBC,
fibrosis and damage to periportal parts of the bile duct are visualized consequences
of lobular bile duct damage. Stage III is also named as pre-cirrhotic stage with
significant scarring of the liver being observed, whereas in the case of the cirrhotic
stage (stage IV), total destruction of bile ducts and cirrhosis occurs (Washington
2007).

8.4  Primary Sclerosing Cholangitis (PSC)

8.4.1 Epidemiological Characteristics

This autoimmune disorder may affect the biliary components as a whole but mainly
affects the biliary ducts which starts with inflammation and then progresses to

fibrosis and shrinkage of the biliary system, thus leading to a chronically staged
cholestasis resulting in hepatic cirrhosis. PSC is more prevalent in the European
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male population with its incidence around an average age of 40 years, and a very low
0.4 cases have been reported in 1 lakh of people in the United Kingdom. Experts
suggest that the quantitative incidence statistics may not be accurate due to the rarity
of this disorder in people. Recent data has shown that around 75 per cent of the
patients who have been diagnosed with IBD and 60-80 per cent of the people having
ulcerative colitis have developed PSC (Eaton et al. 2013; Yimam and Bowlus 2014).

8.4.2 Disease Pathogenesis

An individual’s parents or siblings who have been diagnosed with PSC have around
39% chance of developing sclerosing cholangitis. The risk loci of the human
leucocyte antigens associated with PSC are HLA, DRB1 and Q1. Another hypothe-
sis that aids in the development of an understanding regarding the pathogenesis of
this disease is the ‘gut and liver axis theory’ where the microflora sustaining in the
intestinal gut traverses to the hepatic and biliary system causing significant
modifications to the immune system and metabolic pathways. This is through their
metabolic products such as endotoxins, cell wall polymers, etc. resulting in severe
hepatic inflammation. Apart from this, the movement of IELs (intestinal
intraepithelial lymphocytes) having chemokine receptors such as CCR9 results in
biliary damage (Hirschfield and Invernizzi 2011; Eaton et al. 2013; Karlsen and
Boberg 2013; Tabibian et al. 2013).

8.4.3 (linical Features (Serum Autoantibody Studies)

PSC in males generally develop at an average age of 30 years, and nearly 90 per cent
of the stage II PSC patients tend to suffer from this disease for a span of 5 years or
more. They have a propensity to exhibit features like strictures to biliary ducts,
stones, acute bacterial cholangitis and sometimes bile duct cancers seen in 16 per
cent of the patients. In around 80 per cent of the patients having sclerosing
cholangitis, ANCA test for finding out anti-neutrophilic antibodies may be taxing
due to its overlap with autoimmune hepatitis. Also, diagnosing the bile duct carci-
noma tends to be highly challenging due to the fact that cytologic diagnostic tests
may not give accurate results and performing cholangiogram may not yield the
desired results due to the difficulty in distinguishing the tumour and the biliary
strictures (Washington 2007).

8.5 Overlapping Syndrome/Variations in Autoimmune Liver
Diseases (AiLDs)

In general, when a person exhibits disease characteristics, serum profiles and histo-
logical features either primary biliary cirrhosis (PBC) or primary sclerosing
cholangitis (PSC) along with the symptoms of autoimmune hepatitis (AIH), such a
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condition is called as an overlap syndrome. This is found in nearly 20 per cent of the
AIH cases. Diagnosing such an overlap syndrome may be challenging since there are
no specific diagnostic tests. Therefore, it is vital to check the patient’s clinical
characteristics multiple times or check the disease features once again before
confirming. This is due to the fact that there is a confirmation yet lacking whether
these overlap syndromes are unique or are variations of the original disease. The
good part is that there might lie a possibility for developing a test by combining
biochemical, radiation and immunological tests (Trivedi and Hirschfield 2012).

8.5.1 Overlap Features of AIH and PBC

AIH and PBC overlap occurs in around 8 per cent of the patients diagnosed with AIH
or sometimes with PBC alone alongside having both the disease features of hepatitis
and biliary cirrhosis. Furthermore, sometimes also for those patients for whom
immunosuppressive drugs targeted towards a particular disease fail, treatment
should be targeted to tackling both AIH and PBC simultaneously. As mentioned
earlier with regard to the option of diagnosing with immunology, it is challenging
due to the fact that sometimes there might be the presence of smooth muscle
antibodies instead of anti-mitochondrial antibodies due to inefficacy of the immuno-
fluorescence tests. One way of concluding this for a patient to be diagnosed with
AIH/PBS overlap is by detecting elevated levels of immunoglobulins G and M,
respectively, in the patient’s serum along with higher levels of ALP and cholesterol
in the serum of PBC patients. More specifically, for diagnosing this overlap syn-
drome as AIH/PBC, the patient must exhibit at least five times more level of ALT
than the desired normal with the histological analysis of the liver exhibiting severe
inflammation with respect to AIH.

Regarding PBC, the patient must have the level of gamma glutamyl transferase
five times along with a biopsy report of the liver showing lesions on the biliary duct
(Liberal et al. 2013).

8.5.2 Overlap Features of AIH and PSC

Similarly, in patients diagnosed with inflammatory bowel disease and autoimmune
hepatitis, treatment may get affected as studies have shown nearly 40 per cent of the
patients exhibit disease features of sclerosing cholangitis. This is especially signifi-
cant in those people who developed either of the diseases mentioned above in their
childhood to be susceptible to AIH/PSC overlap. In such an overlap, treatment
should target PSC, and unless the patient still has IBD, the use of UDCA and
immunosuppressive drugs should be encouraged. Yet, it is recommended that they
be reduced in their usage prior to the liver’s biopsy (Makol et al. 2011). In a study
conducted taking 55 children with 16 years of age, cholangitis features were found in
27 of them, giving this syndrome another name called ASC (autoimmune sclerosing
cholangitis). Histological reports in children may show irregularities in the formation
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of bile ducts where there would be a malformation of the overt stricture with a high
prevalence of intra-hepatic disorder (Gregorio 2001).

8.6 Potential Imnmunomodulators for Autoimmune Liver
Diseases (AiLDs)

Toll-like receptors (TLRs) are some of the preeminent players in modulating the
liver’s immune system, thus making it one of the immunoprivileged tissues. The
principal contestants accredited with modulating the liver’s immune system making
its environment non-reactive to the antigens that have crept in are the toll-like
receptors (TLRs). But in some exceptional cases, these TLRs such as 2 and
4 might go rogue and be the sole cause for the pathogenesis of inflamed liver. One
study showed that in the case of AiLD and primary sclerosing cholangitis, the
signalling pathway involving toll-like receptor 4 and LPS (LPS/TLR4) was primar-
ily responsible for the disease, and the inhibition of such toll-like receptors led to a
downfall in the intensity of the disease pathogenesis (Pimentel-Nunes et al. 2010;
Soares et al. 2010; Huebener and Schwabe 2013). The toll-like system induces
immunotolerance against any foreign substance presented to the liver. Nonetheless,
in case the host immune system is repressed, the probable effect would result in a
long-standing infection of the liver. Therefore, by bringing the LPS/TR4 signalling
pathway into play, a therapeutic response would be practicable. The subduing of the
damage inflicted by AiLDs can be attainable by regulating the production of LPS,
etc., bringing about the suppression of toll-like receptor 4 signalling (Broering et al.
2011).

In recent times, there has been extensive research in the field of the
immunobiology of phages. So, by tapping the immunomodulatory potential of
those bacterial viruses into creating a therapy for autoimmune liver diseases by
maintaining homeostasis and preventing liver inflammation, they could be used to
overcome problems caused due to the antibiotic’s resistant bacteria, etc. By
consolidating the data from earlier experiments, the bacterial viruses were found to
play a part in maintaining a stable equilibrium environment in the GI region. Apart
from this, they also curtail the T cells to divide and secrete cytokines and have also
been found to decrease the detrimental immune reactions in mouse models with CIA
(Goérski et al. 2012; Migdzybrodzki et al. 2017).

Apart from this, bacterial viruses have the potential to under-express those
particular factors associated with AiLDs such as TLR4, ROS production, NF-kB
transcription factor, IL-1, IL-10 and others. In patients with extremely low levels of
monocytes and granulocytes, their levels can be brought back to normal by
administering phage therapy, suggesting its therapeutic effect. Alongside its numer-
ous advantages as an immunomodulatory agent, phages can help boost the genera-
tion of interleukin-10, an anti-inflammatory agent, and play a role against hepatic
damage that is commonly observed in AiLDs. In the case of AIH, these phages help
to ameliorate the inflammation and prevent the need for LT because of the end-stage
liver disease. With respect to PBC, its central role would be to suppress autoimmune
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reactions, which would be the same in PSC and fight against bacterial caused
progression to end-stage LD (Van Belleghem et al. 2017; Gérski et al. 2018).

8.6.1 Immunomodulation in Autoimmune Hepatitis (AIH)

Treatment against autoimmune hepatitis is by first suppressing the hepatic inflam-
mation caused due to inflammatory cytokines. This can be achieved by using
immunomodulators such as budesonide and prednisolone in combination with
AZA (azathioprine) or sometimes individually.

Diabetes and osteopenia are some of the side effects generally observed in
patients induced with steroids. In around 40 per cent of the treated patients, within
the time frame of 365 days, such effects have been observed, and in nearly twice the
percentage of patients, they have been seen in a biennial period. One way of
circumventing the probable side effects caused by administering conventional
steroids is by employing the synthetic immunomodulatory budesonide. This is due
to its presystemic hepatic metabolism and a viable option for patients suffering from
diabetes mellitus and those intolerant to prednisolone. Therefore, to alleviate such
probable side effects, usage of AZA with azathioprine is preferred with patients
diagnosed with AIH due to the lower percentage of them experiencing these as
compared earlier (nearly 10 per cent). In the case of diagnosed patients intolerant to
AZA, mercaptopurine (6-MP) is suggested which, after entering the metabolism,
turns into thiouric acid (6-TU) or methyl mercaptopurine (6-MMP) (Strassburg and
Manns 2011; Than and Oo 2015). Once the patients were treated, in a span of
14 days, a significant rise in the antibodies and hepatic enzymes in the serum of
nearly 90 per cent of the patients has been found. In the case of patients where the
AlIH relapse occurred, there is a three times rise in the AT levels in nearly 50 per cent
of patients after 6 months of ending the therapy (Manns et al. 2010; Makol et al.
2011).

8.6.2 Tac (Tacrolimus)

Tacrolimus is mechanistically similar to cyclosporine A, and both are calcineurin
inhibitors. These are chemically compounds with a lactone ring bound to the deoxy
sugar molecule binding to a unique immunophilin causing nephrotoxicity as its side
effect. Very few studies were carried out on the use of Tac for patients with AIH; in
one pivot study where 21 patients were administered with Tac for a period of
3 months, a drastic fall in the hepatic enzymes was found in nearly 80 per cent
among them (Yeoman et al. 2010; Strassburg and Manns 2011).
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8.6.3 MMF

Mycophenolate mofetil is an inhibitor of inosine monophosphate. The
non-competitive mode of action plays a role in hindering the rate-determining
process during the generation of purine nucleotides from RSP and lowering the
proliferation of B and T cells. During the immunomodulatory therapy using MMF,
many patients tend to exhibit side effects such as diarrhoea, dizziness and headache.
In a study where MMF alongside prednisolone was given for a therapy period of
90 days to 59 AIH-diagnosed patients, significant positive changes in their immu-
nological and biochemical characteristics were seen in nearly 88 per cent of them.
The remaining percentage of patients showed partial yet positive responses. In a
similar study conducted on 16 patients in Canada dosed with MMF or Tac, a positive
response was seen in 8 of patients, with the other 12.5 per cent of them displaying no
response at all, concluding that in many ways, this immunomodulatory therapy was
better than conventional therapies (Hennes et al. 2008a; Zachou et al. 2011; Liberal
et al. 2013).

8.6.4 Rituximab

Treatment of AIH with CD-20 targeting monoclonal antibody mainly results in the
reduction of a number of B lymphocytes through cytotoxic pathways. Upon
investigating the pathogenesis of AIH, it was seen that both B and T lymphocytes
play a part. In one study conducted on rituximab’s potential immunomodulatory
role, patients showed no possible side effects and significant positive biochemical
characteristic changes in those who previously showed no positive results during
conventional therapy (Burak et al. 2013).

8.6.5 Recombinant Antibody

Infliximab is a humanized antibody and is generally used in AIH-diagnosed patients
with LT and has also shown to treat patients diagnosed with IBD and RA success-
fully. In one study conducted for testing infliximab’s potential on 11 patients, there
was significant suppression of the hepatic inflammation along with a fall in the levels
of antibodies in the patient’s serum (Weiler-Normann et al. 2013).

8.6.6 Cyclic Peptides

The cyclic peptide is one immunomodulator with lipophilic nature. The T
lymphocytes’ functionality gets hindered with the help of the IL-2 gene by acting
on Ca-dependent signalling pathways. A total of three experimental studies are
reviewed here. In a study involving six AIH-diagnosed patients, cyclosporine
homogenized the level of alanine aminotransferase in all of them. In yet another
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study, out of five patients who were given conventional therapy, four showed
significant improvements. Lastly, out of the eight patients to whom cyclosporine
was administered, every one showed AIH remission. One disadvantage of using this
immunomodulator is that it can cause side effects such as hypertension and induce
cancer in some cases (Sciveres et al. 2004; Strassburg and Manns 2011).

8.6.7 SCO Immunomodulator for AIH

Schisandra chinensis is a fruit obtained from a plant employed in traditional Chinese
medicine named Chinese magnolia vine and has shown high efficacy in treating
diseases such as cardiovascular and intestinal diseases in the olden days. This fruit
contains fatty acids, vitamins and essential oils such as Schisandra oil (SCO), which
has nearly six types of lignans. These are mainly hepatoprotective in nature, and
extensive studies on the metabolic activities of these lignans have been carried out
which showed their role in upregulating cytochrome B5 and NADPH reductase
activities and speeding up the proliferation of hepatocytes. Also, it modulates hepatic
circulation and offers protection to hepatic cells during oxidative stress (Mocan et al.
2016; Szopa et al. 2017; Kortesoja et al. 2019). In the present study, SCO immuno-
modulatory effects on concanavalin A (Con-A)-induced AIH in mouse models are
studied. Apart from its role in stimulating the T cells, this lectin helps activate the
Kupffer cells and other monocytes, causing an overall hepatic inflammation due to
the production of various interleukins and necrosis factors. Mentioned below are
some of the other immunomodulatory properties of SCO against AIH. It reduces the
levels of ALT and AST in the patient’s serum. It also inhibits the activation of T cell
in mediastinal lymph nodes and spleen induced by concanavalin A along with
hindering the expression of cytokines by obstructing the activation of immune
cells offering protection against hepatic inflammation in the liver (Takahashi et al.
2009; Zhang et al. 2010; Soares et al. 2011; Dong et al. 2019).

8.6.8 LDIL-2 as an Immunomodulator for AlH

Based on an experimental study conducted where low-dose interleukin-2 therapy
was administered to patients who have autoimmune hepatitis, it was found that its
usage was safe to the patient and played a part in upregulating the concentration of
regulatory T cells in circulation. The experiment’s predicted outcome was that it
modulated the pSTATS5 response to an optimal level by increasing the sensitivity of
regulatory T cells to interleukin-2, a characteristic hallmark of AIH, when used in
two varying sets of LDIL-2 doses.

It was also observed that in the patients who were administered much higher or
increased frequency of doses, the aforementioned effects sustained for a longer
duration than in the patients who were given a lower dose. More so, by employing
such variance in doses, no substantial changes were observed in other immune cells
except the Treg cells. In another study conducted on animal models, it was found that
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an increase in regulatory T cells was suppressed in the liver during severe hepatic
disorders. This study proves the potential and viable immunomodulatory role of
LDIL-2 in the case of AIH by pumping-up the number of lymphocytes and reducing
the inflicted hepatic destruction (Hartemann et al. 2013; Liberal et al. 2015; Lim
et al. 2018).

8.7 Immunomodulation in PBC
8.7.1 Ursodeoxycholic Acid (UDCA)

Ursodeoxycholic acid, also called UDCA, plays a major therapeutic and immuno-
modulatory role in PBC by increasing the BA secretions from hepatic cells and
ducts. This gives protection against a cytokine and BA-induced injury increasing the
BA pool’s water-loving index, which in turn results in interference of hepatic
circulation. A substantial drop in the toxic hydrophobic natured BA pools was
observed in the hepatic environment. Usage of UDCA results in the rise of ROS
levels and stabilizes the membranes of hepatocytes. Apart from this, inhibition of
MHC class I and II expression in hepatic cells can be seen, thus preventing the severe
damage inflicted during UDCA’s immune response (Poupon 2012).

Obeticholic acid (OCA) majorly helps activate a nuclear hormone called FXR
(farnesoid X receptor) and is derived as a semi-synthetic analogue of BA CDCA.
Homeostasis of BA is regulated by apical sodium BA transporter, thus managing the
expression. A significant rise in the expression of FGF-19 (fibroblast growth factor-
19) is seen when FXR gets activated and hinders both ASBT and an enzyme
involved in BA production (CYPAL1). In hepatocytes, the uptake of BA could be
limited by activation of FXR (Poupon 2012; Patel and Seetharam 2016). Other
immunomodulators are fibrates (fibric acid derivatives) proven to inhibit the kappa
light chain, which reduces cytokine expression (Lens et al. 2014). Recently, some
studies have been conducted on the fibrates such as fenofibrate in association with
UDCA and showed a reduction in ALP levels (Cuperus et al. 2014).

Glucocorticoids (budesonide) are corticosteroids having a very high binding
affinity to its receptor, which can be attributed to the fact that it immediately gets
absorbed in the small bowel due to the underlying internal metabolism compared to
other glucocorticoids. By studying the data from the set of experimental studies
performed, it can be observed that by administering budesonide in combination with
UDCA, a significant improvement has been observed concerning the liver histology
and biochemical characteristics in the case of PBC. Usage of budesonide may cause
several side effects like osteopenia (Parés 2014; Patel and Seetharam 2016).

Rituximab (mAb) is another immunomodulator used for hepatic autoimmune
diseases. In the case of regular and transformed B cells, the CD20 antigen is the
target of rituximab. This chimeric monoclonal antibody destroys the B lymphocyte
either through a cell-mediated or humoral pathway with a minimal noticeable effect
on the biochemistry of the liver. Apart from the immunomodulatory role of this
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monoclonal antibody in PBC, it has also shown a significant effect in cancers such as
non-Hodgkin’s lymphoma, etc. (Myers et al. 2013; Floreani et al. 2016).

Basically, an immunomodulatory therapy involving ustekinumab is administered
only when the patient with PBC does not show any promising results on conven-
tional treatment. Its main target is on the Th1/Thl17 signalling pathway, which
comprises interleukin-12 and interleukin-23 as their major cytokines, with experi-
mental data showing zero effect on the patient’s liver biochemistry (Floreani et al.
2016).

Liver transplantation (LT) is the only viable option to treat patients suffering from
end-stage PSC because, as of today, no treatment has been found suitable to
administer to patients with cholangitis. In some experimental studies, it has been
shown that in patients with PSC, UDCA usage at high doses ranging from 17 to
30 mg/kg/day did not lead to any significant survival rate compared previously. But,
by using a dose range of around 10 mg/kg/day, it showed a betterment in the hepatic
biochemistry and histological findings. In some cases of patients with sepsis of bile
duct and bacteraemia, antibiotics such as metronidazole have been used and have
shown positive results in the treatment. Furthermore, vancomycin specifically
reduced the chances of progression to end-stage LT (Imam et al. 2011; Triantos
et al. 2011; Tabibian et al. 2013; Than and Oo 2015).

8.8 Conclusion

Diagnosis of different autoimmune liver diseases, understanding their mechanism in
biochemical pathways and immunological modifications and studying their different
stages are some of the likely emerging topics. Although current treatment methods
are under trial, there is a significant need for further research to understand the
treatment process better and post-treatment consequences. However, aspiration of
present defiance requires enactment of biomarkers that help one make several
solutions according to disease behaviour, pharmacological evaluation and prognosis
of therapies.
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Abstract

Tuberculosis is caused by a bacterium called Mycobacterium tuberculosis (M-tb)
which leads to major therapeutic challenges causing several immune
dysfunctions by affecting various immune checkpoints. Over the past decades,
many research efforts have been made to control tuberculosis infections. How-
ever, the etiology of tuberculosis reveals that M-tb has coevolved with human
immune response and hijacks various defense mechanisms of natural and syn-
thetic antimicrobial agents contributing to the development of multidrug resis-
tance. Henceforth, the strategy of immunomodulation such as host-directed
therapy (HDT) emerges as an important therapeutic modality in treating infec-
tious diseases like tuberculosis. Moreover, the growing understanding of immune
checkpoints of bacterial infections leads to the discovery of immuno-modulatory
methods and novel drug targets. Thus, the present chapter discusses the efficacy
of various immunomodulation against the etiology of M-tb infections and
challenges in the development of different classes of immuno-modulatory agents.
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9.1 Introduction

Infection caused by Mycobacterium tuberculosis (M-tb) causes pulmonary and
extra-pulmonary tuberculosis (TB) which is the leading cause of death by a single
microorganism (Chowdhury et al. 2018; Mvubu et al. 2018). Globally, around
1.7 billion people are affected by TB infection every year (WHO 2019). Among
them, the majority is asymptomatic, and very few show symptoms of TB. The
asymptomatic condition is attributed due to several factors associated with the host
(Ahmed et al. 2020). Generally, innate and adaptive immunities are considered to be
major controlling arms against the disease. But there is accumulating evidence to
suggest that pathogenic M-tb evolved to bypass the host immune response to
promote its growth and infection (Cruz et al. 2015). Besides, the pathogenic M-tb
produces specific virulence factors which regulate the functioning of the immune
system leading to its replication in the host and causing inflammation in the host
(Johnson et al. 2017; Esin et al. 2013). Therefore, WHO recommends different
classes of antituberculosis drugs for controlling the M-tb infection (Sacchettini
et al. 2008). Conversely, long-term and indecorous drug prescription leads to drug
resistance. Such drug resistances of M-tb disease are categorized as multidrug
resistance (MDR) tuberculosis and extensively drug resistance (XDR) tuberculosis
(Gygli et al. 2017). The MDR-TB is resistant to two first-line drugs (rifampicin and
isoniazid), whereas XDR-TB displays resistance additionally to fluoroquinolone
class and any one injectable second-line anti-TB drugs (Gygli et al. 2017; Shah
et al. 2007). Concerning MDR and XDR, WHO recommends several treatment
regimens with new drug combinations, novel drugs, and repurposed drugs, for
controlling the disease (Ahmed et al. 2020). However, in resource-limited countries,
high cost for TB detection, lack of timely modifications, and non-adherent treatment
regimen lead to poor management for patients suffering from MDR and XDR
tuberculosis (Morrison et al. 2008). The recent advance in the modulation of immune
response will be the best strategy for the prevention and treatment of M-tb infections
(Tsenova and Singhal 2020; Tobin 2015). Many of the available immuno-
modulators are capable of correcting the congenital defect in the functioning of the
immune system. Furthermore, immuno-modulatory therapy works by targeting the
host instead of the pathogen, thereby impeding the evolution of microbial resistance
(Gupta et al. 2016; Esin et al. 2013). Thus, the host-directed therapy will be effective
and could speed up the treatment regimen by reducing the hyper-inflammatory
response and TB pathology and promotes the memory that reduces the rate of relapse
following therapy (Ahmed et al. 2020; Maiga et al. 2015). This chapter appraises the
molecular mechanism of M-tb survival and pathogenesis on the progression of TB
infection, highlights the recent updates on developing new and repurposed drugs
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with antituberculosis property, and also addresses the necessity of
immunomodulation in the prevention and treatment of TB infection with improved
functionality.

9.2 Adaptation and Pathogenesis of M-tb Infection in Host
9.2.1 Regulation of Tuberculosis Granulomas

The formation of granuloma in host immune cells is a complex process that leads to
either latency state or progression to a disease state (Salgame 2011). Usually, the
inhaled M-tb enters the lungs via the trachea where they are engulfed by alveolar
macrophages (AM) and subsequently degraded by phagosomes. AM could regulate
the granulomas through their polarized form (M1/M2 phenotypes) (Tsenova and
Singhal 2020). The M1 macrophage differentiation occurs by stimulation from
T-helper type 1 (Thl) cytokines (IFN-y and TNF) to produce several antibacterial
agents (reactive oxygen species (ROS), nitric oxide (NO)) (Harriff et al. 2014).
While the M2 macrophage differentiates into M2a, M2b, and M2c mediated by Th2
cells (IL-2 and IL-13), pattern-recognizing receptors (PRRs), and Treg cells (IL-10).
Progression of TB is mainly suppressed by the M; phenotype, whereas the incorri-
gible inflammation is controlled by M, along with Th, type immunity (Tsenova and
Singhal 2020; Tan et al. 2017). It was reported that after M-tb invasion, host cells
restrict the pathogens through the formation of granuloma by the accumulation of
immune cells such as granulocytes, dendritic cells (DCs), natural killer (NK) cells,
and lymphocytes (B and T) surrounded by infected AM (Mvubu et al. 2018;
Robinson 2017; Volkman et al. 2010). On the contrary, a major proportion of TB
patients exhibit a quiescent state with the granulomas; thus, M-tb overcomes the host
defense and hypoxic milieu. Moreover, M-tb like other mycobacteria is capable of
persisting over a long period in the infected host cells without expressing any
virulence (Yihao et al. 2015). During the granuloma stage, the innate (macrophage
secreting cytokines and other anti-M-tb factors) and adaptive immune response
(T-cell-mediated immunity) could control the intracellular M-tb during the latent
phase of TB (Wang et al. 2012; Yadav and Schorey 2006). The latent M-b turns to
an active state in immune-compromised individuals, thus leading to the replication
and triggering the necrosis of macrophages and facilitating the easy spread of
infection (Cruz et al. 2015). Thus, the fate of TB progression is mainly regulated
through a fine balance between the host and pathogen factors that influence the
microenvironment within tuberculous granulomas.

9.2.2 Invasion of M-tb into Target Cells

The immune cells in which the invasion of M-b takes place include epithelial cells,
endothelial cells, fibroblast, and neuronal cells (Tsenova and Singhal 2020). Intra-
cellular colonization of M-tb with unique adhesion molecules plays a prime role in
disseminating TB infection to multiple organs (Tsenova and Singhal 2020; Franchi
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et al. 2008). Several different host pattern-recognizing receptors (PRRs) intercede
complex mechanisms of M-tb intake in the host cells. Of these, receptors such as Fc
type, mannose receptor, C-type lectin receptors (CLRs), dendritic cell-specific
intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN), and
macrophage-inducible C-type lectin have been identified from the host cells
(Faridgohar and Nikoueinejad 2017; Pahari et al. 2017; Sancho and Reis e Sousa
2012; Yamasaki et al. 2009). Obviously, concerning M-tb surface, very few adhe-
sion molecules were recognized such as heparin-binding hemagglutinin adhesin
(HBHA), M. tuberculosis pili (MTP), Mammalian cell entry (Mce) family proteins,
and ESAT-6 (Ryndak and Laal 2019; Chai et al. 2018). Among others, HBHA is a
well-characterized adhesin of M-tb which plays a crucial role in extra-pulmonary
dissemination of M-tb by binding with heparan sulfate proteoglycans (HSPGs) in the
cell membrane and baseline membrane underlying the alveolar macrophage (Bartlett
and Park 2011). Thus, inhibition of HBHA expression influences only the M-tb
adhesion to the alveolar macrophage and not the macrophage. However, the MTP
and Mce family proteins are an important surface molecule of M-tb which helps in
the adhesion and invasion of host cells (Chai et al. 2018). Also ESAT-6, an adhesion
molecule that binds to laminin of baseline membrane and cell membranes of alveolar
macrophage, thereby facilitates macrophage-independent M-7b dissemination via
alveolar wall. Another class of adhesin is PknD, a laminin binding molecule that
facilitates M-tb binding and invasion of microvascular epithelial cells of the human
brain but not to alveolar macrophage or other macrophage (Ryndak and Laal 2019).

9.2.3 Intracellular Survival Based on M-tb Balance with Host
Immune Defense

M-1b has evolved with many different strategies to adapt to the hostile environment
inside the macrophage. An intensive literature survey reveals that M-b contributes a
variety of mechanisms for survival in immune cells as mentioned in Fig. 9.1 (Khan
et al. 2016¢c; Meena and Rajni 2010).

9.2.3.1 Cell Wall-Associated Virulence Factor

Pathogenic M-tb expresses a variety of surface adhesive proteins which helps in the
internalization of M-¢b by binding to the host-specific receptors. Lipoarabinomannan
(LAM), a unique lipid molecule and cell wall active polysaccharide, especially
mannose-lipoarabinomannan (Man-LAM) plays a vital role in M-tb virulence
(Meena and Rajni 2010; Eddie Ip et al. 2009). It is mainly driven by the
phosphatidylinositol moiety of LAM which contributes to non-covalent interaction
between M-tb and host cell membrane. Studies suggested that LAM along with other
lipomannan constitutes the immuno-modulatory glycol conjugate molecules capable
of interacting with host cell receptors during M-tb disease (Bisht and Meena 2019).
LAM intervenes in calcium signaling, thereby inhibiting the activation of CaMKII
for phagosome maturation. Additionally, Man-LAM hinders apoptotic signals in
their host cells through the stimulation of Akt protein kinase activity. Hence, all
these consequences demonstrate that LAM, a major constituent of the M-tb cell wall,
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Fig. 9.1 M-tb adopted different strategies of evasion for its intracellular survival in infected
macrophage. Within the early phagosomal development, M-tb remains confined to enzymatic
degradation within the phagolysosomes. (A) M-tb evasion strategy blocks the phagosome-lysosome
fusion by negatively regulating vesicle trafficking along with PknG autophosphorylation. (B)
Within the nascent phagosome, M-tb inhibits phagosome maturation and acidification through the
reduction in cytosolic Ca®* levels, thereby inactivating CaMKIIL (C) M-tb is capable of shifting
between dormancy and active stage through the DosR regulon. The cytosolic CO activates M-tb
DosS/DosR regulon and maintains its dormancy, whereas O, inhibits the DosS/DosR activation.
(D) M-tb inhibits antigen presentation from the infected host by lipoprotein release. The released
lipoproteins interfere in ligand-receptor interaction and so block antigen presentation. (E) M-tb
inhibits intrinsic apoptotic pathway through its virulent receptor Man-LAM. Man-LAM interacts
with the death receptor in the host cell and delivers the Akt signals and blocks the MAPK activation,
which is responsible for cascade signaling of apoptotic pathway. (F) M-tb regulates host cell
membrane trafficking and integrity by allowing Rab5" and Rab11* endosome recruitment. Also
M-tb triggers mitochondrial membrane permeability transitions and allows ejectosome formation
and exosome trafficking. Ag-pl, antigen presentation inhibition

Shows a schematic representation of the effective immunomodulation approach to revoke or sustain
anti-M-tb immunity through HDTs. (A) Inhibition of PD-L1/PD-L2 immune checkpoints on M-tb-
infected M@ through anti-PD-L1/PD-L2 antibodies will allow T cells to involve in phagocytosis.
(B) The use of anti-PD-1 antibodies will effectively kill the M-tb-infected M@. (C) Concurrent use
of anti-CTLA-4 and anti-TIM-3 antibodies will prevent exhaustion and so enhance the immune
responses against M-tb-infected macrophage. (D) Displays similar functions, like (II) B

is responsible for its prolonged survival inside the host for pathogenic dissemination
(Bisht and Meena 2019; Meena and Rajni 2010). Similarly, M-tb is proficient in
invading dendritic cells (DCs), through their interaction with DCs surface receptors
such as TLRs and C-type lectins. Moreover, M-tb suppresses interleukin-12 (IL-12)
production from DCs by blocking TLRs lipopolysaccharide signaling with its LAM
(Aravindan 2019; Bisht and Meena 2019; Saiga et al. 2011).
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9.2.3.2 Attenuation of Host Extracellular Receptors

In many cases, M-tb is internalized into the innate immune cells through the
interactions with host surface receptor molecules such as complement (CR1 and
CR3—an integrin family protein), mannose type, and Fc receptor (Bisht and Meena
2019; Meena and Rajni 2010). However, the mode of interaction varies among the
strain type particularly during interactions with CR3, where the virulent strain
prefers a different domain of receptor compared to avirulent strains. Similarly, the
Fc receptor promotes different intracellular communication systems for the intake of
virulent M-tb. However, there is no evidence on the role of other host cell surface
receptors such as CD14, in intracellular M-tb survival (Meena and Rajni 2010).

9.2.3.3 M-tb Inhibition of Phagosome-Lysosome Fusion

Fusion of phagosome-lysosome (P-L) is the most significant step in the mononuclear
phagocytosis of an intracellular pathogen (Meena and Monu 2016; Meena and Rajni
2010). Immediately after phagocytosis, many tubercle bacilli will be directed to
phagolysosomes. But the evolutionary dynamics says M-tb bud out as vacuoles due
to early endocytic pathway; thus, there is no interaction with phagolysosomes which
results in the escape of M-tb from the phagosome digestion (Tan et al. 2017). Such
mycobacterial vacuoles restrict the access of viable tubercle bacilli to lysosomal
hydrolases of phagolysosomes. Vacuoles with killed mycobacteria will be rapidly
transferred to lysosomal degradation (Meena and Rajni 2010). Moreover, M-tb can
also mediate the anti-fusion effect through its constituents, sulfatides, and ammonia
production to inhibit P-L fusion. LAM released by M-tb decreases the intracellular
Ca** influx subsequently affecting the function of phosphatidylinositol 3-phosphate
(PI3P) on the phagosomal membrane. Additionally, M-tb releasing lipid phosphatase
into the cytosol of infected macrophage holds the ability to hydrolyze PI3P also
responsible for delay in P-L fusion (Meena and Monu 2016).

9.2.3.4 M-tb Inhibition of Phagosome Acidification and Maturation

Within the phagosome, M-tb can produce secretory proteins that protect it from
antagonistic conditions which arise in the phagosome-lysosome pathway. Many
hydrolytic enzymes of phagosomes are responsible for digesting engulfed pathogens
at low pH (Podinovskaia et al. 2013; Bruns et al. 2012). But M-tb infection fluctuates
the pH above 6 and hampers the activity of lysosomal enzymes inside the vacuoles
(Baker et al. 2019). This impaired phagosome acidification is associated with
vacuolar ATPase exclusion and so obstructs the cathepsin D protease activation
(Bruns et al. 2012). Such consequences negatively affect the antigen processing and
presentation by host immune cells (Meena and Rajni 2010). On the other hand, for
its extended intracellular survival, M-tb provokes modification of phagosomal
compartments, thus influencing the maturation process. M-tb-infected phagosome
stimulates anomalous expression of Rab5 protein and other molecular marker
components, thereby affecting the maturation process at the early endosomal stage
(Lala et al. 2014; Meena and Rajni 2010). Polymerization of actin filaments is key
for the formation of pseudopodia and essential in phagosome maturation during
infection. Conversely, M-tb with its abundant lipids triggers P2X7 polymorphism in
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ATP/P2X7 axis (Biswas et al. 2008). Consequently, such changes destabilize the
actin polymerization in the cytosol of M-tb-infected macrophages, thus delaying the
maturation of phagosome and P-L fusions.

9.2.3.5 M-tb Survival Strategy Through TACO Retention over
the Phagosomal Wall

Retention of TACO (tryptophan aspartate-containing coat protein) in the M-tb-
infected phagosomal wall is another important mechanism associated with inhibition
of P-L fusion and phagosome maturation (Dasgupta and Pieters 2018). Generally,
the retention of TACO in the M-tb-infected phagosomal membrane makes it
non-fusogenic with subcellular organelles such as lysosomes, thus helping M-b to
escape from bactericidal action of macrophage. Stimulation of TACO is mainly due
to the interaction of host fibronectin with virulent factors of M-tb (Dasgupta and
Pieters 2018; Meena and Rajni 2010). Such interactions activate a cascade of
signaling pathways leading to the activation of phospholipase and recruiting
TACO proteins. In many cases, TACO recruitment in a phagosomal surface is due
to phagocytosis of bacterial clusters rather than a single bacterium (Carranza and
Galan 2019).

9.2.4 M-tb Inhibition in Apoptosis

Apoptosis is the most preferred cleaning mechanism by host cell immunity to
eliminate the infected pathogen. Neutralization of intracellular pathogens, by remov-
ing infected cells with phagocytosis, is observed in this process (Aleman 2015; Cruz
et al. 2015; Kumar et al. 2011). Similarly, the induction of apoptosis for M-1b-
infected host cells is triggered by inflammatory cytokine stimulation. Conversely,
the development of M-tb infection is capable of suppressing apoptosis signals
through the reputed M-tb proteins such as SecA2 and NuoG (Dasgupta and Pieters
2018). Additionally, M-tb promotes transcriptional repressor for avoiding host cell
necrosis and phagosome induction. M-b reduces the intracellular ROS generation by
superoxide dismutase secretion using Sec2A-dependent pathway. Furthermore, the
study on M-tb role in necrosis inhibition describes that type | NADH dehydrogenase
subunits neutralize the ROS generation (Meena and Rajni 2010).

9.2.5 M-tb Transition from Latency to Active State: DosR Regulon

Dormancy survival regulator (DosR) is a major response regulator with 48 genes for
the regulation of metabolic activity during M-tb dormancy state. In general, the state
of M-tb latency is governed by a two-component regulatory system (DosS/DosR)
(Dasgupta and Pieters 2018; Kumar et al. 2013). Hypoxia or other stress conditions
will trigger autophosphorylation of DosS which subsequently phosphorylates DosR.
Autoactivation of DosR is a result of up-regulation of the heme oxygenase enzyme
responsible for the generation of carbon monoxide (CO) during M-#b dormancy state
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(Dasgupta and Pieters 2018). Similarly, M-tb expresses another Dos response
protein, a-crystallin, a chaperonin on activation inducing further 50 genes (Zhai
et al. 2019). However, at the respiring conditions, M-tb maintains a basal level of
DosR responsive genes and at non-respiring conditions, up-regulates DosR respon-
sive genes (Yihao et al. 2015). Thus, M-tb maintains viability during the transition
phase and also protects itself from oxidative stress during infection.

9.2.6 M-tb Interference in Antigen Presentation

Host immunity unveils antigen presentation as the prominent practice to eradicate
intracellular M-b via three routes as evident through literature support. In the first
attack, the antigen-presenting cells will process the M-tb antigen and present it to
MHC class II molecules which release inflammatory cytokine (IFN-y, TNF-o)
production from CD4" T cells for killing intracellular M-tb (Harriff et al. 2014,
Meraviglia et al. 2011). The second attack on M-tb via the presentation of M-tb
linked MHC class T antigen to CD8* T cells which release secreted granules for
killing M-tb (Sreejit et al. 2014). On the third attack, CD1 molecules of NK cells and
CD8+ T cells found the M-th-associated glycolipids, thereby secreting cytotoxic
granules for killing M-tb (Dasgupta and Pieters 2018). However, M-tb has evolved
itself to escape the killing mechanism of cytotoxic immune cells by a transition to
latency or by inhibiting antigen presentation (Yang et al. 2015; Sreejit et al. 2014).
Furthermore, as a survival strategy, M-tb can inhibit antigen presentation on MHC
class II molecules which is well documented in many kinds of literature: (i) M-tb
could restrain IFN-y production from antigen-presenting cells (APCs) and its MHC
class II molecule expression for antigen presentation to T lymphocytes and (ii) M-tb
ability on suppressing P-L fusion also impairs antigen presentation (Dasgupta and
Pieters 2018).

9.3  Antituberculous Agents in TB Control: Benefits and Pitfalls

With the existing strategy of drug regimen, it takes several decades for sustainable
treatment development to bring down the incidence of TB disease, since the intrinsic
biological characteristics of the M-tb pathogen demand a long-term treatment with
complex combinations of regimens to cure the disease (Ryndak and Laal 2019; Chai
et al. 2018; Tobin 2015). Generally, the standardized regimens for TB control
adhered with rifampin-based first-line drugs or fluoroquinolone-based second-line
drugs (Sacchettini et al. 2008). Regrettably, based on the drug resistance profile
(Table 9.1), due to lack of timely modifications, the advancement of TB disease
progression and rapid emergence of drug resistance becomes a worldwide public
health threat (Schwegmann and Brombacher 2008). Till now, based on WHO
updated guidelines, several standardized or individualized treatments were
performed under changing circumstances and evolving technologies (Shah et al.
2007).
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9.3.1 Controlling Drug-Susceptible TB

There are regularly updated guidelines for the management of tuberculosis which
include antituberculosis drugs and treatment regimens. WHO has categorized the TB
patients as new (no tuberculosis drug intake in <30 days) and retreatment cases
(>30 days of tuberculosis treatment) (Tiberi et al. 2018; Chang et al. 2018; Zumla
et al. 2015). New cases were prescribed with empirical regimens of quadruple drugs
(isoniazid (H), rifampicin (R), pyrazinamide (P), and ethambutol (E)) for 6 months
with intensive phase for 2 months (quadruple—HRPE) followed by continuation
phase for 4 months (dual therapy—HR) (Zumla et al. 2015). Due to lack of
superiority, a long treatment duration (>6 months) is not preferred. Based on the
treatment choice, the antituberculosis drugs are available as fixed-dose combinations
or loose formulations of a single drug. However, the available clinical trials display a
lack of significant differences between the formulations. WHO strongly
recommends that TB cases should undergo the universal drug susceptibility test
(DST) for routine surveillance of TB drug resistance before prescribing the
antituberculosis regimen (Shah et al. 2007). These data will help the physician to
be aware of retreatment cases to give special attention, to avoid the risk of inducing
drug resistance. Rather than conventional mode, the rapid test for drug susceptibility
testing was suggested for prescribing appropriate treatment regimen which allows a
low probability of rising MDR tuberculosis.

9.3.1.1 DOTS Strategy

Directly observed treatment, short-course (DOTS) strategy is one of the standardized
approaches recommended by WHO for resource-limited countries with high TB
burden (Morrison et al. 2008). This strategy established by the British Medical
Research Council (BMRC) results in good recovery and improved health rates for
infectious pulmonary TB in diverse ethnic groups (Shah et al. 2007). The treatment
choice covers 6-month standard short-course regimen with the quadruple first-line
(HRPE) drug in the clinical trial stage. However, this treatment explores consistent
results only in the drug-susceptible TB patients (Zumla et al. 2015). Regardless of
the global expansion of the DOTS strategy, only a 2% annual decline in TB
incidence was reported in correspondence to the rapid emergence of resistance
which necessitates the discovery of new drugs and novel treatment regimens for
TB control (Shah et al. 2007).

9.3.1.1.1 Individually Tailored Regimen

The host factors, about secondary complications (diabetes mellitus, HIV), are
capable of influencing the treatment outcome of drug therapy in a short-course
regimen (Shah et al. 2007). Additionally, the intermittent treatment or lower dosage
suggestions (WHO norms) on short-course regimens resulted in many failures at
recent clinical trials (Chang et al. 2018; Shah et al. 2007). Henceforth, the treatment
regimen tailored for individual needs was proposed with a possible outcome by
tailoring the treatment duration and overall curing rate. Moreover, the genotypic
and/or phenotypic drug susceptibility test (DST) makes the accurate choice of
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tailoring made-treatment regimens for the declining emergence of MDR-TB (Zumla
et al. 2015). However, the implementation of these personalized approaches with
accurate detection in resource-limited settings is even challenging.

9.3.1.1.2 Alternate Regimen

Owing to inadequate clinical evidence for shortening the 6-month standard short-
course regimen for drug-susceptible TB (DS-TB), searching for an alternate treat-
ment strategy may help in improving the treatment with a higher chance of curing
rate. In order to shorten the eight weeks course regimen, the first multi-arm, multi-
stage (MAMS) studies were performed on DS-TB by administration of 35 mg/kg of
rifampin instead of 10 or 20 mg/kg groups (Tiberi et al. 2018). Substitution of
rifapentine for rifampicin (longer half-life in vivo), previously approved for contin-
uation phase regimen once a week, explores inferior efficacy in patients at high
relapse rate. However, the treatment shortening effects of rifapentine are procured
only through daily dosing regimens studied in a murine model (Chang et al. 2018).
Similarly, the investigation of new sparing combinations (metronidazole, and
pretomanid, with moxifloxacin, and pyrazinamide) in the murine model was found
to be more superior to the standard regimen (Srivastava et al. 2020). But due to the
incidence of hepatotoxicity, this regimen was observed to be halted halfway through
the treatment period.

9.3.2 Controlling Drug-Resistant TB

For the MDR-TB patients, the treatment options were recommended by WHO in
2011 with either monodrug or polydrug resistance (Gygli et al. 2017; Zumla et al.
2015). The management of drug-resistant tuberculosis highly relies on the combina-
tion of standardized and individualized regimens (Chang et al. 2018; Tiberi et al.
2018). In the former approach, the suspected MDR-TB cases were regularly
suggested for analyzing drug susceptibility testing. However, the empirical standard
treatment regimens were recommended for patients with sparsely analyzed data (one
or two first-line drugs) or unavailability of DST data. In the latter approach, the
design of treatment regimens consigned with the patient’s past tuberculosis treat-
ment history.

9.3.2.1 Treatment Regimen for MDR and XDR-TB

WHO categorized the recommended second-line antituberculosis drug against
rifampicin and multidrug resistance tuberculosis into five groups (Zumla et al.
2015). The physician should adhere to WHO guidelines for designing the effective
empirical regimen for the treatment of MDR tuberculosis, by including at least four
potentially active drugs (Tiberi et al. 2018). During the intensive phase, the drug
formulations comprise a first-line drug (purposely the susceptible drug—
pyrazinamide), a later generation fluoroquinolone and aminoglycoside (injectable),
and the addition of one drug from group 4. Moreover, if the outcome of the above
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combinations shows intolerance or resistance or unavailable of potentially active
drug, then the noncore drugs such as bedaquiline or delamanid might be preferred
(Chang et al. 2018). The WHO recommends a total duration of at least 20 months,
including 8 months (intensive phase) followed by 12-18 months of continuation
phase (Zumla et al. 2015). The investigation of nonadherence factors, improper drug
formulations, malabsorption, low quality of drugs, and other factors play a signifi-
cant role in clinical response for M-tb positive patients (Zumla et al. 2015). Usually,
the formulation of anti-TB drugs results in adverse effects, causes that may relevant
to an increased attempt of failure, the emergence of resistance to second-line drugs
leads to lower patient adherence (Tiberi et al. 2018). In such instances,
recommended ancillary drugs are preferable. On the other hand, for patients
suffering from XDR tuberculosis, the drug formulations are mostly associated with
noncore drugs such as para-aminosalicylic acids and clavulanate with carbapenems.
The XDR drug regimens depend on variable factors such as virulence, a pattern of
resistance for infective M-tb strain, the extent of tissue damage, and status of host
immunity (Tiberi et al. 2018; Chang et al. 2018; Sacchettini et al. 2008). The XDR
treatment regimens are also allied with the outcome of the drug susceptibility test.
The WHO recommends the programmatic management of drug-resistant tuberculo-
sis on the evidence of a large cohort study which includes 9000 MDR and 400 XDR
cases (Zumla et al. 2015). At the intensive phase, the drug combinations should
include four and six drugs for MDR and XDR, while during continuation phase,
three and four drugs for MDR and XDR are recommended (Zumla et al. 2015; Shah
et al. 2007).

9.3.2.2 Treatment with the Repurposed Drug

During the interim period, the drugs used for other clinical aspects were repurposed
for MDR-TB/XDR-TB. The most recommended repurposed drugs include
fluoroquinolones, kanamycin, amikacin, clofazimine, linezolid, carbapenems, and
amoxicillin/clavulanic acid (Chang et al. 2018; Zumla et al. 2015). However, over
the past decades, the treatment regimen evidenced that linezolid and clofazimine
were found to be frequently used repurposed drugs. Fluoroquinolones are being used
in the treatment of many infectious diseases that are recurrently suggested for
isoniazid-resistant TB and MDR-TB (Sacchettini et al. 2008). However, early intake
of these second-line drugs leads to the development of resistance against fluoroquin-
olone, which can be managed with bedaquiline as a substitute drug (Zumla et al.
2015). Linezolid, evidenced with effective treatment choice for XDR-TB,
demonstrated in randomized-prospective phase II clinical trial. However, a signifi-
cant adverse effect was observed in a dose-dependent (600 mg/day) treatment
process (Chang et al. 2018). In a randomized controlled trial, the heterogeneous
administration of clofazimine for MDR-TB is an approved leprosy drug (Tiberi et al.
2018). Due to its intrinsic features such as wide tissue distribution and prolonged
half-life with higher intracellular activity, it is selected as an active second-line drug.
Similarly, carbapenems play a prominent role in the MDR tuberculosis regimen
evidenced with phase 2b randomized control trial. The absence of active oral
formulations with carbapenem class drugs (imipenem, ertapenem, and meropenem)



9 Immuno-Modulatory Role for the Treatment and Management of Tuberculosis 279

makes the treatment process difficult for MDR-TB and XDR-TB, as they are
inefficient against M-tb p-lactamases enzyme. But the combination regimen along
with amoxicillin and clavulanate hinders M-tb enzymes and promotes the action of
carbapenem (Tiberi et al. 2018).

9.4 Immuno-Modulating Approach for Controlling
the Propagation of M-tb

As an earlier view, innate immunity affords a primary line of protection against
various pathogenic infections. But the existence of protection through the nonspe-
cific response occurs only in the short term (Pahari et al. 2017). Nevertheless, over
the past decades, several research findings uncover many significant features of
innate immune response with prolonged immunity against pathogenic infections like
M-tb (Pahari et al. 2017; Hoebe et al. 2004). For instance, innate immune cells such
as macrophages, dendritic cells, natural killer cells, and others could secure against
M-1tb even in the absence of T-cell immunity in individuals with tuberculin negative
(Verrall et al. 2014; Morrison et al. 2008). Such innate immune cells interact with
M-tb through unique PRRs such as PAMPs (pathogen-associated molecular
patterns) specific to mycobacteria. Several PRRs (i.e., TLRs, CLRs, and NLRs)
directly induce M-tb phagocytosis through cytokine release, chemokines, and cas-
cade activation of complement proteins for the opsonization of pathogens. Among
the other organs, the lungs are being the primary site of infection for M-tb where it
enters the nasal cavity and reaches the lungs through the respiratory tract. Inside the
respiratory tract, M-tb were first encountered by neutrophils residing over the upper
mucosa. Neutrophils trap the M-tb by phagocytosis and release specific chemokines,
pro-inflammatory cytokines, and free radicals to trigger other immune cell (epithelial
cells, macrophages, connective tissues, and DCs) activation (Pahari et al. 2017,
Harriff et al. 2014; Meraviglia et al. 2011). Epithelial cells of a mucosal layer are
capable of recognizing M-tb PAMPs via their PRRs and generate IFN-«, granzymes,
and tumor necrosis factor (TNF)-a, mainly involved in M-tb elimination (Harriff
et al. 2014).

DCs from alveolar tracts and lung parenchyma are other significant responders
against M-tb (Pahari et al. 2017). Moreover, NK cells release cytokines such as type I
IFN and IFN-q, for activating DCs, thereby killing infected macrophages. Besides, T
cells function as APCs, thereby triggering CD4/CD8 T cells, and secrete IFN-y and
IL-17 for defending M-tb (Meraviglia et al. 2011). Generally, M-tb infects the lungs
when it successfully evades the upper respiratory tract and nasal cavity immune
responses. As a result, nasal defense works as a primary checkpoint for regulating
TB infections. Alveolar macrophage plays a vital role in engulfing and killing M-b.
Along with it, neutrophils, DCs, and NK cells synchronize with each other in
eliminating the bacteria. However, APCs, such as macrophages and DCs, create a
bridge between adaptive and innate immunity (Pahari et al. 2017; Hoebe et al. 2004).
Usually, DCs and macrophages exploit PRRs for detecting M-tb PAMPs and their
agonists, such as zymosan, LAM, and other ligands. These interactions will
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stimulate the expression of MHC, and release multiple soluble mediators, like
chemokine, free radicals, and cytokines. Interestingly, PRRs can also stimulate the
production of many reactive intermediates of oxygen and nitrogen and enhance
inflammasome formation, apoptosis, and autophagy (Pahari et al. 2017; Kumar et al.
2011; Kleinnijenhuis et al. 2011). Thus, the activation of immuno-modulators
creates different bactericidal mechanisms for treating TB.

9.4.1 M-tb Interactions with the Innate Immune System

Many receptor interactions with M-tb ligand incite the inflammatory responses, to
clear the M-tb infection or granuloma formation. M-tb develops subversion strategies
for survival and intracellular replication in macrophages and DCs. After engulfing,
DCs allow intracellular M-tb replication, and explore the mechanism to deter
migration (Ahmed et al. 2020). Regardless, M-tb interferes in DC maturation and
cytokine secretion and antigen presentation over serine hydrolase Hipl (Lala et al.
2014). Immediately after recognizing M-tb infection, a large influx of neutrophils get
activated, and neutrophils start responding through a variety of antimicrobial
polypeptides in their granules including defensins, lactoferrin, and lysozyme
cathelicidin, for killing the bacteria (Ahmed et al. 2020; Martineau et al. 2007).
Additionally, neutrophils can also abolish M-tb through NADPH oxidase and Ca*
at the phagosomal membrane, by facilitating ROS generation in the phagosome
(Ahmed et al. 2020).

Neutrophils are capable of releasing azurophilic granules and heat shock protein
to activate macrophages through neutrophil extracellular traps (NETs). Similarly,
NK cells release IFN-y for activation of macrophages during M-tb infection (Ahmed
et al. 2020; Braian et al. 2013). Moreover, NK cells destroy M-tb-infected
macrophages, through an upsurge of pro-inflammatory response. Generally, the
activation of NK cells and macrophage involves a wide variety of signaling events
such as NKp44, NKp46, and NKp30, and inhibitory receptors’ assassin cell CD94/
NKG?2 receptor, along with IL-12, IL-18, and IFN-a (Ahmed et al. 2020; O’Connor
et al. 2007). Research findings emphasize that latent TB assists with a high fre-
quency of NK cells, but in active TB, the population of NK cells is dramatically
reduced (Chowdhury et al. 2018). However, several pieces of literature evidence
suggesting the role of NK cells in M-tb infection are still inconclusive.

9.4.2 M-tb Interactions with the Adaptive Inmune System

Mostly in adaptive immune response, CD4* T lymphocytes recognize the M-tb
antigens from infected macrophages and dendritic cells and aggravate lymphocyte
activation and proliferation. Similarly, M-tb-infected DCs present glycolipid and
lipid antigens for triggering CD1-restricted T cells (Ahmed et al. 2020; Siddiqui
etal. 2015). Also, the infected DC cells could produce cytokines such as IL-7, IL-12,
IL-15, 1IL-23, and TNF-a for activating various leukocytes (Ahmed et al. 2020).
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Usually, M-tb expresses multiple antigens, including antigens specific to BCG, that
are recognizable by donor-unrestricted T cells, and CD1-restricted T cells. Hence,
these immune cells act as potential targets for developing TB vaccine, while T cells
can find M-tb phosphoantigen and defend against M-tb infection by releasing IFN-y
and TNF-a (Ahmed et al. 2020; Zhao et al. 2018).

Among the subsets of T helper cells, Thl responds to M-tb through the produc-
tion of pro-inflammatory cytokines like IL-18, IL-12, and IFN-y thereby arouses NO
and ROS secretion inside macrophages for M-tb killing (Ahmed et al. 2020; Tan
et al. 2017). Alternatively, Th2 releases cytokines such as IL-5, IL-10, IL-4, and
IL-13 for triggering anti-inflammatory macrophages and antibody production from
B lymphocytes. However, in active TB patients, higher levels of IL-10 from
regulatory T cells appraise IL-2 and TGF-f, consequently disturbing macrophages’
microbicidal pathways (Kim et al. 2014; Rodrigues et al. 2000).

A study by Ahmed et al. (2020) demonstrated that CD8" cytotoxic T cells destroy
M-tb-infected macrophages by producing perforin and granulysin. However, the
preventive function of humoral immunity against tuberculosis infection remains
unclear and challenging owing to its complex intracellular mechanisms. But still,
there is consistent evidence on the role of humoral immunity in active and latent TB
infection such as M-tb-based IgG Fc profiles on specific binding with glycosylation
patterns (Lu et al. 2019; Lu et al. 2016). Nevertheless, antibodies of mucosal surfaces
are effective in neutralizing or preventing invasion of an infectious pathogen, like
M-tb (Ahmed et al. 2020; Reljic et al. 2006; Williams et al. 2004).

9.4.3 Regulation of Pattern-Recognizing Receptor (PRR)-Specific
Molecules in M-tb Inhibition

9.4.3.1 Toll-Like Receptors (TLRs)

Toll-like receptors (TLRs) are a well-documented type of PRRs that are capable of
recognizing M-tb directly through the extracellular and intracellular PAMPs (Akira
2006). So far, 10-12 associated functional M-tb were identified in both humans and
mice. Remarkably, TLR2/4/8 and TLR9 were suggested to play a significant role in
TB infection. Each of these TLR types can detect discrete PAMPs, derived from
various classes of pathogens, i.e., bacteria, parasites, fungi, and viruses. Some of the
PAMPs and its binding TLRs are as follows: CpG oligonucleotides (CpG ODN5)
(TLRY), a single strand of RNA (TLR&8/7), flagellin (TLRS), lipoproteins (TLR6/2/
1), LPS (TLR4), and double-stranded RNA (TLR3) (Pahari et al. 2017; Faridgohar
and Nikoueinejad 2017; Davila et al. 2008; Akira 2006).

9.4.3.1.1 Mechanism of TLR Interaction with M-tb

In M-tb infection, TLRs play a crucial role in stimulating both innate and adaptive
immune responses (Faridgohar and Nikoueinejad 2017). Based on the research
evidence, genetic polymorphism in latent TB infection promotes transition of M-tb
from infectious to disease stage. Thus, gene polymorphisms in receptors like TLRs
(TLR2, 4, 8, and 9), NOD-2, and others may induce alteration of an innate immune
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response. Therefore, TLR polymorphisms are well correlated with mutated TB
vulnerability among different populations (Aravindan 2019; Wu et al. 2015).

Initially, innate immune cells activate adaptive immune responses when leucine-
rich repeats of TLR domains recognize M-tb (Faridgohar and Nikoueinejad 2017).
Subsequently, its interactions trigger myeloid differentiation primary response
88 (MyDS88), which is reported to play a vital role in all TLRs excluding TLR3
(Koets et al. 2010). MyD88 in turn activates the growth factors such as IRAK,
TRAF-6, MAPK, and TAKI1. These signaling pathways mediate nuclear transloca-
tion for initiating transcription of inflammatory mediators and adhesion molecules
and apoptosis/activate polymorphic nuclear cells and dendritic cells (Faridgohar and
Nikoueinejad 2017; Ahmad 2011). It reinforces that deficiency in MyD88 may
increase the vulnerability to M-tb infections. Moreover, M-tb uses its cell surface
protein (Rv1808, PPE family protein) to intrude such signaling by influencing the
host cytokine profile through MAPK and NFxB from activated B cells (Deng et al.
2014).

At intracellular cytosolic regions, immunomodulation is mediated by the TIR
domain through the downstream signaling pathways. As PAMP identifies TLRs, it
recruits unique adapter molecules (i.e., MyD88 and TRIF) to adhere to TIR domains
in the cytosol, and this in turn activates secondary signaling molecules such as
chemokines, inflammatory cytokines, IFNs, and antimicrobial peptides (AMPs)
(Faridgohar and Nikoueinejad 2017). Eventually, this process leads to the activation
of macrophage, stimulation of IFN genes, and recruitment of neutrophils, which help
in the killing of pathogens (Pahari et al. 2017). However, M-tb can intercede the
cellular activation over TLR2 and TLR4 which signifies the role of TLRs in the
control of M-tb infection.

9.4.3.1.2 TLR2

During M-tb infection, the role of innate immune response is mainly governed by the
expression of TLR2 on macrophages. In one way, excessive expression of TLR2 on
macrophages will aggravate the outcomes of M-tb infection through various
mechanisms, such as the production of anti-inflammatory cytokines and providing
signaling pathways (Wang et al. 2012; Faridgohar and Nikoueinejad 2017; Liu et al.
2016). In this regard, various M-tb components would elicit TLR2-dependent
activation of macrophages to reduce several anti-inflammatory molecules and
pathways (Rosales et al. 2011). For instance, M-tb lipo-glycoprotein (MPT83)
operates as an agonist of TLR2 which stimulates MMP-9 from human THP-1 cells
(Chambers et al. 2010). MMP-9 is an indispensable molecule involved in recruiting
APCs such as macrophages and is prone to well-developed granuloma formation
(Salgame 2011). Similarly, M-tbRa (M. tuberculosis H37Ra) could augment TNF-o
expression via stimulation of TLR2/ERK signaling and boosts MMP-9 and MMP-1
production in pleural mesothelial cells (Faridgohar and Nikoueinejad 2017). During
the latent infection stage, M-tb secretes Rv2660c protein and activates macrophage
secreting pro-inflammatory cytokines by engaging TLR2 and persisting in M-tb
latency (Yihao et al. 2015). ESAT-6 is another M-tb surface molecule that affects
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MHC class I presentation and promotes apoptosis mechanism in macrophages by
activating TLR2/NFxB (Yang et al. 2015; Sreejit et al. 2014).

Mounting evidence emphasizing the role of TLR2 on innate immune cells are as
follows: (i) interaction between dectin-1/LR2 triggers ROS production, thereby
provoking neutrophil activation and apoptosis, (ii) peptidoglycan like components
that can engage with TLR2, and (iii) IFN-y production in resting NK cells (Aleman
2015; Esin et al. 2013).

9.4.3.1.3 TLR4

Next to TLR2, TLR4 is well documented for its role in controlling intracellular M-zb.
It recognizes numerous M-tb-associated molecules like heat shock protein 65/60
(HSP65/60), 3/4-acylated lipomannan (LM), and 50S ribosomal protein for
stimulating immune cells (Faridgohar and Nikoueinejad 2017). However, TLR4 is
advantageous than TLR2 in promoting immune responses against M-tb. Briefly,
studies on HSP60 interactions with TLR2 and TLR4 uncover many regulatory
actions on immune responses. For M-tb control, TLR4 exhibits strong regulatory
actions of the immune response through anti-inflammatory cytokine
downregulation, not found with TLR2. TLR4 interaction mainly starts with
phagosomal functions of macrophages and is responsible for DC maturation
(Faridgohar and Nikoueinejad 2017; Podinovskaia et al. 2013).

Generally, TLR4 activation (by G1-4A polysaccharide), along with MYDS§8-
dependent pathway, endorses multiple signaling molecules such as MHC-II, TNF-a,
NO, IL-1p, IL-6, IFN-y, CD-86, and IL-12 production in macrophages (Gupta et al.
2016). Similarly, TLR4 agonists may reduce the M-tb burden by upsurging the ratio
of effector and memory T cells (CD8, CD4), in the lungs (Khan et al. 2016a).
Surprisingly in mice studies, non-functional or deficient TLR4 shows a lack of
susceptibility to M-tb unless it is exposed by aerosolized M-tb during chronic
infection (Faridgohar and Nikoueinejad 2017; Heldwein et al. 2003; Abel et al.
2002). Among other factors in M-tb-Rpf (A-E), Rpf-E triggers TLR4-dependent
pro-inflammatory cytokines (TNF-a, IL-6, IL-12p70, IL-23p19, and IL-1p) to medi-
ate host immunity (Faridgohar and Nikoueinejad 2017).

9.4.3.1.4 TLR8 and TLR9

Unmethylated CpG motifs are pervasive in M-tb to provoke good immune responses
in the host when interacting with TLR8 and TLR9 to activate DCs (Faridgohar and
Nikoueinejad 2017). Plasmacytoid DCs, a subtype of DCs, play a prominent role in
establishing inflammation and innate immune response (Guillerey et al. 2012).
TLRO can feasibly detect M-tb; as a result, it is selected as an effective vaccine
target by researchers and is currently under randomized phase 1 b study (Bekker
et al. 2020). So far, there are very limited studies performed on TLR8 and TLRO in
M-tb infection. Studies stated that the use of the BCG vaccine has enhanced the
expression of TLR8 on macrophages, and such discovery reveals the role of TLR8 in
susceptibility to M-tb and depends on its single nucleotide polymorphism
(Faridgohar and Nikoueinejad 2017; Salie et al. 2015; Davila et al. 2008).
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9.4.3.2 C-Type Lectin Receptors (CLRs)

Like TLRs, C-type lectin receptors are a broad protein superfamily encompassing
one or more (C-category) lectin domains and in vertebrates that are diversified by
almost 17 subclasses (Pahari et al. 2017). CLRs are expressed on numerous immune
cells, i.e., macrophages, DCs, and NK cells, capable of detecting numerous
pathogens like M-tb (Robinson et al. 2006). Many CLRs are soluble like mannose-
binding lectin (MBL) and dectin-1. CLRs include single or multiple extracellular
carbohydrate detection domains (CRD) of which some have Ca®* binding sites.
CRD helps in determining the specificity of carbohydrates on CLRs (Sancho and
Reis e Sousa 2012).

9.4.3.2.1 Mannose-Binding Lectin (MBL)

MBL (present in serum and amniotic and synovial fluid) regulates the immune
response through complement system by binding with a broad range of carbohydrate
moieties during M-tb infection (Naqvi and Endsley 2020; Yamasaki et al. 2009).
However, binding of ligand on MBL requires Ca** and is selective for terminal
mannose, N-acetylgalactosamine, and fucose. Owing to its ubiquitous nature, MBL
holds extensive ligand binding tendency and allows opsonization of M-tb, thus
considered as a significant receptor in M-tb infections (Eddie Ip et al. 2009).
Moreover, MBL ligation with M-tb is well related with M. bovis ligation inducing
agglutination, lectin pathway activation, and augmented phagocytosis (Naqvi and
Endsley 2020; Bartlomiejczyk et al. 2014). Polymorphism in the MBL2 gene
impacts the expression and function of the MBL receptor in the susceptibility of
TB in humans (Naqvi and Endsley 2020; da Cruz et al. 2013).

9.4.3.2.2 Dectin

Dectin is a CLR-type receptor found in immune cells such as neutrophils,
Langerhans cells, macrophages, and DCs, which are efficient in recognizing wall-
derived p-glucans in M-tb surface (Dennehy and Brown 2007; Yadav and Schorey
2006; Gross et al. 2006). Indeed, ligand binding specificity and intracellular signal-
ing varied among different CLRs. In one way, dectin-1 recognizes M-tb-associated
B-glucan to promote pro-inflammatory signaling such as Clec9a. Clec9a detects
filamentous actin (F-actin) in the necrotized M-tb-infected immune cells and
facilitates antigen cross-presentation in APCs (Pahari et al. 2017; Geijtenbeek
2012). Generally, the dectin-1 receptor enhances the M-tb uptake when interacting
with alpha-glucan, and it is liable for regulating the innate immune response (Pahari
etal. 2017). Moreover, dectin-1 can also trigger cytokine induction for regulating the
adaptive immune response. Dectin-1 activates Th17 memory cells to secrete IL-17
(Brown 2006; Naqvi and Endsley 2020). Conversely, some of the early reports
revealed the activation of dectin-1 and TLR4 promotes negative regulation of
infected macrophage allowing intracellular M-tb growth by suppressing apoptosis
(Naqvi and Endsley 2020; Cruz et al. 2015). However, a detailed study by Naqvi and
Endsley (2020) clearly states that activation of dectin-1 and TLR4 does not influence
M-tb growth. Moreover, dectin-2 receptors (observed mainly on tissue macrophages
and specific DC subsets, such as peripheral blood monocytes and Langerhans cells)
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are capable of recognizing several bacterial and fungal pathogens (Geijtenbeek
2012). Dectin-2 recognizes zymosan ligand such as Man-LAM of M-b cell surface.
Dectin-2 binding to Man-LAM activates pro-inflammatory (TNF-a, IL-6) and
immune regulatory (TGF-f, IL-10) cytokines subsequently triggering T-cell
response and Th17 differentiation (Naqvi and Endsley 2020; Decout et al. 2018).

9.4.3.3 NOD-Like Receptors (NLRs)

NLRs belong to the PRRs family and interact with nucleotides of M-tb by their
oligomeric domain. So far, nearly 22 NOD molecules have been reported in humans.
NLRs structure comprises a NACHT domain and a leucine-rich carboxy-terminal
region (Pahari et al. 2017; Franchi et al. 2008). NLR proteins potentially recognize
the peptidoglycan of M-tb. Except for a few NLRs (NOD-1 and NOD-2), the role of
other NLRs on TB control is inconclusive (Pahari et al. 2017; Girardin et al. 2003).
Both NOD-1 and NOD-2 hold amino-terminal caspase recruiting domain which
helps in inducing NFkB signaling, leading to increases in the release of chemokine
and pro-inflammatory cytokine followed by antimicrobial peptides (AMPs), nitro-
gen oxide, and co-stimulatory molecules on mononuclear cells (Uehara et al. 2007,
Pahari et al. 2017). However, mutations in the gene responsible for NLRs expression
will mediate several disease conditions. For instance, NOD-2"/~ M-tb-infected mice
induce impaired cytokine production in DCs and macrophages, displayed abnormal
bacterial population in the lungs, reduced survival rate, and had poor development of
T cells (Saiga et al. 2011). Furthermore, NOD-2 along with TLR2/TLR4 receptors
potentiates inflammatory cytokine release during M-b infection (Khan et al. 2016b;
Pahari et al. 2017). In particular, the combined action of NOD-2 and TLR4 on DCs
inhibits the intracellular survival of M-tb (Khan et al. 2016a).

9.4.4 Endogenous Mechanisms Involved in M-tb Killing

Host immune response against M-tb infection starts when DCs and alveolar macro-
phage ingest the pathogenic M-tb by phagocytes in the lower respiratory tract. In
reality, its distinct cellular process, including the development of reactive oxygen/
nitrogen species (ROS/RNS), stimulation of host defense pathways, autophagy, and
antimicrobial peptides (AMPs), decides the intracellular phagocytosis of M-tb
(Ahmed et al. 2020).

9.4.4.1 Autophagy and TB

Autophagy is an innate housekeeping cellular mechanism that aims at the degrada-
tion of damaged organelles, old cells, and aggregated proteins by the double
membrane vesicular autophagosome. Autophagy often plays a vital function in
intracellular M-tb infection by managing a broad range of immune responses
(Ahmed et al. 2020; Bah and Vergne 2017). The activation of the autophagy
pathway is a complex process that includes three main components: autophagy-
related protein complex (ATG), class III phosphoinositide 3-kinase complex
3 (PI3KC3), and Unc-51-similar kinase 1 complex (ULK1) (Singh and Subbian
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2018). The autophagy mechanism starts with autophagosome formation with
infected bacteria. This process is regulated by various autophagy-associated genes
(ATGs), complex ULK/ATGI, and class III PI3kinase during the initiation stage of
autophagosomes. Later, autophagosomes will come in contact with the lysosomes,
forming autophagolysosomes, assisting intracellular degradation (Levine et al.
2011). In another way, ubiquitin, a cellular cargo protein, will recognize M-tb
surface proteins and inhibit the intracellular growth of M-tb through the host
xenophagy mechanism (Ahmed et al. 2020).

Mammalian target of rapamycin (mTOR) complex 1 and adenosine
monophosphate-activated protein kinase (AMPK) are the two mediators of the
host autophagy mechanism, which activates macrophages to kill M-tb. However, it
is well known that virulent M-tb strains escape the host immune response by
preventing autophagosome-lysosome fusion and subsequent acidification of
autophagolysosomal part using secreted antacid and 1-tuberculosinyladenosine
(Ahmed et al. 2020; Buter et al. 2019). As said earlier, M-tb inhibits autophagy
activation in immune cells through several mediators such as ROS, ESAT6, and
ESX-1 proteins (Ahmed et al. 2020; Romagnoli et al. 2012). The standard line of
evidence suggests that M-tb DNA is known to cause direct ubiquitination of bacteria
based on cyclic GMP-AMP synthase and stimulates the interferon (STING) gene-
dependent pathway, thus activating the type I IFN, which leads to the development
of inflammation in the infected cells. The autophagic receptors such as SQSTM1/
p62 and nuclear-point protein (NDP52) are STING-dependent pathways as they play
an integral role in the xenophagic elimination of M-tb (Watson et al. 2012). Since
autophagy is a key protective mechanism to suppress the growth of M-tb in immune
cells (Ahmed et al. 2020; Buter et al. 2019), it is most important to improve host-
directed tuberculosis therapy with emphasis on autophagy activation.

9.4.4.2 Oxidative Stress and TB

Oxidative stress mainly affects nucleic acids and proteins sensitive to oxidation and
also causes lipid peroxidation (Ahmed et al. 2020; Shastri et al. 2018). Generally, the
M-1b infection induces respiratory burst and leakage of nitrogen intermediates and
ROS from the infected macrophage. In humans, the first line of protection against
M-1b is due to polymorphonuclear neutrophils which kill pathogens by producing
ROS (Ahmed et al. 2020; Zhai et al. 2019). In another way, oxidative stress helps
transform many first- and second-line antituberculosis medications from inactive to
active state (Shastri et al. 2018).

As an example, conversion of isonicotinylhydrazide (isoniazid) into isonicotinic
acyl radical by peroxidase enzyme/catalase (KatG) from M-tb is mediated through
the oxidative process (Ahmed et al. 2020; Shastri et al. 2018). M-tb produces
antioxidant enzymes such as catalase peroxidase (KatG) and superoxide dismutase
(SOD) to maintain the unusual redox environment. Many M-tb strains are capable of
generating increased intracellular survival proteins, namely, Eis (enhanced intracel-
lular survival), for recognizing ROS (Ahmed et al. 2020; Shastri et al. 2018). Studies
have also documented that M-tb has evolved various pathways for living with
extreme oxidative stress of the host, including enhanced bacterial SODs,
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peroxiredoxin, NADH/NAD" ratio, and catalases. Augmented expression of NADH/
NAD™ that encoded class II type NADH dehydrogenase (Ndh) by mutation of Ndh
shows co-resistance to ethionamide and isoniazid (Vilcheze et al. 2005). Compared
to wild-type strains (CB3.3 and CDC1551), isoniazid-resistant M-tb strains are
reported to exhibit higher resistance to ROS (Ahmed et al. 2020; Idh et al. 2017).
Additionally, these strains displayed improved resistance to peroxide and acidified
nitrite molecules. M-tb modulates peroxidase mechanisms to keep its virulence by
the expression of the alkyl hydroperoxide reductase subunit C (Ahmed et al. 2020;
Shastri et al. 2018; Jamaati et al. 2017). Moreover, the production of NO and ROS
helps humans to protect against M-tb infection. In healthy persons, induction of NO
from AM is associated with the inhibition of intracellular M-tb growth (Jamaati et al.
2017). These factors suggest that host immunity plays a major role against M-tb
infection.

9.4.5 Host-Directed Therapies (HDTs)

TB is proved to be associated with immunomodulation of the host immune system.
The inappropriate or inadequate treatment regimen in the TB infections particularly
with MDR and XDR M-tb strains aggravates TB-associated morbidity in immune-
compromised patients. The goal of HDTs is to enhance or revoke the functions of
host immune cells against M-tb with reduced inflammation and increased bacterial
killing together with traditional anti-TB drugs (Tobin 2015). To do so, HDTs should
work through a short treatment regimen, with minimal doses of existing drugs to
strengthen its effect. The use of HDTs and their clinical outcome in TB are given in
Table 9.2. The following sections discuss the management of TB and its treatment
approaches through HDTs:

9.4.5.1 Drugs

9.4.5.1.1 Metformin

This drug was officially approved to treat type II diabetes, but subsequent studies
confirmed that it can stimulate host autophagy for M-tb clearance (Bento et al. 2015).
Many research reports evidenced that metformin promotes immunomodulation by
increasing immune cells such as monocytes, macrophage precursor cells, as well as
lymphocytes and neutrophils. Such stimulation creates oxidative stress through
mitochondrial ROS generation and stimulates the population of naive T cells. In
vivo studies performed on mouse models have shown that metformin is capable of
improving the function of conventional anti-TB drugs in both chronic and acute
stages. Overall, metformin reduces TB-associated tissue pathology, regulates inflam-
matory gene activity, and improves CD8* and CD4" T-cell population (Bento et al.
2015; Singhal et al. 2014).
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Table 9.2 HDTs-associated molecules and their biological activities along with its clinical
outcome in M-tb treatments

Category

Repurposed
drug

Vitamin

Immune
checkpoint

Cytokine
therapy

Enzyme

Therapy/inhibitor or
supplement

Metformin

Imatinib

Vitamin D3

PD-1 inhibitor
(pembrolizumab or
nivolumab and others)
PD-L1 inhibitor
(atezolizumab or
durvalumab)

CTLA-4 inhibitor
(tremelimumab or
ipilimumab)

IFN-y

GMCSF

Phosphodiesterase
inhibitors (CC-11050,
CC-3052, roflumilast)

Matrix metalloproteinase

inhibitor

9.4.5.1.2 Imatinib
This drug is generally regarded as a kinase inhibitor, which inhibits the tyrosine
kinase enzyme. Therapeutic administration of imatinib facilitates the acidification
and development of phagosomes in M-tb-infected macrophages, thereby shortening
M-tb-CFUs. Moreover, imatinib together with another anti-TB drug could restrain
drug-resistant M-tb strains and their propagation (Kim and Yang 2017). For instance,
the application of imatinib and rifampicin usage drastically reduced the granuloma-
tous lesions. Imatinib, in sub-therapeutic doses, improves host defenses through
accelerating monocytes and neutrophil cells. Imatinib was also found to be effective
against both susceptible and resistant M-zb strains. Some adverse effects of imatinib
usage are reported against T-cell response (Bruns et al. 2012; Napier et al. 2011).

Biological
activity
Stimulates
host
autophagy
Develops
phagosomes

Inducer of
cathelicidin
peptide

Brakes
immune cell
functions
Brakes
immune cell
functions
Hinders
immune cell
functions

Induces
immune
responses
Stimulates
host defense
Inhibits
cAMP and
TNF
production
Delays
granuloma
formation

Clinical outcome

or reports in TB Reference
Increase in T cells Singhal
and reduces TB et al.
pathology (2014)
Increase in Napier
monocytes and et al.
neutrophils (2011)
Improves host Mily et al.
immunity and (2015)
inhibits M-tb

growth

Improves Wang et al.
phagocytosis and (2018)
intracellular killing

Improves Shen et al.
phagocytosis and (2016)
intracellular killing

Increased in Wang et al.
CTLA-4 and (2018), Shu
activation of Treg (2019)
cells

Immunogenicity Lalvani and
indicator for a new | Millington
TB vaccine (2008)
Reduces M-th Robinson
burden (2017)
Shortens lung Subbian
inflammation, TNF | et al.
production (2016)
Abrogates Volkman
granuloma et al.
formation (2010)
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9.4.5.1.3 Vitamin D3

It acts as an important dietary supplement by stimulating an innate immune response.
Conversion of vitamin D3 from inactive form 5 (OH) D to its active form 1,25-(OH)
2D3 (1,25-dihydroxyvitamin D3 (VD3)) is essential for the development of antimi-
crobial peptide cathelicidin for indirect TB control. At the early pre-antibiotic stage,
VD3 improves innate immunity and controls intracellular M-tb growth. Accelerating
expression of cathelicidin is confirmed through the actions of vitamin D3, while
4-phenyl butyrate in macrophages also stimulates autophagy against M-tb infections
(Pahari et al. 2017; Montoya et al. 2014). Moreover, several clinical studies
suggested that VD3 can be considered as supplementary for the treatment for TB
patients (Pahari et al. 2017; Mily et al. 2015).

9.4.5.1.4 Ibuprofen

Ibuprofen is an anti-inflammatory drug widely used as an antipyretic and painkiller
and is also known as an indiscriminate cyclooxygenase inhibitor. It was reported that
ibuprofen does not have a direct effect on M-tb, albeit it lowers bacterial infections
by controlling tuberculous lesions, thereby rendering an increasing survival rate in a
mouse model (Ahmed et al. 2020). M-tb infections in mice and humans reduce
cytokine levels, i.e., IL-1, besides enhancing type I IFN, leading to an eicosanoid
inequality, which promotes the spread of TB (Barber et al. 2014).

9.4.5.2 Immune Checkpoints

The immune checkpoints are another significant target of HDTs, which are widely
approved in cancer studies. Remarkably, recent clinical studies have shown a
potential role of immune checkpoints in the development of TB pathogenesis such
as PD-1/PD-L1 or PD-L2 pathway (Shen et al. 2016). Briefly, programmed death
ligands such as PD-L1 or PD-L2 from M-tb-infected macrophages were capable of
interacting with PD-1 receptors, thereby modulating T-cell functions as mentioned
in Fig. 9.2. Expression of PD-L1 is often seen on M-tb-infected macrophages.
Nevertheless, blocking the PD-1/PD-L1/2 pathway allows T-cell interaction in the
phagocytosis process for effective killing of M-tb-infected cells (Pahari et al. 2017,
Shen et al. 2016). PD-1 blockades, for example, pembrolizumab and nivolumab,
have often been used in the treatment of several cancers and have recently shown
some hope for TB control (Wang et al. 2018; Pahari et al. 2017).

Apart from macrophages and DCs, Tregs, NKT cells, and neutrophils also
express PD-L1 on their surface, which regulates the inflammatory response,
preventing lung tissue damage in patients. Conversely, PD-L1 inhibitor promotes
the development of IFN-y by T cells and helps to regulate the progression of M-tb in
patients suffering from pulmonary TB (Jurado et al. 2008). In addition to PD-1/PD-
L1 expressions, other immune checkpoints capable of weakening immunity against
TB are CTLA-4, LAG-3, and TIM-3. Therefore, inhibition of lymphocyte activation
gene 3 (LAG-3), T-cell immunoglobulin, and mucin domain 3 (TIM-3) prevents
exhaustion of T cells and modulates their immune response against M-tb infection
(Phillips et al. 2015; Ngiow et al. 2011). A comprehensive study of TB uncovers
higher CTLA-4 expression in active TB cases, whereas PD-1 expressed peaks at
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i in Mth infected patients by HDTs

Fig. 9.2 Immune checkpoint inhibitors as effective host-directed therapies (HDTs) against M-tb
[11, [I1]. (A) M-tb-infected macrophage (M) displayed multiple immune checkpoints on its surface
such as PD-L1/2, CD-86, and Gal-9, which impedes T-cell functions. (B) T-cell PD-1 receptor
interaction with M-tb-infected M@ will block their immune response, and lead to apoptosis. (C)
T-cell response shows the concomitant interaction of CTLA-4 and TIM-3 receptors toward CD-86
and Gal-9 ligands of M-tb-infected Mg affecting the T-cell functions, thereby facilitating loss of
functions leading to apoptosis or autophagy. (D) Similarly, PD-1 receptor of T cell interacts with
PD-L2 ligand of M-tb-infected M affecting the function of T cells

latent TB infection (Shu 2019). This study demonstrates that blocking the immune
checkpoint molecules will greatly enhance host immunity and might be a potential
target.

9.4.5.3 Cytokine Therapy

Cytokine therapy is an alternative method for treating TB by using immuno-
modulators to improve the immune system, such as interferon-y (IFN-y),
granulocyte-macrophage colony-stimulating factor (GM-CSF), and IL-2. Cytokines
trigger a variety of cellular responses for control of TB, like antimicrobial activity
and pro-inflammatory immune response. During M-tb infection, the production of
IFN-y acts as infection markers for the development of a new TB vaccine (Lalvani
and Millington 2008; Millington et al. 2007). IFN-y is a key molecule responsible for
the induction of cytokine IL-12 level, which is essential for Thl differentiation,
subsequently upregulates cell surface MHC class II and I on APCs, and develops
antimicrobial activity. Literature survey reveals that IFN-y produced by immune
cells as well as through recombinant cells enhances the role of macrophages against
MDR-TB (Khan et al. 2016¢). However, mutations in the IFN-y gene or its receptor
may restore susceptibility of M-tb infections. GM-CSF expressed in lung epithelial
cells triggers several macrophages and T cells in human TB granulomas. The mice
model studies clearly explained the significance of GM-CSF in reducing the burden
of M-tb in the infected macrophage. Besides, co-administration of IFN-y and
GM-CSF creates a robust impact on M-tb reduction (Mvubu et al. 2018; Robinson
2017).
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Excessive GM-CSF existence enhanced inflammatory response and manifested
antimycobacterial activity. However, balance in both the cytokines will affect the
outcome of M-tb disease (Kim and Yang 2017). IL-2 another potential biomarker
can restore normal T-cell function in active TB in higher concentrations. Emerging
drug resistance in TB due to long treatment regimens leads to impaired expression of
IL-2, which results in poor development of T-cell differentiation, owing to treatment
failure. In such instances, exploiting IL-2 may restore the T cell’s activation and
maturation. On the contrary, rather than T-cell activation, an increase in IL-2 level
promotes negative consequences in the expansion of CD4" and CD25™ regulatory T
cells, thereby exhausting T-cell response during TB treatment (Liu et al. 2019).
Thus, the present knowledge about cytokine therapy uncovers the precise mecha-
nism of IFN-y, GM-CSF, and IL-2 for designing sustainable development in HDTs
against M-tb infections.

9.4.5.4 PDEs and TNF Inhibitors

Cyclic AMP (cAMP) is the principal component involved in the development of
inflammation, and modulation of TNF, which is regulated by phosphodiesterases
(PDEs) (Tobin 2015). Concerning TB control, TNF plays a vital role in the activa-
tion of macrophage and granuloma formation (Lin et al. 2007). Adenylyl cyclase
from M-tb stimulates the production of cAMP in infected macrophages, which is
released into the intracellular phagosome complex of macrophages, thereby
interfering with host cell signaling and cytokine responses. Henceforth, M-tb
subverts its infected macrophage environment as an important residence for its
survival and growth (Maiga et al. 2015). Many research findings reveal that a rise
in cAMP at the onset of M-tb infection consequently elevates TNF-a level and
facilitates granuloma formation. Concurrently, cAMP induces PKA-CREB, hence
upregulating the transcription of nuclear factor-kappa B (NFxB) (Tobin 2015).

However, NFkB activation intercedes many pro-inflammatory responses of
macrophages indispensable for intracellular M-tb growth. Thus, inhibition of
NFxB subsequently decreases the viability of intracellular M-t in human
macrophages by stimulating autophagy and apoptosis (Bai et al. 2013). Another
recent study performed on the effect of V-58, evidenced with inverse regulation of
M-tb, interrupts TNF secretion in macrophage, but in turn, promotes cAMP
overexpression in TB (Johnson et al. 2017). In such an instance, a multinucleated
giant cell (MGC) secretes TNF-a, which helps in granuloma formation. Subsequent
research identified TNF-a inhibitor (etanercept) effectively blocked macrophage
population within the granuloma and also repressed the MGCs development
(Mezouar et al. 2019).

In TB, PDE-4 inhibitors (i.e., CC-3052, CC-11050, and roflumilast) have reduced
lung inflammation as well as TNF production and macrophage activation. It also
improved antibiotic responses, while etanercept usage delayed granuloma formation.
Hence, these checkpoints and inhibitors might be considered as potential targets in
HDTs (Li et al. 2018; Subbian et al. 2016; Maiga et al. 2015).
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9.4.5.5 mTOR Inhibition

mTOR signaling cascade is another important target that alleviates host immunity
for enhanced pathogen protection. Thus, inhibition of mTOR signaling facilitates
improved host immune response against M-tb pathogens (Singh and Subbian 2018).
The FDA-approved mTOR inhibitors are rapamycin and everolimus. Rapamycin
can establish enhanced host immune responses against M-tb infection by upsurging
antigen presentation on DCs and inducing autophagy as evident from the
BCG-vaccinated mice model (Ahmed et al. 2020; Jagannath et al. 2009). Similarly,
everolimus evokes autophagy by hindering the mMTORC1 complex and thus enhanc-
ing the cellular immune response, which is evident through clinical studies (Saran
et al. 2015).

9.4.5.6 Statins

Statin drugs especially maintain the lipid and cholesterol levels in human
macrophages. M-tb expresses cholesterol-binding protein on its surface, which
helps in binding to cholesterol-enriched domains on macrophage surface allowing
pathogen invasion (Tahir et al. 2020). Studies have shown that depletion of mem-
brane cholesterol prevents the entry of TB pathogen in host macrophages as men-
tioned in Fig. 9.3. Thus, statin usage in a chronic diabetic condition abridged the
incidence of M-tb infection. Subsequently, the entry of TB pathogen into the
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Fig. 9.3 Schematic representation of M-tb entry into normal macrophage (M) and statin-treated
macrophage (Tre-M@). (a) Displays the mode of M-tb entry into normal M. The enlarged view of
M-tb-macrophage surface clearly states that a ligand of M-tb cholesterol-binding protein (CBP)
interacts on cholesterol-enriched domain (CED) of normal M¢ with its surface cholesterol, thereby
allowing M-tb entry. (b) However, in HDTs approach, there is a prevention mechanism of M-tb
entry into (normal) Me. It is evident through the statin-treated (Tre-M¢q) regimen, which largely
decreases the membrane cholesterol of macrophage, and thus blocks M-tb entry into the Mg
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macrophage is decreased due to a lack of membrane cholesterol (Tahir et al. 2020;
Gries et al. 2020).

9.4.5.7 Matrix Metalloproteinases

Matrix met