
Chapter 9
Normal Subgroups and Factor Groups

The set of cosets of a subgroup H has no group structure. We are now interested in
a criterion on H to give the set of its cosets a group structure. In this chapter, we
introduce the concept of normal subgroups and we form a group of cosets, say factor
group. A factor group is a way of creating a group from another group. This new
group often retains some of the properties of the original group.

9.1 Normal Subgroups

There is one kind of subgroup that is especially interesting. If G is a group and H is
a subgroup of G, it is not always true that aH = Ha for all a ∈ G. There are certain
situations where this does hold, however, and these cases turn out to be of critical
importance in the theory of groups. It was Galois, who first recognized that such
subgroups were worthy of special attention.

Definition 9.1 Let G be a group and N be a subgroup of G. We say that N is a
normal subgroup of G, or that N is normal in G, if we have aNa−1 ⊆ N , for all
a ∈ G.

Equivalently, a subgroup N ofG is normal if axa−1 ∈ N , for all a ∈ G and x ∈ N .
Note that, also, we can say a−1xa−1 ∈ N , for all a ∈ G and x ∈ N .

Example 9.2 Clearly, the trivial subgroups G and {e} of a group G are normal
subgroups.

Example 9.3 If G is an abelian group, then all its subgroups are normal.

Example 9.4 The center of a group G forms a normal subgroup of G.
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218 9 Normal Subgroups and Factor Groups

Example 9.5 Consider the dihedral group Dn generated by R and S with Rn = I d,
S2 = I d, and SRS = R−1. If N is the subgroup of rotational symmetries, then N is
normal in Dn .

We denote it N � G, or N � G when we want to emphasize that N is a proper
subgroup of G. The condition for a subgroup to be normal can be stated in many
slightly different ways.

Definition 9.6 Let G be a group and X be a non-empty subset of G. The set

NG(X) = {a ∈ G | aXa−1 = X}

is called the normalizer of X in G.

Theorem 9.7 If G is a group and X is a non-empty subset of G, then NG(X) is a
subgroup of G. In particular, if H is a subgroup of G, then H � NG(H).

Proof It is straightforward. �

Theorem 9.8 Let N be a subgroup of a group G. The following conditions are
equivalent:

(1) N is a normal subgroup of G;
(2) aNa−1 = N, for all a ∈ G;
(3) aN = Na, for all a ∈ G;
(4) Every left coset of N in G is also a right coset of N in G.

Proof (1 ⇒ 2): Let N be a normal subgroup of G. Then, for each a ∈ G, we have
aNa−1 ⊆ N . If a ∈ G, then a−1 ∈ G, and so a−1N (a−1)−1 = a−1Na ⊆ N . This
yields that N ⊆ aNa−1. Thus, we conclude that aNa−1 = N .

(2 ⇒ 3): Let a ∈ G be arbitrary. Since aNa−1 = N , it follows that aNa−1a =
Na, or equivalently aN = Na.

(3 ⇒ 4): It is straightforward.
(4 ⇒ 1): Suppose that every left coset of N in G is a right coset of N in G. Thus,

for a ∈ G, aN being a left coset, must be a right coset. Let aN = Nb, for some
b ∈ G. Since a ∈ aN , it follows that a ∈ Nb. Hence, we get Na ⊆ NNb ⊆ Nb.
This shows that Na = Nb, and so aN = Na. Consequently, aNa−1 = N , and this
implies that N is a normal subgroup of G. �

Theorem 9.9 For each positive integer n, An is a normal subgroup of Sn.

Proof Assume that α ∈ Sn is a product of k transpositions, say α = τ1 . . . τk . Then,
we have α−1 = τ−1

k . . . τ−1
1 . Now, if σ ∈ An , then σ is even, say a product of 2m

transpositions. Consequently, ασα−1 is a product of k + 2m + k = 2(k + m) trans-
positions, and so ασα−1 is even. �

Theorem 9.10 SLn(F) is a normal subgroup of GLn(F).
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Proof For every A ∈ GLn(F) and B ∈ SLn(F), we have

det(ABA−1) = det (A) det(B) det(A−1) = det(B) = 1.

This shows that ABA−1 ∈ SL2(F), and so SLn(F) � GLn(F). �

Lemma 9.11 Let G be a group and N � G. If N ≤ H ≤ G, then N � H.

Proof It is clear. �

Theorem 9.12 Let H and N be subgroups of a group G. If N � G, then HN =
NH ≤ G.

Proof By Theorem8.32, it is enough to show that HN = NH . Let x ∈ HN be
an arbitrary element. Then, there exist h ∈ H and n ∈ N such that x = hn. Since
N � G, it follows that hnh−1 ∈ N . Hence, we conclude that hn ∈ Nh ⊆ NH , or
equivalently, x ∈ NH . This shows that HN ⊆ NH . Analogously, we observe that
NH ⊆ HN . Therefore, we get HN = NH . �

Theorem 9.13 Let H and N be normal subgroups of a group G. Then,

(1) H ∩ N is a normal subgroup of G;
(2) HN is a normal subgroup of G.

Proof (1) Let a ∈ G and x ∈ H ∩ N be arbitrary. Since H � G, it follows that
axa−1 ∈ H . Since N � G, it follows that axa−1 ∈ N . Consequently, we have
axa−1 ∈ H ∩ N .

(2) By Theorem9.12, HN is a subgroup of G. Now, let a ∈ G and hn ∈ HN be
arbitrary. Then, we get ahna−1 = (aha−1)(ana−1) ∈ HN , using the normality of
both H and N . �

Theorem 9.14 Let G be a group, not necessarily finite, and let N be a subgroup of
G such that the index [G : N ] = 2. Then, N is a normal subgroup of G.

Proof Since [G : N ] = 2, it follows that N has two left cosets and two right cosets.
One of them is always N itself. Take a /∈ N . Then, aN is the other left coset, Na
is the other right coset, and N ∪ aN = N ∪ Na = G. But these are disjoint unions,
so aN = Na, and therefore aNa−1 = N . This equation holds for any a in the coset
aN . The equation clearly holds for any element of the coset N . Hence, the equation
holds for all elements of G, and we conclude that N is normal. �

In the following example, we present three groups K , H and G such that K � H
and H � G, but K is not normal in G.

Example 9.15 Let D4 = 〈R, S〉 be the dihedral group of order 8. Since [〈R2, S〉 :
〈S〉] = 2, it follows that 〈S〉 � 〈R2, S〉. Since [D4 : 〈R2, S〉] = 2, it follows that
〈R2, S〉 � D4. But 〈S〉 is not a normal subgroup of D4.
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Theorem 9.16 If p is the smallest prime number that divides the order of a finite
group G, then every subgroup of G with the index p is a normal subgroup.

Proof Let N be a subgroup of a finite group G of order n such that [G : N ] = p.
First we claim that if a /∈ N , then ai /∈ N , for all 1 ≤ i ≤ p − 1. Indeed, if this
statement is not true, then there is 1 < k ≤ p − 1 such that ak ∈ N . Suppose that
j is the least positive integer such that a j ∈ N , i.e., for 1 ≤ t ≤ j − 1, at /∈ N . Let
o(a) = m. Sincem|n, 1 < j < p and p is the smallest prime factor of n, we conclude
that j � m. Hence, there exist integers q and r such that m = q j + r and 0 < r < j .
Now, we can write

e = am = aq j+r = (
a j

)q
ar .

This implies that xr = (
a j

)−q
. Since a j ∈ N , it follows that ar ∈ N , and it is a

contradiction. Therefore, we proved that our claim holds.
In order to prove the theorem, assume that N is not a normal subgroup of G.

So, there exist a ∈ G and x ∈ N such that axa−1 /∈ N . Obviously, a /∈ N , and so
by the above discussion, we deduce that ai /∈ N , for every 1 ≤ i ≤ p − 1. On the
other hand, if ai N = a j N , then there is y ∈ N such that ai = a j y, or equivalently
ai− j = y, and it is a contradiction. Consequently, N , aN , . . . , a p−1N are disjoint
left cosets of N in G. On the other hand, assume that axa−1 = b. Since b /∈ N , in
a similar way, it follows that N , bN , . . . , bp−1N are disjoint left cosets of N in G,
too. Thus, the following two families of left cosets

{N , aN , . . . , a p−1N } and {N , bN , . . . , bp−1N }

are equal. So, aN = br N , for some 1 ≤ r ≤ p − 1. This means that a = br z, for
some z ∈ N . Now, we obtain

a = br z = (
axa−1

)r
z = axra−1z.

Hence, we have e = xra−1z, or equivalently a = zxr . Since x and z belong to N ,
it follows that a ∈ N , a contradiction. Therefore, we conclude that N is a normal
subgroup of G. �

Theorem 9.17 Let G be a group and H and K be normal subgroups of G. If |H ∩
K | = 1, then hk = kh, for all h ∈ H and k ∈ K.

Proof Suppose that h ∈ H and k ∈ K are arbitrary. We consider the element
hkh−1k−1. On the one hand, since H � G, it follows that h(kh−1k−1) ∈ H , and
on the other hand, since K � G, it follows that (hkh−1)k−1) ∈ K . So, we obtain
hkh−1k−1 ∈ H ∩ K = {e}. This implies that hkh−1k−1 = e, or equivalently, hk =
kh. �
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Exercises

1. LetG be a group inwhich, for some integern > 1, (ab)n = anbn for alla, b ∈ G.
Show that the subset H = {xn−1 | x ∈ G} is a normal subgroup of G.

2. Find all normal subgroups of S3.
3. If N is a normal subgroup of G with |N | = 2, prove that N ≤ Z(G).
4. Let N be a normal subgroup of S4.

(a) If N contains a transposition, prove that N = S4;
(b) If N contains a cycle of length 3, prove that N = A4;
(c) If N contains a cycle of length 4, prove that N = S4;
(d) Find all the normal subgroups of S4.

5. Show that if a finite group G has exactly one subgroup N of a given order, then
N is a normal subgroup of G.

6. If G is a group and N is a normal subgroup of G, show that CG(H) � G.
7. Prove that if N is a normal subgroup of the group G, then Z(N ) is a normal

subgroup of G. Show by an example that Z(N ) need not be contained in Z(G).
8. Let H be a subgroup of order 2 in G. Show that NG(H) = CG(H). Deduce that

if NG(H) = G, then H ≤ Z(G).
9. If A is an abelian group with A � G and B is any subgroup of G, prove that

A ∩ B � AB.
10. Show that if H and N are subgroups of a group G, and N is normal in G, then

H ∩ N is normal in H . Show by an example that H ∩ N need not be normal in
G.

11. Let N be a normal subgroup of a finite group G. If N is cyclic, prove every
subgroup of N is also normal in G.

12. Let G be the set of all triples of the form (a1, a2, 1) or (a1, a2,−1), where a1
and a2 are integers. Define a binary operation on G by the rule

(a1, a2, 1)(b1, b2, c) = (a1 + b2, a1 + b2, c),
(a1, a2,−1)(b1, b2, c) = (a1 + b2, a2 + b1,−c),

where c = ±1. Prove that

(a) G is a group;
(b) H = 〈(1, 0, 1), (0, 1, 1)〉 is a normal subgroup of G;
(c) K = 〈(1, 0, 1)〉 is a normal subgroup of H ;
(d) Is K a normal subgroup of H?

13. If N is a normal subgroup such that [G : N ] = n, show that xn ∈ N , for all
x ∈ G.

14. Let H be a proper subgroup of G such that for all x, y ∈ G \ H , xy ∈ H . Prove
that H is a normal subgroup of G.
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9.2 Factor Groups

A factor group is a way of creating a group from another group. This new group
often retains some of the properties of the original group.

Theorem 9.18 Let G be a group and N be a normal subgroup of G. The set G/N =
{aN | a ∈ G} is a group under the binary operation (aN )(bN ) = abN, for all aN
and bN in G/N.

Proof Our first task is to show that the operation is well defined. In order to do
this, suppose that aN = cN and bN = dN , for some a, b, c and d in G. Then, we
conclude c ∈ aN and d ∈ bN . Hence, there exist n1, n2 ∈ N such that c = an1 and
d = bn2. Now, we have

(ab)−1cd = b−1a−1cd = b−1a−1an1bn2 = b−1n1bn2.

Since N � G it follows that b−1n1b ∈ N . Therefore, we deduce that (ab)−1cd ∈ N .
This forces that abN = cdN .

Computing aN (bNcN ) = aN (bc)N = a(bc)N , and similarly, we have
(aNbN )cN = (ab)NcN = (ab)cN . So, associativity in G/N follows from asso-
ciativity inG. Since aNeN = aeN = aN = eaN = eNaN , it follows that eN = N
is the identity element in G/N . Finally, a−1NaN = (a−1a)N = N = (aa−1)N =
aNa−1N shows that a−1N is the inverse of aN . This proves that G/N is a group. �

The group G/N which was defined in Theorem9.18 is called the factor group of
G by N .

Theorem 9.19 If G is a finite group and N � G, then |G/N | = |G|/|N |.
Proof The proof follows from Lagrange’s Theorem. �

A factor group is also called the quotient group of G by N . Further, if the binary
operation in G is addition, then each coset of N in G is denoted by a + N and the
binary operation in G/N is also denoted additively, i.e., we write (a + N ) + (b +
N ) = (a + b) + N .

Example 9.20 Let G = Z18 and N = 〈6〉. Then, G/N = {0 + N , 1 + N , 2 +
N , 3 + N , 4 + N , 5 + N }.
Example 9.21 LetU25 be the group of units in Z25 under multiplication modulo 25.
We have |U25| = ϕ(25) = 20. If N is the subgroup generated by 7, then N = 〈7〉 =
{1, 7, 18, 24}. Since U25 is abelian, it follows that every subgroup including N is
normal. Since [U25 : N ] = |U25|/N = 5, it follows that there exist 5 left cosets of N
in U25. We write them out
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N = {1, 7, 18, 24},
2N = {2, 11, 14, 23},
3N = {3, 4, 21, 22},
6N = {6, 8, 17, 19},
9N = {9, 13, 12, 16}.

There are many ways to name these left cosets, because we can take any number of
the left coset to stand in for the whole set. For example, 2N = 11N = 14N = 23N .
Then, the Cayley table for U25/N is:

H H 2H 3H 6H 9H
H H 2H 3H 6H 9H
2H 2H 3H 6H 9H H
3H 3H 6H 9H H 2H
6H 6H 9H H 2H 3H
9H 9H H 2H 3H 6H

Example 9.22 Let G be a group such that (ab)p = a pbp for all a, b ∈ G, where p
is a prime number. Let

N = {x ∈ G | x pm = e for some m depending on x}.

Then, N is a normal subgroup of G. If G = G/N and if x ∈ G is such that x p = e,
then x = e.

Theorem 9.23 If G is a group and N � G, then any subgroup of G/N is in the form
of H/N such that N � H ≤ G.

Proof Suppose that S is a subgroup of G/N . Define H = {x ∈ G | xN ∈ S}. First,
we show that H is a subgroup of G. Since S ≤ G/N , it follows that N ∈ S. This
means that e ∈ H , and so H is non-empty. Now, let a, b ∈ H . Then, aN , bN ∈ S.
Since S is a subgroup, it follows that aN (bN )−1 = aNb−1N = ab−1N ∈ S. This
implies that ab−1 ∈ H , and hence H is a subgroup of G. So, by Lemma9.11, we
conclude that N � H .Now, suppose that A ∈ H/N . Then, A = aN , for somea ∈ H ,
and so A = aN ∈ S. Consequently, we obtain H/N ⊆ S. On the other hand, if
A ∈ S, then A = aN , for some a ∈ H , and hence A ∈ H/N . Therefore, we get
S = H/N , in which N � H ≤ G. �
Theorem 9.24 Let G be a group and N � G. Then, H/N � G/N if and only if
N � H � G.

Proof If N � H � G, then for every aN ∈ G/N and hN ∈ H/N we have a−1

NhNaN = a−1ha ∈ H , which implies that (aN )−1hNaN ∈ H/N . This shows that
H/N � G/N .

Conversely, if H/N � G/N , then by Theorem9.23, we obtain N � H ≤ G.
Now, for every a ∈ G and h ∈ H , we have (aN )−1hNaN ∈ H/N , or equiva-
lently a−1haN ∈ H/N . Hence, there exists h′ ∈ H such that a−1haN = h′N , which
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implies that h′−1a−1ha ∈ N . Since N is a subgroup of H , it follows
that h′−1a−1ha ∈ H . Therefore, we conclude that a−1ha ∈ H . This completes the
proof. �

Exercises

1. If G is an abelian group and N is a subgroup of G, show that G/N is abelian.
2. If G is a cyclic group and N is a subgroup of G, show that G/N is cyclic.
3. What is the order of the factor group Z60/〈15〉?
4. Let G be a group with G/Z(G) abelian, and let m ∈ N be odd. Prove that

Gm := {xm | x ∈ G} is a normal subgroup of G.
5. Prove or disprove: If N is a normal subgroup of G such that N and G/N are

abelian, then G is abelian.
6. Prove or disprove: If N and G/N are cyclic, then G is cyclic.
7. Suppose that N is a normal subgroup of a finite group G. If G/N has an element

of order n, show that G has an element of order n. Show, by example, that the
assumption that G is finite is necessary.

8. Let N be a normal subgroup of a group G and let a belong to G. If the element
aN has order 3 in the group G/N and |N | = 10, what are the possibilities for
the order of a?

9. Suppose that N is a normal subgroup of a group G. If |N | = 4 and aN has order
3 in G/N , find a subgroup of order 12 in G.

10. If N is a normal subgroup of a group G such that N and G/N are finitely
generated, prove that so is G.

11. Let UT2(F) be the group of invertible upper triangular matrices with entries in
F, that is matrices of the form

[
a b
0 c

]
,

where a, b, c ∈ F and ac �= 0. Let N consists of matrices of the form

[
1 x
0 1

]
,

where x ∈ F.

(a) Show that N is an abelian subgroup of UT2(F);
(b) Prove that N is normal in UT2(F);
(c) Show that UT2(F)/N is abelian;
(d) Is UT2(F) normal in GL2(F).
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12. Let G be a group and let K ≤ H ≤ G with K � G. Prove that

NG

(
H

K

)
= NG(H)

K
.

9.3 Cauchy’s Theorem and Class Equation

Cauchy’s Theorem gives some converse to Lagrange’s Theorem.

Theorem 9.25 (Cauchy’s Theorem for Abelian Groups) Let G be a finite abelian
group and p be a prime that divides the order of G. Then, G has an element of order
p.

Proof We establish this theorem by mathematical induction on |G|. In other words,
we assume that the statement is true for all abelian groups having fewer elements
than G, and we use this assumption to show that the statement holds for G as well.
To start the induction we note that the statement is vacuously true for group having a
single element. So, let |G| > 1. If G has no trivial subgroups, then G must be cyclic
of prime order, and this prime must be p. Hence, there is a ∈ G such that G = 〈a〉.
This yields that |G| = o(a) = p, and we are finished.

Now, we assume that G has a non-trivial subgroup N . We consider two cases:
Case 1: Let p

∣∣|N |. In this case, by our induction hypothesis, since N is abelian
and |N | < |G|, it follows that there exists a non-identity element x ∈ N ⊂ G such
that o(x) = p, and we are done.

Case 2: Let p � |N |. Since G is abelian, it follows that N is a normal subgroup
of G. Hence, we may construct the factor group G/N . Moreover, G/N is abelian.
Since |G/N | = |G|/|N | and p � |N |, it follows that p∣∣|G/N | < |G|. Hence, by our
induction assumption, there is a left coset xN ∈ G/N such that o(xN ) = p. Then,
we obtain (xN )p = x pN = N . This implies that x p ∈ N and x /∈ N , consequently(
x p

)|N | = x p|N | = e. Take y = x |N |, then y p = e. At the end, we must show that
y �= e. Indeed, if y = e, then x |N | = e, and so (xN )|N | = N . On the other hand,
since (xN )p = N and p � |N |, we conclude that xN = N , or equivalently x ∈ N ,
it is a contradiction. Consequently, y �= e and y p = e. Therefore, y is the desired
element of order p. �

Theorem 9.26 If G is a finite abelian group and a positive integer m divides |G|,
then G contains a subgroup of order m.

Proof We proceed by mathematical induction over |G|. If |G| = 1, then m must be
1. In this case G is its own subgroup of order m. To apply induction, let |G| > 1
and assume that the statement is true for every abelian group of order less than
|G|. We can suppose that m > 1, because for m = 1, {e} is the subgroup of G of
order 1. Let p be a prime number such that p|m. We conclude that p

∣
∣|G|. Then, by

Cauchy’s Theorem, there is a ∈ G such that o(a) = p. Let N = 〈a〉 be the cyclic
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group generated by a. Then, we have |N | = p. Now, G/N is an abelian group
such that |G/N | = |G|/|N | < |G|. Since p|m, it follows that m = kp, for some
positive integer k. Moreover, we have k

∣∣|G/N |. Hence, by our induction assumption
and Theorem9.23, G/N has a subgroup H/N of order k, where H is a subgroup
of G containing N . Consequently, we obtain |H | = |H/N | · |N | = kp = m. This
completes the proof. �

Let a, b ∈ G. We recall that b is a conjugate of a in G if b = xax−1, for some
x ∈ G, and in this case, we write a ∼Conj b. In Theorem3.53, we showed that
the conjugacy relation is an equivalence relation. For each a ∈ G, let C(a) = {b ∈
G | a ∼Conj b}, the equivalence class of a ∈ G under∼Conj relation, and it is usually
called the conjugate class of a ∈ G.

Our attention now narrow to the case in which G is a finite group. Let G be a
finite group, and suppose that C(a1),C(a2), . . . ,C(am) are the totally of all con-
jugate classes of G. For each a ∈ G, let ca = |C(a)|. Since conjugacy classes are
disjoint and their union is G, we obtain

|G| =
m∑

i=1

cai .

Theorem 9.27 If G is a finite group, then

ca = |G|
|CG(a)| ,

in other words, the number of elements conjugate to a in G is the index of the
centralizer of a in G.

Proof Let CG(a) has k distinct left cosets, say x1CG(a), x2CG(a), . . . , xkCG(a).
Then, we know that k = [G : CG(a)]. We claim that for every i �= j , xiax

−1
i and

x jax
−1
j are distinct conjugate of a. Indeed, if xiax

−1
i = x jax

−1
j , for some i �= j , then

we conclude that

x−1
j xi ax

−1
i x j = a ⇒ (x−1

j xi )a(x−1
j xi )−1 = a ⇒ (x−1

j xi )a = a(x−1
j xi )

⇒ x−1
j xi ∈ CG(a) ⇒ xiCG(a) = x jCG(a) ⇒ i = j.

Now, we show that x1ax
−1
1 , . . . , xkax

−1
k are all distinct conjugate of a. Let b =

xax−1, for some x ∈ G. Since

G =
k⋃

i=1
xiCG(a),

it follows that x = xi y, for some y ∈ CG(a) and positive integer i . Then, we can
write
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xax−1 = (xi y)a(xi y)−1 = xi yay−1x−1
i = xiax

−1
i .

Consequently, any conjugate b of a is equal to one of the xiax
−1
i . Therefore, a has

exactly k conjugate. This yields that C(a) contains exactly k elements. �

Corollary 9.28 If G is a finite group, then

|G| =
∑

a

|G|
|CG(a)| ,

where this sum runs over one element a in each conjugate class.

Proof Since |G| = ∑
ca , using Theorem9.27, the result immediately follows. �

Lemma 9.29 Let G be a group. Then, a ∈ Z(G) if and only if CG(a) = G.

Proof It is straightforward. �

In Lemma9.29, if G is finite, then |CG(a)| = |G| is equivalent to CG(a) = G.

Corollary 9.30 Let G be a finite group, then

|G| = |Z(G)| +
∑

a

|G|
|CG(a)| ,

where the sum runs over elements a, taken one from each of those distinct conjugate
classes which contains more than one element.

Proof By Lemma9.29, a ∈ Z(G) if and only if ca = 1. Since there are |Z(G)|
number of conjugate classes each having only one element, the corollary follows. �

The equation in Corollary9.30 is usually referred to as the class equation of G.

Theorem 9.31 (Cauchy’s Theorem) Let G be a finite group and p
∣∣|G|. Then, G has

an element of order p.

Proof We do the proof by mathematical induction. The statement is vacuously true
for groups of order 1. We assume the statement holds for all groups having fewer
elements than G, and then we prove the statement is true for G. We consider the
following two cases:

Case 1: There exists a proper subgroup H of G such that p
∣∣|H |. Then, by our

induction assumption there exists an element a of order p in H , and so it is also in
G.

Case 2: p is not divisor of the order of any proper subgroup of G. If G �= Z(G),
then there exists a /∈ Z(G). Hence,we obtainCG(a) �= G. SinceCG(a) is a subgroup
of G, by our assumption, we conclude that p � |CG(a)|. We write down the class
equation:
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|G| = |Z(G)| +
∑

CG (a)�=G

|G|
|CG(a)| .

Since p
∣∣|G| and p � |CG(a)|, it follows that

p
∣∣
∣

|G|
|CG(a)| .

Thus, we obtain

p
∣∣∣

∑

CG (a)�=G

|G|
|CG(a)| .

Since also we have p
∣∣|G|, it follows that

p
∣∣∣
(
|G| −

∑

CG (a)�=G

|G|
|CG(a)|

)
,

and consequently, p
∣
∣|Z(G)|. But we assumed that p is not divisor of the order of

any proper subgroup of G, so we conclude that Z(G) can not be a proper subgroup
of G. This means that Z(G) = G, i.e., G is abelian. Now, by Cauchy Theorem for
abelian groups, the result follows. �

Exercises

1. In this exercise, we obtain a simple proof of Cauchy’s Theorem. Let G be a finite
group of order n and p be a prime number such that p|n. Consider the set

S = {(a1, a2, . . . , ap) | ai ∈ G and a1a2 . . . ap = e}.

(a) Compute |S|, the number of elements in S;
(b) Define a relation ρ on S by saying two p-tuples are related if one is a cycle

permutation of the other. For example, (a1, a2, . . . , ap)ρ(a2, a3, . . . , ap, a1).
Show that ρ is an equivalence relation.

(c) If all component of a p-tuple are equal, show that its equivalence class con-
tains only one element; otherwise, if two components of a p-tuple are distinct,
there are p elements in the equivalence class;

(d) Let r denote the number of solutions to the equation x p = e. Then, r equals
the number of equivalence classes with only one element. Let s denote the
number of equivalence classes with p elements. Show that r + sp = np−1;
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(e) Deduce Cauchy’s Theorem from the above, namely, G has kp solutions to
the equation x p = e.

2. If all non-identity elements of a groupG have the same order, show that this order
is a prime p and |G| is a power of p.

3. Prove that any normal subgroup of order 2p, where p is a prime number, has a
normal subgroup of order p.

4. If G is an abelian group of order p1 p2 . . . pk , where p1, p2, . . . , pk are distinct
primes, prove that G is cyclic.

9.4 Worked-Out Problems

Problem 9.32 Let H be a cyclic subgroup of a group G and let H � G. If N is a
subgroup of H , prove that N � G.

Solution Suppose that H = 〈x〉 is a normal subgroup ofG and let a ∈ G is arbitrary.
Since H is normal, it follows that axa−1 ∈ H . Hence, we have axa−1 = xk , for some
integer k. If N is a subgroup of H , then N is cyclic and generated by xn , for some
integer n. Now, we obtain axna−1 = (axa−1)n = xkn = (xn)k ∈ N . This completes
the proof. �

Problem 9.33 Let N be a normal subgroup of a finite group G. If |N | and [G : N ]
are relatively prime, prove that any element a ∈ G satisfying a|N | = e must belong
to N .

Solution Suppose that a ∈ G such that a|N | = e. Since ([G : N ], |N |) = 1, it follows
that there exist integers m and n such that m[G : N ] + n|N | = 1. Then, we deduce
that

a = am[G:N ]+n|N | = am[G:N ]an|N | = am[G:N ](a|N |)n = am[G:N ].

Now, we consider aN as an element ofG/N . Then, we have(aN )|G/N | = a|G/N |N =
N , the identity element of G/N . This yields that a|G/N | ∈ N , and consequently,
a = (

a[G:N ])m ∈ N . �

Problem 9.34 Let G be a group and Z(G) be the center of G. If G/Z(G) is cyclic,
prove that G is abelian.

Solution To start, every elements in the factor group G/Z(G) is a left coset aZ(G)

with a ∈ G. Since G/Z(G) is cyclic, it follows that G/Z(G) = 〈x Z(G)〉, for some
x ∈ G. Now, let a and b be elements of G so that aZ(G) and bZ(G) belong to
G/Z(G). It follows that there exist integers i and j such that aZ(G) = (

x Z(G)
)i =

xi Z(G) and bZ(G) = (
x Z(G)

) j = x j Z(G). Hence, a = xi z1 and b = x j z2, for
some z1, z2 ∈ Z(G). Then, by the definition of center and laws of exponents, we
have



230 9 Normal Subgroups and Factor Groups

ab = (xi z1)(x j z2) = xi x j z1z2 = x j xi z2z1 = (x j z2)(xi z1) = ba.

Now, we conclude that G is abelian. �

Problem 9.35 If G is a group of order pn , where p is a prime number, prove that
Z(G) �= {e}.
Solution Suppose that |Z(G)| = m. By the class equation, we have

|G| = m +
∑

a

|G|
|CG(a)| ,

where sum runs over element a, taken one from each of conjugate class which has
more than one element. Now, for each a /∈ Z((G), we have |CG(a)|∣∣|G|. This implies
that |CG(a)| = pka , for some integer 1 ≤ ka < n. Hence, we obtain

p
∣∣
∣
(
pn −

∑

a

pn

pka

)
= m.

Since e ∈ Z(G), it follows that m is non-zero. Hence, m is a positive integer
divisible by the prime number p, and so we conclude that m > 1. This shows that
Z(G) �= {e}. �

Problem 9.36 Let G be a group of order pn , where p is a prime number. Prove that
every subgroup of order pn−1 of G is normal.

Solution Suppose that H is a subgroup ofG and |H | = pn−1. We establish the proof
by mathematical induction. If n = 1, then |G| = p and H = {e} � G. Suppose that
n > 1 and the statement is true for every group of order pm , where 1 ≤ m < n. We
know that H � NG(H). We consider the following two cases:

Case 1: NG(H) �= H . In this case, |NG(H)| = pn , and so NG(H) = G. This
means that H � G.

Case 2: NG(H) = H . Since Z(G) ⊆ NG(H), it follows that Z(G) ⊆ H . Since
p
∣∣|Z(G)|, by Cauchy’s Theorem it follows that there exists a ∈ Z(G) such that

o(a) = p. Take K = 〈a〉, then K is a normal subgroup of order p inG. Now, we have
|H/K | = pn−2, so by our induction assumption, we conclude that H/K � G/K ,
because |G/K | = pn−1. Therefore, H is a normal subgroup of G. �

Problem 9.37 If G is a group of order p2, prove that G is abelian.

Solution As a group G is abelian if and only if Z(G) = G, our aim is to show
that Z(G) = G. Since |G| = p2, by Lagrange’s Theorem, |Z(G)|∣∣p2. This implies
that |Z(G)| = 1, p or p2. By Problem9.35, we conclude that |Z(G)| �= 1. Assume
that |Z(G)| = p. Take a ∈ G such that a /∈ Z(G). Then, CG(a) is a subgroup of
G and Z(G) is a subset of CG(a). Since a /∈ Z(G) and a ∈ CG(a), it follows that
Z(G) �= CG(a). Hence, we have p = |Z(G)| < |CG(a)|. Then, we conclude that
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|CG(a)| = p2 or CG(a) = G. This means that all of elements of G commute with
a, and so a ∈ Z(G), a contradiction. Thus, |Z(G)| = p is not an actual possibility.
Therefore, |Z(G)| = p2, and so G = Z(G). �

9.5 Supplementary Exercises

1. (a) Let N be a normal subgroup of a group G, with G/N abelian. Does it fol-
low that G = HN for some abelian subgroup H of G? Give a proof or a
counterexample.

(b) Answer the same question, with both occurrences of “abelian” replaced by
“cyclic”.

2. Suppose that K � G with |K | = m. Let x ∈ G and n be a positive integer such
that (m, n) = 1. Prove that

(a) If o(x) = n, then o(xK ) = n;
(b) If o(xK ) = n, then there is an element y ∈ G such that o(y) = n and xK =

yK .

3. Let N be a normal subgroup of a group G. If x, y ∈ G such that xy ∈ N , show
that yx ∈ N .

4. Let H be a subgroup of index 2 in a finite group G. If the order of H is odd and
every element of G \ H is of order 2, prove that H is abelian.

5. Suppose that G is a finite abelian group such that each element of G has order
1 or 3. If H is a subgroup of G, show that each element of G/H has order 1 or
3. Use induction on |G| to show that |G| = 3k , for some positive integer k.

6. For which values of n is it true that the dihedral group Dn has a pair of proper
normal subgroups H and K for which Dn = HK and H ∩ K is singleton.

7. If K ≤ H ≤ G and N � G, show that the equations HN = K N and H ∩ N =
K ∩ N imply that H = K .

8. Let G be a finite group, H be a subgroup of G, and N � G. If |H | and [G : N ]
are relatively prime, prove that H is a subgroup of N .

9. Let G be a finite group and N � G. If |N | and [G : N ] are relatively prime,
prove that N is the unique subgroup of G of order N .

10. Let G be a group and H be the intersection of all subgroups of G that have finite
index in G. Show that H is normal in G.

11. Let G be a group and H be a subgroup of G with finite index. Show that there
is a normal subgroup N of G for which N ≤ H ≤ G where N also has finite
index in G.

12. Prove that the torsion subgroup T of an abelian group G is a normal subgroup
of G, and that G/T is torsion free.

13. Let N be a normal subgroup of G of index n. Show that if a ∈ G, then an ∈ N .
Give an example to show that this may be false when N is not normal.

14. If |G| = pq, where p andq are not necessarily distinct primes, prove |Z(G)| = 1
or G is abelian.



232 9 Normal Subgroups and Factor Groups

15. If H and K are subgroups of finite index in a group G, and [G : H ] and [G : K ]
are relatively prime, prove that G = HK .

16. If G is a non-abelian group of order p3, where p is a prime number, show that
|Z(G)| = p.
Hint: Use Problem9.34.

17. Let G be a finite group and p be the smallest prime number such that p
∣∣|G|. If

N � G and |N | = p, prove that N ≤ Z(G).
18. If H is a subgroup of finite index in a groupG, prove that H contains a subgroup

N which is of finite index and normal in G.
19. The set X is called a normal subset of G if G is the normalizer of X . Let X be a

finite normal subset of a group G such that for some positive integer n, xn = e,
for all x ∈ X . Prove that every element of the group H = 〈X〉 may be written as
a product of not more than (n − 1)|X | elements of X . In particular, H is a finite
group.
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