
Chapter 6
Group of Arithmetical Functions
(Optional)

In this chapter, we show that the set of all arithmetical functions f with f (1) �= 0
forms an abelian group with respect to a special operation. Then, we discuss an
important subgroup of this group.

6.1 Arithmetical Functions

In this section we introduce several mathematical functions which play an important
role in the study of divisibility properties of integers. We begin with the definition
of arithmetical functions.

Definition 6.1 A real or complex-valued function defined on the positive integers
is called an arithmetical function.

Example 6.2 Euler function ϕ defined in Definition 4.6 is a arithmetical function.

Theorem 6.3 (Gauss Theorem) If n is a positive integer, then

∑

d|n
ϕ(d) = n.

Proof Suppose that X = {1, 2, . . . , n} and let

S(d) = {k | (k, n) = d, 1 ≤ k ≤ n}.

Then, the sets S(d) are disjoint and whose union is equal to X . If f (d) is the number
of integers in S(d), then ∑

d|n
f (d) = n. (6.1)
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Table 6.1 A short table of values μ(n)

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

μ(n) 1 −1 −1 0 −1 1 −1 0 0 1 −1 0 −1 1 1

Moreover, we have
(k, n) = d ⇔ (k/d, n/d) = 1,
0 < k ≤ n ⇔ 0 < k/d ≤ n/d.

So, if we take q = k/d, then there exists a one to one correspondence between the
elements of S(d) and those integers q satisfying 0 < k ≤ n and (q, n/d) = 1. The
number of such q is equal to ϕ(n/d). Hence, we have f (d) = ϕ(n/d). Now, by
(6.1), we conclude that ∑

d|n
ϕ

(n
d

)
= n.

This completes the proof, because when d runs through all divisors of n so
does n/d. �

A positive integer n is square-free if p2 � n, for every prime p.

Definition 6.4 The Möbius function μ is defined as follows:

μ(n) =
⎧
⎨

⎩

1 if n = 1
0 if n is not square − free
(−1)k if n is the product of k distinct primes.

Table 6.1 is a short table of values μ(n):

Theorem 6.5 If n is a positive integer, then

∑

d|n
μ(d) =

[
1

n

]
=

{
1 if n = 1
0 if n > 1.

Proof Clearly, we have μ(1) = 1. Let n > 1 and n = pα1
1 pα2

2 . . . pαk
k . We know that

μ(d) is non-zero if d = 1 or those divisors of n which are products of distinct primes.
Consequently, we can write

∑

d|n
μ(d) = μ(1) + μ(p1) + · · · + μ(pk) + μ(p1 p2) + · · · + μ(pk−1 pk)

+ · · · + μ(p1 p2 . . . pk)

= 1 +
(
k
1

)
(−1) +

(
k
2

)
(−1)2 + · · · +

(
k
k

)
(−1)k

= (1 + (−1))2 = 0.
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This completes the proof. �

The Möbius function is related to the Euler function by the following theorem.

Theorem 6.6 If n is a positive integer, then

ϕ(n) =
∏

d|n
μ(d)

n

d
.

Proof We can write

ϕ(n) =
n∑

k=1

[
1

(n, k)

]
.

Then, by Theorem 6.5, we obtain

ϕ(n) =
n∑

k=1

∑

d|(n,k)
μ(d) =

n∑

k=1

∑

d|n
d|k

μ(d). (6.2)

For a fixed divisor d of n we must sum over all those 1 ≤ k ≤ n which are multiple
of d. If k = qd, then

1 ≤ k ≤ n ⇔ 1 ≤ q ≤ n

d
.

By using this fact and (6.2), we can write

ϕ(n) =
∑

d|n

n/d∑

q=1

μ(d) =
∑

d|n
μ(d)

n/d∑

q=1

1 =
∑

d|n
μ(d)

n

d
.

This completes our proof. �

Theorem 6.7 If n is a positive integer, then

ϕ(n) = n
∏

p|n

(
1 − 1

p

)
,

where p is prime.

Proof If n = 1, then there are no primeswhich divide 1. Hence, the product is empty,
and so ϕ(1) = 1. Suppose that n > 1 and let p1, p2, . . . , pm be the distinct prime
divisors of n. The product can be written as
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∏

p|n

(
1 − 1

p

)
=

m∏

i=1

(
1 − 1

pi

)

=
(
1 − 1

p1

) (
1 − 1

p2

)
. . .

(
1 − 1

pm

)

= 1 −
∑ 1

pi
+

∑ 1

pi p j
−

∑ 1

pi p j pk
+ · · · + (−1)m

p1 p2 . . . pm
.

(6.3)

On the last line of (6.3), in a term such as
∑

1/pi p j pk , it means that we consider
all possible products of pi p j pk of distinct prime factors of n taken three at a time.
Moreover, each term on the last line of (6.3) is of the form±1/d, where d is a divisor
of n which is either 1 or a product of distinct primes. The numerator ±1 is exactly
μ(d). If d is divisible by the square of any prime pi , then μ(d) = 0. So, we observe
that (6.3) is exactly the same as

∏

p|n

(
1 − 1

p

)
=

∑

d|n

μ(d)

d
.

Therefore, we conclude that

ϕ(n) =
∑

d|n
μ(d)

n

d
= n

∑

d|n

μ(d)

d
= n

∏

p|n

(
1 − 1

p

)
,

as desired. �

Many properties of ϕ can be easily obtained from Theorem 6.7. Some of these
are listed in the next theorem.

Theorem 6.8 Euler function has the following properties:

(1) ϕ(pα) = pα − pα−1, for each prime number p and α ≥ 1;

(2) ϕ(mn) = ϕ(m)ϕ(n)
( d

ϕ(d)

)
, where d = (m, n);

(3) ϕ(mn) = ϕ(m)ϕ(n), if (m, n) = 1;
(4) m|n implies ϕ(m)|ϕ(n);
(5) ϕ(n) is even, for each n ≥ 3. In addition, if n has k distinct odd prime factors,

then 2k |ϕ(n).
Proof (1) It is enough if we consider n = pα in Theorem 6.7.

(2) By Theorem 6.7, for each positive integer n, we can write

ϕ(n)

n
=

∏

p|n

(
1 − 1

p

)
,
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where p is prime. Each prime divisor of mn is either a prime divisor of m or of n,
and those primes which divide both m and n also divide (m, n). Therefore, we have

ϕ(mn)

mn
=

∏

p|mn

(
1 − 1

p

)
=

∏

p|m

(
1 − 1

p

) ∏

p|n

(
1 − 1

p

)

∏

p|(m,n)

(
1 − 1

p

) =
ϕ(m)

m

ϕ(n)

n
ϕ(d)

d

,

and consequently, we obtain (2).
(3) It is a special case of (2). In fact, it is enough to consider d = 1 in (2).
(4) Since m|n, it follows that there exists an integer 1 ≤ c ≤ n such that n = cm.

If c = n, then m = 1 and (4) is obviously satisfied. So, let c < n. By using (2), we
have

ϕ(n) = ϕ(mc) = ϕ(m)ϕ(c)
d

ϕ(d)
= dϕ(m)

ϕ(c)

ϕ(d)
, (6.4)

where d = (m, c). Now, we use mathematical induction on n. If n = 1, then (4) is
true obviously. Assume that (4) is true for each integer less than n. Since c < n and
d|c, by induction hypothesis, it follows that ϕ(d)|ϕ(c). Therefore, we deduce that
the right part of (6.4) is an integer multiple of ϕ(m). This yields that ϕ(m)|ϕ(n).

(5) If n = 2α and α ≥ 2, then by part (1) we obtain ϕ(n) = ϕ(2α) = 2α−1. This
means that ϕ(n) is even. Now, we assume that n has at least one odd prime factor.
Then, we have

ϕ(n) = n
∏

p|n

(
1 − 1

p

)
= n

∏

p|n

(
p − 1

p

)

= n

∏

p|n
(p − 1)

∏

p|n
p

= n
∏

p|n
p

∏

p|n
(p − 1).

Therefore, we conclude that

ϕ(n) = c(n)
∏

p|n
(p − 1).

where c(n) is an integer. Since the product multiplying c(n) is even, it follows
that ϕ(n) is even. In addition, each odd prime p gives a factor 2 to this product.
Consequently, if n has k distinct odd prime factors, then 2k |ϕ(n). �
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Exercises

1. Show that if n − 1 and n + 1 are both primes, with n > 4, then

ϕ(n) ≤ n

3
.

2. Find all n for which ϕ(n) ≡ 0(mod 4).
3. For each of the following statements either give a proof or exhibit a counter

example.

(a) If (m, n) = 1, then
(
ϕ(m),ϕ(n)

) = 1;
(b) If n is composite, then

(
n,ϕ(n)

)
> 1;

(c) If the same primes divide m and n, then nϕ(m) = mϕ(n).

4. Prove that ϕ(n) > n/6 for all n with at least 8 distinct prime factors.
5. Prove that ∑

d2|n
μ(d) = μ2(n).

6.2 Dirichlet Product and Its Properties

The Dirichlet product is a binary operation defined on arithmetical functions. It
is commutative, associative, and distributive over addition and has other important
number-theoretical properties.

Definition 6.9 Let f and g be two arithmetical functions. We define the Dirichlet
product of f and g by

( f ∗ g)(n) =
∑

d|n
f (d)g

(n
d

)
,

for all positive integer n.

Theorem 6.10 Let AF be the set of arithmetical functions f such that f (1) �= 0.
Then, (AF, ∗) forms an abelian group.

Proof Since ( f ∗ g)(1) = f (1)g(1), it follows that AF is closed under Dirichlet
product. The commutative property is evident from noting that

∑

d|n
f (d)g

(n
d

)
=

∑

ab=n

f (a)g(b).

In order to prove the associative property, suppose that f, g, and h are any mathemat-
ical functions. Let A = g ∗ h and consider f ∗ A = f ∗ (g ∗ h). Then, we obtain
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( f ∗ A)(n) =
∑

ad=n

f (a)A(d)

=
∑

ad=n

f (a)
∑

bc=d

g(b)h(c)

=
∑

abc=n

f (a)g(b)h(c).

Similarly, if we assume that B = f ∗ g and consider B ∗ h = ( f ∗ g) ∗ h, then we
have

(B ∗ h)(n) =
∑

ad=n

B(d)h(a)

=
∑

ad=n

h(a)B(d)

=
∑

ad=n

h(a)
∑

bc=d

f (b)g(c)

=
∑

abc=n

f (b)g(c)h(a).

So, we conclude that f ∗ (g ∗ h) = ( f ∗ g) ∗ h, i.e., Dirichlet product is associative.
Now, let

e(n) =
[
1

n

]
=

{
1 if n = 1
0 otherwise

It is clear that e ∈ AF . Moreover, if f ∈ AF , then we have

( f ∗ e)(n) =
∑

d|n
f (d)e

(n
d

)
=

∑

d|n
f (d)

[
d

n

]
= f (n),

for each positive integer n. This means that e is the identity element of AF . Finally,
we must show that for given f ∈ AF , there exists f −1 ∈ AF such that f ∗ f −1 = e.

Let f is given.We construct f −1 inductively. First, we need ( f ∗ f −1)(1) = e(1),
which occurs if and only if f (1) f −1(1) = 1. Since f (1) �= 0, it follows that f −1(1)
is uniquely determined.Now, suppose that n > 1 and f −1 determined for each k < n.
Then, we have to solve the equation ( f ∗ f −1)(n) = e(n), or equivalently

∑

d|n
f
(n
d

)
f −1(d) = 0.

This can be written as

f (1) f −1(n)
∑

d|n
d<n

f
(n
d

)
f −1(d) = 0,
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and so

f −1(n) = −1

f (1)

∑

d|n
d<n

f
(n
d

)
f −1(d).

Since the values f −1(d) are known for all divisors d < n, it follows that there is a
uniquely determined value to f −1(n). Consequently, we may uniquely determine an
f −1 for each f ∈ AF . �

Remark 6.11 If we consider the usual product of functions, i.e., ( f · g)(n) =
f (n)g(n), then the identity element is I (n) = n, for all positive integer n, because
I · f = f , for all function f . In the group AF , however, I is certainly not identity
element. But it has the nice property of transferring each function f into its so-called
sum-function S f .

Definition 6.12 We define
S f (n) =

∑

d|n
f (d)

to be the sum-function of f ∈ AF .

Note that S f ∈ AF too. Moreover, it is easy to see that I ∗ f = f ∗ I = S f , for
all f ∈ AF .

Lemma 6.13 The Dirichlet inverse of I is the Möbius function μ.

Proof According to Theorem 6.5, we have

∑

d|n
μ(d) = I (n).

In the notation of Dirichlet product this becomes μ ∗ I = I ∗ μ = e. Therefore, I
and μ are inverses of each other. �

Theorem 6.14 Each arithmetical function f can be expressed in terms of its sum-
function S f as

f (n) =
∑

d|n
μ(d)S f

(n
d

)
.

Proof We have

μ ∗ S f = μ ∗ (I ∗ f ) = (μ ∗ I ) ∗ f = e ∗ f = f,

and this completes the proof. �

Theorem 6.15 (Möbius Inversion Theorem) For two arithmetic functions f and g
we have the following equivalence:
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f (n) =
∑

d|n
g(d) ⇔ g(n) =

∑

d|n
f (d)μ

(n
d

)
.

Proof If f = g ∗ I , then we have

f ∗ μ = (g ∗ I ) ∗ μ = g ∗ (I ∗ μ) = g ∗ e = g.

On the other hand, if f ∗ μ = g, then we have

g ∗ I = ( f ∗ μ) ∗ I = f ∗ (μ ∗ I ) = f ∗ e = f.

This completes the proof. �

Exercises

1. Solve the following equations:

(a) ϕ (2x5y) = 80;
(b) ϕ(n) = 12;
(c) ϕ(n) = 2n/3;
(d) ϕ(n) = n/2;
(e) ϕ

(
ϕ(n)

) = 21333.

2. If (p, q) = 1, prove that

q−1∑

k=1

[
kp

q

]
=

p−1∑

k=1

[
kq

p

]
.

Hint: Use the identity

[
kp

q

]
−

[
(q − k)p

q

]
= p − 1,

for k = 1, 2, . . . , q − 1, and show that both sums equal (p − 1)(q − 1)/2.

6.3 Multiplicative Functions

In this section, we study arithmetical functions called multiplicative functions. These
functions have the property that their value at the product of two relatively prime
integers is equal to the product of the value of the functions at these integers.
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Definition 6.16 An arithmetical function f is calledmultiplicative if f is not identi-
cally zero and if f (mn) = f (m) f (n), whenever (m, n) = 1. A multiplicative func-
tion f is called completely multiplicative if we also have f (mn) = f (m) f (n), for
all positive integers m and n.

Example 6.17 The Euler function ϕ is multiplicative. This is easily seen from part
(3) of Theorem 6.8. But it is not completely multiplicative, since ϕ(4) = 2 and
ϕ(2)ϕ(2) = 1.

Example 6.18 The Möbius function μ is multiplicative. This is easily seen from
Definition 6.4.But it is not completelymultiplicative, sinceμ(4) = 0 andμ(2)μ(2) =
1.

Example 6.19 The identity element e of the group AF is completely multiplicative.

Example 6.20 Let f and g be two arithmetical functions. Then, the ordinary product
f g and the quotient product f/g are defined by

( f g)(n) = f (n)g(n),(
f

g

)
(n) = f (n)

g(n)
, whenever g(n) �= 0.

If f and g are multiplicative, so are f g and f/g.

Theorem 6.21 If f is multiplicative, then f (1) = 1.

Proof Since (n, 1) = 1, for all positive integer n, it follows that f (n) = f (n) f (1).
Since f is not identically zero, it follows that f (n) �= 0, for some positive integer n.
So, we get f (1) = 1. �

The following is a nice characterization of multiplicative functions.

Theorem 6.22 Let f be an arithmetical function with f (1) = 1. Then,

(1) f is multiplicative if and only if

f (pα1
1 . . . pαk

k ) = f (pα1
1 ) . . . f (pαk

k ),

for all primes pi and all positive integers αi ;
(2) If f is multiplicative, then f is completely multiplicative if and only if

f (pα) = f (p)α,

for all primes p and all positive integers α.

Proof The proof follows easily from the definition and is left as an exercise for the
reader. �

The following are further examples of well-known arithmetical functions.
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Example 6.23 Let n be a positive integer.

(1) The divisor function τ is defined to be the number of positive divisors of n, i.e.,

τ (n) = |{d ∈ N | d|n}|;

(2) The sum of divisors function σ is defined to be the sum of all positive divisors
of n, i.e.,

σ(n) =
∑

d|n
d.

Theorem 6.24 The divisor function σ and the sum of divisors function σ are multi-
plicative. Their values at primes powers are given by

τ (pα) = α + 1 and σ(pα) = pα+1 − 1

p − 1
.

Proof In order to prove τ is multiplicative, assume that n andm are positive integers
with (m, n) = 1. Note that if d1|m and d2|n, then d1d2|mn. Conversely, if d|mn, then
d = d1d2 such that d1|m and d2|n. Therefore, there exists a one to one correspondence
between the set of divisors of mn and the set

A = {(d1, d2) | d1|m and d2|n}.

Since τ (mn) is the number of divisors of mn and |A| = τ (m)τ (n), it follows that
τ (mn) = τ (m)τ (n). Similarly, we can prove that σ is multiplicative. Indeed, we have

σ(mn) =
∑

d|n
d =

∑

d1 |m
d2 |n

d1d2 =
⎛

⎝
∑

d1|m
d1

⎞

⎠

⎛

⎝
∑

d2|n
d2

⎞

⎠ = σ(m)σ(n).

Moreover, since the divisors of pα are exactly 1, p, . . . , pα, it follows that τ (pα) =
α + 1. Moreover, if we apply the geometric series formula, then we obtain

σ(pα) = 1 + p + · · · + pα = pα+1 − 1

p − 1
,

as desired. �

Theorem 6.25 If f and g are multiplicative, so is their Dirichlet product f ∗ g.

Proof Let h = f ∗ g and (m, n) = 1. Then, we have

h(mn) =
∑

d|mn

f (d)g
(mn

d

)
.
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Suppose that d = ab such that a|m and b|n. Then, we obtain

h(mn) =
∑

a|m
b|n

f (ab)g
(mn

ab

)
=

∑

a|m
b|n

f (a) f (b)g
(m
a

)
g

(n
b

)

=
∑

a|m
f (a)g

(m
a

) ∑

b|n
f (b)g

(n
b

)
= h(m)h(n).

Thus, h is also multiplicative. �

Theorem 6.26 If g and f ∗ g are multiplicative, then f is also multiplicative.

Proof Assume that f is not multiplicative and let h = f ∗ g. Then, there exist pos-
itive integers m and n with (m, n) = 1 such that f (mn) �= f (m) f (n). By the well-
ordering principle, we choose such a pair m and n for which the product mn is as
small as possible. We consider the following two cases:

Case 1: If mn = 1, then f (1) �= f (1) f (1), and so f (1) �= 1. Since h(1) =
f (1)g(1) = f (1) �= 0, it follows that h is not multiplicative, and this is a contra-
diction.

Case 2: Ifmn > 1, then f (ab) = f (a) f (b), for all positive integers a and b with
(a, b) = 1 and ab < mn. Therefore, we have

h(mn) =
∑

a|m
b|n

f (ab)g
(mn

ab

)

=
∑

a|m
b|n

ab<mn

f (ab)g
(mn

ab

)
+ f (mn)g(1)

=
∑

a|m
b|n

ab<mn

f (a) f (b)g
(m
a

)
g

(n
b

)
+ f (mn)

=
∑

a|m
f (a)g

(m
a

) ∑

b|n
f (b)g

(n
b

)
− f (m) f (n) + f (mn)

= h(m)h(n) − f (m) f (n) + f (mn).

Since f (mn) �= f (m) f (n), it follows that h(mn) �= h(m)h(n). This shows that h is
not multiplicative, and it is a contradiction. �

Theorem 6.27 If f is multiplicative, so is f −1, its Dirichlet inverse.

Proof The result can be easily obtained from Theorem 6.26. In fact, since both f
and f −1 ∗ f = e are multiplicative, it follows that f −1 is multiplicative. �

Corollary 6.28 The set of multiplicative functions is a subgroup of AF.
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Proof It is clear by Theorems 6.25 and 6.27. �

Theorem 6.29 Let f be multiplicative. Then, f is completely multiplicative if and
only if f −1(n) = μ(n) f (n), for each positive integer n.

Proof Let g(n) = μ(n) f (n). If f is completely implicative, then

(g ∗ f )(n) =
∑

d|n
μ(d) f (d) f

(n
d

)
= f (n)

∑

d|n
μ(d) = f (n)e(n) = e(n),

because f (1) = 1 and e(n) = 0, for each n > 1. Hence, we have g = f −1.
Conversely, suppose that f −1(n) = μ(n) f (n). In order to prove that f is com-

pletely multiplicative, it is enough to show that f (pα) = f (p)α for prime powers.
Since f ∗ f −1 = f ∗ μ f = e, it follows that ( f ∗ μ f )(n) = e(n). This yields that

∑

d|n
μ(d) f (d) f

(n
d

)
= 0,

for each integer n. Now, we take n = pα, then obtain

μ(1) f (1) f (pα) + μ(p) f (p) f (pα−1) = 0.

Therefore, we conclude that f (pα) = f (p) f (pα−1). This shows that f (pα) =
f (p)α. �

Exercises

1. Prove that
ϕ(n)σ(n) + 1

n

is an integer if n is prime, and it is not integer if n is divisible by square of a prime.
2. Prove that f is multiplicative if and only if its sum-function S f is multiplicative.
3. Let f (n) = [√n] − [√n − 1]. Prove that f is multiplicative but not completely

multiplicative.
4. Solve the equation ϕ

(
σ(2n)

) = 2n .

6.4 Worked-Out Problems

Problem 6.30 If ϕ(m)|m − 1, prove that there does not exist prime number p such
that p2|m.
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Solution Suppose that there exists prime number p j such that p2j |m. Let m =
pα1
1 . . . p

α j

j . . . pαk
k , where α j ≥ 2. Then, we have

p j

∣∣∣p j

(
p

α j−1
j − p

α j−2
j

)
= p

α j

j − p
α j−1
j = ϕ(p

α j

j ).

On the other hand, since p
α j

j |m, it follows that ϕ(p
α j

j )|ϕ(m). So, we conclude that
p j |ϕ(m). Since p j � m − 1, it follows that ϕ(m) � m − 1. This is a contradiction. �
Problem 6.31 If m is not prime and ϕ(m)|m − 1, prove that m has at least three
distinct prime factors.

Solution Suppose that m has exactly two distinct prime factors. By Problem 6.30,
since ϕ(m)|m − 1, we conclude that m = pq, where p and q are distinct primes.
Then, we have

m − 1

ϕ(m)
= pq − 1

(p − 1)(q − 1)

= pq − p − q + 1 + p + q − 2

(p − 1)(q − 1)

= (p − 1)(q − 1)

(p − 1)(q − 1)
+ p − 1

(p − 1)(q − 1)
+ q − 1

(p − 1)(q − 1)

= 1 + 1

q − 1
+ 1

p − 1
.

Since ϕ(m)|m − 1, it follows that (m − 1)/ϕ(m) is an integer. Moreover, we have

1 < 1 + 1

q − 1
+ 1

p − 1
≤ 3.

So, we must have
1

q − 1
+ 1

p − 1
= 1 or 2.

This implies that p = q = 2 or p = q = 3. But this contradicts our assumption that
p and q are distinct. Consequently, it is impossible for m to have only two distinct
prime factors. �
Problem 6.32 Show that if m ≥ 2, then the sum of all positive integers which are
less than m and relatively prime to m is (1/2)mϕ(m).

Solution Suppose that 1 ≤ k < m such that (k,m) = 1. If (m − k,m) = d, then
d|m and d|m − k. This implies that d|k, and so d = 1. Since k < m, it follows that
m − k ≥ 1. Also, we have m − k < m. Now, assume that

A = {k | 1 ≤ k ≤ m, (k,m) = 1},
B = {m − k | 1 ≤ k ≤ m, (k,m) = 1}.
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There is a one to one correspondence between A and B given by f (k) = m − k.
Consequently, we have |A| = |B| = ϕ(m). Therefore, we get

(
k1 + (m − k1)

) + · · · + (
kϕ(m) + (m − kϕ(m))

) = 2
∑

0<k<m
(k,m)=1

k.

This shows that
m + · · · + m︸ ︷︷ ︸

ϕ(m) times

= 2S,

where S is the required sum. Therefore, we deduce that S = (1/2)mϕ(m). �

Problem 6.33 Let f : N → N bemultiplicative and strictly increasing. If f (2) = 2,
prove that f (n) = n for all n.

Solution We have f (1) = 1 and f (2) = 2. First, we show that f (3) = 3. Sup-
pose that f (3) = k + 3, where k is a non-negative integer. We can write f (6) =
f (2) f (3) = 2(k + 3) = 2k + 6. Since f is strictly increasing, it follows that f (5) ≤
2k + 5, and so f (10) = f (2) f (5) ≤ 4k + 10. Hence, wemust have f (9) ≤ 4k + 9,
which implies that f (18) = f (2) f (9) ≤ 8k + 18. This gives

f (15) ≤ 8k + 15. (6.5)

On the other hand, we have

f (15) = f (3) f (5) ≥ (k + 3)(k + 5) = k2 + 8k + 15. (6.6)

By (6.5) and (6.6) we conclude that k = 0. Hence, f (3) = 3, as desired. Now, we
use mathematical induction. Suppose that

f (m) = m, for all m = 1, 2, . . . , 2k − 1,

where k ≥ 2. Then, we have

f (4k − 2) = f
(
2(2k − 1)

) = f (2) f (2k − 1)
= 2 f (2k − 1) = 4k − 2.

Since f is strictly increasing, it follows that f (m) = m, for all 2k − 1 ≤ m ≤ 4k − 2.
In particular, we deduce that f (2k) = 2k and f (2k + 1) = 2k + 1. This completes
the proof.

Problem 6.34 Prove that
n

ϕ(n)
=

∑

d|n

μ2(d)

ϕ(d)
.
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Solution Since μ and ϕ are multiplicative and ϕ(n) �= 0, for each positive integer n,
it follows that μ2/ϕ is multiplicative. So, if G = Sμ2/ϕ, sum-function, then

G(n) =
∑

d|n

μ2(d)

ϕ(d)
.

and G is multiplicative, since (μ2/ϕ) ∗ I = G. Now, if n = pα1
1 . . . pαk

k , then

G(n) = G(pα1
1 ) . . .G(pαk

k )

=
(
1 + 1

ϕ(p1)

)
. . .

(
1 + 1

ϕ(pk)

)

= p1
p1 − 1

. . .
pk

pk − 1

= n

n

(
1 − 1

p1

)
. . .

(
1 − 1

pk

)

= n

ϕ(n)
.

This completes the proof. �

Problem 6.35 LetG be afinite abelian group.We say that f :: G → C is a character
on G if (1) f (x) �= 0, for all x ∈ G, and (2) f (xy) = f (x) f (y), for all x, y ∈ G.
Suppose that f is a character on the multiplicative group Uk . We may extend the
domain of this character to the entire set of natural numbers in the following manner:
First, let n ∈ Uk be the equivalence class modulo k containing n. We extend the
domain of f to the entire set of natural numbers as follows:

χ(n) =
{
f (n) if (n, k) = 1
0 otherwise.

We call χ a Dirichlet character modulo k. It is easy to see that χ has the following
two important properties:

(1) It is k-periodic, i.e., χ(a + k) = χ(a), for all a ∈ N;
(2) It is completely multiplicative.

Table 6.2 shows the Dirichlet characters modulo 5. It is not difficult to check that no
more exist.

Ifχ is an arithmetical function that is both periodic and completely multiplicative,
and it is not zero function, prove that it is a Dirichlet character.

Solution Let k be the minimal period of χ. Since χ is k-periodic, it is constant in
each equivalence class modulo k. Moreover, since it is completely multiplicative, its
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Table 6.2 Dirichlet characters modulo 5

x (mod 5) 0 1 2 3 4

χ1 0 1 1 1 1

χ2 0 1 –1 –1 1

χ3 0 1 i –i –1

χ4 0 1 –i i –1

values on Uk make it a character. Therefore, we need to show that χ(n) = 0 if and
only if (n, k) �= 1. First, assume (n, k) = 1. Then we have nϕ(k) ≡ 1(mod k). Since
χ is completely multiplicative and k-periodic, we have χ(n)ϕ(k) = χ

(
nϕ(k)

) = χ(1).
Thus, if χ(n) = 0, then χ(1) = 0. However, if χ(1) = 0, then we have χ(m) =
χ(1)χ(m) = 0, for allm. Hence, if (n, k) = 1 and χ(n) = 0, then χ is zero function.
On the other hand, we assume that there is n such that (n, k) > 1 and χ(n) �= 0.
Then there is at least one prime p such that p|k and χ(p) �= 0. Consider this p, and
let m be any natural number. Because χ is k-periodic and completely multiplicative,
we have

χ(m)χ(p) = χ(mp) = χ(mp + k) = χ(p)χ

(
m + k

p

)
.

Since χ(p) �= 0, we must have χ(m) = χ(m + k/p), for all m. But this means that
χ is k/p-periodic. This violates the stipulation that k is the minimal period of χ. �

6.5 Supplementary Exercises

1. Let n be an integer with n ≥ 2. Show that ϕ
(
2n − 1

)
is divisible by n.

2. If p is a prime and n is an integer such that 1 < n < p, prove that

ϕ

(
p−1∑

k=0

nk
)

≡ 0(mod p).

3. Let m and n be positive integers. Prove that, for some positive integer a, each of
ϕ(a), ϕ(a + 1), . . ., ϕ(a + n) is a multiple of m.

4. If n is composite, prove that ϕ(n) ≤ n − √
n.

5. Find all solutions of ϕ(n) = 4, and prove that there are no more.
6. Findm, n ∈ N such that they have no prime divisors other than 2 and 3, (m, n) =

18, τ (m) = 21, and τ (n) = 10.
7. Determine an arithmetical function f such that

1

ϕ(n)
=

∑

d|n

1

d
f
(n
d

)
(n ∈ N).
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8. An arithmetical function f is called periodic if there exists a positive integer k
such that f (n + k) = f (n) for each positive integer N ; the integer k is called
a period for f . Show that if f is completely multiplicative and periodic with
period k, then the values of f are either 0 or roots of unity.

9. Let f be a multiplicative function satisfying lim
pm→∞ f (pm) = 0. Show that lim

n→∞
f (n) = 0.

10. Prove that the sum-function S f of a multiplicative function f is given by

S f (n) =
k∏

i=1

(
1 + f (pi ) + f (p2i ) + · · · + f (pαi

i )
)
,

whenever n = pα1
1 . . . pαk

k .
11. For any real number x ≥ 1, prove that

∣∣∣
∑

n≤x

μ(n)

n

∣∣∣ ≤ 1.

12. Prove that a finite abelian group G of order n has exactly n distinct characters.
13. For two sequences of complex numbers {a0, a1, . . . , an, . . .} and {b0, b1, . . . ,

bn, . . .} show that the following relations are equivalent:

an =
n∑

k=0

bk for all n ⇔ bn =
n∑

k=0

(−1)k+nak for all n.

14. Prove that
n∑

k=1

τ (k) =
n∑

k=1

[n
k

]
and

n∑

k=1

σ(k) =
n∑

k=1

k
[n
k

]
.
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