
Chapter 2
Symmetries of Shapes

In this chapter, we are interested in the symmetric properties of plane figures. By a
symmetry of a plane figure we mean a motion of the plane that moves the figure so
that it falls back on itself.

2.1 Symmetry

One of the most important and beautiful themes unifying many areas of modern
mathematics is the study of symmetry.Many of us have an intuitive idea of symmetry,
and we often think about certain shapes or patterns as being more or less symmetric
than others. In this chapter we sharpen the concept of “shape” into a precise definition
of “symmetry”.

Definition 2.1 A transformation of the plane is a function f : R2 → R
2.

Transformation involves moving an object from its original position to a new
position. The object in the new position is called the image. Each point in the object
is mapped to another point in the image.

A geometric shape or object is symmetric if it can be divided into two or more
identical pieces that are arranged in an organized fashion. This means that an object
is symmetric if there is a transformation that moves individual pieces of the object,
but doesn’t change the overall shape. The type of symmetry is determined by the
way the pieces are organized.

Example 2.2 Symmetry occurs in nature in many ways; for example, the human
form is symmetric, see Fig. 2.1.

Example 2.3 The heart carved out is an example of symmetry, see Fig. 2.2.
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Fig. 2.1 Symmetry of human form

Fig. 2.2 The heart carved
out

Definition 2.4 The symmetry through a line L is a transformation of the plane
which sends point P into point Q such that L is the midperpendicular to segment
PQ. Such a transformation is also called the axial symmetry and L is called the axis
of the symmetry. If a figure turns into itself under the symmetry through line L, then
L is called the axis of symmetry of this figure.

The line of symmetry can be vertical, horizontal, or diagonal. There may be one
or more lines of symmetry, see Fig. 2.3.
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Fig. 2.3 Line of symmetry
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Fig. 2.4 Font Geneva

Exercises

1. Prove that the inverse of a bijective transformation is a bijective transformation.
2. The letters in Fig. 2.4 are in the font Geneva. Some of them have one line of

symmetry, some have two, some have none, and some have point symmetry. The
latter are invariant under a half-turn. Which ones are in the first set? The second?
The third? The fourth?

2.2 Translations

Translation is a term used in geometry to describe a function that moves an object a
certain distance. The object is not altered in any other way. It is not rotated, reflected,
or resized. In a translation, every point of the object must be moved in the same
direction and for the same distance.

Definition 2.5 A translation is an object from one location to another, without any
change in size or orientation.

A horizontal translation refers to an object from left to right or vice versa along
the x-axis (the horizontal access). A vertical translation refers to an object up or
down along the y-axis (the vertical access). In many cases, a translation will be both
horizontal and vertical, resulting in a diagonal object across the coordinate plane, for
example, see Fig. 2.5. The trivial translation is the translation through zero distance;
all other translations are non-trivial.

Definition 2.6 Let P and Q be two points in a plane. The translation from P to Q
is transformation f : R2 → R

2 such that
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Fig. 2.5 A translation

Fig. 2.6 The quadrilateral
PQB ′B and AA′B ′B are
parallelograms
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(1) Q = f (P);
(2) If P = Q, then f is the identity;
(3) If P �= Q, let A be any point on PQ and let B be any point of PQ; let A′ = f (A)

and B ′ = f (B). Then quadrilaterals PQB ′B and AA′B ′B are parallelograms,
see Fig. 2.6.

When P �= Q one can think of a translation as a slide in the direction of vector
PQ. If A is any point and L is the line through A parallel to PQ, then f (A) is the
point on L whose distance from A in the direction of vector PQ is PQ.
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Fig. 2.7 Some shapes with rotational symmetries
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Fig. 2.8 Positively (+) and negatively (−) oriented angle XOY

Exercises

1. Prove that the composition of two translations is a translation.
2. Prove that

(a) A composition of translations commutes;
(b) The inverse of a translation is a translation.

2.3 Rotation Symmetries

An equilateral triangle can be rotated by 120◦, 240◦, or 360◦ angles without really
changing it. If you were to close your eyes, and a friend rotated the triangle by one
of those angles, then after opening your eyes you would not notice that anything
had changed. In contrast, if that friend rotated the triangle by 33◦ or 85◦, you would
notice that the bottom edge of the triangle is no longer perfectly horizontal. Many
other shapes that are not regular polygons also have rotational symmetries. Each
shape illustrated in Fig. 2.7, for example, has rotational symmetries.

In order to define the rotation we need the notions of “oriented angle” and of its
“signed measure”.

The oriented angle XOY is an angle in which we distinguish the order of its sides
OX , OY (see Fig. 2.8). If the transition from OX to OY is opposite to the direction
of the clock’s hands, then we consider the angle as being “positively oriented”, or



2.3 Rotation Symmetries 37

x

y

Pre-image A

Rotated image

Fig. 2.9 Example of a rotation

simply a positive angle. If the transition is in the same direction as the clock’s, we
consider the angle as being “negatively oriented”, or simply a negative angle.

Definition 2.7 A rotation in R2 is a circular movement of an object around a center
of rotation.

Example 2.8 An equilateral triangle can be rotated by 120◦, 240◦, or 360◦ angles
without really changing it. If you were to close your eyes, and a friend rotated the
triangle by one of those angles, then after opening your eyes you would not notice
that anything had changed.

Example 2.9 Figure2.9 shows that the pre-image A is rotated 90◦ counterclockwise
about the center point A to form the rotated image.

Exercises

1. Show that the composition of two rotations is a rotation.
2. Find the image of the ellipse x2/4 + y2/9 = 1 under the 60◦ rotation about (0, 0).
3. A rotation of about (−1, 0) is followed by a rotation of about (1, 0). The first

rotation is applied again after that. Analyze the composite of these three rotations.
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Fig. 2.10 Beautiful reflections in nature

2.4 Mirror Reflection Symmetries

Another type of symmetry that we can find in two-dimensional geometric shapes
is mirror reflection symmetry. More specifically, we can draw a line through some
shapes and reflect the shape through this line without changing its appearance.

Definition 2.10 A reflection is defined by its axis or line of symmetry, i.e., themirror
line. Each point P(x, y) ismapped onto the point P ′(x ′, y′)which is themirror image
of (x, y) in the mirror line. This yields that PP ′ is perpendicular to the mirror. A
reflection preserves distances.

Example 2.11 Many objects in nature appear the same on the left and right; for
instance, see Figs. 2.10 and 2.11. The left half of a butterfly appears the same as the
right half, and if we were to place a mirror down the center to reflect the left half,
the resulting butterfly would look the same as the original, see Fig. 2.11.

Example 2.12 In Fig. 2.12, we can observe some reflections in nature.

A glide reflection is a composition of transformations. In a glide reflection, a
translation is first performed on the figure, then it is reflected over a line, which is
parallel to the direction of the previous translation. Reversing the order of combining
gives the same result. Glide reflections with non-trivial translation have no fixed
points. The composition of a reflection in a line and a translation in a perpendicular
direction is a reflection in a parallel line.However, a glide reflection cannot be reduced
like that. Thus the effect of a reflection on a line combined with a translation in one of
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Fig. 2.11 Butterfly and reflection

Fig. 2.12 Some reflections in nature
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Fig. 2.13 Footprints fixed
by a glide reflection

the directions of that line is a glide reflection, with a special case as just a reflection.
Therefore, the only required information is the translation rule and a line to reflect
over, the resulting orientation of the two figures is opposite.

Example 2.13 In your mind, picture the footprints you leave when walking in the
sand. Imagine a line L positioned midway between your left and right footprints.
In your mind, slide the entire pattern one-half step in a direction parallel to L then
reflect in line L. The image pattern exactly superimposes on the original pattern.
This transformation is an example of a glide reflection with axis L (see Fig. 2.13).

Alternatively, we can think of a glide reflection with axis L as a reflection in line
L followed by a translation parallel to L.
Definition 2.14 Anon-identity transformation f is an involution if and only if f 2 =
id.

Note that an involution f has the property that f = f −1.

Theorem 2.15 A reflection is an involution.

Proof Left as an exercise for the reader. �

Exercises

1. What conjectures can you make about a figure reflected in two lines?
2. Prove that a non-identity translation is not a reflection.
3. Show that the composition of translations and non-trivial rotation is a rotation.
4. Point P is reflected in two parallel lines,L andL′, to form P ′ and P ′′. The distance

from L to L′ is 10 cm. What is the distance PP ′′.
5. Words such as MOM and RADAR that spell the same forward and backward,

are called palindromes.

(a) When reflected in their vertical midlines, MOM remains MOM but the Rs
andD inRADAR appear backward. Find at least five other words likeMOM
that are preserved under reflection in their vertical midlines.

(b) When reflected in their horizontalmidlines,MOM becomesWOW, butBOB
remainsBOB. Find at least five otherwords likeBOB that are preserved under
reflection in their horizontal midlines.
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Fig. 2.14 S(F) is closed under composition of functions

6. Show that any glide reflection can be written as the composition R ◦ S of a reflec-
tion R and a rotation S. Comment on the uniqueness of this decomposition.

7. Show that any glide reflection can be written as the product of reflections in the
sides of an equilateral triangle.

8. Find all values for a and b such that f (x, y) = (ay, x/b) is an involution.

2.5 Congruence Transformations

We say that two plane figures are congruent if they have the same shape and size.
In other words, two plane figures are congruent if one figure can be moved so that
it fits exactly on top of the other figure. This movement can always be affected by
a sequence of translations, rotations, and reflections. Each part of one figure can be
matched with a part of the other figure, and matching angles have the same size,
matching intervals have the same length, and matching regions have the same area.

For instance, our reflections in a mirror have the same shape and size as we do,
so we would say that we are congruent to our reflection in a mirror.

Definition 2.16 A congruence transformation is a transformation under which the
image and pre-image are congruent.

We denote the set of all symmetries of a plane figure F by S(F). The elements
of S(F) are distance-preserving functions f : R2 → R

2 such that f (F) = F . So
we can form the composite of any two elements f and g in S(F) to obtain the
function g ◦ f : R2 → R

2. Let f, g ∈ S(F). Since f and g both map F to itself,
so must g ◦ f ; and since f and g both preserve distance, so must g ◦ f . Hence
g ◦ f ∈ S(F). We describe this situation by saying that the set S(F) is closed under
composition of functions, see Fig. 2.14.

Example 2.17 We consider some examples of composition in S(�), the set of sym-
metries of the square. Any non-trivial translation alters the location of the square in
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Fig. 2.15 Rotations and reflections of a square

Fig. 2.16 Initial position

the plane and so cannot be a symmetry of the square. Therefore, we consider only
rotations and reflections as potential symmetries of the square. Figure2.15 shows
our labeling for the following elements:

R0 = Rotation of 0◦ S0 = Reflection about a horizontal axis
R1 = Rotation of 90◦ S1 = Reflection about a vertical axis
R2 = Rotation of 180◦ S2 = Reflection about the main diagonal
R3 = Rotation of 270◦ S3 = Reflection about the other diagonal

We want to find R1 ◦ S0 and S2 ◦ R1. We consider the initial position as Fig. 2.16
to keep track of the composition of the symmetries.

Figure2.17 shows the effect of R1 ◦ S0, i.e., first S0 and then R1. Comparing the
initial and final positions, we observe that the effect of R1 ◦ S0 is to reflect the square
in the diagonal from bottom left to top right. This is the symmetry that we have called
S2, and hence R1 ◦ S0 = S2.

Exercises

1. With the notation given in Example 2.17, find the following composites of sym-
metries of the square: R2 ◦ S3, R2 ◦ S2, and R3◦3.
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R1 ◦ S0 S2

Fig. 2.17 R1 ◦ S0 = S2

2.6 Worked-Out Problems

Problem 2.18 Let ABC be a triangle with the vertices labeled clockwise such that
AC = BC and ∠ACB = π/2. Let SAB be the reflection in the line AB, SAC be the
reflection in the line AC , and R be the rotation by π/2 counterclockwise around B.
Identify the composition R ◦ SAB ◦ SAC .

Solution We can solve problems like this one using the following simple strategy.
Find three points which form a triangle and see where the composition of isometries
takes them.Next, it’s time to guesswhat the isometry is. If your guess is correct for the
three vertices of the triangle, then it must be correct. And this is because the theorem
above guarantees that if you knowwhat an isometry does to three corners of a triangle,
then you know what the isometry does to every point in the plane. Figure2.18 shows
triangle ABC drawn on a grid of squares. Since wewant to choose three points which
form a triangle, we may as well choose the points A, B, and C .

• It is easy to check that SAC(A) = A, SAB(A) = A and R(A) = P . In other words,
R ◦ SAB ◦ sAC(A) = P;

• It is easy to check that SAC (B) = Q, SAB(Q) = N and R(N ) = Q. In otherwords,
R ◦ SAB ◦ SAC(B) = Q;

• It is easy to check that SAC (C) = C , SAB(C) = M and R(M) = C . In otherwords,
R ◦ SAB ◦ SAC(C) = C .
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Fig. 2.18 Triangle ABC
drawn on a grid of squares
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Hence, can you think of an isometry which takes A to P , B to Q, and C to C? If
you think hard enough, you should realize that it’s just a rotation by π around C . So,
we have managed to deduce that the composition R ◦ SAB ◦ SAC is a rotation by π

around C . �

Problem 2.19 Let ABCD be a rectangle with the vertices labeled counterclockwise
such that BC = 2AB. Suppose that

• SAB is the reflection in the line AB;
• RB is the counterclockwise rotation by π/2 about B;
• TDB is the translation which takes D to B;
• GCD is the glide reflection in the line CD which takes C to D.

Identify the composition SAB ◦ RB ◦ TDB ◦ GCD .

Solution Figure2.19 shows rectangle ABCD drawn on a grid of squares. Since we
want to choose three points which form a triangle, we may as well choose the points
A, B, and C .

• It is easy to check thatGCD(A) = E ,TDB(E) = D, RB(D) = F and SAB(F) = J .
In other words, SAB ◦ RB ◦ TDB ◦ GCD(A) = J ;

• It is easy to check thatGCD(B) = H , TDB(H) = C , RB(C) = I , and SAB(I ) = I .
In other words, SAB ◦ RB ◦ TDB ◦ GCD(B) = I ;

• It is easy to check that GCD(C) = D, TDB(D) = B, RB(B) = B, and SAB(B) =
B. In other words, SAB ◦ RB ◦ TDB ◦ GCD(C) = B.

So can you think of an isometry which takes A to J , B to I , and C to B? If you think
hard enough, you should realize that it is a rotation, although youmight not be sure of
where the center lies. However, we can use the fact that if a rotation takes X to Y, then
the center of rotation must lie on the perpendicular bisector of xy. In particular, the
center of the rotation that we are interested in must lie on the perpendicular bisector
of AJ as well as the perpendicular bisector of BI . And there is only one point which
does that namely, the point O labeled in Fig. 2.19. It is now easy to deduce that the
compositionmust be a rotation about O by∠AO J = π/2 in the clockwise direction.

�
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Fig. 2.19 Rectangle ABCD drawn on a grid of squares

Fig. 2.20 What letter has
been folded once to make
this shape?

Fig. 2.21 A ray of light is
reflected by two
perpendicular flat mirrors

2.7 Supplementary Exercises

1. Prove that the composition of two reflections with parallel axes is a translation
perpendicular to these axes by a distance twice that from the first axis to the
second.

2. Prove that the composition of two reflections with axes meeting at a point is a
rotation about that point through an angle twice that from the first axis to the
second.
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3. Prove that the composition of three reflections is a reflection if three axes are
parallel or concurrent, and otherwise is a glide reflection.

4. Five reflections are composed, with axes in order the lines x = 0, x + y = 6,
y = 6, y = x + 2, y = x + 8. Is the composition a reflection or a glide reflection?
Give details.

5. What capital letters could be cut out of paper and given a single fold to produce
Fig. 2.20?

6. Give an example of a bijection f : R2 → R
2 that preserves angles but not dis-

tances. Describe in general terms the effect of f on lines, circles, and triangles.
7. Prove that the composition of a non-trivial rotation and a reflection is glide reflec-

tion except when the axis of the reflection passes through the center of the rotation,
in which case it is a reflection.

8. A rayof light is reflected by twoperpendicular flatmirrors. Prove that the emerging
ray is parallel to the initial incoming ray, as indicated in Fig. 2.21.
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