
Chapter 3
Groups

The theory of groups is the oldest branch of modern algebra. The concept of a group
is surely one of the central ideas of mathematics. A group is a set in which you can
perform one operation with some nice properties. In this chapter we introduce the
basic concepts of group theory.

3.1 A Short History of Group Theory

The concept of a group is one of the most fundamental in modern mathematics.
Group theory can be considered the study of symmetry: the collection of symmetries
of some object preserving some of its structure forms a group; in some sense all
groups arise this way. Although permutations had been studied earlier, the theory of
groups really began with Galois (1811–1832) who demonstrated that polynomials
are best understood by examining certain groups of permutations of their roots. Since
that time, groups have arisen in almost every branch of mathematics. There are three
historical roots of group theory:

(1) The theory of algebraic equations;
(2) Number theory;
(3) Geometry.

Euler, Gauss, Lagrange, Abel, and Galois were early researchers in the field of
group theory. Galois is honored as the first mathematician linking group theory and
field theory, with the theory that is now called Galois theory.

Permutations were first studied by Lagrange (1770, 1771) on the theory of alge-
braic equations. Lagrange’s main object was to find out why cubic equations could
be solved algebraically. In studying the cubic, for example, Lagrange assumes the
roots of a given cubic equation are x ′, x ′′, and x ′′′. Then, taking 1, w, and w2 as the
cube roots of unity, he examines the expression

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
B. Davvaz, A First Course in Group Theory,
https://doi.org/10.1007/978-981-16-6365-9_3

47

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-6365-9_3&domain=pdf
https://doi.org/10.1007/978-981-16-6365-9_3


48 3 Groups

R = x ′ + wx ′′ + w2x ′′′

and notes that it takes just two different values under the six permutations of the
roots x ′, x ′′, and x ′′′. But, he could not fully develop this insight because he viewed
permutations only as rearrangements, and not as bijections that can be composed.
The composition of permutations does appear in the works of Ruffini and Abbati
about 1800; in 1815 Cauchy established the calculus of permutations.

Galois found that if r1, r2, . . . , rn are the n roots of an equation, there is always
a group of permutations of the rs such that every function of the roots invariable by
the substitutions of the group is rationally known, and conversely, every rationally
determinable function of the roots is invariant under the substitutions of the group.
Galois also contributed to the theory of modular equations and to that of elliptic
functions. His first publication on the group theory was made at the age of 18 (1829),
but his contributions attracted little attention until the publication of his collected
papers in 1846.

The number-theoretic strand was started by Euler and taken up by Gauss, who
developed modular arithmetic and considered additive and multiplicative groups
related to quadratic fields. Indeed, in 1761, Euler studied modular arithmetic. In
particular, he examined the remainders of powers of a number modulo n. Although
Euler’s work is, of course, not stated in group-theoretic terms, he does provide an
example of the decomposition of an abelian group into cosets of a subgroup. He also
proves a special case of the order of a subgroup is being a divisor of the order of the
group.

Gauss in 1801 was to take Euler’s work much further and gives a considerable
amount of work on modular arithmetic which amounts to a fair amount of theory
of abelian groups. He examines orders of elements and proves (although not in this
notation) that there is a subgroup for every number dividing the order of a cyclic
group. Gauss also examined other abelian groups. He looked at binary quadratic
forms

ax2 + 2bxy + cy2,

where a, b, and c are integers. Gauss examined the behavior of forms under trans-
formations and substitutions. He partitions forms into classes and then defines a
composition on the classes. Gauss proves that the order of composition of three
forms is immaterial, so in modern language, the associative law holds. In fact, Gauss
has a finite abelian group, and later (in 1869) Schering, who edited Gauss’s works,
found a basis for this abelian group.

Geometry has been studied for a very long time, so it is reasonable to ask what
happened to geometry at the beginning of the nineteenth century that contributed to
the rise of the group concept. Geometry had begun to lose its metric character with
projective and non-Euclidean geometries being studied. Also the movement to study
geometry in n dimensions led to an abstraction in geometry itself. The difference
between metric and incidence geometry comes from the work of Monge, his student
Carnot, and perhaps, most importantly, the work of Poncelet. Non-Euclidean geom-
etry was studied by Lambert, Gauss, Lobachevsky, and, János Bolyai, among others.
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Möbius in 1827, although hewas completely unaware of the group concept, began
to classify geometries using the fact that a particular geometry studies properties
invariant under a particular group. Steiner in 1832 studied notions of synthetic geom-
etry which were to eventually become part of the study of transformation groups.

Arthur Cayley and Augustin Louis Cauchy were among the first to appreciate the
importance of the theory, and to the latter especially are due to a number of important
theorems. The subject was popularized by Serret, Camille Jordan, and Eugen Netto.
Other group theorists of the nineteenth century were Bertrand, Charles Hermite,
Frobenius, Leopold Kronecker, and Emile Mathieu.

It was Walther von Dyck who, in 1882, gave the modern definition of a group.
The study of what are now called Lie groups, and their discrete subgroups, as

transformation groups, started systematically in 1884 by Sophus Lie; followed by
the works of Killing, Study, Schur, Maurer, and Cartan. The discontinuous (discrete
group) theory was built up by Felix Klein, Lie, Poincaré, and Charles Emile Picard,
in connection in particular with modular forms.

Other important mathematicians in this subject area include Emil Artin, Emmy
Noether, Ludwig Sylow, and many others (Fig. 3.1).

3.2 Binary Operations

Weare used to addition andmultiplication of real numbers. These operations combine
two real numbers to generate a unique single real number. So, we can look at these
operations as functions on the set R × R defined by

+ : R × R → R

(a, b) → a + b

and
· : R × R → R

(a, b) → a · b

These operations are examples of binary operations. The general definition of a
binary operation is as follows:

Definition 3.1 Let S be a non-empty set. A binary operation on S is a function
� : S × S → S that maps each ordered pair (x, y) of S to an element �(x, y) of S.
For convenience wewrite a � b instead of �(a, b). The set S is said to be closed under
the operation �. The pair (S, �) (or just S, if there is no fear of confusion) is called
a groupoid.

Binary operations are usually denoted by special symbols +, −, ·, ×, �, ∗, ◦, ⊕,
�, ∨, ∧, ∪, ∩ rather than by letters.

Example 3.2 The ordinary operations of addition “+”, subtraction “−”, and mul-
tiplication “·” are binary operations on Z, Q, and R. Subtraction is not a binary
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Fig. 3.1 Pictures of some famous mathematicians
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operation on N, because 3 − 7 is not in N. Division is not a binary operation on Q,
however, division is a binary operation on Q \ {0}.
Example 3.3 Exponential operation a � b = ab is a binary operation on the set N

of natural numbers while it is not a binary operation on the set Z of integers.

Binary operators can be defined on arbitrary sets, not only sets of numbers.

Example 3.4 We might consider a set S of colors, and define a binary operation ⊕
which tells us how to combine two colors to form another color. If Red, Blue, Green,
Yellow, and Purple are elements of S, then we can write Red ⊕ Blue = Purple, since
we can combine the first two colors to make the third.

Example 3.5 If X is a set, then union “∪” and intersection “∩ ” are binary operations
on P(X).

Example 3.6 Let P be the set of all propositions. Then, “and” and “or” are binary
operations on P. In mathematical logic “and” is usually represented by ∧, and “or”
is represented by ∨.
Example 3.7 We noted earlier that binary operations can act not only on numbers
but also on arbitrary elements, such as colors or other sets. Here we consider the set
S = {R0, R1, R2, R3, S0, S1, S2, S3} as defined inExample 2.17, a set of geometric
transformations, which we can combine. We can consider the binary operation of
combining these geometric transformations by doing one and then doing the other.

Definition 3.8 One way of describing a binary operation � on a set S (provided S is
not too big) is to form a grid with rows and columns labeled by the elements of S,
and enter the element a � b in the cell in row a and column b (for all a, b ∈ S). This
is called a multiplication table or a Cayley table.

Let � be be a binary operation on a finite set S = {a1, a2, . . . , an} having n
elements. We construct a Cayley table for � as follows:

� a1 a2 . . . an
a1 a1 � a1 a1 � a2 . . . a1 � an
a2 a2 � a1 a2 � a2 . . . a2 � an
...

...
...

...
...

an an � a1 an � a2 . . . an � an

Let � be a binary operation on a set S. There are a number of interesting properties
that a binary operation may or may not have. Specifying a list of properties that a
binary operation must satisfy will allow us to define deep mathematical objects such
as groups.

• � is commutative if a � b = b � a, for all a, b ∈ S.
• � is associative if a � (b � c) = (a � b) � c, for all a, b, c ∈ S.
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Fig. 3.2 Cayley table of a
commutative binary
operation
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a � b

b � ab
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a � b =
b � a

Let S be finite. The property that a � b = b � a, for all a, b ∈ S, means that theCayley
table must be symmetric across the main diagonal, see Fig. 3.2.

Example 3.9 (1) Let S = R and a � b = a, for all a, b ∈ S. Then 3 � 5 = 3 and
5 � 3 = 5, and so � is not commutative. However, if a, b, c ∈ S, then a � (b � c) =
a = a � b = (a � b) � c, and hence � is associative.

(2) Let S = Q \ {0} and a � b = a/b, for all a, b ∈ S. Then 1 � 3 = 1/3 
= 3 =
3/1, and so � is not commutative. Also, we have

1 � (2 � 3) = 1 � (2/3) = 3/2 
= 1/6 = (1/2) � 3 = (1 � 2) � 3.

Hence � is not associative.

Exercises

1. Is (Z, �) a groupoid if � is defined, for each x, y ∈ Z, by

(a) x � y = √
x + y;

(b) x � y = (x + y)2;
(c) x � y = x − y − xy;
(d) x � y = 0.

2. Define � on Q as a � b = ab + 1, for all a, b ∈ Q. Is � associative (prove or find
a counterexample)?

3. Prove that if � is an associative and commutative binary operation on a set S, then
(a � b) � (c � d) = (

(d � c) � a
)
� b, for all a, b, c, d ∈ S.

4. Let S be a finite set containing n elements. Find the total number of binary
operations on S.
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5. Let S be a finite set containing n elements. Show that the total number of com-
mutative binary operation on S is nn(n−1)/2.

3.3 Semigroups and Monoids (Optional)

A semigroup is an algebraic structure consisting of a non-empty set together with
an associative binary operation. The formal study of semigroups began in the early
twentieth century. Semigroups are important in many areas of mathematics. We give
here some basic definitions and very basic results concerning semigroups.

Definition 3.10 A semigroup is a pair (S, �) in which S is a non-empty set and � is
a binary associative operation on S.

Semigroups are therefore one of the most basic types of algebraic structure.
For an element x ∈ S we let xn be the product of x with itself n times. So, x1 = x ,

x2 = x � x , and xn+1 = xn � x for n ≥ 1.
Let x1, x2, . . . , xn be a sequence of elements of a semigroup (S, �). We define

p1 = x1,
pk = pk−1 � xk, for k > 1.

Now an arbitrary product of n elements of S is determined by an expression involv-
ing n elements of S together with equal numbers of left and right parentheses that
determine the order in which the product is evaluated. The general associative law
ensures that the value of such a product is determined only by the order in which
the elements of the semigroup occur within that product. Thus a product of n ele-
ments of S has the value x1 � x2 � . . . � xn , where x1, x2, . . . , xn are the elements to
be multiplied, listed in the order in which they occur in the expression defining the
product.

Example 3.11 Given four elements x1, x2, x3, and x4 of a semigroup (S, �), the
products

((x1 � x2) � x3) � x4, (x1 � x2) � (x3 � x4), (x1 � (x2 � x3)) � x4,
x1 � ((x2 � x3) � x4), x1 � (x2 � (x3 � x4)),

all have the same value. Note that according to the above definition, p4 = ((x1 �

x2) � x3) � x4.

Theorem 3.12 (GeneralAssociative Law)Let (S, �) be a semigroup and x1, x2, . . . ,
xn ∈ S. Every way of inserting balanced pairs of brackets into the product x1 � x2 �

. . . � xn give the same result.

Proof We prove that any insertion of brackets into the product gives the same result
as x1 � (x2 � (x3 � . . . � xn) . . .). We proceed by mathematical induction on n. For
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n = 1, the result is trivially true, for there is only one way to insert balanced pairs of
brackets into the product x1. This is the base case of the induction.

So, assume that the result holds for all n < k; we aim to show it is true for k. Take
some bracketing of the product x1, x2, . . . , xk and let y be the result. This bracketing
is a product of some bracketing of x1, . . . , x j and some bracketing of x j+1, . . . , xk
for some 1 ≤ j < k. Now, we consider the following two cases:

Case 1: Suppose that j = 1. By the assumption, the result of inserting brackets
into x j+1 � . . . � xk = x2 � . . . � xk is equal to x2 � (x3 � (. . . xk) . . .). Thus, y = x1 �

(x2 � (x3 � (. . . xk) . . .)), which is the result with n = k.
Case 2: Suppose that j > 1. By the assumption, the result of the bracketing of

x1 � . . . � x j is x1 � (x2 � (. . . x j ) . . .) and the result of the bracketing of x j+1 � . . . �

xk is x j+1 � (x j+2 � (. . . xk) . . .). Consequently, we obtain

y = (
x1 � (x2 � (. . . x j ) . . .)

)(
x j+1 � (x j+2 � (. . . xk) . . .)

)

= x1 �
(
((x2 � (. . . x j ) . . .)) � (x j+1 � (x j+1 � (. . . xk) . . .))

)
(by associativity)

= x1 � (x2 � (x3 . . . xk) . . .) (by assumption n = k − 1),

which is the result with n = k.
Therefore, by induction, the result holds for all n. �

A semigroup S is finite if it has only a finitely many elements. A semigroup S is
commutative, if it satisfies x � y = y � x , for all x, y ∈ S. If there exists e in S such
that for all x ∈ S,

e � x = x � e = x

we say that S is a semigroup with identity or (more usual) a monoid. The element e
of S is called identity.

Proposition 3.13 Let e be a left identity of S and e′ is a right identity of S, then
e = e′. Consequently, a semigroup contains at most one identity.

Proof Since e is a left identity, it follows that e � e′ = e′. Since e′ is a right identity,
it follows that e = e � e′. Hence, we get e = e � e′ = e′, as desired. �

By Proposition 3.13, the identity element is unique and we shall generally denote
it by 1.

Example 3.14 LetN0 = N ∪ {0}be the set of all non-negative integers. Then, (N0, ·)
is a semigroup for the usual multiplication of integers. Also, (N0,+) is a semigroup,
when + is the ordinary addition of integers. Define (N0, �) by n � m = max{n, m}.
Then, (N0, �) is a semigroup, since

n � (m � k) = max{n, max{m, k}} = max{n, m, k}
= max{max{n, m}, k} = (n � m) � k.

Example 3.15 Let S be a non-empty set. There are two simple semigroup structures
on S: with the multiplication given by x � y = x , for all x, y ∈ S, in this case, the
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Fig. 3.3 The rectangular
band
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semigroup (S, �) is called the left zero semigroup over S. Also, fixing an element
a ∈ S and putting x � y = a, for all x, y ∈ S, gives a semigroup structure on S.

Example 3.16 The opposite semigroup Sop of S is the semigroup with the same set
as S but “reversed multiplication”. That is, for x, y ∈ S, the product x �op y in Sop

is equal to the product y � x in S. It is easy to check that Sop is indeed a semigroup.
Notice that if S is commutative, then Sop and S are the same semigroup.

An element x in a semigroup S is said to be idempotent if x2 = x .

Example 3.17 Let I, J be two non-empty sets and set T = I × J with the binary
operation

(i, j) � (k, l) = (i, l).

Then, we have

(
(i, j) � (k, l)

)
� (m, n) = (i, l) � (m, n) = (i, n),

(i, j) �
(
(k, l) � (m, n)

) = (i, l) � (k, n) = (i, n),

for all (i, j), (k, l) (m, n) ∈ T , and so the multiplication is associative. Hence,
(T, �) is a semigroup called the rectangular band on I × J . Note that (i, j)2 =
(i, j) � (i, j) = (i, j), i.e., every element is an idempotent. The name derives from
the observation that if the members of I × J are pictured in a rectangular grid in the
obvious fashion, then the product of two elements lies at the intersection of the row
of the first member and the column of the second, see Fig. 3.3.

Example 3.18 The direct product S × T of two semigroups (S, ·) and (T, ◦) is
defined by

(s1, t1) � (s2, t2) = (s1 · s2, t1 ◦ t2) (s1, s2 ∈ S, t1, t2 ∈ T ).
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It is easy to show that the so defined product is associative and hence the direct product
is, indeed, a semigroup. The direct product is a convenient way of combining two
semigroup operations. The new semigroup S × T inherits properties of both S and
T .

Example 3.19 On the Cartesian product Z × Z we define a binary operation as
follows:

(a, b) � (c, d) =
⎧
⎨

⎩

(a − b + c, d) if b < c
(a, d) if b = c
(a, d + b − c if b > c,

for all a, b, c, d ∈ Z. The set Z × Z with such defined operation is a semigroup.

Example 3.20 Let (S, �) be a semigroup, which is not a monoid. Find a symbol 1
such that 1 /∈ S. Now, we extend the multiplication on S to S ∪ {1} by

a � b = a � b if a, b ∈ S,

a � 1 = a = 1 � a for all a ∈ S,

1 � 1 = 1.

Then, � is associative. Thus, we have managed to extend multiplication in S to
S ∪ {1}. For an arbitrary semigroup S the monoid S1 is defined by

S1 =
{
S if S is a monoid,
S ∪ {1} if S is not a monoid.

Therefore, S1 is “S with a 1 adjoined” if necessary.

In a semigroup (S, �) an element zl such that zl � x = zl for every x ∈ S is called
a left zero element of S, and an element zr such that x � zr = zr for every x ∈ S is
called a right zero element of S. If z is both a left and a right zero element of S, then
z is called a two-sided zero element, or simply a zero element, of S. A semigroup
S may have any number of left (or of right) zero elements, but if it has a left zero
element zl and a right zero element zr , then zl = zl � zr = zr , whence S has a unique
two-sided zero element and no other left or right zero element. Usually, we denote
zero element by 0.

Example 3.21 Let (S, �) be a semigroup. Similar to Example 3.20, let 0 be an
element not in S and extend the multiplication on S to S ∪ {0} by

0 � x = x � 0 = 0 � 0 = 0,

for all x ∈ S. Again, this extended multiplication is associative. Thus, S ∪ {0} is a
semigroup with zero element. We define

S0 =
{
S if S has a zero,
S ∪ {0} otherwise.
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Then, S0 is called the semigroup obtained by adjoining a zero to S if necessary.

Theorem 3.22 If (S, �) is a finite semigroup, then there is an idempotent element in
S.

Proof Since S is finite, it follows that a, a2, a3, . . . cannot be distinct elements. So,
there exist integers i and j with i < j such that ai = a j . This implies that ai+k = ai ,
where k = j − i . Now, we have

a2i+k = ai � ai+k = a2i .

Next, by induction, we observe that

ani+k = ani ,

for all positive integer n. Also, we have

ani+2k = ani+k � ak = ani � ak = ani+k = ani ,
ani+3k = ani+2k � ak = ani+2k = ani ,

and so on. Therefore, we deduce that

ani+rk = ani ,

for all positive integer r . In particular, we have aki+ki = aki , or a2ki = aki . Now, if
we take m = ki , then am is an idempotent element. �

Let (S, �) be a semigroup. An element b of the semigroup S is called a right
divisor of the element a of the same semigroup if there exists an element x ∈ S such
that x � b = a. An element b is called a left divisor of a if there exists an element
y ∈ S such that b � y = a. If b is a right divisor of a, we say that a is divisible on
the right by b. If b is a left divisor of a, we say that a is divisible on the left by b. If
the element b of S is a right divisor of the element a of the same semigroup, then the
element x satisfying the equation x � b = a is called a left inverse of b with respect
to a. The notion of right inverse is defined analogously. An element which is both a
right inverse and a left inverse of b with respect to a is called a two-sided inverse, or
shortly an inverse, of b with respect to a.

Definition 3.23 Let M be a monoid and x ∈ M . If there exists an element x ′ such
that x � x ′ = 1, then x ′ is a right inverse for x , and x is right invertible. Similarly,
suppose that there exists an element x ′′ such that x ′′ � x = 1, then x ′′ is a left inverse
for x , and x is left invertible. If x is both left and right invertible, then x is invertible.

Proposition 3.24 Let M be a monoid, and let x ∈ M. Suppose that x is invertible
and let x ′ be a right inverse of x and x ′′ be a left inverse of x. Then, x ′ = x ′′.
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Proof Since x ′ and x ′′ are right and left inverses of x , respectively, it follows that
x � x ′ = 1 and x ′′ � x = 1. Thus, we have

x ′ = 1 � x ′ = (x ′′ � x) � x ′ = x ′′ � (x � x ′) = x ′′ � 1 = x ′′,

as desired. �

Proposition 3.24 says that right and left inverses coincide when they both exist.
The existence of one does not imply the existence of the other. Thus, if x is an
invertible element of a monoid M , denote the unique right and left inverse of x by
x−1.

Definition 3.25 A subsemigroup A of a semigroup S is a non-empty subset of S
such that A � A ⊆ A, i.e., x, y ∈ A implies x � y ∈ A. A submonoid A of a monoid
M is a subsemigroup A which contains the identity 1 of M .

Theorem 3.26 The set of invertible elements of a monoid forms a submonoid.

Proof Let I be the set of invertible elements of a monoid M . Since 1 ∈ I , it follows
that I is non-empty. Suppose that x and y are two arbitrary elements of I . Since x
and y are invertible, it follows that

(y−1 � x−1) � (x � y) = y−1 � (x−1 � x) � y = y−1 � y = 1,
(x � y) � (y−1 � x−1) = x � (y � y−1) � x−1 = x � x−1 = 1.

Hence, x � y is invertible and so x � y ∈ I . Consequently, I is a subsemigroup of M .
In addition, 1 ∈ I is an identity for I . Therefore, I is a submonoid of M . �

Definition 3.27 A semigroup (S, �) is left cancellative, if

c � a = c � b ⇒ a = b,

and (S, �) is right cancellative, if

a � c = b � c ⇒ a = b.

If (S, �) is both left and right cancellative, then it is cancellative.

Exercises

1. Let (Q, �) be a groupoid, where a � b = a + b − ab, for all a, b ∈ Q.

(a) Is the groupoid (Q, �) a semigroup?
(b) Is there an identity element in (Q, �)?
(c) Which elements of the groupoid have inverses?
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2. If Q is replaced by Z in Exercise 1, are the solutions the same?
3. A set S has n elements, what is the number of commutative binary operation of

S?
4. Prove that if S is a semigroup and e ∈ S is both a right zero and a right identity,

then S is trivial.
5. In the set of all continuous functions of two variables x and y, we define in the

square 0 ≤ x ≤ a, 0 ≤ y ≤ a, the following operation, which plays an important
role in the theory of integrals. The result of this operation carried out for the
functions K1(x, y) and K2(x, y) is the function

∫ a

0
K1(x, t)K2(t, y)dt.

By using the simplest properties of integrals, show that we obtain a semigroup.
6. We consider the set of functions of one variable which are absolutely integrable

for 0 ≤ x < ∞. In many branches of mathematics, one considers the operation
in this set, the result of which for f1(x) and f2(x) is the function

∫ x

0
f1(t) f2(x − t)dt.

Show that this operation is associative and commutative.
7. Prove that for any commutative monoid M , the set of idempotent elements of M

forms a submonoid.
8. Let S be a left cancellative semigroup. Suppose that e ∈ S is an idempotent. Prove

that e is a left identity. Deduce that a cancellative semigroup can contain at most
one idempotent, which must be an identity.

9. Give an example of a semigroup containing more than one idempotent but con-
taining no identity.

3.4 Groups and Examples

In this section, we embark on the study of the algebraic object known as a group. We
give a few basic definitions and then concentrate on examples of groups.

Definition 3.28 Let G be a non-empty set and � be a binary operation on G. We say
that (G, �) is a group if it satisfies the following conditions:

(1) Associativity Law: a � (b � c) = (a � b) � c, for all a, b, c ∈ G;
(2) Existence of Identity: There exists an element e ∈ G called an identity such that

a � e = e � a = a, for all a ∈ G;
(3) Existence of Inverse: For each a ∈ G, there exists an element b ∈ G such that

a � b = b � a = e (we write this element b as a−1 and call it the inverse of a in
G).
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Hence, a group G is a monoid G that satisfies the condition (3). In other words,
a group G is a semigroup with an identity in which every element has an inverse.

Remark 3.29 In many books, there is an extra condition in the definition of group,
that is, “G is closed under �”. In other words, x � y ∈ G, for all a, b ∈ G. But
according to our definition, this condition is a result of the definition of binary
operation.

Corollary 3.30 If G is a group, then

(1) The identity element of G is unique;
(2) Every a ∈ G has a unique inverse in G.

Proof Since any group is a semigroup and a monoid, the result follows from Propo-
sitions 3.13 and 3.24. �

Definition 3.31 The number of elements in a group G is called the order of G and
is denoted by |G|. If |G| is finite, then G is said to be a finite group; otherwise G is
an infinite group.

Before starting to look into the nature of groups, we look at some examples.

Example 3.32 (Additive Groups) The set of integers Z, the set of rational numbers
Q, the set of real numbers R, and the set of complex numbers C are all groups under
ordinary addition.

Example 3.33 If E is the set of even integers, then E is a group under addition of
integers.

Example 3.34 The sets Q
∗ = Q \ {0} and R

∗ = R \ {0} are groups under ordinary
multiplication.

Example 3.35 LetG be the set of real numbers of the forma + b
√
2,wherea, b ∈ Q

and are not simultaneously zero. Then, G is a group under the usual multiplication
of real numbers.

Example 3.36 Let C
∗ be the set of all non-zero complex numbers, i.e.,

C
∗ = {a + bi | a, b ∈ R and (a 
= 0 or b 
= 0)}.

Recall that i2 = −1. We define multiplication of complex numbers as follows:

(a + bi) · (c + di) = (ac − bd) + (ad + bc)i.

This is a binary operation on C
∗. Note that both ac − bd and ad + bc cannot be

zero. Suppose that a + bi , c + di and e + f i are arbitrary elements of C
∗. Then, we

have
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(
(a + bi) · (c + di)

) · (e + f i)
= (

(ac − bd) + (ad + bc)i
) · (e + f i)

= (
(ac − bd)e − (bc + ad) f

) + (
(bc + ad)e + (ac − bd) f

)
i

= (
a(ce − d f ) − b(de + c f )

) + (
b(ce − d f ) + a(de + c f )

)
i

= (a + bi) · (
(ce − d f ) + (de + c f )

)

= (a + bi) · (
(c + di) · (e + f i)

)
.

Hence, the multiplication · is associative on C
∗. Clearly, 1 = 1 + 0i ∈ C

∗ is the
identity element inC

∗. Now,we check the existence of inverse. Assume that a + bi ∈
C

∗. Then not both a and b are zero, and so a2 + b2 
= 0. Consequently, we have

a

a2 + b2
− b

a2 + b2
i ∈ C

∗.

Moreover, we see that

( a

a2 + b2
− b

a2 + b2
i
)
(a + bi) = (a + bi)

( a

a2 + b2
− b

a2 + b2
i
)

= 1.

Therefore, we proved that (C∗, ·) is a group and we call this group the multiplicative
group of non-zero complex numbers.

Example 3.37 The set K4 = {e, a, b, c} under the binary operation defined by the
following Cayley table is a group.

· e a b c
e e a b c
a a e c b
b b c e a
c c b a e

This group is known as Klein’s four group.

Definition 3.38 A group G is said to be abelian (or commutative) if a � b = b � a,
for all a, b ∈ G.

All the previous examples of groups are abelian. Now, we give some examples of
non-abelian groups.

Example 3.39 The group D3 is the symmetry group of an equilateral triangle with
vertices on the unit circle, at angles 0, 2π/3, and 4π/3, that is, it is the set of all
reflection, rotation, and combinations of these, that leave the shape and position of
this triangle fixed. Figure3.4 shows the effect of the sixth element of D3. Note that
r , s and t can be equally well considered as a rotation of θ = π in R

3 about the axes
r , s and t . Then, these six operations form a group. The Cayley table for this group
is:
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Identity−−−−−→

Rotation of
2π
3

counterclockwise about center
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Rotation of
2π
3

clockwise about center
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

r

Reflection across the line r−−−−−−−−−−−−−−−−−−−−→

s Reflection across the line s−−−−−−−−−−−−−−−−−−−−→

t Reflection across the line t−−−−−−−−−−−−−−−−−−−−→

Fig. 3.4 The symmetry group of an equilateral triangle

· R0 R1 R2 S0 S1 S2
R0 R0 R1 R2 S0 S1 S2
R1 R1 R2 R0 S1 S2 S0
R2 R2 R0 R1 S2 S0 S1
S0 S0 S2 S1 R0 R2 R1

S1 S1 S0 S2 R1 R0 R2

S2 S2 S1 S0 R2 R1 R0

Example 3.40 The group D4 is the symmetry group of a squarewith vertices on the
unit circle, at angles 0, π/2, π , and 3π/2. Figure3.5 shows the eight symmetries of
square. Let

D4 = {R0, R1, R2, R3, S0, S1, S2, S3}
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Identity−−−−−→

Rotation of
π

2
counterclockwise about center

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Rotation of π counterclockwise about center−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Rotation of
3π
2

counterclockwise about center
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Reflection acros a horizontal axis−−−−−−−−−−−−−−−−−−−−−−−−−→

Reflection across a vertical axis−−−−−−−−−−−−−−−−−−−−−−−→

Reflection across the main diagonal−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Reflection across the other diagonal−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Fig. 3.5 The symmetry group of a square
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be the symmetry group of a square. The Cayley table for this group is:

· R0 R1 R2 R3 S0 S1 S2 S3

R0 R0 R1 R2 R3 S0 S1 S2 S3
R1 R1 R2 R3 R0 S1 S2 S3 S0
R2 R2 R3 R0 R1 S2 S3 S0 S1
R3 R3 R0 R1 R2 S3 S0 S1 S2
S0 S0 S3 S2 S1 R0 R3 R2 R1

S1 S1 S0 S3 S2 R1 R0 R3 R2

S2 S2 S1 S0 S3 R2 R1 R0 R3

S3 S3 S2 S1 S0 R3 R2 R1 R0

Example 3.41 Let G be the set of all 2 × 2 matrices

[
a b
c d

]
where a, b, c, and d

are real numbers such that ad − bc 
= 0. For the binary operation in G we use the
following multiplication:

[
a b
c d

]
·
[
a′ b′
c′ d ′

]
=

[
aa′ + bc′ ab′ + bd ′
ca′ + dc′ cb′ + dd ′

]
.

Clearly, the entries of this 2 × 2 matrix are real. In order to see that this matrix
belongs to G we must show that

(aa′ + bc′)(cb′ + dd ′) − (ab′ + bd ′)(ca′ + dc′) 
= 0.

A short computation gives that

(aa′ + bc′)(cb′ + dd ′) − (ab′ + bd ′)(ca′ + dc′) = (ad − bc)(a′d ′ − b′c′) 
= 0,

because both [
a b
c d

]
and

[
a′ b′
c′ d ′

]

are in G. It is not difficult to check that the associative law holds in G. The element

I2 =
[
1 0
0 1

]
belongs to G, and it acts as an identity element relative to the binary

operation of G.

Now, suppose that

[
a b
c d

]
be an arbitrary element ofG. Then, we have ad − bc 
=

0, and so the matrix ⎡

⎢
⎣

d

ad − bc

−b

ad − bc−c

ad − bc

a

ad − bc

⎤

⎥
⎦
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makes sense. Moreover, we obtain

( d

ad − bc

)( a

ad − bc

)
−

( −b

ad − bc

)( −c

ad − bc

)
= ad − bc

(ad − bc)2
= 1

ad − bc

= 0.

Thus, the matrix ⎡

⎢
⎣

d

ad − bc

−b

ad − bc−c

ad − bc

a

ad − bc

⎤

⎥
⎦

belongs to G. An easy computation shows that

[
a b
c d

]
·
⎡

⎢
⎣

d

ad − bc

−b

ad − bc−c

ad − bc

a

ad − bc

⎤

⎥
⎦ =

[
1 0
0 1

]
=

⎡

⎢
⎣

d

ad − bc

−b

ad − bc−c

ad − bc

a

ad − bc

⎤

⎥
⎦ ·

[
a b
c d

]
.

This means that this element of G is the inverse of

[
a b
c d

]
. Therefore, we conclude

that G is a group.

Example 3.42 Let G = {(a, b) | a, b ∈ R and a > 0}. We define the following
operation on G as follows:

(a, b) � (c, d) = (ac, bc + d),

for all (a, b), (c, d) ∈ G. Obviously, if b 
= 0 and c 
= 0, then bc + d 
= 0. So, � is
a binary operation on G. Now, we verify associativity. Suppose that (a, b), (c, d),
and (e, f ) are arbitrary elements of G. Then, we have

(
(a, b) � (c, d)

)
� (e, f ) = (ac, bc + d) � (e, f )

= (ace, bce + de + f )
= (a, b) � (ce, de + f )
= (a, b) �

(
(c, d) � (e, f )

)
.

Moreover, since (a, b) � (1, 0) = (1, 0) � (a, b) = (a, b), it follows that (1, 0) is the
identity element. Finally, since

(a, b) �

(
1

a
,−b

a

)
=

(
1

a
,−b

a

)
� (a, b) = (1, 0),

it follows that (1/a,−b/a) is the inverse of (a, b). Therefore, (G, �) is a group. But

(2, 3) � (1, 4) = (2, 7) and (1, 4) � (2, 3) = (2, 11).

This shows that G is not abelian.



66 3 Groups

Example 3.43 Let G be the set of all functions Ta,b : R → R defined by Ta,b(x) =
ax + b, for each x ∈ R, where a, b ∈ R and a 
= 0, i.e.,

G = {Ta,b : R → R | a, b ∈ R and a 
= 0}.

Consider the product of elements of G as the compositions of functions. Hence, if
Ta,b and Tc,d are elements in G, then

(
Ta,b ◦ Tc,d

)
(x) = Ta,b

(
Tc,d(x)

) = aTc,d(x)b
= a(cx + d) + b = (ac)x + (ad + b)
= Tac,ad+b(x),

for all x ∈ R. Therefore, we conclude that

Ta,b ◦ Tc,d = Tac,ad+b.

This yields that Tac,ad+b ∈ G, i.e., G is closed under the composition of functions.
For all elements Ta,b, Tc,d and Te, f in G, we see that

(
Ta,b ◦ Tc,d

) ◦ Te, f = Tac,ad+b ◦ Te, f
= Tace,ac f +ad+b

= Ta,b ◦ Tce,c f +d

= Ta,b ◦ (
Tc,d ◦ Te, f

)
.

So, the associativity law holds. The element T1,0 is the identity function and T1,0 ◦
Ta,b = Ta,b ◦ T1,0 = T1,0. Finally, what is T

−1
a,b ? We must find real numbers x 
= 0

and y such that Ta,b ◦ Tx,y = Tx,y ◦ Ta,b = T1,0, or equivalently

Tax,ay+b = Tax,bx+y = T1,0.

This implies that ax = 1 and ay + b = bx + y = 0. Remember a 
= 0, so a = 1/a
and y = −b/a. Thus, Ta−1,−a−1b is the inverse of Ta,b. Consequently, (G, ◦) is a
group. Since T1,2 ◦ T3,4 
= T3,4 ◦ T1,2, it follows that G is not abelian.

It is a little clumsy to keep writing the � for the product in G, and from now on
we shall write the product a � b simply as ab, for all a, b ∈ G.

Theorem 3.44 If G is a group, then

(1) For every a ∈ G, (a−1)−1 = a;
(2) For all a, b ∈ G, (ab)−1 = b−1a−1.

Proof (1) For any a ∈ G, we have

aa−1 = e = a−1a and (a−1)−1a−1 = e = a−1(a−1)−1.
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Since the inverse of a−1 is unique, it follows that (a−1)−1 = a.
(2) This item is proved by the equalities

(ab)(b−1a−1) = a(bb−1)a−1 = aea−1 = aa−1 = e,
(b−1a−1)(ab) = b−1(a−1a)b = b−1eb = b−1b = e,

and the uniqueness of the inverse. �
In part (2), notice the change in the order of the factors from ab to b−1a−1. If in a

group the binary operation is written additively, then a + b (for a, b ∈ G) is called
the sum of a and b, and the identity element is denoted by 0. Also, the inverse of
a ∈ G is denoted by−a.Wewrite a − b for a + (−b). Abelian groups are frequently
written additively.

Note that an = aa . . . a︸ ︷︷ ︸
n times

. If n = −m is a negative integer, then we define an =

(a−1)m ; also, we define a0 = e. The formulas aman = am+n and (am)n = amn hold
for any element a of G and any pair of integers m and n. One must be careful
with this notation when dealing with a specific group whose binary operation is
addition. In this case, the definitions and group properties expressed in multiplicative
notationmust be translated to additive notation. Table3.1 shows the commonnotation
and corresponding terminology for groups under multiplication and groups under
addition.

Corollary 3.45 In any group G both the cancellation laws hold, i.e.,

(1) ab = ac implies b = c;
(2) ba = ca implies b = c.

Proof It is enough to multiply a−1 on the left or right side. �
Theorem 3.46 Any finite semigroup in which both cancellation laws hold is a group.

Proof Suppose that G is a finite semigroup with n elements in which both cancel-
lation laws hold and let

G = {x1, x2, . . . , xn}.

Suppose that a ∈ G is arbitrary and fixed. Then, the elements ax1, ax2, . . ., axn
are distinct, because axi = ax j (for some i and j) implies that xi = x j (the left
cancellation law). Consequently, we have

Table 3.1 Notation and corresponding terminology for groups under multiplication and addition

Multiplicative group Additive group

a · b or ab Multiplicative a + b Addition

e or 1 Identity 0 Zero

a−1 Multiplicative inverse of a na Multiple of a

an Power of a a − b Difference
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G = {ax1, ax2, . . . , axn}.

Hence, for each xi ∈ G, there exists x j ∈ G such that

xi = ax j . (3.1)

In particular, there exists xk ∈ G such that a = axk . Then, axi = (axk)xi = a(xkxi ).
Now, by the left cancellation law, we conclude that xi = xkxi , for each 1 ≤ i ≤ n.

Similarly, by considering the elements x1a, x2a, . . ., xna and using the right
cancellation law, we can find an element xl ∈ G such that xi = xi xl , for each 1 ≤
i ≤ n. So, we get xl = xkxl = xk . Therefore, xk is the identity element in G. As
usual, we set xk = e.

Taking xi = e in (3.1), then we can say that there exists xm ∈ G such that

e = axm .

In a similar way, by considering the elements x1a, x2a, . . ., xna, we can find an
element ar ∈ G such that

e = xra.

Thus, we can write

xr = xr e = xr (axm) = (xra)xm = exm = xm .

Hence, xma = axm = e, which implies that x−1 = xm . This shows that every element
in G has its inverse in G. Therefore, G is a group. �

Corollary 3.47 A finite semigroup G is a group if and only if G satisfies both can-
cellation laws.

Proof The proof follows immediately from Corollary 3.45 and Theorem 3.46. �

Theorem 3.48 Let G be a non-empty set together with a binary operation. Then, G
is a group if and only if

(1) a(bc) = (ab)c, for all a, b ∈ G;
(2) Given any a, b ∈ G, the equations ax = b and ya = b have unique solutions in

G.

Proof Let G be a group. Since a(a−1b) = (aa−1)b = eb = b, it follows that x =
a−1b is a solution of the equation ax = b in G. Similarly, y = ba−1 is a solution of
the equation ya = b in G. The uniqueness of the solution follows from the cancel-
lation law.

Suppose that G is a non-empty set together with a binary operation satisfying
(1) and (2). In order to show that G is a group we need to show that G contains an
identity and each element of G has an inverse.

Let a ∈ G be an arbitrary element. By (2), since ax = a has solution in G, it
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follows that there is an element e ∈ G such that ae = a.
Now, given b ∈ G, then by (2) there exists y ∈ G such that b = ya. Then,

be = (ya)e = y(ae) = ya = b, and so be = b, for each b ∈ G. Similarly, since the
equation ya = a has solution in G, it follows that there exists e′ ∈ G such that
e′a = a. Again, given b ∈ G, by (2) there exists z ∈ G such that b = az. Then,
e′b = e′(az) = (e′a)z = az = b, and so e′b = b, for each b ∈ G. In particular, since
be = b, for each b ∈ G, it follows that e′e = e′. Also, since e′b = b, for each b ∈ G,
it follows that e′e = e. Consequently, e = e′ andwe get be = b = eb, for each b ∈ G.
This shows that e is the identity element of G.

Next, we prove the existence of inverse. Let a ∈ G. Then, by (2), there exist
a′, a′′ ∈ G such that aa′ = e and a′′a = e. Hence, we obtain

a′ = ea′ = (a′′a)a′ = a′′(aa′) = a′′e = a′′,

and we conclude that a′a = e = aa′. This yields that a−1 = a. �
Theorem 3.49 Let G be a non-empty set together with a binary operation. Then, G
is a group if and only if

(1) a(bc) = (ab)c, for all a, b ∈ G;
(2) There exists an element e ∈ G such that ae = a, for all a ∈ G;
(3) For every a ∈ G, there exists a′ ∈ G such that aa′ = e.

Proof If G is a group, then by Definition 3.28, the statements (1), (2), and (3) hold.
Now, assume thatG is a non-empty set together with a binary operation satisfying

(1), (2), and (3). Let a ∈ G. Then, by (3), there is a′ ∈ G such that aa′ = e. Again,
by (3), there exists a′′ ∈ G such that a′a′′ = e. Hence, we get

a′a = (a′a)e = (a′a)(a′a′′) = a′(a(a′a′′)) = a′((aa′)a′′)
= a′(ea′′) = (a′e)a′′ = a′a′′ = e.

Consequently, we have aa′ = e = a′a. In addition, we find that

ea = (aa′)a = a(a′)a = a(a′a) = ae = a,

and so ea = ae = a. Therefore, we deduce that G is a group. �
Theorem 3.50 Let G be a non-empty set together with a binary operation. Then, G
is a group if and only if

(1) a(bc) = (ab)c, for all a, b ∈ G;
(2) There exists an element e ∈ G such that ea = a, for all a ∈ G;
(3) For every a ∈ G, there exists a′ ∈ G such that a′a = e.

Proof The proof is similar to the proof of Theorem 3.49. �
The following example shows that the conclusion of Theorems 3.49 and 3.50 fails,

if a semigroup S contains a right identity e and each element a ∈ G may possess a
left inverse.
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Example 3.51 Let S be a set having at least two elements. For any x, y ∈ G, we
define xy = x . It is easy to check that S together with this binary operation is a
semigroup. Let b and c be two distinct elements of S. Then, for each a ∈ S, we have
ab = ac, while b 
= c. Hence, S does not satisfy cancellation law, and so S is not a
group. Now, let e be any fixed element of S. We have

(1) For each a ∈ S, ae = a. This means that e is a right identity element;
(2) For each a ∈ G, since ea = e, it follows that e is a left inverse of a with respect

to e.

Consequently, S has the right identity e and each element of S has a left inverse in S
but we know that G is not a group.

We leave it to readers to construct a similar example of a semigroup S which has
a left identity and right inverse for each of its elements but it fails to be a group.

Definition 3.52 Let a and b be elements of a group G. We say that a and b are
conjugate inG (and call b a conjugate of a) if there exists x ∈ G such that b = x−1ax .

We write, for this, a ∼Conj b and refer to this relation as conjugacy.

Theorem 3.53 Conjugacy is an equivalence relation on G.

Proof Since a = e−1ae, for each a ∈ G, it follows that a ∼Conj a, i.e., ∼Conj is
reflexive.

If a ∼Conj b, then there exists x ∈ G such that b = x−1ax . Hence, a = (x−1)−1

bx−1. Since x−1 ∈ G, it follows that b ∼Conj a, i.e., ∼Conj is symmetric.
Suppose that a ∼Conj b and b ∼Conj c, where a, b, c ∈ G. Then, b = x−1ax and

c = y−1by, for some x, y ∈ G. Substituting for b in the expression for c we obtain
c = y−1x−1axy. This shows that c = (xy)−1a(xy). Since xy ∈ G, it follows that
a ∼Conj c, i.e., ∼Conj is transitive. �

Theorem 3.53 shows that we can divide a group G into equivalence classes under
the relation of conjugacy. Each such equivalence class is called a conjugate class.

Exercises

1. Prove that the set of all rational numbers of the form 3m6n , where m and n are
integers, is a group under multiplication.

2. Let G = {a ∈ R | − 1 < a < 1}. Define a binary operation � on G by

a � b = a + b

1 + ab
,

for all a, b ∈ G. Show that (G, �) is a group.
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3. Let G be the set of all rational numbers except −1. Show that (G, �) is a group
where

a � b = a + b + ab,

for all a, b ∈ G.
4. If a and b are elements of a group G, prove that abna−1 = (aba−1)n , for each

integer n.
5. Show that if every element of the group G is its own inverse, then G is abelian.
6. If G is a group of even order, prove it has an element a 
= e satisfying a2 = e.
7. Prove that a finite semigroup G with identity is a group if and only if G contains

only one idempotent.
8. Let G be a group.

(a) If G has three elements, then show that it must be abelian;
(b) Do part (a) if G has four elements;
(c) Do part (a) if G has five elements.

9. Consider the set {0, 1, 2, 3, 4, 5, 6, 7}. Suppose that there is a binary operation
� on G that satisfies the following two conditions:

(a) a � b ≤ a + b, for all a, b ∈ G;
(b) a � a = 0, for all a ∈ G.

Construct Cayley table for G. (This group sometimes called Nim group).
10. Find an example which shows it is impossible to have (ab)−2 
= b−2a−2.
11. In a finite group, show that the number of non-identity elements that satisfy the

equation x5 = e is a multiple of 5. If the stipulation that the group be finite is
omitted, what can you say about the number of non-identity elements that satisfy
the equation x5 = e?

12. For each positive integer n, prove that the number of groups of order n is finite.
13. Let G be a group in which (ab)n = anbn for some fixed integer n > 1 and for

all a, b ∈ G. For all a, b ∈ G, prove that

(a) (ab)n−1 = bn−1an−1;
(b) anbn−1 = bn−1an;
(c) (aba−1b−1)n(n−1) = e.

14. In Theorem 3.46 show by an example that if one just assumed one of the can-
cellation laws, then the conclusion need not follow.

15. Show that in Theorem 3.46 infinite examples exist, satisfying the conditions
which are not groups.

16. Show that the equation x2ax = a−1 has a solution for x in a group G if and only
if a is the cube of some element in G.
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3.5 Turning Groups into Latin Squares (Optional)

The name “Latin square” was inspired by mathematical papers by Leonhard Euler
(1707–1783), who used Latin characters as symbols, but any set of symbols can be
used.

Definition 3.54 A Latin square is an n × n table filled with n different symbols in
such a way that each symbol occurs exactly once in each row and exactly once in
each column.

Example 3.55 The following are two examples of Latin squares.

1 2 3
2 3 1
3 1 2

a b c d e
b a e c d
c d b e a
d e a b c
e c d a b

Theorem 3.56 Cayley table of any finite group is a Latin square.

Proof Take a row indexed by the group element a. Suppose that two elements in this
row are equal. In other words, there are two columns c and d such that ac = ad. If
we multiply by a−1 on the left, this gives us c = d, i.e., these were in fact the same
columns, and therefore, there are no repetitions in this row. The same logic tells us
that there are also no repetitions in any column; therefore, this is a Latin square. �

A natural question is: which Latin squares are Cayley tables of groups?
Many of the group axioms for the operation · of a finite group can be checked by

referring to the Cayley table for the group. From the table, one can quite easily check
the existence of an identity element and observe that each group element occurs
exactly once in each row and each column. The only group property that is difficult
to check directly from the properties of the Cayley table is associativity. It must be
shown that (ab)c = a(bc) for all elements a, b, and c of the group, and to check this
property case by case is quite tedious. If the group contains n elements, there are
n3 ordered triple (a, b, c) that must be considered with (ab)c and a(bc) checked for
equality in each case.

The following theorem may simplify the verification of the associative law for
multiplication.

Theorem 3.57 Let G be a finite group. Let r and s be in the array representing
the Cayley table for G such that the column containing r and the row containing s
intersect at the identity element e. Then, rs is the element at the fourth corner of the
rectangle formed by r, s, and e.

Proof The identity element e occurs exactly once in each row and in each column,
so suppose that e of the theorem is in the row headed by q and in the column headed
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by b. Then, r occurs exactly once in the column headed by b, say in the row headed
by p; so s occurs exactly once in the row headed by q, say in the column headed by
a.

· a b
p r
q s e

Thus, pb = r , qa = s, and qb = e. We wish to show that the fourth corner pa of
the rectangle formed by r, s, and e is rs. We have

rs = (pb)(qa) = p(bq)a.

The last equality is a result of the associativity law present in the group G. However,
qb is the identity; thus bq is the identity element.

It follows that rs = pea = pa. �

The rule stated in Theorem 3.57 is called the rectangle rule.
Since we wish to emphasize that the rectangle rule follows from the associative

law, Theorem 3.57 could be stated as follows:
Suppose that G is a system with identity element e such that each group element

occurs exactly once in each row and in each column of the Cayley table; then the
rectangle rule is a consequence of Gs having the associative property.

Suppose that we number the rows and columns from 1 to n and let ai j be the
element in the i th row and j th column. Suppose that r = aik and s = a jt . Then,
pa = ait since pa is the same row as r in the same column as s. Also, e = a jk since
e is in the same column as r and in the same row as s. The rectangle rule pa = rs
now becomes the following:

If e = a jk , then ait = aika jt , for all i and t . The table

· a b
p rs r
q s e

now takes the form
· a b
p ait aik
q a jt a jk

Theorem 3.58 Suppose that G is a system with identity element e and with the
following properties:

(1) The Cayley table is a Latin square. In other words, each element of G occurs
exactly once in each row and in each column;

(2) The rectangle rule holds.

Then, the operation obeys the associative law.
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Fig. 3.6 Rectangle A
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Fig. 3.8 Rectangles A and
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Proof Let r, s, and a be elements of G. By (1), e occurs in each column, so pick an
e in the table. By (1), we can locate the r in the column containing e and the s in
the row containing e. By (2), we know that the element in the fourth corner of the
rectangle A is rs, see Fig. 3.6.

By (1), we can find the e in the column containing the above mentioned s. By (1),
a can be located in the row containing this e. By (2), the element in the fourth corner
of rectangle B is sa, see Fig. 3.7. Rectangles A and B fit together to form Fig. 3.8.
We see that a new rectangle C is formed with three of the corners labeled sa, s, and
rs, see Fig. 3.9. By (2), the element in the fourth corner of rectangle C union A is
r(sa). By (2), the element in the fourth corner of rectangle C union B is (rs)a. But
these corners are the same. Consequently, we obtain r(sa) = (rs)a. �

Example 3.59 Consider the following table:
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Fig. 3.10 Rectangle related
to Example 3.59

b e a e

bead

· e a b c d
e e a b c d
a a e d b c
b b c e d a
c c d a e b
d d b c a e

This table is a Latin square, but rectangle rule does not hold as bb 
= d in the rectangle
in Fig. 3.10.

The operation does not have the associative property, because (ab)c = a and
a(bc) = c.

Another method of verifying the associative law is to use permutations. We shall
study this method in the future.

Exercises

1. Show that the number of n × n Latin squares is 1, 2, 12, 576 for n = 1, 2, 3, 4,
respectively.

2. Which of the following Latin squares are Cayley tables of groups?

1 2 3 4 5
2 5 4 1 3
3 1 2 5 4
4 3 5 2 1
5 4 1 3 2

1 2 3 4 5
2 4 1 5 3
3 1 5 2 4
4 5 2 3 1
5 3 4 1 2

3. Suppose the following is the Cayley table of a group G. Fill in the blank entries.

· e a b c d
e e − − − −
a − b − − e
b − c d e −
c − d − a b
d − − − − −
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3.6 Subgroups

In general, we shall not be interested in arbitrary subsets of a group G because they
do not reflect that G has an algebraic structure imposed on it. So, we are interested
in special subsets of a group, called “subgroups”. The concept of subgroup is one of
the most basic ideas in group theory.

Definition 3.60 A non-empty subset H of a group G is called a subgroup of G if
relative to the operation in G, H itself forms a group.

Let e be the identity element of a groupG. Then, triviallyG and {e} are subgroups
ofG. These subgroups are called trivial subgroups ofG. A subgroup H ofG is called
a proper subgroup if it is different from G as well as from {e}. We denote the relation
“H is a subgroup of G” by H ≤ G.

It would be useful to have some criterion for deciding whether a given subset of
a group is a subgroup.

Theorem 3.61 (Two-Step Subgroup Test) A non-empty subset H of the group G is
a subgroup if and only if

(a) a, b ∈ H implies ab ∈ H;
(b) a ∈ H implies a−1 ∈ H.

Proof If H is a subgroup of G, then it is obvious that (1) and (2) must hold.
Conversely, suppose that H is a subset of G for which (1) and (2) hold. In order

to establish that H is a subgroup, all that is needed is to verify that e ∈ H and that
the associative law holds for elements of H . Since the associative law does hold for
G, it holds all the more so for H , which is a subset of G. Now, if a ∈ H , then by (2),
a−1 ∈ H . Next, since a ∈ H and a−1 ∈ H , by (1), it follows that e = aa−1 ∈ H .
This yields that H is a subgroup of G.. �

Theorem 3.62 (One-Step Subgroup Test) A non-empty subset H of the group G is
a subgroup if and only if

a, b ∈ Himplies ab−1 ∈ H.

Proof Let H be a subgroup ofG and let a, b ∈ H . ByTheorem3.61 (2), we conclude
that b−1 ∈ H . Now, sincea, b−1 ∈ H , byTheorem3.61 (1), it follows thatab−1 ∈ H .

Conversely, let H be a non-empty subset of G such that ab−1 ∈ H , for all a, b ∈
H . Since H is non-empty, it follows that there exists x ∈ H . So, e = xx−1 ∈ H .
Now, suppose that a and b are two arbitrary elements of H . As a, e ∈ H , ea−1 ∈ H ,
i.e., a−1 ∈ H . Next, since a, b ∈ H , it follows that b−1 ∈ H and a(b−1)−1 ∈ H . This
implies that ab ∈ H . Therefore, by Theorem 3.61, we conclude that H is a subgroup
of G. �

Theorem 3.63 (Finite Subgroup Test) If H is a non-empty finite subset of a group
G, then H is a subgroup of G if
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a, b ∈ Himplies ab ∈ H.

Proof In light of Theorem 3.61, we need to prove that a−1 ∈ H whenever a ∈ H .
Assume that a is an arbitrary element of H . If a = e, then a−1 = a and we are
done. If a 
= e, then the set {a, a2, a3, . . .} is a subset of H . Since H is finite,
there must be repetition in this set of elements, i.e., for some positive integers i
and j , ai = a j with i > j > 0. Then, by the cancellation law in G, ai− j = e, and
since a 
= e, i − j > 1. Hence, we can write ai− j = aai− j−1 = e, and consequently
ai− j−1 = a−1. But i − j − 1 ≥ 1 implies ai− j−1 ∈ H and we are done. �

Example 3.64 Let R be the group of all real numbers under addition, and let Z be
the set of all integers. Then, Z is a subgroup of R.

Example 3.65 Let R
∗ be the group of all non-zero real numbers under ordinary

multiplication, and let Q
+ be the set of positive rational numbers. Then, Q

+ is a
subgroup of R

∗.

Example 3.66 Let C
∗ be the group of all non-zero complex numbers under multi-

plication, and let H = {a + bi | a2 + b2 = 1}. Then, H is a subgroup of C
∗.

Example 3.67 LetG be an abeliangroup.Then, H = {x ∈ G | x2 = e} is a subgroup
of G.

The following remark is clear.

Remark 3.68 If H is a subgroup of G and K is a subgroup of H , then K is a
subgroup of G.

Example 3.69 Suppose that H = {1, −1, i, , −i} and K = {1, −1}, where i2 =
−1. Then, H is a subgroup of C

∗, the group of non-zero complex numbers under
multiplication, and K is a subgroup of H . So, we can say that K is a subgroup of
C

∗.

Example 3.70 Consider the group of integers Z with ordinary addition. Then, the
set

nZ = {. . . , −3n, −2n, −n, 0, n, 2n, 3n, . . .}

for each positive integer n is a subgroup of Z.

Example 3.71 Let G be the group defined in Example 3.41. Let H be the subset

of G consisting of all 2 × 2 matrices

[
a b
c d

]
such that ad − bc = 1. Then, as easily

verified, H is a subgroup of G.

Example 3.72 LetC12 = {e = a0, a1, a2, . . . , a11}. We define a binary operation
on C12 as follows:

aia j =
{
ai+ j if i + j < 12
ai+ j−12 i + j ≥ 12.
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Fig. 3.11 Hasse diagram for
the family of subgroups of
C12

C12

H2

H4

{e}

H3

H1

It is easy to see that C12 is a group under the above multiplication. Moreover, all of
the subgroups of C12 are as follows:

{e}, G,

H1 = {e, a2, a4, a6, a8, a10},
H2 = {e, a3, a6, a9},
H3 = {e, a4, a8}
H4 = {e, a6}.

In Fig. 3.11, we illustrate Hasse diagram for subgroups of C12.

Example 3.73 Let G be any group and H be a subgroup of G. For a ∈ G, let

a−1Ha = {a−1ha | h ∈ H}.

We assert that a−1Ha is a subgroup of G. Let x and y be two arbitrary elements of
a−1Ha. Then, x = a−1ha and y = a−1h′a, for some h, h′ ∈ H . Thus, we obtain

xy−1 = (a−1ha)(a−1h′a)−1 = (a−1ha)(a−1h′−1a) = a−1hh′−1a.

Since h, h′ ∈ H and H is a subgroup of G, it follows that hh′−1 ∈ H . This shows
that xy−1 ∈ a−1Ha, and so a−1Ha is a subgroup of G.

Theorem 3.74 If G is a group and {Hi | i ∈ I } is a non-empty family of subgroups
of G, then ⋂

i∈I
Hi

is a subgroup of G.

Proof Suppose that a and b are two elements of
⋂

i∈I
Hi . Then, a, b ∈ Hi , for

all i ∈ I . Since for each i ∈ I , Hi is a subgroup of G, it follows that ab−1 ∈ Hi ,
for all i ∈ I . Hence, we conclude that ab−1 ∈ ⋂

i∈I
Hi . This shows that

⋂

i∈I
Hi is a

subgroup of G. �
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In particular, the intersection of two subgroups of a group is a subgroup. The
following example shows that the unionof two subgroups of a group is not a subgroup,
in general.

Example 3.75 Suppose that G = Z. We know that H1 = 2Z and H2 = 3Z are sub-
groups of G. We have

2 ∈ H1 ⊆ H1 ∪ H2 and 3 ∈ H2 ⊆ H1 ∪ H2,

while 2 + 3 = 5 /∈ H1 ∪ H2. So, H1 ∪ H2 cannot be a subgroup of G.

Definition 3.76 (Center of a Group) The center Z(G) of a group G is the subset of
elements in G that commute with every element of G, i.e.,

Z(G) = {a ∈ G | ax = xa, for all x ∈ G}.

Theorem 3.77 The center of a group G is a subgroup of G.

Proof We use Theorem 3.61 to prove this result. Since e ∈ Z(G), it follows that
Z(G) is non-empty. Now, assume that a and b be two arbitrary elements of Z(G).
Then, we have

(ab)x = a(bx) = a(xb) = (ax)b = (xa)b = x(ab),

for all x ∈ G. Thus, ab ∈ Z(G). Also, we have

xa−1 = exa−1 = (a−1a)xa−1 = a−1(ax)a−1 = a−1(xa)a−1

= a−1x(aa−1) = a−1xe = a−1x,

for all x ∈ G. This shows that a−1 ∈ Z(G) whenever a ∈ Z(G). �

Corollary 3.78 If G is an abelian group, then Z(G) = G.

Definition 3.79 Let X be a fixed non-empty subset of a group G. The centralizer
of X in G, CG(X), is the set of all elements in G that commute with elements of X ,
i.e.,

CG(X) = {a ∈ G | ax = xa, for all x ∈ X}.

Theorem 3.80 The centralizer of a non-empty subset of a group G is a subgroup of
G.

Proof The proof is similar to the proof of Theorem 3.77 and it is left to the reader.
�

If X = {x}, then we write CG(x) instead of CG({x}). In this case, CG(x) is the
set of all elements in G that commute with x .
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Corollary 3.81 We have
Z(G) = ⋂

x∈G
CG(x).

Proof It is straightforward. �
Theorem 3.82 Let H1 and H2 be two subgroups of G. Then, H1 ∪ H2 is a subgroup
of G if and only if H1 ⊆ H2 or H2 ⊆ H1.

Proof If H1 ⊆ H2 or H2 ⊆ H1, then it is clear that H1 ∪ H2 is a subgroup of G.
Conversely, let H1 ∪ H2 be a subgroup of G. We prove by contradiction method.

Suppose that H1 � H2 and H2 � H1. Then, there exist x ∈ H1 − H2 and y ∈ H2 −
H1. So, we conclude that x−1 ∈ H1, y−1 ∈ H2 and x, y ∈ H1 ∪ H2. Since H1 ∪ H2

is a subgroup, it follows that xy ∈ H1 ∪ H2. This implies that xy ∈ H1 or xy ∈ H2. If
xy ∈ H1, then y = x−1(xy) ∈ H1, and this is a contradiction. Similarly, if xy ∈ H2,
then x = (xy)y−1 ∈ H2, and this is again a contradiction. Therefore, we deduce that
H1 ⊆ H2 or H2 ⊆ H1. �
Corollary 3.83 If {Hi | i ∈ I } is a chain of subgroups of a group G, then

⋃

i∈I
Hi is

a subgroup of G.

Exercises

1. IfG is an abelian group and if H = {a ∈ G | a2 = e}, show that H is a subgroup
of G.

2. Give an example of a non-abelian group for which the H in Exercise 1 is not a
subgroup.

3. Let G be an abelian group, fix a positive integer n. Let H = {an | a ∈ G}. Show
that H is a subgroup of G.

4. In Example 3.43, let H = {Ta,b ∈ G | a is rational}. Show that H is a subgroup
of G.

5. If H is a subgroup of G, let

N = ⋂

x∈G
x−1Hx .

Prove that N is a subgroup of G such that a−1Na = N , for all a ∈ G.
6. If H is a subgroup of G such that a−1Ha ⊆ H , for all a ∈ G, prove that actually

a−1Ha = H .
7. Let H and K be two subgroups of G such that a−1Ha = H and a−1ka = K ,

for all a ∈ G. If H ∩ K = {e}, prove that hk = kh, for any h ∈ H and k ∈ K .
8. For a non-empty subset X of a group G, define

Xk =
{ k∏

i=1
xi | xi ∈ X

}
,
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for any positive integer k. Prove that if G has n element, then Xn is a subgroup
of G.

9. Let G be a group, and let a ∈ Z(G). In a Cayley table for G, how does the row
headed by a compare with the column headed by a? Is the converse of your
answer true?

10. Show that x ∈ Z(G) if and only if CG(x) = G.
11. Let x, y ∈ G and let xy = z if z ∈ Z(G). Show that x and y commute.
12. If G is a group and a, c ∈ G, prove that

CG(a−1xa) = a−1CG(x)a.

13. Let G be a group and X be a non-empty subset of G. The set

NG(X) = {a ∈ G | a−1Xa = X}

is called the normalizer of X in G. If H is a subgroup of G, prove that

(a) NG(H) is a subgroup of G;
(b) H ≤ NG(H).

14. Give an example of a group G and a subgroup H such that NG(H) 
= CG(H).
Is there any relation between NG(H) and CG(H)?

3.7 Worked-Out Problems

Problem 3.84 Let G be the group defined in Example 3.41. Find the center of G.

Solution Suppose that

[
a b
c d

]
is an arbitrary element in the center of G. So, this

matrix commutes with all elements of G. Since

[
0 1
1 0

]
∈ G, it follows that

[
a b
c d

]
·
[
0 1
1 0

]
=

[
0 1
1 0

]
·
[
a b
c d

]
,

and so a = d and b = c. Similarly, since

[
1 1
0 1

]
∈ G, it follows that

[
a b
c d

]
·
[
1 1
0 1

]
=

[
1 1
0 1

]
·
[
a b
c d

]
.

Hence, we get [
a a + b
b b + a

]
=

[
a + b b + a
b a

]
.
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This implies that b = 0. Therefore, each element of the center of G is in the form

[
a 0
0 a

]
,

where a 
= 0. On the other hand, it is easy to check that for each non-zero real number

a, the matrix

[
a 0
0 a

]
belongs to the center of G. Consequently, we have

Z(G) =
{ [

a 0
0 a

]
| a ∈ R, a 
= 0

}
,

and we are done. �

Problem 3.85 Let S = N
0 × N

0. On S we define a binary operation

(a, b) � (c, d) = (
a − b + max{b, c}, d − c + max{b, c}).

Prove that (S, �) is a monoid with identity (0, 0). This monoid is called Bicycle
semigroup/monoid.

Solution Suppose that (a, b), (c, d) ∈ S. Then, we have max{b, c} − b ≥ 0 and
max{b, c} − c ≥ 0. So, we get a − b + max{b, c} ≥ a and d − c + max{b, c} ≥ d.
Consequently, (a − b + max{b, c}, d − c + max{b, c} ∈ S, and hence the multipli-
cation is closed. Clearly, (0, 0) ∈ S and for any (a, b) ∈ S we have

(0, 0) � (a, b) = (
0 − 0 + max{0, a}, b − a + max{0, a})

= (a, b) = (a, b) � (0, 0).

Hence, (0, 0) is the identity element of S. Now, we verify the associativity. Assume
that (a, b), (c, d) and (e, f ) are arbitrary elements of S. Then, we have

(
(a, b) � (c, d)

)
� (e, f )

= (
a − b + max{b, c}, d − c + max{b, c}) � (e, f )

= (
a − b − d + c + max{d − c + max{b, c}, e},
f − e + max{d − c + max{b, c}, e}, e})

and
(a, b) �

(
(c, d) � (e, f )

)

= (a, b) �
(
c − d + max{d, e}, f − e + max{d, e})

= (
a − b + max{b, c − d + max{d, e}},
f − e − c + d + max{b, c − d + max{d, e}}).

Now, we must show that
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a − b − d + c + max{d − c + max{b, c}, e} = a − b + max{b, c − d + max{d, e}},
(3.2)

and

f − e + max{d − c + max{b, c}, e} = f − e − c + d + max{b, c − d + max{d, e}}.
(3.3)

Equations (3.2) and (3.3) are the same, and so we only need to show that

−d + c + max{d − c + max{b, c}, e} = max{b, c − d + max{d, e}}.

But this equality is equivalent to

max{max{b, c}, c − d + e} = max{b, c − d + max{d, e}},

and this equality holds, because

max{b, c − d + max{d, e}} = max{b,max{c − d + d, c − d + e}}
= max{b,max{c, c − d + e}}
= max{b, c, c − d + e}
= max{max{b, c}, c − d + e}.

Therefore, the multiplication is associative and hence S is a monoid. �

Problem 3.86 Let G be a group and a0 ∈ G. Define a new binary operation ∗ on G
such that (G, ∗) is a group with a0 as its identity.

Solution We define ∗ on G as follows:

x ∗ y = xa−1
0 y,

for all x, y ∈ G. Let x, y, and z be arbitrary elements of G. Then, we can write

(x ∗ y) ∗ z = (xa−1
0 y) ∗ z = xa−1

0 ya−1
0 z = xa−1

0 (ya−1
0 z)

= x ∗ (ya−1
0 z) = x ∗ (y ∗ z).

Hence, the associative law holds.
For any x ∈ G, x ∗ a0 = xa−1

0 a0 = xe = x , where e is the identity ofG. Similarly,
a0 ∗ x = a0a

−1
0 x = ex = x . This shows that a0 is the identity element of G with

respect to ∗.
Next, let x ∈ G. Then, we have x ∗ (a0x−1a0) = xa−1

0 a0x−1a0 = a0. Also, we
have (a0x−1a0) ∗ x = a0x−1a0a

−1
0 x = a0. Hence, a0x−1a0 is the inverse of x with

respect to ∗.
Therefore, (G, ∗) is a group with a0 as its identity. �

Problem 3.87 Let G be a group and m, n be relatively prime positive integers such
that



84 3 Groups

ambm = bmam and anbn = bnan.

for all a, b ∈ G. Prove that G is abelian.

Solution Since (m, n) = 1, it follows that there exist integers x and y such that
mx + ny = 1. Then, we have

(ambn)mx = (ambn)(ambn) . . . (ambn)
= am

(
(bnam)(bnam) . . . (bnam)

)
bn

= am(bnam)mx (bnam)−1bn

= am(bnam)mxa−mb−nbn

= am(bnam)mxa−m

= am
(
(bnam)x

)m
a−m

= (
(bnam)x

)m
ama−m

= (bnam)mx .

This shows that
(ambn)mx = (bnam)mx . (3.4)

In a similar way, we see that

(ambn)ny = (bnam)ny . (3.5)

From (3.4) and (3.5), we obtain

ambn = (ambn)mx+ny = (bnam)mx+ny = bnam .

Finally, we can write

ab = amx+nybmx+ny = amx (anybmx )bny

= amxbmxanybny = bmxamxbnyany

= bmxbnyamxany = bmx+nyamx+ny = ba.

This completes the proof. �

Problem 3.88 If G is a group in which

(ab)k = akbk (3.6)

for three constructive integers k and for all a, b ∈ G, show that G is abelian.

Solution Suppose that (3.6) is true for n, n + 1, and n + 2, where n is an integer,
i.e.,

(ab)n = anbn,
(ab)n+1 = an+1bn+1,

(ab)n+2 = an+2bn+2.
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Then, we obtain

an+1bn+1 = (ab)n+1 = (ab)nab = anbnab.

By cancellation law, we get
abn = bna. (3.7)

On the other hand, we have

an+2bn+2 = (ab)n+2 = (ab)n(ab)2 = anbnabab.

Again, by cancellation law, we obtain

a2bn+1 = bnaba. (3.8)

From (3.7) and (3.8), we have

a2bn+1 = bnaba = abnba = abn+1a.

This yields that
abn+1 = bn+1a. (3.9)

Now, from (3.7) and (3.9), we conclude that abn+1 = bn+1a = bbna = babn . This
shows that ab = ba. �

3.8 Supplementary Exercises

1. LetG be the set of all real 2 × 2matrices

[
a b
c d

]
, where ad − bc 
= 0 is a rational

number. Prove that G forms a group under matrix multiplication.

2. Let G be the set of all real 2 × 2 matrices

[
a b
0 d

]
, where ad 
= 0. Prove that G

forms a group under matrix multiplication. Is G abelian?

3. Let G be the set of all real 2 × 2 matrices

[
a 0
0 a−1

]
, where a 
= 0. Prove that G

is an abelian group under matrix multiplication.
4. A semigroup S is called regular if for each y ∈ S there exists a ∈ S such that

yay = y. Let S be a semigroup with at least three elements and x ∈ S is such
that S \ {x} is a group. Prove that S is regular if and only if x2 = x .

5. Let x1, x2, . . . , xn be elements of a group G. Prove that there are

(2n − 2)!
n!(n − 1)!
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ways of evaluating the product of x1, x2, . . . , xn in that order. All these ways
yield the same group element which can thus be denoted unambiguously by
x1x2 . . . xn .

6. Let G be a finite group. Show that there are an odd number of elements x of G
such that x3 = e. Show that there are an even number of elements y of G such
that y2 
= e.

7. Let G be a group with an odd number of elements. Prove that for each a ∈ G,
the equation x2 = a has a unique solution.

8. Show that the conclusion of Problem 3.88 does not follow if we assume the
relation (ab)k = akbk for just two constructive integers.

9. Let G be a group, a, b ∈ G and m, n be two integers.

(a) If b−1ab = am , show that b−1anb = amn and b−nabn = am
n
;

(b) If a−1b2a = b3 and b−1a2b = a3, prove that a = b = e.

10. Let G be the set of all positive rational numbers of the form

a2 + b2

c2 + d2
,

where a, b, c, and d are integers. Is G a group, being ordinary multiplication?
11. A group G satisfies the ascending chain condition (ACC) on subgroups if every

ascending sequence
H1 ≤ H2 ≤ . . .

of subgroups must eventually be constant, that is, if there is an n > 0 such
that Hn+k = Hn for all k > 0. A group G satisfies the maximal condition on
subgroups if every non-empty family of subgroups has a maximal member.
Prove that a group G satisfies the maximal condition on subgroups if and only
if it satisfies the ascending chain condition on subgroups.

12. Let G be a group of order n and let m be an integer relatively prime to n. Show
that if xm = ym , then x = y. Hence show that for each z ∈ G there is a unique
x ∈ G such that xm = z.
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