
Chapter 8
Cosets of Subgroups and Lagrange’s
Theorem

In group theory, the result known as Lagrange’s theorem states that for a finite group
G the order of any subgroup divides the order of G. Lagrange’s theorem is one of
the central theorems of group theory. In order to prove this theorem we introduce the
notion of cosets of a subgroup.

8.1 Cosets and Their Properties

To understand Lagrange’s theorem, one has to look at cosets of a subgroup. This
notion was invented by Galois in 1830, although the term was coined by G.A. Miller
in 1910.

Definition 8.1 Let G be a group and H be a subgroup of G. For any a ∈ G, the set
aH = {ah | h ∈ H} is called the left coset of H in G containing a. Analogously,
Ha = {ha | h ∈ H} is called the right coset of H in G containing a.

In other words, a coset is what we get when we take a subgroup and shift it
(either on the left or on the right). The best way to think about cosets is that they are
shifted subgroups, or translated subgroups. Note that a lies in both aH and Ha, since
a = ae = ea. If the left and right cosets coincide or if it is clear from the context
to which type of coset that we are referring to, we will use the word coset without
specifying left or right. In additive notation, we get a + H (which usually implies
that we deal with a commutative group where we do not need to distinguish left and
right cosets). Any element of a coset is called a representative of that coset.

Example 8.2 Let G = Z, the additive group of integers, and H = 〈m〉 = mZ, the
subgroup generated by m, for some m ∈ Z. The set of left cosets is {H, 1 + H, 2 +
H, . . . , m − 1 + H}. Since a + H = H + a, left cosets coincide with right cosets.
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Example 8.3 Let G = S3, the symmetric group of an equilateral triangle. Take the
subgroup H = {id, (1 3)}. Then, the left cosets are

(1 2)H = {(1 2), (1 2)(1 3)} = {(1 2), (1 2 3)} = (1 2 3)H,

(1 3)H = {(1 3), (1 3)(1 3)} = {(1 3), id} = H,

(2 3)H = {(2 3), (2 3)(1 3)} = {(2 3), (1 3 2)} = (1 3 2)H.

Example 8.4 If G = GL2(R) and H = SL2(R), then for any matrix A ∈ G, the
coset AH is the set of all 2 × 2 matrices with the same determinant as A. Thus, the

coset

[
3 0
2 1

]
H is the set of all 2 × 2 matrices of determinant 3.

Theorem 8.5 (Properties of Cosets) Let G be a group and H be a subgroup of G.
Then,

(1) a ∈ aH;
(2) aH = H if and only if a ∈ H;
(3) (ab)H = a(bH) and H(ab) = (Ha)b;
(4) aH = bH if and only if a ∈ bH;
(5) aH = bH or aH ∩ bH = ∅;
(6) aH = bH if and only if a−1b ∈ H;
(7) |aH | = |bH |;
(8) aH is a subgroup of G if and only if a ∈ H.

Proof (1) We have a = ae ∈ {ah | h ∈ H} = aH .
(2) Suppose that aH = H . Then, a = ae ∈ aH = H . Conversely, let a ∈ H . We

show that aH ⊆ H and H ⊆ aH . The first inclusion follows immediately from the
closure of H . In order to show that H ⊆ aH , assume that h ∈ H is an arbitrary
element. Since a ∈ H and h ∈ H , it follows that a−1h ∈ H . Consequently, we get
h = eh = (aa−1)h = a(a−1h) ∈ H .

(3) This follows directly from (ab)h = a(bh) and h(ab) = (ha)b, for all h ∈ H .
(4) If aH = bH , then a = ae ∈ aH = bH . Conversely, if a ∈ bH , then there

exists h ∈ H such that a = bh. So, we deduce that aH = (bh)H = b(hH) = bH .
(5) This property follows directly from (4). Because if aH ∩ bH �= ∅, then there

exists c ∈ aH ∩ bH . This implies that cH = aH and cH = bH , and so aH = bH .
(6)We observe that aH = bH if and only if H = a−1bH . Now, the result follows

from (2).
(7) In order to show that |aH | = |bH |, it is enough to define a one to one function

from aH onto bH . For this, we define f : aH → bH by f (ah) = bH . Obviously,
f is onto. Moreover, from the cancellation law, f is one to one. This shows that f
is a one to one correspondence.

(8) Assume that aH is a subgroup of G. Then, it contains the identity
e. So, we get aH ∩ eH �= ∅. Then, from (5) we have aH = eH = H . Now, from
(2), we conclude that a ∈ H . Conversely, if a ∈ H , then again by (2), we obtain
aH = H . �

Remark 8.6 In Theorem 8.5, analogous results hold for right cosets.
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Theorem 8.7 If H and K are two subgroups of a group G, then for any a, b ∈ G
either aH ∩ bK = ∅ or aH ∩ bK = c(H ∩ K ), for some c ∈ G.

Proof Suppose that aH ∩ bK �= ∅, and let c ∈ aH ∩ bK . Since c ∈ cH and c ∈
cK , it follows that c ∈ aH ∩ cH and c ∈ bK ∩ cK . Consequently, we obtain aH =
cH and bK = cK , and so aH ∩ bK = cH ∩ cK . Moreover, it is not difficult to see
that c(H ∩ K ) ⊆ cH ∩ cK . On the other hand, if x ∈ cH ∩ cK , then x = ch = ck,
for some h ∈ H and k ∈ K . This implies that h = c−1x = k ∈ H ∩ K . So, x ∈
c(H ∩ K ). Therefore, we conclude that aH ∩ bK = cH ∩ cK = c(H ∩ K ). �

Theorem 8.8 Let G be a group and H be a subgroup of G. IfR is the set of distinct
right cosets of H in G andL is the set of distinct left cosets of H in G, then |R| = |L|.
Proof Consider themapping f : R → L defined by f (Ha) = a−1H . First, we need
to show that f is well defined. Namely, if we take two different representations of the
same right coset we must show our mapping sends them to the same image. Suppose
that Ha = Hb. Then, we know that Hab−1 = H or ab−1 ∈ H . Let ab−1 = h, where
h ∈ H . Then, a−1h = b−1 and so a−1hH = b−1H , or equivalently a−1H = b−1H .
Consequently, we have f (Ha) = f (Hb) as desired. Therefore, f is well defined.

Now, assume that f (Ha) = f (Hb). Then, a−1H = b−1H . This yields that
ba−1H = H , or equivalently ba−1 ∈ H . If ba−1 = h, where h ∈ H , then b = ha.
Consequently, Hb = Hha and so Ha = Hb. Thus, f is one to one. In addition, if
aH ∈ L is an arbitrary element, then f (Ha−1) = (a−1)−1H = aH . This shows that
f is onto. Therefore, f is a one to one correspondence between L and R. �

Exercises

1. List the left and right cosets of the subgroup {id, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}
in A4.

2. If G is a group and {Hi | i ∈ I } is a family of subgroups of G, show that( ⋂
i∈I

Hi

)
a = ⋂

i∈I
Hia.

3. Suppose that G = Q8 and let H = 〈−1〉 and K = 〈I 〉 be subgroups of G. Find

(a) the left cosets of H and K in G;
(b) the right cosets of H and K in G.

4. Suppose that H and K are subgroups of G and there are elements a and b in G
such that aH ⊆ bK . Prove that H ⊆ K .

5. Let G be a group and a ∈ G. If o(a) = 30, how many cosets of 〈a4〉 in 〈a〉 are
there? List them.

6. Give an example of a group G having a subgroup H and two elements a, b such
that Ha = Hb but aH �= bH .

7. Find an example of a subgroup H of a group G and elements a and b in G such
that aH �= Hb and aH ∩ Hb �= ∅.
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8. Suppose that H and K are subgroups of a group G with H ≤ K . Show that for
each a ∈ G, either aH ⊆ K or aH ∩ K = ∅.

8.2 Geometric Examples of Cosets

When a group is defined in terms of vectors and matrices, we can often get a picture
of the group and its cosets.

Example 8.9 Let G = R
2 = {xi + y j | x, y ∈ R}, the additive group of vectors

in a plane, where i = (1, 0) and j = (0, 1). Suppose that H = {xi | x ∈ R} and
v = ai + bj is a vector in G. Then, the left coset of H in G containing v is

v + H = {(a + x)i + bj | x ∈ R}.

This is the line parallel to H that passes through the endpoint of v. The left cosets of
H in G, in general, are the lines parallel to H . Two parallel lines are either equal or
disjoint, so any two left cosets of H in G are equal or disjoint. In Fig. 8.1, the cosets
H in G containing v and v′ are equal while those of u, v, and w are disjoint.

Example 8.10 Let C∗ be the group of non-zero complex numbers (see Example
3.36), and let H = {a + bi | a2 + b2 = 1, a, b ∈ R} be the subgroup of C∗, which
is defined in Example 3.66. First, notice that geometrically H is a circle of radius 1
with center (0, 0). Let 4 + 3i be an element of C∗. We want to study the coset of H
in C∗ containing 4 + 3i . Of course, C∗ is abelian, so there is no distinction between
the left and the right cosets, and they are the same. The coset of H in C∗ containing
4 + 3i is of the form (4 + 3i)H , and it is a circle with center (0, 0) too. However,
4 + 3i scales the equation so that 1 becomes 42 + 32 = 25. In order to see this,

Fig. 8.1 The cosets of
v + H in R

2

x

y

v +H = v′ +H

v v′

u

u+H

w

w +H
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Fig. 8.2 H and its cosets
2H and 4H in C

∗

x

y

H

2H

4H

we have (4 + 3i)(a + bi) = (4a − 3b) + (3a + 4b)i . So, the multiplication 4 + 3i
sends the point (a, b) ∈ H to the point (4a − 3b, 3a + 4b). Now, this gives us the
equation

(4a − 3b)2 + (3a + 4b)2 = 16a2 + 9b2 − 24ab + 9a2 + 16b2 − 24ab
= 25a2 + 25b2 = 25(a2 + b2) = 25.

Now, we consider the general case. If z ∈ C
∗ be an arbitrary number, we can write

z = reiθ , where r is the absolute value of z and θ is the argument of z. Consider eiθ H .
Multiplying any complex number by eiθ simply rotates anticlockwise through angle
θ about the origin. Hence, we deduce that eiθ H = H . So, we obtain zH = r H . What
doesmultiplying by r do? It scales the circle H by a factor of r . Two different positive
real numbers r �= r ′ give different cosets r H �= r ′H , since the first has radius r and
the second has radius r ′. For illustration, see Fig. 8.2. Therefore, the cosets of H in
C

∗ are the circles centered at the origin of positive radius.

Example 8.11 LetG = {(a, b) | a, b ∈ R and a > 0} be the group defined in Exam-
ple 3.42 with the following binary operation:

(a, b) � (c, d) = (ac, bc + d),

for all (a, b), (c, d) ∈ G. Suppose that

H = {(1, y) | y ∈ R},
K = {(x, 0) | x ∈ R and x > 0}.

It is easy to check that H and K are subgroups ofG. These subgroups are indicated in
Fig. 8.3. Now, let (a, b) ∈ G. What are the left and right cosets of H in G containing
(a, b)? We observe that
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Fig. 8.3 Subgroups H
and K

x

y

H

•(1, 0)

(1, y)•

(x, 0)
•K

Fig. 8.4 Left and right
cosets of H in G containing
(a, b)

x

y

H

(a, b)H = H(a, b)

(a, b)(1, y) = (a, b + y) and (1, y)(a, b) = (a, ay + b),

for all (1, y) ∈ H . Clearly, the numbers b + y and ay + b run over R. This yields
that the left and the right cosets of H in G containing (a, b) are the same. In other
words, we have

(a, b)H = H(a, b) = {(a, z) | z ∈ R},

and this is the vertical line parallel to H passing through the point (a, b), see Fig. 8.4.
Now, we determine the right coset of K in G containing (a, b). We have

(x, 0)(a, b) = (xa, b),

for all (x, 0) ∈ K . Since x > 0, it follows that (xa, b) runs through all points of the
form (z, b) with z > 0. Consequently, we can write
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x

y

(a, b)K

K
x

y

K(a, b)

K

Fig. 8.5 Left and right cosets of K in G containing (a, b)

K (a, b) = {(z, b) | z ∈ R and z > 0}.

In view of this, the right coset of K in G containing (a, b) is determined by b alone
and it is independent of the choice of a. So, it is horizontal line through (a, b). See the
left hand picture in Fig. 8.5. Finally, we try to find the left coset of K in G containing
(a, b). We have

(a, b)(x, 0) = (ax, bx),

for all (x, 0) ∈ K . If we take ax = r , then bx = br/a. So, we can write

(a, b)K =
{
(r, s) | r, s ∈ R, r > 0, and s = b

a
r

}
.

This is a half line out of the origin with slope b/a. See the right hand picture in
Fig. 8.5. We observe that the left and right cosets of K in G containing (a, b) are not
the same if b �= 0.

Example 8.12 We know that G = R
3 forms a group under the following binary

operation:

(x1, y1, z1) + (x2, y2, z2) = (x1 + x2, y1 + y2, z1 + z2).

If we consider the subset

H = {(x, y, z) | 2x + 7y − 3z = 0},

thenwe observe that H is a subgroup ofG. In geometrical terms, H is a plane through
the origin in a three-dimensional space. The left coset (a, b, c) + H is, in general
terms, nothing more than the plane P passing through the point (a, b, c) and parallel
to H in R3. For illustration, in Fig. 8.6 we consider (a, b, c) = (0, 2, 0).
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Fig. 8.6 The left coset
(0, 2, 0) + H is the plane P
passing through the point
(0, 2, 0) and parallel to H

y

x

z

O (0, 2, 0)

H P

Exercises

1. In R
2 under component addition, let H = {(x, 5x) | x ∈ R}, the subgroup of all

points on the line y = 5x . Show that the left coset (3, 2) + H is the straight line
passing through the point (3, 2) and parallel to the line y = 5x .

2. Consider the additive group R and its subgroup Z. Describe a coset t + Z geo-
metrically. Show that the set of all cosets of Z in R is {t + Z | 0 ≤ t < 1}. What
are the analogous results for Z2 ⊆ R

2?
3. Show that the function sine assigns the same value to each element of any fixed

left coset of the subgroup 〈2π〉 of the additive groupR of real numbers. Thus sine
induces a well-defined function on the set of cosets; the value of the function on
a coset is obtained when we choose an element x of the coset and compute sin x .

8.3 Lagrange’s Theorem

Let H be a subgroup of a group G, which may be of finite or infinite order. We
reconsider some parts of Theorem 8.5 in a different view. We exhibit two partitions
of G by defining two equivalence relations, ≡L and ≡R on G.

Theorem 8.13 Let H be a subgroup of G. Let the relation ≡L be defined on G by

a ≡L b(mod H) ⇔ a−1b ∈ H.

Also, let the relation ≡R be defined on G by
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a ≡R b(mod H) ⇔ ab−1 ∈ H.

Then, ≡L and ≡R are both equivalence relations on G.

Proof We show that ≡L is an equivalence relation, and leave the proof for ≡R as
exercise. We must verify the following conditions, for all a, b, c ∈ G,

(1) a ≡L a(mod H);
(2) a ≡L b(mod H) implies b ≡L a(mod H);
(3) a ≡L b(mod H) and b ≡L c(mod H) imply a ≡L c(mod H).

Now, we prove the above items.
(1) Since H is a subgroup, it follows that a−1a = e and e ∈ H , which is what we

were required to demonstrate.
(2) Suppose that a ≡L b(mod H). Then a−1b ∈ H . Since H is a subgroup, it fol-

lows that (a−1b)−1 ∈ H . But (a−1b)−1 = b−1(a−1)−1 = b−1a. Hence, b−1a ∈ H
and b ≡L a(mod H).

(3) Finally, we require that a ≡L b(mod H) and b ≡L c(mod H) force a ≡L

c(mod H). Indeed, we have a−1b ∈ H and b−1c ∈ H . Again, since H is a sub-
group, we conclude that (a−1b)(b−1a) = a−1c ∈ H , from which it follows that
a ≡L c(mod H). �

If [a]L and [a]R are the equivalence classes containing a related to ≡L and ≡R ,
respectively, then we have [a]L = aH and [a]R = Ha.

The left cosets of H in G define a partition of G, i.e.,

(1) For each a ∈ G, aH �= ∅;
(2) For any a, b ∈ G, aH = bH or aH ∩ bH = ∅;
(c) G = ⋃

a∈G
aH .

We can now prove the theorem of Lagrange.

Theorem 8.14 (Lagrange’s Theorem) Let H be a subgroup of a finite group G. Then
the order of H is a divisor of the order of G.

Proof Let us start by recalling that the left cosets of H forms a partition of G. Since
G is finite, it follows that there exists a finite number of disjoint left cosets, namely
a1H , a2H , . . ., anH . So, we have

G = a1H ∪ a2H ∪ · · · ∪ anH and ai H ∩ a j H = ∅, for all i �= j.

Let us look at the cardinality of G. We can write

|G| = |a1H ∪ a2H ∪ · · · ∪ anH | =
n∑

i=1

|ai H |.

By Theorem 8.5 (7), the cosets of H in G all have some size of H , i.e., |ai H | = |H |,
for all 1 ≤ i ≤ n. This yields that
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|G| = |H | + |H | + · · · + |H |︸ ︷︷ ︸
n times

= n|H |.

This shows that the order of H is a divisor of the order of G. �

There are several corollaries of Lagrange’s theorem.

Corollary 8.15 If G is a finite group and a ∈ G, then o(a)||G|.
Proof Since 〈a〉 is a subgroup of G, then the order of 〈a〉 is a divisor of order G. By
Corollary 4.27, we know that o(a) = |〈a〉|. This shows that o(a)||G|. �

Corollary 8.16 If G is a finite group and a ∈ G, then a|G| = e.

Proof By Corollary 8.15, we have o(a)||G|. Thus, there is a positive integer q such
that |G| = o(a)q. Consequently, we have

a|G| = ao(a)q = (ao(a))q = eq = e,

as desired. �

Corollary 8.17 (Euler’s Theorem) If a and n are positive integers such that (a, n) =
1, then aϕ(n) ≡ 1(mod n).

Proof LetUn be the groupof units ofZn undermultiplicationmodulon. ByCorollary
4.7, we have |Un| = ϕ(n). So, by Corollary 8.16, we have aϕ(n) = 1, for all a ∈ Un ,
which in turn translates into n|aϕ(n) − 1, or equivalently aϕ(n) ≡ 1(mod n). �

Remark 8.18 In Problem1.74,we realized a proof for Fermat’s little theorem. Since
ϕ(p) = p − 1, for any prime p, we can conclude Fermat’s little theorem fromEuler’s
theorem too.

Corollary 8.19 Every group of prime order is cyclic.

Proof Assume that G is of prime order p, and let a ∈ G be an element different
from the identity. Then, the cyclic subgroup 〈a〉 of G generated by a has at least two
elements, a and e. But by Lagrange’s theorem, the order m ≥ 2 of 〈a〉 must divide
the prime p. Consequently, we must have m = p and 〈a〉 = G. This shows that G
is cyclic. �

Corollary 8.20 Let G be a group and p be a prime number. If G has exactly r
subgroups of order p, then it has r(p − 1) elements of order p.

Proof In each subgroup of order p, all non-identity elements have order p. In addi-
tion, an element of order p generates a subgroup of order p. By Lagrange’s theorem,
the intersection of distinct subgroups of order p is trivial subgroup, so their non-
identity elements are disjoint from each other. Consequently, each subgroup of order
p has its own p − 1 elements of order p, not shared by the other subgroups of order
p. Therefore, the number of elements of order p is r(p − 1). �
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The following natural question arises: Is the converse of Lagrange’s theorem true?
That is, if d is a divisor of the order of G, then does G necessarily have a subgroup
of order d. The standard example of the alternating group A4, which has order 12
but has no subgroup of order 6, shows that the converse of Lagrange’s theorem is not
true.

Theorem 8.21 The group A4 of order 12 has no subgroups of order 6.

Proof To verify this, recall that A4 has eight elements of order 3 and suppose that
H is a subgroup of order 6. Let σ be any element of order 3 in A4. If σ is not
in H , then A4 = H ∪ σH . But then σ 2 ∈ H or σ 2 ∈ σH . If σ 2 ∈ H , then so is
(σ 2)2 = σ 4 = σ , so this case is ruled out. If σ 2 ∈ σH , then σ 2 = σh, for some
h ∈ H , but this also implies that σ ∈ H . This argument shows that any subgroup of
A4 of order 6 must contain all eight elements of A4 of order 3, which is absurd. �

Theorem 8.22 If n > 4, then An has no subgroup of order n!/4.
Proof If H is a subgroup of order n!/4, then H has only two left cosets in An .
So, if σ is a cycle of length 3 in An , then the cosets H , σH , and σ 2H cannot
be all distinct. Equality of any two of the above cosets implies either σ ∈ H or
σ 2 ∈ H . Now, σ 2 ∈ H implies σ = σ 4 ∈ H . Thus, H contains all cycles of length
3. Now, since An is generated by cycles of length 3, it follows that H = An , a
contradiction. �

Remark 8.23 Theorem 4.31 expresses that the converse of Lagrange’s theorem
holds for any finite cyclic group.

Theorem 8.24 Let G be a group of order n. If G has at most one cyclic subgroup
of order d where d|n, then G is cyclic.

Proof For each divisor d of n, let θG(d) denote the number of elements of G of
order d. For a given positive integer n such that d|n, let θG(d) �= 0. Then, there
exists a ∈ G of order d which generates a cyclic group 〈a〉 of order d of G. We prove
that all elements of G of order d belong to 〈a〉. If x ∈ G is an element such that
o(x) = d and x /∈ 〈a〉, then 〈x〉 is another subgroup of order d such that 〈a〉 �= 〈x〉.
This contradicts the hypothesis. Consequently, if θG(d) �= 0, then θG(d) = ϕ(d),
for all positive integer d|n. In general, we can write θG(d) ≤ ϕ(d), for all positive
integer d|n. So, we obtain

n =
∑
d|n

θG(d) ≤
∑
d|n

ϕ(d) = n.

This yields that θG(d) = ϕ(d), for all d|n. In particular, we have θG(n) =
ϕ(n) ≥ 1. Hence, there exists at least one element of G of order n. This shows
that G is cyclic. �
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Exercises

1. Show that a group with at least two elements but with no proper non-trivial
subgroups must be finite and of prime order.

2. Suppose that H and K are unequal subgroups of a group G, each of order 16.
Prove that 24 ≤ |H ∪ K | ≤ 31.

3. For a group G and a subgroup H of G, let Ha1 ∪ Ha2 ∪ · · · ∪ Han be a decom-
position of G into disjoint right cosets of H in G. Show that a−1

1 H ∪ a−1
2 H ∪

· · · ∪ a−1
n H is a decomposition of G into left cosets of H in G.

4. Let G be a finite group and let H and K be subgroups with relatively prime
order. Prove that H ∩ K = {e}.

5. Show that if H and K are subgroups of a group G, and have orders 56 and 63,
respectively, then the subgroup H ∩ K must be cyclic.

6. Suppose that K is a proper subgroup of H and H is a proper subgroup of G. If
|K | = 42 and |G| = 420, what are the possible orders of H?

7. Use Fermat’s little theorem to show that if p = 4n + 3 is prime, there is no
solution to the equation x2 ≡ 1(mod p).

8. If G is a finite group with fewer than 100 elements and G has subgroups of
orders 10 and 25, what is the order of G?

9. Let G be a group and a, b ∈ G. If a5 = e and aba−1 = b2, find o(b) if b �= e.
10. Does A5 contain a subgroup of order m for each factor m of 60?
11. Let G be an abelian group of order 2n with n odd. Prove that G has precisely

one element of order 2.
12. Let G be a finite group. Show that the following conditions are equivalent:

(1) G is cyclic;
(2) For each positive integer d, the number of a ∈ G such that ad = e is less than

or equal to d;
(3) For each positive integer d, G has at most one subgroup of order d;
(4) For each positive integer d, G has at most ϕ(d) elements of order d.

13. Let G be a finite group and H be a subgroup of G. Let l(a) be the smallest
positive integer m such that am ∈ H . Prove that l(a)|o(a).

14. Let n be a positive integer and let m be a factor of 2n. Show that Dn contains a
subgroup of order m.

15. Using Lagrange’s theorem, show that the binomial coefficient

(
n
m

)
= n!

m!(n − m)! ,

for every integers m and n with n ≥ 1 and 0 ≤ m ≤ n, is an integer.
Hint: Consider a subgroup of Sn of order m!(n − m)!.
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8.4 Index of Subgroups

A special name and notation have been adopted for the number of left (or right)
cosets of a subgroup in a group.

Definition 8.25 Let H be a subgroup of a group G. The number of distinct left (or
right) cosets of H in G is the index of H in G. The index of H in G is denoted by
[G : H ].

Note that if G is finite, then the index [G : H ] divides |G|.
Example 8.26 Consider Example 8.3, and let H = {id, (1 3)} be the subgroup of
S3. Then, we observe that [S3 : H ] = 3.

Example 8.27 A left coset of SL2(F) inGL2(F) has the form XSL2(F)={X A | A ∈
SL2(F)},where X ∈ GL2(F). If det(X) = c, thendet(X A) = c. Therefore, allmatri-
ces in XSL2(F) have the determinant equal to c. Conversely, let B ∈ GL2(F) such
that det(B) = c. Take A = X−1B, then B = X A. On the other hand, det(A) =
det(X−1B) = det(X−1) det(B) = c−1c = 1. This means that A ∈ SL2(F). So, we
deduce that B ∈ XSL2(F). Consequently, we have XSL2(F) = {A | A ∈ GL2(F)

and det(A) = c}. Hence, each left coset of SL2(F) inGL2(F) has the above descrip-
tion, for somenon-zero element c ∈ F. This shows that [GL2(F) : SL2(F)] is infinite.
Theorem 8.28 If H and K are subgroups of a group G such that K ≤ H, then
[G : K ] = [G : H ][H : K ].
Proof Suppose that G = ⋃

i∈I
ai H , the union of distinct left cosets of H in G, where

|I | = [G : H ], and let H = ⋃
j∈J

b j K , the union of distinct left cosets of K in H ,

where |J | = [H : K ]. Then, we can write

G = ⋃
i∈I

ai H = ⋃
i∈I

ai

( ⋃
j∈J

b j K

)
= ⋃

(i, j)∈I×J
aib j K .

Now, we claim that aib j K ’s are distinct. Assume that aib j K = akbl K , for some
i, k ∈ I and j, l ∈ J . Since b j K ⊆ H and bl K ⊆ H , it follows that ai H ∩ akH �= ∅.
This implies that ai H = akH , and so i = k. Then, we obtain b j K = bl K , and hence
j = l. Therefore, we deduce that aib j K ’s are distinct left cosets of K in G. This
yields that [G : K ] = [G : H ][H : K ]. �

Theorem 8.29 (Poincaré Lemma) If H and K are two subgroups of finite index in
a group G such that [G : H ] = m and [G : K ] = n, then H ∩ K is also of finite
index in G and [m, n] ≤ [G : H ∩ K ] ≤ mn. In particular, if m and n are relatively
prime, then [G : H ∩ K ] = mn. Moreover, if G is finite, then G = HK.
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Proof Let a1H , a2H , . . ., amH and b1K , b2K , . . ., bnK be distinct left cosets of H
and K in G, respectively. Now, by Theorem 8.7, for every 1 ≤ i ≤ m and 1 ≤ j ≤ n
either ai H ∩ b j K = ∅ or ai H ∩ b j K = ci j (H ∩ K ), for some ci j ∈ G. On the other
hand, x(H ∩ K ) = xH ∩ xK . Therefore, each left coset of H ∩ K is determined by
intersection of a left coset of H and a left coset of K in G. Consequently, distinct
number of left cosets of H ∩ K is at most equal to mn.

Now, by Theorem 8.28, we can write

[G : H ∩ K ] = [G : H ][H : H ∩ K ] = m[H : H ∩ K ],
[G : H ∩ K ] = [G : K ][K : H ∩ K ] = n[K : H ∩ K ],

and hencem|[G : H ∩ K ] and n|[G : H ∩ K ]. Therefore, we conclude that the least
common multiple of m and n divides [G : H ∩ K ]. �

Corollary 8.30 In Theorem 8.29, if m and n are relatively prime, then [G : H ∩
K ] = mn.

Proof It is straightforward. �

Theorem 8.31 If H and K are subgroups of a group G, then

[H : H ∩ K ] ≤ [G : K ].

Proof Suppose that A is the set of all disjoint left cosets of H ∩ K in H and B
is the set of all disjoint left cosets of K in G. We define f : A → B by f

(
h(H ∩

K )
) = hK , for all h ∈ H . If h(H ∩ K ) = h′(H ∩ K ), for some h, h′ ∈ H , then

h−1h′ ∈ H ∩ K ⊆ K . This implies that hK = h′K . So, we conclude that f is well
defined. Moreover, if hK = h′K , for some h, h′ ∈ H , then h−1h′ ∈ K . Since H is a
subgroup and h, h′ ∈ H , it follows that h−1h′ ∈ H . Hence, we have h−1h′ ∈ H ∩ K ,
which implies that h(H ∩ K ) = h′(H ∩ K ). Therefore, f is one to one. This yields
this |A| ≤ |B|, or equivalently [H : H ∩ K ] ≤ [G : K ]. �

Exercises

1. If G is an infinite cyclic group and {e} �= H ≤ G, prove that [G : H ] is finite.
2. Show that the integers have infinite index in the additive groupof rational numbers.
3. Suppose that G is a finite group and H, K are subgroups of G such that K ⊂ H

and [G : K ] is prime. Prove that H = G.
4. Determine the index of the following subgroups in the corresponding groups:

(a) {0, 3, 6, 9} in Z12;
(b) R in (C,+);
(c) 3Z in Z.
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5. Show that if H is a subgroup of index 2 in a finite group G, then every left coset
of H is also a right coset of H .

6. Two subgroups H and K of a group G are said to be commensurable if H ∩ K is
of finite index in both H and K . Show that commensurability is an equivalence
relation on the subgroups of G.

8.5 A Counting Principle and Double Cosets

Let A and B be two subsets of a group G. The set AB = {ab | a ∈ A, b ∈ B}
consisting of the products of elements a ∈ A and b ∈ B is said to be the product of A
and B. The associative law of multiplication gives us (AB)C = A(BC) for any three
subsets A, B, and C . The product of two subgroups is not necessarily a subgroup.
We have the following theorem.

Theorem 8.32 Let H and K be two subgroups of a group G. Then, the following
two conditions are equivalent:

(1) The product HK is a subgroup of G;
(2) HK = K H.

Proof Suppose that HK is a subgroup of G. Then, for any h ∈ H and k ∈ K , we
have h−1k−1 ∈ HK and so kh = (h−1k−1)−1 ∈ HK . Thus, K H ⊆ HK . Now, if
x is any element of HK , then x−1 = hk ∈ HK , for some h ∈ H and k ∈ K . So,
we obtain x = (x−1)−1 = (hk)−1 = k−1h−1 ∈ K H . This means that HK ⊆ K H .
Thus, we conclude that HK = K H .

On the other hand, suppose that HK = K H , i.e., if h ∈ H and k ∈ K , then
hk = k1h1 for some h1 ∈ H and k1 ∈ K . In order to prove that HK is a subgroup
of G, we must verify that it is closed and every element in HK has its inverse
in HK . Suppose that x = hk ∈ HK and y = h′k ′ ∈ HK , where h, h′ ∈ H and
k, k ′ ∈ K . Then, we have xy = hkh′k ′, but since kh′ ∈ K H = HK , it follows that
kh′ = h2k2 with h2 ∈ H and k2 ∈ K . Hence, xy = h(h2k2)k ′ = (hh2)(k2k ′) ∈ HK .
Clearly, x−1 = k−1h−1 ∈ K H = HK . Consequently, HK is a subgroup of G. �

Corollary 8.33 If H and K are subgroups of the abelian group G, then HK is a
subgroup of G.

Theorem 8.34 If H and K are finite subgroups of a group G, then

|HK | = |H ||K |
|H ∩ K | .

Proof Suppose that A = H ∩ K , and let the index of A in H is n. Then, we can
write H = h1A ∪ h2A ∪ · · · ∪ hn A, in which hi A ∩ h j A = ∅, for any i �= j . On
the other hand, we have HK = h1AK ∪ h2AK ∪ · · · ∪ hn AK . Since AK = K , it
follows that HK = h1K ∪ h2K ∪ · · · ∪ hnK . We claim that hi K ∩ h j K = ∅, for
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any i �= j . Indeed, if hi K = h j K �= ∅, for some i �= j , then there exist k1, k2 ∈ K
such that hik1 = h jk2, and then hih

−1
j = k2k

−1
1 ∈ A. This implies that hi A = h j A,

a contradiction. Therefore, we obtain |HK | = n|K |. Since n = |H |/|A|, it follows
that |HK | = |H ||K |/|H ∩ K |. �

Corollary 8.35 If H and K are finite subgroups of a group G such that min{|H |,
|K |} >

√|G|, then H ∩ K �= {e}.
Proof Since HK ⊆ G, it follows that |HK | ≤ G. On the other hand, by Theorem
8.34, we have

|G| ≥ |HK | = |H ||K |
|H ∩ K | >

√|G|√|G|
|H ∩ K | = |G|

|H ∩ K | .

So, we conclude that |H ∩ K | > 1. This yields that H ∩ K �= {e}. �

Definition 8.36 Let G be a group and H, K be two subgroups of G and let x ∈ G.
Then, the set HxK = {hxk | h ∈ H and k ∈ K } is called a double coset of H and
K in G.

Lemma 8.37 For any x, y ∈ G, two double cosets HxK and HyK are either dis-
joint or identical.

Proof Suppose that a ∈ HxK ∩ HyK . Then, a = hxk = h′yk ′, for some h, h′ ∈ H
and k, k ′ ∈ K . This implies that x = h−1h′yk ′k−1 and y = h′−1hxkk ′−1. Now, we
show that HxK = HyK . Let u ∈ HxK be an arbitrary element. Then, u = h1xk1,
for some h1 ∈ H and k1 ∈ K . Consequently, we obtain u = h1h−1h′yk ′k−1k1 ∈
HyK . Conversely, if v ∈ HyK is an arbitrary element, then v = h2yk2, for some
h2 ∈ H and k2 ∈ K . Thus, we have v = h2h′−1hxkk ′−1k2 ∈ HxK . �

Let x, y ∈ G and define x ∼ y if and only if x = hyk, for some h ∈ H and k ∈ K .
It can be shown easily that ∼ is an equivalence relation and the equivalence class of
x is HxK .

Lemma 8.38 If H and K are subgroups of a finite group G and x ∈ G, then

|HxK | = |H ||K |
|x−1Hx ∩ K | .

Proof It is easy to see that the function f : HxK → x−1HxK defined by f (hxk) =
x−1hxk, for all h ∈ H and k ∈ K , is a one to one correspondence. Hence, we
deduce that |HxK | = |x−1HxK | = |x−1Hx ||K |/|x−1Hx ∩ K |. Since |x−1Hx | =
|H |, the result follows. �

Theorem 8.39 If H and K are subgroups of a finite group G, then

|G| =
∑ |H ||K |

|x−1Hx ∩ K | ,
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where summation on right side is taken over elements x chosen from disjoint double
cosets HxK .

Proof For each x ∈ G, we have x ∈ HxK . In view of this, we conclude that G =⋃
x∈G

HxK . Ifwewrite disjoint union, thenweget |G| = ∑ |HxK |.Hence, byLemma

8.38, the result follows. �
Lemma 8.40 Let H and K be subgroups of a group G and a ∈ G. Then, the double
coset HxK is a union of some right cosets of H in G, and also a union of some
left cosets of K in G. Moreover, the number of distinct right cosets of H in HxK
is [K : K ∩ x−1Hx], and the number of distinct left cosets of K in HxK is [H :
H ∩ x−1Kx].
Proof Clearly, we have

HxK = ⋃
k∈K

Hxk and HxK = ⋃
h∈H

hxK .

Now, assume that k, k ′ ∈ K . Then, we have

Hxk = Hxk ′ ⇔ (xk)(xk ′)−1 ∈ H ⇔ xkk ′−1x−1 ∈ H
⇔ kk ′−1 ∈ x−1Hx ⇔ kk ′−1 ∈ K ∩ x−1Hx (since k, k ′ ∈ K )

⇔ k(K ∩ x−1Hx) = k ′(K ∩ x−1Hx).

This shows that the number of distinct right cosets of H in HxK is [K : K ∩ x−1Hx].
The proof of the last part is similar. �
Theorem 8.41 Let H and K be subgroups of a group G. If [G : H ] is finite, then

[G : H ] =
∑
x∈X

[K : K ∩ x−1Hx],

where X is the set of representatives of distinct double cosets. Similarly, if [G : K ]
is finite, then

[G : K ] =
∑
x∈X

[H : H ∩ x−1Kx],

Proof We know that
G = ⋃

x∈X
Hxk.

By Lemma 8.40, for any x ∈ X , the number of distinct right cosets of H in HxK is
[K : K ∩ x−1Hx]. Hence, the number of total distinct right cosets of H in G is

[G : H ] =
∑
x∈X

[K : K ∩ x−1Hx].

The proof of the second part is similar. �
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Exercises

1. Give an example of a group G and subgroups H and K such that HK is not a
subgroup of G.

2. Let H , K , and N be subgroups of a group G such that H ≤ K , H ∩ N = K ∩ N
and HN = K N . Show that H = K .

3. If A and B are non-empty finite subsets of a group G, prove that G = AB or
|A| + |B| ≤ |G|.

4. (a) (Dedekind’s Modular Law). Let H , K , and N be subgroups of a group G
and assume that K ≤ N . Prove that

(HK ) ∩ N = (H ∩ N )K .

(b) In particular, if H and K permute, prove that

〈H, K 〉 ∩ N = 〈H ∩ N , K 〉.

(c) Can you give an example to show that (HK ) ∩ N is not equal to (H ∩
N )(K ∩ N )?

• Find the number of left cosets of K which are contained in the double coset
HxK .

• Let H, K be two subgroups of G. Prove that every subgroup of G containing
both H and K contains the product sets HK and K H .

8.6 Worked-Out Problems

Problem 8.42 Let G = 〈a〉 be an infinite cyclic group and let H = 〈ak〉, where k is
a positive integer. Show that

H, aH, a2H, . . . , ak−1H (8.1)

is a complete list repetition free of the left (right) cosets of H in G.

Solution The problem is subdivided into proving that

(1) The list (8.1) is complete, i.e., every element of G belongs to one of the left
cosets listed;

(2) The list (8.1) is repetition free.

(1) Suppose that x is an arbitrary element ofG. Then, there exists positive integer n
such that x = an . Now, by theDivision algorithm,we canwrite n = qk + r , for some
integers q and r with 0 ≤ r < k. So, we have x = an = aqk+r = ar (ak)q ∈ ar H .
Since 1 ≤ r ≤ k − 1, it follows that ar H is one of the left cosets in the list (8.1).
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Therefore, every element of G lies in one of the left cosets in the list (8.1).
(2) Suppose (with a view to obtaining a contradiction) that ai H = a j H with

0 ≤ i < j ≤ k − 1. Then, we get (ai )−1a j ∈ H , or equivalently a j−i ∈ H . Hence,
we conclude that a j−i = amk , for some integerm. Since a has infinite order, it follows
that j − i = mk. This is a contradiction since 0 < j − i < k. From this contradiction
it follows that the list (8.1) is repetition free. �
Problem 8.43 Let d(G) be the smallest number of elements necessary to generate a
finite groupG. Prove that |G| ≥ 2d(G). Note that by convention d(G) = 0 if |G| = 1.

Solution We do the proof by mathematical induction. If d(G) = 1, then |G| > 2,
because each non-identity element has order of at least 2. Suppose that if a
group is generated by n − 1 elements, then its order is at least 2n−1. Now, let
G = 〈a1, a2, . . . , an〉, i.e., G is generated by n elements. Then, the subgroup
H = 〈a1, a2, . . . , an−1〉 is a proper subgroup of G, and hence by assumption we
have |H | ≥ 2n−1. Since an /∈ H , it follows that anH ∩ H = ∅. In addition, we have
anH ∪ H ⊆ G. Consequently, we obtain

|G| ≥ |anH ∪ H | = |anH | + |H | ≥ 2|H | = 2 · 2n−1 = 2n,

and we are done. �
Problem 8.44 Prove that a group has exactly three subgroups if and only if it is
cyclic of order p2, for some prime p.

Solution Suppose that G is a cyclic group of order p2. By Theorem 4.31, G has a
unique subgroup H of order p. Therefore, the subgroups of G are {e}, H and G.

Conversely, assume that G is a group which has exactly three subgroups. Then,
we conclude that there exists only one non-trivial proper subgroup H of G. Since H
has no non-trivial subgroup, it follows that H is a group of order p, for some prime
p. Let H = 〈a〉. Since G �= H , it follows that there exists b ∈ G − H . Now, 〈b〉 is a
subgroup of G different from H . Hence, we conclude that 〈b〉 = G. This means that
G is cyclic, and it has a subgroup of order p. Thus, G is finite and the only prime
divisor of |G| is p. Consequently, |G| must be p2, otherwise G has a subgroup from
other divisors. �
Problem 8.45 Let H and K be subgroups of a group G, and suppose that L is a
left coset of H in G and R1, R2 are two right cosets of K in G. If L ∩ R1 �= ∅ and
L ∩ R2 �= ∅, prove that |L ∩ R1| = |L ∩ R2|.
Solution Assume that a ∈ L ∩ R1 and b ∈ L ∩ R2. Then, we have L = aH = bH ,
R1 = Ka and R2 = Kb. So, we obtain

L ∩ R1 = aH ∩ Ka = (aHa−1 ∩ K )a,

L ∩ R2 = bH ∩ Kb = (bHb−1 ∩ K )b.

Since aH = bH , it follows that a−1b ∈ H or b−1a ∈ H . This shows that Ha−1 =
Hb−1. Consequently, we can write L ∩ R1 = (aHa−1 ∩ K )a and L ∩ R2 =
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(aHa−1 ∩ K )b. Since aHa−1 ∩ K is a subgroup of G, it follows that L ∩ R1 and
L ∩ R2 are right cosets of aHa−1 ∩ K in G. This forces |L ∩ R1| = |L ∩ R2|. �

Problem 8.46 Let G be a group of order 100 that has a subgroup H of order 25.
Prove that every element of G of order 5 is in H .

Solution Suppose that a is an element of G of order 5. Then, by Theorem 8.34, we
can write

|〈a〉H | = |〈a〉||H |
|〈a〉 ∩ H | = 5 · 25

|〈a〉 ∩ H | = 125

|〈a〉 ∩ H | .

Since 〈a〉H ⊆ G, it follows that |〈a〉H | ≤ 100. This forces |〈a〉 ∩ H | > 1. Since
|〈a〉| = 5 and 〈a〉 ∩ H ⊆ 〈a〉, it follows that |〈a〉H | = 5. This yields that |〈a〉H | =
〈a〉, and hence we conclude that a ∈ H . �

Problem 8.47 Prove that if G is a finite group, the index of Z(G) in G cannot be
prime.

Solution Suppose that [G : Z(G)] = p, where p is a prime. Since p > 1, it follows
that G �= Z(G), and so there exists a ∈ G − Z(G). If CG(a) is the centralizer of a
inG, then Z(G) is a subgroup ofCG(a). Since a ∈ CG(a) and a /∈ Z(G)), it follows
that CG(a) �= Z(G). Hence, we conclude that

[CG(a) : Z(G)] > 1. (8.2)

On the other hand, by Theorem 8.29, we have

p = [G : Z(G)] = [G : CG(a)][CG(a) : Z(G)]. (8.3)

Since p is prime, by (8.2) and (8.3), it follows that [G : CG(a)] = 1 and [CG(a) :
Z(G)] = p. This shows thatG = CG(a). It means that every element ofG commutes
with a, and it is a contradiction as a /∈ Z(G). Therefore, we conclude that [G : Z(G)]
cannot be prime. �

8.7 Supplementary Exercises

1. Let G be a finite group whose order is not divisible by 3. Suppose that (ab)3 =
a3b3, for all a, b ∈ G. Prove that G must be abelian.

2. Let n = n1 + · · · + nr be a partition of the positive integer n. Use Lagrange’s
theorem to show that n! is divisible by

r∏
i=1

ni !.
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3. Let G be a finite abelian group and let m be the least common multiple of the
orders of its elements. Prove that G contains an element of order m.

4. Let G be a finite group. Prove that the number of elements x ∈ G such that
x7 = e is odd.

5. If G is a finite group with precisely 2 conjugacy classes, prove |G| = 2.
6. If σ ∈ Sn has order p, p is a prime, and (n, p) = 1, show that rσ = r , for some

1 ≤ r ≤ n.
7. If in a group G of order n, for each positive integer m|n, the equation xm = e

has less than m + ϕ(m) solutions, then show G is cyclic.
8. In a cyclic group of order n, show that for each integer m that divides n there

exist ϕ(m) elements of order m.
9. Suppose that G is an abelian group with an odd number of elements. Show that

the product of all of the elements of G is the identity.
10. Let G be a group such that |G| < 200. Suppose that G has subgroups of order

25 and 35. Find the order of G.
11. Let G be a group of order pqr , where p, q, and r are distinct primes. If H and

K are subgroups of G with |H | = pq and |K | = qr , prove that |H ∩ K | = q.
12. Let G be the set of all matrices of the form

[
2k p(x)
0 1

]
,

where k ∈ Z and p(x) is any polynomial with rational coefficients. Show that

(a) G is a group under matrix multiplication;
(b) There exists a subgroup H of G and an element u ∈ G such that the left coset

uH contains an infinite number of right cosets of H in G;
(c) The chain H ⊂ uHu−1 ⊂ u2Hu−2 ⊂ · · · is an infinite proper ascending

chain.

13. Let G be an abelian group and suppose that G has elements of orders m and
n, respectively. Prove that G has an element whose order is the least common
multiple of m and n.

14. In Theorem 8.31, show that equality holds if and only if G = HK .
15. Let H be a subgroup of a group G such that [G : H ] = p, where p is a prime

number. If H is a subgroup of Z(G), prove that G is abelian.
16. Let G be an abelian group of order n and a1, . . . , an be elements of G. Let

x = a1a2 . . . an . Show that

(a) If G has exactly one element of order 2, then x = b;
(b) If G has more than one element of order 2, then x = e;
(c) If n is odd, then x = e.

17. Let H and K be subgroups of a finite group G. Show that

(a) [H : H ∩ K ] ≤ [H ∨ K : K ], where H ∨ K = 〈H ∪ K 〉;
(b) If [G : K ] < 2[H : H ∩ K ], then G = H ∨ K .
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18. Let n > 1. Show that there exists a proper subgroup H of Sn such that [Sn :
H ] ≤ n.

19. Using Lagrange’s theorem, for any integers m and n, prove that

(mn)!
(m!)n and

(mn)!
(m!)nn!

are integers.
Hint:Consider the integers 1 tomn in a family of consecutive integers as follows:
{1, . . . , m}, {m + 1, . . . , 2m}, . . ., {(n − 1)m + 1, . . . , nm}. The elements
of symmetric group Smn that move each set within itself is a subgroup of Smn .

20. Let G be a group and H be a subgroup of G. Prove that

∣∣∣ ⋃
a∈G

a−1Ha
∣∣∣ ≤ 1 + |G| − [G : H ].

21. Suppose that G has exactlym subgroups of order p, where p is a prime number.
Show that the total number of elements of order p in G is m(p − 1). Deduce
the following results:

(a) A non-cyclic group of order 55 has at least one element of order 5;
(b) A non-cyclic group of order p2 has altogether p + 3 subgroups.
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