
Chapter 5
Permutation Groups

In this chapter, we construct some groups whose elements are called permutations.
Often, an action produced by a group element can be regarded as a function, and
the binary operation of the group can be regarded as function composition. The
symmetric group on a set is the group consisting of all bijections from the set to itself
with function composition as the group operation. These groups will provide us with
examples of finite non-abelian groups.

5.1 Inverse Functions and Permutations

In this section, we study certain groups of functions called permutation groups.

Theorem 5.1 If f : X → Y , g : Y → Z and h : Z → W are functions, then their
compositions are associative, i.e., (h ◦ g) ◦ f = h ◦ (g ◦ f ).

Proof It is straightforward. �

Definition 5.2 For any non-empty set X , the identity function is the function idX :
X → X defined by idX (x) = x , for all x ∈ X .

Clearly, if f : X → Y is any function, then f ◦ idX = f and idX ◦ f = f .

Definition 5.3 Let f : X → Y be a function. We say that f has an inverse function
if there exists a function g : Y → X such that f ◦ g = idY and g ◦ f = idX .

Theorem 5.4 If a function f : X → Y has an inverse, then this inverse is unique.

Proof Suppose that g and h are both inverses for f . Then, we have g ◦ f = h ◦ f =
idX and f ◦ g = f ◦ h = idY . Thus, we obtain
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106 5 Permutation Groups

h = h ◦ idY = h ◦ ( f ◦ g) = (h ◦ f ) ◦ g = idX ◦ g = g.

This yields that the inverse of f is unique. �
The inverse of f is denoted by f −1.

Theorem 5.5 A function f : X → Y has an inverse if and only if f is a bijection.

Proof Assume that f is a bijection. We define a function g : Y → X as follows:

g(y) = x ⇔ f (x) = y.

Since f is one to one, it follows that g is a function. Now, by the definition, f ◦ g =
idY and g ◦ f = idX .

Conversely, suppose that f has an inverse f −1. First, we show that f is one to
one. If f (x1) = f (x2), then

x1 = idX (x1) = f −1( f (x1)) = f −1( f (x2)) = idX (x2) = x2,

hence f is one to one. In order to show that f is onto, take any y ∈ Y . Then,

y = idY (y) = f ◦ f −1(y) = f ( f −1(y)) = f (x),

where x = f −1(y). So, f is onto. �
Theorem 5.6 If f : X → Y and g : Y → Z are bijections, then so is the function
g ◦ f .

Proof Suppose that f and g have inverse functions f −1 and g−1, respectively. Then,
we obtain (g ◦ f )( f −1 ◦ g−1) = idZ and ( f −1 ◦ g−1)(g ◦ f ) = idX .
Hence, the inverse of g ◦ f is f −1 ◦ g−1. Consequently, by Theorem 5.5, g ◦ f
is a bijection. �
Definition 5.7 Let X be a non-empty set. A bijective function from X to itself is
called a permutation of X .

For an arbitrary non-empty set X we define SX to be the set of all permutations.

Theorem 5.8 The set SX of all permutations of X is a group under composition of
functions.

Proof Wecheck the group axioms for SX . ByTheorem5.6, if f, g ∈ SX , then f ◦ g ∈
SX . The associativity axioms holds by Theorem 5.1. The identity element is idX .
Finally, the definition of an inverse function shows that if f −1 is the inverse of f ,
then f is the inverse of f −1. Consequently, f −1 is a bijection. �

Since the composition of functions is not commutative, it follows that SX is not
abelian, for |X | ≥ 3.

Let us make a small example to understand better the connection between the
intuition and the formal definition.
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Example 5.9 Let . Then, the permutations that belong to SX are:

Exercises

1. Define f : N → N by f (1) = 2, f (2) = 3, f (3) = 4, f (4) = 7, f (7) = 1, and
f (n) = n for any other n ∈ N. Show that f ◦ f ◦ f ◦ f ◦ f = idN. What is f −1

in this case?
2. Let f : Z → Z be a function. For each of the following cases, find a left and a

right inverses if exist.

(a) f (x) =
{
x if x is even
2x + 1 if x is odd

(b) f (x) =
{
x/3 if x ≡ 0(mod 3)
x + 1 otherwise.

3. Let f : Z → Z be defined by f (x) = ax + b, where aandb are integers. Find
the necessary and sufficient conditions on a and b such that f ◦ f = idZ.

4. Let f : X → X be a function such that f ( f (x)) = x , for all x ∈ X . Prove that
f is a symmetric relation on X .

5. A function f : X → Y is said to be left cancellable if for any set Z and for any
mappings g and h from Z to X such that f ◦ g = f ◦ h, then g = h. Prove that
a function f : X → Y is left cancellable if and only if f is one to one.

6. A function f : X → Y is said to be right cancellable if for any set Z and for
any mappings g and h from Y to Z such that g ◦ f = h ◦ f , then g = h. Prove
that a function f : X → Y is right cancellable if and only if f is onto.

7. Given two sets X and Y we declare X ≺ Y (X is smaller than Y ) if there is a
mapping of Y onto X but no mapping of X onto Y . Prove that if X ≺ Y and
Y ≺ Z , then X ≺ Z .

8. If X is a finite set and f is a one to one function of X , show that for some positive
integer n,
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f ◦ f ◦ . . . ◦ f︸ ︷︷ ︸
n times

= idX .

9. If X has m elements in Exercise 8, find a positive integer n (in terms of m) that
works simultaneously for all one to one mappings of X into itself.

10. If a ∈ X and H = { f ∈ SX | f (a) = a}, show that H is a subgroup of SX .
11. Let X be an infinite set and let H be the set of all permutations f ∈ SX such that

f (a) 	= a for at most a finite number of a ∈ X .

(a) Prove that H is a subgroup of SX ;
(b) Show that if f ∈ SX , then f −1H f = H .

12. If X has three or more elements, show that we can find f, g ∈ SX such that
f ◦ g 	= g ◦ f .

13. Observe that for any positive integer x , we have x = 2m(2n + 1), for some non-
negative integers m and n. This means that we can define f : N → (N ∪ {0}) ×
(N ∪ {0}) such that f (x) = (m, n), as indicated above. Prove that f is one to
one and onto.

14. (Schröder–Bernstein Theorem). Let X and Y be two sets such that

(a) For a subset A of X , there is a one to one correspondence between A and Y ;
(b) For a subset B of Y , there is a one to one correspondence between B and X .

Prove that there exists a one to one correspondence between A and Y .
15. Let G be a group and let a be a fixed element of G. Show that the map fa : G →

G, given by fa(x) = ax , for x ∈ G, is a permutation of the set G.

5.2 Symmetric Groups

In this section we briefly introduce some basic concepts and constructions that we
will need later. Permutations are usually studied as combinatorial objects, we will
observe that they have a natural group structure.

Definition 5.10 The group SX is called the symmetric group or permutation group
on the set X .

The group of permutations of the set X = {1, . . . , n} is denoted by Sn .

Theorem 5.11 The order of Sn is equal to n!.
Proof We count how many permutations of {1, 2, . . . , n} exist. We have to fill the
boxes

. . .

1 2 3 n

with numbers 1, 2, . . . , n with no repetitions. For box 1, we have n possible choices.
When one number has been chosen, for box 2, we have n − 1 choices, and so on.
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Consequently, we have

n(n − 1)(n − 2) . . . 2 · 1 = n!

permutations and so the order of Sn is |Sn| = n!. �

We can describe a permutation σ ∈ Sn in several ways. A convenient notation for
specifying a given permutation σ ∈ Sn is

(
1 2 3 . . . n
a1 a2 a3 . . . an

)
,

where ak is the image of k under σ , for each 0 ≤ k ≤ n. In this case, we write
kσ = ak . Accordingly, regarding this notation one must be absolutely sure as to
what convention is being followed in writing the product of two permutations. If
τ, σ ∈ Sn , then we reiterate that στ will always mean: first apply σ and then τ .

Example 5.12 Let

σ =
(

1 2 3 4 5
2 3 1 5 4

)
and τ =

(
1 2 3 4 5
1 3 5 4 2

)

be two permutations in S5. Then, we have

στ =
(

1 2 3 4 5
3 5 1 2 4

)
, τσ =

(
1 2 3 4 5
2 1 4 5 3

)
,

σ−1 =
(

1 2 3 4 5
3 1 2 5 4

)
, τ 2 =

(
1 2 3 4 5
1 5 2 4 3

)
.

There is another notation commonly used to specify permutations. It is called
cycle notation.

Definition 5.13 Let 1 ≤ k ≤ n and let a1, a2, . . . , ak be k disjoint integers between
1 and n. The cycle (a1 a2 . . . ak) denotes the permutation of Sn that sends

a1 → a2,
a2 → a3,
...

ak−1 → ak,
ak → a1,

and leaves the remaining n − k numbers fixed. We say that the length of the cycle
(a1 a2 . . . ak) is k.

It is clear that our choice of starting point for the cycle is not important. Thus,
(a1 a2 . . . ak) = (a2 . . . ak a1). The inverse of a cycle is a cycle. More precisely,
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Fig. 5.1 An illustration of
cycle notation

1

57

2

3

(a1 a2 . . . ak)−1 = (ak ak−1 . . . a1).

Example 5.14 As an illustration of cycle notation, let us consider the permutation

(
1 2 3 4 5 6 7
5 3 1 4 7 6 2

)
.

This assignment of values could be presented schematically as in Fig. 5.1.

Example 5.15 The cycle (3 4 1 6) means the permutation where 3 → 4, 4 → 1,
1 → 6, 6 → 3, and all the other elements are fixed. So, (3 4 1 6) ∈ S7 corresponds
to

(3 4 1 6) =
(

1 2 3 4 5 6 7
6 2 4 1 5 3 7

)
.

Example 5.16 Suppose that (1 3 4 2) and (2 5 3) are two cycles in S5. Then

(1 3 4 2)(2 5 3) =
(

1 2 3 4 5
3 1 4 2 5

) (
1 2 3 4 5
1 5 2 4 3

)

=
(

1 2 3 4 5
2 1 4 5 3

)

= (1 2)(3 4 5).

Example 5.17 We may write S3, in Example 5.9, as

S3 = {id, (1 2), (1 3), (2 3), (1 2 3), (1 3 2)}.

The following is Cayley table for S3.
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· id (1 2) (1 3) (2 3) (1 2 3) (1 3 2)
id id (1 2) (1 3) (2 3) (1 2 3) (1 3 2)

(1 2) (1 2) id (1 2 3) (1 3 2) (1 3) (2 3)
(1 3) (1 3) (1 3 2) id (1 2 3) (2 3) (1 2)
(2 3) (2 3) (1 2 3) (1 3 2) id (1 2) (1 3)
(1 2 3) (1 2 3) (2 3) (1 2) (1 3) (1 3 2) id
(1 3 2) (1 3 2) (1 3) (2 3) (1 2) id (1 2 3)

Definition 5.18 Two cycles (a1 a2 . . . ak) and (b1 b2 . . . bl) are distinct if
{a1, a2, . . . , ak} ∩ {b1, b2, . . . , bl} = ∅.

Lemma 5.19 If σ = (a1 a2 . . . ak) and τ = (b1 b2 . . . bl) are distinct, then στ =
τσ .

Proof Let 1 ≤ i ≤ k − 1. Since ai /∈ {b1, . . . , bl}, it follows that aiτ = ai . Hence,
we get

ai (τσ ) = aiσ = ai+1.

Also, since ai+1 /∈ {b1, . . . , bl}, it follows that

ai (στ) = ai+1τ = ai+1.

Similar arguments for each 1 ≤ j ≤ l show that

b j (τσ ) = b j+1σ = b j+1 = b jτ = b j (στ)

and
ak(στ) = a1τ = a1 = akσ = ak(τσ ),

bl(στ) = blτ = b1 = b1σ = bl(τσ ).

Finally, if j ∈ {a1, . . . , al , b1, . . . , bl}, then

j (τσ ) = ( jτ)σ = jσ = j = jτ = ( jσ)τ = j (στ).

Therefore, for each j ∈ {1, . . . , n} we have j (στ) = j (τσ ). This yields that στ =
τσ . �

Let σ ∈ Sn . For each x, y ∈ {1, 2, . . . , n}, we define the relation

x ≡σ y ⇔ x = xσ k for some integer k.

Lemma 5.20 The relation ≡σ is an equivalence relation.

Proof Indeed, we have

(1) x ≡σ x since x = xσ 0.
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(2) If x ≡σ y, then y = xσ k . Hence, x = yσ−k . This implies that y ≡σ x .
(3) If x ≡σ y and y ≡σ z, then y = xσ j and z = yσ k for some integers j, k. Hence,

we obtain
z = yσ k = xσ jσ k = xσ j+k .

This implies that x ≡σ z.

�

This equivalence relation induces a decomposition of {1, 2, . . . , n} into disjoint
subsets, namely the equivalence classes. Suppose that mx is the smallest positive
integer such that xσmx = x . Then, the equivalence class of x under σ consists of the
numbers x, xσ, xσ 2, . . . , xσmx−1.

Theorem 5.21 Every permutation in Sn can be written as a cycle or as a product of
disjoint cycles. Up to reordering the factors, this is unique.

Proof Let σ be any permutation in Sn . Then, its cycles are of the form (x xσ xσ 2 . . .

xσmx−1). Since the cycles of σ are disjoint, it follows that the image of a ∈
{1, 2, . . . , n} under σ is the same as the image of a under the product, δ, of all
distinct cycles of σ . Consequently, σ and δ have the same effect on each element of
{1, 2, . . . , n}. Therefore, σ = δ. In this way, by Lemma 5.19, we observe that every
permutation can be uniquely expressed as a product of disjoint cycles. �

This factorization is called the cycle decomposition of σ . The cycle structure of
σ is the number of cycles of each length in the cycle decomposition of σ . For each
k = 1, . . . , n assume that mk denote the number of cycles of length k. Then, we say
that σ has cycle structure

1, . . . , 1︸ ︷︷ ︸
m1

, 2, . . . , 2︸ ︷︷ ︸
m2

, . . . , n, . . . , n︸ ︷︷ ︸
mn

.

As notation for cycle type, we abbreviate this to 1m1 , 2m2 , . . . , nmn .

Example 5.22 The permutation

σ = (1 2)(3 5 6)(4 8)

in S8 has cycle structure consisting of one cycle of length 1, two cycles of length 2,
and one cycle of length 3.

Theorem 5.23 The number of permutations in Sn of cycle structure of the form
1m1 , 2m2 , . . . , nmn is equal to

n!
m1! . . .mn!1m12m2 . . . nmn

.
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Proof A permutation of the given cycle structure is produced by filling the integers
1, 2, . . . , n into the following boxes:

. . .︸ ︷︷ ︸
m1

. . .︸ ︷︷ ︸
m2

. . . . . .︸ ︷︷ ︸
m3

. . .

There exist n!ways of doing this. But some of these ways give the same permutation
of Sn . We try to count them.

(1) There existm1! permutations of cycles of length 1,m2! permutations of cycles of
length 2, m3! permutations of cycles of length 3, and so on. So, we must divide
by m1! . . .mn!.

(2) Each cycle of length 2 can be written in two ways, i.e., (a b) = (b a). Similarly,
each cycle of length 3 can be written in three ways, i.e., (a b c) = (b c a) =
(c a b), and so on. So we must divide by 1m12m2 . . . nmn .

This completes the proof. �

Definition 5.24 A cycle of length 2 is called a transposition.

Corollary 5.25 Any cycle in Sn is a product of transpositions.

Proof If (a1 a2 . . . ak) is an arbitrary cycle in Sn , then

(a1 a2 . . . ak) = (a1 a2)(a1 a3) . . . (a1 an),

as desired. �

Theorem 5.26 Every permutation in Sn (n ≥ 2) is either a transposition or a product
of transpositions. In other words, Sn is generated by transpositions.

Proof First, note that the identity permutation can be expressed as (1 2)(1 2), so it
is product of transpositions. By Theorem 5.21, we know that every permutation is
a cycle or a product of cycles. By Corollary 5.25, since each cycle is a product of
transpositions, it follows that Sn is generated by transpositions. �

Theorem 5.27 The symmetric group Sn is generated by n − 1 transpositions (1 2),
(1 3), . . ., (1 n).

Proof By Theorem 5.26, we know that Sn is generated by transpositions. Now, if
(a b) be an arbitrary transposition, then

(a b) = (1 a)(1 b)(1 a).

This yields the desired result. �

Theorem 5.28 The symmetric group Sn is generated by n − 1 transpositions (1 2),
(2 3), . . ., (n − 1 n).
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Proof By Theorem 5.26, it suffices to show that each transposition (a b) in Sn is
a product of transpositions of the form (i i + 1), where i < n. Suppose that a < b.
For the proof we use mathematical induction on b − a that (a b) is a product of
transpositions (i i + 1). This is obvious when b − a = 1, because (a b) = (a a + 1)
is one of the transpositions we want in the desired generating set. Now, suppose that
b − a = k > 1 and the theorem is true for all transpositions moving a pair of integers
whose difference is less than k. We have

(a b) = (a a + 1)(a + 1 b)(a a + 1).

The transpositions (a a + 1) and (a a + 1) lie in our desired generating set. For
the transposition (a + 1 b) we have b − (a + 1) = k − 1 < k. So, by assumption,
(a + 1 b) is a product of transpositions of the form (i i + 1), so (a b) is as well. �

Lemma 5.29 A cycle of length m has order m.

Proof It is straightforward. �

Theorem 5.30 The order of a permutation written in disjoint cycle form is the least
common multiple of the lengths of the cycles.

Proof Suppose that σ ∈ Sn and σ = σ1σ2 . . . σk , where the σi (i = 1, . . . , k) are
disjoint cycles of lengthmi . Letm be the least common multiple ofm1,m2, . . . ,mk .
Since mi |m for each 1 ≤ i ≤ k, it follows that

σm = (σ1σ2 . . . σk)
m = σm

1 σm
2 . . . σm

k = id,

where id is the identity permutation in Sn . Consequently, the order of σ is at most
m.

Now, suppose that σ r = id. This implies that σ r
1σ r

2 . . . σ r
k = id. Since σi (i =

1, . . . , k) are disjoint, it follows that σ r
i = id. Since σi is of order mi , it follows that

mi |r . This yields that m|r . Therefore, we conclude that σ is of order m. �

Example 5.31 We want to determine the number of permutations in S7 of order 3.
By Theorem 5.30, it is enough to count the number of permutations of the form

(1) (a b c),
(2) (a b c)(x y z).

For the first case, there exist 7 · 6 · 5 such triples. But this product counts the permu-
tation (a b c) three times. Thus, the number of permutations of the form (1) is equal
to 70.

For the second case, there exist 70 ways to create the first cycle and 4·3·2
3 = 8 to

create the second cycle. So, we have 70 × 8 = 560 ways. But this product counts
(a b c)(x y z) and (x y z)(a b c) as distinct while they are equal permutations.
Consequently, the number of permutations in S7 of the form (2) is 280.

Therefore, we have 70 + 280 = 350 permutations of order 3 in S7.
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Lemma 5.32 Let σ be any permutation in Sn and let

σ = (a1 . . . ai )(b1 . . . b j ) . . . (c1 . . . ck)

be the cycle decomposition of σ . Then, for each τ ∈ Sn, we have

τ−1στ = (a1τ . . . aiτ)(b1τ . . . b jτ) . . . (c1τ . . . ckτ) (5.1)

which is a product of disjoint cycles.

Proof We have ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(a1τ)τ−1στ = a1στ = a2τ,
...

(ai−1τ)τ−1στ = ai−1στ = aiτ,
(aiτ)τ−1στ = aiστ = a1τ,⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(b1τ)τ−1στ = b1στ = b2τ,
...

(b j−1τ)τ−1στ = b j−1στ = b jτ,

(b jτ)τ−1στ = b jστ = b1τ,
...⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(c1τ)τ−1στ = c1στ = c2τ,
...

(ck−1τ)τ−1στ = ck−1στ = ckτ,
(ckτ)τ−1στ = ckστ = c1τ.

Moreover, if σ do not move integer d, then τ−1στ do not move dτ . So, we see that
the right side of (5.1) acts on every integer of {1, . . . , n} in the same way as τ−1στ .
This completes the proof. �

Now we are ready to cut down the size of a generating set for Sn to two.

Theorem 5.33 The symmetric group Sn is generated by the transposition (1 2) and
the cycle (1 2 . . . n).

Proof ByTheorem5.28, it is enough to show that the products of (12) and (12 . . . n)

give all transpositions of the form (i i + 1). We may take n ≥ 3. Suppose that τ =
(1 2 . . . n). Then, by Lemma 5.32, we have

τ−1(1 2)τ = (1τ 2τ) = (2 3),

and more generally for i = 2, . . . , n − 1, we obtain

τ−(i−1)(1 2)τ i−1 = (1τ i−1 2τ i−1) = (i i + 1).

This completes the proof. �
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Theorem 5.34 Two permutations in Sn are conjugate if and only if they have the
same cycle structure up to ordering.

Proof Suppose that σ and δ are conjugate. Then, there exists τ ∈ Sn such that
τ−1στ = δ. Now, by Lemma 5.32, we conclude that σ and δ have the same cycle
structure.

Conversely, suppose that

σ = (a1 . . . ai )(b1 . . . b j ) . . . (c1 . . . ck),
δ = (a′

1 . . . a′
i )(b

′
1 . . . b′

j ) . . . (c′
1 . . . c′

k),

be two permutations of Sn with the same cycle structure. Now, we define τ to be the
permutation of Sn which sends

a1 → a′
1, . . . ai → a′

i ,

b1 → b′
1, . . . b j → b′

j ,

...

c1 → c′
1, . . . ck → c′

k .

By Lemma 5.32, τ−1στ and δ are the same permutation. �

Definition 5.35 Twopermutationsσ and τ in Sn are said to be similar if there exists a
one to one correspondence between the cycles of σ and τ such that the corresponding
cycles have same length.

Corollary 5.36 Two permutations in Sn are similar if and only if they are conjugate.

Definition 5.37 A group G is centerless if Z(G) = {e}.
Theorem 5.38 Sn is centerless if n ≥ 3.

Z(Sn) = {id}.

This means that the center of symmetric group is the subgroup comprising only the
identity permutation.

Proof Suppose that σ is a non-identity permutation in Z(Sn) and let σ = σ1σ2 . . . σk ,
whereσi s are distinct cycleswith lengths li s such that lk ≤ · · · ≤ l2 ≤ l1.We consider
the following two cases:

Case 1: Let σ1 = (a1 a2 . . . am) with m ≥ 3. Since σ ∈ Z(Sn), it follows that
σ(a1 a2) = (a1 a2)σ . Since σi s are distinct, it follows that σ1(a1 a2) = (a1 a2)σ1, or
equivalently

(a1 a2 . . . am)(a1 a2) = (a1 a2 . . . am)(a1 a2).

This is a contradiction, because in the left side of the equality we have am → a1
while in the right side we have am → a2.
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Case 2: Let σ1 = (a1 a2). Since n ≥ 3, it follows that there exists a3 such that
a3 	= a1 and a3 	= a2. Since σ ∈ Sn , it follows that σ(a1 a2 a3) = (a1 a2 a3)σ , or
equivalently

(a1 a2)σ2 . . . σk(a1 a2 a3) = (a1 a2 a3)(a1 a2)σ2 . . . σk .

Since a1 and a2 do not appear in cycles σ2, . . . , σk , it follows that in the left side of the
last equality a1 → a3 while in the right side a1 → a1. This is again a contradiction.

Therefore, we conclude that Z(Sn) = {id}. �

Exercises

1. Let

α =
(
1 2 3 4 5 6 7 8
8 6 4 1 5 7 2 3

)
and β =

(
1 2 3 4 5 6 7 8
2 1 5 8 6 3 7 4

)
.

Compute each of the following:

(a) α−1;
(b) αβα−1;
(c) α3β;
(d) αβ−2.

2. Write each of the following permutations as a product of distinct cycles:

(a) (3 4 5 6)(4 3)(1 2 3);
(b) (1 2)(2 3)(2 4)(1 3 5).

3. Give the Cayley table for the cyclic subgroup of S5 generated by

σ =
(
1 2 3 4 5
2 4 5 1 3

)
.

4. Determine eight elements in S6 that commute with (1 2)(5 6)(3 4). Do they form
a subgroup of S6?

5. Find five subgroups of S5 of order 24.
6. Find the number of permutations in the set {σ ∈ S5 | 2σ = 5}.
7. How many elements of order 6 are there in the symmetric group S11?
8. Find all powers of the cycle σ = (x1 x2 . . . xn).
9. Find all permutations in the symmetric group Sn which commute with the cycle

(x1 x2 . . . xn), where x1 x2 . . . xn is a permutation of the numbers 1, 2, . . ., n.
10. Count the number of elements of Sn having at least one fixed point.
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11. Given the permutations α = (1 2)(3 4) and β = (1 3)(5 6). Find a permutation
γ such that γ −1αγ = β. Is γ unique?

12. Prove that the permutations

α =
(
1 2 3 4 5 6
2 5 3 6 1 4

)
and β =

(
1 2 3 4 5 6
5 3 4 2 1 6

)

are conjugate in the symmetric group S6, and find the number γ ∈ S6 such that
γ −1αγ = β.

13. Show that the permutations in S9 which send the numbers 2, 5, 7 among them-
selves form a subgroup of S9. What is the order of this subgroup?

14. If n is at least 3, show that for some f ∈ Sn , f cannot be expressed in the form
f = g3, for any g ∈ Sn .

15. What is the smallest positive integer n such that Sn has an element of order
greater than 2n?

16. Show that in S7, the equation x2 = (1 2 3 4) has no solutions but the equation
x3 = (1 2 3 4) has at least two.

17. Let X be the setZ31, and let f : X → X be the permutation f (x) = 2x . Decom-
pose this permutation into disjoint cycles.

18. Let X be the setZ29, and let f : X → X be the permutation f (x) = x3. Decom-
pose this permutation into disjoint cycles.

19. Find the cycle decomposition of the permutation induced by the action of com-
plex conjugation on the set of roots of x5 − x + 1.

20. In S4, find the subgroup generated by (1 2 3) and (1 2). Also, for this subgroup,
find the corresponding subgroup σ−1Hσ , for σ = (1 4).

21. Find necessary and sufficient conditions on the pair i and j in order that
〈(1 2 . . . n), (i j)〉 = Sn .

22. Show that for all 1 < i ≤ n, we have 〈(2 3 . . . n), (1 i)〉 = Sn .
23. Determine a permutation σ ∈ Sn such that for every 1 ≤ i, j ≤ n,

i ≤ j ⇒ iσ ≤ jσ.

24. Find the maximum possible order for a permutation in Sn for n = 5, n = 6,
n = 7, n = 10, and n = 15.

25. A permutation is called regular if it can be decomposed into disjoint cycles
of the same length. Prove that every power of a cycle of length n in Sn is a
regular permutation. Prove that the length of each of the disjoint cycles in this
decomposition divides n.

26. Prove that every regular permutation is a power of some cycle.
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5.3 Alternating Groups

The alternating groups are among the most important examples of groups. We study
some of their properties in this section.

Theorem 5.39 If a permutation σ can be expressed as a product of even number of
transpositions, then every decomposition of σ into a product of transpositions must
have an even number of transpositions. In symbols, if

σ = τ1τ2 . . . τk and σ = δ1δ2 . . . δm

where the τ ’s and the δ’s are transpositions, then k and m are both even or both odd.

Proof We consider a polynomial p of n variable

p(a1, . . . , an) = (a1 − a2)(a1 − a3) . . . (a1 − an)
(a2 − a3)(a2 − a4) . . . (a2 − an) . . . (an−1 − an)

=
∏
i< j

(ai − a j ).

If σ ∈ Sn , we define

σ ∗(p(a1, . . . , an)) =
∏
i< j

(aiσ − a jσ ).

Suppose that τ = (r s) is a transposition with r < s. Then, we have

τ ∗(p(a1, . . . , an)) =
∏
i< j

(aiτ − a jτ ).

Note that arτ − asτ = as − ar = −(ar − as), and if ar and as do not exist in a factor,
then this factor is fixed under τ . The other factors can be expressed in one of the
following forms:

(1) (as − ak)(ar − ak), if s < k,
(2) (ak − as)(ar − ak), if r < k < s,
(3) (ak − as)(ak − ar ), if k < r .

Therefore, we conclude that τ ∗(p(a1, . . . , an)) = − f (a1, . . . , an).
If σ = τ1τ2 . . . τk , where τ1, τ2, . . . , τk are transpositions, then

σ ∗(p(a1, . . . , an)) = (
τ1τ2 . . . τk

)∗(
p(a1, . . . , an)

)
= (−1)k p(a1, . . . , an).

(5.2)

Similarly, if σ = δ1δ2 . . . δm , where δ1, δ2, . . . , δm are transpositions, then
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σ ∗(p(a1, . . . , an)) = (
δ1δ2 . . . δm

)∗(
p(a1, . . . , an)

)
= (−1)m p(a1, . . . , an).

(5.3)

Comparing (5.2) and (5.3), we conclude that

(−1)k = (−1)m .

This implies that these two decompositions of σ as the product of transpositions are
of the same parity. �

Therefore, anypermutation is either the product of anoddnumber of transpositions
or the product of an even number of transpositions, and no product of an even number
of transpositions can be equal to a product of an odd number of transpositions.

Definition 5.40 A permutation which can be expressed as a product of an even
number of transpositions is called an even permutation. A permutation which can be
expressed as a product of an odd number of transpositions is called an odd transpo-
sition.

If we define the sign of a permutation σ as

sgn(σ ) = p(a1σ , . . . , anσ )

p(a1, . . . , an)
,

then

sgn(σ ) =
{

1 if σ is even
−1 if σ is odd.

If σ, δ ∈ Sn , then

sgn(σδ) = p(a1σδ, . . . , anσδ)

p(a1, . . . , an)

= p(a1σδ, . . . , anσδ)

p(a1σ , . . . , anσ )
· p(a1σ , . . . , anσ )

p(a1, . . . , an)= sgn(σ ) · sgn(δ).

To summarize in words, the sign of the product is the product of sign,

even × even = odd × odd = even,
even × odd = odd × even = odd.

Theorem 5.41 If An is the set of all even permutations, then An is a subgroup of Sn.

Proof If σ, δ ∈ An , then we have σδ ∈ An . Since An is a finite closed subset of the
finite group Sn , it follows that An is a subgroup of Sn . �

An is called the alternating group of degree n.

Theorem 5.42 If n > 1, the order of An is equal to n!/2.
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Proof For each even permutation σ , the permutation (1 2)σ is odd, and if σ 	= δ,
then (1 2)σ 	= (1 2)δ. Hence, there are at least as many odd permutations as there are
even ones. On the other hand, for each odd permutation σ , the permutation (1 2)σ
is even, and if σ 	= δ, then (1 2)σ 	= (1 2)δ. Hence, there are at least as many even
permutations as there are odd ones. This yields that there exist equal numbers of
even and odd permutations. Since |Sn| = n!, it follows that |An| = n!/2. �

Theorem 5.43 For each n ≥ 3, An is generated by cycles of length 3.

Proof Suppose that σ ∈ An . Then, σ is a product of even number of transpositions.
Let a, b, c, and d are four different numbers between 1 and n. Then, we have

(a b)(a c) = (a b c),
(a b)(c d) = (a c b)(c b d).

This completes the proof. �

Theorem 5.44 For each n ≥ 3, An is generated by cycles of the form (1 a b), where
2 ≤ a, b ≤ n, and a 	= b.

Proof If σ ∈ An , then σ is a product of transpositions. Since (a b) = (1 a)(1 b)
(1 a) for each 2 ≤ a, b ≤ n, and a 	= b, it follows that σ is a product of transpositions
of the form (1 a). Since σ is even, the number of transpositions of the form (1 a)

in σ is even. But for each a 	= b, we have (1 a)(1 b) = (1 a b). This completes the
proof. �

Theorem 5.45 For each n ≥ 3, An is generated by cycles of the form (1 2 a), where
2 ≤ a ≤ n.

Proof If n = 3, then A3 = {id, (1 2 3), (1 3 2)} is generated by (1 2 3). So, we
assume that n ≥ 4.

Each cycle of length 3 in An containing 1 and 2 is generated by the cycle of the
form (1 2 a), because (1 a 2) = (1 2 a)−1.

For each cycle of length 3 in An containing 1 but not 2, we have

(1 a b) = (1 2 b)(1 2 a)(1 2 b)(1 2 b).

Now, by Theorem 5.44, the proof completes. �

Theorem 5.46 For each n ≥ 3, An is generated by consecutive cycles of the form
(a a + 1 a + 2), where 1 ≤ a ≤ n − 2.

Proof If n = 3, then A3 = 〈(1 2 3)〉. If n = 4, then by Theorem 5.45, A4 =
〈(1 2 3), (1 2 4)〉. Since

(1 2 4) = (1 2 3)(2 3 4)(1 2 3)(1 2 3),



122 5 Permutation Groups

it follows that A4 = 〈(1 2 3), (2 3 4)〉. Now, assume that n ≥ 5. By Theorem 5.45, it
suffices to show that (1 2 a) can be obtained from a product of consecutive cycles of
length 3. We apply mathematical induction on a. Let a ≥ 5 and (1 2 b) be a product
of consecutive cycles of length 3, for 3 ≤ b < a. We have

(1 2 a) = (1 2 a − 1)(1 2 a − 2)(a − 2 a − 1 a)(1 2 a − 1)(1 2 a − 2).

Now, the inductive assumption show that (1 2 a) is a product of consecutive cycles
of length 3. �

Theorem 5.47 For each n ≥ 3, An is generated by

(1) (1 2 3) and (1 2 . . . n) if n is odd;
(2) (1 2 3) and (2 3 . . . n) if n is even.

Proof Note that if n = 3, then we are done. So, we suppose that n ≥ 4.
(1) Let n be odd and τ = (1 2 . . . n). Then, we conclude that τ ∈ An . Moreover,

for each 1 ≤ a ≤ n − 3, by Lemma 5.32, we get

τ−a(1 2 3)τ a = (1τ a 2τ a 3τ a) = (a + 1 a + 2 a + 3) ∈ An.

Now, by Theorem 5.46, we are done.
(2) Let n is even and τ = (2 3 . . . n). Then, we have τ ∈ An . Also, for each

1 ≤ a ≤ n − 3, by Lemma 5.32, we obtain

τ−a(1 2 3)τ a = (1τ a 2τ a 3τ a) = (1 a + 2 a + 3) ∈ An.

Finally, since (1 a + 1 a + 2) and (1 a a + 1) are in An , we can write

(1 a + 1 a + 2)(1 a a + 1) = (a a + 1 a + 2) ∈ An.

Now, by Theorem 5.46, the proof completes. �

Theorem 5.48 If n ≥ 5, then all cycles of length 3 are conjugate in An.

Proof Suppose that σ and δ are two cycles of length 3 in An . By Theorem 5.34, there
exists a permutation τ ∈ Sn such that τ−1στ = δ. If τ ∈ An , then we are done. So,
suppose that τ /∈ An . Let σ = (a b c). Since n ≥ 5, it follows that there exist x and y
not in {a, b, c}.We set θ = (x y). Since θ−1σθ = σ , it follows that (θτ )−1σ(θτ) = δ,
where θτ ∈ An . �

Theorem 5.49 For each n ≥ 4, the center of An is

Z(An) = {id}.

This means that An is centerless, for n ≥ 4.
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Proof We show that, for every non-identity permutation σ , there is a permutation in
An that does not commute with σ .

Since σ is not the identity, it follows that σ maps an element a into b with a 	= b.
Since n ≥ 4, we can choose distinct c and d not equal to a and b. Now, we claim
that the cycle (b c d) does not commute with σ . Indeed, σ(b c d) maps a into c, but
(b c d)σ maps a into b. Therefore, no σ other than the identity commutes with every
element of An . In other words, no σ other than the identity is in the center of An .
Thus, the only element of the center of An is the identity. �

Exercises

1. Let σ and τ belong to Sn . Prove that σ−1τ−1στ is an even permutation.
2. Prove that there is no permutation σ such that σ−1(1 3 4)σ = (1 2)(4 6 7).
3. Compute the order of each member of A4. What arithmetic relationship do these

orders have with the order of A4?
4. Prove that A5 has a subgroup of order 12.
5. Show that A4 has no subgroup of order 6.
6. Show that the group A5 contains no elements of order 4, andprecisely 15 elements

of order 2. How many elements of are there of orders 3, 6, respectively?
7. Show that A8 contains an element of order 15.
8. Find a cyclic subgroup of A8 that has order 4.
9. Find a non-cyclic subgroup of A8 that has order 4.
10. Suppose that H is a subgroup of Sn of odd order. Prove that H is a subgroup of

An .
11. Let n be an even positive integer. Prove that An has an element of order greater

than n if and only if n ≥ 8.
12. Let n be an odd positive integer. Prove that An has an element of order greater

than 2n if and only if n ≥ 13.
13. Let n be an even positive integer. Prove that An has an element of order greater

than 2n if and only if n ≥ 14.
14. Let H = {σ 2 | σ ∈ S4} and K = {σ 2 | σ ∈ S5}. Prove that H = A4 and K = A5.
15. Let H = {σ 2 | σ ∈ S6}. Prove that H 	= A6.
16. Why does the fact that the orders of the elements of A4 are 1, 2, and 3 imply that

|Z(A4)| = 1?
17. For n > 1, let H be the set of all permutations in Sn that can be expressed as a

product of a multiple of four transpositions. Show that H = A5.
18. Consider Sn for a fixed n ≥ 2 and let σ be a fixed odd permutation. Show that

every odd permutation in Sn is a product of σ and some permutation in An .
19. Show that if σ is a cycle of odd length, then σ 2 is a cycle.
20. Show that every permutation in An is a product of cycles of length n.
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5.4 Worked-Out Problems

Problem 5.50 Show that if n ≥ m, then the number of cycles of length m in Sn is
given by

n(n − 1)(n − 2) . . . (n − m + 1)

m
. (5.4)

Solution We count how many cycles of length m in Sn exist. We have to fill the
boxes:

. . .

1 2 3 m

with the numbers 1, 2, . . . , n with no repetitions. We have n choice for the first
box. Then, n − 1 choice for the second box, n − 2 choice for the third box,
and so on. Finally, we have n − m + 1 choice for the last box. So, there are
n(n − 1)(n − 2) . . . (n − m + 1) choices for a cycle of length m, but we empha-
sis that some them are the same. For example, the following cycles are the same:

• If m = 2, then (a b) = (b a) (2 equivalent notations);
• If m = 3, then (a b c) = (b c a) = (c a b) (3 equivalent notations);
• If m = 4, then (a b c d) = (b c d a) = (c d a b) = (d a b c) (4 equivalent
notations).

In general, by induction we deduce that for cycles of lengthm, there arem equiv-
alent notations. Since we have n(n − 1)(n − 2) . . . (n − m + 1) choices to form a
cycle of lengthm in which there arem equivalent notations, it follows that the number
of cycles of length m in Sn is equal to (5.4). �

Problem 5.51 If n is at least 4, show that every element of Sn can be written as
a product of two permutations, each of which has order 2. (Experiment first with
cycles.)

Solution First, we begin with an example. Let (a1 a2 . . . a7) be a cycle. We consider

α = (a1 a7)(a2 a6)(a3 a5)
β = (a2 a7)(a3 a6)(a4 a5).

Sinceα andβ are products of disjoint transpositions, it follows that o(α) = o(β) = 2.
Moreover, it is easy to see that αβ = (a1 a2 . . . a7). Next, we generalize the above
example to an arbitrary cycle σ = (a1 a2 . . . an). We take

α = (a1 an)(a2 an−1) . . . (ai an−i+1) . . . (am an−m+1),

β = (a2 an)(a3 an−1) . . . (ai+1 an−i+1) . . . (am+1 an−m+1),

wherem = [n/2]. Again, since α and β are products of disjoint transpositions, it fol-
lows that o(α) = o(β) = 2. Now, we claim that σ = αβ. Since α and β are products
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Table 5.1 A short table of values p(n)

n 1 2 3 4 5 6 7 8 9 10

p(n) 1 2 3 5 7 11 15 22 30 42

of disjoint transpositions, what they do to any one ai is determined just by the trans-
position containing that ai . Hence, for i ≤ m, the transposition (ai an−i+1) in α sends
ai to an−i+1 and then the transposition (ai+1 an−i+1) inβ sends an−i+1 to ai+1. In view
of this, if i ≤ m, then αβ sends ai to ai+1. Now, if i > m, thenwe take j = n − i + 1.
We have j ≤ m and i = n − j + 1. So, the transposition (a j an− j+1) is in α and it
sends ai = an− j+1 to a j and the transposition (a j−1+1 an−( j−1)+1) = (a j an− j+2) in
β sends a j to an− j+2. But since j = n − i + 1, it follows that n − j + 2 = i + 1.
Therefore, we observe that αβ sends ai to ai+1 when i > m. Consequently, σ = αβ.

Finally, suppose that σ is an arbitrary permutation. We can write σ = σ1σ2 . . . σk ,
where σi s are disjoint cycles. According to the above argument, each of σi can be
written as the product of two permutations αi and βi , where o(αi ) = o(βi ) = 2, and
αi and βi only permute the numbers appear in σi . Since σi s are disjoint, if j 	= i ,
then αi and βi are disjoint from α j and β j . Consequently, αi commutes with α j and
βi , for all i 	= j . Therefore, we conclude that

σ = σ1σ2 . . . σk = α1β1α2β2 . . . αkβk

= α1α2 . . . αkβ1β2 . . . βk .

Since a product of disjoint transpositions has order 2, it follows that

o(α1α2 . . . αk) = o(β1β2 . . . βk).

This completes the proof.
�

Problem 5.52 Let n be a positive integer. A sequence of positive integers n1, n2, . . .,
nk such that n1 ≥ n2 ≥ · · · ≥ nk and n = n1 + n2 + · · · + nk , is called a partition of
n. Let p(n) denote the number of partitions of n. Table 5.1 is a short table of values
p(n): Show that the number of conjugate classes in the symmetric group Sn is p(n).

Solution Let σ be a permutation in Sn . We can write σ as a product of distinct cycles
as follows:

(a1 a2 . . . ak1)(b1 b2 . . . bk2) . . . (c1 c2 . . . ck j )

such that k1 ≥ k2 ≥ · · · ≥ k j and k1 + k2 + · · · + k j = n. This is a unique expres-
sion, and so for each permutation we obtain a unique partition. By Corollary 5.36,
two permutations are conjugate if and only if they are similar; in other words, they
give rise to same partition. Hence, corresponding to a conjugate class we get a unique
partition of n.
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Conversely, let n1 ≥ n2 ≥ · · · ≥ nr and n = n1 + n2 + · · · + nr be a partition of
n. Then, there is a permutation τ which has a cycle decomposition of the type

(x1 x2 . . . xn1)(y1 y2 . . . yn2) . . . (z1 z2 . . . znr ).

Each δ ∈ Sn similar to τ is conjugate to τ , and every permutation in Sn conjugate to τ

is similar to τ . In this way, for each permutation we can associate a unique conjugate
class, namely, conjugate class of τ .

Therefore, there exists a one to one correspondence between conjugate classes in
Sn and partitions of n. Consequently, the number of conjugate classes in Sn is equal
to p(n).

�

Problem 5.53 Let s(n, k) denote the number of permutations in Sn which have
exactly k cycles (including cycles of length 1). Show that

s(n, 1) = (n − 1)!

and for k ≥ 2

s(n, k) = s(n − 1, k − 1) + (n − 1)s(n − 1, k).

Also, prove that

n∑
k=1

s(n, k)xk = x (n) := x(x + 1) . . . (x + n − 1).

The s(n, k) are known as Stirling numbers of the first kind. The expression x (n) is
known as the nth upper factorial.

Solution It is easy to see that s(n, 1) = (n − 1)!. In general, we sort the permutations
in Sn with exactly k cycles into two parts, depending on whether the permutation
contains the cycle (n) of length 1. There exist s(n − 1, k − 1) permutations con-
taining the cycle (n). The other permutations are formed by inserting n after any of
the n − 1 elements in the s(n − 1, k) permutations of n − 1 elements into k cycles.
Consequently, for k ≥ 2, we obtain s(n, k) = s(n − 1, k − 1) + (n − 1)s(n − 1, k).
Now, we can verify the formula for s(n, k) by induction. It is easy to see that the for-
mula holds for n = 1. Suppose the formula is true for s(m, k), where m < n. Then,
we have
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n∑
k=1

s(n, k)xk

= (n − 1)!x +
n∑

k=2

s(n − 1, k − 1)xk + (n − 1)
n∑

k=2

s(n − 1, k)xk

= (n − 1)!x + x
n−1∑
k=1

s(n − 1, k)xk

+(n − 1)

(
n∑

k=1

s(n − 1, k)xk − (n − 2)!x
)

= (n − 1)!x + xx (n−1) + (n − 1)
(
x (n−1) − (n − 2)!x)

= (x + n − 1)x (n−1)

= x (n),

as desired. �

5.5 Supplementary Exercises

1. Let G be a group of order 2m, let g ∈ G have order 2, and let λg : G → G be
defined by g(x) = gx . Show that λg is a product of m disjoint transpositions.

2. Show that the symmetry group of a rectangle which is not a square has order 4.
By labeling the vertices, 1, 2, 3, 4 represents the symmetry group as a group of
permutations of the set {1, 2, 3, 4}.

3. Prove that SX is abelian if and only if |X | ≤ 2.
4. Let H be a subgroup of Sn . Show that either H is a subset of An or exactly half

of the elements of H are even permutation.
5. List the elements of the following subgroup in S4:

〈(1 4)(2 3), (1 2)(3 4)〉.

6. Consider the permutation

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
8 3 1 6 9 4 10 12 13 5 11 15 16 14 2 7

)
∈ S16.

(a) Find its sign and its order. Compute the centralizer σ and compute the number
of elements in this centralizer;

(b) Write down σ 1000 as a product of disjoint cycles.

7. Let G be a non-abelian group of order 2p for some prime p 	= 2. Prove that G
contains exactly p − 1 elements of order p and it contains exactly p elements
of order 2.

8. If p is a prime number, show that in Sp there are (p − 1)! + 1 elements x satis-
fying x p = e.
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9. In the symmetric group S4 find two elements that neither commute with each
other and are not conjugate to one another.

10. Let σ be the cycle (1 2 . . . m). Show that σ k is also a cycle of length m if and
only if k is relatively prime to m.

11. Which permutation of the set X = {x1, x2, x3, x4, x5} leave the polynomial
x1 + x2 − x3 − x4 invariant? Find a polynomial in these variables which is left
invariant under all permutations in the group 〈(x1 x2 x3 x4), (x2 x4)〉 but not by
all of SX .

12. If σ ∈ An , prove that

CAn (σ ) = CSn (σ ) or |CAn (σ )| = 1

2
|CSn (σ )|.

13. If σ = (1 2 . . . m) ∈ Sn , show that |CSn (σ )| = (n − m)!m.
14. Let a(n,m) denote the number of permutations σ ∈ Sn such that σm = I d (with

a(0,m) = 1). Show that

∞∑
n=0

a(n,m)

n! xn = exp

⎛
⎝∑

d|m

xd

d

⎞
⎠ .

15. Let n ≥ 2 and let A be the set of all permutations in Sn of the form

σk =
∏

1≤i≤k/2

(i k − i),

for k = 3, 4, . . . , n + 1. Show that A generates Sn and that each σ ∈ Sn can
be written as a product of 2n − 3 or fewer elements from A.

16. Let p be a prime congruent to 1 (mod 4), and consider the set

X = {(x, y, z) ∈ N
3 | x2 + 4yz = p}.

Show that the function

(x, y, z) �→
⎧⎨
⎩

(x + 2z, z, y − x − z) if x < y − z
(2y − x, y, x − y + z) if y − z < x < 2y
(x − 2y, x − y + z, y) if x > 2y

is a permutation of order 2 on X with exactly one fixed point. Conclude that the
permutation (x, y, z) �→ (x, z, y) must also have at least one fixed point, and so
x2 + 4y2 = p for some positive integers x and y.

17. Find the permutation representation of a cyclic group of order n.
18. (Stirling Numbers of the SecondKind). In Problem 5.53, we have seen that the

Stirling numbers s(n, k) of the first kind count the number of ways to partition a
set of size n into k disjoint non-empty cycles. The Stirling numbers of the second
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kind, denoted by S(n, k), count the number of ways to partition a set of size n
into k non-empty disjoint subsets. It is clear that S(n, 1) = 1.

(a) Find S(n, 2);
(b) For n > 0, show that S(n, k) = kS(n − 1, k) + S(n − 1, k − 1);
(c) Show that

xn =
n∑

k=1

S(n, k)x (k).

19. In the symmetric group Sn , for each k = 3, . . . , n, let

σk =
[ k2 ]∏
i=1

(i k − i),

for example
σ3 = (1 2),
σ4 = (1 3),
σ5 = (1 4)(2 3),
σ6 = (1 5)(2 4),
σ7 = (1 6)(2 5)(3 4),
σ8 = (1 7)(2 6)(3 5).

Show that permutations σ1, σ2, . . . , σn generate Sn−1.
20. An affine geometry comprises a set X whose elements are called points together

with various subsets of X called lines such that

(a) Each pair of distinct points is contained in exactly one line;
(b) Each pair of distinct lines has at most one point in common;
(c) Given a line L and a point P not on it, there exists exactly one line L ′ which

contains P and has no point in common with L;
(d) There are at least two lines. Figure 5.2 gives a pictorial representation of an

affine geometry with 4 points and 6 lines.

Fig. 5.2 Affine geometry
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A collineation of an affine geometry is a permutation of the points of X which
maps lines to lines. Show that the set of all collineations form a group under
composition. What is the order of the collineation group of the above 4 element
affine geometry?
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