
Chapter 4
Cyclic Groups

The simplest type of groups are group of integers modulo n and cyclic groups.
Cyclic groups are groups in which every element is a power of some fixed element.
In this chapter, we examine cyclic groups in detail and determine their important
characteristics. We observe that a cyclic subgroup with generator a is the smallest
subgroup containing the set A = {a}. Can we extend subgroups generated by sets
with more than one element? We answer this question in this chapter too.

4.1 Group of Integers Modulo n

Let a, b ∈ Z and n be a positive integer. Already, we defined

a ≡ b(mod n) ⇔ n|a − b.

This relation is named as congruence modulo n. In Lemma 1.62, we proved that this
relation is an equivalence relation. The equivalence class of a ∈ Z is the set

a = {b ∈ Z | a ≡ b(mod n)}.

The integers modulo n partition Z into n different equivalence classes. We denote
the set of these equivalence classes by Zn . Thus,

Zn = {0, 1, . . . , n − 1}.

For instance, if n = 5, then
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+ 10 hr =

Fig. 4.1 5+10=3

0 = {. . . ,−15, −10, −5, 0, 5, 10, 15, . . .},
1 = {. . . ,−14, −9, −4, 1, 6, 11, 16, . . .},
2 = {. . . ,−13, −8, −3, 2, 7, 12, 17, . . .},
3 = {. . . ,−12, −7, −2, 3, 8, 13, 18, . . .},
4 = {. . . ,−11, −6, −1, 4, 9, 14, 19, . . .},

and
Z5 = {0, 1, 2, 3, 4}.

Theorem 4.1 (Zn,+) is an abelian group, where + is the addition modulo n, i.e.,
a + b = a + b, for all a, b ∈ Zn.

Proof First we show that+ is well defined on Zn . If a1 = a2 and b1 = b2, then there
exist integers q1 and q2 such that a1 − a2 = q1n and b1 − b2 = q2n. So, we have

(a1 + b1) − (a2 + b2) = a1 − a2 + b1 − b2 = q1n + q2n = (q1 + q2)n.

This implies that a1 + b1 ≡ a2 + b2(mod n), or equivalently a1 + b1 = a2 + b2.
Clearly, addition on Zn is associative and commutative. 0 is the additive identity
for Zn and each a ∈ Zn has an additive inverse −a in Zn . Note that −a = n − a. �

Sometimes, when no confusion can arise, we use 0, 1, . . . , n − 1 to indicate the
equivalence classes 0, 1, . . . , n − 1.

Example 4.2 For n = 12, we have 3 + 6 = 9, 8 + 9 = 5, 6 + 7 = 1 and 5 + 10 =
3. A familiar use of modular arithmetic is in the 12-hour clock (see Fig. 4.1, in which
the day is divided into two 12-hour periods).

Example 4.3 The Cayley table for (Z5,+) is as follows:
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+ 0 1 2 3 4

0 0 1 2 3 4

1 1 2 3 4 0

2 2 3 4 0 1

3 3 4 0 1 2

4 4 0 1 2 3

We can also multiply elements ofZn . Given two elements a and b inZn , we define

a · b = ab.

This is well defined and with respect to it, Zn becomes a commutative monoid.
A multiplicative inverse for a ∈ Zn is an element b ∈ Zn such that a · b = 1. An

element a ∈ Zn is a unit if it has a multiplicative inverse in Zn . In other words, the
integer a is a unit modulo n, meaning that ab ≡ 1(mod n) for some integer b.

By the above operation we do not obtain a group. For instance, 0 does not have a
multiplicative inverse.

Lemma 4.4 a is a unit in Zn if and only if (a, n) = 1.

Proof If a is a unit, then ab − 1 = qn for some integers b andq, and so ab + qn = 1.
Now, by Theorem (1.51) we conclude that (a, n) = 1.

Conversely, if (a, n) = 1, then by Theorem (1.51) there exist x, y ∈ Z such that
1 = ax + by. Thus, x is a multiplicative inverse of a. �

Let Un denote the set of units of Zn .

Theorem 4.5 For each integer n ≥ 1, the set Un forms an abelian group under
multiplication modulo n, with identity element 1.

Proof We first show that the product of two units a and b is also a unit. If a and b
are units, then they have inverses c and d, respectively, such that

a · c = ac = 1 and b · d = bd = 1.

Hence, we obtain that

ab · cd = abcd = acbd = ac · bd = 1 · 1 = 1.

Consequently, ab has the inverse cd , and is a unit. Moreover, for each a, b, c ∈ Un ,
we have

a · b = ab = ba = b · a,

a · (b · c) = a · bc = a(bc) = (ab)c = ab · c = (a · b) · c.
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Table 4.1 A short table of values ϕ(n)

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ϕ(n) 1 1 2 2 4 2 6 4 6 4 10 4 12 6 8

The identity element of Un is 1, since a · 1 = a = 1 · a, for all a ∈ Un . Finally, if
a ∈ Un , then by the definition of Un , there exists c ∈ Zn such that a · c = 1 = c · a.
This yields that c ∈ Un and c is the inverse of a. �

Definition 4.6 Let n be a positive integer. The Euler function ϕ is defined to be the
number of positive integers not exceeding n which are relatively prime to n.

Table4.1 is a short table of values ϕ(n):

Corollary 4.7 For each integer n ≥ 1, |Un| = ϕ(n).

Proof It follows from Lemma 4.4 and Theorem 4.5. �

Example 4.8 In Z14, the group of units is U14 = {1, 3, 5, 9, 11, 13}. The operation
in U14 is multiplication modulo 14. The following is Cayley table for U14:

· 1 3 5 9 11 13

1 1 3 5 9 11 13

3 3 9 1 13 5 11

5 5 1 11 3 13 9

9 9 13 3 11 1 5

11 11 5 13 1 9 3

13 13 11 9 5 3 1

Example 4.9 If p is prime, then all positive integers smaller than p are relatively
prime to p. Hence, Up = {1, 2, . . . , p − 1}.
Theorem 4.10 Let p > 1 be an integer. Then the following statements are equiva-
lent.

(1) p is prime;
(2) If a · b = 0 in Zp, then a = 0 or b = 0.

Proof (1 ⇒ 2) Since p is prime, it follows that Up = Zp − {0} is a group. Assume
that a · b = 0 in Zp. If a = 0, then there is nothing to prove. If a �= 0, then a ∈ Up.
So, there exists x ∈ Up such that x · a = 1. Therefore, we get

0 = x · 0 = x · (a · b) = (x · a) · b = 1 · b = b.
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(2 ⇒ 1) Suppose that p = ab for some integers a and b. We show a = ±1 or±p.
Since p = ab, it follows that ab = p = 0. This implies that a · b = 0 in Zp. Now,
by (2) we conclude that a = 0 or b = 0. If a = 0, then p|a, or equivalently a = kp
for some integer k. Hence, we have p = ab = kpb. This implies that 1 = kb. Since
k and b are integers, it follows that the only possibilities are b = ±1, and so a = ±p.
If b = 0, then a similar argument shows that a = ±1. Therefore, p is prime. �

Exercises

1. Solve equation x2 + 4x + 8 = 0 in Z11.
2. Find the number of distinct solutions to the equation x2 + (−1) = 0 in Z5, Z13,

and in Z9.
3. Find, if possible, a multiplicative inverse for 8 in each of Z5, Z21, and Z264.
4. Find a positive integer n and three elements a, b, and b in Zn such that none of

a · b, b · c, and c · a is equal to 0, yet a · b · c = 0.
5. Given a, b ∈ Zn , we say that b is a square root of a if b · b = a.

(a) Find all square roots of elements in Z17, if exist;
(b) If p is any prime, show that a has at most two square roots modulo n;
(c) Give an example that shows that it is possible for a number to have more than

two square roots.

4.2 Cyclic Groups

This section contains a few observations about cyclic groups. The structure of cyclic
groups is relatively simple. We examine cyclic groups in detail and determine many
of their important characteristics.

If G is a group, a ∈ G and k ∈ Z, then we define

an =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

aa . . . a︸ ︷︷ ︸
k times

if k > 0

e if k = 0
a−1a−1 . . . a−1
︸ ︷︷ ︸

−k times

if k < 0.

Lemma 4.11 If G is a group and a ∈ G, then H = {an | n ∈ Z} is a subgroup of G.

Proof It is straightforward. �
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Fig. 4.2 An examples of
string art to show that 5 is a
generator of Z12
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Definition 4.12 LetG be a group. A subgroup H ofG is cyclic if H = {an | n ∈ Z},
for some a ∈ H . In this case we say that H is the cyclic subgroup generated by a.

When this happens, we write H = 〈a〉.
Definition 4.13 A group G is called cyclic if there is an element a ∈ G such that
G = 〈a〉. Such an element a is called a generator of G.

Example 4.14 The set of integers under addition is an example of an infinite group
which is cyclic and is generated by both 1 and −1.

Example 4.15 If K4 = {e, a, b, c} is the Klein’s 4-group, then H = {e, a} is a
cyclic subgroup of K4; however, K4 is not a cyclic group.

Example 4.16 The set Zn = {0, 1, . . . , n − 1} for n ≥ 1 is a cyclic group under
addition modulo n. Both 1 and −1 are generators.

Depending on which n we are given, Zn may have many generators.

Example 4.17 Z12 = 〈1〉 = 〈5〉 = 〈7〉 = 〈11〉. To verify for instance thatZ12 = 〈5〉
we can use a string art. Figure4.2 is an example of string art that illustrates how 5
generates Z12. Twelve tacks are placed along a circle and numbered. A string is tied
to tack 0 and then looped around every fifth tack. As a result, the numbers of the
tacks that are reached are exactly the ordered numbers of 5 modulo 12. Note that if
every seventh tack were used, the same artwork would be obtained. If every third
tack were connected, as in Fig. 4.3, the resulting loop would only use four tacks, and
so 3 does not generate Z12.

Example 4.18 An nth root of unity is a complex number z which satisfies the equa-
tion zn = 1 for some positive integer n. Let ωn = e2π i/n be an nth root of unity. All
the nth roots of unity form a group undermultiplication. It is a cyclic group, generated
byωn , which is called a primitive root of unity. The term “primitive” exactly refers to
being a generator of the cyclic group, namely an nth root of unity is primitive when
there is no positive integer k smaller than n such that ωk

n = 1. See Fig. 4.4 for n = 5.
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Fig. 4.3 An example of string art to show that 3 is not a generator of Z12
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Fig. 4.4 5th roots of unity, where α = 2π
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Definition 4.19 The order of an element a in a group G is the least positive integer
n such that an = e. In additive notation this would be na = 0. If no such integer
exist, then we say a has infinite order. The order of an element a is denoted by o(a).

Note that the critical part of Definition 4.19 is that the order is the least positive
integer with the given property. The terminology order is used both for groups and
group elements, but it is usually clear from the context which one is considered.
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So, to find the order of an element a we need only compute the series of products
a, a2, a3, . . . until we first reach the identity. If the identity never appears in the
series, then a has infinite order.

Definition 4.20 A torsion group is a group all of whose elements have finite order.
On the other hand, a group is said to be torsion-free if all its non-identity elements
have infinite order.

Lemma 4.21 Let a �= e be an element of a group G. If n is the order of a and ak = e
for some integer k, then n divides k.

Proof By the Division algorithm, there exist integers q and r such that k = qn + r
and r is strictly smaller than n. So, we have

e = ak = anq+r = anqar .

Since a has order n, it follows that anq = (an)q = e. This implies that ar = e,
which contradicts our choice of n as the smallest positive integer for which a power
of a is the identity, unless r = 0. In this case k = nq and we conclude that n must
divide k. �

Theorem 4.22 If a ∈ G has order n, then

o(ak) = n

(n, k)
.

Proof Suppose that (n, k) = d. Then, there exist integers u and v such that k = ud,
n = vd and (u, v) = 1. Now, we have

(ak)v = (aud)v = auvd = aun = (an)u = e.

Moreover, if (ak)m = e, thenn|km. So,vd|udm, or equivalentlyv|um. Since (u, v) =
1, by Euclid’s lemma we conclude that v|m. Therefore, we obtain o(ak) = n/d. �

We now turn to some results about cyclic groups.

Theorem 4.23 Every cyclic group is abelian.

Proof Suppose that G is a cyclic group. By definition, there exists a ∈ G such that
G = 〈a〉. We need to show that xy = yx , for all x, y ∈ G. Now, x and y are of the
form xm and yn , for some integers m and n, respectively. Moreover, we have

xy = aman = am+n = an+m = anam = yx,

as desired. �

Theorem 4.24 Every subgroup of a cyclic group is also cyclic.
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Proof Let G = 〈a〉 be our cyclic group and suppose that H is a subgroup of G. We
must show that H is cyclic. If it consists of the identity alone, then it is trivial subgroup
and there is nothing to prove. So, we may assume that H �= {e}. We consider the set

S = {s ∈ N | as ∈ H}.

Since H is non-trivial, it follows that S is non-empty. But being a non-empty subset
of positive integers, S must have the least positive integer, call it k. We next claim
that H = 〈ak〉. In order to prove this claim, it suffices to let h be an arbitrary element
of H and show that h ∈ 〈ak〉. Since h ∈ G = 〈a〉, it follows that h = am , for some
integerm. We now invoke the Division algorithm tom and k to obtain integers q and
r such that m = kq + r , where 0 ≤ r < k. Therefore, we have

h = am = akq+r = akqar .

This implies that
ar = a−kqam .

As ak belongs to H , so does a−kq . By closure property of a subgroup, we know that
a−kqam = ar belongs to H . As r is strictly smaller than k, it contradicts the choice
of k as the smallest element of S, unless r = 0. This proves that h = aqk = (ak)q ∈
〈ak〉 = H . �

Remark 4.25 Theorem 4.24 tells us that all subgroups of additive group Z are of
the form nZ = {nk | k ∈ Z}.
Theorem 4.26 Let G be a finite cyclic group generated by a.

(1) The generator a has finite order;
(2) If o(a) = n, then the elements ak with k = 0, 1, . . . , n − 1 are all distinct and

G = {e, a, a2, . . . , an−1}.

Proof Since G is cyclic, it follows that

G = 〈a〉 = {. . . , a−2, a−1, e, a, a2, . . .}.

Since G is finite, it follows that for some integers k and m we have am = ak . This
implies that am−k = e and so a has finite order.

If o(a) = n, then we claim that G = {e, a, a2, . . . , an−1}. We see that for 0 ≤
m < k ≤ n − 1, the elements am and ak are distinct as otherwise am−k = e with
|m − k| < n. Consequently, {e, a, a2, . . . , an−1} is a subgroup of G containing
n elements. Now, if x is an arbitrary element of G, then x = a j , for some integer
j . If j > 0, then applying the Division algorithm, we obtain a j = ar , where 0 ≤
r < n − 1. If j < 0 and s = − j , then we can make as = ar , for some r < n and
a j = a−s = (as)−1 = (ar )−1 = an−r . This yields that G = {e, a, a2, . . . , an−1}.
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Therefore, we conclude that the cyclic group generated by an element of order n has
precisely n elements. �

Corollary 4.27 Let G be a group and a be an element of G. Then,

o(a) = |〈a〉|.

Corollary 4.28 Let G be a finite group of order n. Then, G is cyclic if and only if
there exists an element of G of order n.

Corollary 4.29 If G is an infinite cyclic group, then G has an infinite number of
subgroups.

Proof If G = 〈a〉, then 〈an〉 �= 〈am〉, for each integer n �= m. �

Theorem 4.30 Let G be a cyclic group of order n generated by a and let k be a
positive integer. If d = (n, k), then xk and xd generate the same cyclic subgroup of
G.

Proof If d = (n, k), we show that ak and ad are both powers of each other. Since d|k,
it follows that ak = (xd)k/d . On the other hand, since d = (k, n), it follows that d =
kr + ns, for some r, s ∈ Z. This implies that ad = akr+ns = akrans = akr = (ak)r .
This yields that ak and ad generate the same subgroup of G. �

Theorem 4.31 Let G be a cyclic group of order n. Then, for each m dividing n, G
has a unique subgroup of order m, namely 〈an/m〉.
Proof If k = n/m, then (ak)m = (an/m)m = an = e and no smaller positive integer
power of ak could be e. So, 〈ak〉 is a subgroup of order m. Next, we show that
〈ak〉 is the only subgroup of order m. In order to do this, let H be an arbitrary
subgroup of G of order m. By the proof of Theorem 4.24, we have H = 〈ad〉,
where d is the smallest positive integer such that ad is in H . We apply the Division
algorithm to obtain integers q and r such that n = dq + r and 0 ≤ r < d. Then, we
have e = an = adq+r = (ad)qar . This implies that ar = (ad)−q ∈ H . Consequently,
r = 0 and so n = dq. Moreover, we have

m = |H | = |〈ad〉| = n

d
.

Therefore, we obtain d = n/m = k, i.e., H = 〈ad〉 = 〈ak〉. This completes
the proof. �

Theorem 4.32 (Generators of a Finite Cyclic Group) Let G be a cyclic group of
order n generated by a. Then, G = 〈ak〉 if and only if k and n are relatively prime.

Proof Suppose that k and n are relatively prime. Then, we may write 1 = kx + ny,
for some integers x and y. Then, we have
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a = akx+ny = akxany = akx = (ak)x .

This implies that a belongs to 〈ak〉, and so all powers of a belong to 〈ak〉. Thus, we
conclude that G = 〈ak〉 and ak is a generator of G.

Conversely, suppose that k and n are not relatively prime. Then, there exists an
integer d > 1 such that d|n and d|k. Hence, there exist integers m and r such that
n = md and k = dr . So, we get

(ak)m = adrm = arn = (an)r = e.

Since d > 1, it follows that m < n. This shows that ak is not a generator of G. �

Corollary 4.33 Let G be a cyclic group of order n generated by a. Then, G has
φ(n) generators.

Corollary 4.34 Let k be a positive integer. Then, k is a generator of Zn if and only
if k and n are relatively prime.

Theorem 4.35 Let G be a cyclic group of order n generated by a. If d is a positive
divisor of n, then the number of elements of order d is φ(d).

Proof By Theorem 4.31, there exists exactly one subgroup of order d, say 〈b〉.
Then, every element of order d generates 〈b〉. On the other hand, by Theorem 4.32,
an element bk generates 〈b〉 if and only if (k, d) = 1. The number of such elements
is ϕ(d). �

Theorem 4.36 Every infinite cyclic group has exactly two generators.

Proof Suppose that a is a generator of the infinite cyclic group G. Then, we have
G = {. . . , a−2, a−1, e, a, a2, . . .}. Now, if ak ∈ G is another generator of G,
then G = {. . . , a−2k, a−k, e, ak, a2k, . . .}. Since ak+1 ∈ G, it follows that there
exists an integerm such that ak+1 = akm . This implies that ak(1−m)+1 = e. SinceG is
infinite, it follows that k(m − 1) + 1 = 0, or equivalently k(m − 1) = 1. This yields
that k = ±1. Consequently, if a is a generator of G, then another generator of G is
only a−1. �

For any finite group G, let θG(d) be the number of elements of G of order d.
Then, it is clear that

|G| =
|G|∑

d=1

θG(d).

Theorem 4.37 In a finite group (not necessary cyclic), θG(d) is divisible by ϕ(d).

Proof Let G be a finite group. If G has no element of order d, then ϕ(d)|0 = θG(d)

and we are done. So, suppose that there is a ∈ G such that o(a) = d. By Theorem
4.35, 〈a〉 has ϕ(d) elements of order d. Now, if all elements of order d belong
to 〈a〉, we are done. Hence, suppose that x ∈ G such that o(x) = d and x ∈ 〈a〉.
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Then, 〈x〉 has ϕ(d) elements of order d too. Next, if 〈a〉 and 〈x〉 have no elements
of order d in common, we have found 2ϕ(d) elements of order d. Note that if
there is y ∈ 〈a〉 ∩ 〈x〉 with o(y) = d, then we obtain 〈a〉 = 〈x〉 = 〈y〉, and this is a
contradiction. Continuing, we conclude that the number of elements of order d is a
multiple of ϕ(d). �

Exercises

1. Draw the Hasse diagram for a cyclic group of order 30.
2. Show that the elements of finite order in an abelian group G form a subgroup of

G.
3. Let U24 be the group of invertible elements in Z24. Find all cyclic subgroups of

U24.
4. Find an example of a non-cyclic group, all of whose proper subgroups are cyclic.
5. Find a collection of distinct subgroups 〈a1〉, 〈a2〉, . . ., 〈an〉 with the property that

〈a1〉 ≤ 〈a2〉 ≤ . . . ≤ 〈an〉 with n as large as possible.
6. Let G be a group and a, b ∈ G. Prove that

(a) o(a) = o(a−1);
(b) o(ab) = o(ba);
(c) o(a) = o(g−1ag), for all g ∈ G;
(d) If ab = ba, and o(a) and o(b) are relatively prime, then o(ab) = o(a)o(b).

7. If a cyclic group has an element of infinite order, how many elements of finite
order does it have?

8. Give an example of a group that has exactly 6 subgroups (including the trivial
subgroup and the group itself). Generalize to exactly n subgroups for any positive
integer n.

9. If G is an abelian group and contains cyclic subgroups of orders 4 and 5, what
other sizes of cyclic subgroups must G contain? Generalize.

10. If G is an abelian group and contains a pair of cyclic subgroups of order 2, show
that G must contain a subgroup of order 4. Must this subgroup be cyclic?

11. Let G be an abelian group. Show that the elements of finite order in G form a
subgroup. This subgroup is called the torsion subgroup of G.

12. Find the torsion subgroup of the multiplicative group R
∗ of non-zero real num-

bers.
13. Find the torsion subgroup T of the multiplicative groupC∗ of non-zero complex

numbers.
14. Let G be an abelian group of order mn such that m and n are relatively prime. If

there exists a, b ∈ G such that o(a) = m and o(b) = n, prove that G is cyclic.
15. Show that both U25 and U27 are cyclic groups.
16. Prove that U2n (n ≥ 3) is not cyclic.
17. Let a and b be elements of a group. If o(a) = m, o(b) = n, and m and n are

relatively prime, show that 〈a〉 ∩ 〈b〉 = {e}.
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18. Suppose that o(x) = n. Find a necessary and sufficient condition on r and s such
that 〈xr 〉 ≤ 〈xs〉.

19. Suppose that o(x) = n. Show that 〈xr 〉 = 〈xs〉 if and only if (n, r) = (n, s).
20. Suppose that a is a group element such that o(a28) = 10 and o(a22) = 20. Deter-

mine o(a).
21. Determine the Hasse diagram for subgroups of Zp2q , where p and q are distinct.
22. Give an example of a group and elements a, b ∈ G such that o(a) and o(b) are

finite but o(ab) is not of finite order.

4.3 Generating Sets

Weare interested in answering the following questions:What is the smallest subgroup
of a groupG containing elements x1, . . . , xn ∈ G? How can we describe an arbitrary
element in this subgroup?Or,more generally,what is the smallest subgroupof a group
G containing a subset A of G and how can we describe an arbitrary element in this
subgroup?

Definition 4.38 Let G be a group and A be a subset of G. Let {Hi | i ∈ I } be the
family of all subgroups of G which contain A. Then

⋂

i∈I
Hi

is called the subgroup of G generated by the set A and denoted by 〈A〉.
Indeed, 〈A〉 is the smallest subgroup of G that contains A. The elements of A are

the generators of the subgroup 〈A〉, which may also be generated by other subsets.
If A = {x1, . . . , xn}, then we write 〈x1, . . . , xn〉 instead of 〈A〉. If G = 〈x1, . . . , xn〉,
then G is said to be finitely generated.

Remark 4.39 If A = {a}, then G = 〈a〉 is a cyclic group.
Theorem 4.40 If G is a group and A is a non-empty subset of G, then

〈A〉 = {xα1
1 . . . xαn

n | xi ∈ A, αi ∈ Z, 1 ≤ i ≤ n, n ∈ N}.

Proof Let

H = {xα1
1 . . . xαn

n | xi ∈ A, αi ∈ Z, 1 ≤ i ≤ n, n ∈ N}.

Clearly, H is a non-empty subset ofG. Suppose that x and y are twoarbitrary elements
of H . Then, there exist x1, . . . , xn, y1, . . . , ym ∈ A and α1, . . . , αn, β1, . . . , βm ∈ Z

such that
x = xα1

1 . . . xαn
n and y = yβ1

1 . . . yβm
m .
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Hence, we obtain
xy−1 = xα1

1 . . . xαn
n y−βm

m . . . y−β1
1 ∈ H.

Thus, H is a subgroup of G. Moreover, A ⊆ H . Consequently, by the definition of
〈A〉, we conclude that 〈A〉 ⊆ H .

On the other hand, since 〈A〉 is a subgroup of G, it follows that all elements of the
form xα1

1 . . . xαn
n (for xi ∈ A and αi ∈ Z) belong to 〈A〉. This yields that H ⊆ 〈A〉.

Therefore, we deduce that 〈A〉 = H . �

Remark 4.41 If G is an additive group and A is a non-empty subset of G, then

〈A〉 = {α1x1 + . . . αnxn | xi ∈ A, αi ∈ Z, 1 ≤ i ≤ n, n ∈ N}.

Example 4.42 Every finite group is finitely generated since G = 〈G〉.
Example 4.43 The additive groupQ is not finitely generated: a finite set of rational
numbers has a common denominator, say m, and the subgroup of Q generated by
these rational numbers (their integral multiples and sums thereof) will only give
rise to rational numbers with denominators dividing m. Not all rationales have such
denominators (try 1

m+1 ), so Q does not have a finite set of generators as an additive
group.

Example 4.44 A finitely generated group is at most countable, so an uncountable
group is not finitely generated. For example, the group of real numbers under addition
is not finitely generated.

If G is a group and {Hi | i ∈ I } is a family of subgroups of G, then
⋃

i∈I
Hi is not a

subgroup of G in general. The subgroup 〈⋃
i∈I

Hi 〉 generated by the set ⋃

i∈I
Hi is called

the subgroup generated by groups {Hi | i ∈ I }. If H and K are subgroups of G, then
the subgroup 〈H ∪ K 〉 generated by H and K is called the join of H and K and is
denote by H ∨ K .

Theorem 4.45 If G is a group, A is a subgroup of Z(G), the center of G, and z ∈ G,
then 〈A ∪ {z}〉, the subgroup generated by A and z, is abelian.

Proof Let H = 〈A ∪ {z}〉 and y be an arbitrary element of H . First, we show that y =
azk , for some a ∈ A and integer k. By Theorem 4.40, we can write y = a1a2 . . . an ,
where for each 1 ≤ i ≤ n, ai ∈ A, ai = z or ai = z−1. Since A is a subgroup of
Z(G), it follows that a1, a2, . . . , an commute. We set all ai s that belong to A on the
left side and hence other elements will be z or z−1. If a is the product of ai s that are
in A, then y = azk for some integer k.

Now, suppose that x and y are two arbitrary elements of H . Then, we have

x = a1zk1 and y = a2zk2 ,

for some a1, a2 ∈ A and integers k1, k2. Thus, we obtain
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xy = (a1zk1)a2zk2

= a2(a1zk1)zk2

= a2a1zk2 zk1

= a2zk2a1zk1

= yx .

This yields that H is an abelian subgroup of H . �

Exercises

1. In (Z,+), determine the subgroup generated by

(a) {4, 6};
(b) {4, 5}.

2. Let G be a group and X be a non-empty subset of G. For every a ∈ G, prove that
〈a−1Xa〉 = a−1〈X〉a.

3. Prove that group generated by G \ H equals G, where H is a proper subgroup of
G.

4. Let G be an abelian group and A = {a1, . . . , an} be a finite subset of G. If the
order of each element of A is finite, prove that 〈A〉 is a finite subgroup of G.

5. Suppose that G is a group containing subgroups H and K . Show that H ∪ K =
H ∨ K if and only if H ∩ K ∈ {H, K }.

6. Show that there is a group G containing subgroups H , K , L such that H ∪ K ∪
L = H ∨ K ∨ L but H ∩ K ∩ L /∈ {H, K , L}.

4.4 Worked-Out Problems

Problem 4.46 Let G be an abelian group and x, y ∈ G be of finite orders.

(1) Show that o(xy)|[o(x), o(y)], where [o(x), o(y)] stands for least common mul-
tiple;

(2) Give an example to illustrate that o(xy) �= [o(x), o(y)], in general.
Solution (1) Assume that x and y are two elements of orders m and n, respectively.
Let [m, n] = r . Then, we have r = mm ′ = nn′, and hence

xr yr = (xm)m′(yn)n′ = e.

Now, suppose that o(xy) = k, then k is the smallest positive integer k such that
(xy)k = e. Since G is abelian, it follows that
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(xy)r = xr yr = e and (xy)k = xk yk = e.

This shows that (xy)k = (xy)r = e. Since o(xy) = k, we conclude that k|r . This
completes the proof.

(2) For this part, let x be a non-identity element of G and let y = x−1. Then, it is
clear that 1 = o(e) = o(xx−1) = o(xy) �= [o(x), o(y)]. �
Problem 4.47 Prove that a group is finite if and only if it has only finitely many
subgroups.

Solution Suppose that G is a finite group of order n. Since the number of subsets of
G is 2n , it follows that the number of subgroups of G is less than 2n .

Conversely, suppose that the number of subgroups of G is finite. Let a ∈ G be
an arbitrary element. We claim that 〈a〉 is finite. If 〈a〉 is an infinite group, then the
order of a is infinite. Now, for each positive integer k, let Hk = 〈ak〉. We prove Hks
are distinct. Indeed, if Hi = Hj , for some positive integers m and n, then ai ∈ 〈a j 〉
and a j ∈ 〈ai 〉. So, there exist integers r and s such that ai = a jr and a j = ais . This
yields that ai− jr = e and a j−is = e. Since the order of a is infinite, it follows that
i − jr = 0 and j − is = 0, or i | j and j |i . Hence, i = j . Consequently, Hks are
distinct. This means that G has many infinitely subgroups, and it is a contradiction.
Therefore, 〈a〉 is finite, for every a ∈ G. Since

G = ⋃

a∈G
〈a〉

and the number of subgroups of G is finite, we conclude that

G = 〈a1〉 ∪ 〈a2〉 ∪ . . . ∪ 〈an〉.

Since the finite union of finite sets is finite, it follows that G is finite. �

4.5 Supplementary Exercises

1. LetG = {a1, a2, . . . , an} be a finite abelian group of order n and x = a1a2 . . . an
be the product of all the elements in G. Show that x2 = e.

2. Suppose that the elements x, y in the group G satisfy the relation xyx−1 = y2,
where y is a non-identity element.

(a) Show that x5yx−5 = y32;
(b) If o(x) = 5, compute o(y).

3. Let G be the collection of all rational numbers x which satisfy 0 ≤ x < 1. Show
that the binary operation

x ⊕ y =
{
x + y if 0 ≤ x + y < 1
x + y − 1 if x + y ≥ 1.
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makes G into an infinite abelian group all of whose elements have finite order.
4. Let G be a group and x ∈ G such that o(x) = mn, where m and n are positive

integers and relatively prime. Show that one can write x = ab, where o(a) = m,
o(b) = n and ab = ba. Moreover, prove the uniqueness of such a representation.

5. Give an example of an infinite group that has exactly two elements of order 4.
6. For every integer n greater than 2, prove that the group Un2−1 is not cyclic.
7. Let G be an abelian and suppose that G has elements of orders m and n, respec-

tively. Prove that G has an element whose order is the least common multiple of
m and n.

8. Let G be a finite group. Prove that the following conditions are equivalent:

(a) G is cyclic and |G| = pn , where p is prime and n is a non-negative integer;
(b) If A and B are subgroups of G, then A ≤ B or B ≤ A.

9. Prove that the additive group of all rational numbers is a torsion-free group and,
further, that it can be represented as a union of an ascending chain of cyclic
subgroups.

10. Suppose that G is a finitely generated group and that G = 〈Y 〉, where Y is not
necessarily a finite set. Prove that there is a finite subset X of Y such thatG = 〈X〉.

11. Prove that a group G is finitely generated if and only if any increasing sequence
H1 ≤ H2 ≤ . . . of subgroups of G stabilizes, i.e., Hi = Hj for i, j ≥ k starting
from some k.
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