
Chapter 7
Matrix Groups

Among themost important examples of groups are groups ofmatrices. In this chapter,
matrix groups are defined and a number of standard examples are discussed.

7.1 Introduction to Matrix Groups

Let A = (
ai j

)
m×n and B = (

bi j
)

n×p. We recall the product AB is the matrix C =
(
ai j

)
m×p, where

ci j =
n∑

k=1

aikbk j .

Theorem 7.1 Matrix multiplication is associative.

Proof Let A = (
ai j

)
m×n , B = (

bi j
)

n×p and C = (
ci j
)

p×q be three arbitrary matri-

ces. Suppose that AB = D = (
di j

)
m×p and BC = E = (

ei j
)

n×q .Moreover, suppose
that

(AB)C = DC = X = (xi j
)

m×q and A(BC) = AE = Y = (
yi j
)

m×q .

Then, we obtain

xi j =
p∑

l=1

dilcl j

=
p∑

l=1

(
n∑

k=1

aikbk j

)

cl j
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=
p∑

l=1

(
ai1b1l + ai2b2l + · · · + ainbnl

)
cl j

= ai1

p∑

l=1

b1l cl j + ai2

p∑

l=1

b2l cl j + · · · + ain

p∑

l=1

bnlcl j

=
n∑

k=1

aik

(
p∑

l=1

bilcl j

)

=
n∑

k=1

aikek j

= yi j .

Therefore, we deduce that X = Y . �

A matrix A with n rows and n columns is called a square matrix of order n.
One example of a square matrix is the n × n identity matrix In . This is the matrix
In = (

δi j
)

n×n defined by

δi j =
{
1 if i = j
0 if i �= j.

Definition 7.2 Let A be an n × n matrix over F. An n × n matrix B such that
B A = In is called a left inverse of A. Similarly, an n × n matrix B such that AB = In

is called a right inverse of A. If AB = B A = In , then B is called an inverse of A
and A is said to be invertible.

Lemma 7.3 If a matrix A has a left inverse B and a right inverse C, then B = C.

Proof Suppose that B A = In and AC = In . Then, we obtain

B = B In = B(AC) = (B A)C = InC = C

as desired. �

Thus, if A has a left and a right inverse, then A is invertible and has a unique
inverse, which we shall denote by A−1.

Theorem 7.4 Let A and B be two matrices of the same size over F.

(1) If A is invertible, so is A−1 and (A−1)−1 = A.
(2) If both A and B are invertible, so is AB and (AB)−1 = B−1A−1.

Proof (1) It is evident from the symmetry of the definition.
(2) We have
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(AB)(B−1A−1) = A(B B−1)A−1 = AIn A−1 = AA−1 = In.

Similarly, we obtain (B−1A−1)(AB) = In . This completes our proof. �

Theorem 7.5 If
GLn(F) = {A ∈ Mn×n | A is invertible},

then GLn(F) is a group under the multiplication of matrices.

Proof The proof follows from Theorem 7.1, the definition of identity matrix and
Theorem 7.4. �

GLn(F) is called the general linear group.

Definition 7.6 The following three operations on amatrix are called elementary row
operations:

(1) Multiply a row through by a non-zero constant.
(2) Interchange two rows.
(3) Add a multiple of one row to another row.

Indeed, an elementary row operation is a special function f which associate with
each matrix A = (

ai j
)

m×n a matrix f (A) = (
bi j

)
m×n such that

(1) bi j = ai j if i �= k, and bk j = cak j ,
(2) bi j = ai j if i is different from both k and l, and bk j = al j , bl j = ak j ,
(3) bi j = ai j if i �= k, and bk j = ak j + cal j .

Lemma 7.7 To each elementary row operation f there corresponds an elementary
row operation g, of the same type as f , such that f

(
g(A)

) = g
(

f (A)
) = A, for each

A.

Proof (1) Suppose that f is the operation which multiplies the kth row of a matrix
by the non-zero scalar c. Let g be the operation which multiplies row k by c−1.

(2) Suppose that f is the operation which replaces row k by row k plus c times
row l, where k �= l. Let g be the operation which replaces row k by row k plus −c
times row l.

(3) If f interchanges rows k and l, let g = f .
In each of the above cases, we clearly have f

(
g(A)

) = g
(

f (A)
) = A, for each

A. �

An n × n matrix is called an elementary matrix if it can be obtained from the
identity matrix In by performing a single elementary row operation.

Lemma 7.8 If the elementary matrix E results from performing a certain elementary
row operation f on In and if A is an m × n matrix, then the product E A is the matrix
that results this same row elementary operation is performed on A, i.e., f (a) = E A.
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Proof It is straightforward by considering the three types of elementary row opera-
tions. �

Example 7.9 Consider the matrix

⎡

⎣
1 5 4 1
3 2 3 0
1 −1 3 1

⎤

⎦

and consider the elementary matrix

⎡

⎣
1 0 0
0 1 0
4 0 1

⎤

⎦

which results from adding 4 times the first row of I3 to the third row. The product
E A is ⎡

⎣
1 5 4 1
3 2 3 0
5 19 19 5

⎤

⎦ .

Theorem 7.10 Each elementary matrix belongs to GLn(F).

Proof If A is an n × n elementary matrix, then A results from performing some row
operation on In . Let B be the n × n matrix that results when the inverse operation
is performed on In . Applying Lemma 7.7 and using the fact that inverse row opera-
tions cancel the effect of each other, it follows that AB = In and B A = In . So, the
elementary matrix B is the inverse of A. This yields that A ∈ GLn(F). �

Definition 7.11 An m × n matrix R is called row-reduced echelon matrix if

(1) the first non-zero entry in each non-zero row of R is equal to 1,
(2) each column of R which contains the leading non-zero entry of some row has

all its other entries 0,
(3) every row of R which has all its entries 0 occurs below every row which has a

non-zero entry,
(4) if rows 1, . . . , r are the non-zero rows of R, and if the leading non-zero entry of

row i occurs in column ki , i = 1, . . . , r , then k1 < k2 < · · · < kr .

Example 7.12 (1) One example of row-reduced echelon matrix is In .
(2) The matrix ⎡

⎣
0 1 2 0 −3
0 0 0 1 2
0 0 0 0 0

⎤

⎦

a row-reduced echelon matrix, too.
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Matrices that can be obtained from one another by a finite sequence of elementary
row operations are said to be row equivalent. We left to the readers to show that each
matrix is row equivalent to a unique row-reduced echelon matrix.

If one defines an elementary column operation and column equivalent in a manner
analogous to that of elementary row operation and row equivalent, it is clear that each
m × n matrix will be column equivalent to a column-reduced echelon matrix. Also,
each elementary column operation will be of the form A → AE , where E is an n × n
elementary matrix, and so on.

Definition 7.13 A diagonal matrix is a square matrix in which the entries outside
main diagonal are all zero. A diagonal matrix whose diagonal elements all contains
the same scalar c is called a scalar matrix.

Corollary 7.14 The set of all n × n invertible diagonal matrices is a subgroup of
GLn(F).

Definition 7.15 A matrix A = (
ai j

)
n×n is called

(1) an upper triangular if ai j = 0 for i > j .
(2) a lower triangular if ai j = 0 for i < j .

Let U Tn(F) be the set of upper triangular matrices such that all entries on the
diagonal are non-zero.

Theorem 7.16 U Tn(F) is a subgroup of GLn(F).

Proof Suppose that A and B are two arbitrary elements of U Tn(F). Let C =(
ci j
)

n×n = AB. If i > j , then

ci j =
∑

k

aikbk j = 0 and cii = aii bii �= 0,

which shows that C ∈ U Tn(F).
Now, we notice that

(1) The elementary matrix corresponding to multiply the i th row by a non-zero
constant c is the matrix with ones on the diagonal, expect in the i th row, which
instead has a c, and zero everywhere else.

(2) If we consider a replacement that add a multiple of the i th row to j th row, where
i < j , then this matrix has non-zero entries only along the diagonal and in the
i j th entry, which is above the diagonal. Therefore, all entries bellow the diagonal
are zero.

The above row operations are sufficient to row reduce A to In . Since A is upper tri-
angular, it follows that there exists a sequence of row operations of the type described
in the above that transforms A into In . Consequently, there is a sequence of upper tri-
angular elementary matrices E1, E2, . . . , Ek such that Ek . . . E2E1A = In , or equiv-
alently
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A−1 = Ek . . . E2E1. (7.1)

The right side of (7.1) is a product of upper triangular matrices. Hence, the result of
this product is also an upper triangular matrix. Hence, we conclude that the inverse
of A and lies in U Tn(F). This completes our proof. �

Let LTn(F) be the set of lower triangular matrices such that all entries on the
diagonal are non-zero.

Theorem 7.17 LTn(F) is a subgroup of GLn(F).

Proof The proof is similar to the proof of Theorem 7.16. �

Theorem 7.18 If A is n × n matrix, then the following are equivalent:

(1) A ∈ GLn(F),
(2) A is row equivalent to In,
(3) A is a product of elementary matrices.

Proof Suppose that R is a row-reduced echelon matrix which is row equivalent to
A. Then, by Lemma 7.8, there exist elementary matrices E1, . . . , Ek such that

R = Ek . . . E1A

Since each Ei is invertible, it follows that

A = E−1
1 . . . E−1

k R.

Since products of invertible matrices are invertible, we conclude that A is invertible
if and only if R is invertible. Since R is a square row-reduced echelon matrix, it
follows that R is invertible if and only if each row of R contains non-zero entry, that
is, if and only if R = In . We have now shown that

A is invertible ⇔ R = I ,

and if R = I then A = E−1
1 . . . E−1

k . This proves that (1), (2) and (3) are equivalent
statements about A. �

Corollary 7.19 The general linear group GLn(F) is generated by elementary matri-
ces.

Corollary 7.20 Let A be an invertible matrix. If a sequence of elementary row
operations reduces A to the identity, then that same sequence of operations when
applied to In yields A−1.

Example 7.21 We want to find the inverse of

A =
⎡

⎣
1 1 2
3 4 5
2 6 −1

⎤

⎦ ,
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if exists. If we are able to convert matrix A to the identity matrix by using elementary
row operations, i.e.,

[A | In] −→ [In | B],

then A is invertible and A−1 = B. The computation can be carried out as follows:

⎡

⎣
1 1 2 1 0 0
3 4 5 0 1 0
2 6 −1 0 0 1

⎤

⎦ −→
⎡

⎣
1 1 2 1 0 0
0 1 −1 −3 1 0
2 6 −1 0 0 1

⎤

⎦

−→
⎡

⎣
1 1 2 1 0 0
0 1 −1 −3 1 0
0 4 −5 −2 0 1

⎤

⎦ −→
⎡

⎣
1 0 3 4 −1 0
0 1 −1 −3 1 0
0 4 −5 −2 0 1

⎤

⎦

−→
⎡

⎣
1 0 3 4 −1 0
0 1 −1 −3 1 0
0 0 −1 10 −4 1

⎤

⎦ −→
⎡

⎣
1 0 0 34 −13 3
0 1 −1 −3 1 0
0 0 −1 10 −4 1

⎤

⎦

−→
⎡

⎣
1 0 0 34 −13 3
0 1 −1 −3 1 0
0 0 1 −10 4 −1

⎤

⎦ −→
⎡

⎣
1 0 0 34 −13 3
0 1 0 −13 5 −1
0 0 1 −10 4 −1

⎤

⎦ .

Therefore, we get

A−1 =
⎡

⎣
34 −13 3

−13 5 −1
−10 4 −1

⎤

⎦ .

Definition 7.22 The determinant of a matrix A, written det(A), is a certain number
associated to A. If A = (

ai j )n×n , then determinant of A is defined by the following:

det(A) =
∑

σ∈Sn

sgn(σ)
n∏

i=1

ai(iσ).

Theorem 7.23 If n = 1, then det(A) = a11. If n > 1, then

det(A) =
n∑

j=1

ai j Ai j , i = 1, . . . , n (7.2)

and

det(A) =
n∑

i=1

ai j Ai j , j = 1, . . . , n, (7.3)

such that Ai j is the i j -cofactor associated with A, i.e.,
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Ai j = (−1)i+ j det(Mi j ),

where Mi j is n − 1) × (n − 1) matrix obtained from A by removing its i th row and
jth column. The Mi j ’s are called the minors of A.

Proof The proof follows from the expansion of the right sides of (7.2), (7.3) and
using the definition of determinant. �

Formula (7.2) is called the expansion of the determinant through the i th row and
Formula (7.3) is called the expansion of the determinant through the j th column. An
alternative notation for the determinant of a matrix A is |A| rather than det(A).

Example 7.24 Evaluate det(A), where

A =
⎡

⎣
2 3 3
4 5 −1
1 2 3

⎤

⎦ .

We have

det(A) = 2

∣∣∣∣
5 −1
2 3

∣∣∣∣ − 3

∣∣∣∣
4 −1
1 3

∣∣∣∣ + 3

∣∣∣∣
4 5
1 2

∣∣∣∣

= 2
(
5 · 3 − (−1) · 2) − 3

(
4 · 3 − (−1) · 1) + 3

(
4 · 2 − 5 · 1) = 4.

Lemma 7.25 Let A be any n × n matrix.

(1) If B is the matrix that results when a single row of A is multiplied by a constant
c, then det(B) = c det(A).

(2) If B is the matrix that results when two rows of A are interchanged, then det(B) =
− det(A).

(3) If B is the matrix that results when a multiple of one row of A is added to another
row, then det(B) = det(A).

Proof It is straightforward. �

Lemma 7.26 If E is an n × n elementary matrix and A is any n × n matrix, then

det(E A) = det(E) det(A).

Proof We consider the three different types of elementary row operation.
(1) Let E be the elementary matrix obtained from In by multiplying the entries

of some row of In by a non-zero scalar c. Then, we can row reduce E to In by mul-
tiplying the same row by 1

c . Hence, we obtain det(In) = 1
c det(E), or equivalently

det(E) = c. Since E A is the matrix resulting from multiplying the entries of a row
of A by c, it follows that det(E A) = c det(A) = det(E) det(A).

(2) Let E be the elementary matrix obtained from In by interchanging two rows
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of In . Then, det(E) = − det(In) = −1. Since E A is the matrix resulting from inter-
changing the corresponding two rows of A, it follows that det(E A) = (−1) det(A),
and so det(E A) = det(E) det(A).

(3) Let E be the elementary matrix obtained from In by adding a multiple of
one row of In to another row of In . Since row operations of this type do not
change the determinant, it follows that det(E) = det(In) = 1. Since E A is the
result of adding a multiple of a row of A to another row of A, it follows that
det(E A) = 1 · det(A) = det(E) det(A).

So, nomatter what type of elementarymatrix E is, we have shown that det(E A) =
det(E) det(A). Now, we are done. �

Theorem 7.27 A square matrix A is invertible if and only if det(A) �= 0.

Proof Suppose that E1, . . . , Ek are elementary matrices which place A in reduced
row echelon matrix R. Then, R = Ek . . . E1A. By Lemma 7.26, we have det(R) =
det(Ek) . . . det(E1) det(A). Since the determinant of an elementary matrix is non-
zero, it follows that det(A) and det(R) are either both zero or both non-zero.

Now, if A is invertible, then the reduced row echelon form of A is In . In this case,
det(R) = det(In) = 1 which implies that det(A) �= 0.

Conversely, if det(A) �= 0, then det(R) �= 0 which implies that R can not have a
row of all zeros. This implies that R = In and so A is invertible. �

Corollary 7.28 We have

GLn(F) = {A ∈ Mn×n | det(A) �= 0}.

Theorem 7.29 A square matrix A = (
ai j )n×n is invertible if and only if AX = 0,

i.e., ⎡

⎢
⎢⎢
⎣

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...

an1 an2 . . . ann

⎤

⎥
⎥⎥
⎦

⎡

⎢
⎢⎢
⎣

x1
x2
...

xn

⎤

⎥
⎥⎥
⎦

=

⎡

⎢
⎢⎢
⎣

0
0
...

0

⎤

⎥
⎥⎥
⎦

has only the trivial solution.

Proof Suppose that A is invertible and X0 be any solution to AX = 0. Thus,
AX0 = 0. Multiplying both sides of this equation by A−1 gives A−1(AX0) = A−10,
or equivalently (A−1A)X0 = 0. This implies that X0 = 0. Thus, AX = 0 has only
the trivial solution.

Conversely, if AX = 0 has only the trivial solution, then A must be row equiva-
lent to a reduced row echelon matrix R with n leading 1s. Hence, R = In . Now, by
Theorem 7.18 our proof completes. �

Definition 7.30 Let A be a square matrix and V1, V2, . . . , Vn be the columns of A.
We say that V1, V2, . . . , Vn are linearly independent if and only if the only solution
for
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x1V1 + x2V2 + · · · + xn Vn = 0 (with xi ∈ F)

is x1 = x2 = · · · = xn = 0. Note that the equation x1V1 + x2V2 + · · · + xn Vn = 0
can be rewrite as AX = 0.

Corollary 7.31 A square matrix A is invertible if and only if the columns of A are
linearly independent.

Proof The proof results from Theorem 7.29 and Definition 7.30. �

Theorem 7.32 If F is a finite field with q elements, then

|GLn(F)| =
n−1∏

k=0

(qn − qk).

Proof We count n × n matrices whose columns are linearly independent. We can
do this by building up a matrix from scratch. The first column can be anything other
than the zero column, so there exist qn − 1 possibilities. The second column must
be linearly independent from the first column, which is to say that it must not be
a multiple of the first column. Since there exist q multiples of the first column, it
follows that there exist qn − q possibilities for the second column. In general, the i th
column must be linearly independent from the first i − 1 columns, which means that
it can not be a linear combination of the first i − 1 columns. Since there exist qi−1

linear combinations of the first i − 1 columns, it follows that there exist qn − qi−1

possibilities for the i th column. Once we build the entire matrix this way, we know
that the column are all linearly independent by choice. Moreover, we can build any
n × n matrix whose columns are linearly independent in this way. Consequently,
there exist

(qn − 1)(qn − q) . . . (qn − qn−1)

matrices. �

Theorem 7.33 The center of GLn(F) is

Z
(
GLn(F)

) = {aIn | a ∈ F
∗}.

This means that the center of general linear group is the subgroup comprising scalar
matrices.

Proof We suppose that n > 1. Each elements of Z
(
GLn(F) must commute with

every elements of GLn(F). In particular must commute with elementary matrices.
We complete the our proof in four steps.

Step 1: Each element of Z
(
GLn(F) commutes with off-diagonal matrix units.

Indeed, assume that c ∈ F
∗ and ei j (c) is a matrix with c in i j th entry and zeroes

elsewhere. Specially, ei j (1) is called the i j th matrix unit. Now, we define Ei j (c) =
In + ei j (c). Then, we have
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(1) Since Ei j (−c) is the inverse of Ei j (c), it follows that Ei j (c) ∈ GLn(F).
(2) Any matrix that commutes with Ei j (1) must commute with ei j (1)

Step 2: If a matrix commutes with off-diagonal matrix units, then it is a diagonal
matrix. Indeed, let A be amatrix such that a ji �= 0 for some i �= j and let B = ei j (1).
Then, j j th entry of AB is non-zero, while the j j th entry of B A is zero. Consequently,
any matrix commutes with all of off-diagonal matrix units ei j (1) can not have any
off-diagonal entries.

Step 3: A permutation matrix is a matrix obtained by permuting the rows of
In according to some permutation of the numbers 1 to n. A permutation matrix is
invertible. Let A be a diagonal matrix with ai j �= a j j and let B be a permutation
matrix obtained by permuting the i th and j th rows of In . Then, A does not commute
with B. Therefore, we conclude that any diagonal matrix that commutes with all
permutation matrices is scalar.

Step 4: Combining the first two steps yields that any matrix in Z
(
GLn(F)

)
must

be diagonal, and the third step then yields that it must be scalar. �

Corollary 7.34 For any n × n matrices A and B,

AB = In ⇔ B A = In.

Proof It is enough to prove that B A = In implies that AB = In . Let B A = In .
If AX = 0, then B(AX) = B0 = 0. Hence, (B A)X = 0, or equivalently In X = 0.
This implies that X = 0. Now, by Theorem 7.29, we conclude that A is invertible.
Since B A = In , it follows that

A(B A)A−1 = AIn A−1 = In.

This implies that (AB)AA−1 = In . Thus, we conclude that AB = In . �

Corollary 7.35 Let A and B be two n × n matrices. If AB is invertible, then A and
B are invertible.

Proof Suppose that C = B(AB)−1 and D = (AB)−1 A. Then, we obtain

AC = A
(
B(AB)−1

) = (AB)(AB)−1 = In,

DB = (
(AB)−1A

)
B = (AB)−1(AB) = In.

Now, by Corollary 7.34, we deduce that C = A−1 and D = B−1. �

The result in Lemma 7.26 can be generalized to any two n × n matrices.

Theorem 7.36 If A and B are two n × n matrices, then

det(AB) = det(A) det(B).
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Proof We consider two cases:
(1) If A is invertible, then there exist elementary matrices E1, . . . , Ek such that

A = E1 . . . Ek . Then, we have

det(AB) = det(E1 . . . Ek B)
= det(E1) det(E2 . . . Ek B)
...

= det(E1) . . . det(Ek) det(B)
= det(E1E2) det(E3) . . . det(Ek) det(B)
...

= det(E1 . . . Ek) det(B)
= det(A) det(B).

(2) If A is not invertible, by Corollary 7.35, AB is not invertible. This yield that
det(AB) = 0 = det(A) det(B), and so the theorem holds. �

Corollary 7.37 If A is n × n invertible matrix, then

det(A−1) = 1

det(A)
.

Proof Since AA−1 = In , it follows that det(AA−1) = det(In) and so det(A−1)

det(A) = 1. Since det(A) �= 0, the proof can be completed by dividing through by
det(A). �

Theorem 7.38 If

SLn(F) = {A ∈ GLn(F) | det(A) = 1},

then SLn(F) is a subgroup of GLn(F).

Proof Let A, B ∈ SLn(F) be arbitrary. Since det(A) = det(B) = 1, by Theorem
7.36 we conclude that det(AB) = 1. This implies that AB ∈ SLn(F). Moreover, by
Corollary 7.37, det(A−1) = 1, and hence A−1 ∈ SLn(F). �

SLn(F) is called the special linear group.

Theorem 7.39 The center of SLn(F) is

Z
(
SLn(F)

) = {aIn | an = 1}.

Proof The proof results from the definition of SLn(F) and Theorem 7.33. �

Theorem 7.40 The special linear group SL2(F) is generated by matrices of the
form
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[
1 0
t 1

]
and

[
1 r
0 1

]

for all r, s ∈ F
∗.

Proof Suppose that [
a b
c d

]

is an arbitrary element of SL2(F). We consider the following three cases:
Case 1: If b �= 0, then

[
a b
c d

]
=
[

1 0
(d − 1)b−1 1

] [
1 b
0 1

] [
1 0

(a − 1)b−1 1

]
.

Case 2: If c �= 0, then

[
a b
c d

]
=
[
1 (a − 1)c−1

0 1

] [
1 0
c 1

] [
1 (d − 1)c−1

0 1

]
.

Case 3: If b = c = 0, then

[
a 0
0 a−1

]
=
[

1 0
(1 − a)a−1 1

] [
1 1
0 1

] [
1 0

a − 1 1

] [
1 −a−1

0 1

]
,

and we are done. �

Let ei j (λ) is a matrix with λ in i j th entry and zeroes elsewhere, and let Ei j (λ) =
In + ei j (λ).

Theorem 7.41 The special linear group SLn(F) is generated by matrices of the
form Ei j (λ) with i �= j and λ ∈ F

∗.

Proof We apply mathematical induction. If n = 2, then by Theorem 7.40, we are
done. Suppose that the statement is true for each (n − 1) × (n − 1) matrix. Let A
be any arbitrary matrix in SLn(F). Multiplying A by Ei j (λ) on the left or right is an
elementary row or column operation:

Ei j (λ)A =

⎡

⎢
⎢⎢⎢⎢⎢
⎣

a11 . . . a1n
...

...
...

ai1 + λa j1 . . . ain + λa jn
...

...
...

an1 . . . ann

⎤

⎥
⎥⎥⎥⎥⎥
⎦

and
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AEi j (λ) =
⎡

⎢
⎣

a11 . . . a1 j + λa1i . . . a1n
...

...
...

...
...

an1 . . . anj + λani . . . ann

⎤

⎥
⎦ .

These are the only operations we may use. Since det(A) = 1, it follows that some
entry of the first column of A is not 0. If ak1 �= 0 with k > 1, then

E1k

(
1 − a11

ak1

)
A =

[
1 . . .
...
. . .

]

. (7.4)

If a21, . . . , an1 are all 0, then a11 �= 0 and

E21

(
1

a11

)
A =

⎡

⎢
⎣

a11 . . .

1 . . .
...

. . .

⎤

⎥
⎦ .

Hence, by (7.4) with k = 2, we obtain

E12(1 − a11)E21

(
1

a11

)
A =

[
1 . . .
...
. . .

]

.

When we have a matrix with upper left entry 1, multiplying it on the left by Ei1(λ)
for i �= 1 will all λ to the 1i th entry, hence with a suitable λ, we can make the i1th
entry of the matrix 0. Consequently, multiplication on the left by suitable matrices
of the form Ei j (λ) produces a block matrix

[
1 ∗
0 B

]

whose first column is all 0’s except for the upper left entry, which is 1. Multiplying
thismatrix on the right by E1 j (λ) for j �= 1 addsλ to the 1 j th entrywithout changing
a column other than the j th column. With a suitable choice of λ we can make the
1 j th entry equal to 0, and carrying this out for j = 2, . . . , n leads to a block matrix

[
1 0
0 A′

]
. (7.5)

Since this matrix is in SLn(F), it follows that det(A′) = 1. This implies that
A′ ∈ SLn−1(F). By induction hypothesis, A′ is a product of elementary matrices
Ei j (λ)(n−1)×(n−1). We say

A′ = E1E2 . . . Er .

So, we have
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[
1 0
0 A′

]
=
[
1 0
0 E1E2 . . . Er

]
=
[
1 0
0 E1

] [
1 0
0 E2

]
. . .

[
1 0
0 Er

]
.

This yields that A is a product of n × n matrices Ei j (λ). �

Definition 7.42 Let A be an m × n matrix. Then, At , the transpose of A, is the
matrix obtained by interchanging the rows and columns of A. Geometrically, At is
obtained from A by reflecting across the diagonal of A.

We say A is symmetric if At = A and A is skew-symmetric if At = −A.

Assuming that the sizes of the matrices are such that the operations can be per-
formed, the transpose operation has the following properties:

(1) (At )t = A,
(2) (A + B)t = At + Bt ,
(3) (cA)t = cAt , where c ∈ F,
(4) (AB)t = Bt At .

Corollary 7.43 If A is any square matrix, then det(A) = det(At ).

Corollary 7.44 Any orthogonal matrix has determinant equal to 1 or −1.

Theorem 7.45 If
On(F) = {A ∈ GLn(F) | At A = In},

then On(F) is a subgroup of GLn(F).

Proof Let A and B be two arbitrary elements of On(F). Then, we have At A = In

and Bt B = In . This implies that

(AB)t (AB) = Bt At AB = Bt In B = Bt B = In.

So, we conclude that AB ∈ On(F). Moreover, we have At = A−1, and so

(A−1)t A−1 = AA−1 = In.

This implies that A−1 ∈ On(F). �

On(F) is called the orthogonal group. We can define

SOn(F) = SLn(F) ∩ On(F).

SOn(F) is called the special orthogonal group.
One can gets a whole of examples by fixing Q ∈ Mn(F) and defining

G Q(F) = {A ∈ GLn(F) | At Q A = Q}.
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Theorem 7.46 G Q(F) is a subgroup of GLn(F).

Proof Suppose that A and B are two arbitrary elements of G Q(F). Then we have
AB ∈ G Q(F). Indeed,

(AB)t Q(AB) = Bt At Q AB = Bt Q B = Q.

In addition, we have A−1 ∈ G Q(F). Indeed, when multiplying the equality
Q = At Q A to the right by A−1 and to the left by (A−1)t , thenweobtain (A−1)t Q A−1 =
Q. �

One important case is when n = 2m and we take Q to be the matrix

Jm =
[

0 −Im

Im 0

]

Then, G Q(F) is denoted by S P2m(F) and is called symplectic group

Exercises

1. If A is a symmetric matrix, is the matrix A−1 symmetric?
2. Show that the non-zero elements of Matn×n(C) is not groupundermultiplication.
3. For what values of a and b the following matrix belong to GL4(R):

⎡

⎢⎢
⎣

b 0 a 0
0 0 b a
0 a 0 b
b a 0 0

⎤

⎥⎥
⎦ .

4. The trace of a square matrix A = (
ai j

)
n×n is

tr(A) =
n∑

i=1

aii .

Let A and B be two square matrices.

(a) Prove that tr(AB) = tr(B A);
(b) If B is invertible, show that the formula tr(B−1AB) = tr(A).

5. Let A be a 2 × 2 matrix over a field F. Prove that det(I2 + A) = 1 + det(A) if
and only if tr(A) = 0.

6. Let A be an n × n matrix over a field F. Prove that there are at most n distinct
scalars c ∈ F such that det(cI2 − A) == 0.
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7. If A and B are invertible matrices and the involved partitioned products are
defined, show that

[
A B
C 0

]−1

=
[

0 C−1

B−1 −B−1 AC−1

]
.

8. Show that the non-zero elements of Matn×n(C) is not groupundermultiplication.
9. Let A = (

ai j
)

n×n be a square matrix with ai j = max{i, j}. Compute det(A).
10. Let A = (

ai j
)

n×n be a square matrix with ai j = 1/(i + j). Show that A is invert-
ible.

11. Show that the set

G =
{[

cosh x sinh x
sinh x cosh x

]
| x ∈ R

}
,

in which sinh and cosh are hyperbolic functions, is a group under multiplication
of matrices.

12. Showbyexample that if AC = BC , then it does not follow that A = B.However,
show that if C is invertible the conclusion A = B is valid.

13. Show that SL2(C) = S P2(C).
14. Does the set {A ∈ GL2(R) | A2 = I2} form a subgroup of GL2(R)?
15. Let A be a 2 × 2 matrix over a field F, and suppose that A2 = 0. Show that for

each scalar c that det(cI2 − A) = c2.
16. Determine the one-dimensional Lorentz group. That is, all 2 × 2matrices A such

that

At

[
1 0
0 −1

]
A =

[
1 0
0 −1

]
.

17. Determine GL2(Z2), SL2(Z2), O2(Z2), SO2(Z2), and S P2(Z2).

18. (a) Let G be the group of all 2 × 2 matrices

[
a b
c d

]
, where ad − bc �= 0 and

a, b, c, d are integers modulo 3. Show that |G| = 48;
(b) If we modify the example of G in part (a) by insisting that ad − bc = 1, then

what is |G|?
19. (a) Let G be the group of all 2 × 2 matrices

[
a b
c d

]
, where a, b, c, d are

integers modulo p, p is a prime number, such that ad − bc �= 0; indeed,
G = GL2(Zp). What is |G|?

(b) Let H be the subgroup of G of part (a) defined by

{[
a b
c d

]
| ad − bc = 1

}
;

indeed, H = SL2(Zp). What is |H |?
20. Let
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H =
⎧
⎨

⎩

⎡

⎣
1 a b
1 1 c
0 0 1

⎤

⎦ | a, b, c ∈ Z3

⎫
⎬

⎭
.

(a) Show that H is a subgroup of SL3(Z3);
(b) How many elements does H have?
(c) Find three subgroups of H of order 9. Are these subgroups of order 9 abelian?

Is H abelian?

21. Find the centralizer of

[
1 0
1 1

]
in GL2(R).

22. Let A =
[
0 −1
1 0

]
and B =

[
0 1

−1 −1

]
be two elements of SL2(Q). Show that

o(A) = 4, o(B) = 3, but AB has infinite order.
23. Let A ∈ Mat2×2(C). Show that there is no matrix solution B ∈ Mat2×2(C)

to AB − B A = I2. What can you say about the same problem with A, B ∈
Matn×n(C)?

24. Let λ ∈ F. Prove that the matrix Ei j (λ) is of order p if and only if the charac-
teristic of F is p.

7.2 More About Vectors in R
n

Vectors are the way we represent points in two, three, or n dimensional space. A
vector can be considered as an object which has a length and a direction, or it can be
thought of as a point in space, with coordinates representing that point. In terms of
coordinates, we use the notation

X =
[

x
y

]

for a column vector. This vector denotes the point in the xy-plane which is x units
in the horizontal direction and y units in the vertical direction from the origin. In n
dimensional space, we represent a vector by

X =

⎡

⎢⎢⎢
⎣

x1
x2
...

xn

⎤

⎥⎥⎥
⎦
.

Let X = [x1 x2 . . . xn]t and Y = [y1 y2 . . . yn]t be two vectors in R
n . We define

the inner product 〈X,Y 〉 by

〈X,Y 〉 = x1y1 + x2y2 + · · · xn yn .
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The length of X is given by

‖X‖ = √
X · X =

√
x2
1 + x2

2 + · · · x2
n .

The vectorU = X
‖X‖ is called the unit vector in the X -direction. The angle θ between

two vectors X and Y is calculated by

〈X,Y 〉 = ‖X‖ ‖Y‖ cos θ,

where 0 ≤ θ ≤ π. Two vector X and Y are said to be orthogonal if 〈X,Y 〉 = 0.

Definition 7.47 Non-zero vectors X1, X2, . . . , Xk in R
n form an orthogonal set if

they are orthogonal to each other, i.e., 〈Xi , X j 〉 = 0 for all i �= j . An orthonormal
set is an orthogonal set with the additional property that all vectors are unit, i.e.,
‖Xi‖ = 1 for all i = 1, . . . , k.

Lemma 7.48 Any orthogonal set S is linearly independent.

Proof Let X1, X2, . . . , Xk be distinct vectors in S and

Y = c1X1 + c2X2 + · · · + ck Xk .

Then, we have

〈Y, X j 〉 = 〈
k∑

i=1

ci X j , Xi 〉 = c j 〈X j , X j 〉 = c j‖X j‖2.

Since 〈X j , X j 〉 �= 0, it follows that

c j = 〈Y, X j 〉
‖X j‖2 , 1 ≤ j ≤ k.

Thus, when Y = 0, each c j = 0. �
Gram-Schmidt orthogonalization process: Let X1, X2, . . . , Xk be any indepen-

dent vectors. Then one may construct orthogonal vectors V1, V2, . . . , Vk as follows:

V1 = X1,

V2 = X2 − 〈X2, V1〉
‖V1‖2 V1,

...

Vj = X j −
j−1∑

i=1

〈X j , Vi 〉
‖Vi‖2 Vi ,

...
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Fig. 7.1 The projection of
U onto V

U

V

ProjV U

Then, V1, V2, . . . , Vk are orthogonal vectors.
The vector projection of a vector U on a non-zero vector V is the orthogonal

projection of U on a straight line parallel to V , see Fig. 7.1.

Lemma 7.49 The vector projection of a vector U on a non-zero vector V is equal
to

Proj V U = V V t

‖V ‖2 U.

Proof The projection vector of U onto V is a scalar multiple of V , i.e., ProjV U =
cV . Since the vectorU − cV is perpendicular to V , it follows that 〈V,U − cV 〉 = 0.
Hence, we have 〈V,U 〉 − c〈V, V 〉 = 0. This implies that

c = 〈V,U 〉
〈V, V 〉 .

Thus, we conclude that

ProjV U = 〈V,U 〉
〈V, V 〉 V . (7.6)

When we multiply a vector by a scalar, it does not matter whether we put the scalar
before or after the vector. So, by (7.6), we get

ProjV U = V
〈V,U 〉
〈V, V 〉 .

Since 〈V,U 〉 = V tU and 〈V, V 〉 = ‖V ‖2, it follows that

ProjV U = V
V tU

‖V ‖2 = V V t

‖V ‖2 U,

as desired. �

If we define
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P = V V t

‖V ‖2 ,

then the projection formula becomes ProjV U = PU . The matrix P is called the
projection matrix. So, we can project any vector onto the vector V by multiplying
by the matrix P .

Exercises

1. (a) Suppose that θ ∈ R. Show that

(cos θ, sin θ), (− sin θ, cos θ)

and
(cos θ, sin θ), (sin θ,− cos θ)

are orthonormal bases of R2;
(b) Show that each orthonormal basis of R2 is of the form given by one of the

two possibilities of part (a).
2. Suppose that X, Y ∈ R

n . Prove that 〈X,Y 〉 = 0 if and only if

‖X‖ ≤ ‖X + aY‖,

for all a ∈ R.

3. Find vectors X,Y ∈ R
2 such that X is a scalar multiple of

[
1
3

]
, Y is orthogonal

to

[
1
3

]
, and

[
1
2

]
= X + Y .

4. Apply Gram-Schmidt orthogonalization process to the following vectors in R3:

⎡

⎣
1
2
0

⎤

⎦ ,

⎡

⎣
8
1

−6

⎤

⎦ and

⎡

⎣
0
0
1

⎤

⎦ .

5. Find the angle between a diagonal of a cube and one of its edges.
6. If C = ‖A‖B + ‖B‖A, where A, B, and C are all non-zero vectors, show that C

bisects the angle between A and B.
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7.3 Rotation Groups

A rotation matrix describes the rotation of an object. In this section, we derive the
matrix for a general rotation.

Theorem 7.50 Any 2 × 2 orthogonal matrix with entries in R and determinant 1
has the form

Rot(θ) =
[
cos θ − sin θ
sin θ cos θ

]
,

and represents a rotation in R
2 by an angle θ counterclockwise, with center the

origin.

Proof Suppose that [
a b
c d

]

be an orthogonal matrix with entries in R. Then, we have

At A =
[

a c
b d

] [
a b
c d

]
=
[
1 0
0 1

]
.

So, both columns of A are mutually orthogonal unit vectors. The only two unit

vectors orthogonal to

[
a
c

]
are

[−c
a

]
and

[
c

−a

]
. Hence, one of these must be

[
b
d

]
.

Consequently, there exist two possibilities for A:

[
a −c
c a

]
or

[
a c
c −a

]
.

Since a2 + b2 = 1, it follows that the first matrix has determinant 1 and the second
matrix has determinant −1. If we consider the first matrix, then there exists a unique
angle θ such that cos θ = a and sin θ = b. Hence, we denote the resulting matrix A
by

Rot(θ) =
[
cos θ − sin θ
sin θ cos θ

]
,

to emphasis that it is a function of θ. Now, we obtain

Rot(θ)

[
x
y

]
=
[

x cos θ − y sin θ
x sin θ + y cos θ

]
.

The right side is the image of the vector

[
x
y

]
under a rotation about the origin by

angle θ. �
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Fig. 7.2 The x- and y-axes
and the resulting x ′- and
y′-axes formed by a rotation
through an angle θ

Fig. 7.3 Rotation with
θ = π/2

x

y

Indeed, according to Theorem7.50, if the x and y axes are rotated through an angle
θ, then every point on the plane may be thought of as having two representations:

(1) (x, y) on the xy plane with the original x-axis and y-axis.
(2) (x ′, y′) on the new plane defined by the new, rotated axes, called the x ′-axis and

y′-axis, see Fig. 7.2.

Example 7.51 In particular, the matrix

[
0 −1
1 0

]

is used for θ = π/2, see Fig. 7.3.
The matrix
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Fig. 7.4 Rotation with
θ = π

x

y

Fig. 7.5 Rotation with
θ = 3π/2

x

y

[ −1 0
0 −1

]

is used for θ = π, see Fig. 7.4.
The matrix [

0 1
−1 0

]

is used for θ = 3π/2, see Fig. 7.5.

Lemma 7.52 If A is an n × n orthogonal matrix with det(A) = 1, then

det(A − In) = (−1)n det(A − In).
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Fig. 7.6 A rotation in R3

Proof We have
det(A − In) = det(At ) det(A − In)

= det
(

At (A − In)
)

= det(In − At )

= det
(
(In − A)t

)

= det(In − A)
= (−1)n det(A − In),

as desired. �

Corollary 7.53 If A is a 3 × 3 orthogonal matrix with det(A) = 1, then there exists
a non-zero column vector X ∈ R

3 such that AX = X.

Proof In Lemma 7.52, let n = 3. Then, we deduce that det(A − In) = 0. This yields
that A − In is not invertible. So, (A − In)X = 0 has a non-zero solution. Conse-
quently, there exists a non-zero column vector X ∈ R

3 such that AX = X . �

Definition 7.54 A rotation in R
3 is a matrix R(er , θ) determined by a unit vector

eR ∈ R
3 and an angle θ. More precisely, R(eR, θ) has the line through eR as the axis

and the planeperpendicular to the line is rotatedby the angle θ in the counterclockwise
direction (see Fig. 7.6).

Corollary 7.53 can be used to show that any 3 × 3 orthogonal matrix with deter-
minant 1 represents a rotation in R3 about an axis passing through the origin.

Theorem 7.55 Each rotation matrix in R
3 lies in SO3(R).

Proof Suppose that R(eR, θ) is a rotation in R
3, where eR is the unit vector in the

direction of the axis of rotation. By Gram-Schmidt orthogonalization process, we
can find twomore vectors. So, we can consider an orthonormal set {V1, V2, V3} ofR3

such that V3 = eR . Therefore, the matrix [V1 V2 V3] is orthogonal. Now, by referring
to Theorem 7.50, this rotation described by
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R = R(eR, θ) =
⎡

⎣
cos θ − sin θ 0
sin θ cos θ 0
0 0 1

⎤

⎦ .

Since Rt R = I3 and det(R) = 1, we conclude that R ∈ SO3(R). �

Theorem 7.56 Each matrix in SO3(R) is a rotation.

Proof Suppose that R ∈ SO3(R) is an arbitrary element. By Lemma 7.53, there
exists a column unit vector V3 such that RV3 = V3. By Gram-Schmidt orthogonal-
ization process, we can extend this to an orthonormal set {V1, V2, V3}. Then, the
matrix A = [V1 V2 V3] ∈ SO3(R). Hence, we conclude that R A ∈ SO3(R). We can
write

RV1 = aV1 + bV2,

RV2 = cV1 + dV2,

RV3 = V3.

Since

A−1R A =
⎡

⎣
a b 0
c d 0
0 0 1

⎤

⎦ ∈ SO3(R),

it follows that

A−1R A =
[

a b
c d

]
∈ SO2(R),

which means that it is a planer rotation matrix Rot(θ). Consequently, we have R =
R(V3, θ). �

Corollary 7.57 The set of rotation in R
3 can be identified with SO3(R).

Exercises

1. For any rotation matrix R, show that Rt = R−1.
2. Use standard trigonometric identities to verify that

Rot(θ)Rot(φ) = Rot(θ + φ).

Deduce that Rot(2θ) = Rot(θ)2 and Rot(−θ) = Rot(θ)−1.

3. Use rotation matrix to find the image of the vector

⎡

⎣
−2
1
2

⎤

⎦ if it is rotated

(a) 30◦ about the x-axis;
(b) −30◦ about the x-axis;
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(c) 45◦ about the y-axis;
(d) −45◦ about the y-axis;
(e) 90◦ about the z-axis;
(f) −90◦ about the z-axis.

7.4 Reflections in R
2 and R

3

Reflection matrix is the matrix which can be used to make reflection transformation
of a figure.

Theorem 7.58 A reflection across the line y = mx is performed by matrix

Ref(θ) =
[
cos 2θ sin 2θ
sin 2θ − cos 2θ

]
,

in terms of an angle θ that mirror makes with the positive x-axis (Fig.7.7).

Proof The formula for the distance of P(x, y) from the line mx − y = 0 is

d = mx − y√
1 + m2

,

where m = tan θ. Hence, we have

d = x tan θ − y√
1 + tan2 θ

= x tan θ − y

sec θ
= x sin θ − y cos θ.

So, we conclude that

Fig. 7.7 A reflection across
the line y = mx

x

y

(x, y)

y = mx

(x′, y′)

•

•

θ
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Fig. 7.8 Reflection with
θ = π/2

x

y

x ′ = x − 2d sin θ = x − 2 sin θ(x sin θ − y cos θ)
= x(1 − 2 sin2 θ) + 2y sin θ cos θ = x cos 2θ + y sin 2θ

and
y′ = y + 2d cos θ = y + 2 cos θ(x sin θ − y cos θ)

= 2x sin θ cos θ + y(1 − 2 cos2 θ) = x sin 2θ − y cos 2θ.

Consequently, we obtain

[
x ′
y′

]
=
[
cos 2θ sin 2θ
sin 2θ − cos 2θ

] [
x
y

]
,

and we are done. �

Example 7.59 In particular, the matrix

[
0 1
1 0

]

is used for θ = π/2, see Fig. 7.8. The matrix

[ −1 0
0 −1

]

is used for θ = π, see Fig. 7.9.

Corollary 7.60 The set of reflections in R
2 is exactly the set of elements in O2(R)

that do not belong to SO2(R).

Definition 7.61 A reflection in O3(R) is a matrix A whose effect is to send every
column vector of R3 to its mirror image with respect to a plane S containing the
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Fig. 7.9 Reflection with
θ = π

x

y

origin. More precisely, suppose that

S = {ax + by + cz = 0 | a, b, c ∈ R}

is a plane through the origin. We say a matrix A makes a reflection across S if

(1) AX = X for all vectors X in S,
(2) AX = −X for all vectors X perpendicular to S.

If N is chosen to be a unit column vector perpendicular to S, then

AX = X − 2〈X, N 〉N , (7.7)

for all X ∈ R
3.

According to (7.7), we obtain

AX = X − 2〈X, N 〉N
= X − 2N 〈X, N 〉
= X − 2N (N t X)

= X − 2(N N t )X
= (In − 2N N t )X.

The matrix (In − 2N N t ) is called reflection matrix for the plane S, and is also
sometimes called a Householder matrix.

Example 7.62 Let Xt = [x1 x2 x3]. Table 7.1 describes some reflections of the
column vector Xt across some planes.

Example 7.63 We want to compute the reflection of the column vector
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Table 7.1 Some reflections of the column vector Xt across some planes

Operator Equations defining the image Reflection matrix

Reflection across the xy plane

x ′
1 = x + 0y + 0z

x ′
2 = 0x + y + 0z

x ′
3 = 0x + 0y − z

⎡

⎢
⎣

1 0 0

0 1 0

0 0 −1

⎤

⎥
⎦

Reflection across the xz plane

x ′
1 = x + 0y + 0z

x ′
2 = 0x − y + 0z

x ′
3 = 0x + 0y + z

⎡

⎢
⎣

1 0 0

0 −1 0

0 0 −1

⎤

⎥
⎦

Reflection across the yz plane

x ′
1 = −x + 0y + 0z

x ′
2 = 0x + y + 0z

x ′
3 = 0x + 0y + z

⎡

⎢
⎣

−1 0 0

0 1 0

0 0 1

⎤

⎥
⎦

X =
⎡

⎣
−1
2

−2

⎤

⎦

across the plane 2x − y + 3z = 0. The column vector

V =
⎡

⎣
2

−1
3

⎤

⎦

is normal to the plane and ‖V ‖2 = 〈V, V 〉 = 22 + (−1)2 + 32 = √
14. So, a unit

normal vector is

N = V

‖V ‖ = 1√
14

⎡

⎣
2

−1
3

⎤

⎦ .

Consequently, the reflection matrix is equal to

In − 2N N t = In − 1

7
V V t

= In − 1

7

⎡

⎣
2

−1
3

⎤

⎦ [2 − 1 3]

=

⎡

⎢⎢
⎢⎢⎢⎢
⎣

3

7

2

7

−6

7
2

7

6

7

3

7
−6

7

3

7

−2

7

⎤

⎥⎥
⎥⎥⎥⎥
⎦

.
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Theorem 7.64 A reflection across a plane S can be performed by the matrix

Ref(θ) =
⎡

⎣
cos 2θ sin 2θ 0
sin 2θ − cos 2θ 0
0 0 0

⎤

⎦ .

Proof Let V1 be a unit vector in R
3, V2 be a unit vector orthogonal to V1, and let

V3 = U × V . Then, (V1, V2, V3) is a orthogonal triple. Suppose that A = Ref(θ) is
a reflection in R

3 across the plane S through the origin whose unit normal column
vector is N , and orthogonal to V3. We can find an angle θ such that

N = − sin θV1 + cos θV2.

Using Eq. (7.7), we obtain

AV1 = (1 − 2 sin2 θ)V1 + 2 sin θ cos θV2,

AV2 = 2 sin θ cos θV1 + (1 − 2 cos2 θ)V2,

AV3 = V3.

That is,
AV1 = cos 2θV1 + sin 2θV2,

AV2 = sin 2θV1 − cos 2θV2,

AV3 = V3.

Therefore, we obtain

A = Ref(θ) =
⎡

⎣
cos 2θ sin 2θ 0
sin 2θ − cos 2θ 0
0 0 0

⎤

⎦ ,

as required. �

Exercises

1. Use standard trigonometric identities to verify that

(a) Ref(θ)Ref(φ) = Rot(2(θ − φ)),
(b) Rot(θ)Ref(φ) = Ref(φ + 1

2θ),
(c) Ref(φ)Rot(θ) = Ref(φ − 1

2θ).

2. Find a matrix which represents a reflection in the line y = 2x .
3. Prove that each element of O3(R) can be expressed as a product of at most three

reflections.
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Fig. 7.10 A translation in
R
2

x

y

4. Find the matrix which induces reflection with respect to given vector [a b c]t in
R

3. Check your result for the case [1 0 0]t .

7.5 Translation and Scaling Matrices

Suppose that T n is the set of all translations of a fixed point (x1, x2, . . . , xn) in R
n .

If

A =

⎡

⎢⎢⎢
⎣

a1

a2
...

an

⎤

⎥⎥⎥
⎦

∈ Tn.

then ⎡

⎢⎢
⎢
⎣

x ′
1

x ′
2
...

x ′
n

⎤

⎥⎥
⎥
⎦

=

⎡

⎢⎢
⎢
⎣

x1
x2
...

xn

⎤

⎥⎥
⎥
⎦

+

⎡

⎢⎢
⎢
⎣

a1

a2
...

an

⎤

⎥⎥
⎥
⎦
.

Tn with addition of columns matrices as the composition rule is a group. This group
is called the translation group.

Example 7.65 A translation is shown in Fig. 7.10 by A =
[
5
5

]
∈ T2.
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Example 7.66 The set of all translations parallel to the x-axis, i.e., all translations
of the form {[

a
0

]
| a ∈ R

}

is a subgroup of T2.

Example 7.67 The set of all translations parallel to the y axis, i.e., all translations
of the form {[

0
b

]
| b ∈ R

}

is a subgroup of T2.

A scaling can be represent by a scaling matrix. To scale an object by a vector
V t = [c1 c2 . . . cn] (c1 = · · · = cn �= 0), each point X would need to be multiplied
by the following diagonal matrix:

A =

⎡

⎢⎢⎢
⎣

c1 0 . . . 0
0 c2 . . . 0
...

...
. . .

...

0 0 . . . cn

⎤

⎥⎥⎥
⎦

As shown below, the multiplication give the expected result:

AX =

⎡

⎢⎢⎢
⎣

c1 0 . . . 0
0 c2 . . . 0
...

...
. . .

...

0 0 . . . cn

⎤

⎥⎥⎥
⎦

⎡

⎢⎢⎢
⎣

x1
x2
...

xn

⎤

⎥⎥⎥
⎦

=

⎡

⎢⎢⎢
⎣

c1x1
c2x2
...

cn xn

⎤

⎥⎥⎥
⎦
.

Remark 7.68 The set of all diagonal matrices with non-zero determinants in
GLn(R) forms a subgroup.

Such a scaling changes the diameter of an object by a factor between the scale
factors, the area by a factor between the smallest and the largest product of two scale
factors, and the volume by the product of all three.

The scaling is uniform if and only if the scaling factors are equal (v1 = · · · = vn).
If all except one of the scale factors are equal to 1, we have directional scaling.

In the case where v1 = · · · = vn = c, scaling changes the area of any surface by
a factor of c2 (see Fig. 7.11) and the volume of any solid object by a factor of c3 (see
Fig. 7.12).
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x

y

x

y

Fig. 7.11 Scaling with c = 0.5 in R2

Fig. 7.12 Scaling with c = 2 and c = 0.5 in R3

Exercises

1. Prove that every positive rigid motion in R
3 can be obtained by a rotation about

a l-axis, followed by a translation along l (this type of motion is called screw).
2. Consider the graph y = ex . Suppose that the graph is dilated from the y-axis by

a factor of 3, reflected in the x-axis, and then translated 1 unit to the left and 2
units down. What is the equation of the resulting graph?

3. Consider the graph y = x2. Suppose the graph is dilated from the x axis by a
factor of 2, and then translated 3 units to the right. What is the equation of the
resulting graph?

4. Suppose the graph of y = f (x) is transformed by a dilation of factor k from the
x axis, factor h �= 0 from the y axis, and then translated c units to the right and d
units up. Show that the resulting graph has equation

y = k f

(
1

h
x − c

)
+ d.

5. Two geometric shapes A and B are shown in Fig. 7.13. Shape A has one point at
(3, 4) and shape B has one point at (0,−2). Calculate a chain of matrices that,
when post-multiplied by the vertices of shape A, will transform all the vertices
of shape A into the vertices of shape B, i.e., translate and rotate the shape point
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Fig. 7.13 Two geometric
shapes A and B

x

y

(3, 4)•

(0,−2)•

A

B

(3, 4) to (0,−2). The transformation must also scale the size of shape A by half
to shape B.

7.6 Dihedral Groups

The dihedral groups form an important infinite family of examples of finite groups.
They arise as groups of symmetries of the regular n-gons, and they play an important
role in group theory, geometry, and chemistry.

Definition 7.69 The dihedral group Dn is the group of symmetries of a regular
polygon with n vertices.

We may consider this polygon as having vertices on the unit circle, with vertices
labelled 1, 2, . . . , n − 1 starting at (1, 0) and proceeding counterclockwise at angles
in multiples of 2π/n radians. There are two types of symmetries of the regular n-gon,
each one giving rise to n elements in the group Dn:

(1) Rotations R0, R1, . . . , Rn−1, where Rk is rotation of angle 2kπ/n.
(2) Reflections S0, S1, . . . , Sn−1, where Sk is reflection about the line through the

origin and making an angle of kπ/n with the horizontal axis.

The group operation is given by composition of symmetries. Similar to permuta-
tions, if x and y are two elements in Dn , then xy = y ◦ x . That means that xy is the
symmetry obtained by applying first x , followed by y.

So, according to our discussion in Sects. 7.3 and 7.4, the elements of Dn can be
thought 2 × 2matrices, with group operation corresponding tomatrixmultiplication.
Indeed, we have
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Rk =

⎡

⎢⎢⎢
⎣

cos

(
2kπ

n

)
− sin

(
2kπ

n

)

sin

(
2kπ

n

)
cos

(
2kπ

n

)

⎤

⎥⎥⎥
⎦
,

Sk =

⎡

⎢⎢⎢
⎣

cos

(
2kπ

n

)
sin

(
2kπ

n

)

sin

(
2kπ

n

)
− cos

(
2kπ

n

)

⎤

⎥⎥⎥
⎦
.

Now, it is not difficult to see that the following relations hold in Dn:

Ri R j = Ri+ j ,

Ri S j = Si+ j ,

Si R j = Si− j ,

Si S j = Ri− j ,

where 0 ≤ i, j ≤ n − 1, and both i + j and i − j are computed modulo n. The
Cayley table for Dn can be readily computed from the above relations. In particular,
we see that R0 is the identity, R−1

i = Rn−i and S−1
i = Si .

Example 7.70 In Example 3.39, we investigated D3, the symmetry group of the
equilateral triangle. The matrix representation of D3 is given by

R0 =
[

1 0
0 1

]
, R1 =

⎡

⎢⎢
⎣

−1

2
−

√
3

2√
3

2

1

2

⎤

⎥⎥
⎦ , R2 =

⎡

⎢⎢
⎣

−1

2

√
3

2

−
√
3

2
−1

2

⎤

⎥⎥
⎦ ,

S0 =
[

1 0
0 −1

]
, S1 =

⎡

⎢
⎢
⎣

−1

2

√
3

2√
3

2

1

2

⎤

⎥
⎥
⎦ , S2 =

⎡

⎢
⎢
⎣

−1

2
−

√
3

2

−
√
3

2

1

2

⎤

⎥
⎥
⎦ .

Example 7.71 In Example 3.40, we investigated D4, the symmetry group of a
square. The matrix representation of D4 is given by

R0 =
[
1 0
0 1

]
, R1 =

[
0 −1
1 0

]
, R2 =

[−1 0
0 −1

]
, R3 =

[
0 1

−1 0

]
,

S0 =
[
1 0
0 −1

]
, S1 =

[
0 1
1 0

]
, S2 =

[ −1 0
0 1

]
, S3 =

[
0 −1

−1 0

]
.
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S S S S

Fig. 7.14 Examples of polygons

Theorem 7.72 Let R be a counterclockwise rotation of the n-gon by 2π/n radians
and let S be a reflection across a line through a vertex. See examples in the polygons
in Fig.7.14. Then

(1) The n rotations in Dn are I , R, R2, . . ., Rn−1;
(2) o(S) = 2;
(3) The n reflections in Dn are S, RS, R2S, . . ., Rn−1S.

Proof (1) The rotations I , R, R2, . . ., Rn−1 are distinct since R has order n.
(2) Simply consider what applying s twice to each vertex will do to it.
(3) Since I , R, R2, . . ., Rn−1 are distinct, it follows that S, RS, R2S, . . ., Rn−1S

are distinct. In addition, for each j , R j S is not a rotation because if R j S = Ri , then
S = Ri− j , while S is not a rotation. �

Corollary 7.73 The dihedral group Dn has 2n elements and

Dn = {I, R, R2, . . . , Rn−1, S, RS, R2S, . . . , Rn−1S}.

In particular, all elements of Dn with order greater than 2 are powers of R.

Corollary 7.74 The dihedral group Dn is generated by R and S.

Proof Since every element of Dn is a product of R and S, by Theorem 4.40 it follows
that {R, S} generate Dn . �

Theorem 7.75 In the dihedral group Dn, we have RS = S R−1.

Proof Since RS is a reflection, it follows that (RS)2 = I , or equivalently RS RS = I .
This implies that RS = S−1R−1. Since o(S) = 2, it follows that S = S−1 and so we
obtain RS = S R−1. �

Corollary 7.76 For each 1 ≤ j ≤ n, we have Rk S = S R−k .

Proof It is straightforward by mathematical induction. �

Corollary 7.77 The dihedral group Dn is not abelian if n ≥ 3.

Theorem 7.78 For each n ≥ 3, the center of the dihedral group Dn is

(1) Z(Dn) = {I } if n is odd;
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(2) Z(Dn) = {I, Rn/2} if n is even.

Proof In order to determine the center of Dn it suffices to determine those elements
which commute with the generators R and S. Since n ≥ 3, it follows that R−1 �= R.

If Rk S ∈ Z(Dn) for some 1 ≤ k ≤ n, then R(Rk S) = (Rk S)R. Then, we must
have

Rk+1S = R(Rk S) = (Rk S)R = Rk(S R) = Rk(R−1S) = Rk−1S.

This implies that R2 = I a contradiction. Thus, we conclude that no reflections are
in the center of Dn since reflections do not commute with R.

Similarly, if for 1 ≤ j ≤ n, R j S = S R j , then R j S = R− j S. Hence, R2 j = I .
Since R has order n, it follows that

R2 j = I ⇔ n|2 j.

If n is odd, then

R2 j = I ⇔ n| j ⇔ j is multiple of n ⇔ R j = I.

So, if n is odd, then the only rotation that could be in Z(Dn) is I .
If n is even, then

R2 j = I ⇔ n|2 j ⇔ (n/2)| j.

Hence, the only choice for j are j = 0 and j = (n/2). So, we have

R j = R0 = I or R j = Rn/2.

To show that Rn/2 is in Z(Dn), we check it commutes with every rotations and
reflections in Dn . Clearly, Rn/2 commutes with all rotations, since all rotations are
powers of R. Hence, we check Rn/2 commutes with each reflections. Indeed, we
have

Rn/2(Ri S) = R(n/2)+i S (7.8)

and
(Ri S)Rn/2 = Ri (S Rn/2) = Ri R−n/2S

= Ri Rn/2S = Ri+(n/2)S = R(n/2)+i S.
(7.9)

From (7.8) and (7.9), we obtain Rn/2(Ri S) = (Ri S)Rn/2.
Therefore, we conclude that

Z(Dn) =
{ {I } if n is odd

{I, Rn/2} if n is even.

�
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Theorem 7.79 The conjugacy classes of the dihedral group Dn are as follows:

(1) If n is odd,

• the identity element: {I },
• (n − 1)/2 conjugacy classes of size 2: {R, R−1}, {R2, R−2}, . . ., {R(n−1)/2,

R−(n−1)/2},
• all the reflections: {R, RS, R2S, . . . , Rn−1S}.

(2) If n is even,

• two conjugacy classes of size 1: {I }, {Rn/2},
• (n/2) − 1 conjugacy classes of size 2: {R, R−1}, {R2, R−2}, . . ., {R(n/2)−1,

R−((n/2)−1)},
• the reflection divided into two conjugacy classes:

{R2k S | 0 ≤ k ≤ (n/2) − 1} and {R2k+1S | 0 ≤ k ≤ (n/2) − 1}.
Proof We know that every element of Dn is of the form Ri or Ri S for some integer
i . Thus, in order to determine the conjugacy class of an element X , we compute

R−i X R and (Ri S)−1X (Ri S).

Since R−i R j Ri = R j and (Ri S)−1R j (Ri S) = R− j , it follows that the only conju-
gates of R j in Dn are R j and R− j . It is necessary the more computation to be sure
nothing more is conjugate as well. Now, we try to find the conjugacy class of S. We
have

R−i S Ri = Rn−2i S,
(Ri S)−1S(Ri S) = R2i S.

Since 1 ≤ i ≤ n, it follows that R2i and Rn−2i run through powers of R divisible by
2.

Let n be odd. Since 2 is invertible modulo n, it follows that we can solve the linear
congruence equation 2i ≡ k(mod n) for each i . This yields that

{R2i S | i ∈ Z} = {Rk S | k ∈ Z}.

Hence, every reflections in Dn is conjugate to S.
Now, let n be even. We only obtain half the reflections as conjugates of S. The

other half are conjugate to RS. Indeed, we have

R−i (RS)Ri = R−2i+1S,
(Ri S)−1(RS)(Ri S) = R2i−1S.

Since 1 ≤ i ≤ n, this gives us {RS, R3S, . . . , Rn−1S}. �

Example 7.80 An application of D4. One application of D4 is in the design of a
letter-facing machine. Imagine letters entering a conveyor belt to be postmarked.
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They are placed on the conveyor belt at random so that two sides are parallel to
the belt. Suppose that a postmarker can recognize a stamp in the top right corner of
the envelope, on the side facing up. In Fig. 7.15, a sequence of machines is shown
that will recognize a stamp on any letter, no matter what position in which the letter
starts. The letter P stands for a postmarker. The letters R and S stand for rotating
and flipping machines that perform the motions of R and S. The arrows pointing up
indicate that if a letter is postmarked, it is taken off the conveyor belt for delivery.
If a letter reaches the end, it must not have a stamp. Letter-facing machines like this
have been designed. One economic consideration is that R-machines tend to cost
more than S-machines. R-machines also tend to damage more letters. Taking these
facts into consideration, the reader is invited to design a better letter-facing machine.
Assume that R-machines cost $1000 and S-machines cost $750. Be sure that all
corners of incoming letters will be examined as they go down the conveyor belt.

Exercises

1. Show that D4 is non-abelian group of order 8, where each element of D4 is of the
form ai b j , 0 ≤ i ≤ 3 and 0 ≤ j ≤ 1.

2. Draw the Hasse diagram for subgroups of the dihedral group D4.
3. In the dihedral group Dn , suppose that R is a rotation and that S is a reflection.

Use the fact that RS is also a reflection, together with the fact that reflections have
order 2, to show that RS R is the inverse of S.

4. For each of the snowflakes in Fig. 7.16 find the symmetry group and locate the
axes of the reflective symmetry.

5. Find the symmetry group of the Iranian architecture in Fig. 7.17.
6. Design a better letter-facing machine. How can you verify that a letter facing

machine does indeed check every corner of a letter? Can it be done on paper
without actually sending letters through it?

7. Let S be a reflection in the dihedral group Dn and R be a rotation in Dn . Determine

(a) CDn (S) when n is odd;
(b) CDn (S) when n is even;
(c) CDn (R).

Letters Reject

Deliver

P P P P P P P PR R R S R R R

Fig. 7.15 A letter facer
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Fig. 7.16 Snowflakes

7.7 Quaternion Group

Consider the case F = C, the complex numbers, and the set of eight elements

Q8 =
{
±
[
1 0
0 1

]
, ±

[
i 0
0 −i

]
, ±

[
0 1

−1 0

]
, ±

[
0 i
i 0

]}
.

One can use the notation

I =
[

i 0
0 −i

]
, J =

[
0 1

−1 0

]
and K =

[
0 i
i 0

]
.

To avoid confusion, we may show the identity matrix by 1 instead of I2. Then, we
obtain
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Fig. 7.17 Iranian architecture

Fig. 7.18 The rules
involving I , J , and K in the
quaternion group J

K

I

I 2 = J 2 = K 2 = −1,
I J = −J I = K ,

J K = −J K = I,
K I = −I K = J.

So, Q8 = {±1, ±I, ±J, ±K }.
The rules involving I, J and K can be remembered by using Fig. 7.18.
Going clockwise, the product of two consecutive elements is the third one. The

same is true for going counterclockwise, except thatweobtain the negative of the third
element. This group was invented byWilliamHamilton in 1834. The quaternions are
used to describe rotations in three-dimensional space, and they are used in physics.
The quaternions can be used to extend the complex numbers in a natural way.

Theorem 7.81 Q8 is a subgroup of GL2(C) and so in particular Q8 is a group of
order 8.

Proof Clearly, Q8 is non-empty. By the above relations, it is closed under multi-
plication. In addition, ±1 are their own inverse, and all the other elements have an
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inverse which is minus themselves (since I (−I ) = 1, etc.). Therefore, Q8 is closed
under inverse. �

Q8 is called quaternion group. The quaternion group is not abelian. Its Cayley
table is shown below.

· 1 −1 I −I J −J K −K

1 1 −1 I −I J −J K −K

− 1 −1 1 −I I −J J −K K

I I I −1 1 K −K −J J

− I −I I 1 −1 −K K J −J

J J −J −K K −1 1 I −I

− J −J J K −K 1 −1 −I I

K K −K J −J −I I −1 1

− K −K K −J J I −I 1 −1

Theorem 7.82 The quaternion group Q8 is generated by J and K .

Proof We observe that each element of Q8 is of the form Jr K s for some integers r
and s. �
Remark 7.83 Note that I , J and K have order 4 and that any two of them generate
the entire group.

The proper subgroups of Q8 are 〈I 〉, 〈J 〉, 〈K 〉 and 〈−1〉. We have

〈−1〉 = 〈I 〉 ∩ 〈J 〉 ∩ 〈K 〉

and the center of Q8 is 〈−1〉.

Exercises

1. Show that Q8 has exactly one element of order 2 and six elements of order 4.
2. Draw the Hasse diagram for subgroups of the quaternion group Q8.

7.8 Worked-Out Problems

Problem 7.84 Let n be a positive integer and
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A =
⎡

⎣
0 0 −1
0 1 0
1 0 0

⎤

⎦ .

Prove that An = I3 if and only if 4|n.
Solution First, we compute A2, A3, A4, etc. We find that

A2 =
⎡

⎣
0 0 −1
0 1 0
1 0 0

⎤

⎦

⎡

⎣
0 0 −1
0 1 0
1 0 0

⎤

⎦ =
⎡

⎣
−1 0 −1
0 1 0
0 0 −1

⎤

⎦ ,

A3 =
⎡

⎣
−1 0 0
0 1 0
0 0 −1

⎤

⎦

⎡

⎣
0 0 −1
0 1 0
1 0 0

⎤

⎦ =
⎡

⎣
0 0 1
0 1 0

−1 0 0

⎤

⎦ ,

A4 =
⎡

⎣
0 0 1
0 1 0

−1 0 0

⎤

⎦

⎡

⎣
0 0 −1
0 1 0
1 0 0

⎤

⎦ =
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ = I3.

Now, if 4|n, then we can write n = 4q. Hence, An = A4q = (A4)q = I q
3 = I3.

Conversely, if An = I3, then by the division algorithm, there exist integers q and
r such that n = 4q + r with 0 ≤ r < 4. Next, we obtain

Ar = An−4q = An(A−4)q = I3 I q
3 = I3.

Since A, A2 and A3 are not equal to I3, it follows that r = 0. Consequently, we obtain
4|n. �

Problem 7.85 Let n be a positive integer and

A =
⎡

⎣
1 1 0
0 1 1
0 0 1

⎤

⎦ .

Compute An .

Solution Suppose that

B =
⎡

⎣
0 1 0
0 0 1
0 0 0

⎤

⎦ .

Then, we observe that Bn = 0, for each n ≥ 3. Note that A = I3 + B. Since I3 and
B commute, we can use the binomial theorem. So, we can write

An = (I3 + B)n =
n∑

i=0

(n
i

)
I n−i
3 Bi .
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Therefore, we obtain

An = I3 + nB + n(n − 1)

2
B2 =

⎡

⎢
⎣

0 n
n(n − 1)

2
0 1 n
0 0 1

⎤

⎥
⎦ ,

and we are done. �

7.9 Supplementary Exercises

1. Prove that the elements of GLn(R) which have integer entries and determinant
equal to 1 or −1 form a subgroup of GLn(R).

2. Let A =
[
0 −1
1 0

]
, B =

[
0 −1
1 −1

]
∈ GL2(Z). Show that A has order 4, B has

order 3 and AB has infinite order.
3. The matrix ⎡

⎢⎢⎢
⎣

1 t0 t20 . . . tn
0

1 t1 t21 . . . tn
1

...
...

...
...

...

1 tn t2n . . . tn
n

⎤

⎥⎥⎥
⎦

is called a Vandermonde matrix. Show that such a matrix is invertible, when t0,
t1, . . ., tn are n + 1 distinct elements of C.

4. Show by example that there are matrices A and B for which lim
n→∞ An and lim

n→∞ Bn

both exist, but for which lim
n→∞(AB)n does not exist.

5. Let A =
[

a b
c d

]
be a matrix over a field F. Then, the set of all matrices of the

form p(A), where p is a polynomial overF, is a commutative ring R with identity.
If B is a 2 × 2 matrix over R, the determinant of B is then a 2 × 2 matrix over F,
of the form p(A). Suppose that B is the 2 × 2 matrix over R as follows:

[
A − aI2 −bI2
−cI2 A − d I2

]
.

Show that det(B) = p(A), where

p(x) = x2 − (a + d)x + det(A), (7.10)

and also that p(A) = 0. The polynomial p in (7.10) is the characteristic polyno-
mial of A.

6. Given a matrix A =
[

a b
c d

]
in GL2(Zp). Consider its characteristic polynomial.
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(a) If the roots λ1 and λ2 are distinct in Zp, show that A is conjugate to both[
λ1 0
0 λ2

]
and

[
λ2 0
0 λ1

]
.

(b) If λ1 = λ2, show that A is

[
λ1 0
0 λ1

]
or it is conjugate to

[
λ1 1
0 λ1

]
in

GL2(Zp).

7. Let

R =
⎡

⎣
r11 r12 r13
r21 r22 r23
r31 r32 r33

⎤

⎦

be a rotation matrix in R
3. Show that the rotation axis is the vector

V = 1

sin θ

⎡

⎣
r32 − r23
r13 − r31
r21 − r12

⎤

⎦ .

If the angle of rotation θ is different from π and 0, then

θ = cos−1

(
r11 + r22 + r33 − 1

2

)
.

What happens if the rotation angle is very small? Describe a robust method to find
the rotation axis (your method should include the cases for θ = 0 and θ = π).
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