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Abstract

Polyamines are small, positively charged, organic compounds containing more
than two amino groups. They are omnipresent in plants and produced during
various metabolic processes. Environmental fluctuations owing to greenhouse
gases, pollution, deforestation, and global warming are known to hamper plants’
normal growth, production, and developmental processes causing various forms
of abiotic stresses such as drought, salinity, heat, cold, osmolarity, etc.
Polyamines are considered important to plants as they provide support in
maintaining normal growth and development of plants even during stressed
conditions. They play crucial role whether present at endogenous levels or
fortified exogenously to plants utilizing plant tissue culture or genetic transfor-
mation techniques. Although they are regarded important for plants, still their
mode of action and regulation during plant stress conditions is still not well
understood. In this chapter, their endogenous production, mode of action and
regulation is described at length so as to facilitate a broader and clearer picture to
the researchers to understand the importance of them in combating various abiotic
stresses in plants.
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19.1 Introduction

Polyamines (PAs) are polycationic aliphatic amines. They are present in plants
abundantly and take part in major plant growth and development processes.
Spermidine (Spd), spermine (Spm) and putrescine (Put) are common polyamines
apparently involved in plant responses to microbial symbionts that are critical for
plant nutrition (El Ghachtoul et al. 1996), and are involved in molecular signaling
events in interactions between plants and pathogens (Martin-Tanguy 1987). PAs are
important for plant growth development and environmental stresses as well (Evans
and Malmberg 1989; Galston and Kaur-Sawhney 1990). PAs are synthesized from
the amino acids ornithine or arginine. Their capacities to neutralize acids and act as
antioxidant agents—as well as their roles in membrane/cell wall stabilization—make
them indispensable for normal functioning of cells. DNA has an overall negative
charge due to phosphate group attached to it (Basu et al. 1990; Pohjanpelto and
Höltta 1996), so PAs tend to bind with DNA, thereby providing stability to the DNA
helix (Beigbeder 1995; Tassoni et al. 1996) and pectic polysaccharides (D’Oraci and
Bagni 1987). They have been shown to be involved in protein phosphorylation
(Ye et al. 1994), post-transcriptional modifications (Mehta et al. 1994), and confor-
mational transition of DNA (Basu et al. 1990). There is direct evidence that they are
essential for growth and development in prokaryotes and eukaryotes (Tabor and
Tabor 1984; Heby and Persson 1990; Tiburcio et al. 1990; Slocum 1991). PAs are
considered to be signaling molecules, especially in stress situations (Evans and
Malmberg 1989; Galston and Kaur-Sawhney 1995).

Naturally occurring PAs play pivotal role in plant metabolism such as effects on
the tolerance mechanism to abiotic stresses (Meloni et al. 2003; Zeid 2004; Jiuju and
Shirong 2005; Duan et al. 2007; Roychoudhury et al. 2011).

Abiotic stresses such as soil salinity, cold, frost injury, drought, acidity, and
heavy metal affect plant growth, development, and productivity. Since these
conditions produce stress and result in extensive losses to many agriculturally
important crops, they have been the main subject of intense research. The accumu-
lation of some functional substances, such as compatible solute, protective proteins,
and polyamines, is an important element of the physiological and biochemical
response to the stressful conditions. Polyamines have been proposed as a new
category of plant growth regulators which are active in physiological processes,
such as embryogenesis, cell division, morphogenesis, and development (Bais and
Ravishankar 2002; Liu et al. 2006a). Though the physiological significance of
polyamines in stress is not thoroughly understood, much progress has been made.
The focus in the present paper is on progress concerning the involvement and
potential role of polyamines in plant responses to abiotic stresses.
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19.2 Polyamine Biosynthesis and Metabolism in Plants

Polyamine biosynthesis in plants is documented. Put is produced either directly from
ornithine-by-ornithine decarboxylase (ODC, EC 4.1.1.17) or indirectly from
arginine-by-arginine decarboxylase (ADC, EC 4.1.1.19) with two intermediates,
agmatine and N-carbamoyl putrescine, and two corresponding biosynthetic
enzymes, agmatine iminohydrolase (EC 3.5.3.12) and N-carbamoylputrescine
amidohydrolase (EC 3.5.1.53) (Malmberg et al. 1998; Martin-Tanguy 2001). Put
is converted into Spd via spermidine synthase (SPDS, EC 2.5.1.16) with the addition
of an aminopropyl moiety provided by decarboxylated S-adenosylmethionine
(dcSAM), which is catalyzed by S-adenosylmethionine decarboxylase (SAMDC,
EC 4.1.1.50) using S-adenosylmethionine (SAM) as the substrate. Similarly, Spm is
produced from Spd via spermine synthase (SPMS, EC 2.5.1.22) with the same
aminopropyl moiety rendered by dcSAM. Apart from biosynthesis, polyamine
degradation plays a crucial role in cellular polyamine titers regulation, which is
primarily ascribed to two amine oxidases, diamine oxidase (DAO, EC 1.4.3.6), and
polyamine oxidase (PAO, EC 1.5.3.11). DAO catalyzes the oxidation of Put to give
pyrroline, which is further metabolized to g-aminobutyric acid (Cona et al. 2006)
and PAO, and acts as a catalyst in the conversion of Spd and Spm to pyrroline and
1-(3 aminopropyl)-pyrroline, respectively, along with 1,3-diaminopropane in plants
(Martin-Tanguy 2001; Šebela et al. 2001).

19.3 Polyamines Transport in Plants

It is estimated that PAs can be transported in long distances; the presence of large
amounts of PAs has been observed in exudates of xylem and phloem sap; the
vacuolar membrane had the highest capacity to transport them (Vladimir and
Shevyakova 2007).

As per a study carried out in carrot cells, PAs (Put and Spd) flow through the cell
by a transmembrane electrochemical gradient. Other research with maize roots,
whose application of Put was performed exogenously, indicated that Put is
transported through the plasma membrane by a process regulated by a protein carrier
(Kusano et al. 2008). This carrier TPO1 of PAs is mainly located in vacuolar
membrane and plasma membrane. Among the four PA carriers, those which are
encoded by TPO2 and TPO3 are specific for Spm, while for Put, Spd and Spm are
encoded by TPO1 and TPO4 (Uemura et al. 2005). TPO1 is dependent of pH
(Uemura et al. 2005); in some research with lichen (Evernia prunastri), it was
shown that the uptake of PAs depends on this variable (Kakkar et al. 1998). Uptake
of Spr and Spd is performed at alkaline pH (pH ¼ 8.0), while inhibition of only Spd
was observed at acidic pH (pH ¼ 5.0), next to the pH of the vacuoles found
internally. This suggests that TPO1 carrier acts as a catalyst for polyamine excretion
at acidic pH (Uemura et al. 2005). Put uptake occurred under different conditions of
concentration and pH in African violet petals (Saint pauliaionantha), at a relatively
lower concentration gradient (0.5–1.1 micromoles, pH ¼ 5.0–5.5) and to a high
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concentration gradient (from 0.1 to 100 millimolar, pH ¼ 8.0) (Kakkar et al. 1998);
therefore, PAs show the ability as buffers or regulators (Pandey et al. 2000).

19.4 Polyamines in Stress Responses

There is creditable evidence confirming the role of PAs in stress tolerance. Scaveng-
ing of excess reactive oxygen species (ROS) is a direct strategy by which plants
adapt to adverse environments. However, altering metabolism and accumulating
beneficial metabolites, including PAs, are another ways of plants’ defense mecha-
nism. Often changes in PA metabolism and expression levels of their pathway genes
are positively linked with enhanced tolerance of abiotic stresses in plants (Shi and
Chan 2014). For example, overexpression of FcWRKY70 resulted in Put accumula-
tion to provide drought tolerance in Fortunella crassifolia (Gong et al. 2015). Spd
promotes biomass accumulation and upregulates proteins involved in cell rescue.
Spd was involved in inducing antioxidant enzymes in tomato (Lycopersicon
esculentum) seedlings subjected to high-temperature conditions (Sang et al. 2017).
Exogenous Spm treatment induced defense mechanism and caused resistance
against a root rot pathogen, Phytophthora capsici, in Capsicum annuum (Koc
et al. 2017). Furthermore, Spd was found to be vital for adjustment of intracellular
PA pathways and endogenous PA homeostasis, which enhanced salt tolerance in rice
(Saha and Giri 2017).

19.5 Mode of Action of Polyamines in Stress Responses

PAs are reported to protect plants against stress through mechanisms including the
following:

1. Polycationic PAs are known to bind anionic molecules such as nucleic acids and
proteins, thus stabilizing them. This property may be important in preventing
stress-induced damage to these macromolecules. Spd and Spm have been shown
to prevent radiation and oxidative stress-induced strand breaks in DNA.

2. PAs are involved in the regulation of membrane transport in plants. They have
been shown to block two slow and fast vacuolar cation channels. The effect of
PAs is direct, and the channels open when PAs are withdrawn. PAs also affect
vacuolar and plasma membrane H+ and Ca2+ pumps and have been reported to
bring about stomatal closure in response to drought stress by blocking the activity
of a KAT1-like inward K+ channel in the guard cell membrane. This is an indirect
effect caused by low-affinity PA binding to the channel protein.

3. PAs are known to modulate ROS homeostasis. They are known for inhibiting
metals auto-oxidation, thereby reducing the required electron supply for ROS
generation. PAs are known to induce antioxidant enzymes in stress situations, as
evidenced by use of inhibitors of PA biosynthesis or transgenics overexpressing
enzymes involved in PA biosynthesis. For example, application of D-arginine,
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which is an inhibitor of PA biosynthesis enzymes, resulted in reduced levels of
PAs and increased levels of ROS. In addition, ADC overexpression influences
increased tolerance to drought stress, causing reduced ROS generation in trans-
genic plants. PAs, especially Spm have roles as signaling molecules which
activate the antioxidant machinery. Generation of H2O2 by PA catabolism,
which may be promoted when PA levels are above a specific threshold, is
known to play an essential role in signaling cascade regulation during abiotic
and biotic stress conditions. Additionally, abiotic stresses often induce accumu-
lation of abscisic acid (ABA) and nitric oxide (NO) and the interactions between
them. PAs trigger protective responses, including regulation of the channels for
ion homeostasis and stomatal responses to enhance and maintain water content,
thereby inducing the antioxidant machinery to check excessive ROS generation,
with compatible osmolytes synthesis and accumulation. All of these phenomena
occur to cascade the abiotic stress tolerance of plants (Shi and Chan 2014).

19.6 Polyamines and Abiotic Stress

Polyamines modulate the plant’s response to much broader range of abiotic stresses
than expected, viz., drought, salinity, heavy metal toxicity, oxidative stress, chilling
injury, high temperature, osmotic stress, water logging, and flooding tolerance as
proved either by exogenous application of polyamines or by development of trans-
genic plants overexpressing the genes involved in polyamine biosynthesis (Gill and
Tuteja 2010a, b). Increased or decreased levels of PAs either act as a signal or as a
messenger (to transmit the perceived signals from the sensors) to articulate the
plants’ behavioral response spatially and temporally either to avoid or overcome
stress. Modulated endogenous polyamine (free or conjugated or bound) levels are
known to be involved in formation of polyamine-RNA complexes, thereby
generating structural changes in RNA at physiological concentrations of potassium
and magnesium ions (Igarashi and Kashiwagi 2000). Covalent linkage of
polyamines to various enzymes or proteins (post-translational modification)
involved in physiological processes under normal or stressed conditions was
catalyzed by transglutaminase (TGase; EC 2.3.2.13) class of enzymes (Beninati
et al. 1985; Folk 1980). Of various abiotic environmental stimuli under which
polyamines get modulated and thereby its cellular functions were mineral nutrient
deficiency (Richards and Coleman 1952; Coleman and Hegarty 1957), metal toxicity
(Choudhary et al. 2012a, b), salinity (Lefèvre et al. 2001; Hummel et al. 2004), high
(Oshima 2007) and low temperature (Hummel et al. 2004), drought (Bhatnagar et al.
2008; Alcazar et al. 2010), hypoxia (Moschou et al. 2008), osmotic (Lefèvre et al.
2001), and oxidative factors (Moschou et al. 2008; Bouchereau et al. 1999). PAs,
also change ion channels (Takahashi and Kakehi 2010), stimulate special kind of
protein synthesis, stimulate assembly of 30S ribosomal subunits, and stimulate
Ile-tRNA formation (Igarashi and Kashiwagi 2000). Also, modulated titers of
polyamines in combination with epibrassinolides, active form of brassinosteroids,
were reported to regulate abscisic acid (ABA) and indole-3-acetic acid (IAA)
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pathways which in turn enhances tolerance to metal toxicity (Choudhary et al.
2012a, b). PAs in combination with brassinosteroids besides modulating ABA and
IAA pathways with their cascading effects for heavy metal tolerance also modulate
levels of antioxidants like glutathione, ascorbic acid, proline, glycine-betaine, and
antioxidant enzymes like glutathione reductase, peroxidase, catalase, and superoxide
dismutase to cause stress tolerance (Choudhary et al. 2012a, b). Enhanced levels of
polyamines either through exogenous feeding (Gill and Tuteja 2010a, b) or through
heterologous expression of polyamine biosynthetic genes in transgenic plants (Liu
et al. 2007) were reported to increase abiotic stress tolerance. However, the use of
constitutively expressed promoters like CaMV35S, ubiquitin, and actin with poly-
amine biosynthetic genes toward stress tolerance may produce modulated polyamine
levels even under normal conditions resulting in deleterious effects which causes
reduced plant yield special concern toward agricultural crops (Katiyar et al. 1999).

19.7 Polyamines Involvement in Regulation of Plant Stress
Tolerance and Adaptation

Abiotic and biotic stresses cause alterations in the normal physiological processes of
all plant organisms, including the economically important crops. Plant damage and
productivity decrease are most often due to naturally occurring unfavorable factors
of the environment—natural stress factors. Plant organisms are also imposed to a
large scale with new stressors related to human activity—anthropogenic stress
factors. Independent of the type of stress, an increased production of reactive oxygen
species (ROS) occurs in plants that alter their normal physiological functions,
decrease the biosynthetic capacity of plant organisms, and cause damage that may
lead to plant death (Mittler 2002; Fujita et al. 2006; Ahmad et al. 2008; Gill and
Tuteja 2010a, b; Potters et al. 2010). In plants, ROS are generated mainly as
by-products of various processes requiring high metabolic activity or elevated
electron flow by electron transport chains. The major targets of deleterious ROS
action are cellular macromolecules as phospholipids, proteins, and nucleic acids.
Plant organisms possess a complex of antioxidant protective systems in order to cope
with destructive effects of the unfavorable environmental conditions. Beside enzy-
matic antioxidants and nonenzymatic antioxidants, a significant number of studies
provided evidence that PAs also contribute to plant stress tolerance as a part of
defense mechanisms or adaptation programs that help plants to mitigate the negative
stress consequences. Since all stresses limit plant growth and crop productivity, the
efforts of many scientists are focused to minimize the negative stress effects. A
promising strategy to enhance plant tolerance and adaptation to an unfavorable
environment is the use of a transgenic and molecular genetic approach to increase
the cellular PA concentrations (Table 19.1).
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Table 19.1 Enhanced stress tolerance in transgenic plants engineered to overproduce polyamines
(PAs) Source: Todorova et al. (2014)

Gene
Gene
source

Transgenic
plant Increased tolerance PAs overproduction

ADC Oat Rice Salt tolerance Put

ADC Oat Eggplant Multiple abiotic stress
tolerance, fungus wilt
tolerance

Put, Spd
(particularly
conjugated forms),
and free Spm
fraction

ADC Datura Rice Drought tolerance Put, facilitating
synthesis of Spm
and Spd

ADC1 Arabidopsis Arabidopsis Freezing tolerance Put

ADC2 Arabidopsis Arabidopsis Drought and cold
tolerance

Put

PtADC Trifoliate
orange

Tobacco
tomato

Improvement in
dehydration and
drought tolerance

Put

PtADC Trifoliate
orange

Arabidopsis
adc 1–1
mutant

High osmoticum,
drought, low
temperature tolerance

Put

ODC Mouse Tobacco Salinity tolerance Put

SAMDC Tritordeum Rice Salt tolerance Spm and Spd

SAMDC Human Tobacco Salt, drought, fungal
wilt tolerance

Spd, put especially
conjugated fraction

SAMDC Carnation Tobacco Salt, cold, acidic, ABA
tolerance

Put, Spd, and Spm

ySAMDC Yeast Tomato High temperature
tolerance

Spm and Spd after
exposure to high
temperature

MdSAMDC2 Apple Tobacco Low temperature, salt,
osmotic tolerance

Free put, Spd, and
Spm

SAMDC1 Arabidopsis Arabidopsis Salt, dehydration,
ozone tolerance

Spm

MdSAMDC1 Apple European
pear

Salt, osmotic tolerance Spd

MdSAMDC1 Apple European
pear

Multiple abiotic stress
(salt, osmotic, Cu)
tolerance

Spd

MdSAMDC1 Apple European
pear

Al tolerance Spd

MdSAMDC1 Apple European
pear

Heavy metal (Cd, Pb,
Zn) tolerance

Spd

MdSAMDC1 Apple Tomato Salinity tolerance Spd and Spm

SPDS Figleaf
gourd

Arabidopsis Chilling, freezing,
salinity, hyperosmosis,
drought, paraquat
tolerance

Conjugated Spd

(continued)
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19.8 Abiotic Stress

19.8.1 Mineral Nutrient Deficiency

Since macro- and micronutrients are of paramount importance for normal plant
growth and development, insufficient mineral nutrition affects all physiological
processes in plants. To cope with mineral deficiency, plants usually augment PAs
in response to nutrient shortage of potassium, boron, calcium, magnesium, and
phosphorus (Wimalasekera et al. 2011). Boron deficiency caused an accumulation
of free and conjugated Put and Spd (Camacho-Cristobal et al. 2005). Polyamines are
also incremented by lower P-supply in roots and shoots of Plantago lanceolata
L. (Bratek and Lang 2003). Plants grown on soils with low Ca concentration due to
acidic deposition are exposed to multiple stress factors, and under these conditions,
plants produce stress-related N-rich metabolites like Put, arginine, γ-aminobutyric
acid, and proline in a species-particular manner for protection from toxic ammonia
(Minocha et al. 2010). Potassium deficiency leads to increased levels of free PAs in
Betula pendula and Betula pubescens (Sarjala and Kaunisto 2002) and cause a time-
dependent pattern of Put accumulation during in vitro development of Gentiana
triflora (Takahashi et al. 2012). Increased free-Put in potassium-deficient plants
indicates that PAs are involved in maintenance of cation–anion balance in plant
cells and conferred plant adaptation to ionic stress (Bouchereau et al. 1999).

19.8.2 Drought, Salt, Cold, and Osmotic Stress

Drought and salinity are widespread environmental constraints, and both cause
reduced water potential and may lead to oxidative stress in plants (Lei 2008;
Wang et al. 2011). The negative effects of salinity are deleterious involving complex
mechanism, and they often come along ion toxicity. Drought increases accumulation
of Na+ in cells and also results in ion toxicity (Wang et al. 2003; Basu et al. 2010).
An increase of PAs due to drought and osmotic stresses has been found in different
plant tissues (Yang et al. 2007; Lei 2008; Sziderics et al. 2010; Ghosh et al. 2011).
Moderate or severe drought increased lipid peroxidation but also proline and PAs in
wheat seedlings (Todorova et al. 2008). Frequently, PA accumulation (primarily Spd
and/or Spm) is associated with drought and salt tolerance, supporting the effect of

Table 19.1 (continued)

Gene
Gene
source

Transgenic
plant Increased tolerance PAs overproduction

SPDS
(FSPD1)

Figleaf
gourd

Sweet
potato

Chilling heat Spd

SAMS
(SsSAMS2)

Suaeda
salsa

Tobacco Salt tolerance Free Spm, Spd, and
put
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PAs in response to stress and tolerance mechanisms (Basu et al. 2010; Zhou and Yu
2010; Alet et al. 2011, 2012). Mutlu and Bozcuk (2007) noted that the
concentrations of free, bound, and total Spm increased in roots of Helianthus annuus
L. (salt-tolerant and salt-sensitive) treated with NaCl and assumed its role in
diminishing the harsh consequences of salinity. Salt tolerance in sunflower plants
was related to the excessive accumulation of PAs in roots which were grown under
salt stress conditions. Accumulation of Spm and compatible solutes (sucrose, pro-
line, mannitol, and raffinose) was shown to be main players in alleviating NaCl stress
in Populus tremula (Jouve et al. 2004). The role of higher PAs in osmotic adjustment
as compatible solutes has been suggested (Basu et al. 2010; Alcazar et al. 2011a;
Hussain et al. 2011).

Recently, Gupta et al. (2012a) reported that NaCl and Spd spray in rice (salt-
tolerant and salt- sensitive) led to phosphorylation of 42-kDa Ca+2-independent
SnRK2 in roots of rice because of Spd in response to NaCl. Gupta et al. (2012b)
demonstrated the important role of Spd in regulation of salinity-mediated signaling
in rice. The response of plant varieties differing in tolerance to drought or salinity
includes Put accumulation for sensitive cultivars and increase of Spm and Spd for
tolerant varieties of rice (Roy et al. 2005; Roychoudhury et al. 2008; Basu et al.
2010), wheat (Liu et al. 2004b), and barley (Liu et al. 2006). Zhou and Yu (2010)
demonstrated that rise of free and conjugated Spd and Spm in vetiver grass leaves
assist plants to cope with water deficit conditions. Conversely, withholding water for
1 week in the drought-sensitive crop pepper caused significant accumulation in Put
and cadaverine in leaves of pepper (Sziderics et al. 2010). Legocka and Sobieszczuk-
Nowicka (2012) documented reduced amounts of microsome- and thylakoid-
associated PAs in Zea mays and Phaseolus vulgaris subjected to iso-osmotic
concentrations of NaCl and sorbitol. The authors suggested that these cultivars are
drought sensitive and noted that PAs associated with microsomes and thylakoids
might be good markers of plant stress tolerance. In order to show the effect of ionic
and osmotic components of salinity on free PAs, Lefèvre et al. (2001) studied short-
term exposure of salt-resistant and salt-sensitive rice cultivars to PEG or iso-osmotic
concentrations of NaCl and KCl. The authors demonstrated that both ion and PA
concentrations were changed 3 h after ionic stresses and assumed that the ionic
component may trigger short-term PA accumulation independent of the osmotic
component. The authors reported that enhanced Put levels also depends on the plant
tissue in rice treated with PEG, KCl, or NaCl; it was found in the roots of salt-
resistant cultivar, whereas in shoots for salt-sensitive cultivar. Similarly, Hummel
et al. (2004) showed that the major effect, even after long-term exposure of Pringlea
antiscorbutica seedlings to salinity and osmotic stress, was the modification of PA
distribution between roots and shoots. Higher PA content in roots was assumed to be
a developmental response to stress, and their accumulation in roots facilitated
reinitiation of root growth. In contrast, salinity resistance in rice exposed to short-
term PEG, KCl, and NaCl was not related with Spm or Spd (Lefèvre et al. 2001). A
relationship between stress-induced augmentation of Spd and Spm in transgenic
plants and tolerance to drought stress was also demonstrated. In addition, Peremarti
et al. (2009) generated transgenic rice plants overexpressing DsSAMDC in order to
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increase only higher PAs but not Put concentrations and noted accumulation of Spm,
which facilitates drought recovery.

Alcazar et al. (2011b) analyzed Arabidopsis transcriptional profiles of PA bio-
synthetic genes and their metabolic fluxes through progressive drought acclimation
with assessing the amounts of PAs in resurrection plant Craterostigma plantagineum
and in PA biosynthetic mutants of Arabidopsis. The Put to Spm conversion in
Arabidopsis coupled with Spm to Put back conversion has been proposed to
participate in the drought stress response and to increase an effective PA
recycling-loop during acclimation to water shortage. Involvement of Spm and Spd
in maintaining ionic homeostasis by regulation of the activity of plasma membrane
H+-ATPase and vacuolar H+-ATPase activities has been proposed as a general
mechanism for salt tolerance and confirmed in different model systems (Roy et al.
2005; Liu et al. 2006; Janicka-Russak et al. 2010; Orsini et al. 2011). Similarly, due
to experiments with PEG-treated drought-tolerant and drought-sensitive wheat
cultivars, Liu et al. (2004a) reported that PAs conjugated to tonoplast vesicles
correlate with maintenance of tonoplast H+-ATPase and H+-PPase activities in
roots with enhanced osmotic stress tolerance in the plant. The authors could not
detect Spm occurrence in wheat roots but free fractions of Spm- and Spd-enhanced
osmotic stress tolerance in seedlings of the same cultivars (Liu et al. 2004b).

Yamaguchi et al. (2006, 2007) showed that the double knockout mutant of
Arabidopsis (acl5/spms), which is unable to produce Spm, is hypersensitive to
salinity and drought, but the addition of Spm specifically rescues the hypersensitive
phenotype of mutant plants. The acl5/spms plant was shown to be Ca2+ deficient
(Yamaguchi et al. 2006), and as a result of improper stomatal closure under drought
conditions, it lost more water as compared to the control (Yamaguchi et al. 2007).
The authors proposed a model for the defensive role of Spm in salinity and drought
stress responses (Yamaguchi et al. 2006; Kusano et al. 2007).

The expression of certain genes is also induced by ABA treatment (Urano et al.
2003). The ADC2, SPDS1, and SPMS expression was examined in ABA-deficient
(aba2–3) and ABA-insensitive (abi1–1) mutants exposed to water stress exhibiting
decreased transcriptional induction in the stressed aba2–3 and abi1–1 mutants
compared to the wild type, showing that ABA modulates polyamine metabolism at
the transcription level by upregulating the expression of ADC2, SPDS1, and SPMS
genes under water stress conditions (Alcázar et al. 2006a, b). In addition, Put
accumulation, occurred as a result of drought, is also damaged in the aba2–3 and
abi1–1 mutants in comparison with wild-type plants. All these observations show
that upregulation of PA-biosynthetic genes and accumulation of Put under water
stress are especially due to ABA-dependent responses. It is assumed that polyamine
responses to salt stress are also ABA-dependent, since both ADC2 and SPMS are
produced by ABA. In fact, stress-responsive, drought-responsive (DRE), low
temperature-responsive (LTR), and ABA-responsive elements (ABRE and/or
ABRE related motifs) are there in the promoters of the polyamine biosynthetic
genes (Alcázar et al. 2006). This strengthens the view that in response to drought
and salt treatments, the expression of some of the genes in polyamine biosynthesis
are controlled by ABA. Free Put levels are enhanced on cold treatment, and this
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corresponds with the introduction of ADC genes. Reduced expression of NCED3
and several ABA-regulated genes was detected in the adc1 mutants at low tempera-
ture. Complementation analyses of adc1 mutants with ABA and mutual comple-
mentation of aba2–3mutant with Put supported the conclusion that diamine controls
the levels of ABA in response to cold by modulating ABA biosynthesis at the
transcriptional level (Cuevas et al. 2008, 2009). Certainly, Put and ABA are
integrated in a positive feedback loop in which ABA and Put work synergistically
for biosynthesis as a result of abiotic stress conditions that culminates a unique mode
of operation of polyamines as regulators of ABA biosynthesis.

Liu et al. (2004a, b, c) reported that polyethylene glycol (PEG 6000) treatment
(inducing water stress) significantly increased the free Spd and free Spm levels in the
leaves of Triticum aestivum drought-tolerant cv. Yumai No. 18, whereas Yangmai
No. 9 cv. (drought-sensitive) showed a significant increase of free Put. They
suggested that free Spd, free Spm, and PIS-bound Put facilitated the osmotic stress
tolerance of wheat seedlings. In response to PEG 6000 (20% w/v, 48 h)-mediated
water stress condition in rice seedlings, Basu et al. (2010) showed that the salt-
tolerant rice variety Pokkali accumulated the highest levels of Spd, Spm, and total
PAs, while the Put level was the highest in the salt-sensitive variety IR-29 and
induced maximally in the aromatic rice variety Pusa Basmati. In this respect, the
aromatic variety behaved more closely to the sensitive variety. It was found that
acquired tolerance to low water potential in potato cells leads to changes in Put
biosynthesis and conjugation, which may be involved in ensuring cell survival (Gill
and Tuteja 2010a, b). In case of Theobroma cacao, the expression of TcODC,
TcADC, and TcSAMDC was induced with the onset of drought and correlated with
the changes in stomatal conductance, photosynthesis, PSII efficiency, and leaf water
potential. Induction of TcSAMDC in the leaves was more closely correlated with the
changes in water potential (Bae et al. 2008). Yang et al. (2007) suggested that under
drought conditions, the drought-resistant rice cultivars have the ability to respond
early to water stress through increases in PA levels. Drought-resistant cultivars have
higher SAMDC and SPDS activities and accumulated higher free Spd and free Spm
in the leaves than drought-susceptible ones under water stress. The drought resis-
tance in rice is therefore not only connected with PA levels but also with the response
time at which PAs are significantly elevated. Vetiver grass can cope well with a
moderate water-deficit conditions through maintenance of the total contents of free,
conjugated, and bound Spd and Spm in leaves (Zhou and Yu 2010). In tolerant
grapevine cultivars only, the higher PA-biosynthetic rate in the cellular compartment
eliminates detrimental effects exerted by PAO-derived H2O2 in the apoplast. In the
sensitive genotype, intracellular homeostasis of PAs is not restored, and their levels
are insufficient to mitigate the intervening effects of H2O2 (Toumi et al. 2010).
Endogenous levels of individual as well as total PAs in the roots of 7-day-old
chickpea seedlings subjected to �0.8 MPa water stress increased significantly
(Nayyar et al. 2005).

Using Arabidopsis has opened new vistas in functional dissection of the poly-
amine metabolic pathway and its role in the control of abiotic stress responses
(Ferrando et al. 2004; Alcázar et al. 2006b; Kusano et al. 2008; Takahashi and
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Kakehi 2010; Gill and Tuteja 2010a). Annotation of the Arabidopsis genome
enabled complete compilation for the biosynthetic pathway of polyamine. Transcript
prowling by using Q-RT-PCR has revealed that water stress induces the expression
of ADC2, SPDS1, and SPMS genes (Alcázar et al. 2006a). The expression of some of
these genes is also induced by ABA treatment (Perez-Amador et al. 2002; Urano
et al. 2003). To get a further insight into ABA regulation of polyamine pathway, the
expression of SPMS, SPDS1, and ADC2 was investigated in the ABA-deficient
(aba2–3) and ABA-insensitive (abi1–1) mutants subjected to water stress (Alcázar
et al. 2006a). These three genes display reduced transcriptional induction in the
stressed aba2–3 and abi1–1 mutants compared to the wild type, showing that ABA
modulates polyamine metabolism at the transcription level by upregulating the
expression of ADC2, SPDS1, and SPMS genes under water stress conditions
(Alcázar et al. 2006a). In addition, Put accumulation in response to drought is also
hampered in the aba2–3 and abi1–1 mutants compared to wild-type plants. This
result is further supported by metabolomic studies showing that polyamine
responses to dehydration are also impaired in nced3 mutants (Urano et al. 2009).
All these observations support the conclusion that upregulation of PA-biosynthetic
genes and accumulation of Put under water stress are mainly ABA-dependent
responses. Under salt stress conditions, there is a rapid increase in the expression
of ADC2 and SPMS, which is maintained during the 24-h treatment and results in
increased Put and Spm levels (Urano et al. 2003). Spm-deficient mutants are salt
sensitive, while the introduction of Spm suppresses the salt sensitivity, suggesting a
protective role of Spm to high salinity (Yamaguchi et al. 2006).

It is evident that polyamine responses to salt stress are also ABA-dependent, since
both ADC2 and SPMS are induced by ABA (see above). In fact, stress-responsive,
drought-responsive (DRE), low temperature-responsive (LTR), and
ABA-responsive elements (ABRE and/or ABRE-related motifs) are available in
the promoters of the polyamine biosynthetic genes (Alcázar et al. 2006b). This
reinforces the view that in response to drought and salt treatments, the expression
of some of the genes involved in polyamine biosynthesis are regulated by ABA.
Transcript prowling has also revealed that cold enhances the expression of ADC1,
ADC2, and SAMDC2 genes (Urano et al. 2003; Cuevas et al. 2008, 2009). Free Put
levels are enhanced on cold treatment, and this corresponds with the induction of
ADC genes. Surprisingly, the levels of free Spd and Spm remain unchanged or even
decrease in response to cold treatment. The absence of correlation between enhanced
SAMDC2 expression and the decrease of Spm levels could be a result of increased
Spm catabolism (Cuevas et al. 2008). Since double mutants completely devoid of
ADC activity are not viable in Arabidopsis (Urano et al. 2005), two independent
mutant alleles for both ADC1 and ADC2 were used to study their response to
freezing. As indicated in “polyamines and abiotic stress,” the adc1 and adc2
mutations caused higher sensitivity to freezing conditions, in both acclimated and
non-acclimated plants, while addition of Put complemented this stress sensitivity
(Cuevas et al. 2008, 2009). Reduced expression of NCED3 and several
ABA-regulated genes was found in the adc1 mutants at low temperature. Comple-
mentation analyses of adc1 mutants with ABA and reciprocal complementation of

328 S. Sinha and M. Mishra



aba2–3 mutant with Put supported the conclusion that this diamine controls the
levels of ABA in response to cold by modulating ABA biosynthesis at the transcrip-
tional level (Cuevas et al. 2008, 2009). All these results suggest that Put and ABA
are integrated in a positive feedback loop, in which ABA and Put reciprocally
promote each other’s biosynthesis in response to abiotic stress. This highlights a
novel mode of action of polyamines as regulators of ABA biosynthesis.

In general, cold-tolerant varieties show higher endogenous PA levels in response
to low temperature than non-tolerant ones. Nayyar (2005) found that PA levels were
enhanced by six to nine times in chickpea (Cicer arietinum L.) subjected to chilling
temperatures. In poplar seedlings grown at 4 �C, Put accumulation occurred during
the beginning of the cold treatment, while Spd and Spm accumulated after 4 or
7 days, respectively (Renaut et al. 2005). More recent quantitative expression
analyses indicate that transcription of both ADC1 and ADC2 genes is produced as
early as 30 min after cold exposure, the mRNA transcript levels of ADC1 being
higher than that of ADC2. The complementation analysis of adc mutants with ABA
and reciprocal complementation tests of the aba 2–3 mutant with Put help the
research finding of Put controls ABA levels in response to low temperature (Cuevas
et al. 2008). However, data obtained by Kim et al. (2002) in tomato showed that
ABA and Put affected cold-induced changes in cellular membranes of tomato leaves
independently. The sequence analysis of the ADC1 promoter revealed the presence
of CRT/DRE, which could mediate the early and transient ADC1 upregulation under
cold stress (Alcázar et al. 2006b). Accumulation of Put was also observed in lucerne
and wheat during cold hardening, in which a differential regulation of ADC activity
could be detected between control and cold-treated plants. In a chilling-tolerant rice
cultivar (Tainung 67), the ADC activity and Put levels increased during low temper-
ature in both shoots and roots, while a chilling-sensitive cultivar (Taichung Native 1)
showed a slight Put rise in shoots and a lowering in roots (Lee et al. 1997). Chilling
induced the expression of all the three ADC genes (MADC1, MADC2, andMADC3)
in Brassica juncea, whereas salt predominantly resulted in increased accumulation
of MADC3 transcript (Mo and Pua 2002). The low temperature also increased the
Put level in cold-sensitive maize plants, especially when the stress occurred in light.
Pillai and Akiyama (2004) suggested that the induction of the OsSAMDC gene in
response to cold could be utilized as a molecular marker for the ability of rice
seedlings to withstand low temperatures. In Arabidopsis, the expression of SAMDC2
also increased after cold treatment. Cuevas et al. (2008) reported absence of correla-
tion between enhanced SAMDC2 expression and decrease of Spm levels in response
to cold treatment, which may be a result of increased Spm catabolism. Shen et al.
(2000) showed that chilling markedly increased Spd content concomitantly with a
rise in SAMDC activity in the cold-tolerant cucumber cultivars (Jinchun No. 3) but
not in sensitive ones (Suyo). This response is not mediated by ABA, since Spd
pretreatment did not affect the content of ABA in cold-treated leaves of the cv. Suyo,
and ABA content did not increase in the leaves of the cv. Jinchun No. 3. Imai et al.
(2004) reported that a novel SPDS gene, OsSPDS2 from rice, was involved in
chilling response in roots. This gene is closely related to AtSPDS3 or At5g53120,
a putative Arabidopsis SPDS gene. Overexpression of ZAT12, a cold-inducible gene
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encoding a C2H2 zinc finger transcription factor (that contributes to an increased
freezing tolerance), dampens the expression of the CuAO gene At4G12280, which
shows sequence similarities to diamine oxidases. ZAT12 signaling promotes toler-
ance by activating a ZAT12 regulon, which includes ADC1 and ADC2 upregulation,
leading to a resultant accumulation of Put (Alcázar et al. 2006b). Another cold
inducible zinc finger protein called SCOF-1 has been reported from soybean (Kim
et al. 2001).

Osmotic treatments using sorbitol induced high levels of Put and ADC in
detached oat leaves (Flores and Galston 1984), whereas Spd and Spm show a
dramatic decrease. Bouchereau et al. (1999) reported that osmotica with widely
different assimilation routes, such as sorbitol, mannitol, proline, betaine, and
sucrose, all induce a rise in Put. Such alterations are coincident with indications of
stress, such as wilting and protein loss. Tiburcio et al. (1995) reported that when
peeled oat leaves are incubated with sorbitol in the dark, they lose chlorophyll and
senescence rapidly. Senescence could be slowed down by incorporating Spm in the
incubation medium. The senescence-retarding effect of Spm was correlated with
increase in the introduction of identified precursors into proteins, RNA, and DNA.
They also inferred with rise in putrescine level and in particular its bound form to
thylakoid membranes. A study by Schraudner et al. (1990) also discovered a
correlation between ethylene emission, and PA biosynthesis was found in O3�

treated potato and tobacco plants, of which the leaves showed early senescence in
response to the pollutant. In the presence of O3, all compounds of ethylene biosyn-
thetic pathway in tobacco leaves were upregulated. Put and Spd levels also
increased, as did ornithine decarboxylase (ODC) activity (Bouchereau et al. 1999).
Differences in PA (Put, Spd, Spm) response under salt stress have been reported
among and within species. For example, according to Prakash and Prathapsenan
(1988), endogenous levels of PAs (Put, Spd, and Spm) decreased in rice seedlings
under NaCl stress, whereas Basu et al. (1988) found that salinity influences accumu-
lation of such compounds in the same material (Bouchereau et al. 1999).

Santa-Cruz et al. (1997) reported that the (Spd + Spm):Put ratios increased with
salinity in the salt-tolerant tomato species (Lycopersicon pennellii, Carrel D’Arcy)
but not in the salt-sensitive tomato species (L. esculentum). In both species, stress
treatments decreased the levels of Put and Spd. The Spm levels did not decrease with
salinity in L. pennellii over the salinization period; however, it was found to decrease
in L. esculentum. The effects of different NaCl concentrations on maize embryo-
genic cells obtained from immature embryo cultures of a salt-sensitive inbred line
(cv. w64) and a resistant hybrid (cv, Arizona) have also been reported where
increased salt concentration strongly reduced the growth of the calluses and resulted
in a significant increase in the total PA (Put, Spd) content, especially caused by a rise
in Put. A study conducted by Bouchereau et al. (1999) revealed that incorporating
the inhibitors of Put synthesis, the ADC pathway in tomato plants functions appro-
priately in both stress and control conditions, whereas the ODC pathway is
stimulated only under the stress conditions.
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19.9 Heavy Metals

Metal contamination of soils has considerably increased due to human activities, and
heavy metal excess also provoked changes in PA metabolism. Abundance of PAs in
different plants cultivated on abundant heavy metals and their effect in regulation of
plant tolerance and adaptation to metal stress is well studied. Cadmium excess led to
increase in Put, which was accompanied by a respective decrease in higher PAs in
Potamogeton crispus L. (Yang et al. 2010). The activities of PAO and DAO
increased categorically with the rise in Cd concentrations, and authors suggested
that some PAs and their forms impart an important role in the adaptation mechanism
of P. crispus under Cd-stress.

In experiments with tobacco BY-2 cells exposed to Cd, a marked accumulation of
total PAs during 3-day treatment was observed (Kuthanová et al. 2004). The increase
in PA levels was because of Put which was coincident with DAO activity. Cd
treatment increased PAs in roots and leaves of Salix alba L., whereas in Populus
nigra L., only the Put content was significantly enhanced in roots (Zacchini et al.
2011). Lefèvre et al. (2009) also observed that the halophyte Atriplex halimus
exposed to Cd accumulated free PAs. Probably the resistance of A. halimus to Cd
toxicity was related to the improved tissue tolerance through increase in the synthesis
of osmoprotective compounds like PAs. Polyamine concentrations in mung bean
plants grown on medium supplied with Cd was also higher than these found in
control plants and negatively correlated with the activity of DAO (Choudhary and
Singh 2000).

Increased contents of Ni, Zn, Cu, and Cd in soil increased the accumulation of Put
and Spm in spinach and barley (Bergmann et al. 2001). Groppa et al. (2007a, b,
2008) found that PA metabolism was differently affected in wheat and sunflower
discs subjected to either Cu or Cd. Put content increased significantly in sunflower
plants after Cd and Cu treatments, Spd was modified only by Cd, while Spm was
affected by Cu or Cd and rose at 16 days after the germination of seeds (Groppa et al.
2007b). Both ADC and ODC activities were increased by Cd, whereas Cu enhanced
ADC but reduced ODC activity. Furthermore, Groppa et al. (2007a) studied the PA
metabolism in wheat leaves under Cd or Cu stress and showed that cadmium and
copper increased Put, Spd remained unaltered either with Cd or Cu, while Spm was
reduced as compared to control values by both heavy metal treatments. Copper also
decreased ADC but did not modify ODC and DAO activities (Groppa et al. 2007a).
Both metals caused significant increases in proline and Put and also in Spd and Spm
at the highest concentration tested (1 mM), and these increments were more pro-
nounced for Cd treatment of sunflower seedlings (Groppa et al. 2008). Additionally,
the authors suggested that PAs are key biological compounds, probably involved in
signaling pathways triggered under stress environmental conditions. Similarly,
Zhang et al. (2010) found that Cu treatment increased Put and lowered the Spd
and Spm levels, thereby reducing the Put/(Spd + Spm) ratio in leaves of grafted and
non-grafted cucumber seedlings. Grafting markedly reversed these Cu-induced
effects for all Spd, Spr, and Put and partly regained the Put/(Spd + Spm) ratio in
leaves. These results suggest that grafting can enhance the tolerance of cucumber
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seedlings to Cu stress by increasing the activities of antioxidants and the levels of
Spd and Spm, decreasing the Put/(Spd + Spm) ratio and the levels of ROS,
promoting free proline and soluble protein synthesis in cucumber seedling leaves
(Zhang et al. 2010).

In Erica andevalensis hydroponically grown with supplied increasing Cu con-
centration (1 to 500 μM) in the nutrient medium, the heavy metal led to a significant
rise of PAs in shoots (Rossini Oliva et al. 2010). High levels of PAs in shoots helped
the authors to conclude that PAs impart a defensive mechanism in plant cells at high
metal concentration. Accordingly, Choudhary et al. (2009) showed that Cu treatment
resulted in to a marked increase in PAs in R. sativus seedlings. Szafranska et al.
(2011) examined the effect of Cu on the regeneration of Daucus carota
L. androgenic embryos of var. Feria and 1014 breeding line and also on PAs, proline
contents, lipid peroxidation, and Cu accumulation after 16 and 24 weeks and found
that the higher tolerance of Feria to oxidative stress may result from increased
content of proline and higher contents of the Put and Spd. The authors concluded
that variations in PA levels depend not only on the concentrations of heavy metal but
also on plant species and cultivars, and PAs point to better protection of such
cultivars that possess higher constitutive PA levels. Zhao et al. (2008) investigated
the phytotoxic effect of Ni on Hydrocharis dubia leaves and showed that Ni induced
lipid peroxidation, destroyed the structure and functions of membranes, altered the
balance of nutrient elements, and caused the toxicity of H. dubia. Ni stress signifi-
cantly increased Put and lowered Spd and Spm levels, thus significantly reducing the
ratio of free (Spd + Spm)/Put in leaves, which has been considered as a signal under
stress. The changes of PAs content and physiological and biochemical responses in
H. dubia leaves at high metal concentrations led the authors to conclude that PAs
may be involved in the adaptation of plants to Ni-induced stress. Pb treatment of
Potamogeton crispus L. significantly increased the free Put and changed
dynamically other PAs levels.

The activities of PAO and ADC were initially decreased and then enhanced with
the increase in the Pb concentration (Xu et al. 2011). Accumulation of PAs in shoot
tissue of Trifolium pratense L. was affected by arsenic (Mascher et al. 2002) when
metal was supplied in concentration 10 mg/kg soil. Extra accumulation of Spm
seemed to be a part of a protective mechanism against the destruction of membranes
caused by arsenate. In vitro shoots of a transgenic European pear, overexpressing
MdSPDS1, performed attenuated susceptibility to heavy metal (Zn, Pb, Cu, Al, Cd)
stress in conjunction with the wild plant (Wen et al. 2008, 2009, 2010). The authors
supposed that abundance of Spd in transgenic plants could play an important role in
the tolerance to heavy metals in long-term experiments. In this line Spd reduced the
toxic effects of supplied metals mainly via alleviating oxidative status, by affecting
mineral element balance and/or by its specific feature to act as metal chelator as well
(Løvaas 1997; Lomozik et al. 2005). Thus, there is an indication that PAs acts as
antioxidants and/or metal chelators (Kuthanová et al. 2004).
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19.10 Herbicides

The extensive use of herbicides is a common practice in modern agriculture.
However, their application usually provokes oxidative stress not only in sensitive
but also in tolerant plants. Most of the herbicides are known to generate ROS by
direct involvement in radical production or by inhibition of key biosynthetic
pathways (Prasad and Rengel 1998). Enhancing free higher PAs in lotus prevented
paraquat-induced superoxide production in vivo (Cuevas et al. 2004). However,
because of the natural tolerance of L. glaber to the herbicide, it was not possible to
correlate the content of free PAs with their hypothetical inhibitory role during
oxidative stress. So, the authors tested for paraquat toxicity in tobacco plant and
found that high concentrations of herbicide induced an increase of free PA levels in
crude extracts and intercellular fluids, while low herbicide concentrations increased
only the free PAs in the intercellular fluids. These results suggested that PA
metabolism in the apoplast is involved in the physiological response to oxidative
stress and subsequently in plant stress tolerance (Cuevas et al. 2004).

Deng (2005) found that chlorsulfuron and glyphosate directly regulated the levels
of arginine and ornithine in Datura stramonium L. seedlings, which were increased
two to three times. Recently, Kielak et al. (2011) investigated the effect of
glyphosate-based herbicide (Roundup Ultra 360 SL) and showed significant positive
correlation between Roundup dose and over-accumulation of Put and Spd as well as
total PA in model plant duckweed. Putrescine was synthesized first within the plant
cells and Spd later. Additionally, with augmentation of PAs, an increase in APX and
CAT activities was recorded by herbicide which is the resultant of PA inclusion.
These findings indicated that duckweed plants responded to herbicide stress by
activating one or more components of the plant defense system, including PAs,
which helps plants to mitigate the negative stress outcome.

19.11 Heat Tolerance

The amylose levels in rice are greatly decreased during elevated temperature
conditions at the time of seed germination, changing the fine amylopectin structure
and producing more chalky grains (Asaoka et al. 2010; Inouchi et al. 2000) which
hampers the rice yield and seed quality (Krishnan and Ramakrishnan 2011; Peter
2011). The occurrence of chalky grains of rice is typically caused by the unusual
expressions of genes encoding starch synthase enzymes (Nishi et al. 2001; Tanaka
et al. 2010). As PAs are known to be involved in grain filling and they might
contribute to build up heat resistance of some cereals, the hybrid rice “YLY 689”
was taken in an experiment to find the effects of exogenous spermidine (Spd) on seed
quality under high temperature during the grain filling stage (Fu et al. 2019). The
concentration of Spm and Spd in superior grains of rice was remarkably higher than
that of the inferior grains (Cao et al. 2016). In this investigation, just after pollination,
spikes were treated with Spd or cyclohexylamine (CHA). Interestingly, CHA is its
synthesis inhibitor.
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Recently, Fu et al. (2019) revealed that when the rice plants were transferred to
40 �C for 5-day heat treatment, it resulted into significant enhancement in the
germination index, percentage, germination index, seedling shoot height, vigor
index, and dry weight of seeds in case of Spd pretreatment, harvested at 35 days
after pollination. In contrast, the CHA significantly decreased the seed germination
and seedling growth. Also, Spd categorically enhanced the peroxidase (POD)
activity and reduced the malondialdehyde (MDA) content in seeds. Nevertheless,
after spraying with Spd, the endogenous content of spermidine and spermine and the
expression of their synthetic genes, spermidine synthase (SPDSYN), and spermine
synthase (SPMS1 and SPMS2) remarkably enhanced, although, the accumulation of
amylose, total starch, and the expression of their related synthase genes, soluble
starch synthase II-3 (SS II-3) and granules bound starch synthase I (GBSSI), also
rose to some magnitude indicating that exogenous Spd pretreatment could diminish
he high temperature stress on rice seed grain filling and improve the rice seed quality,
which could possibly be induced by upregulating endogenous polyamines and starch
metabolism (Fu et al. 2019). Recent report also suggests that Spd is involved in heat
tolerance in higher plants, which provides membrane stability and increase the
reactive oxygen species (ROS) scavenging system. Cao et al. (2016) found that
the content of Spd and Spm in superior grains of rice was significantly higher than
that in inferior grains (Cao et al. 2016). The content of Spm and Spd in grains works
in synergy with grain plumpness during the grain filling stage.

19.12 Plant Senescence

The PA metabolic enzymes activities and PAs contents change throughout the stages
of plant growth. In whole plants, endogenous PAs and PA synthetase activity were
recorded to be highest in the meristem and growing cells and lowest in senescent
tissues. As leaves senescence, the chlorophyll content slowly reduces and so does
ADC and ODC activities, while PAO and hydrolases activities increase rapidly. All
of these changes can be blocked by the inclusion of exogenous PAs (Duan 2000; Cai
2009). A reduction in PA levels seems to be a significant prelude to senescence
signals, or it may be that a decrease in PAs content is the senescence signal (Duan
et al. 2006). Exogenous Spd and Spm treatments can increase the content of PAs in
cut flowers and prolong their senescence and improve quality (Yang and He 2001;
Cao 2010). In Anthurium andraeanum, the introduction of GA3 + Spm by spraying
slowed down the senescence of cut flowers stored at 20 �C and augmented the
quality of the inflorescences (Simões et al. 2018). Delayed leaf senescence was
recorded to be linked with a rise in Spm concentration, reduced ROS production, and
increased NO levels (Sobieszczuk-Nowicka 2017). Polyamines appeared to slow
down the process of senescence by suppressing the ethylene biosynthesis (Woo et al.
2013; Anwar et al. 2015). 0.1 mM Spd application on gerbera flowers or gerbera
vase flower fortification with 10 mM Spd resulted in slowing down the senescence,
while those sprayed with 1 mM Spd, 10 mM Spd, 0.1 mM Spm, 1 mM Spm, or
mixed solution of 0.1 mM each of Put, Spd, and Spm showed accelerated senes-
cence, with brown spots and yellowing of the petal rims starting from day 2 of
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treatment (Bagni and Tassoni 2006). Legocka and Sobieszczuk-Nowicka (2012)
found that chlorophyll rapidly degraded, and Put accumulation inhibited protein
degradation and reduced chlorophyll losses (Serafini-Fracassini et al. 2010; Cai et al.
2015). In peony, a PA synthesis inhibitor (0.1 Mm) extended the lifespan and
delayed the cut flowers senescence, while PAs lessened the flower lifespan and
accelerated flower senescence (Han 2016).

19.13 Conclusion and Future Prospects

Many scientists have reported different plants defence mechanisms exhibited during
its growth progression. However, the practical mode of action and regulations of
many aspects still remain uncovered. The biosynthesis of PAs is present in every cell
and tissue of plants; however, the number of enzymes involved in these processes is
limited. That is why PA biosynthesis proves to be is an experimental model for
studying how they act in protecting plants against various biotic and abiotic stresses.
From several decades, PAs are being employed using mutants, inhibitors, plant
tissue culture, exogenous application, genetic transformation techniques, etc. Vari-
ous studies have been reported in order to illustrate the role of PAs such as Spm and
Spd which have increased levels when plants get exposed to stress conditions
enzymes, indicating the homeostatic equilibrium that is maintained inside the plant
cells incorporating enzymes.

PAs’ role in combating abiotic stress could easily be inferred by studies
performed on Arabidopsis, wherein PAs were found to act antagonistically against
salinity and cold stress conditions, thereby providing tolerance against such factors
(Roy et al. 2005; Liu et al. 2006; Janicka-Russak et al. 2010; Orsini et al. 2011).
Similarly, exogenous spray of Spd and Spm helped in delayed plant senescence in
cut flowers and vase flowers (Yang and He 2001; Cao 2010). PA levels were found
to be enhanced in plants experiencing mineral deficiencies such as potassium, boron,
calcium, magnesium, and phosphorus (Wimalasekera et al. 2011). Likewise, there
are reports from various researchers of how PAs play a pivotal role in plant stress
conditions.

However, a lot had been studied and reported about PAs, but there still exists a
lacuna of understanding the enzymes involved during biosynthesis of PAs, localiza-
tion of PAs at cellular and subcellular levels, translocation and movements of free
PAs, and their interaction with other plant hormones. Therefore, more research needs
to be done under these niche areas so as to have a better understanding of polyamines
as a whole.
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