
Chapter 10
Some Special Subgroups

In this section, we introduce the notion of commutator subgroup or derived subgroup
of a group. This subgroup is important because it is the smallest normal subgroup
such that the quotient group of the original group by this subgroup is abelian. Also,
we study other special subgroup of a group called the maximum subgroup.

10.1 Commutators and Derived Subgroups

LetG be a group, and let a, b ∈ G. The commutator of a and b is [a, b] = a−1b−1ab.
“Commutator” is a goodword to use: because [a, b] is a kind of measure as to how

near a to b come to commuting, [a, b] being the identity element of G if and only if
ab = ba. For any a, b, c ∈ G, we denote [a, b, c] = [[a, b], c]] and ba = a−1ba.

Theorem 10.1 Let G be a group. For every a, b, c ∈ G, the following hold:

(1) [ab, c] = [a, c]b[b, c];
(2) [a, bc] = [a, c][a, b]c;
(3) [a, b−1, c]b[b, c−1, a]c[c, a−1, b]a = 1.

Proof (1) We can write

[ab, c] = (ab)−1c−1abc = b−1a−1c−1abc
= b−1(a−1c−1ac)b(b−1c−1bc) = [a, c]b[b, c].

(2) We have

[a, bc] a−1(bc)−1abc = a−1c−1b−1abc
= (a−1c−1ac)c−1(a−1b−1ab)c = [a, c][a, b]c.
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(3) We can write

[a, b−1, c]b = b−1
[[a, b−1], c]b = b−1[a−1bab−1, c]b

= b−1(ba−1b−1ac−1a−1bab−1c)b = (a−1b−1ac−1a−1)(bab−1cb)

= (aca−1ba)−1(bab−1cb).

Hence, we have
[a, b−1, c]b = (aca−1ba)−1(bab−1cb). (10.1)

Similarly, we obtain

[b, c−1, a]c = (bab−1cb)−1(cbc−1ac) (10.2)

and
[c, a−1, b]a = (cbc−1ac)−1(aca−1ba). (10.3)

Now, by (10.1)–(10.3), the results follows. �
It is perfectly natural to look at the set of all commutators in a group G. This

subset may not form a subgroup of G, so we move to the next best thing.

Definition 10.2 LetG be a group. The subgroup generated by the set {[a, b] | a, b ∈
G} is called the commutator subgroup or derived subgroup of G. It is denoted by G ′
or G(1) or [G,G].

A group G is called perfect if G = G ′.

Theorem 10.3 If G is a group, then G ′ � G and G/G ′ is abelian.

Proof For every a, b, g ∈ G, we have

[ag, bg] = [g−1ag, g−1bg] = (g−1ag)−1(g−1bg)−1(g−1ag)(g−1bg)
= (g−1a−1g)(g−1b−1g)(g−1ag)(g−1bg)
= g−1(a−1b−1ab)g = g−1[a, b]g = [a, b]g.

So, we obtain [a, b]g = [ag, bg]. Now let x ∈ G ′ be an arbitrary element. Then, we

can write x =
n∏

i=1
[ai , bi ], where ai , bi ∈ G for all 1 ≤ i ≤ n. Therefore, we have

g−1xg =
( n∏

i=1

[ai , bi ]
)g =

n∏

i=1

[ai , bi ]g =
n∏

i=1

[ag
i , b

g
i ] ∈ G ′.

This shows that G ′ � G.
Now, let aG ′ and bG ′ be arbitrary elements of G/G ′. Since a−1b−1ab ∈ G ′,

it follows that abG ′ = (
a−1b−1

)−1
G ′, or equivalently aG ′bG ′ = bG ′aG ′, and so

G/G ′ is abelian. �
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Theorem 10.4 Let G be a group and N be a normal subgroup of G. Then, G/N is
abelian if and only if G ′ ≤ N.

Proof Suppose that G/N is abelian. Then, for every a, b ∈ G, we have aNbN =
bNaN . This implies that abN = baN , or equivalently a−1b−1ab ∈ N . Since N
contains every commutator [a, b], it follows that G ′ ≤ N .

Conversely, let G ′ ≤ N , and assume that aN and bN are arbitrary elements of
G/N . Since a−1b−1ab ∈ G ′, it follows that a−1b−1ab ∈ N . Hence, we have abN =
baN . This means that aNbN = bNaN , and so we conclude that G/N is abelian. �

Definition 10.5 A group G is called metabelian if there exists a normal subgroup
N of G such that both N and G/N are abelian.

Theorem 10.6 A group G is metabelian if and only if G ′′ = {e}.
Proof Let G be a metabelian group; we show that G ′′ = {e}. Since G is metabelian,
it has a normal abelian subgroup N , and G/N is abelian. Thus, by Theorem10.4,
G ′ ≤ N . Since N is abelian, it follows that G ′ is abelian, and so G ′′ = {e}.

Conversely, suppose that G ′′ = {e}. We show that G is metabelian. It is clear
that if G is abelian, then G is metabelian. So, we have only to consider the case
where G is not abelian, and hence G ′ �= {e}. Thus, assume that G is not abelian. By
Theorem10.3, we know that G ′ is a normal subgroup of G. Let a, b ∈ G ′. We know
that aba−1b−1 = e since G ′′ = {e} and so we have that ab = ba. Thus, arbitrary
elements a, b ∈ G ′ commute, and so G ′ �= {e} is a normal abelian subgroup of G.
Again, by Theorem10.3, G/G ′ is abelian, and so G is metabelian. �

Theorem 10.7 Let G be a group such that G ′ is a subset of the center of G. Then,
[a, bc] = [a, b][a, c], for all a, b, c ∈ G.

Proof We can write

[a, bc] = a−1(bc)−1abc = a−1c−1(ac)(c−1a−1)b−1abc
= (a−1c−1ac)c−1(a−1b−1ab)c = [a, c]c−1[a, b]c.

Since [a, b] ∈ G ′ andG ′ ⊆ Z(G), it follows that [a, b] ∈ Z(G). So,we conclude that
[a, b]c = c[a, b]. Consequently, we get [a, bc] = [a, c][a, b] = [a, b][a, c]. This
completes the proof. �

More generally, for subgroups H and K of a group G, we denote [H, K ] the
subgroup of G generated by the set {[h, k] | h ∈ H and k ∈ K }.
Theorem 10.8 If G is a group and H, K are subgroups of G, then

(1) [H, K ] = [K , H ];
(2) [H, K ] � H ∨ K.
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Proof (1) Let [h, k] be an arbitrary commutator in [H, K ]. Then, we have

[h, k] = h−1k−1hk = (
k−1h−1kh

)−1 = [k, h]−1.

Since [K , H ] ≤ G and [k, h] ∈ [K , H ], it follows that [k, h]−1 ∈ [K , H ]. This
implies that [h, k] ∈ [K , H ]. So, we have [H, K ] ⊆ [K , H ]. In a similar way, we
obtain [K , H ] ⊆ [H, K ]. Therefore, we conclude that [H, K ] = [K , H ].

(2) Since H ∨ K is the subgroup generated by H ∪ K , it follows that [h, k] ∈
H ∨ K , for all h ∈ H and k ∈ K . This shows that [H, K ] is a subgroup of H ∨ K .
Now, let [h, k] be an arbitrary commutator in [H, K ] and x ∈ H . Then, by Theo-
rem10.1 (1), we have [hx, k] = [h, k]x [x, k], and so [h, k]x = [hx, k][x, k]−1. Since
[hx, k] and [x, k]−1 belong to [H, K ], it follows that [h, k]x ∈ [H, K ]. Also, let
y ∈ K , then by Theorem10.1 (2), we can write [h, ky] = [h, y][h, k]y , and hence
[h, k]y = [h, y]−1[h, ky]. Since [h, y]−1 and [h, ky] lies in [H, K ], it follows that
[h, k]y ∈ [H, K ]. Therefore, we conclude that [H, K ] � H ∨ K . �

Theorem 10.9 If G is a group and H, K are normal subgroups of G, then [H, K ] ≤
H ∩ K.

Proof Suppose that h ∈ H and k ∈ K are arbitrary. Since H � G, it follows that
h−1(k−1hk) ∈ H . Similarly, since K � G, it follows that (h−1k−1h)k ∈ K . Thus,
we obtain [h, k] ∈ H ∩ K . Consequently, we have [H, K ] ≤ H ∩ K . �

Theorem 10.10 If H, K , and N are normal subgroups of a group G, then
[HK , N ] = [H, N ][K , N ].
Proof Assume that a ∈ H , b ∈ K and c ∈ N . Then, by Theorem10.1 (1), we can
write

[ab, c] = [a, b]b[b, c] = [ab, cb][b, c]. (10.4)

Since H and N are normal subgroups of G, it follows that [ab, cb] ∈ [H, N ]. On the
other hand, we have [b, c] ∈ [K , N ]. Now, by (10.4), we conclude that [HK , N ] ⊆
[H, N ][K , N ].

Conversely, since H and K are subgroups of HK , it follows that

[H, N ] ⊆ [HK , N ] and [K , N ] ⊆ [HK , N ].

Consequently, we get [H, N ][K , N ] ⊆ [HK , N ], and this completes the proof. �
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Exercises

1. Let G be a group and H be a cyclic subgroup of G. If G ′ ≤ H , show that H � G.
2. For any group G, show that G ′ is the subset of all “long commutators”:

G ′ = {a1a2 . . . ana−1
1 a−1

2 . . . a−1
n | ai ∈ G and n ≥ 2}.

Hint: (aba−1b−1)(cdc−1d−1) = a(ba−1)b−1c(dc−1)d−1a−1(ab−1)bc−1

(cd−1)d.
3. Let G be a group and suppose that H and K are subgroups of G. Prove that

(1) H � G if and only if [H,G] ≤ H ;
(2) If K is a subgroup of H and K � G, then [H,G] ≤ K if and only if H/K ≤

Z
(
G/K

)
.

4. Let G = HK , where H and K are abelian subgroups of G. Prove that G ′ is
abelian.

5. Let N be a normal subgroup of a group G such that N ∩ G ′ = {e}. Show that
N ≤ Z(G).

6. If H is a subgroup of a metabelian group G, prove that H is metabelian.

10.2 Derived Subgroups of Some Special Groups

In this section, we investigate the derived subgroups of symmetric groups, alternating
groups, quaternion group, general linear groups, special linear groups, and dihedral
groups.

Lemma 10.11 Let n ≥ 5 and N � An. If N contains a cycle of length 3, then N =
An.

Proof Suppose that (x y z) ∈ N . By Theorem5.43, each permutation in An is a
product of cycles of length 3. Hence, it suffices to prove that every cycle of length
3 lies in N . Assume that (a b c) ∈ Sn is an arbitrary cycle. Take σ ∈ Sn such that
xσ = a, yσ = b and zσ = c. Then, we have σ−1(x y z)σ = (a b c).

If σ ∈ An , then (a b c) ∈ N , because N � An .
If σ /∈ An , then σ is an odd permutation. Since n ≥ 5, we can consider r and

s distinct from x , y, and z. So, we have (r s)σ ∈ An . Consequently, we have(
(r s)σ

)−1
(x y z)(r s)σ ∈ N , or equivalently σ−1(r s)(x y z)(r s)σ ∈ N . Since

(r s) and (x y z) are disjoint cycles, it follows that σ−1(x y z)σ ∈ N . This shows
that (a b c) ∈ N . �

Theorem 10.12 For all n ≥ 2, S′
n = An.
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Proof Let n ≥ 2 and suppose that σ and τ are two arbitrary permutations in Sn . Let
σ = σ1σ2 . . .σr and τ = τ1τ2 . . . τs , where σi ’s and τi ’s are transpositions. Then, we
have

[σ, τ ] = σ−1τ−1στ = σr . . .σ2σ1τs . . . τ2τ1σ1σ2 . . .σrτ1τ2 . . . τs .

Hence, [σ, τ ] is a product of 2(r + s) transpositions, and so it is an even permutation.
This shows that [σ, τ ] ∈ An . Therefore, we conclude that S′

n ≤ An .
Now, in order to show that An = S′

n , we consider the following cases:
Case 1: n = 2. In this case, clearly, we have S′

n = A2 = {id}.
Case 2: n = 3.We have A3 = {id, (1 2 3), (1 3 2)}. Since there are permutations

in S3 that don’t commute, it follows that the derived subgroup is not just {id}. Hence,
it must be all of A3.

Case 3: n = 4. For distinct i, j, k ∈ {1, 2, 3, 4}, we have

[(i j), (i k)] = (i j)(i k)(i j)(i k) = (i j k)2 = (i k j),

that is, every cycle of length 3 belongs to derived subgroup. Therefore, we conclude
that S′

4 = A4.
Case 4: n ≥ 5.We know that S′

n is a normal subgroup of Sn . Moreover, we proved
that S′

n ≤ An . On the other hand, we have

[(1 2), (2 3)] = (1 2)(2 3)(1 2)(2 3) = (1 2 3) ∈ S′
n.

This means that S′
n contains a cycle of length 3, and so by Lemma10.11, we deduce

that S′
n = An . �

Theorem 10.13 We have

(1) A′
2 = A′

3 = {id};
(2) A′

4 = {id, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)};
(3) A′

n = An, for all n ≥ 5.

Proof (1) It is straightforward.
(2) Assume that N = {id, (1 2)(3 4), (1 4)(2 3), (1 3)(2 4)}. It can be checked

that N is a normal subgroup of A4. Since |A4/N | = 3, it follows that A4/N is abelian,
and so by Theorem10.4, we have A′

4 ≤ N . Since A4 is non-abelian, it follows that
A′
4 �= {id}. Hence, there exists a non-identity permutation (a b)(c d) in A′

4. Since
A′
4 � A4 and everyproduct of disjoint transpositions are conjugate in A4,we conclude

that A′
4 = N .

(3) Since A′
n � An , by Lemma10.11, it is enough to prove that A′

n contains a
cycle of length 3. Since n ≥ 5, assume that σ = (a c b) and τ = (b c)(d e). Then,
we have [τ σ] = τ−1σ−1τσ = (τ−1σ−1τ )σ. Also, we have

τ−1σ−1τ = τ−1(a b c)τ = (aτ bτ cτ ) = (a c b) = σ.

Consequently, we obtain [τ ,σ] = σ2 = (a b c) as desired. �
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Theorem 10.14 If Q8 is the quaternion group, then Q′
8 = {1, 1}.

Proof We know that Q8 = {1, −1, I, −I, J, −J, K , −K }. The commutator
subgroup contains the element

[I, J ] = I−1 J−1 I J = (−I )(−J )I J = (I J )(I J ) = K 2 = −1.

Similarly, [J, K ] = −1 and K , I ] = −1. On the other hand, 1 and −1 commute
with all elements of Q8, hence [a,−1] = [a, 1] = 1, for all a ∈ Q8. Therefore,
the commutator subgroup is the subgroup of Q8 generated by −1 and 1, which is
Q′

8 = {1, 1}. �

Theorem 10.15 Let F be a field and n ≥ 2 be an integer. Then,

SLn(F)
′ = GLn(F)

′ = SLn(F),

except when n = 2 and F consists of 2 or 3 elements. Thus, SLn(F) is perfect (with
the exceptions listed).

Proof Let A and B are two arbitrary matrices in GLn(F). Then, we have A−1B−1

AB ∈ GLn(F)
′. Since

det(A−1B−1AB) = det(A−1) det(B−1) det(A) det(B) = 1,

it follows that A−1B−1AB ∈ SLn(F). This yields that GLn(F)
′ ⊆ SLn(F). On

the other hand, since SLn(F) ⊆ GLn(F), it follows that SLn(F)
′ ⊆ GLn(F)

′. So,
we have SLn(F)

′ ⊆ GLn(F)
′ ⊆ SLn(F). Consequently, it is enough to show that

SLn(F)
′ = SLn(F). To establish this equality, by Theorem7.41, it is enough to show

that each matrix of the form Ei j (λ) with i �= j and λ ∈ F
∗, is a product of commu-

tators. It is easy to check that for any distinct indices i, j, k,

[Eik(λ), Ekj (1)] = Eik(−λ)Ekj (−1)Bik(λ)Ekj (1) = Ei j (λ).

his expresses each Ei j (λ) as a commutator when n ≥ 3. For n = 2, we have

[[
a−1 0
0 a

]
,

[
1 b
0 1

]]
=

[
a−1 0
0 a

]−1 [
1 b
0 1

]−1 [
a−1 0
0 a

] [
1 b
0 1

]

=
[
a 0
0 a−1

]−1 [
1 −b
0 1

]−1 [
a−1 0
0 a

] [
1 b
0 1

]

=
[
1 b(1 − a2)
0 1

]
.

So, if F contains an element a such that a �= 0 and a2 �= 1, then we can express any
matrix E12(λ) as a commutator by taking b = (1 − a2)−1λ, and similarly for E21(λ).
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This yields that SLn(F)
′ = SLn(F) except when n = 2 and a3 = a, for all a ∈ F,

and this happens only when |F| = 2 or 3. �

Theorem 10.16 If Dn is the dihedral group of order 2n, then by Corollary7.74, we
have Dn = 〈R, S〉, where S is a reflection and R is a rotation. Then, D′

2n = 〈R2〉.
Proof Since [S, R] is S−1R−1SR = SSRR = R2, it follows that R2 is a commuta-
tor. Moreover, since [S, Ri ] = S−1R−i SRi = SSRi Ri = R2i , it follows that every
element of 〈R2〉 is a commutator. Now, we prove that every commutator belong to
〈R2〉. Suppose that A and B are two arbitrary elements of D2n . We consider the
following cases:

Case 1:Both A and B are rotations. In this case,we canwrite A = Ri and B = R j ,
for some integers i and j . Since Ri and R j commute, it follows that [A, B] = In .

Case 2: A is a rotation and B is a reflection. Then, we have A = Ri and B = R j S,
for some integers i and j . Since B = B−1, it follows that

[A, B] = A−1B−1AB = A−1BAB = R−i R j SRi R j S = R j−i SRi+ j S.

By Theorem7.75, since RS = SR−1, it follows that [A, B] = R−2i ∈ 〈R2〉.
Case 3: A is a reflection and B is a rotation. In this case, we have [A, B]−1 =

B−1A−1BA. By the case (2), [A, B]−1 ∈ 〈R2〉, and this implies that [A, B] ∈ 〈R2〉.
Case 4: Both A and B are reflections. Then, we have A = Ri S and B = R j S.

Hence, we obtain A = A−1 and B = B−1. So, we conclude that

[A, B] = A−1B−1AB = ABAB = (AB)2 = (Ri SR j S)2

= (Ri R− j SS)2 = R2(i− j) ∈ 〈R2〉.

This completes the proof. �

Exercises

1. Compute [GLn(F) : SLn(F)], where F is finite.
2. Suppose that On(F) = {A ∈ GLn(F) | At A = In} and SOn(F) = {A ∈ On(F) |

det(A) = 1}. Prove that SOn(F) � On(F) and compute [On(F) : SOn(F)].
3. Determine the derived subgroup of SOn(F).

10.3 Maximal Subgroups

Amaximal subgroup of a given groupG is a proper subgroup ofG, that is, a subgroup
which is neither the identity nor G itself, and in order to be maximal, it can not be
contained in a larger proper subgroup of G. More precisely:
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Definition 10.17 A subgroup M of a group G is called a maximal subgroup if
M �= G and the only subgroups containing M are M and G.

Example 10.18 We know that the subgroups of Z are of the form nZ. Note that
nZ ⊆ mZ if and only if m|n, and so the maximal subgroups of Z are precisely pZ
for p prime.

Example 10.19 In each Hasse diagram, the lower subgroup is a maximal subgroup
in the upper one.

Theorem 10.20 If H is a proper subgroupof a finite groupG, then there is amaximal
subgroup of G containing H.

Proof If H is a maximal subgroup of G, then we have nothing to do. If H is not a
maximal subgroup, we pick a proper subgroup H1 of G such that H ⊂ H1. Again, if
H1 is maximal in G,then we are done; otherwise, we pick a proper subgroup H2 of
G such that H ⊂ H1 ⊂ H2. Continuing in this way, we construct a chain of proper
subgroups of G:

H ⊂ H1 ⊂ H2 ⊂ . . . ,

and this gives a strictly increasing chain of integers

|H | < |H1| < |H2| < . . . ,

which is bounded above by |G|, and so must terminate. Consequently, we obtain a
maximal subgroup containing H . �

We conclude that in non-trivial finite groups, maximal subgroups will always
exist. However, not all groups will have maximal subgroups.

Example 10.21 The rational numbersQunder addition have nomaximal subgroups.
To see the reason, suppose that M is a maximal subgroup of Q. There exists a
rational number r/s (r, s ∈ Z and s �= 0) such that r/s /∈ M . Since Z is a proper
subgroup of Q, it follows that M �= {0}. Let m/n ∈ M with m, n ∈ Z and mn �= 0.
Since m/n ∈ M , it follows that nm/n ∈ M , and so m ∈ M . Since M is a maximal
subgroup, it follows that

M + 〈r/s〉 = Q. (10.5)

Consider r/sms ∈ Q. Then, by (10.5), there existh ∈ M and t ∈ Z such that r/sms =
h + tr/s. Hence,we have r/s = msh + tmr = m(sh + tr). Sincem ∈ M , it follows
that r/s ∈ M . This is a contradiction.

Theorem 10.22 The center of a group G is properly contained in every maximal
subgroup of G having a composite index.

Proof LetM be amaximal subgroup ofG with composite index. Suppose that Z(G)

is not contained in M . Then, there exists a ∈ Z(G) such that a /∈ M . We consider
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〈M, a〉, the subgroup generated by M ∪ {a}. Since M is a maximal subgroup and
M ⊂ 〈M, a〉, it follows that 〈M, a〉 = G. Assume that x ∈ G is an arbitrary element.
Since a ∈ Z(G), it follows that x = akb, for some b ∈ M and k ∈ Z. Now, for every
y ∈ M , we have

xyx−1 = (akb)y(akb)−1 = akbyb−1a−k = byb−1,

because a ∈ Z(G). Since b, y ∈ M , it follows that byb−1 ∈ M . This means that
xyx−1 ∈ M , and so M is a normal subgroup of G. Since G/M has composite order,
we conclude thatG/M has a non-trivial subgroup, say H/M . Hence, {M} ⊂ H/M ⊂
G/M . This yields that M ⊂ H ⊂ G, and this is a contradiction with the maximality
of M .

Note that if Z(G) = M , then M is a normal subgroup of G and by the same
arguments, we obtain a contradiction. �

Lemma 10.23 If an element of a group is not contained in any maximal subgroup,
then the group is cyclic.

Proof Suppose that G is a group and x ∈ G with x is not in any maximal subgroup
of G. Since x is not in any maximal subgroup, it follows that 〈x〉 is not maximal.
Moreover, since x is not in any maximal subgroup, it follows that 〈x〉 is not a subset
of any maximal subgroup. This yields that 〈x〉 = G. �

Theorem 10.24 Let G be a finite group. If G has exactly one maximal subgroup,
then the order of G is a power of a prime.

Proof First,we show thatG is cyclic.Assume thatM is the uniquemaximal subgroup
ofG. Let x ∈ G − M . Then, the subgroup generated by x is contained in nomaximal
subgroup and hence is equal to G. Consequently, G is a cyclic group.

Clearly, we have |G| > 1. Assume that |G| has more than one prime factor. Then,
it may be written |G| = pkm, where p is prime, k, m are positive integers and
(p,m) = 1. Since G is cyclic, if k is a divisor of |G|, then G has a subgroup of order
k. In particular, let m = qr with q prime. So, G has a subgroup of order pkr and
pk−1m. Since (pkr, pk−1m) = 1, neither of these is a subgroup of the other. Since
the order of each of these is less than that of order G, it follows that each of them
is a proper subgroup of G. Since there are no proper divisors of |G| greater than
the order of either of these, no proper subgroup contains either of them. Therefore,
we conclude that both of these are maximal subgroups. Since G is defined to have
exactly one maximal subgroup, the assumption that |G| has more than one prime
factor must be invalid. �

Theorem 10.25 If a finite group has exactly two maximal subgroups, then it is a
cyclic group.

Proof Suppose that G is a finite group. Let M1 and M2 be the only distinct maximal
subgroups of G. By Lagrange’s Theorem, if a group is finite, the order of any of its
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proper subgroups can be no greater than half the order of the group. So, we have
|M1| ≤ |G|/2 and M2| ≤ |G|/2. Therefore, we can write

|M1 ∪ M2| ≤ |M1| + |M2| − 1 ≤ |G|/2 + |G|/2 − 1 = |G| − 1 < |G|.

Consequently, there exists x ∈ G such that x /∈ M1 ∪ M2. Hence, by Lemma10.23,
we conclude that G is cyclic. �

If M is a maximal subgroup of a group G, then also every conjugate aMa−1 of
M is maximal in G. Indeed, aMa−1 ⊂ H < G implies that M < a−1Ha < G. For
this reason the maximal subgroups are studied up to conjugation.

Exercises

1. Let M be a maximal subgroup of a group G. Prove that if M � G, then [G : M]
is finite and equal to a prime number.

2. Let G be the additive group consisting of all rational numbers. Prove that G
contains no maximal subgroup.

3. Let G be a group in which each proper subgroup is contained in maximal sub-
group of finite index in G. If every two maximal subgroups on G are conjugate
in G, prove that G is a cyclic group.

4. If G is a perfect group and M is a maximal subgroup of G, prove that

(1) M contains the center of G;
(2) M/Z(G) is maximal in G/Z(G).

10.4 Worked-Out Problems

Problem 10.26 If n ≥ 5, prove that An is the unique proper non-trivial normal sub-
group of the symmetric group Sn .

Solution Suppose that N is a proper non-trivial normal subgroup of Sn and let
σ be a non-identity permutation in N . Then, there exists i such that iσ �= i . We
choose j �= i, iσ. Now, if τ = (i j), then α = στσ−1τ−1 is non-identity and lies
in N . Moreover, α is a product of the transpositions στσ−1 and τ . Consequently,
it is either a cycle of length 3 or a permutation of the form (a b)(c d). Since N is
normal, it contains either all cycles of length 3 or all permutations of type (a b)(c d).
Therefore, by Theorem5.43, we deduce that N = An . �

Problem 10.27 The fact that the set of all commutators in a group need not be a
subgroup is an old result; the following example is due to P.J. Cassidy (1979).

(a) Let F[x, y] denote the ring of all polynomials in two variables over a field F,
and let F[x] and F[y] denote the subrings of all polynomials in x and in y,
respectively. Define G to be the set of all matrices of the form
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A =
⎡

⎣
1 f (x) h(x, y)
0 1 g(y)
0 0 1

⎤

⎦ ,

where f (x) ∈ F[x] and g(y) ∈ F[y] and h(x, y) ∈ F[x, y]. Prove that G is a
multiplicative group and that G ′ consists of all those matrices for which f (x) =
0 = g(y).

(b) If (0, 0, h) is a commutator, show that there are polynomials f (x), f ′(x) ∈ F[x]
and g(x), g′(x) ∈ F[y] with h(x, y) = f (x)g′(y) − f ′(x)g(y).

(c) Show that h(x, y) = x2 + xy + y2 does not posses a decomposition as in part
(b), and conclude that (0, 0, h) ∈ G ′ is not a commutator.

solution (a) If A denoted by triple ( f, g, h), then

( f, g, h)( f ′, g′, h′) = ( f + f ′, g + g′, h + h′ + f g′). (10.6)

Since G is a subset of a matrix group, we need only to check the subgroup axioms,
i.e., it is not necessary to check the associativity. The operation in (10.6) shows
that the multiplication of two elements of G is also in G. It is clear that I3 ∈ G
with f (x) = h(x, y) = g(y) = 0. Moreover, if f + f ′ = 0, g + g′ = 0 and h +
h′ + f g′ = 0, then we get f ′ = f , g′ = −g and h′ = −h + f g. This yields that the
element (− f,−g,−h + f g) is the inverse of ( f, g, h). Hence, we conclude that G
is a group.

If h = h(x, y) =
∑

ai j x
i y j , then

(0, 0, h) =
∏

i, j

[(ai j x i , 0, 0), (0, y j , 0)].

This shows that G ′ consists of all those matrices for which f (x) = 0 = g(y).
(b) Let (0, 0, h) be a commutator. Then we can write

(0, 0, h) = ( f, g, h1)( f ′, g′, h2)( f, g, h1)−1( f ′, g′, h2)−1

= ( f, g, h1)( f ′, g′, h2)(− f,−g,−h1 + f g)(− f ′,−g′,−h2 + f ′g′)
= ( f + f ′, g + g′, h1 + h2 + f g′)(− f − f ′,−g − g′,−h1 − h2 + f g + f ′g′ + f g′)
= (

0, 0, f g′ + f g′ + f g + f ′g′ + ( f + f ′)(−g − g′)
)

= (0, 0, f g′ − f ′g).

(c) If f (x) =
∑

bi x
i and f ′(x) =

∑
ci x

i , then there are equations

h(0, y) = f (0)g′(y) − f ′(0)g(y),

∂

∂x
h(x, y)

∣∣∣
x=0

= ∂

∂x
f (x)

∣∣∣
x=0

g′(y) − g(y)
∂

∂x
f ′(x)

∣∣∣
x=0

,

∂2

∂x2
h(x, y)

∣∣∣
x=0

= ∂2

∂x2
f (x)

∣∣∣
x=0

g′(y) − g(y)
∂2

∂x2
f ′(x)

∣∣∣
x=0

.
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Hence, we obtain the following three equations

b0g′(y) − c0g(y) = y2,
b1g′(y) − c1g(y) = y,
b2g′(y) − c2g(y) = 1.

Considering F[x, y] as a vector space over F, one obtains the contradiction that the
independent set {1, y, y2} is in the subspace spanned by {g, g′}.

10.5 Supplementary Exercises

1. If N is a normal subgroup of the group G, prove that (G/N )′ = G ′N/N .
2. Let a and b be two elements of order m and n, respectively, in group G. Prove

that if a and b both commute with [a, b], and d is the greatest common divisor of
m and n, then [a, b]d = e.

3. Suppose that G is a group and |G| = pn , where p is a prime number. If [G :
CG(x)] ≤ p, for all x ∈ G, prove that

(a) CG(x) � G, for all x ∈ G;
(b) G ′ ≤ Z(G);
(c) |G ′| ≤ p.

4. Let G be a subgroup of a group G. If [H,G ′] = e, prove that [H ′,G] = e.
5. Let p be prime and let G be a non-abelian group of order p3. Show that Z(G) =

[G,G] and this is a subgroup of order p.
6. Let K ≤ M < G, with K � G. Prove that M/K is a maximal subgroup of G/K

if and only if M is a maximal subgroup of G.
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