
Chapter 11
Group Homomorphisms

A homomorphism is a function between groups satisfying a few natural properties.
A homomorphism that is both one to one and onto is an isomorphism. This chapter
presents different isomorphism theorems which are important tools for proving fur-
ther results. The first isomorphism theorem, that will be the second theorem to be
proven after the factor theorem, is easier to motivate, since it will help us in comput-
ing quotient groups. Cayley’s Theorem states that a permutation group of a group is
isomorphic to the given group.

11.1 Homomorphisms and Their Properties

Here are the Cayley tables for a cyclic group of order 4 and U10:

· e a a2 a3

e e a a2 a3

a a a2 a3 e
a2 a2 a3 e a
a3 a3 e a a2

· 1 3 7 9
1 1 3 7 9
3 3 9 1 7
7 7 1 9 3
9 9 7 3 1

There is obvious sense in which these two groups are “the same”. Indeed, we can
obtain the right table from the left table by replacing e, a, a2 and a3 with 1, 7, 9 and
3, respectively. Then, although the two groups look different, they are essentially
the same. We may think of saying two groups are the same if it is possible to obtain
one of them from the other by substitution as above. One way to implement a sub-
stitution is to use a function. In a sense, a function is a thing which substitutes its
output for its input. We will define what it means for two groups to be the same by
using certain kinds of functions between groups. These functions are called group
homomorphisms; a special kind of homomorphism, called an isomorphism, will be
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248 11 Group Homomorphisms

used to define sameness for groups. The term homomorphism comes from the Greek
words homo, “like”, and morphe, “form”.

Definition 11.1 Let G and H be groups. A function f : G → H is called a homo-
morphism if

f (ab) = f (a) f (b),

for all a, b ∈ G. Here, the multiplication in ab is in G and the multiplication in
f (a) f (b) is in H .

This definition can be visualized as shown in Fig. 11.1. The pairs of dashed arrows
represent the group operations.

A short description of a homomorphism is that it preserve the operation of G.
The set of all homomorphism from G to H is denoted by Hom(G, H). This set is
always non-empty because it contains the zero homomorphism, the homomorphism
which sends every elements of G to the identity element of H .

In the definition of homomorphism, we assumed multiplicative notation for the
operations in both G and H . If the operation in one or both is something else, we
must adjust the definition accordingly. For instance, see Table11.1.

Beforeworkingout some facts about homomorphisms,wepresent someexamples.

Example 11.2 For any pair of groups G and H , one can always define the trivial
homomorphism. This is the rather uninteresting function that maps every element of
the domain to the identity element in the range.

G H

•b

•a

•
ab

•f(b)

•f(a)
f

f

f

•
f(a)f(b)

Fig. 11.1 Homomorphism between two groups

Table 11.1 Operations of groups in a homomorphism

Operation in G Operation in H Homomorphism definition

+ + f (x + y) = f (x) + f (y)

+ · f (x + y) = f (x) · f (y)

· + f (x · y) = f (x) + f (y)

� × f (x � y) = f (x) × f (y)
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Example 11.3 Let Z be the group of integers under addition and Zn be the group
of integers under addition modulo n. If we define f : Z → Zn by f (x) equals to
remainder of x on division by n, then n is a homomorphism.

Example 11.4 If G = 〈a〉, then f : Z → G defined by f (m) = am is a homomor-
phism.

Example 11.5 Let H denote the group {1,−1} under multiplication (the 1 and −1
here are just the ordinary numbers, H is a group of order 2).Wemay define a function
f from the group Z of integers under addition to H by

f (n) =
{

1 if n is even
−1 if n is odd.

Then f is a homomorphism.

Example 11.6 The logarithm function is homomorphism from the group of positive
real numbers under multiplication, to the group of all real numbers under addition.

Example 11.7 Let the circle group H consists of all complex numbers z such that
|z| = 1. We can define a homomorphism f from the additive group of real numbers
R to H by f (θ) = cos θ + i sin θ . Geometrically, we are simply wrapping the real
line around the circle in a group-theoretic fashion.

Example 11.8 Let R[x] denote the group of all polynomials with real coefficients
under addition. For any p ∈ R[x], let p′ denote the derivative of p. Then, the function
p �→ p′ is a homomorphism from R[x] to itself.
Example 11.9 LetG = C([0, 1]) be the additive group of all continuous real-valued
functions. Then, the integration function from G to R given by f �→ ∫ 1

0 f (x)dx is
a homomorphism.

Theorem 11.10 If G and H are groups and f : G → H is a homomorphism, then

(1) f (e) = e, where e on the left is the identity in G and e on the right is the identity
in H;

(2) f (a−1) = f (a)−1, for all a ∈ G.

Proof (1) Since ee = e, it follows that f (e) f (e) = f (e) = f (ee) = f (e) = f (e)e.
So, by cancellation property in H , we obtain f (e) = e.

(2) Let a ∈ G be an arbitrary element. Since f (aa−1) = f (e) = e, it follows that
f (a) f (a−1) = e, and so by the definition of inverse, we conclude that f (a−1) =
f (a)−1. �

Informally, we can speak about a homomorphism as a function that respects
structure.Ahomomorphismof groups “respects” the property of the identity element,
multiplication, and inversion.

Theorem 11.11 If G and H are groups and f : G → H is a homomorphism, then
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(1) For any integer n and a ∈ G, f (an) = f (a)n;
(2) For any a ∈ G, if the order of a is finite, then o

(
f (a)

)|o(a).

Proof (1) It follows from the first part of Theorem11.10 trivially when n = 0, and
by mathematical induction for n > 0. If n < 0, then put m = −n. Hence, we obtain

f (an) = f (a−m) = f
(
(am)−1

) = f (am)−1 = f (a)−m = f (a)n.

(2) If o(a) = n, then an = e, and so we obtain f (an) = f (e) = e. This implies
that f (a)n = e. Thus, we conclude that o( f (a)|n. �

Remark 11.12 If the operation of H is addition, then the property (1) in Theo-
rem11.11 becomes f (an) = n f (a). If both the operation of G and H are addition,
then the property (1) becomes f (na) = n f (a).

Example 11.13 Wewant to determine all homomorphisms fromZ24 toZ18. Suppose
that f : Z24 → Z18 be a homomorphism. For every non-negative integerm, we have

f (m) = f (1 + 1 + · · · + 1︸ ︷︷ ︸
m times

) = f (1) + f (1) + · · · + f (1)︸ ︷︷ ︸
m times

= m f (1),

for all 0 ≤ m ≤ 23. This means that a homomorphism f is completely determined
by the value f (1). Let f (1) = n, where 0 ≤ n ≤ 17. In additive group Z18, we can
write

24n = 24n = 24 f (1) = f (24) = f (0).

Since any homomorphism maps the identity to identity, it follows that f (0) = 0.
Hence, 24n = 0. This yields that 18|24n or 3|4n. Since (3, 4) = 1, it follows that 3|n,
and so we conclude that n ∈ {0, 3, 6, 9, 12, 15}. Therefore, any homomorphism
must send 1 to 3k, for k = 0, 1, . . . , 5. This shows that there exist at most six possible
homomorphisms from Z24 to Z18, namely f0, f1, . . . , f5, where fk(m) = 3km, for
every k = 0, 1, . . . , 5.

Now, we investigate that for each 0 ≤ k ≤ 5, fk is well defined. Assume that
m,m ′ ∈ Z such that m = m ′ in Z24. Then, we have 24|m − m ′, and so 3km − 3km ′
is a multiple of 72. It follows that 3km − 3km ′ is a multiple of 18. Thus, 3km = 3km ′
or fk(m) = fk(m ′).

In the rest, we show that fk is a homomorphism. If m,m ′ ∈ Z, then we have

fk(m + m ′) = fk(m + m ′) = 3k(m + m ′)
= 3km + 3km ′ = f (m) + f (m ′).

Therefore, each fk is a homomorphism from Z24 to Z18.

Since homomorphisms preserve the group operation, it should not be a surprise
that they preserve many group properties.

Theorem 11.14 Let G and H be groups and f : G → H be a homomorphism.
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(1) The image of a subgroup of G is a subgroup of H. In particular, f (G) (or another
notation, Im f ) is a subgroup of H;

(2) The inverse image of a subgroup of H is a subgroup of G.

Proof (1) Let A be a subgroup of G. Since e = f (e) ∈ f (A), it follows that f (A)

is non-empty. Let f (a) and f (b) be two arbitrary elements of f (A). Then, we have
f (a) f (b)−1 = f (ab−1). Since A is a subgroup, it follows that ab−1 ∈ A. Therefore,
we conclude that f (a) f (b)−1 ∈ f (A), and so f (A) is a subgroup of H .

(2) Let B be a subgroup of H . Again, since f (e) = e ∈ B, it follows that
e ∈ f −1(B). Hence, f −1(B) is non-empty. Assume that x and y are two arbitrary
elements of f −1(B). Then, we have f (x) ∈ B and f (y) ∈ B. Since B is a subgroup,
it follows that f (x) f (y)−1 ∈ B, and so f (xy−1) ∈ B. Therefore, we conclude that
xy−1 ∈ f −1(B). This completes the proof. �

Theorem 11.15 Let G and H be groups and f : G → H be a homomorphism. If
A � G and B � H, then f (A) � f (G) and f −1(B) � G.

Proof By Theorem11.14, we know that f (A) ≤ f (G) and f −1(B) ≤ G.
Now, let f (a) ∈ f (A) and f (x) ∈ f (G) be arbitrary. Then, we can write

f (x) f (a) f (x)−1 = f (xax−1). Since A � G, it follows that xax−1 ∈ A. So, we
conclude that f (x) f (a) f (x)−1 ∈ f (A). This shows that f (A) � f (G).

Finally, suppose that x ∈ G and y ∈ f −1(B) are arbitrary. Then, we have f (x) ∈
H and f (y) ∈ B. Since B � H , it follows that f (x) f (y) f (x)−1 ∈ B, or equiva-
lently f (xyx−1) ∈ B. This implies that xyx−1 ∈ f −1(B), and so f −1(B) � G. �

The following is an important concept for homomorphisms.

Definition 11.16 The kernel of a homomorphism f from a group G to a group H
is the set {x ∈ G | f (x) = e}. The kernel of f is denoted by Ker f .

Example 11.17 Let D(R) be the additive group of all differentiable functions,
f : R → R, with continuous derivative. Let C(R) be the additive group of all
continuous functions f : R → R. Suppose that F : D(R) → C(R) be defined by
F( f ) = d f/dx . Then

(1) F is a homomorphism;
(2) Ker F = { f ∈ D(R) | d f/dx = 0}, which is the set of all constant functions.

The following is a fundamental theorem about the kernel of a homomorphism.

Theorem 11.18 If G and H are groups and f : G → H is a homomorphism, then
Ker f is a normal subgroup of G.

Proof Since f (e) = e, it follows that Ker f is non-empty. Now, we suppose that a
and b are two arbitrary elements of Ker f . Then, we have f (a) = e and f (b) = e.
Consequently, we get f (ab−1) = f (a) f (b)−1 = ee−1 = e. This shows that ab−1 ∈
Ker f and so Ker f is a subgroup of G. On the other hand, for any x ∈ G, we
have f (xax−1) = f (x) f (a) f (x)−1 = f (x)e f (x)−1 = e. This yields that xax−1 ∈
Ker f . Therefore, we deduce that Ker f is also a normal subgroup of G. �
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f

f

e = a1, a2, . . . , an

Kerf = f−1({e})

bKerf = f−1({a′})

b, ba2, . . . , ban

•
e

•
f(b) = a′

f(G)

HG

Fig. 11.2 Illustration for the kernel

Theorem 11.19 If G and H are groups and f : G → H is a homomorphism, then

(1) f (a) = f (b) if and only if aKer f = bKer f ;
(2) If f (b) = a′, then f −1({a′}) = {x ∈ G | f (x) = a′} = bKer f . Look at the illus-

tration in Fig.11.2.

Proof (1) We have

f (a) = f (b) ⇔ f (b)−1 f (a) = e ⇔ f (b−1a) = e
⇔ b−1a ∈ Ker f ⇔ aKer f = bKer f.

(2) We must show that f −1({a′}) ⊆ bKer f and bKer f ⊆ f −1({a′}). To demon-
strate the first inclusion, assume that x ∈ f −1({a′}) is an arbitrary element. Then,
we have f (x) = a′, and so f (x) = f (b). Now by part (1), we conclude that
xKer f = bKer f , and hence x ∈ bKer f .

To prove the second inclusion, suppose that x ∈ Ker f is an arbitrary element.
Then, we have f (bx) = f (b) f (x) = a′e = a′ or bx ∈ f −1({a′}). This completes
the proof. �

Theorem 11.20 Let G and H be groups and f : G → H be a homomorphism.
Then, f is one to one if and only if Ker f = {e}.
Proof Suppose that f is one to one. If x ∈ Ker f , then f (x) = e. On the other hand,
we always have f (e) = e. Now, since f (x) = f (e) and f is one to one, it follows
that x = e. This proves that Ker f = {e}.

Conversely, let Ker f = {e} and assume that a and b are elements of G such that
f (a) = f (b). Then, f (a) f (b)−1 = e, or equivalently f (ab−1) = e. This means that
ab−1 ∈ Ker f = {e}, and so a = b. Hence, f is a one to one function. �
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Exercises

1. Let X be a non-empty set of generators of G. Let f : G → H and g : G → H
be homomorphisms. If for every x ∈ X , f (x) = g(x), prove that f = g.

2. Let G and H be groups and f : G → H be a homomorphism. Show that
f ([x, y]) = [ f (x), f (y)], for all x, y ∈ G.

3. Describe all the homomorphisms from Z12 to itself.
4. Let f : Z8 → Z32 be a homomorphism such that f (1) = 4. Compute f (5).

What is the kernel of f ?
5. Show that there is a homomorphism from Sn to Z2 whose kernel is An .
6. Determine all homomorphisms from Z onto S3. Determine all homomorphisms

from Z to S3.
7. Find all group homomorphisms from Z4 into Z10.
8. How many homomorphisms are there from Z20 onto Z8?
9. IfG is a finitely generated group by a set with n elements and H is a finite group,

prove that |Hom(G, H)| ≤ |H |n .
10. If f is a homomorphism from Z30 onto a group of order 5, determine the kernel

of f .
11. Let G and H be groups and f : G → H be an onto homomorphism. If X is a

subset of G that generates G, show that f (X) generates H .
12. Find a homomorphism f from U30 to U30 with kernel {1, 11} and f (7) = 7.
13. Let Z[x] be the group of polynomials in x with integer coefficients under addi-

tion. Prove that the function fromZ[x] intoZ given by f (x) �→ f (3) is a homo-
morphism. Give a geometrical description of the kernel of this homomorphism.

14. Prove that the function from R under addition to GL2(R) that takes x to

[
cos x sin x

− sin x cos x

]

is a homomorphism. What is the kernel of this homomorphism?
15. Let G be a subgroup of some dihedral group. For each x ∈ G, we define

f (x) =
{

1 if x is a rotation
−1 if x is a reflection.

Prove that f is a homomorphism from G to the multiplicative group {1, −1}.
What is the kernel?

16. (a) Let n ≥ 5 andm ≥ 3. Suppose thatm is not divisible by 3. Let f : Sn → Dm

be a homomorphism. Prove that An is contained in the kernel of f . How
many homomorphisms Sn → Dm are there?

(b) Let n ≥ 5 and m ≥ 3 be arbitrary, so m may be divisible by 3. How many
homomorphisms Sn → Dm are there?
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11.2 Isomorphism Theorems

We wish to have a way to determine if two groups have similar properties. The
advantage of this is that if we could tell that two groups G and H have similar
properties and we already know all the properties of G, then we would immediately
know all the properties of H . The tool which will allow us to do this is called an
isomorphism, from theGreekwords “isos” whichmean “same” and “morphe” which
means “form”.

Definition 11.21 Let G and H be groups. A function f : G → H is said to be an
isomorphism if the following conditions are satisfied:

(1) f is a homomorphism;
(2) f is one to one;
(3) f is onto.

If there is an isomorphism from G onto H , we say that G and H are isomorphic and
write G ∼= H .

Example 11.22 If G is a group, then the identity function id : G → G defined by
id(x) = x , for all x ∈ G, is an isomorphism.

Example 11.23 The group of real numbers R under addition and positive real num-
bers R

+ under multiplication are isomorphic. Indeed, if we consider f : R → R
+

by f (x) = ex , then for every real numbers a and b we have f (a + b) = ea+b =
eaeb = f (a) f (b). So, f is a homomorphism. Moreover, by the well-known results
of calculus, f is one to one and onto.

An injective (or one to one) homomorphism is called a monomorphism and a
surjective (or onto) homomorphism is called an epimorphism. Of course a bijective
homomorphism is what we have been calling an isomorphism. A group H is said to
be a homomorphic image of a group G, if there exists an epimorphism from G onto
H .

Let G and H be groups and f : G → H be a homomorphism. Clearly, we have

(1) f is a monomorphism if and only if Ker f = {e};
(2) f is an epimorphism if and only if Im f = H ;
(3) f is an isomorphism if and only if Ker f = {e} and Im f = H .

How do we demonstrate that two groupsG and H are not isomorphic, if this is the
case? A structural property of a group is one that must be shared by any isomorphic
group. It is not concerned with names or some other non-structural characteristics
of the elements. In order to prove that two groups G and H are not isomorphic,
one needs to demonstrate that there is no isomorphism from G onto H . Usually, in
practice, this is much easier than it sounds in general, and is accomplished by finding
some structural property that holds in one group, but not in the other.

Example 11.24 Z6 � S3 because Z6 is abelian and S3 is not abelian.
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Example 11.25 The dihedral group D12 is not isomorphic to S4 because D12 has 13
elements of order 2 (12 reflections and the rotation for π ), while S4 has only 9 such
elements (transpositions and product of disjoint transpositions).

Lemma 11.26 Let G and H be groups and f : G → H be an isomorphism. Then,
f −1 : H → G is also an isomorphism.

Proof Since f is a bijective function, by Theorem5.5, it follows that f −1 exists
and it is a bijective function from H onto G. So, it remains to be seen that f −1 is
a homomorphism. Assume that x and y are arbitrary elements of H . Then, there
exist a, b ∈ G such that f (a) = x and f (b) = y. This yields that a = f −1(x) and
b = f −1(y). Hence, we can write xy = f (a) f (b) = f (ab), and so f −1(xy) = ab.
This shows that f −1(xy) = f −1(x) f −1(y). Therefore, f −1 is a homomorphism. �

Lemma 11.27 If f : G → H and g : H → K are isomorphisms between groups,
then so is the function g ◦ f .

Proof By Theorem5.6, gof is a bijective function from G onto K . To check that
g ◦ f is a homomorphism, let a and b be arbitrary elements of G. Then, we obtain

(g ◦ f )(ab) = g
(
f (ab)

) = g
(
f (a) f (b)

)
= g

(
f (a)

)
g
(
f (b)

) = (g ◦ f )(a)(g ◦ f )(b),

where we used in turn the facts that f and g are homomorphisms. Therefore, g ◦ f
is an isomorphism. �

Theorem 11.28 The relation of isomorphismbetween groups is an equivalence rela-
tion on the family of all groups.

Proof The result follows by Lemmas11.26 and 11.27. �

Lemma 11.29 Let G and H be two cyclic groups of the same order. Then, G and
H are isomorphic.

Proof Suppose that G = 〈a〉 and H = 〈b〉. If x ∈ G, then x = ai , for some integer
i . Define f : G → H by f (x) = bi .

We first have to check that f is well defined. IfG is infinite, then so is H and every
element of G may be uniquely represented in the form ai . Thus, f is automatically
well defined in this case. Now, assume that G has order n, and suppose that x = a j ,
too. We have to check that bi = b j .

Since ai = a j , it follows that ai− j = e, and som|i − j . Since |H | = m, it follows
that i − j = k|H |, for some integer k. Consequently, we can write bi− j = bk|H | =(
b|H |)k = e. This shows that bi = b j . Therefore, we conclude that f is well defined.
Now, let ai and a j be two elements of G. Then, we have

f (aia j ) = f (ai+ j ) = bi+ j = bib j = f (ai ) f (a j ).
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Fig. 11.3 Vertices of the
cube with the same number
are endpoints of the four
diagonals of the cube

1 2

3 4

4
3

2 1

This means that f is a homomorphism. Moreover, the function g : H → G defined
by g(bi ) = ai is the inverse of f , and so f is a one-to-one correspondence. This
completes the proof. �

Corollary 11.30 Any infinite cyclic group is isomorphic to the additive group Z.
Any finite cyclic group of order n is isomorphic to Zn, the additive group of modulo
n.

Proof The result follows directly from Lemma11.29. �

Example 11.31 (The Rotation Group of a Cube) A cube has 8 vertices, 12 edges,
and 6 faces (see Fig. 11.3), each of which is a square. The cube has exactly 24
rotational symmetries, which comprise:

(1) 1 trivial rotation or the identity symmetry;
(2) 9 non-trivial rotations (by π/2, π and 3π/2) about 3 axes joining the centers of

opposite faces;
(3) 8 non-trivial rotations (by 2π/3 and 4π/3) about the 4 great diagonals;
(4) 4 non-trivial rotations (by π ) about the 4 axes joining the midpoints of opposite

edges.

Since the group of rotations of a cube has the same order as S4, we need only prove
that the group of rotations is isomorphic to a subgroup of S4. We number the vertices
of the cube from 1 to 4, and where opposite vertices are given the same number. Now
a cube has 4 diagonals and any rotation induces a permutation of these diagonals.
But we cannot just assume that different rotations correspond to different rotations.
Observe that vertices with the same number are endpoints of the four diagonals of the
cube. We can number the diagonals according to their endpoints. The permutations
of the numbers of vertices in the front face of the cube correspond to permutations of
the diagonals. Therefore, there is a one to one correspondence between the rotations
of the cube and the permutations of the diagonals of the cube. The composition of
rotations coincides with the product of permutations and so the group of rotations of a
cube is isomorphic to the symmetric group S4. We see two perpendicular axes where
π/2 rotations give the permutations σ = (1 2 3 4) and τ = (1 4 3 2). These induce the
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subgroup {id, σ, σ 2, σ 3, τ 2, τ 2σ, τ 2σ 2, τ 2σ 3} and the subgroup {id, σ τ, (στ)2}.
Consequently, the rotations induce all 24 permutations since 24 = (8, 3).

There are three theorems, formulated by E. Noether, describing the relationship
between factor groups, normal subgroups and homomorphisms. These theorems are
based on a basic result on homomorphisms presented in the following lemma.

Lemma 11.32 If N is a normal subgroup of a group G, then the canonical map
π : G → G/N, given by π(a) = aN, is an onto homomorphism with kernel N .

Proof Clearly, we have π(ab) = abN = aNbN = π(a)π(b), for all a, b ∈ G.
Moreover, since every element of G/N is of the form aN , for some a ∈ G, it fol-
lows that π is onto. Finally, for each a ∈ G, we have a ∈ Kerπ if and only if
π(a) = aN = N if and only if a ∈ N . �

Theorem 11.33 Let G and H be groups and f : G → H be a homomorphism and
suppose that N is a normal subgroup of G satisfies N ≤ Ker f . Then, there exists a
unique homomorphism g : G/N → H which satisfies g ◦ π = f .

Proof Let aN be a left coset of N in G. Choose any x ∈ aN , then x = ay, for some
y ∈ N . Moreover, we have f (x) = f (ay) = f (a) f (y) = f (a)e = f (a), because
N ≤ Ker f . Therefore, f has the same effect on every element of the coset aN . So,
if we define g : G/N → H by g(aN ) = f (a), for all a ∈ G, then g is well defined.
Now, assume that aN and bN are arbitrary elements of G/N . Then, we have

g(aNbN ) = g(abN ) = f (ab) = f (a) f (b) = g(aN )g(bN ).

Hence, g is a homomorphism such that g ◦ π = f . At the end, we prove the unique-
ness. Suppose that g, g′ : G/N → H are homomorphisms which satisfy g ◦ π = f
and g′ ◦ π = f . Then, we have g

(
π(a)

) = g′(π(a)
)
, for all a ∈ G. Since π is onto,

any element of G/N has the form π(a), for some a ∈ G. Thus, we conclude that
g = g′. This completes the proof. �

Theorem 11.34 (First IsomorphismTheorem) LetG and H begroupsand f : G →
H beahomomorphism.Then, there exists an isomorphism g : G/Ker f → Im f such
that g ◦ π = f . In particular, if f is onto, then G/Ker f ∼= H. In this case, we say
the diagram presented in Fig.11.4 is commutative.

Proof Since Im f is a subgroup of H , without loss of generality we may assume
that H = Im f . With N = Ker f we conclude that by Theorem11.33 that there is
an onto homomorphism g : G/N → Im f given by g(aN ) = f (a), for all a ∈ G.
Since Kerg = {aN | f (a) = e} = {aN | a ∈ N } = {N }, it follows that g is one to
one. This completes our proof. �

Theorem11.34 also is called the fundamental theorem of homomorphism, and it
is one of the most basic theorems in group theory.
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Fig. 11.4 Commutative diagram for the first isomorphism theorem

Fig. 11.5 The second
isomorphism theorem

K

HK

H

H ∩ K

Example 11.35 Let f : Z → Zn be the homomorphism defined in Example11.3.
We obtain Im f = Zn and Ker f = nZ, and so we conclude that Z/nZ ∼= Zn .

Example 11.36 The function f : R → C
∗ given by f (x) = e2πxi , for all x ∈ R,

is a homomorphism. We obtain Im f = {z ∈ C | |z| = 1} := S1, the unit complex
numbers and Ker f = Z. Therefore, we can write R/Z ∼= S1.

Theorem 11.37 (Second Isomorphism Theorem) Let G be a group and H, N be
subgroups of G. If N � G, then H ∩ N is normal in H and H/(H ∩ N ) ∼= HN/N.

The second isomorphism theorem can be represented pictorially as in Fig. 11.5.

Proof Since N is a normal subgroup of G, it follows that NH = HN , and so HN
is a subgroup of G and also we have N ≤ HN . Moreover, for every x ∈ HN , there
exist h ∈ H and n ∈ N such that xNx−1 = hnNn−1h−1 = hNh−1 = N . This yields
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that N � HN . Now, we define a function f : H → HN/N by f (h) = hN , for all
h ∈ H . Clearly, f is a homomorphism. Consider xN ∈ HN/N , where x ∈ HN .
Then, x = hn, for some h ∈ H and n ∈ N . Hence, we have xN = hnN = hN =
f (h). This shows that f is onto. Now, by the first isomorphism theorem, we obtain
H/Ker f ∼= HN/N . If we can establish that Ker f = H ∩ N , we shall obtain that
H ∩ N is a normal subgroup of H and H/(H ∩ N ) ∼= HN/N . Indeed, we have

Ker f = {h ∈ H | f (h) = N } = {h ∈ H | hN = N }
= {h ∈ H | h ∈ N } = H ∩ N .

This completes the proof. �
Theorem 11.38 (Third Isomorphism Theorem) Let H and N be normal subgroups
of a group G such that N ≤ H. Then, H/N is a normal subgroup of G/N and
(G/N )

/
(H/N ) ∼= G/H.

Proof We define f : G/N → G/H by f (aN ) = aH , for every a ∈ G. Since f
is defined on cosets, we should check that f is well defined. To begin with, if
aN = bN , then a−1b ∈ N . Since N ≤ H , it follows that a−1b ∈ H or aH = bH .
This shows that f is well defined. For every aN and bN in G/N , we have
f (aNbN ) = f (abN ) = abH = aHbH = f (aN ) f (bN ). Hence, f is a homomor-
phism. Clearly, f is onto, for if aH ∈ G/H , then f (aN ) = aH . Furthermore, we
have

Ker f = {aN ∈ G/N | f (aN ) = H} = {aN ∈ G/N | aH = H}
= {aN ∈ G/N | a ∈ H} = H/N ,

as required. The result now follows by the first isomorphism theorem. �
We may picture the third isomorphism theorem as illustration in Fig. 11.6.

Exercises

1. Find a group which is isomorphic to one of its proper subgroups.
2. Let G = R \ {−1} and define a binary operation on G by a � b = a + b + ab.

Prove that G is a group under this operation. Show that (G, �) is isomorphic to
the multiplicative group of non-zero real numbers.

3. Prove that

(a) The multiplication groups R
∗ and C

∗ are not isomorphic;
(b) The additive groups R and Q are not isomorphic;
(c) The additive groups Z and Q are not isomorphic;

4. Prove that every cyclic group of finite order n is isomorphic to the multiplicative
group of all complex nth roots of 1.
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Fig. 11.6 Illustration for the third isomorphism theorem

5. Let 1 ≤ n ≤ 3. Prove that any two groups containing exactly n elements are
isomorphic.

6. If G is a non-abelian group of order 6, prove that G ∼= S3.
7. Let X1 and X2 be two sets. Suppose that there exists a one to one correspondence

between X1 and X2. Show that there exists an isomorphism of SX1 onto SX2 .
8. Prove that any group of order 4 is isomorphic to the group Z4 or to the group

K = {id, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}.
9. Is Q/Z ∼= Q?
10. Show that the groups Q/Z and R/Q can not be isomorphic.
11. Let f, g : R → R be real valued functions defined by f (x) = 1/x and g(x) =

(x − 1)/x . Then, f and g generate a group G with the operation given by
function composition. Prove that G ∼= S3.

12. Let X be a non-empty set and G = { f | f : X → Z2}. Show that

(a) G is a group addition of functions;
(b) P(X) is a group under the binary operation

A � B = (A ∪ B) − (A ∩ B);

(c) (P(X),�) ∼= (G,+).

13. Show that the nth roots of unity are isomorphic to Zn .
14. Show that to each positive integer n there exist only a finite number of pairwise

non-isomorphic groups of order n.
15. Let G be a non-abelian group. Prove that the group of automorphisms of G is

not cyclic.
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16. Prove that D4 and Q8 are not isomorphic.
17. Show that U17 is isomorphic to Z16.
18. Show that the three groups Z6, U9 and U18 are isomorphic to each other.
19. How many pairwise non-isomorphic groups can you find which are homomor-

phic images of S3?
20. Suppose that for each prime p, Zp is the homomorphic image of a group G.

What can we say about |G|?
21. Prove that GL2(Z2) ∼= S3.
22. Show that D4 is isomorphic to the subgroup of all lower triangular matrices in

GL3(Z2).
23. Show that SL2(Z3) is not isomorphic to S4.
24. Explain why Sn (n ≥ 3) contains a subgroup isomorphic to Dn .
25. For real numbers a and b with a �= 0, define fab : R → R by fab(x) = ax + b,

for all x ∈ R. LetG = { fab | a, b ∈ R and a �= 0} and N = { f1b | b ∈ R}. Prove
that N is a normal subgroup ofG andG/N is isomorphic to the group of non-zero
real numbers under multiplication.

26. Let G = {z ∈ C | zn = 1, for some positive integer n}. Prove that for any fixed
integer k > 1, the function f from G to itself defined by f (z) = zk , for all
z ∈ G, is an onto homomorphism but is not an isomorphism.

27. Let a group G contain two normal subgroups K and N . Let H be a subgroup of
G. Prove that HK/K ∼= HN/N if H ∩ K = H ∩ N .

28. In the group GL2(Z3), let

H = 〈 [0 −1
1 0

]
,

[−1 1
1 1

] 〉
.

Prove that H ∼= Q8 and H � GL2(Z3).
29. Let G be a group, and suppose that S be any set for which there exists

a bijective function f : G → S. Define a binary operation on S by setting
a · b = f

(
f −1(a) f −1(b)

)
, for all a, b ∈ S. Prove that S is a group under this

binary operation, and that f is actually a group isomorphism.
30. Let G be defined as all formal symbols xi y j , i = 0, 1 and j = 0, 1, . . ., n − 1,

where we assume

xi y j = xi
′
y j ′ ⇔ i = i ′, j = j ′,

x2 = yn = e, n > 2,
xy = y−1x .

(a) Find the form of the product (xi y j )(xk yl) as xr ys ;
(b) Prove that G is non-abelian of order 2n;
(c) If n is odd, prove that the center of G is {e}, while if n is even the center of

G is larger than {e};
(d) Can you interpret this group as the dihedral group of order 2n.
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11.3 Cayley’s Theorem

Our next subject is a classic theorem of Cayley. The proof of this theorem is not
difficult, and it is a good exercise in group theory as it uses many concepts previously
studied. Then, an important generalization of it is given.

Theorem 11.39 (Cayley’s Theorem) Let G be a given group. Then, there exists a
set X such that G is isomorphic to a permutation group on X.

Proof We choose the set X consisting of all the elements of G. For each element
a ∈ G, let ρa be a function on X defined by the formula

ρa(x) = xa,

for all x ∈ X . It follows that ρa is a permutation on X . Furthermore, the associative
law proves

ρab = ρa ◦ ρb,

for all a, b ∈ G. Thus, the function ρ is a homomorphism fromG into the symmetric
group SX . Clearly, ρa is the identity function on X if and only if a = e. This means
that ρ is one to one. Hence,G is isomorphic to the image ρ(G)which is a permutation
group on X . �

If a group G is isomorphic to a subgroup of a group H , we say G embeds in H .
In this case there is an embedding (another word for one to one homomorphism)
G ↪→ H which identifies G with its image in H . So, Cayley’s Theorem says that
every finite group embeds in a symmetric group.

Theorem 11.40 (Generalized Cayley’s Theorem) Let H be a subgroup of a group
G, and X be the set of all left cosets of H in G. Then, there exists a homomorphism
from G into the permutation group SX whose kernel is the largest normal subgroup
of G that is contained in H.

Proof Suppose that H ≤ G and X = {xH | x ∈ G}. Note that X need not be a group
itself. If a is a fixed element of G, we define θa : X → X by θa(xH) = axH , for all
x ∈ G. Simulating the proof of Theorem11.39, we find that θa ∈ SX and θab = θaθb.
This shows that the function f : G → SX defined by f (a) = θa is a homomorphism
of G into SX . Next, we identify the kernel of f . We have

Ker f = {a ∈ G | f (a) = θe}
= {a ∈ G | θa(xH) = θe(xH), for all x ∈ G}
= {a ∈ G | axH = xH, for all x ∈ G}
= {a ∈ G | x−1axH = H, for all x ∈ G}
= {a ∈ G | x−1ax ∈ H, for all x ∈ G}
= {a ∈ G | a ∈ xHx−1, for all x ∈ G}
= ⋂

x∈G
xHx−1 ≤ H.
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Now, we claim that from this characterization of Ker f , Ker f must be the largest
normal subgroup of G which is contained in H . To prove this, suppose that N
is a normal subgroup of G contained in H . Using N ≤ H , it is immediate that
N = xNx−1 ⊆ xHx−1, for all x ∈ G. Thus, we conclude that

N ≤ ⋂
x∈G

xHx−1 = Ker f.

This completes the proof. �

Note that Theorem11.40 reduces to Cayley’s Theorem in the special case of
H = {e}.

In Theorem3.56, we proved that a Cayley table is a Latin square, i.e., the rows and
columns are permutation of one another. However, the associative law is not easy to
discern by the naked eye. In Theorem3.57, we studied amethod for the verification of
the associative law. Now, by using a method similar the proof of Cayley’s Theorem,
we give another procedure for verification of the associative law.

Theorem 11.41 A Latin square is a Cayley table if composite of two rows is some
row in the table.

Proof We use 1, 2, . . . , n to denote the entries in a Latin square and ai j denote the
entry at the i th row and the j th column. In order to prove the statement, it remains to
check if associative law holds in the setG = {1, 2, . . . , n}with the binary operation
� defined by the given Latin square. We assume 1 is the identity element.

Simulating the proof of Theorem11.39, we define σ : G → Sn by σ( j) = σ j such
that iσ j = ai j = i � j , for all i, j ∈ G. The right cancellation law guarantees that σ j

is indeed in Sn . Although G is a set for all we know, SG is a group. Associative law
in G amounts to the relation σiσ j = σi� j , for all i, j ∈ G. If that is true, then σ(G)

is a subgroup of SG . Conversely, if σ(G) is a subgroup of SG , then the associative
law holds, for we claim that σiσ j , which is σk , for some k ∈ G, is indeed σi� j . To
see this, we show that k must be i � j . Toward this end, consider 1σiσ j and 1σk .
The former is equal to (1 � i)σ j = iσ j = i � j , while the later is equal to 1 � k = k.
Hence, it reduces to check if σ(G) is a subgroup of SG . Since SG is a finite group,
we need only to check that if the multiplication of any two permutations in σ(G) is
still a permutation in σ(G). This can be achieved by checking the row of the Latin
square. �

Example 11.42 As a quick test, examine the following two Latin squares of order
4. One of these turns out to be a Latin square that we can get from a group, while the
other does not. Which is which?

x a b c
c x a b
b c x a
a b c x

x a b c d
a d c x b
b x a d c
c b d a x
d c x b a
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It is easy to check that the first square can be the Cayley table for the group Z4,
if we consider x = 0, a = 1, b = 2 and c = 3.

The second table seems so different. Assume that it is a Cayley table of a group.
Then, for some ordering [σ1, σ2, σ3, σ4, σ5] of our group elements and another
ordering [τ1, τ2, τ3, τ4, τ5], we have

· τ1 τ2 τ3 τ4 τ5
σ1 x a b c d
σ2 a d c x b
σ3 b x a d c
σ4 c b d a x
σ5 d c x b a

One of the σ1, σ2, σ3, σ4, σ5 is the identity element. One of the five rows of the
table must be [τ1, τ2, τ3, τ4, τ5]. In particular, we can actually assume that our
top row is formed by taking σ−1

1 and acting to each element of [x, a, b, c, d],
because the row [x, a, b, c, d] is just multiplying [τ1, τ2, τ3, τ4, τ5] to σ1, i.e.,
[τ1σ1, τ2σ1, τ3σ1, τ4σ1, τ5τ4] = [x, a, b, c, d], or equivalently, [τ1, τ2, τ3, τ4,

τ5] = [xσ−1
1 , aσ−1

1 , bσ−1
1 , cσ−1

1 , dσ−1
1 ]. We can think of these as permutations of

the row [x, a, b, c, d]. For example, the row corresponding to σ2, can be considered
as the permutation

σ2 =
( x a b c d
a d c x b

)
.

Similarly, the row corresponding to σ3, gives us the following permutation:

σ3 =
( x a b c d
b x a d c

)
.

If we consider the product of σ2 and σ3, then we obtain

σ2σ3 =
( x a b c d
a d c x b

)( x a b c d
b x a d c

)
=

( x a b c d
x c d b a

)
.

Exercises

1. How many ways are there to embed Z4 in S4?
2. How many ways are there to embed D4 in S4?
3. Let G be a group and H be a subgroup of G. Let X = {Ha | a ∈ G} be the set of

all right cosets of H in G. Define, for b ∈ G, Tb : X → X by Tb(Ha) = Hab−1.
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(a) Prove that the function f : G → SX defined by f (b) = Tb, for all b ∈ G, is
a homomorphism;

(b) Describe Ker f ;
(c) Show that Ker f is the largest normal subgroup of G lying in H .

4. Show that the function f : Sn → An+2 given by

f (σ ) =
{

σ if σ is even
σ(n + 1 n + 2) if σ is odd,

is an isomorphism between Sn and a subgroup of An+2. Deduce that every finite
group is isomorphic to a subgroup of An+2.

5. Show that, for n ≤ 4, any Latin square of order n can be obtained from the Cayley
table of a group by permuting rows, columns, and symbols; but this is not true for
n = 5.

11.4 Automorphisms

A homomorphism of a group G into itself is called an endomorphism. The identity
function is clearly an endomorphism. The set of all endomorphism from G to itself
is denoted by End(G).

Definition 11.43 By an automorphism of a groupG, we shall mean an isomorphism
of G onto itself.

Lemma 11.44 Let G be a group and a ∈ G is a fixed element of G. If a function φa :
G → G is defined by φa(x) = axa−1, for every x ∈ G, then φa is an automorphism
of G.

Proof Assume that x and y are arbitrary elements ofG. Then,we haveφa(x)φa(y) =
(axa−1)(aya−1 = a(xy)a−1 = φa(xy). So, φa is a homomorphism. Now, we inves-
tigate that φa is a bijective function. In fact, if φa(x) = φa(y), then axa−1 = aya−1,
and so x = y. This shows that φa is one to one. On the other hand, for each y ∈ G,
we can write φa(a−1ya) = aa−1yaa−1 = y. This means that φa is onto. �

The function φa is called the inner automorphism by a.
Let Aut (G) denote the set of all automorphisms ofG. For the product of elements

of Aut (G), we can use the composition of functions.

Theorem 11.45 If G is a group, then Aut (G) is also a group.

Proof Note that the identity function belongs to Aut (G). Since the resultant com-
position for functions is in general associative, it follows that the composition in
Aut (G) is also associative. Now, the result follows immediately from Lemmas11.26
and 11.27. �
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Aut (G) is called the group of automorphism of G.

Theorem 11.46 The set of all inner automorphisms is anormal subgroupof Aut (G),
which is written Inn(G).

Proof Clearly, the identity function lies in I nn(G) as id(x) = x = exe−1 = φe(x),
for all x ∈ G. Now, let a, b and x be arbitrary elements of G. We can write φa ◦
φb(x) = φa(bxb−1) = abxb−1a−1 = (ab)x(ab)−1 = φab(x). This means that

φa ◦ φb = φab. (11.1)

Thus, φa ◦ φb ∈ I nn(G). Moreover, using (11.1), we can write φa ◦ φa−1 = φa−1 ◦
φa = φe. This implies that (φa)

−1 = φa−1 ∈ I nn(G). Hence, we conclude that
I nn(G) is a subgroup of Aut (G). To prove that I nn(G) is a normal subgroup of
Aut (G), let φa ∈ I nn(G) and f ∈ Aut (G) be arbitrary elements. Then, for any
x ∈ G, we have

( f ◦ φa ◦ f −1)(x) = f ◦ φa
(
f −1(x)

) = f
(
a f −1(x)a−1

)
= f (a) f

(
f −1(x)

)
f (a−1) = f (a)x f (a)−1 = φ f (a)(x).

This shows that f ◦ φa ◦ f −1 ∈ I nn(G), and so I nn(G) � Aut (G). �

Definition 11.47 I nn(G) is called the group of inner automorphisms of G. If G
is abelian, then I nn(G) = {e}. An automorphism of G which is not inner is called
outer. The factor group Out (G) = Aut (G)/I nn(G) is called the group of outer
automorphisms of G even although its elements are not automorphism.

Theorem 11.48 The group of inner automorphisms of G is isomorphic to the quo-
tient group G/Z(G), where Z(G) is the center of G.

Proof We define f : G → I nn(G) by f (a) = φa , for all a ∈ G. Then, we can write
f (ab) = φab = φa ◦ φb = f (a) f (b), for all a, b ∈ G. This means that f is a homo-
morphism. Since each element of I nn(G) is of the form φa , it follows that f is onto.
Hence, by applying the first isomorphism theorem, we obtain G/Ker f ∼= I nn(G).
Now, the result follows if we show that Ker f = Z(G). An element a of G lies in
the kernel K if and only if φa = id, i.e., a−1xa = x , for all x ∈ G. This yields that
Ker f = Z(G). �

Theorem 11.49 Let G = 〈a〉 be a cyclic group, and suppose that f is an endo-
morphism of G. Then, f is an automorphism if and only if f (a) is a generator of
G.

Proof Suppose that f is an automorphism of G. Let x be an arbitrary element of G.
Since f is onto, it follows that there is an element y ∈ G such that f (y) = x . On
the other hand, since y ∈ 〈a〉, it follows that y = an , for some integer n. So, we have
x = f (y) = f (an) = f (a)n . This shows that G = 〈 f (a)〉.

Conversely, assume thatG = 〈 f (a)〉.Wemust show that f is bijective. Let y ∈ G
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be an arbitrary element. Then, y = f (a)k , for some integer k. Hence, we obtain
y = f (ak), and so we conclude that f is onto. To prove that f is one to one, we
consider the following two cases:

Case 1: Let G be finite. Then, f is clearly one to one.
Case 2: Let G be infinite, and suppose that f (x) = f (y). Then, f (ai ) = f (a j ),

where ai = x and a j = y, for some integers i and j . So, we canwrite f (a)i = f (a) j ,
or equivalently f (a)i− j = e. Since G is infinite, it follows that i = j , and so x = y.
Consequently, f is one to one. �

Theorem 11.50 If G is an infinite group, then Aut (G) is of order 2.

Proof The result follows from Theorem11.49 and the fact that the number of gen-
erators of an infinite cyclic group is 2. �

Theorem 11.51 If G = 〈a〉 is a finite cyclic group of order n, then Aut (G) ∼= Un.

Proof Since G is finite, by Corollary4.33, the number of generators of G is ϕ(n).
This yields that |Aut (G)| = ϕ(n). Suppose that f : G → G be an automorphism
of G. Then, we have f (a) = ak , for some integer k. Since f (a) is a generator
of G, it follows that k < n and (k, n) = 1. Now, we define θ : Aut (G) → Un by
θ( f ) = k, for all f ∈ Aut (G). Let f and g be two elements of Aut (G) such that
f (a) = ak and g(a) = al , for some integers k and l. So, we have ( f ◦ g)(a) =
f (al) = akl . Therefore, we obtain θ( f ◦ g) = kl = k l = θ( f )θ(g). This shows that
θ is a homomorphism. Now, if θ( f ) = θ(g), then k = l. This implies that n|k − l.
Since k < n, l < n, (k, n) = 1 and (l, n) = 1, we conclude that k = l, and so f = g.
This proves that f is one to one. Finally, since |Aut (G)| = |Un| = ϕ(n), it follows
that θ is onto. Therefore, θ is an isomorphism. �

Theorem 11.52 If G is a group of order pn, then |Aut (G)| = pn(p − 1).

Proof It follows directly from Theorem11.51. �

Exercises

1. Find all of the automorphisms of Z8.
2. Prove that a + ib �→ a − ib is an automorphism of C

∗.
3. Prove that Aut (S3) ∼= S3.
4. What are the inner automorphisms of the quaternion group Q8? Is I nn(G) =

Aut (G) in this case?
5. Prove that Aut (D4) ∼= D4 and yet D4 has outer automorphism.
6. Prove that Aut (A5) ∼= S5.
7. Let G be any group. Prove that the function f from G to itself defined by

f (a) = a−1, for all a ∈ G, is an automorphism if and only if G is abelian.
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8. If G is a group such that Aut (G) is the trivial group, prove that G is abelian and
every element of G is of order 2.

9. If G ∼= H , prove that Aut (G) ∼= Aut (H) and I nn(G) ∼= I nn(H).
10. Find two non-isomorphic groups G and H such that Aut (G) ∼= Aut (H).
11. Prove that every finite group having more than two elements has a non-trivial

automorphism.
12. If an automorphism fixes more than half of the elements of a finite group, prove

that it is the identity automorphism.
13. Let G be a group and f : G → G defined by f (x) = xn , for all x ∈ G, be an

automorphism. Prove that for each a ∈ G, we have an−1 ∈ Z(G).
14. Prove that if G is a group in which every non-identity element is of order 2, then

G has a non-trivial automorphism.
15. LetG be the group of order 9 generated by elements a and b, where a3 = b3 = e.

Find all the automorphisms of G.
16. Prove that the group of inner automorphisms of the symmetric group Sn (n ≥ 3)

is isomorphic to Sn .
17. Prove that every automorphism of S4 is inner. What is the order of the group of

automorphisms of S4?
18. Let G be the additive group of numbers of the form mpn , where m and n are

integers and p is a fixed prime. Describe End(G) and Aut (G).
19. Prove that if G is a finite non-cyclic abelian group, then Aut (G) is not abelian.
20. Let f be an automorphism of a finite groupG with the property that f (x) = x if

and only if x = e. Suppose further that f 2 = id, the identity element of Aut (G).
Show that G is abelian.
Hint: First prove that every a ∈ G can be represented as x−1 f (x), for some
x ∈ G.

11.5 Characteristic Subgroups

Recall that a subgroup of a group G is normal if it is invariant under conjugation.
Now, conjugation is just a special case of an automorphism of G.

Definition 11.53 Let G be a group and H be a subgroup of G. We say that H is a
characteristic subgroup of G, if for every automorphism f of G, f (H) = H .

Example 11.54 Let G be a group. Then, G itself and the identity subgroup {e} are
characteristic subgroups of G.

Example 11.55 The center of any group is a characteristic subgroup. Indeed, let
f ∈ Aut (G) be arbitrary. Pick z ∈ Z(G), then z commutes with every element ofG.
Pick an element a ∈ G. Since f is onto, it follows that a = f (b), for some b ∈ G.
Hence, we can write

a f (z) = f (b) f (z) = f (bz) = f (zb) = f (z) f (b) = f (z)a.
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Since a is arbitrary, it follows that f (z) commutes with every element of G, and so
f (z) ∈ Z(G). Consequently, we get f

(
Z(G)

) ⊆ Z(G). Applying the same result
to the inverse of f , we obtain f −1

(
Z(G)

) ⊆ Z(G). This implies that Z(G) ⊆
f
(
Z(G)

)
. Therefore, we have f

(
Z(G)

) = Z(G), and this shows that Z(G) is a
characteristic subgroup of G.

Example 11.56 Derived subgroup G ′ of a group G is a characteristic subgroup of
G, since for every f ∈ AUt (G) and a, b ∈ G, we have f ([a, b]) = [ f (a), f (b)].
Example 11.57 If H is the only subgroup of G of order m, then it must be char-
acteristic, because f (H), for all f ∈ Aut (G), is again a subgroup of G of order
m.

Note that f restricted to H a characteristic subgroup (denoted by f |H ) is an
automorphism of H (it is an endomorphism by definition of H being characteristic).

Here are a few immediate properties of characteristic subgroups.

Theorem 11.58 Let G be a group, and let H, K be subgroups of G.

(1) If H is characteristic in K and K is characteristic in G, then H is characteristic
in G (being characteristic is transitive);

(2) If H is characteristic in K , and K is normal in G, then H is normal in G.

Proof (1) Note that by assumption H ≤ K ≤ G. Let f be an automorphism of
G. Since K is characteristic in G, it follows that f (K ) = K by definition, and
so f |K is an automorphism of K . Now, since H is characteristic in K , it follows
that f |K (H) = H . But f |K is just the restriction of f (recall H ≤ K ), and hence
f (H) = H .
(2) Consider the automorphism of K given by k �→ aka−1, a ∈ G, which is well

defined since K is normal inG. For any choice of a, we get a different automorphism
of K , which will always preserve H , because H is characteristic in K . Consequently,
aHa−1 ⊆ H . This shows that H is normal in G. �
Theorem 11.59 Let G be a finite group and N be a normal subgroup of G. If
(|N |, [G : N ]) = 1, then N is a characteristic subgroup of G.

Proof Suppose that |N | = m, [G : N ] = n and (m, n) = 1. Then, we conclude that
|G| = mn. Let f ∈ Aut (G) be an arbitrary automorphism. Since N is a normal
subgroup of G, it follows that N f (N ) is a subgroup of G. Moreover, we have

|N f (N )| = |N | | f (N )|
|N ∩ f (N )| .

Assume that k = |N ∩ f (N )|. Since |N | = | f (N )| = m, it follows that |N f (N )| =
m2/k. Since N f (N ) ≤ G, it follows that |N f (N )

∣∣|G|, or equivalently m2/k|mn.
Since (m, n) = 1, it follows that m = k. Hence, we obtain |N ∩ f (N )| = |N |. This
yields that N ∩ f (N ) = N , and so N ⊆ f (N ). Finally, we conclude that N = f (N ),
and this completes the proof. �
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Exercises

1. Prove that every subgroup of a cyclic group is characteristic.
2. Give an example of a group G containing a normal subgroup that is not a charac-

teristic subgroup.
Hint: Let G be abelian.

3. If H is a characteristic subgroup of a group G, prove that CG(H) is also a char-
acteristic subgroup of G.

4. Let G be a finitely generated group and let H be a subgroup of G with finite
index. Show that there is a subgroup K of H that is characteristic in G and has
finite index in G.

5. Let G be a group and H , K be subgroups of G. If H is a characteristic subgroup
of G and H ⊆ K ⊆ G, prove that K/H is a characteristic subgroup of G/H
implies that K is a characteristic subgroup of G.

11.6 Another View of Linear Groups

Let V be a finite dimensional vector space over a field F. The set of all invertible
transformations of V to V is denoted by GL(V, F). This set has a group structure
under composition of transformations. On the other hand, in Sect. 7.1, we applied the
notation GLn(F) for the general linear group, the group of n × n invertible matrices.

Theorem 11.60 Let V be a finite vector space of dimension n over a field F with
ordered basis {v1, . . . , vn}. Then the map θ : GL(V, F) → GLn(F) corresponding
to this basis is an isomorphism of groups.

Proof The result immediately follows by the properties of linear transformation. �
Hence, sinceGL(V, F) ∼= GLn(F), we can consider the elements of general linear

group as invertible matrices as well as invertible linear operators on V . The special
linear group SLn(F) is the set of all matrices A ∈ GLn(F) such that det(A) = 1. We
note that if V is a finite vector space of dimension n over a field F with ordered basis
{v1, . . . , vn}, and if θ : GL(V, F) → GLn(F) is as above, then the set

{T ∈ GL(V, F) | det (θ(T )
) = 1}

is independent of the choice of the basis. This subset is the subgroup θ−1
(
SL(n, F)

)
,

and we denote it by SL(V, F). It is clear that SL(V, F) ∼= SLn(F).

Theorem 11.61 If F is a finite field with q elements, then

|SLn(F)| = q

(
n
2

)
n∏

i=2

(qi − 1).
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Proof Let F
∗ be the multiplicative group of F. We define f : GLn(F) → F

∗ by
f (A) = det(A), for all A ∈ GLn(F). It is easy to check that f is an onto homo-
morphism. Moreover, we see that Ker f = SLn(F). So, by the first isomorphism
theorem, we conclude that

GLn(F)

SLn(F)
∼= F

∗.

This implies that |SLn(F)| = |GLn(F)| · |F∗|. Now, by Theorem7.32, the result fol-
lows. �

Definition 11.62 (Projective LinearGroups) LetF be a field and n a positive integer.
The set Z = {aIn | a ∈ F

∗} of scalar matrices is a normal subgroup of GLn(F). The
projective general linear group over F is defined by

PGLn(F) = GLn(F)

Z
,

and the projective special linear group over F is defined by

PSLn(F) = SLn(F)

SLn(F) ∩ Z
∼= SLn(F)Z

Z
.

The projective groups are obtained from the corresponding ordinary linear groups
by identifying matrices that are scalar multiples of each other.

An automorphism of a field F is a one to one function σ from F onto itself such
that σ(a + b) = σ(a) + σ(b) and σ(ab) = σ(a)σ (b), for all a, b ∈ F. Let Aut (F)

be the set of all automorphism of F. We denote σ(a) := aσ .

Lemma 11.63 IfF is a field, then Aut (F) is a group under composition of functions.

Proof It is straightforward. �

Definition 11.64 Let V be a finite dimensional vector space on a field F. A function
T : V → V is called a semi-linear transformation on V with associated field auto-
morphism σ ∈ Aut (F), if T (v1 + v2) = T (v1) + T (v2) and T (cv1) = cσT (v1), for
all v1, v2 ∈ V and c ∈ F.

Example 11.65 Let V = C
n be the vector space of dimension n over C, and

σ be an automorphism of C defined by (a + bi)σ = a − bi , for all a + bi ∈ C.
Then, T : V → V with T (a1 + b1i, . . . , an + bni) = (a1 − b1i, . . . , an − bni), for
all a1 + b1i, . . . an + bni ∈ C, is a semi-linear transformation.

Let V be a vector space on a field F. We denote �L(V, F) the set of all invertible
semi-linear transformations.

Theorem 11.66 �L(V, F) is a group under composition of semi-linear transforma-
tions.
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Proof It is straightforward. �
The group �L(V, F) is called the semi-linear group. Also, the group

P�L(V, F) = �L(V, F)

Z
(
�L(V, F)

)

is called the projective semi-linear group. If dimV = n, then we write �Ln(F) and
P�Ln(F), respectively.

Corollary 11.67 GL(V, F) is a normal subgroup of �L(V, F) and we have

�L(V, F)

GL(V, F)
∼= Aut (F).

Proof We define θ : �L(V, F) → Aut (F) by θ(T ) = σ , where σ is the associated
field automorphism of T . It is clear that θ is an onto homomorphism with Kerθ =
GL(V, F). This completes the proof. �

Exercises

1. Prove that

(a) PSLn(F) � PGLn(F) � P�Ln(F);

(b)
P�Ln(F)

PGLn(F)
∼= Aut (F).

2. Let Fq be a finite field with q elements. Prove that

(a) PSL2(F2) ∼= SL2(F2) ∼= GL2(F2) ∼= S3;
(b) PSL2(F3) ∼= A4.

3. Show that the set of all matrices of the form
[ ±1 k

0 1

]
,

is a group isomorphic to Dn , where all entries in the matrix are in Zn .
4. Let C

∞ be the complex plane augmented by an extra point ∞. Let a, b, c, d ∈ C

be such that ad − bc �= 0. Define f : C
∞ → C

∞ by

if c �= 0, then

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f (z) = az + b

cz + d
if z �= ∞, z �= −d

c

f
(

− d

c

)
= ∞

f (∞) = a

c
,
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and by

if c = 0, then

⎧⎨
⎩

f (z) = az + b

d
if z �= ∞,

f (∞) = a

c
.

Show that under composition these functions form a group G and G is a homo-
morphic image of GL2(C).

5. Give an example of an outer automorphism of a group G which maps each con-
jugate class of G onto itself.
Hint: Take

G =
{ [

1 a
0 b

]
| a, b ∈ Z8 and (b, 8) = 1

}
.

Show that G is a group under matrix multiplication. Define f : G → G by

f
( [

1 a
0 b

] )
=

⎡
⎣ 1 a + b2 − 1

2
0 b

⎤
⎦ .

11.7 Worked-Out Problems

Problem 11.68 Let G and H be finite groups such that (|G|, |H |) = 1, prove that
the only homomorphism from G to H is the zero homomorphism.

Solution Suppose that f is a homomorphism from G to H . By the first isomor-
phism theorem, we can write G/Ker f ∼= Im f . Since Ker f ≤ G, it follows that
|Ker f |∣∣|G|. Consequently,weget (|G/Ker f |, |H |) = 1.Analogously, since Im f ≤
H , it follows that |Im f |∣∣|H |. Hence,we conclude that |G/Ker f | = |Im f | = 1. This
yields thatG = Ker f . Therefore, f sends every element ofG to the identity element
of H , and this means that f is the zero homomorphism. �
Problem 11.69 If G is a perfect group, prove that the center of G/Z(G) is trivial.

Solution For convenience we set H = Z(G). Assume that the center of G/H is
non-trivial. This means that there is an element aH ∈ Z

(
G/H

)
such that a /∈ H .

Since aH ∈ Z
(
G/H

)
, it follows that aHxH = xHaH , for all xH ∈ G/H . This

implies that axH = xaH , or equivalently a−1x−1ax ∈ H . Now, we can define a
function f : G → H by f (x) = a−1x−1ax , for all x ∈ G. We show that f is a
homomorphism. Let x and y be elements of G. Then, we find that

f (xy) = a−1(xy)−1a(xy) = a−1y−1x−1axy
= (a−1y−1ay)y−1(a−1x−1ax)y
= (a−1x−1ax)(a−1y−1ay) = f (x) f (y).

Thus, f is a homomorphism. By the first isomorphism theorem, we haveG/Ker f ∼=
Im f ≤ H . As H is abelian, we conclude that G/Ker f is abelian. Consequently,



274 11 Group Homomorphisms

by Theorem10.4, we obtain G ′ ⊆ Ker f . Since G is perfect, we have G = G ′,
which implies that G = Ker f . Now, if G = Ker f , then f (x) = e, for all x ∈ G.
So, we obtain a−1x−1ax = e or ax = xa. This shows that a ∈ H , which is a
contradiction. Therefore, we conclude that aH = H or a ∈ H . This proves that
Z
(
G/H

) = {H}. �

Problem 11.70 Suppose that

(1) G and H are groups and G is finite;
(2) f : G → H is a homomorphism;
(3) A and B are subgroups of G such that G = AB and (|A|, |B|) = 1.

Prove that for each normal subgroup N of G, N = (N ∩ A)(N ∩ B).

Solution Let π : G → G/N be the canonical map. Since π is onto, it follows that
π(G) = G/N . Then, we have

π(G) = π(AB) = π(A)π(B) = G/N ,

π(A) = {π(a) | a ∈ A} = {aN | a ∈ A} = (AN )/N ,

π(B) = {π(b) | b ∈ B} = {bN | b ∈ B} = (BN )/N .

Thus, we conclude that
G

N
=

( AN

N

)( BN

N

)
.

On the other hand, by the second isomorphism theorem, we have

A

A ∩ N
∼= AN

N
and

B

B ∩ N
∼= BN

N
.

So, we deduce that ∣∣ AN
N

∣∣∣∣∣|A| and ∣∣ BN
N

∣∣∣∣∣|B|.

Since (|A|, |B|) = 1, it follows that (|(AN )/N |, |(BN )/N |) = 1. Hence, we obtain

AN

N
∩ BN

N
= {N } and A ∩ B = {e}.

Now, we can write |G| = |AB| = |A| |B| and
∣∣∣G
N

∣∣∣ =
∣∣∣ AN
N

∣∣∣
∣∣∣ BN
N

∣∣∣ = |A| |B|
|A ∩ N | |B ∩ N | = |G|

|A ∩ N | |B ∩ N | .

This implies that
|N | = |A ∩ N | |B ∩ N |. (11.2)

Moreover, since A ∩ N ≤ N and B ∩ N ≤ N , we have
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(A ∩ N )(B ∩ N ) ≤ N . (11.3)

Now, by (11.2) and (11.3), we conclude that N = (A ∩ N )(B ∩ N ). �

Problem 11.71 Prove that there are only two groups of order 6, one is cyclic and
another is isomorphic to S3.

Solution Suppose that G is a group of order 6. Since there exist 5 non-identity
elements and x ↔ x−1 is a one to one correspondence between the elements of G
and their inverses, it follows that there exists a non-identity element a ∈ G such that
o(a) = 2.

Let G be abelian and H = 〈a〉. Then, we have |G/H | = 3, which implies that
G/H is cyclic. Assume that G/H = 〈bH〉, for some b ∈ G. Since o(bH)|o(b), it
follows that o(b) = 3 or 6. If o(b) = 6, then G is cyclic. If o(b) = 3, then since
ab = ba and

(
o(a), o(b)

) = 1, it follows that o(ab) = 6. Hence, again in this case
we deduce that G is a cyclic group generated by ab.

Now, assume that G is non-abelian. Then, all non-identity elements of G can
not be of order 2. Thus, there exists c ∈ G such that o(c) = 3 and ac �= ca. Take
N = 〈c〉. Since [G : N ] = 2, it follows that N is a normal subgroup of G. Hence,
we get aca−1 ∈ N . This yields that aca−1 = c or aca−1 = c2. Since ac �= ca, we
conclude that aca−1 = c2, or ca = ac3. On the other hand, we know that a can
not be in N , so we can write G = N ∪ aN = {e, c, c2, a, ac, ac2}. Now, it is
a routine verification to check that the function f : G → S3 given by f (e) = id,
f (a) = (1 2), f (c) = (1 2 3), f (c2) = (1 3 2), f (ac) = (2 3) and f (ac2) = (1 3)
is an isomorphism. This completes the proof. �

Problem 11.72 Prove that any non-abelian group of order 8 is either D4 or Q8.

Solution Suppose that G is a non-abelian group of order 8. Since G is non-abelian,
it follows that G is not cyclic. So, G don’t have any element of order 8. If every
non-identity element of G is of order 2, then again G must be abelian. Hence, there
is a non-identity element a ∈ G such that the order of a is neither 8 nor 2. Since
o(a)

∣∣|G|, it follows that o(a) = 4. If N = 〈a〉, then [G : N ] = 2, and so N � G.
Take b ∈ G such that b /∈ N . Then, we obtain

G = N ∪ bN = {e, a, a2, a3, b, ba, ba2, ba3}.

This yields that G = 〈a, b〉. Since G is non-abelian, it follows that ab �= ba. Since
N � G, it follows that bab−1 ∈ N . Moreover, o(bab−1 = o(a) = 4. In the subgroup
N , the only element of order 4 other than a is a3, so we conclude that bab−1 = a3 =
a−1. Now, G/N is of order 2, so (bN )2 = N , or equivalently b2 ∈ {e, a, a2, a3}.
If b2 = a or b2 = a3, then o(b) = 8. This is impossible, because G is non-abelian.
Thus, we conclude that b2 = e or b2 = a2. If b2 = e, then G is D4 (see Exercise30
in Sect. 11.2). If b2 = a, then G is the quaternion group. �

Problem 11.73 Let G be a group and H be a subgroup of G. Prove that NG(H)/

CG(H) is isomorphic to a subgroup of Aut (H).
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Solution Define θ : NG(H) → Aut (H) by θ(a) = θa , for all a ∈ NG(H), in which
θa(h) = aha−1, for all h ∈ H . Since a ∈ NG(H), it follows that aHa−1 = H . This
shows that θa(h) ∈ H . Moreover, we observe that θa is a bijective homomorphism
from H onto itself, and so θa ∈ Aut (H). Now, it is easy to check that θ is a homomor-
phism with Kerθ = CG(H). At the end, the result follows by the first isomorphism
theorem. �

Problem 11.74 LetG be afinite group and suppose that automorphism f sendsmore
than three-quatres of the elements of G onto their inverses. Prove that f (x) = x−1,
for all x ∈ G and that G is abelian.

Solution Set A = {a ∈ G | f (a) = a−1}. If x ∈ A, then |A ∪ x A| = |A| + |x A| −
|A ∩ x A|. Since A ∪ x A ⊆ G, it follows that |A ∪ x A| ≤ |G|. Since the function
h : A → x A defined by f (a) = xa, for all a ∈ A, is a one to one correspondence,
it follows that |G| ≥ |A ∪ x A| = |A| + |A| − |A ∩ x A|. This implies that |G| >

3|G|/4 + 3|G|/4 − |A ∩ x A| or |A ∩ x A| > |G|/2. Now, assume that xa1 and xa2
are two elements of A ∩ x A, then f (xai ) = f (x) f (ai ) = x−1a−1

i and f (xai ) =
(xai )−1 = a−1

i x−1. Hence, we conclude that a−1
i x−1 = x−1a−1

i , which implies that
x and ai commute. Since there are more than |G|/2 elements in A ∩ x A, it follows
that |CG(x)| > |G|/2. Now, by Lagrange’s theorem, we must have G = CG(x), and
this yields that x ∈ Z(G). Since this is true for all x ∈ A, it follows that A ⊆ Z(G).
Thus, we obtain 3|G|/4 < |A| ≤ |Z(G)|. This shows thatG = Z(G), because Z(G)

is a subgroup of G. Consequently, G is abelian. So, A is a subgroup of G such that
3|G|/4 < |A|. By Lagrange’s theorem we deduce that G = A. �

Problem 11.75 Prove that an automorphism of Sn which sends transpositions to
transpositions is an inner automorphism.

Solution Suppose that f : Sn → Sn be an automorphism mapping transpositions to
transpositions. For two distinct transpositions we can consider two cases:

(1) (a b)(c d), which is of order 2;
(2) (a b)(a c) = (a b c), which is of order 3.

Therefore, we can say that f maps any pair of disjoint transpositions to a pair of
disjoint transpositions. Let f

(
(1 2)

) = (r s) and suppose that 3 ≤ x ≤ n. Since
(1 2)(1 x) is a cycle of length 3, it follows that

f
(
(1 2)(1 x)

) = f
(
(1 2)

)
f
(
(1 x)

) = (r s) f
(
(1 x)

)
.

Hence, f
(
(1 x)

)
moves either r or s. Without loss of generality, we may suppose

that it moves r . Consequently, we can write f
(
(1 x)

) = (r t), for some t different
from r and s.

Now,we claim that for each y �= 1,we have f
(
(1 y)

) = (r u), for some 1 ≤ u ≤ n
and different from r .

If y = 2 or y = x , the claim is true.
If y �= 2 and y �= x , then both permutations (1 y)(1 2) and (1 y)(1 x) are cycles
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of length 3, so are their images under f . As f
(
(1 2)

) = (r s) and f
(
(1 x)

) = (r t),
if f

(
(1 y)

)
is not moving r , then it must move both s and t . Since f

(
(1 y)

)
is a

transposition, it follows that f
(
(1 y)

) = (s t). It is easy to see that (r s)(r t)(s t) =
(r t), and so f −1

(
(r s)

)
f −1

(
(r t)

)
f −1

(
(s t)

) = f −1
(
(r t)

)
. Consequently, we get

(1 2)(1 x)(1 y) = (1 x). Since y /∈ {1, 2, x} and x �= y, we obtain a contradiction.
Therefore, we conclude that f

(
(1 y)

)
must move r , and hence f

(
(1 y)

) = (r u), for
some 1 ≤ u ≤ n and different from r .

Now, we define σ ∈ Sn as follows:

yσ =
{
r if y = 1
u if y �= 1,

where u is the unique element for which f
(
(1 y)

) = (r u). Also, assume that g :
Sn → Sn denote the conjugation by σ . For every y we obtain

g−1
(
f
(
(1 y)

)) = g−1
(
r u)

) = σ(r u)σ−1 = (1 y).

This means that g−1 f fixes all permutations of the form (1 y), for all y. Since
(a b) = (1 b)(1 a)(1 b), for all a and b, it follows that g−1 f fixes every permutation
of Sn . Thus, we obtain f = g. This completes the proof. �
Problem 11.76 A group G is complete if it is centerless and every automorphism
of G is inner. If n �= 2 and n �= 6, prove that Sn is complete.

Solution Let C(k) denote the the conjugate class in Sn consisting of all products
of k disjoint transpositions. We know that a permutation in Sn is of order 2 if and
only if it belongs in some C(k). So, if f ∈ Aut (Sn), then f

(
C(1)

) = (
C(k)

)
, for

some positive integer k. We claim that if n �= 6, then |C(1)| �= |C(k)|, for k �= 1.
Assuming this, then f

(
C(1)

) = C(1), and Problem11.76 completes the proof.
Clearly, we have C(1) = n(n − 1)/2. In order to count the elements of C(k), we

observe that there exist

n(n − 1)

2
· (n − 2)(n − 3)

2
· . . . · (n − 2k − 2)(n − 2k + 1)

2
·

k-tuples of disjoint transpositions. Since disjoint transpositions commute and there
are k! orderings obtained from any k-tuples, we obtain

|C(k)| = n(n − 1)(n − 2) . . . (n − 2k + 1)

k!2k .

Now, the question whether |C(1)| = |C(k)| leads to the question whether there is
some k > 1 such that

(n − 2)(n − 3) . . . (n − 2k + 1) = k!2k . (11.4)

Since the right side of (11.4) is positive, it follows that n ≥ 2k. Hence, we have
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(n − 2)(n − 3) . . . (n − 2k + 1) ≥ (2k − 2)(2k − 3) . . . (2k − 2k + 1)
= (2k − 2)!.

Moreover, bymathematical induction, we find that if k ≤ 4, then (2k − 2)! > k!2k−1.
Consequently, (11.4) is true if k = 2 or k = 3. If k = 2, then the right side of (11.4)
is 4 and it is easy to see that equality never holds. So, we suppose that k = 3. Since
n ≥ 2k, it follows that n ≥ 6. If n > 6, then the left side of (11.4) is greater than or
equal to 5 · 4 · 3 · 2 = 120, while the right side of (11.4) is 24. Therefore, we have
proved that if n �= 6, then |C(1)| �= |C(k)|, for all k > 1, as desired. �

Remark 11.77 S2 ∼= Z2 is not complete because it has a center. We shall see in
future that S6 is not complete too.

Problem 11.78 Let H be a subgroup of a group G ≤ GLn(C). If the set

{[x, y] | x ∈ G and y ∈ H}

is a set of order m, prove that [G : CG(H)] ≤ mn2 .

Solution If y ∈ H , then y has at most m conjugate x−1yx = y[x, y]−1 in G (where
x ∈ G). Therefore, we have

[G : CG(y)] ≤ m.

Suppose that L(H) = {c1h1 + · · · + cmhm | ci ∈ C and hi ∈ H}. If we define addi-
tion and multiplication by scalars in an obvious manner for elements in L(H), then
L(H) is a vector space over C. The set of all n × n matrices with entries in C

is a vector space over C containing L(H) as a subspace. Since the former space
has dimension n2, it follows that the dimension L(H) is at most n2. Assume that
dimL(H) = k ≤ n2. Then, we can find elements y1, . . . , yk in H which form a basis
for L(H). Consequently, we have

CG(H) =
k⋂

i=1
CG(yi ).

So, we have

[G : CG(H)] = [G :
k⋂

i=1
CG(yi )] ≤

k∏
i=1

[G : CG(yi )] ≤ mn2 .

This completes the proof. �
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11.8 Supplementary Exercises

1. Let G be a group, and let S be any set for which there exists a one to one
and onto function f : G → S. We define a binary operation on S by setting
xy = f

(
f −1(x) f −1(y)

)
, for all x, y ∈ S. Prove that S is a group under this

operation, and that f is actually a group isomorphism.
2. Let G be a group of order 12. Show that either G has a normal subgroup of order

3 or G is isomorphic to A4.
3. Let f : G1 → G2 be an onto homomorphism. Let H1 be a normal subgroup of

G1 and suppose that f (H1) = H2. Prove or disprove that G1/H1
∼= G2/H2.

4. Let N1 and N2 be two normal subgroups of G. Prove or disprove that

(a) N1
∼= N2 implies G/N1

∼= G/N2;
(b) G/N1

∼= G/N2 implies N1
∼= N2.

5. Let H be the subgroup of GL2(Z3) as follows:

H =
{ [

a b
0 1

]
∈ GL2(Z3) | a, b ∈ Z3, a �= 0

}
.

Show that H is isomorphic to the symmetric group S3.
6. Show that the subgroup {id, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)} of A4 is

isomorphic to the group of plane symmetries of a chessboard.
7. Show that to each positive integer n there exist only a finite number of pairwise

non-isomorphic groups of order n.
8. Prove that distinct automorphisms of the symmetric group S4 induce distinct

automorphisms of the alternating subgroup A4. What is the order of the group
of automorphisms of A4?

9. Let G and H be groups, f : G → H be a homomorphism with kernel N , and K
be a subgroup of G. Prove that f −1

(
f (K )

) = K N . Hence, f −1
(
f (K )

) = K if
and only if N ≤ K .

10. If G is metabelian and f : G → H is a homomorphism, prove that f (G) is
metabelian.

11. Prove that

(a) If G is a non-abelian group, Aut (G) can not be cyclic;
(b) There is no finite group G for which Aut (G) is cyclic of odd order greater

than 1.

12. Show that if G is a group with trivial center (Z(G) = {e}), then its group of
automorphisms, Aut (G), is also a group with trivial center.
Hint: Let f ∈ Z(Aut (G)). For any a ∈ G, let φa ∈ I nn(G). Then f ◦ φa =
φa ◦ f (Why?). Use this to show that for any x ∈ G, a−1 f (a) ∈ CG( f (x)).
Infer the result from this.

13. Suppose that Z(G) = {e} and I nn(G) is a characteristic subgroup of Aut (G).
Show that any automorphism of A is inner.
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14. Let G be a group and H a normal subgroup of G with the property that [G :
H ] = 4. Let K be an arbitrary subgroup of G. Show that if the factor group
K/K ∩ H is non-trivial, then it is isomorphic to either Z2, or Z4, or K4.

15. Let H be a subgroup of G. Prove that the factor group NG(H)/CG(H) is iso-
morphic to a subgroup of Aut (H).

16. Prove that if G ∼= H , then G ′ ∼= H ′ and Z(G) ∼= Z(H).
17. Suppose that G1 and G2 are finite perfect groups such that G1/Z(G1) ∼=

G2/Z(G2). Prove that there exists a finite perfect group G and subgroups
H1, H2 ≤ Z(G) with G/Z(G) ∼= Gi/Z(Gi ) and G/Hi

∼= Gi , for i = 1, 2.
18. Show that no group can have its automorphism group cyclic of odd order.
19. Let G be a finite group. If k(G) is the number of conjugate classes of G, show

that

(a) k(G) = 2 if and only if G ∼= Z2;
(b) k(G) = 3 if and only if G ∼= Z3 or G ∼= S3;
(c) What can you say about finite groups with 4 or 5 conjugate classes?

20. Let p be a prime and Z(p∞) be the following subset of the group Q/Z:

Z(p∞) = {a/b ∈ Q/Z | a, b ∈ Z and b = pi for some i ≥ 0},

where a/b = a/b + Z. Show that

(a) Z(p∞) is an infinite group under the addition operation of Q/Z;
(b) Every element of Z(p∞) has finite order pn for some n ≥ 0;
(c) If at least one element of a subgroup H of Z(p∞) has order pk , and no element

of H has order greater than pk , then H is a cyclic subgroup generated by 1/pk ,
whence H ∼= Zpk ;

(d) The only proper subgroups of Z(p∞) are the cyclic groups 〈1/pn〉 (n =
1, 2, . . .);

(e) If x1, x2, . . . are elements of an abelian group G such that o(x1) = p, px2 =
x1, px3 = x2, . . . , pxn+1 = xn, . . . , then the subgroup generated by xi ’s (i ≥
1) is isomorphic to Z(p∞);

(f) If H is a proper subgroup of Z(p∞), then Z(p∞)/H ∼= Z(p∞).

21. If G has order n > 1, prove that

|Aut (G)| ≤
k∏

i=0

(n − 2i ),

where k = [log2(n − 1)].
22. Find a finite groupG with a normal subgroup N such that |Aut (N )| > |Aut (G)|.
23. Let G be a group of order pq, where p and q are distinct prime numbers, and

if G has a normal subgroup of order p and a normal subgroup of order q, prove
that G is cyclic.

24. Let G be a group of order pq, where p > q are primes. Prove that
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(a) G has a subgroup of order p and a subgroup of order q;
(b) If q � |p − 1, then G is cyclic;
(c) Given two primes p and q with q|p − 1, there exists a non-abelian group of

order pq;
(d) Any two non-abelian groups of order pq are isomorphic.
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