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— To get a taste of graph algorithms — it seems

a good idea to have a look at the early achievements that are

still widely in use today.

Before we start a word of warning. 1 Debugging may help 1 I read this in one of Dijk-

stra’s very early articles.you find errors in your algorithm, but it can never prove that

your algorithm is correct.

— Actually 2 — there cannot be a procedure that tests if an 2 In Concrete Math the side

note “skip to the next sec-
tion” would appear here.

algorithm terminates or not . Minsky gives the following proof

of this. Assume there were a procedure proper( · ) that takes as

input any procedure L and outputs true if L terminates and

false otherwise. The following example provides a contradiction.

Consider the procedure L shown in Algorithm 2 . When L

is proper then it is improper and vice versa . Hence, the

procedure proper( · ) can not exist .

Algorithm 2: Minsky’s exam-
ple of a procedure that is nei-

ther proper nor improper.1: procedure L

2: use package proper

3:

4: while proper(L ) do

5: whistle once

6: end while

7: end procedure
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2.1 Finding and counting small induced subgraphs

Triangles in graphs can be found via fast matrix multipli-

cation of its adjacency matrix. This gives an algorithm to find a

triangle in O(nα) where α < 2.376.

In 1997 Alon, Yuster and Zwick showed that a triangle can

be found in O(m
2α/α+1) = O(m1.41). (This improved an earlier

O(m
3/2) algorithm by Itai and Rodeh.) 3 3 In this section we express

the run - time of algorithms
as a function of n and m.In this section we show how their method can be used to find a

diamond in a graph in O(m3/2 + nα). 4 4 A diamond is a graph with
4 vertices; obtained from K4

by removing one edge. A
graph is diamond-free if no

induced subgraph is isomor-
phic to the diamond.

Exercise 2.1

A graph is diamond - free if and only if the neighborhood of every

vertex induces a graph in which every component is a clique.

Hint: If a graph has no diamond then every neighborhood is P3-free

— ie — every component of a neighborhood is a clique.

The algorithm to check if a graph G has a diamond first

partitions the vertices in those that have ‘low’ degree and ‘high’

degree. Let D be some number. A vertex is low degree if its degree

is at most D and otherwise it is high degree. Let L be the set of

vertices that have low degree and let H be the set of vertices that

have high degree.

The search for a diamond is split in 4 parts.

Phase 1. check if G has a diamond with a vertex of degree 3 that is of low

degree

Phase 2. check if G has a diamond with a vertex of degree 2 that is of low

degree

Phase 3. if no diamond was found then remove all vertices of low degree.

Let G∗ be the graph that remains.

Phase 4. check if G∗ has a diamond.

Algorithms



19

We show how each phase is implemented. We assume that the

adjacency matrix A is given. For each x ∈ L construct adjacency

lists for the graph induced by N(x). This can be accomplished

in O(d(x)2) time. Then compute the components of G[N(x)] and

check if each component is a clique. This can be done in O(d(x)2)

time. If some component is not a clique then a P3 is found in

O(d(x)2) time. 5 It follows that this phase can be completed in 5 Exercise !

time ∑
x∈L

d(x)2 6 2 ·D ·m.

We describe the implementation of Phase 2. Let x ∈ L and let C

be a maximal clique in N(x). For each pair y, z ∈ C check if

A2
y,z > |C|− 1.

If that is the case then y and z have a common neighbor outside

N[x] — ie — we find a diamond. The diamond can be produced

in linear time when all adjacency lists are sorted. We leave it as an

exercise to check that Phase 2 runs in O(D ·m+ nα).

Assume that Phase 1 and Phase 2 do not produce a diamond. Notice

that

V(G∗) 6
2 ·m
D

.

Repeat the procedure described in Phase 1 for all vertices of G∗.

This can be implemented to run in∑
x∈H

dH(x)
2 = O (m · |H|) = O

(
m2

D

)
.

Theorem 2.1. There exists an algorithm that finds a diamond in

a graph if there is one. With the adjacency matrix of the graph as

input the algorithm runs in O(nα +m
3/2).

Proof. By the above the total run - time is at most

O

(
D ·m+

m2

D
+ nα

)
.

Choose D =
√
m.

2.1 Finding and counting small induced subgraphs
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Exercise 2.2

Use a similar technique to show there is an algorithm to check if a

connected graph is claw-free that runs in O(m
(α+1)/2) = O(m1.69).

6 6 The claw is shown in Fig-

ure 2.11 on Page 84. It is a
tree with 4 vertices of which

3 are leaves.
Hint: If a graph is claw-free then every vertex has at most 2

√
m

neighbors. When every vertex has at most 2
√
m neighbors then

do a fast matrix multiplication for each neighborhood and check

for a K̄3. This step can be performed in time proportional to∑
x

d(x)α 6 (2
√
m)α−1 ·

∑
x

d(x) 6 2α ·m(α+1)2.

2.2 Bottleneck domination

Let G be a graph and let w : V → R be a function which assigns

to every vertex x a weight w(x). We assume that arithmetic

operations on vertex weights can be performed in O(1) time.

Definition 2.2. Let (G,w) be a weighted graph. For W ⊆ V the

bottleneck of W is

max {w(x) | x ∈ V }.

Definition 2.3. Let G be a graph. A set D ⊆ V is a dominating

set if every vertex of V \D has a neighbor in D.
For example, every maximal
independent set in a graph
is a dominating set.

The bottleneck domination problem is the following.

Input: A weighted graph (G,w).

Output: A dominating set with minimal bottleneck.
T. Kloks, D. Kratsch, C. Lee
and J. Liu, Improved bottle-

neck domination algorithms ,
Discrete Applied Mathemat-
ics 154 (2006), pp. 1578–
1592.

Algorithms
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Exercise 2.3

Prove the following theorem.

Theorem 2.4. There exists a linear time - algorithm to solve the

bottleneck domination problem.

Hint: Let (G,w) be a weighted graph. For x ∈ V let

m(x) = min {w(y) | y ∈ N[x] }.

Let

ρ = max {m(x) | x ∈ V }.

Show that the minimal bottleneck is ρ.

Definition 2.5. Let G be a graph. A total dominating set is a

set D ⊆ V such that every vertex of V has a neighbor in D. 7 7 If the graph has isolated
vertices then there is no total
dominating set.

Exercise 2.4

Show that D is a total dominating set if it is a dominating set and

G[D] has no isolated vertices.

Exercise 2.5

Prove the following theorem.

Theorem 2.6. There exists a linear time - algorithm to compute a

total dominating set with smallest bottleneck in a weighted graph.

Hint: For x ∈ V define

m′(x) = min {w(y) | y ∈ N(x) }

and let

ρ′ = max {m′(x) | x ∈ V }.

Show that the smallest bottleneck of a total dominating set is ρ′.

2.2 Bottleneck domination
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2.3 The Bron & Kerbosch Algorithm

In this section we ’ ll have a look at the Bron – Kerbosch al-

gorithm. It was developed in the early 1970s at Eindhoven ’ s

University of Technology in The Netherlands . It remains to

this day a winner .

Recall the definition of a clique ( Definition 1.21 ) . 8 8 A clique in a graph G is

a set of vertices that are all

pairwise adjacent.

Definition 2.7. A clique C is maximal if

∀x /∈C ∃y∈C { x , y } /∈ E . (2.1)

s s s s
ss

�� @@
�
��
A
AA

Figure 2.1: A clique is maxi-
mal if it is not contained in

a larger one. Obviously, this
doesn’t mean that there is
no larger one! This graph is

called the net. Edges inci-
dent with pendant vertices
are maximal cliques. The
largest maximal clique is the

triangle. A largest maximal
clique is called a maximum
clique.

For a graph G let

Ω(G )

represent the set of maximal cliques in G .

The algorithm of Bron and Kerbosch lists all the maximal

cliques in a graph. In this section we describe a variant of the

original Bron and Kerbosch – algorithm and we analyze its time

complexity.

When a graph G has only vertices of degree at most 2

then each component of G is a path or a cycle. In that

case the number of maximal cliques is at most n . It seems

that when a graph has a lot of maximal cliques it has a lot

of vertices of high degree.

Let ’ s look at the case where all vertices of G have degree

at least n− 3 . We say that G is high degree .

Algorithms
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Exercise 2.6

Show that a graph G is high degree if and only if every

induced subgraph of G is that . r rr�� AA r rr�� AA . . . r rr�� AA
Figure 2.2: This figure show
the complement of a high
degree-graph. For this graph

we use notations

K3 + · · ·+K3 = t ·K3,

to be read as ‘a union of tri-

angles.’

Notice that, when G is high degree, every component of Ḡ

is a path or a cycle. Consider the case where Ḡ is a path —

say

[ x 1 · · · xn ].

We can list the maximal cliques of G as follows. When n 6 3

this is easy — so we assume henceforth that n > 4 .

For the set of maximal cliques in P̄n we have

Ω( 1 · · · 1 ) = { { x 1 } } , Ω( 1 · · · 2 ) = { { x 1 } , { x 2 } } , and

Ω( 1 · · · 3 ) = { { x 1 , x 3 } , { x 2 } } .

and for n > 4 ,

Ω( 1 · · · n ) = { { xn } ∪ C | C ∈ Ω( 1 · · · n− 2 ) }⋃
{ { xn−1 } ∪ C | C ∈ Ω( 1 · · · n− 3 ) } . (2.2)

Exercise 2.7

Implement this algorithm to list all maximal cliques in the

complement of a path.

For the number of maximal cliques in P̄n we have the recurrence

P( 1 ) = 1 P( 2 ) = 2 P( 3 ) = 2 and

P(n ) = P(n− 2 ) + P(n− 3 ) for n > 4 ,

where P(n ) = |Ω( P̄n ) | . This solves as O
( (

4
3

)n )
. (The

architect Dom van der Laan considered this the ideal fraction of

measurements for his buildings.)

2.3 The Bron & Kerbosch Algorithm



24

Exercise 2.8

Design a similar algorithm to list all the maximal cliques in the

complement of a cycle.

Hint: Can you adapt the algorithm for paths?

Some straightforward calculations show that the high – degree

graph — with the most maximal cliques — is a graph G —

satisfying one of the following.

i. If n = 0 mod 3 , all components of Ḡ are triangles, that is ,

G has 3n/3 maximal cliques.

ii. If n = 1 mod 3 and n > 1 , all components of Ḡ , except

two, are triangles, and the two exceptional components are

edges . 9 This gives 4 · 3 (n−4)/3 maximal cliques if n > 1 . 9 The two exceptional com-
ponents induce the comple-

ment of a 4-cycle with 4 max-
imal cliques.

We have one maximal clique if n = 1 .

iii. If n = 2 mod 3 , all components of Ḡ — except one — are

triangles, and the exceptional component is a single edge.

This case gives 2 · 3 (n−2)/3 maximal cliques.

It follows that every high degree – graph has at most 3 n/3

maximal cliques.

Let us first show that — indeed — among all graphs these

graphs are the ones with the most maximal cliques.

Exercise 2.9

Part I
Consider the high degree-
graph G in Figure 2.2. This

graph is the complement of
n
3 triangles. Show that

|Ω(G)| =
(

31/3
)n

= (1.442 · · · )n.

Part II

Show that the graph above
has the most maximal

cliques among all high

degree-graphs.

Lemma 2.8. Let G be a graph which is not high degree. Then

|Ω | 6 µ · 3n/3 (2.3)

for some µ ∈ R, 0 < µ < 1 . Here n = |V(G ) | .

Proof. The graph must have a vertex x of degree at most

n − 4 . Partition the set of maximal cliques into those that

contain x and those that do not contain x . The first set of

cliques are exactly the maximal cliques contained in G[N(x) ] ,

with x added on to each of them . 10 The second set of cliques 10 IfN(x) = ∅, the vertex x

is an isolated vertex. In that

case the only maximal clique
that contains x is {x}.

are maximal cliques in G−x . Possibly this second set contains

Algorithms
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cliques that are not maximal in G — but — as an upperbound

we get

|Ω(G ) | 6

 |Ω(G[N(x) ] ) |+ |Ω(G− x ) | If N(x) 6= ∅

1 + |Ω(G− x ) | otherwise.
(2.4)

By induction on the number of vertices in the graph

|Ω(G[N(x) ] ) | 6 3 (n−4)/3 since x has degree at most n− 4 .

By induction also

|Ω(G− x ) | 6 3 (n−1)/3 .

It follows that 11 11 Since G is not high de-
gree we may assume n > 4.

When x is isolated, we have,
for some µ ∈ (0, 1), since
n > 4,

|Ω| 6 1 + 3(n−1)/3

6 µ · 3n/3.

|Ω(G ) | 6 3 (n−4)/3 + 3 (n−1)/3

= ( 3−4/3 + 3−1/3 ) · 3n/3

= 3−4/3 · ( 1 + 3 ) · 3n/3

= 3−4/3 · 4 · 3n/3

< 3n/3 since 3 4/3 > 4.326 .

This completes the proof.

Remark 2.9. I agree to it that the notation in (2.4) is *awful*

with all those (useless) brackets! One of my teachers, Professor

De Bruijn used to say: “ Our notation for functions is terrible. —

Unfortunately — it’s not bad enough for people to feel the need

to change it; so we’re stuck with it and we’d better get used

to it ! ”

Lemma 2.10. There is an algorithm that lists all the maximal

cliques in a high degree graph in O
(
n 2 · |Ω |

)
time.

Proof. There is an algorithm that runs in O
(
n 2
)

time and

that computes the components of Ḡ . 12 Since G is high degree, 12 We assume that G is suit-

ably represented.

2.3 The Bron & Kerbosch Algorithm
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each component of Ḡ is a path or a cycle, and we can find a

suitable vertex ordering in each of these components.

The technique — explained on Page 23 ff — shows that there

is an algorithm, that lists all cliques in the complement of a

path or cycle in time O ( |W | ·N ) , where N is the number of

maximal cliques in G[W ] for a component W of Ḡ .

Let {W1 , · · · , Wk } be the set of components of Ḡ . Then

Ω(G ) = { S1 ∪ · · · ∪ Sk |

∀i Si is a clique in the component G[Wi ] } . (2.5)

It is now straightforward to show that all maximal cliques in

G can be listed in O
(
n 2 · |Ω(G ) |

)
time.

Exercise 2.10

Implement and run the algorithm described above for C5.

Let A be the algorithm described above, that lists all maximal

cliques in graphs that are high degree in

O
(
n 2 · |Ω |

)
= O

(
n 2 · 3n/3

)
time ( as n → ∞ ).

When we estimate time-
bounds of graph algorithms,

we are usually interested in

the case where n→∞. We
usually omit this addendum.

We describe the algorithm of Bron and Kerbosch blow —

in Algorithm 3. The algorithm to list all the maximal cliques

consists of a call to the procedure with parameters:

B&K (∅, V, ∅ ) .

An invariant is a property that holds true for the parameters

of a procedure, at every call to it . An invariant is useful when

the termination condition together with the invariant yields

the desired solution , ie , the ‘ post condition . ’ The concept of

an invariant of a procedure was introduced by Dijkstra in the

early 1960s . As a concept it is a useful tool to prove the

correctness of programs.

Choose=pick=select

In the case of the procedure B&K described above the

parameters can be described by the following invariant:

Algorithms
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Algorithm 3: The
Bron – Kerbosch Algorithm1: procedure B & K(R, P, X )

2: if P ∪ X = ∅ then report R

3: else

4: if P = ∅ then skip

5: else

6: if G[P ] is high degree then

7: Compute Ω(G[P ] ) using Algorithm A and

8: extend them with R

9: else

10: Choose x ∈ P such that |N(x) ∩ P | < |P |− 4

11: B&K(R ∪ {x}, P ∩N(x), X ∩N(x) )

12: B&K(R, P \ {x}, X ∪ {x} )

13: end if

14: end if

15: end if

16: end procedure

1. R = ∅ or R is a clique in G.

2. P and X are disjoint sets and

P ∪ X = { y | R ⊆ N(y ) }

— that is — the set P ∪ X contains those vertices y ∈ V \R

such that {y } ∪ R is a clique.

Notice that — by virtue of the invariant — the set R is a

maximal clique exactly when P ∪ X = ∅ ; thence the Report

command in Line 2.

The set P is called the set of candidates . When x is a

candidate, chosen in Line 10 , the algorithm lists all maximal

cliques that contain R ∪ { x } . Then x is removed from the set

of candidates and put into the set X to maintain the invariant.

— Finally — the remaining set of maximal cliques, that is,

those that do not contain x , are listed via the call B&K with

parameters

R , P \ { x } , and X ∪ { x } .

2.3 The Bron & Kerbosch Algorithm
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Exercise 2.11

Implement and run the Bron – Kerbosch algorithm for the 5-

wheel W5 in Figure 2.3 and for the Petersen graph (Figure 1.2

on Page 3).
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Figure 2.3: The 5-wheel W5

2.3.1 A Timebound for the B&K – Algorithm

We have seen that when G is high – degree, its maximal cliques

can be listed using algorithm A in O
(
n2 · 3n/3

)
time. The

sets P , X and R in the Bron and Kerbosch – algorithm may be

implemented by a pointer structure or an array .

Theorem 2.11. The Bron – Kerbosch algorithm runs in

O(n2 · 3n/3 ) time .

Proof. Let t(n ) denote the time needed to list all maximal

cliques in a graph with n vertices. Write

t(n ) = t ∗(n ) + r(n ),

where r(n ) is the time spent on reporting maximal cliques.

Then

r(n ) = O (n · |Ω | ) .

The variant of the Bron – Kerbosch algorithm, in which each

report statement is replaced by an O(1) statement — like in-

creasing a counter to count the number of maximal cliques —

has then running time t ∗(n ).

When G[P ] is high degree we have, by Lemma 2.10 ,

t ∗(p ) = O
(

3 p/3
)

where p = |P | . (2.6)

We claim that — when G[P ] is not high degree

t ∗(p ) 6 t ∗(p− 4 ) + t ∗(p− 1 ) +O
(
p 2
)

. (2.7)
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The term t ∗(p − 4 ) corresponds to the case where a candidate

x of degree at most p − 4 is added to R . The search space

reduces to N( x ) , which has at most p− 4 vertices.

The term t ∗(p − 1 ) is the time needed to count the maximal

cliques that do not contain x . 13 — In that case — the search 13 That is, there must exist a
vertex y ∈ P\NP[x] that is

adjacent to all vertices of R.
space is P − x , ie, a graph with p− 1 vertices.

The term O
(
p 2
)

is the time needed to check if G[P ] is

high degree, to update the sets R, P and X , and to find a

candidate x ∈ P with at most p− 4 neighbors in P .

The recurrence (2.7) is similar to what we obtained for the

number of maximal cliques in 2.4 on Page 25 . It is readily

checked that

t ∗(n ) = O
(
n 2 · 3n/3

)
.

Important: Make sure that
you know how to solve a re-

currence as in (2.7). If not,
ask your teacher or check-

out Concrete Math!

This completes the proof.

Remark 2.12. After having gathered a list of all the maximal

cliques in the graph G[N[ x ] ] , the remaining maximal cliques

must contain at least one nonneighbor of x . — So — instead of

finding all maximal cliques in G−x , we could list all maximal

cliques that contain some nonneighbor of x . The analysis of

Tomita et al. shows that this is ‘ much of muchness ’ — it does

not improve the worst – case time estimate.

Exercise 2.12

This idea can be built into the algorithm by replacing the

second recursive call (in Line 12) by a loop during which all

nonneighbors of x are tried. In order to minimize the number

of recursive calls Tomita et al. choose a vertex x with the most

neighbors.

Eppstein et al. analyze the complexity for sparse graphs in

terms of their ‘ degeneracy .’ 14

14 A graph is k-degenerate if
every induced subgraph has
a vertex of degree at most k.

2.3 The Bron & Kerbosch Algorithm
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Remark 2.13. For the maximal number of maximal cliques that

a graph with n > 1 vertices may have, Moon and Moser

derived the following formula.

g(n ) =


3n/3 if n = 0 mod 3

4 · 3 bn/3c−1 if n = 1 mod 3

2 · 3 bn/3c if n = 2 mod 3 .

(2.8)

For a slightly different proof see also Vatter.

The graph in Figure 2.2 is the unique 15 graph with n vertices
15 up to isomorphismand 3n/3 maximal cliques ( when n = 0 mod 3 ).

2.4 Total Order!

When P is a poset, we use

the same symbol P also for
its set of elements. This
abuse of notation was also

common in graph theory.
De Bruijn used to say about

this: “ As long as you know

what you’re talking about,
there’s no problem at all ! ”

A binary relation on a set P is a subset of the set of ordered

pairs in P , ie, a subset of the Cartesian product P 2 = P× P
where

P × P = { (q , r ) | q ∈ P and r ∈ P } .

Definition 2.14. A partial order — or poset — P is a pair

(P , 6 ),

where P is a set and 6 is a binary relation on P satisfying:

∀x∈P x 6 x 6 is reflexive,

∀x∈P ∀y∈P ( x 6 y & y 6 x ) ⇒ x = y antisymmetric,

∀x∈P ∀y∈P ∀z∈P ( x 6 y & y 6 z ) ⇒ x 6 z and transitive.

Notice that possibly there are elements x ∈ P and y ∈ P for

which neither x 6 y nor y 6 x holds.

Algorithms
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Definition 2.15. A partial order (P, 6 ) is a total order if

every pair of its elements are related by 6 . 16
16 For example, [n] and N
are total orders. A to-
tal order is also called a
linear order .

The total ordering problem is the problem to find a

total order of a set V satisfying a collection of ‘ betweenness

constraints . ’ We are given a collection R of ordered triples ‘ constraint ’ = ‘ restriction . ’

(a , b , c ) ∈ V 3 .

The total order 6 should satisfy :

(a , b , c ) ∈ R ⇒ (a < b < c ) or ( c < b < a ) ,

where we use p < q to denote that p 6 q and p 6= q .

(2.9)

Paraphrased — the required total order 6 puts b ‘ between ’

a and c .

Let ’ s look at the Simple Total Ordering Problem first.

That problem is similar to the one above — except that each

betweenness constraint has the form

(a , b , c ) ∈ R ⇒ a < b < c . (2.10)

In the simple total ordering problem the collection of con-

straints builds a poset on the elements of V . In other words ,

the betweenness constraints define arcs between elements of V ,

say x → y if some betweenness relation implies that x < y . A digraph is a graph in which

each edge {x,y} has a direc-

tion, either x→ y or y→ x.
A digraph is not a graph!

If a digraph has no directed

cycles, it is called a DAG, a
directed, acyclic graph.

Exercise 2.13

A simple total ordering problem on V has a solution if and

only if the directed graph — defined above — is a DAG .

A topological sort of a digraph is a total ordering of its

vertices such that for every arc x → y the vertex x comes

before y in the total order.

In 1962 Kahn described an algorithm that finds a topological

sort in a DAG — say G = (V , A ) — in time O(n+m ) . 17
17n = |V | and m = |A|

2.4 Total Order!
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In Kahn ’ s algorithm, Algorithm 4 on Page 32, the set S is

the set of ‘ start – nodes, ’ which is the set of vertices without

incoming arcs . 18 The set L contains the final linear ordering. 18 Start-nodes are ‘sources.’
The vertices without outgo-

ing arcs are called ‘sinks.’

Algorithm 4: Kahn ’ s

Topological Sort1: procedure Kahn( G = (V , A ) )

2:

3: L← ∅
4: S← { x ∈ V | ∀y∈V ¬ ( y→ x ) } . S is the set of sources.

5:

6: while S 6= ∅ do

7: x← ∈ S
8: S← S \ { x }

9: L← L+ { x } . x is added at the end of L.

10:

11: for (x,y) ∈ A do

12: A← A \ { (x,y) }

13: if ∀z ¬ ( (z,y) ∈ A ) then . y is a new source.

14: S← S ∪ { y }

15: end if

16: end for

17:

18: end while

19:

20: if A 6= ∅ then

21: G has a cycle : Report defeat

22: else

23: Report L

24: end if

25:

26: end procedure

Exercise 2.14

Prove that any start – node may start a topological sort of a

DAG .

Algorithms



33

A start – node x is selected as a first element in L . The

vertex x is then removed from the graph and a topological

sort is performed on the remaining graph. In the remaining

graph, all arcs ( x , y ) are removed — since x is no longer a

vertex of the graph — and the set of start – nodes of G − x

is determined. The process continues as long as the set of

start – nodes is nonempty.

Exercise 2.15

Prove that upon completion of the algorithm described above

— that is when S = ∅ — any remaining arc implies that G

has a cycle.

Hint: The remaining digraph — if any — has no source.

Theorem 2.16. There exists a linear – time algorithm 19 that 19 By ‘linear’ we mean that

the algorithm runs inO(n+

m) time.
computes a topological sort in a DAG .

Proof. The graph is represented as a list of arcs. For each

vertex the algorithm maintains a list of out – neighbors and

a list of in – neighbors. These lists are updated in O(1) time

whenever an arc is removed.

To find the set of start – nodes , define a Boolean array

b : V → {true , false }

and initialize it as true for all vertices. Then the algorithm

passes through all arcs ( x , y ) ∈ A and sets b : (y) = false .

The start – nodes are then the remaining vertices, ie , those x

for which b( x ) remained true . This part of the algorithm

can be implemented so that it runs in O(n+m ) time .

At each pass of the loop in Kahn ’ s algorithm, starting at

Line 7 , a vertex x is removed from S and added to L .

Effectively , x is removed from the graph. The removal of

arcs that leave x takes O(1) time per arc. The fact that each

arc is removed at most once proves the timebound.

This proves the theorem.
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Figure 2.4: The 8-wheel W8

(The figure appears here for

no particular reason.)
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— By Theorem 2.16 — there exists a linear – time algorithm

that solves the simple total ordering problem. Unfortunately —

there is no method like that available for the total ordering

problem.

Opatnrý shows that the problem to color a hypergraph of

rank 3 can be reduced to the total ordering problem. We

explore this issue in the next section.

2.4.1 Hypergraphs

Definition 2.17. A hypergraph H is a pair (V , E ) — where

V is a finite nonempty set and E = E(H ) is a set of

nonempty subsets of V . 20 20 Hypergraphs are sets of

subsets of a ‘universal set’
of vertices V .The elements of E are called hyperedges .

Definition 2.18. The rank of a hypergraph H is the maximal

cardinality of its hyperedges , ie ,

rank(H ) = max { | e | | e ∈ E } ,

where E = E(H ) denotes the set of hyperedges of H . (2.11)
A hypergraph is called
k-uniform if all its hyper-
edges have k vertices.The 2 – coloring problem for hypergraphs H = (V , E ) is to

find a partition of its vertices — say {A , B } — such that

each hyperedge has a nonempty intersection with A and B ,

ie,

∀e∈E e ∩ A 6= ∅ and e ∩ B 6= ∅. (2.12)

When H is 2 – uniform then H is a graph and then the

2 – coloring problem is easy to solve . 21 21 See exercise 1.14.

In the remainder of this section we show that the total

ordering problem is at least as hard as the 2 – coloring problem

for hypergraphs of rank 3 . By that we mean that if there

exists a polynomial – time algorithm that solves the total order-

ing problem, then that algorithm can be adapted, so that it

solves the 2 – coloring problem for hypergraphs of rank 3 in

polynomial time.

Exercise 2.16

An orientation of a graph
gives each edge a direction.

Show that any graph can be
oriented into a DAG.
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Exercise 2.17

Orient the graph in Figure 2.4 into a DAG . Implement Kahn ’ s

algorithm, and find a topological sort.

Remark 2.19. Cook showed that the 2 – coloring problem for

hypergraphs of rank 3 is NP – complete . There are some

indications that show that there is — probably — no polyno-

mial – time algorithm for any NP – complete problem. We will

speak more about that in our chapter on complexity.

2.4.2 Problem Reductions

The method — to show that the total ordering problem is

at least as hard as the 2 – coloring problem — is called a

problem reduction . We reduce the 2 – coloring problem for

hypergraphs of rank 3 to the total ordering problem and we

show that this reduction takes polynomial time.

Assume that there exists a polynomial – time algorithm that

solves the total ordering problem in time O
(
(n+ |R | ) k

)
, for

some k ∈ N . Here n = |V | , the cardinality of the universal

set, and R is the set of betweenness constraints. We show

that there also exists an algorithm that solves the 2 - coloring

problem for hypergraphs H of rank 3 in O
(
(n+m )k

)
time.

Here n = |V(H ) | and m = |E(H ) | .

Proof. Let H be a hypergraph of rank 3 for which we wish

to solve the 2 – coloring problem. Notice that we may assume

that there are no hyperedges of cardinality 1, otherwise there

cannot exist a 2 – coloring of H and we are done. Henceforth,

we assume that every hyperedge is either a triple or a pair

of elements of V .

Number the vertices and hyperedges of H :

V(H ) = {h1 , · · · , hn } and

E(H ) = { (ai , bi , ci ) | {ai , bi , ci } ⊆ V and 1 6 i 6 t }⋃
{ (dj , ej ) | {dj , ej } ⊆ V and 1 6 j 6 p } . (2.13)

2.4 Total Order!
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Construct a universal set and a set of betweenness constraints

as follows. For each triple (ai , bi , ci ) ∈ E(H ) introduce one

vertex, say yi . Add one more vertex x . The universal set

V ∗ is

V ∗ = V(H ) ∪ { x } ∪ { yi | (ai , bi , ci ) ∈ E(H ) } . (2.14)

The set of betweenness constraints R is defined as follows.

For each triple (ai , bi , ci ) ∈ E(H ) the following two triples

are in R ,

(ai , yi , bi ) ∈ R and (yi , x , ci ) ∈ R . (2.15)

For each pair (di , ei ) ∈ E(H ) the following triple is in R :

(di , x , ei ) ∈ R . (2.16)

This completes the description of the betweenness relations and

the universal set.

s
s
s
s
s
s
sai

yi
bi

dj ejx

ci

Figure 2.5: The figure illus-
trates the betweenness con-

straints.

We claim that H has a 2 – coloring if and only if there is a

total ordering of V ∗ satisfying the betweenness constraints R .

Assume that the hypergraph H has a 2 – coloring of its vertices.

Let {A, B } be a partition of V that contains an endpoint of

every hyperedge. We show that there is a linear ordering of

V ∗ satisfying R .

Construct an injective map f : V ∗ → Q as follows.

Exercise 2.18

Show that the function f is
injective.

f( x ) = 0 (2.17)

∀h` ∈V f(h` ) =

 ` if h` ∈ A
−` if h` ∈ B ,

(2.18)

∀i∈ [t] f(yi ) =

min { f(ai ) , f(bi ) }+
1
i+1 if sign( f(ai ) ) = sign( f(bi ) )

− sign( f(ci ) )
i+1 otherwise.

(2.19)

∀z∈Z sign(z) =

{
1 if z > 0

−1 if z < 0.
Notice that each vertex of H is mapped to i or to −i , for

some natural number i ∈ N . It is positive when it is in
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A and negative otherwise. Since the endpoints of each hyper-

edge ( ci , di ) ∈ E(H ) have opposite colors each betweenness

constraint ( ci, x, di ) ∈ R is satisfied.

Consider (ai, bi, ci ) ∈ E(H) . We check if the betweenness

constraint (ai, yi, bi ) is satisfied.

If ai and bi are both in the same sets of the partition, ie,

if

sign( f(ai ) ) = sign( f(bi ) )

then — since f(ai ) 6= f(bi )
22 — yi is mapped to the 22 f(ai) 6= f(bi) because

ai 6= bi.smallest of f(ai ) and f(bi ) plus 1/(i+ 1) , and so f(yi ) lies

between f(ai ) and f(bi ) .

If sign( f(ai ) ) 6= sign( f(bi ) ) , then

f(yi ) ∈ (−1, 0 ) ∪ ( 0, 1 )

— and so — yi lies between f(ai ) and f(bi ) which are

integers of opposite sign.

Exercise 2.19

Check that also all betweenness constraints (yi , x , ci ) are

satisfied.

This completes the proof that V ∗ has a total order, namely ,

since Q is a total order, the function f defines a total ordering

of V ∗ .

Assume now that there is a total order of V ∗ — say 6 . 23 23 We’re not done yet!

Define a partition {A , B } of V(H ) by

A = { h | h ∈ V(H ) and h > x } and B = V \ A . (2.20)

By the betweenness constraints each hyperedge

(di , ei ) ∈ E(H )

has x between the two endpoints — and so — only one of

the two endpoints is in A .

2.4 Total Order!
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Similarly, there cannot be a hyperedge

(ai , bi , ci ) ,

with all three elements < x or all three > x .

Exercise 2.20

Check all four cases, that no hyperedge {a , b , c } ∈ E(H ) is

monochromatic.

— We are done — we have shown that given a hypergraph

of rank 3 we can construct an instance for the total ordering

problem in linear time. The universal set V ∗ has a total

ordering if and only if the hypergraph has a 2 – coloring .

Exercise 2.21

Implement Opatnrý ’ s reduction — Start with the following

hypergraph (V , E ) :

V = [n ] (2.21)

E = { { i , i+ 1 , i+ 2 } | 1 6 i 6 n− 2 } . (2.22)

Make a list of the betweenness constraints. What is the

universal set and what are the total orders that satisfy all

the betweenness constraints ?

2.5 NP – Completeness

Let P be some problem that we wish to solve . — For

simplicity — assume that P is a ‘ yes - or - no ’ question —

or —

a decision problem . 24 24 Usually, the decision vari-

ant of a problem is sufficient
to solve it. For example, to
compute ω(G) in polyno-

mial time, it would be suf-
ficient to have a polynomial-

time algorithm that checks

if ω(G) > k, for each k ∈
[n].

We would like to have a fast algorithm — eg, polynomial

— to solve P . The question whether we can do that concerns

the — complexity — of the problem.
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To acquire some information about the complexity of a

decision problem P, it is useful to consider the alternative

problem P ∗, which is the problem P equipped with an oracle 25 25 eg, your teacher

that gives you the answer to P. Then the remaining question

that you need to solve is whether the oracle has given you

the correct answer.

Definition 2.20. The class of problems NP is the class of

decision problems P for which an answer — supplied by an

oracle — can be tested in polynomial time.

Definition 2.21. A decision problem P is NP – complete if

it is in NP and every other problem in NP reduces to it

in polynomial time.

Example 2.22. For example, in Section 2.4.2 on Page 35 we

reduced the 2 – coloring problem for hypergraphs of rank 3 , to

the total ordering problem. — Given the fact that — the

2 – coloring problem is NP – complete – we have shown that the

total ordering problem is NP – complete as well.

2.5.1 Equivalence covers of splitgraphs

Definition 2.23. A graph is an equivalence graph if it is P3-free

— that is — if it is a disjoint union of cliques. An equivalence cover

of a graph G is a set of equivalence subgraphs that covers E(G).

The minimal number of equivalence graphs in a cover of G is

denoted as q(G).

Definition 2.24. A graph is a splitgraph if there is a partition of

its vertices into a clique and an independent set.

2.5 NP – Completeness
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Exercise 2.22

Let G be a splitgraph and let {K, S} be a partition of V(G) such

that K induces a clique and S induces an independent set. For a

vertex x ∈ K define

δ(x) = |N(x) ∩ S| and let D = max { δ(x) | x ∈ K }.

1. Show that q(G) > ∆: Choose a vertex x ∈ K that has D

neighbors in S. The star induced by x and its neighbors in S

has equivalence number D.

2. Show that q(G) 6 D+ 1: To see that enumerate the vertices of

S — say y1 · · · yt. For each x ∈ K order its neighbors in S in

some arbitrary order. For i = 1, · · · ,D, define the equivalence

graph with cliques

Wi,j = {yj } ∪ { x ∈ K | the ith neighbor of x is yj }.

Define one more equivalence graph that consists of one clique;

namely K.

In this section we show that computing the equivalence cover

number of splitgraphs is NP-complete.

Chromatic index

The chromatic index of a graph is the minimal number that is

needed to color the edges of a graph such that no two edges with a

nonempty intersection have the same color. The chromatic index is

denoted as χ′(G). By Vizing’s theorem the chromatic index of a

graph is either ∆ or ∆+ 1, where ∆ is the maximal degree of a

vertex in the graph.

Holyer proved the following theorem. 26 26 I. Holyer, The NP-
completeness of edge -
coloring , SIAM J. Comput.

10 (1981), pp. 718–720.
Theorem 2.25. It is NP-complete to decide whether the chromatic

index of a cubic graph is 3 or 4.
A graph is cubic if every ver-

tex has degree 3. For exam-

ple, the Petersen graph is cu-
bic.
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Exercise 2.23

Assume that G is triangle - free. Show that

q(G) = χ′(G).

Exercise 2.24

Let G be a cubic graph. Construct a graph G′ as follows.

Introduce a new vertex xe for every edge e ∈ E(G). Make a new

vertex xe adjacent to the two endpoints of e.

Show that

χ′(G) = 3 ⇔ q(G′) = 3.

Corollary 2.26. It is NP-complete to decide whether a graph

without K4 and with maximal degree at most 6 has equivalence

cover number 3 or 4.

Let G be a cubic graph. Construct a splitgraph

G∗ as follows.

S1. The splitgraph G∗ has a clique K = V(G).

S2. For each e ∈ E(G) the independent set S of G∗ contains two

vertices xe and ye which are both adjacent to the endpoints

of e in K.

S3. For each
:::::::
nonedge f ∈ E(Ḡ) the independent set S of G∗ con-

tains one vertex zf which is adjacent to the endpoints of f in

K.

This completes the description of the splitgraph G∗. Let’s hope it works!

Exercise 2.25

Let G be a cubic graph and let G∗ be the graph constructed as

above.

χ′(G) = 3 ⇔ q(G∗) = n+ 2

where n = |V(G)|.

This proves the following theorem.

A. Blokhuis and T. Kloks,
On the equivalence covering

number of splitgraphs , In-
formation Processing Letters

54 (1995), pp. 301–304.

2.5 NP – Completeness
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Theorem 2.27. It is NP-complete to decide whether the equivalence

cover number of a splitgraph is D or D + 1. This remains NP-

complete when the class is restricted so that all vertices in the

independent sets of the splitgraphs have degree 2.

2.6 Lovász Local Lemma

To show the existence of combinatorial objects the Lovász

Local Lemma can be of great use.

To start consider the 2-coloring problem of a hypergraph H: we

wish to color the vertices with two colors such that no hyperedge is

monochromatic. Assume that H is k-uniform — that is — every

hyperedge of H has k vertices.

When H has less than 2k−1 edges then H is 2-colorable.

To see that, color the vertices of H independently with proba-

bility 1/2 red or black. A bad event is an hyperedge that is

colored monochromatic.

The hypergraph is k-uniform — so — the probability that a

bad event occurs is at most 21−k (either all vertices of the hyperedge

are colored black or all vertices are colored red). The probability

that some bad event happens is at most their sum and this is less

than one (by the assumption on the number of hyperedges). The

conclusion is that there is a 2-coloring of H in which no bad event

occurs.

This result is not so great: for a graph it simply says that it

is bipartite whenever it has less than two edges (in which case

there can be no cycle). It is easy to do better; when each edge

intersects at most one other edge then the graph is bipartite also.

A generalization of this case is captured by Lovász’ local lemma.

Assume that every hyperedge of a k-uniform hypergraph H

intersects at most d other hyperedges. Lovász’ local lemma
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allows us to conclude that H is 2-colorable whenever

e · (d+ 1) 6 2k−1

(where e = 2.718 · · · is the basis of the natural logarithm).

In a probability space consider a finite set of mutually inde-

pendent random variables. Let

A1 · · · An

be a collection of events. An event is determined by the values

of a subset of the variables in the outcome of an experiment. We

write P(Ai) for the probability that an event Ai occurs.

The Ai are the (bad) events that we wish to avoid. (In the example

above the bad events are monochromatic hyperedges that turn up

in the outcome of an experiment which colors the vertices of the

hypergraph.)

We can avoid all bad events if we prove

P(∩ Āi ) > 0.

When the events are independent then their complements Āi are

also independent. In that case

P(∩ Āi ) =
∏

P( Āi ) > 0

— that is — there exists a way to assign values to the variables such

that no bad event happens (unless some Ai surely happens). — On

the other hand — it is clearly impossible to avoid all events when

some subset of the Ājs implies some (other) event Ai. Therefore

we need some upperbound for the conditional probabilities

P(Ai |
⋂
j∈ J

Āj )

for any set J ⊆ [n] \ i.

The local lemma deals with the case where the events are ‘almost’

independent. To formalize this we make use of a dependency graph.

The dependency graph has a vertex for each subset of variables that

determines an event. Two vertices are adjacent in the graph when

the intersection of the two subsets is nonempty.

2.6 Lovász Local Lemma
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Definition 2.28. An event A is independent of a collection of events

B1 · · ·Bk if for all J ⊆ [k] and J 6= ∅

P(A
⋂
j∈J

Bj ) = P(A ) × P(
⋂
j∈J

Bj ).

Definition 2.29. Let A1 · · ·An be events in a probability space.

A graph D = (V,E) with V = [n] is a dependency graph if each

event Ai is independent of the collection of events

{Aj | { i, j } /∈ E }.

Spencer formulated and proved Lovász’ local lemma (originally

proved by Lovász and Erdős) as follows.

Lemma 2.30. Let A1 · · · An be events with a dependency graph.

Let 0 6 xi < 1 be real numbers assigned to the events such that

P(Ai ) 6 xi ·
∏

{ i, j }∈E

(1 − xj).

Then ∏
P(∩ Āi ) >

∏
(1 − xi) > 0.

Proof. We first show that for any J ⊆ [n] \ i

P(Ai | ∩j∈ J Āj ) 6 xi.

This is true when J = ∅, since

P(Ai ) 6 xi ·
∏

{ i, j }∈E

(1 − xj) 6 xi.

We proceed by induction on | J |. Let

J1 = { j ∈ J | ( i, j ) ∈ E .} and let J2 = J \ J1

We may assume that J1 6= ∅ otherwise the claim is clearly true.

We can write

P(Ai | ∩j∈ J Āj ) =
P(Ai ∩j∈ J1 Āj | ∩j∈ J2 Āj )
P(∩j∈ J1 Āj | ∩j∈ J2 Āj )

. (2.23)
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The event Ai is independent of the set of events {Aj | j ∈ J2 }. We

use that to find an upperbound for the numerator in (2.23).

P(Ai ∩j∈ J1 Āj | ∩j∈ J2 Āj ) 6 P(Ai | ∩j∈ J2 Āj )

= P(Ai ) 6 xi ·
∏

{ i, j }∈E

(1 − xj).

To find a lowerbound for the denominator in (2.23); write

J1 = { j1 , · · · , jr }.

Using induction we obtain

P( Āj1 ∩ · · · ∩ Ājr | ∩j∈ J2 Āj ) =

P( Āj1 | ∩j∈ J2 Āj ) × P( Āj2 | Āj1 ∩j∈ J2 Āj ) ×
· · · × P( Ājr | Āj1 ∩ · · · ∩ Ājr−1

∩j∈ J2 Āj )

>
∏

{ i, j }∈E

(1 − xj).

This proves the claim.

The following observation completes the proof of the lemma.

P(∩ Āi ) = P( Ā1 ) × P( Ā2 | Ā1 )× · · ·

× P( Ān | Ā1 ∩ · · · ∩ Ān−1 ) >
n∏
i=1

(1 − xi) > 0.

Remark 2.31. Assume that all degrees in a dependency graph are at

most d. Assume that the probability of any bad event satisfies

P(Ai ) 6 p

We claim that if e · p · (d + 1) 6 1 then P(∩ Āi ) > 0. To see

that set xi = 1/d+1. Since the degree of any vertex is at most d, we

have

xi ·
∏

{ i, j }∈E

(1 − xj) >
1

d+ 1
· (1 −

1

d+ 1
)d >

1

e · (d+ 1)
> p.

So the local lemma applies.

2.6 Lovász Local Lemma
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Exercise 2.26

Prove the claim we made at the start of this section: Let H be a

k-uniform hypergraph and assume that every hyperedge intersects

at most d other hyperedges. When e(d + 1) 6 2k−1 then H is

2-colorable.

Remark 2.32. In 2009 Moser and Tardos presented a constructive

proof of the Lovász local lemma — that is — they present an

algorithm that finds a good object efficiently.

Remark 2.33. Thomassen shows that every hypergraph which is k-

regular and k-uniform (that is; every hyperedge has k vertices and

every vertex is in k hyperedges) is 2-colorable provided k > 4. The

Fano plane shows that not every 3-regular, 3-uniform hypergraph

is 2-colorable. The 2-regular graphs that are not 2-colorable are

— of course — the odd cycles.

2.6.1 Bounds on dominating sets

The following problem is an example of a problem which can be

tackled using the Lovász Local Lemma.

Definition 2.34. Let a,b ∈ N. A set S of vertices in a graph is an

(a,b)-dominating set if every vertex of S is adjacent to at least a

vertices in S and every vertex outside S is adjacent to at least b

vertices in S.

For a graph G with all degrees at least a let γa,b(G) be the

smallest number of elements in an (a,b)-dominating set in G.

Lemma 2.35. Let 1
2 6 α < 1. There exists a number R > 0 such

that for all r > R any r-regular graph satisfies

γa,b 6 α · n.

Proof. Let N ∈ N and color (independently) the vertices of an

r-regular graph G with N colors. One of the colors appears at
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least n/N times among the vertices of G. Say red is such a color

and write V \ red for the vertices that are not red.

We claim that

V \ red

is with positive probability an (a,b)-dominating set.

For a vertex x define a bad event Ax as a coloring of N[x] such

that either one of the following holds.

1. x is red and x has less than b neighbors in V \ red

2. x is not red and x has less than a neighbors in V \ red

The following formula expresses the probability that a bad event Ax
occurs.

P(Ax) =
1

Nr+1
·

(
b−1∑
i=0

(
r

i

)
(N− 1)i +

(N− 1) ·
a−1∑
i=0

(
r

i

)
(N− 1)i

)
. (2.24)

Notice that each event Ax is dependent of at most r2 other events;

namely the events Ay for vertices y at distance at most two from

x. — So — by Remark 2.31 (or by Lovász local lemma with all

variables xi = 1/r2) we are done when we show that

e · P · r2 6 1,

where we write P = P(Ax) for the probability of a bad event as in

Formula (2.24).

For any given number N > 2 since a and b are fixed numbers

in the formula (2.24) the numerator is a polynomial in r and the

denominator is an exponential function in r. — So — there exists

a number R such that e · P · r2 < 1 whenever r > R.

This proves the lemma.

It is easy to cover the case where G is a graph with minimal

degree δ and maximal degree ∆: Use δ to adjust (2.24) and use ∆2

to bound the degree in the dependency graph.

2.6 Lovász Local Lemma
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An (a,b)-dominating set that meets the requirements can be

constructed efficiently by the algorithm of Moser and Tardos.

2.6.2 The Moser & Tardos algorithm

Moser and Tardos developed (in 2009) a constructive proof of

Lovász’ local lemma. — To be more precise — let A be a collection

of events with a dependency graph D.

To ease the notations we identify an event A with the set of variables

whose outcome determines A.27

27 In their paper Moser and
Tardos introduce the nota-

tion vbl(A) for this set of
variables.

For an event A ∈ A we write N(A ) ⊆ A \A for its neighbors in

the dependency graph D and we write N̄(A ) = N(A ) ∪ {A} for

its closed neighborhood.28 Let x : A → (0, 1) be a function which 28 In the dependency graph

there is an edge between two
events A and B when A ∩
B 6= ∅. So an event A

is independent of the collec-
tion A\ ({A}∪Γ(A)). (See

Definiton 2.28 on Page 44.)

satisfies Lovász’ condition

∀A∈A P(A ) 6 x(A ) ×
∏

B∈N(A )

(1 − x(B )). (2.25)

Moser and Tardos show that a very simple randomized algo-

rithm finds an assignment of the variables which avoids all events

A ∈ A. — Furthermore — the expected number of resampling

steps used by this algorithm is bounded by∑
A∈A

x(A )

1 − x(A )
.

In this section we recapitulate Moser and Tardos’ result. In

their paper they show furthermore that when the dependency graph

has bounded degree and the function x satisfies a slightly stronger

condition than (2.25) then there is an ‘efficient’ deterministic al-

gorithm that finds an assignment of the variables which avoids all

events of A. (We refer to their paper for a precise description of

this and other results.)

We say that an experiment violates an event when the event

happens.
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The randomized algorithm to find an assignment of the vari-

ables which avoids all the events of A is the following.

1. Start with a random asignment of all variables

2. If some event of A occurs then pick one arbitrarily and find

a new random assignment of the variables that it contains

3. Repeat this resampling step until no more bad event occurs.

Below we prove the following theorem.

Theorem 2.36. Let P be a finite set of mutually independent

random variables in a probability space. Let A be a finite set of

events and let x be a function which satisfies the condition of Lovász

local lemma (2.25). The algorithm described above resamples an

event A an expected number of times at most x(A )/1−x(A ) —

that is — the expected total number of resampling steps is at most∑
A∈A

x(A )

1 − x(A )
.

2.6.3 Logs and witness trees

To prove Theorem 2.36 we show that the algorithm is equivalent

to ‘checking’ sequences of ‘witness trees’ for the occurrence of bad

events.

The execution of the algorithm above produces a log — that

is — a sequence of events

C : N → A,

which are chosen for resampling during the execution. This is a

partial function when the algorithm terminates. We assume that

there is a fixed (randomized) procedure which selects the bad event

for resampling. (This makes the log a random variable.)
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Definition 2.37. A witness tree is a finite rooted tree T with a

labeling

[ · ] : V( T ) → A

such that for each node a its children are labeled by elements of

N̄( [a] ).

A witness tree is called proper if all children of a node in a

witness tree have different labels.

Given a log C we identify a witness tree with each element

C(t) as follows. Start with a tree T t which consists of a single root

node with label C(t). For i = t− 1, · · · 1 distinguish two cases to

construct the tree T i.

• If there is a vertex a in the tree T i+1 with C(i) ∈ N̄( [a] ) then

choose a such that it is furthest from the root. Attach a new

child to a and label it as C(i).

• If N̄(C(i) ) ∩ V( T i+1 ) = ∅ then let T i = T i+1.

The witness tree τ( t ) of the resampling step t in C is defined as

τ( t ) = T1.

Definition 2.38. A witness tree T appears in C if there exists

some t ∈ N such that T = τ( t ).

Lemma 2.39. A witness tree which appears in a log is proper.

Proof. By definition of the algorithm that produces the witness tree;

no two elements of A that are the same or intersect can appear

at the same depth in a witness tree.

We want to show that the probability that a witness tree T

appears in C is at most the probability that it passes a certain

test.
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Definition 2.40. Let T be a witness tree. A T -check visits the

nodes of T in reversed BFS-order, it takes a random evaluation

of elements of each node [a] in T that it visits and checks if the

event [a] is violated. The witness tree T passes the check if all

events were violated when checked.

Lemma 2.41. The probability that a witness tree T passes its check

is ∏
a∈V(T)

P( [a] ).

Proof. The random evaluation of the variables in each node is

independent of earlier evaluations.

Lemma 2.42. Let T be a fixed witness tree and let C be the

random log produced by the algorithm. The probability that T appears

in the log is at most ∏
a∈V(T )

P( [a] ).

Proof. Assume that a random generator produces an infinite se-

quence of independent random evaluations for each variable P

P1 P2 · · ·

Whenever the algorithm of Moser and Tardos (or a T -check) calls

for a new random sample of P the generator presents the next

element in the list.

Assume that a witness tree T appears in the log C — say T = τ(t)

for some t ∈ N. (So the root of T is labeled as C(t)). We need to

prove that T passes the T -check.

Let a ∈ V( T ) and let P ∈ [a]. Let S(P) be the set of nodes

w ∈ V( T ) that are at depth greater than v in T and for which

P ∈ [w]. When the T -check visits v the random evaluation of P

produces P|S(P)|. That is so because the check visits the nodes in

order of decreasing depth and no two nodes at the same depth can

contain the same element P (since they are disjoint).
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Notice that the randomized algorithm of Moser and Tardos re-

samples the variable P exactly in the same order (by definition of

the occurrence of T in the log). Since [a] is violated in the Moser

& Tardos algorithm it is also violated in the T -check.

This proves the lemma.

Let NA be the number of times that an event A ∈ A appears

in the log — that is — NA is the number of times that A is

resampled during the execution of the Moser & Tardos algorithm.

Then NA is equal to the number of different witness trees that

appear in C and that have their root labeled A. To see that let ti
be such that C( ti ) = A for the ith time. The witness tree τ( ti )

contains exactly i copies of A — so clearly — τ( ti ) 6= τ( tj )

whenever i 6= j.

It follows that we can bound the expectation of NA by summing

the bounds on the probabilities of occurrences of witness trees. We

do that in the next section.

2.6.4 A Galton - Watson branching process

Wassup ?
In this section we describe and analyze a process that generates

proper witness trees with a fixed root A ∈ A.

Let x( · ) be a function satisfying the Lovász’ condition 2.25 on

Page 48. A process to generate a witness tree is the following.

1. In the first round the process generates a tree with a single

node labeled A

2. For each subsequent round choose (independently) an el-

ement a of the previous round and (also independently)

choose an element B ∈ N̄( [a] )

3. With probability x(B ) add a child node at the node a and

give it the label B. With probability 1 − x(B ): skip.
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This process ends when no new vertices are created in some round.

Define

x′(B ) = x(B ) ·
∏

C∈N(B )

(1 − x(C )).

Lemma 2.43. Let T be a proper witness tree with its root labeled

A. The probability that the Galton-Watson process described above

produces exactly T is

PT =
1 − x(A )

x(A )
·

∏
a∈V(T)

x′( [a] ).

Proof. For a ∈ V(T) let Wa be the set of elements in N̄( [a] ) that

do not appear as the label of a child of a. The probability that

the Galton-Watson process produces T is

PT =
1

x(A )
·

∏
a∈V(T)

x( [a] ) ·
∏
u∈Wa

(1 − x( [u] )).

(The leading factor appears because the root is always there.)

We get rid of the Wa’s as follows

PT =
1 − x(A )

x(A )
·

∏
a∈V(T)

x( [a] )

1 − x( [a] )
·
∏

u∈ N̄( [a] )

(1−x( [u] )).

We can replace inclusive neighborhoods by exclusive ones

PT =
1 − x(A )

x(A )
·

∏
a∈V(T)

x( [a] ) ·
∏

u∈N( [a] )

(1−x( [u] )) =

1 − x(A )

x(A )
·

∏
a∈V(T)

x′( [a] ).

This proves the lemma.

We are now ready to complete the proof of Theorem 2.36 (which

is on Page 49).
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Proof. Let TA be the set of all proper witness trees that have root

A. We find for the expected number of times that an event A

appears in the log C:

E(NA ) =
∑
T ∈TA

P( T appears inC ) 6

∑
T ∈TA

∏
a∈V(T)

P( [a] ) 6
∑
T ∈TA

∏
a∈V(T)

x′( [a] ) =

x(A )

1 − x(A )
·
∑
T ∈TA

PT 6
x(A )

1 − x(A )
.

The first inequality follows from Lemma 2.42. The second inequality

follows from the assumptions in Theorem 2.36. The third inequality

follows from Lemma 2.43. The last inequality holds because the

Galton-Watson process produces exactly one tree at a time.

This proves the theorem.

2.7 Szemerédi’s Regularity Lemma

The regularity lemma plays an important role in extremal combina-

torics. 29 29 Extremal graph theory
studies maximal or minimal

graphs satisfying a certain
property.

Let G be a graph and let X and Y be disjoint sets of vertices.

Write e(X, Y) for the number of edges that intersect both X and Y.

The density of {X, Y} is defined as d(X, Y) = e(X,Y)/|X|·|Y|.

Definition 2.44. Let X and Y be disjoint sets. The pair {X, Y} is

ε-regular if for all X′ ⊆ X and Y′ ⊆ Y

|X′|/|X| > ε and |Y′|/|Y| > ε ⇒
| d(X′, Y′) − d(X, Y) | 6 ε.

Exercise 2.27

Show that {X, Y} is ε-regular when d(X, Y) 6 ε3.
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Definition 2.45. A partition {V0, · · · ,Vk} of the vertices of a graph

is equitable if

|Vi| = |Vj| for all 1 6 i < j 6 k.

The set V0 may be empty; it is called the exceptional class of the

partition.

Definition 2.46. An equitable partition {V0, · · · ,Vk} is ε-regular

if both of the following conditions hold.

(a) |V0| 6 ε · n;

(b) all — except at most ε · k2 of the pairs {Vi,Vj} (1 6 i < j 6 k)

—are ε-regular.

In this chapter we prove Szemerédi’s regularity lemma:

The Regularity Lemma

Lemma 2.47. Let ε ∈ R and t ∈ N. There exist N, T ∈ N
such that any graph with at least N vertices has an ε-regular

partition {V0, · · · ,Vk} with t 6 k 6 T .

We will assume — throughout this chapter — that

0 < ε 6
1

2
.

This is not an important restriction since any ε′-regular partition

is ε-regular for ε > ε′.

Exercise 2.28

Assume G has at most ε4 · n2 edges. Show that any equitable

partition with |V0| 6 ε · n is ε-regular.

A partition π′ is a refinement of another partition π if every

class of π is the union of some classes of π′.
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Definition 2.48. Let π = {V1, · · · ,Vk} be a partition of the

vertices of a graph. The index of π is

index(π) =
∑

16i<j6k

|Vi| · |Vj|
n2

· d2(Vi,Vj).

Important modification:

When π = {V0, · · · ,Vk} is a partition with an exceptional class V0

then we define index(π) as the index of the refined partition where

each element of V0 forms a class by itself (so index(π) is the index

of a partition with |V0|+ k classes).

Exercise 2.29

Show that

0 6 index(π) 6
1

2
.

In the search for an ε-regular partition we start with

an arbitrary equitable partition of the vertices {V0, · · · ,Vt} with

|V0| = t− 1.

We refine this partition until it satisfies the conditions. To prove

that the number of classes in the final partition is independent of

n we use the fact that the index increases whilst it is bounded

from above by 1/2.

We first show that the index does not decrease in any refine-

ment. — Below (in Lemma 2.51) — we show that the increase

is substantial when there are ‘irregular pairs’ — that is — pairs

{Vi,Vj} with subsets V ′i and V ′j that satisfy

|V ′i| > ε · |Vi| and |V ′j| > ε · |Vj| and

|d(V ′i,V
′
j) − d(Vi,Vj)| > ε. (2.26)
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Lemma 2.49. If π′ refines π then

index(π′) > index(π).

Proof. Consider a bipartition {X, Y}. Let {X1,X2} be a partition of

X. Then

e(X, Y) = e(X1, Y) + e(X2, Y).

Rewrite this as

|X||Y| · d(X, Y) = |X1||Y| · d(X1, Y) + |X2||Y| · d(X2, Y).

By the Cauchy-Schwartz inequality we obtain

d2(X, Y) 6
|X1|

|X|
· d2(X1, Y) +

|X2|

|X|
· d2(X2, Y). (2.27)

Any refinement is obtained by repeated application of bipartitions.

This proves the lemma.

Exercise 2.30

The Cauchy-Schwartz inequality says that for any real numbers ai
and bi,

(a1b1 + · · ·+ anbn)2 6
(
a2

1 + · · ·+ a2
n

)
·
(
b2

1 + · · ·+ b2
n

)
.

Derive (2.27) (by suitable choice of ai and bi).

Lemma 2.50. Let {X, Y} be an irregular bipartition: let {X1,X2}

and {Y1, Y2} be partitions of X and Y such that

(a) |X1| > ε · |X| and |Y1| > ε · |Y|;

(b) |d(X1, Y1) − d(X, Y)| > ε,

then ∑ |Xi||Yj|

|X||Y|
· d2(Xi, Yj) > d2(X, Y) + ε4.
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Proof. Notice that

|X||Y| · d(X, Y) =
∑

|Xi||Yj| · d(Xi, Yj).

We have

ε4 6
∑ |Xi||Yj|

|X||Y|
· (d(Xi, Yj) − d(X, Y))2 =∑ |Xi||Yj|

|X||Y|
· d2(Xi, Yj) − 2d(X, Y)

∑ |Xi||Yj|

|X||Y|
· d(Xi, Yj) +

d2(X, Y) =∑ |Xi||Yj|

|X||Y|
· d2(Xi, Yj) − d2(X, Y).

This proves the lemma.

Notation: For a partition π = {V0, · · · ,Vk} with an exceptional

class V0 let |π| = k.

Lemma 2.51. Let π = {V0, · · · ,Vk} be an equitable partition with

an exceptional class V0 that satisfies |V0| 6 ε·n. Assume that there

are more than ε · k2 irregular pairs. There exists a refinement π′

of π that satisfies

index(π′) > index(π) +
1

4
· ε5 and |π′| 6 k · 2k.

Proof. When sets Vi and Vj form an irregular pair {Vi,Vj} then

there are partitions {V1
i ,V2

i } and {V1
j ,V2

j } such that

|V1
i | > ε|Vi|, |V1

j | > ε|Vj|, |d(V1
i ,V1

j ) − d(Vi,Vj) | > ε.

By Lemma 2.50 this implies∑
k,`∈ {1,2}

|Vki ||V
`
j |

n2
·d2(Vki ,V`j ) >

|Vi||Vj|

n2
·d2(Vi,Vj) +

|Vi||Vj|

n2
·ε4.

(2.28)

Let π′ be the common refinement of these partitions; say this

partitions a set Vi as

{Vi,1, · · · ,Vi,ki }.
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Then ki 6 2k — so — |π′| 6 k · 2k.

By (2.28) and Lemma 2.49 we have for all irregular pairs {Vi,Vj}

ki∑
a=1

kj∑
b=1

|Vi,a||Vj,b|

n2
· d2(Vi,a,Vj,b) >

|Vi||Vj|

n2
· d2(Vi,Vj) +

|Vi||Vj|

n2
· ε4.

Since there are more than εk2 irregular pairs — and since for

i > 1: |Vi| >
(1−ε)·n
k

— we find

index(π′) >

index(π) + εk2 · (
(1−ε)n/k)2

n2
· ε4 > index(π) +

1

4
· ε5

(since we may assume that 0 < ε 6 1/2).

This proves the lemma.

We now prove the regularity lemma (Lemma 2.47 on

Page 55).

Proof. Start with an equitable partition π0 = {V0, · · · ,Vt} with

|V0| = t−1. We may assume that n is large enough ie t 6 ε·n/2. 30 30 This leaves us some space
in the exceptional class —

which we need — because

the exceptional class grows
during the refinements.

If π0 is not ε-regular there exists a refinement π′ which satisfies

index(π′) > index(π) +
1

4
· ε5 and |π′| 6 |π| · 2|π|.

Let A = |π′|. To make π′ into an equitable partition π1 partition

each class further into classes of size exactly
⌊

1
4 · ε

6 · n
A

⌋
and at most

one class of size less than that. All the small parts are moved into

the exceptional set. This increases the size of the exceptional set by

at most 1
4 · ε

6 · n. 31 By Lemmas 2.49 and 2.51: 31 That is so because the in-
crease is less than

A ·
⌊
ε6 · n

4A

⌋
6

1

4
· ε6 ·n.

Notice that for all this to

make sense we need n >
4A/ε6 otherwise the refine-
ment does not exist. The

iteration blows up this lower
bound on n; but it remains

constant.

index(π1) > index(π0) +
1

4
· ε5.

Repeating this process the kth partition πk satisfies

index(πk) > index(π0) +
k

4
· ε5.
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However, any index is bounded from above by 1
2 . Therefore, the

process ends in at most 2 · ε−5 iterations.

Notice that the increase of the exceptional set is smaller than

1

4
· ε6 · n · 2 · ε−5 =

1

2
· ε · n,

— that is — since the original exceptional class satisfies

|V0| 6
1

2
· ε · n,

we obtain an ε-regular partition. The number of classes is bounded

by a function of ε and t.

Let a function f : N → N
be defined by f(1) = t and

f(k+ 1) =
⌈

4
ε6
· f(k)2f(k)

⌉
.

The number of classes in
the ε-regular partition πk
produced by the algorithm

satisfies

|πk| 6 f(d2ε−5e).

Clearly, this is also the lower
bound for n.

This proves the regularity lemma.

Remark 2.52. It is generally not possible to obtain ε-regular parti-

tions that do not have any irregular pairs. The following bipartite

graph is an example of a graph in which every ε-regular partition

has irregular pairs. Let

A = {a1, · · · ,an} and B = {b1, · · · ,bn}

and let {ai,bj} ∈ E if i 6 j. (This bipartite graph is called a chain

graph.)

2.7.1 Construction of regular partitions

Alon et al. showed (in 1994) that it is co-NP-complete to decide

whether a given partition of a graph is ε-regular. — On the other

hand — the lemma can be made constructive; an ε-regular partition

can be found in O(M(n)) time, where M(n) = n2.373 is the time

needed to multiply two n× n matrices with entries in {0, 1}.

The problem to decide whether a given partition is ε-regular

remains co-NP-complete even when ε = 1/2 and k = 2. To prove

that Alon et al. derive the following lemma (we omit the proof).

Lemma 2.53. The following problem is NP-complete. Given a

bipartite graph with color classes A and B satisfying |A| = |B| = n

and |E| = 1
2 ·n

2−1. Decide if the graph contains a complete bipartite

subgraph Kn
2 ,n2

.
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To see that ε-regularity is co-NP-complete, Alon et al. make

the following observation.

Lemma 2.54. A bipartite graph with n vertices in each color class

and with exactly n2

2 − 1 edges contains Kn
2 ,n2

if and only if it is

not ε-regular with ε = 1/2.

Proof. Let the color classes be A and B. Assume |A| = |B| = n and

d(A,B) = 1
2 − 1

n2 .

Assume the graph contains Kn
2 ,n2

. Then there are sets X and Y of

size n/2 and d(X, Y) = 1. This implies

| d(X, Y) − d(A,B) | >
1

2
,

which shows that the graph is not ε-regular with ε = 1/2.

Assume that the graph is not ε-regular with ε = 1/2. Then there

are sets X and Y of size at least n2 that satisfy

| d(X, Y) −
1

2
+

1

n2
| >

1

2
.

Notice that this is only possible when d(X, Y) = 1 — that is —

{X, Y} represents a complete bipartite subgraph (with at least n/2

vertices in each color class).

This proves the lemma.

In their paper Alon et al. prove the following theorem (which is

a constructive edition of the Regularity Lemma (Lemma 2.47

on Page 55).

Theorem 2.55. For ε > 0 and t ∈ N there exist N, T ∈ N
such that every graph with at least N vertices has an ε-regular

partition with k+ 1 classes where k satisfies t 6 k 6 T .

Such a partition can be found in O(M(n)) time.

To prove the theorem we need to do some preliminary work.
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Definition 2.56. Let A and B be color classes of a bipartite graph

satisfying |A| = |B| = n. Let d be the average degree. For two

vertices p,q ∈ B define their neighborhood deviation as

σ(p,q) = | N(p) ∩N(q) | −
d2

n
.

For Y ⊆ B (Y 6= ∅) define its deviation as 32

32 When the graph is com-
plete bipartite or empty

then

σ(p,q) = 0

for all pairs p,q ∈ B. In

that case σ(Y) = 0 for all
nonempty sets Y ⊆ B.

As another example, define

a bipartite graph H on the 7
points and 7 lines of the Fano

plane. A point and line are

adjacent of they are incident
in the plane. We have an av-

erage degree d = 3 since any

point lies on 3 lines. Since
any pair of points lie on one

line

σ(p,q) = 1 − 9/7 = −
2

7
.

When B is the set of points

of the Fano plane, we find

σ(B) =
1

49
·7·6·(−2

7
) = −

12

49
.

σ(Y) =
1

|Y|2
·
∑
p,q∈Y
p 6=q

σ(p,q).

A constructive version of the regularity lemma depends on

the construction of suitable subsets V ′i and V ′j satisfying (2.26) (of

irregular pairs {Vi,Vj}). These ‘witnesses’ to the irregularity are

hard to find.

The following lemma shows that it is possible to ‘approximate’

witnesses.

Lemma 2.57. Let a bipartite graph have color classes A and B

which satisfy |A| = |B| = n. Let d be the average degree. Let

0 < ε < 1/16. Assume there exists a set Y ⊆ B such that

|Y| > ε · n and σ(Y) >
ε3

2
· n (2.29)

Then one of the following items holds true

I. d < ε3 · n;

II. | {y | y ∈ B and | deg(y) − d | > ε4 · n } | > ε4

8 · n;

III. There exist subsets A′ ⊆ A and B′ ⊆ B that satisfy

|A′| >
ε4

4
· |A| and |B′| >

ε4

4
· |B| and

| d(A′,B′) − d(A,B) | > ε4.
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There exists an O(M(n))-algorithm that produces sets A′ and B′ as

specified in III when I and II do not hold.

Proof. Assume that I and II do not happen. We prove III.

Define

Y′ = {y ∈ Y | |deg(y) − d| < ε4 · n }.

Then Y′ 6= ∅ since II does not occur.

Choose y0 ∈ Y that maximizes
∑
y∈Y σ(y,y0). By taking an

average we estimate
∑
y∈Y σ(y,y0).∑

y′∈Y′

∑
y∈Y
y 6=y′

σ(y,y′) = σ(Y) · |Y|2 −
∑

y′∈Y\Y′

∑
y∈Y
y 6=y′

σ(y,y′)

>
ε3

2
· n · |Y|2 −

ε4

8
· n · |Y| · n.

(Here we use Y’s property that σ(Y) > ε3·n/2 and the assumption

that II does not occur which implies |Y \ Y′| 6 ε4

8 · n.)

Since |Y′| 6 |Y| and |Y| > ε · n, we have∑
y∈Y

σ(y,y0) >
ε3

2
·n · |Y|− ε

4

8
·n2 >

3

8
· ε3 ·n · |Y|. (2.30)

We claim

| {y | y ∈ Y and σ(y,y0) > 2ε4 · n } | >
ε4

4
· n.

(2.31)

Otherwise∑
y∈Y

σ(y,y0) <
ε4

4
· n2 + |Y| · 2ε4 · n

6
ε3

4
· n · |Y|+ 2ε4 · n · |Y| 6

3

8
· ε3 · n · |Y|

and this contradicts (2.30).

It follows from (2.31) that there exists a set B′ ⊆ Y \ {y0} which

satisfies

|B′| >
ε4

4
· n and ∀b∈B′ |N(b) ∩N(y0) | >

d2

n
+ 2ε4 · n.
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Let A′ = N(y0). Since d > ε3 · n and 16ε < 1,

|A′| > d−ε4 ·n > ε3 ·n−ε4 ·n > 15ε4 ·n >
ε4

4
·n.

We claim

|d(A′,B′) − d(A,B) | > ε4.

To see that notice

e(A′,B′) =
∑
b∈B′

|N(y0) ∩N(b) | >

(
d2

n
+ 2ε4 · n

)
· |B′|.

It follows that

d(A′,B′) − d(A,B) >

(
d2

n
+ 2ε4 · n

)
· 1

|A′|
−

d

n

>
d2

n(d+ ε4 · n)
+ 2ε4 −

d

n
=

2ε4 −
dε4

d+ ε4 · n
> ε4.

(In the second line we use the fact that |A′| 6 n since A′ ⊆ A and

the fact that |A′| = |N(y0)| < d + ε4 · n since y0 ∈ Y′.)

An algorithm to compute the sets A′ and B′ proceeds by com-

puting for all y0 ∈ B with | deg(y0) − d | < ε
4 · n the set

B(y0) = {y | y ∈ B and σ(y,y0) > 2ε4 · n }.

There exists a vertex y0 with |B(y0)| > ε4

4 · n (see (2.31)). The

required sets are B′ = B(y0) and A′ = N(y0).

All quantities σ(y,y′) can be obtained by squaring the adjacency

matrix.

This proves the lemma.

Exercise 2.31

Let d be the average degree of a bipartite graph with color classes

A and B of size n. Assume d < ε3 · n (Case I of Lemma 2.57).

Prove that the graph is ε-regular.

Hint: See Exercise 2.27.
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Exercise 2.32

Let the color classes A and B of a bipartite graph satisfy |A| = n

and |B| = n. Show that the graph is ε-regular if for all X ⊆ A and

Y ⊆ B

|X| = dε · |A|e and |Y| = dε · |B|e ⇒
|d(X, Y) − d(A,B) | 6 ε.

Hint: Compare Definition 2.44 (which is on Page 54).

Lemma 2.58. Let A and B be color classes of a bipartite graph and

assume that |A| = |B| = n. Assume

2n− 1
4 < ε <

1

16
.

Assume that case II, in Lemma 2.57, does not occur, ie

| {y ∈ B | | deg(y) − d | > ε4 · n } | 6
ε4

8
· n.

If the graph is not ε-regular then there exists a set Y ⊂ B which

satisfies (2.29) ie

|Y| > ε · n and σ(Y) >
ε3

2
· n. (2.32)

Proof. Assume that no set Y ⊆ B, |Y| > ε · n satisfies (2.32). We

show that the graph is ε-regular.

Let X ⊆ A and Y ⊆ B and let

|X| = dε · |A|e and |Y| = dε · |B|e .

We show that

|d(X, Y) − d(A,B) | 6 ε.

We claim∑
x∈X

(
|N(x) ∩ Y | − d

n
· |Y|

)2

6 e(A, Y) + |Y|2 · σ(Y) + 2

5
ε5 ·n3.

To see that write (mi,j) for the bipartite adjacency matrix. Then

2.7 Szemerédi’s Regularity Lemma
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∑
x∈X

(
|N(x) ∩ Y|− d

n
· |Y|

)2

6

∑
x∈A

(
|N(x) ∩ Y|− d

n
· |Y|

)2

=

∑
x∈A

∑
y∈Y

mx,y −
d

n
· |Y|

2

=
∑
x∈A

∑
y∈Y

m2
x,y +

d2

n2
· |Y|2+

∑
y,y′∈Y
y 6=y′

mx,y ·mx,y′ −
2d

n
· |Y| ·

∑
y∈Y

mx,y

 =

e(A, Y) +
d2

n
· |Y|2 +

∑
y,y′∈Y
y 6=y′

|N(y) ∩N(y′) |−
2d

n
· |Y| · e(A, Y) =

e(A, Y) +
d2

n
· |Y|2 +

∑
y,y′∈Y
y 6=y′

(
σ(y,y′) +

d2

n

)
−

2d

n
· |Y| · e(A, Y) 6

e(A, Y) + σ(Y) · |Y|2 + 2d2

n
· |Y|2 − 2d

n
· |Y| · e(A, Y).

To prove the claim, we must show

d2

n
· |Y|2 − d

n
· |Y| · e(A, Y) 6

ε5

5
· n3,

that is,

we need to show that: d(A, Y) >
d

n
−
ε5 · n3

5d
· 1

|Y|2
.

To see that notice

d(A, Y) =
e(A, Y)

n · |Y|
>

(d− ε4 · n)(|Y|− ε4

8 · n)
n · |Y|

=

d

n
− ε4 −

ε4 · d
8 · |Y|

+
ε8 · n
8 · |Y|

>
d

n
− ε4 −

ε3

8
.

(We used |Y| > ε · n > ε · d.)

We now use the assumption that ε4 · n > 1 and that |Y| 6 ε · n+ 1:

ε5 · n3

5d · |Y|2
>

ε5 · n2

5(ε · n+ 1)2
>

ε5

5(ε+ ε4)2
>

ε3

8
+ ε4.
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This proves the claim.

By the Cauchy-Schwartz inequality we have

∑
x∈X

(
|N(x) ∩ Y |− d

n
· |Y|
)2

>

1

|X|

(
(
∑
x∈X

|N(x) ∩ Y |) − d

n
· |X| · |Y|

)2

.

— So — by the previous claim(
(
∑
x∈X

|N(x) ∩ Y |) − d

n
· |X| · |Y|

)2

6

|X| ·
(
e(A, Y) + |Y|2 · σ(Y) + 2ε5

5
· n3

)
.

When we divide by |X|2 · |Y|2 we obtain

|d(X, Y) − d(A,B) | 6

1

|X| · |Y|
·
(
e(A, Y) + |Y|2 · σ(Y) + 2ε5

5
· n3

)
.

We now use that

(i) e(A, Y) 6 (d+ ε4 · n) · |Y|+ ε4

8 · n
2

(ii) σ(Y) 6 ε3

2 · n

(iii) ε > 2n−1/4,

and we find

|d(X, Y) − d(A,B) |2 6

1

|X| · |Y|2
·
(
(d+ ε4 · n) · |Y|+ ε4 · n2

8
+
ε3 · n

2
· |Y|2 + 2ε5

5
· n3

)
6

n+ ε4 · n
ε2 · n2

+
ε4 · n2

8ε3 · n3
+
ε3 · n
2ε · n

+
2ε5 · n3

5ε3 · n3
6

ε2 · (1 + ε4)

16
+

9ε2

10
+
ε5

128
6 ε2.

This proves that the graph is ε-regular — that is — it proves the

lemma.

2.7 Szemerédi’s Regularity Lemma
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Corollary 2.59. Let a bipartite graph H have color classes A and

B that satisfy

|A| = |B| = n.

Assume

2 · n−1/4 < ε <
1

16
.

There exists an algorithm that runs in O(M(n)) time and that

verifies that H is ε-regular or finds sets A′ ⊆ A and B′ ⊆ B that

satisfy

|A′| >
ε4

16
·n, |B′| >

ε4

16
·n, |d(A′,B′)−d(A,B) | > ε4. (2.33)

Proof. If d 6 ε3 · n, then we are done; we can check that in O(n2)

time and report that H is ε-regular.

Next if

| {y | y ∈ B | deg(y) − d | > ε4 · n } | >
ε4

8
· n,

then the degrees of at least half of them deviate from d in the same

direction. — That is — we can find a set B′ ⊆ B that satisfies

|B′| > ε4

16 · n and that satisfies

|d(A,B′) − d(A,B) | > ε4.

In that case we are done.

Finally, we need to show that we can find A′ and B′ as required

when H is not ε-regular — that is (by Lemma 2.58) —when there

exists a set Y that satisfies Equation 2.29 ie

|Y| > ε · n and σ(Y) >
ε3

2
· n. (2.34)

By Lemma 2.57 there exists an O(M(n)) algorithm to compute

these sets A′ and B′ when Y exists.

This proves the claim.

Alon et al proceed to formulate the key-Lemma 2.51 (on Page 58)

in a constructive form.
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Lemma 2.60. Let k ∈ N and let 0 < γ 6 1/2. Let Π0 =

{C0, · · · ,Ck} be an equitable partition and assume

|C1| > 42k and |C0| 6 γ · n. (2.35)

Assume that proofs are given as part of the input of more than γ ·k2

pairs of classes showing that they are not γ-regular. 33 There is 33 By ‘proofs’ we mean ‘wit-

nesses’ ie subsets of the
color classes that violate γ-

regularity.

an algorithm that runs in O(n) time that produces a refinement Π1

of Π0 satisfying

|Π1| = k · 4k.

Furthermore, the exceptional class increases by at most n/2k and

index(Π1) > index(Π0) +
1

4
· γ5.

Proof. By Lemma 2.51 there is a linear-time algorithm that com-

putes a refinement Π′ of Π0 (leaving the exceptional class unaltered

but which may have other classes of unequal size) satisfying

|Π′| 6 k · 2k and index(Π′) > index(Π0) +
1

4
· γ5.

Since |C1| > 42k we can refine Π′ into an equitable partition Π1

which satisfies 34 (by Lemma 2.49) 34 To obtain Π1 partition

the parts of Π′ further into
parts of size

b(n−|C0|)/k·4kc = b|C1|/4kc .

This increases the excep-

tional class by at most

|Π′|·
⌊
n− |C0|

k · 4k

⌋
6

n

2k
.

|Π1| = k · 4k and index(Π1) > index(Π0) +
1

4
· γ5.

This increases the size of the exceptional class of Π0 (and of Π′) by

at most n/2k.

Below follows the proof of Theorem 2.55:

Theorem. For ε > 0 and t ∈ N there exist N, T ∈ N such

that every graph with at least N vertices has an ε-regular parti-

tion with k+ 1 classes where k satisfies t 6 k 6 T .

Such a partition can be found in O(M(n)) time.
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Proof. Let ε > 0 and t ∈ N.

The following algorithm computes a sequence of equitable partitions

— say (Πi). Write |Πi| = ki and let ni be the size of a class of

Πi that is not exceptional. Let γ = ε4/16.

1. Start with an equitable partition Π1 = {C0, · · · ,Ck1
} with

|C0| < k1 and |Ci| = n1 = bn/k1c for i > 0.

(Below we determine a suitable value for k1.) Set i := 1.

2. To proceed from a partition Πi use Corollary 2.59 to determine

for every pair of classes in Pi whether they are ε-regular or

else to find pairs of subsets (of size at least ε4

16 · ni) as in

Equation 2.33. 35

35 To apply the corollary we

need to ensure that n is large
enough to satisfy the con-
dition ε4 · ni > 16 ie

γ ·ni > 1.

3. If at most ε · ki pairs are not ε-regular then report Πi as an

ε-regular partition. Stop.

4. Otherwise call on Lemma 2.60 to compute a refinement Πi+1

of Πi satisfying

ki+1 = ki · 4ki and index(Πi+1) > index(Πi)+
1

4
·γ5.

Write Ci0 for the exceptional class of Πi.
36 Then the exceptional 36 To compute Πi+1 use

Lemma 2.51 to compute Π′

(on input Πi) with

|Π′| 6 ki · 2ki

Refine Π′ into parts of size

ni+1 =

⌊
n− |Ci0|

ki · 4ki

⌋
.

This increases the excep-
tional class

|Ci+1
0 |− |Ci0| 6

ki·2ki ·
⌊
n− |Ci0|

ki · 4ki

⌋
6
n

2ki
.

class of Πi+1 satisfies

|Ci+1
0 |− |Ci0| 6

n

2ki
.

Notice that to apply Lemma 2.60 we need to ensure Equation 2.35

— ie —

ni > 42ki and |Ci0| 6 γ · n.

5. Set i := i+ 1 and go to Step 2.

Notice that

index(Πi) > index(Π1) + (i− 1) · γ
5

4
.

So — since the index cannot exceed 1/2 — the algorithm ends in

at most 1 +
⌊
2 · γ−5

⌋
iterations.
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To define a lowerbound for the number of vertices in the graph

introduce a function f : N→ N as follows

f(i) =

k1 if i = 1

f(i− 1) · 4f(i−1) otherwise.

Let T = f
(
1 + b2 · γ−5c

)
, let N = max{ 2·T ·42·T , 2·T

γ
} and assume

that n > N.

We show that the exceptional class does not exceed γ · n. We may

assume that

γ · 2k1 > 4. (2.36)

Claim: |Ci0| 6 γ · n · (1 − 1/2i). For i = 1 we have

n > N >
2 · T
γ

>
2 · k1

γ
⇒

|C1
0| < k1 6

γ · n
2

.

This show that the claim is true for i = 1.

We have

|Ci+1
0 |− |Ci0| 6

n

2ki
and we show:

n

2ki
< γ · n

2i+1
.

This is true for i = 1 by the assumption (2.36) and

ki+1 = ki · 4ki ⇒ γ · 2ki+1 > 2 · γ · 2ki > γ · 2i+1.

This proves the claim.

Corollary 2.59 requires that

γ · ni > 1.

To see that this holds true observe

ni >
(1 − γ) · n

ki
>

(1 − γ) ·N
T

> 2 · 1 − γ

γ
.

Since γ < 1/2 this implies

γ · ni > 2 · (1 − γ) > 1.
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Lemma 2.60 requires that

ni > 42ki .

We have

ni > (1−γ)·N/ki and ki 6 T and N > 2 · T · 42·T .

It easily follows that

ni

42·ki
> 2 · (1 − γ) > 1.

This proves the theorem.

Remark 2.61. In 2014 J. Fox and L. M. Lovász proved tight

lowerbounds for the number of parts in an ε-regular partition.

2.8 Edge - thickness and stickiness

For a set S let

Λ(S) = { λ : S→ R>0 |
∑
x∈S

λ(x) = 1 }.

The elements of Λ(S) are called thickness functions. For a thickness

function λ and A ⊆ S write λ(A) =
∑
x∈A λ(x).

T. Kloks, C. Lee and J. Liu,

Stickiness, edge-thickness,
and clique-thickness in
graphs, Journal of Informa-

tion Science and Engineering
20 (2004), pp. 207–217.

Definition 2.62. Let G be a graph. The thickness of G is

defined as

φ(G) = inf
λ∈Λ(V)

sup
e∈E

λ(e).

The inf and sup may be

replaced by min and max.

Exercise 2.33

Assume that G is a graph which is not empty. Show that

δ

m
6 φ(G) 6

1

α(G)
,

where m is the number of edges and δ is the minimal degree of a

vertex in G and α(G) is the size of a largest independent set in G.
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Exercise 2.34

(i) Clearly when G has an isolated vertex then its thickness is 0.

(ii) Assume that G has no isolated vertices. Let λ be a thickness

function that realizes the thickness of G. Denote φ = φ(G).

Show that every vertex is incident with an edge of weight φ.

(iii) Assume that G has no isolated vertices. Show that there exists

a thickness function λ that realizes the thickness of G and that

has a range

{ 0, φ,
φ

2
}.

Definition 2.63. The stickiness of a graph G is

s(G) = max
X⊆V

|X| − |N̄(X)|

where N̄(X) = ∪x∈X N(x).

A graph is Hallian if

s(G) 6 0. A graph is Hal-
lian if and only if there is a
partition of V into a match-

ing and a set of odd cycles.
Exercise 2.35

When s(G) > 0 then it is realized by an independent set.

Exercise 2.36

If G has an isolated vertex then φ(G) = 0 otherwise

φ(G) =
2

n+ s(G)
.

Computing stickiness

Let G be a graph. Construct a bipartite graph G′ as follows.

Create two copies of a vertex x ∈ V — say x1 and x2. For

A ⊆ V write Ai = { xi | x ∈ A }. The set of vertices of G′ is

V1 ∪ V2. The edges of G′ are

E(G′) = { { x1,y2 } | {x,y} ∈ E(G) }.

2.8 Edge - thickness and stickiness
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Construct a flow - network on G′ by giving each edge of G′ a

capacity ∞. Add one source - vertex s and make it adjacent to

all vertices of V1. All edges that are incident with s have capacity

1. Add one sink - vertex t and make it adjacent to all vertices of

V2. All edges incident with t have capacity 1.
J. Orlin, Max flows in

O(nm) time, or better , Pro-
ceedings STOC’13, pp. 765–

774.

A cut in the network is a set of the form A1 ∪ B2 ∪ {s} where

A ⊆ V and N̄(A) ⊆ B. The capacity of such a cut is

|V \A| + |B| = n + |B| − |A|.

A cut of minimum capacity satisfies B = N̄(A) — and so — it

minimizes |N̄(A)|− |A|.

A minimum cut can be computed O(n ·m ) time.

Remark 2.64 (Motzkin - Straus Theorem (1965)). Let G be a graph

with vertex set [n]. Give each vertex i a values xi > 0 such that∑
i xi = 1. The largest value over these assignments of∑

(i,j)∈E

xi · xj

is equal to 1
2 · (1 − 1/ω).

2.9 Clique Separators

Definition 2.65. Let G be a graph. A set S ⊆ V is a

clique separator if S = ∅ or a clique and G− S is discon-

nected.

Whitesides showed that one can find a clique cutset in

O
(
n3
)

time. In this section we present a variation of this

algorithm . We show that there exists an O
(
n4
)

algorithm

that lists all minimal clique separators.

Definition 2.66. Let G be a graph. A set S ⊆ V is a minimal

clique separator if S is a minimal separator — and — either

S = ∅ or a clique.
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Example 2.67. Notice that the number of clique separators

that a graph may have is exponential. — For example —

consider the graph built up from a clique Kt and a path P3 ,

say [ x, y, z ] . Add additional edges from the midpoint y to all

vertices of the clique Kt . Then, for any subset W ⊆ V(Kt )

W ∪ {y } is a clique separator.

This shows that the graph has at least 2 t clique separators ,

and t+ 3 vertices. s s s
ss s

�
�
�
�
�
�

A
A
A
A

@
@

@
@
�
�

x z

y

Figure 2.6: This graph has
an exponential number of

clique separators, as the size
of the clique goes to ∞.

On the other hand the graph has only one minimal separator

— namely — {y } .

For a graph G , write σ(G ) for the number of minimal clique

separators in G .

Lemma 2.68. For any graph σ < |V | .

Proof. We claim that, when G is connected, σ(G ) < n . Notice

that this implies the lemma. — In order to prove this — we

may assume that G is connected. We may also assume that

G is not a clique — as otherwise σ(G ) = 0 < n .

Let x ∈ V be a vertex for which the largest component in G−

N[ x ] is as large as possible. Let C be this largest component.

Let

S = N(C ) and X = V \ N[C ] . (2.37)

Then x ∈ X — so X 6= ∅ . Since G is connected S 6= ∅ , and

since G is not a clique C 6= ∅ — so {X , S , C } is a partition

of the set V .

— By our choice of x — every vertex of X is adjacent to every

vertex of S . This implies that every minimal clique separator

in G[X ∪ S ] either contains X or else contains S . — So — Here, we let a set stand in
for the graph induced by that
set.

σ(X ∪ S ) =


σ(X ) if S is a clique and X is not

σ( S ) if X is a clique and S is not

0 if neither or both are cliques.

(2.38)

2.9 Clique Separators
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Any vertex of S has a neighbor in C , and since C is connected,

no two vertices in S are separated by a clique separator. This

reduces the number (2.38) of minimal clique separators in X ∪ S
that are clique separators in G, to at most σ(X ) .

A minimal clique separator which is contained in C ∪ S may no

longer be a minimal separator in G − X . — To repair that

— in the graph C ∪ S , add all edges between pairs in S . 37

37 A clique separator T , con-
tained in C∪S, has all ver-

tices of S that are not in T

in one component of G−T .
Removal of the set X may

disconnect this component

and possibly T is not a min-
imal separator in G−X.

Denote this graph as C ∪ S̄ .

Some minimal clique separators in C ∪ S̄ may not be cliques in

G 38 — but — as an upperbound for the number of minimal 38 In our algorithm, we will
sift the minimal clique sep-

arators of C∪ S̄, and select

those that are cliques in G.

clique separators — that are contained in C ∪ S — we find

σ(C ∪ S̄) .

Using induction on the number of vertices in the graph we

find:

σ(G ) 6 σ(X ) + σ(C ∪ S̄ )
< |X | + |C ∪ S | ( since C ∪ S is connected )

= n .

Exercise 2.37

Prove the first inequality.

Hint: Show that every mini-
mal clique separator is one in
G[X∪S] or one in G[C∪S].

This proves the lemma.

2.9.1 Feasible Partitions

To turn the proof of Lemma 2.68 into an algorithm we need

to find the partition {X, S, C } as mentioned there. — That is

— we need a feasible partition of V(G) — as defined below.

Definition 2.69. A partition {X, S, C } of V is feasible if

(a) G[C ] is connected and

(b) S = N(C) and S separates X and C and

(c) every vertex of X is adjacent to every vertex of S.
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In this section we show how to find a feasible partition.

The idea is to start with C = {R } , for some arbitrary vertex

R ∈ V which is not universal . 39 39 A vertex is universal if it
it adjacent to all others.

As an invariant for the algorithm we let {X , S , C } be a

partitition of V with the property

C is connected and S = N(C ) and S separates X and C .

(2.39)

Notice that the partition {X , S , C } satisfies (2.39) at the

initialization — when C = {R } — since R is nonuniversal . 40 40 If every vertex is universal,
then G is a clique, and then,
there is no minimal separa-

tor.
To make progress — towards a feasible partition — let C

grow as follows :

Choose y ∈ S with X 6⊂ N(y ) . (2.40)

The vertex y is added to C .

Notice that, when such a vertex y ∈ S does not exist, we

may conclude the postcondition — that is — {X , S , C } is a

feasible partition.

The weakest precondition is a property that ensures progress

when valid, and that ensures the postcondition when not valid.

In our case, the weakest precondition is the existence of a vertex

y as in (2.40) .

This proves the correctness of Algorithm 5 .

Exercise 2.38

Let T(n ) denote the worst – case running-time bound of algorithm 5 .

Prove that

T(n ) 6 T(n− 1 ) +O
(
n 2
)
⇒ T(n ) = O

(
n 3
)

. (2.41)
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Algorithm 5: Feasible
Partition1: procedure FP (G )

2:

3: if G is a clique then

4: there is no partition

5: else

6: R←∈ { x | x ∈ V and d(x) < n− 1 }

7: C← {R}

8: S← N(R)

9: X← V \N[C]

10:

11: while ∃y∈S X 6⊂ N(y) do

12: C← C ∪ {y}

13: S← ( S \ {y} ) ∪ ( N(y) ∩ X )

14: X← X \N(y)

15: end while

16:

17: report {X , S , C }

18: end if

19:

20: end procedure
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2.9.2 Intermezzo

Another way to describe the inclusion of the vertex y in C

is by contractions .

Definition 2.70. Let { x , y } ∈ E(G ). The contraction of

{ x , y } is the operation that replaces the two vertices x and y

by one new vertex — say xy — whose neighborhood is defined

as

N( xy ) = (N(x) ∪ N(y) ) \ { x , y } .

The operation that includes y in C could be replaced by

contracting the edge {R , y } .

Back to Business:

Theorem 2.71. There exists an algorithm — that runs in

O
(
n 4
)

time — and that computes all minimal clique separators

in a graph G .

Proof. The algorithm we propose computes a feasible partition

{X , S , C } of V(G ) . When S is a clique, it recursively com-

putes σ(X ) . All minimal clique separators in G[X ] , with S

tagged on, are minimal clique separators in G .

Next, all edges are added to make S a clique. Denote the

subgraph induced by C ∪ S as C ∪ S̄ . Recursively, count the

minimal clique separators in C ∪ S̄ that are cliques in G .

The recursions take place on subsets of V that form a partition

of V(G) , namely X and C ∪ S . The overhead is dominated

by the computation of the feasible partition, which , by (2.41) ,

takes O
(
n 3
)

time.

This proves that the time used by this algorithm is O
(
n 4
)

.

This completes the proof.
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Figure 2.7: This exam-

ple shows that the number
of minimal separators in a

graph can be exponential.
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Remark 2.72. The number of minimal separators in a graph may be

exponential. — For example — consider the graph in Figure 2.7

on the previous page . An x |y – separator must contain a vertex

of each x∼y – path. If there are t such paths, then there are 2 t

minimal x |y – separators and the graph has 2t+ 2 vertices.

There exists an algorithm that lists all minimal separators in

a graph with polynomial delay . That is, the algorithm produces

all minimal separators, and it spends polynomial time — either

to produce a next one or to end.

Exercise 2.39

Let G be a graph. Consider the following set R of betweenness

relations :

( x , y , z ) ∈ R ⇔
there is a minimal clique separator that

contains y and separates x and z . (2.42)

Design an algorithm that finds a total ordering 6 of V

satisfying

(a , b , c ) ∈ R ⇔ a < b < c or c < b < a .

2.9.3 Another Intermezzo: Trivially perfect graphs s s s
s

�� @@

Figure 2.8: The figure shows
the paw. It has no induced

P4 and no induced C4. It

does have a universal vertex.

When a graph G is connected but has no induced C4 and no induced

P4 then it has a universal vertex (that is a vertex adjacent to all

others). This was proved by Wolk in 1961. Let G be a connected

graph without induced C4 or P4. Then there exists a rooted tree T

with V(T) = V(G) such that any two vertices x and y are adjacent

in G if and only if one lies on the path to the root of the other one.

The graphs without induced P4 nor C4 were given the epithet

‘trivially perfect’ by Golumbic. The reason for that name is that

in any induced subgraph of the graph the independence number

equals the number of maximal cliques.
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2.10 Vertex ranking

Definition 2.73. Let G be a graph and let t ∈ N. A t-ranking

is a coloring c : V → [t] which satisfies the following property. For

any two vertices x and y with c(x) = c(y) any x∼y-path contains

a vertex z with c(z) > c(x).

The rank of G is denoted as χr(G) and it is the smallest t for

which G has a t-ranking. — Clearly — χ 6 χr since a t-ranking

is a proper coloring.

Exercise 2.40

Let G be a connected graph and assume it has a t-ranking. There

exists at most one vertex that has color t.

Exercise 2.41

What is the rank of C4? What is the rank of P4? What is χr(G)

when G is trivially perfect?

Exercise 2.42

Let G be a graph which is not a clique. Show that

χr(G) = min
S

max
C

|S|+ χr(C)

where S varies over the set of minimal separators in G and C

varies over the collection of components of G− S.

2.10.1 Permutation graphs

Definition 2.74. A graph is a permutation graph if it is the

intersection graph of a set of line-segments in the plane that have

their endpoints on two parallel lines.

2.10 Vertex ranking
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Figure 2.9: The figure shows
a permutation model. The

graph has the black line-

segments as vertices; two
being adjacent if the line-

segments intersect.

Exercise 2.43

(1) Show that a graph is a permutation graph if and only if its

complement is a permutation graph.

(2) Show that a permutation graph is a comparability graph — that

is it has a transitive orientation of its edges. 41 41 That is, if x → y and
y→ z then {x,z} ∈ E and
x→ z.(3) Show that a graph is a permutation graph if and only if it and

its complement are comparability graphs.

(4) Design efficient algorithms to compute α and ω for permutation

graphs. You may assume that a permutation model is given as

input.

(5) Show that any permutation graph has a dominating pair —

that is — a pair of vertices x and y with the property that any

x∼y-path is a dominating set in the graph. 42

42 A setD ⊆ V is a dominat-

ing set if every vertex that is
not in D has a neighbor in
D.

2.10.2 Separators in permutation graphs

Consider a scanline in a permutation model — that is —

a new line-segment s with its endpoints on the two parallel lines.

The line-segment s splits the set of vertices in three parts:

(a) vertices of which the line-segment lies to the left of s

(b) vertices of which the line-segment lies to the right of s

(c) vertices of which the line-segment crosses with s.
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Exercise 2.44

Let G be a permutation graph and let S be a minimal separator

in G. In any model for G there exists a scanline s such that the

vertices of S are the line-segments that cross s.

Corollary: the number of minimal separators in a permutation

graph is O(n2).

Hint: Consider a permutation model. Remove the vertices of S from

the model. Let C1 and C2 be two components of G − S such

that every vertex of S has a neighbor in both. For the scanline

s take any line-segment in the model that lies between any two

line-segments of C1 and C2 and that crosses no other line-segments.

That line-segment must exist since C1 and C2 form connected parts

in the diagram. Since a vertex of S has a neighbor in C1 and in

C2 it must cross s. The only vertices that were removed from the

model are in S so all line-segments that cross s are in S.

Figure 2.10: Illustration of a
green scanline.

2.10.3 Vertex ranking of permutation graphs

Definition 2.75. Let s1 and s2 be two parallel scanlines in a

permutation model. The piece C(s1, s2) is the subgraph of G

induced by the following sets of vertices.

i. vertices of which the line-segment s between s1 and s2

ii. vertices that cross at least one of s1 and s2.

Definition 2.76. Let C(s1, s2) be a piece. A scanline t splits

the piece if t is between s1 and s2.

2.10 Vertex ranking
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Theorem 2.77. There exists an O(n6) algorithm to compute the

rank of a permutation graph.

Proof. A permutation model can be constructed in linear time via

a modular decomposition. 43 43 R. McConnell and J. Spin-

rad, Modular decomposition

and transitive orientation ,
Discrete Mathematics 201

(1999), pp. 189–241.

Organize the pieces according to the number of vertices that are in

it. To compute χr for a piece C(s1, s2) try all scanlines that split

the piece into smaller pieces. By Exercise 2.42 the rank of the

piece can be computed from the maximal rank of a smaller piece

and the size of the separator.

2.11 Cographs

r r r
r r r r r

��@@

Figure 2.11: The figure

shows the claw, ie, K1,3, on
the left and P4 on the right.

Definition 2.78. A cograph is a graph without induced P4 .

One important observation is that cographs are closed

under complementation. — That is — when G is a cograph

then so is its complement Ḡ . That is so because

P4 is isomorphic to its complement P̄4 .

— One other thing — a graph is a cograph if and only if

all of its components induce cographs. That is so because an

induced P4 cannot have points in more than one component.

Thus, whenever G1 and G2 are two cographs, we can create

two new cographs by taking their union G1 ⊕ G2 and their

join G1 ⊗ G2 . 44 Folklore asserts that this property charac- 44 In the union G1 ⊕G2 the
edges are just the edges ofG1

and G2. In the join G1⊗G2

we add all edges that have
one endpoint in G1 and the

other in G2. So

Ḡ1 ⊗ Ḡ2 = G1 ⊕G2.

terizes cographs.

Theorem 2.79. A graph is a cograph if and only if every

induced subgraph has only one vertex — or else — it or its

complement is disconnected.
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By Theorem 2.79 each cograph G is represented by a cotree —

that is — a rooted tree T and a bijection from the leaves of T to

V(G). The internal nodes of T are labeled: each internal node

has a label ⊕ or ⊗. Two vertices in G are adjacent if and only

if their lowest common ancestor in T is labeled with ⊗.

Definition 2.80. A pair of vertices x and y in a graph is a twin

if every third vertex z is either adjacent to both or neither of

x and y — that is — a twin is a module in the graph with two

elements. A twin is a true twin if the pair is adjacent and a false

twin if the pair is not adjacent.

Theorem 2.81. A graph is a cograph if and only if every induced

subgraph with at least two vertices has a twin.

Exercise 2.45

Characterize bipartite cographs.

Exercise 2.46

Design an efficient algorithm to compute the rank χr of a cograph.

2.11.1 Switching cographs

Definition 2.82. A two-graph is a pair (V ,∆) where V is a finite

set and where ∆ is a collection of
::::::
triples in V with the property

that every set with 4 elements from V contains an even number of

triples that are in ∆. 45 45 Two-graphs look a lot like

graphs but in two-graphs

the ‘edges’ are triples.

Exercise 2.47

Let G be a graph and let ∆ be the ‘odd triples in G’ — that is —

the set of triples in V that carry an odd number of edges between

them. Show that this is a two-graph.

2.11 Cographs
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Exercise 2.48

Let G be a graph and let S ⊆ V. A switch of G with respect

to S replaces all edges that have one end in S by nonedges and all

nonadjacent pairs with one end in S by edges. Show that a switch

does not change the set of odd triples.

Call two graphs G and H switch-equivalent if one is

obtained from the other via a switch. Van Lint and Seidel showed

that two-graphs are switch equivalence - classes.

Exercise 2.49

A two-graph is the switch equivalence - class of a cograph if and

only if it does not contain the pentagon — that is — the set of

odd triples of the C5.

The switch - class of cographs is characterized by the following

property. There exists a tree T without vertices of degree two. Let

V be the set of leaves in T . Since T is bipartite it has a unique

coloring with two colors — say black and white. Define ∆ as

the collection of triples {x,y, z} in V if the paths that connect the

three meet in a black vertex. Then (V ,∆) is a two-graph and the

two-graphs obtained in this manner are exactly the switching - class

of cographs.

Exercise 2.50

Show that a graph can be switched to a cograph if and only if it

does not contain C5, the bull, the gem or the cogem as an induced

subgraph — that is — no subgraph with 5 vertices switches to

C5.

Show that a graph G can be switched to a cograph if and only if

every induced subgraph with at least two vertices has a twin or an

anti-twin. 46 46 An anti-twin in a graph

is a pair of vertices x and y
such that every third vertex
z is adjacent to exactly one

of them.
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Exercise 2.51

Design a linear - time algorithm to compute χ for graphs in the

switch - class of cographs. You may assume that a tree - model is

given as input.

Hint: Show that χ = ω for any graph that switches to a cograph.

Exercise 2.52

The rank of the adjacency matrix of a
::::::
cograph is equal to the

number of distinct non - zero rows. 47 47 For graphs in general this
is an upperbound.For a proof of this see eg the following paper.

G. Royle, The rank of a cograph, Electronic Journal on Combina-

torics 10, (2003), Note 11.

In this paper the question is raised whether any other “natural”

classes of graphs satisfy this property. What can you say about

the rank of a graph that switches to a cograph?

Hint: P5 has eigenvalue zero — so — the rank of P5 is
:::
not equal

to the number of distinct rows in the adjacency matrix of P5. —

Furthermore — P5 switches to a cograph.

Switching does not change the eigenvalues of the Seidel - matrix

of the graph. The Seidel - matrix has:

1. zeros on the diagonal

2. −1 at entries that represent edges in the graph

3. +1 at entries that represent nonedges in the graph.

So it is the matrix J− I− 2A where A is the ordinary adjacency

matrix of the graph. When the graph is regular the eigenspaces of

A and J− I− 2A are the same. Seidel’s favorite graph C5+

K1 has Seidel spectrum

{
√

5
(3)

,−
√

5
(3)

}. This
graph switches to the net

(the complement of the 3-

sun).

The spectrum of the Seidel matrix is the same for any two graphs

that are switching - equivalent. For a proof see Corollary 3.3 in

the paper below.

J. Seidel, A survey of two - graphs , Atti Convegno Internazionale

Teorie Combinatorie, Tomo 1 (Rome, Italy, September 3-15, 1973),

Acdemia Nazionale dei Lincei, Roma (1976), pp. 481–511.
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2.12 Parameterized Algorithms

let’s start with a bird’s - eye view.

Exercise 2.53

Show that there is an algorithm that checks if a graph G has

a set S ⊆ V — |S | 6 k — such that G− S is a cograph —

where k ∈ N is a
::::::::
parameter. Your algorithm should run in The algorithm is a function

of k.

O
(

4 k · n 3
)

.

Hint: First design an O
(
n 3
)

algorithm that finds an induced

P4 — if there exists one — eg , using a matrix multiplication.

Next, if P is an induced P4, then branch, each time putting

a different point of P in S . Since |S | 6 k , the depth of the

recursion is k .

Unless P = NP no NP - complete problem can be solved in

polynomial time. All known algorithms that solve NP-complete I’ve heard that before!

problems are exponential. — Therefore — we wish to design ‘fast’

exponential - time algorithms to solve hard problems.

Parameterized algorithmics is a theory designed to help you do

this. The genesis of the theory is the notion of a parameterized

problem.

Definition 2.83. A parameterized problem is a pair (P, k) where P

is a computational problem and k is a parameter that differentiates

some solutions from others.
When the values of the pa-
rameter k ranges over N
then a parameterized prob-
lem is an ordering of the so-

lutions (by their size).

The parameter expresses the ‘size’ of a solution but the definition

of a size is up to the composer of the problem. — Below — we

give three examples of parameterized problems.

1. Let I be the vertex cover - problem: Let G be a graph. Find a

smallest set S ⊂ V(G) such that G− S is empty. G− S is empty if

E(G− S) = ∅Let k ∈ N. The parameterized vertex cover - problem (I, k) is to

find a vertex cover S with |S| 6 k.
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2. Let II be the edge domination - problem: Let G be a graph. An

edge dominating set is a dominating set in the linegraph L(G)

— in other words — it is a set M ⊆ E(G) of edges in G such

that E(G− V(M)) = ∅. The problem asks for a smallest edge

dominating set.

The parameterized problem edge domination - problem (II, k) is

to find an edge dominating set with at most k edges.

For a set M of edges let

V(M) be the set of end-

points of edges inM — that
is — V(M) = ∪e∈M e.

3. Problem III is the feedback vertex set - problem. This problem

applies to graphs G that may have loops and multiple edges. The

problem is to find a smallest set S ⊂ V(G) such that G− S has

no cycles.

The parameterized problem parameterized feedback vertex set

problem (III, k) is to find a feedback vertex set of size at most k.

For ease of discussion in Def-
inition 2.84 we assume that
the parameter k ranges over

the natural numbers.
Definition 2.84. A fixed parameter - algorithm is an algorithm

that solves a parameterized problem (P, k) with parameter k ∈ N
in

O ( f(k) · |P|c )

time. Here f : N→ N is a computable function and c ∈ N.

A computable function is a
function which can be evalu-
ated via an algorithm.

Notice that c is a constant; (not a parameter); the run - time A constant is a natural num-
ber.of a fixed parameter algorithm is a

:::::::::
polynomial in the size of the

instance of problem P. The influence of the parameter k on the

run - time is some arbitrary function f(k). The algorithm runs

in polynomial - time if we let the parameter k be a constant (then

f(k) disappears in the Big-Oh). When P is NP - complete the
function f is not a polyno-
mial.

There are problems that can not be solved by a fixed parameter -

algorithm. The ‘good guys’ are called fixed parameter - tractable.

Nobody knows of an algo-
rithm that solves the pa-

rameterized problem ω > k
and that runs in timeO(nc)

where c does not depend on
k. The clique problem is
W[1] - hard.

Definition 2.85. Let (P, k) be a parameterized problem. The

problem is fixed parameter tractable (FPT ) if there is a fixed

parameter - algorithm that solves (P, k).

2.12 Parameterized Algorithms
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Remark 2.86. In their book Downey and Fellows introduce a

:::::::::::
W-hierarchy to capture the hardness of parameterized problems.

In this hierarchy W[0] = FPT. A parameterized problems is W[1]

- hard if there is no fixed - parameter algorithm to solve it (under

certain logical assumptions).

This section has too many
imprecise definitions and —
unexplained — assumptions.

Let’s hope that — in prac-
tice — it all works out fine.

2.13 The bounded search technique

Let’s take a look at a basic technique to design fixed

parameter - algorithms. The bounded search technique is best

explained by example.

2.13.1 Vertex cover

Our example is the vertex cover problem parameterized by the size

of the solution. Let G be a graph and let S be a vertex cover in G We want a vertex cover with
at most k vertices.— that is

e ∈ E(G) ⇒ e ∩ S 6= ∅.

The following algorithm searches for a vertex cover of size 6 k

(where the parameter k ranges over N ∪ {0}).

If the graph has no edges then ∅ is a solution. If k = 0 and

E(G) 6= ∅ then there is no solution. Otherwise pick an edge e from

the graph and build a search tree with that edge as a root.

Every edge of the graph has
at least one endpoint that is

in a vertex cover. The search
tree tries both endpoints and
searches for a small vertex
cover that contains an end-
point.

The search tree (with root e) branches at the root into two subtrees;

each subtree is labeled with an endpoint of e. The subtrees are

evaluated as follows.

The selected endpoint of e is put in S and this endpoint is deleted

from the graph. The parameter k decreases with 1 and the subtree

searches for a vertex cover of size k− 1 (in the remaining graph).

The size of the search tree is O(2k) (since the depth of the search

tree is at most k and every node has at most two children). This

proves the following theorem.
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Theorem 2.87. The vertex cover problem is fixed-parameter tractable

and can be solved in 2k · |I|O(1) time.

2.13.2 Edge dominating set

The parameterized vertex cover problem is easy to solve via the

building of a search tree of size 2k.

A different kettle of fish is the parameterized edge dom-

inating set problem. To build a search tree for this problem we

would want to find a set of edges M which satisfies the following

two conditions.

1. |M| is bounded by some function of k

2. any solution to the parameterized edge domination problem has

at least one edge in M.

This road doesn’t look very appealing. We take a different approach.

Why doesn’t this idea work?

What happens to the prob-
lem if we assume that the
degree of the graph is at

most 3?

Instead of trying to locate the edges of a solution we first find

a collection of suitable sets S ⊆ V(G) that are endpoints of a

solution. Step two is to find a a solution — that is — a set of

edges that solves the parameterized edge domination problem and

that contains all elements of S.

Exercise 2.54

Let M be a minimum edge dominating set. Then V(M) is a vertex

cover.

Exercise 2.55

Prove or disprove:

Let S be a
:::::::
minimal vertex cover. A minimum edge dominating set

M which satisfies S ⊆ V(M) can be computed in polynomial time

2.13 The bounded search technique
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as follows. Initialize M as a maximum matching in G[S]. For each

vertex x ∈ S \ V(M) add one edge of G that contains x to M.

The exercises show that our job is done if we can find the right

minimal vertex cover.

Theorem 2.88. The parameterized edge dominating set problem is

fixed-parameter tractable and can be solved in 4k · |II|O(1) time.

Proof. The following algorithm solves the parameterized edge domi-

nation problem.

1. generate the set S of all minimal vertex covers with at most 2k

elements

2. for each S ∈ S compute a minimum edge dominating set M with

S ⊆ V(M) as in Exercise 2.55

3. Output M when |M| 6 k.

This proves the theorem.

2.13.3 Feedback vertex set

In the previous two examples we made use of the fact that a small

‘local’ part of the graph contain a solution. The feedback vertex

problem lacks this property. A solution is some ‘small’ set
of vertices that hits all cycles

of the graph. What happens
to the feedback vertex set

problem if we assume that

the graph has no induced cy-
cles of length more than 3?

It is always a good idea to reduce the graph before going

on a venture that takes exponential time — so — that’s what

we do.

Exercise: Show that the
reductions take polynomial
time and that they are ‘safe:’

the graph has a solution
if and only if the reduced

graph has a solution.

1. if a vertex is not in any cycle then we delete the vertex from the

graph

2. if there are two vertices with more than two edges running between

them then we delete one of those edges
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3. if a vertex is in a loop then we delete the vertex from the graph

and we decrease the parameter k by 1 (the vertex is in every

solution)

4. if x has only one neighbor y and if there are at least two edges

between x and y then we remove x and we add a loop at y

5. if a vertex is in exactly two edges that connect it to two different

neighbors then we remove the vertex and replace it with an edge

that connects the two neighbors.

Definition 2.89. A graph is reduced if none of the operations

above apply.

A reduced graph has no loops and at most two parallel edges

between any two vertices. Furthermore every vertex is in at

least three edges.

We turn our attention to the reduced graph. A solution is some

‘small’ set X of vertices that hits all cycles. If we remove X from

the graph the remainder is a ‘large’ forest F. All the vertices of

F that have at most two neighbors in F must have neighbors in X.

Not every vertex of X has a small degree; that is so because there

is no large forest with only a few leaves and only a few vertices of

degree two.

Let’s work this out. Order the vertices in the graph in a

descending order of their degree say

d(v1) > · · · > d(vn).

Define the set of high - degree vertices as the set of the first d3k/2e
vertices in this order:

H = { v1, . . . , vd3k/2e }.

Call the elements of H the vertices of high degree.

2.13 The bounded search technique
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Lemma 2.90. Let G = (V,E) be a reduced graph. Any feedback

vertex set in G of size at most k contains at least one vertex of high

degree.

Proof. Let X be a feedback vertex set and let F = V \ X. Then G[F]

is a forest and the number of edges in G[F] is at most |F| − 1. We

have that ∑
z∈X

d(z) > |E|− |F|+ 1.

Assume that there is a feedback vertex set X of size at most k and

assume that X∩H = ∅. We show that this leads to a contradiction.

Following the idea outlined above we concentrate on the number of

edges that run between F and X.

Let f = |F \H|. Each vertex in F \H has degree in G at least three

since G is reduced. Let a = d(vd3k/2e). Then a > 3.

By assumption H ⊆ F. We have that∑
z∈F

d(z) > d3k/2e · a + 3 · f.

The induced graph G[F] is a forest and the number of edges in G[F]

is at most |F| − 1. Thus, the number of edges that run between F

and X is at least

d3k/2ea+ 3f− |F|+ 1 = d3k/2e(a− 1) + 2f+ 1.

On the other hand each vertex in X has degree at most a —

and so — the number of edges between X and F is at most k · a.

So we have that

d3k/2e(a− 1) + 2f+ 1 6 k · a.

and this leads to a < 3. This contradicts the fact that each vertex

in G has degree at least 3.

Lemma 2.90 allows the following parameterized algorithm for

feedback vertex set.
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Reduce the graph. The vertices of high degree in the reduced graph

form the root of a branching. A selected vertex is put in the solution

set and deleted from the graph.

Each branching operation results in at most d3k/2e subproblems.

The depth of the recursion is at most k. This proves the following

theorem. Exercise: Check all this.

Theorem 2.91. The parameterized feedback vertex set problem is

fixed-parameter tractable and can be solved in (1.5k)k · |III|O(1) time.

Exercise 2.56

A set of vertices in a graph is called a P3 - cover if each path of

length two in the graph contains at least one vertex from the set.

Please design a fixed parameter algorithm for the problem to decide

if a graph has a P3 - cover of size at most k (where k is a parameter).

Hint: Any P3 - cover contains at least one of the three vertices of

any path of two edges.

2.13.4 Further reading

The fastest parameterized algorithm for the vertex cover problem

runs in 1.2738knO(1) time. This was obtained by Chen, Kanj and

Xia in 2010.

The edge dominating set problem can be solved in 2.3147knO(1)

time by Xiao, Kloks and Poon. This is further improved to

2.2351knO(1) by Iwaide and Nagamochi.

For the feedback vertex set problem, there is a 2.7knO(1)-time

randomized algorithm by Li and Nederlof. There is also a 3.46knO(1)-

time deterministic algorithm by Iwata and Kobayashi.
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Figure 2.12: The 5-wheel

A matching in a graph G is a set of edges of which no pair

shares an endpoint.

Definition 2.92. Let G be a graph with at least one edge.

A set

S ⊆ E

is a matching if S is an independent set in L(G ).

Exercise 2.57

Check Definition 2.92 with
the text above it.

We denote a matching of maximal cardinality in G by

ν(G ) = α (L(G) ) .

A matching of maximal cardinality is called a maximum ν is the 13th Greek alphabet

letter ‘nu.’ In the English
alphabet, the 13th letter is

m, for matching.

matching.
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2.15 Independent Set in Claw - Free Graphs

s s s
s

�� @@

Figure 2.13: The claw
Claw - free graphs generalize linegraphs. Of course

they can be recognized in polynomial time. Minty designed a

polynomial – time algorithm to find maximum independent sets in

claw – free graphs . We describe this algorithm. Since linegraphs

are claw – free, this implies that there is a polynomial – time

algorithm to find a maximum matching in a graph.

BTW Harary exhibits a complete list of nine forbidden induced

subgraphs that characterize linegraphs. (For example — the

5-wheel is claw-free but not a linegraph).

When F is some finite collec-
tion of graphs, then the class

of F-free graphs is the set
of those graphs that have
no induced subgraph isomor-

phic to an element of F.

2.15.1 The Blossom Algorithm

Let us first recapitulate Edmonds’ algorithm to compute a maxi-

mum matching in a graph.

A chain is a sequence of vertices

P = [ v 0 · · · v t ]

such that successive elements are adjacent. Let M be a maximal

matching. Let X be the set of vertices that are not in any line of M.

Berge showed that M is not maximal if and only if there exists

an M-augmenting path — that is — a path that starts and ends

with distinct points in X and whose edges alternate between M and

E\M. Berge ’ s original proposal to find an augmenting path via a

depth-first-search procedure did not work because the path could

end up in an odd cycle. It was Edmonds ’ idea to shrink the cycle

into one new point and start the search afresh.
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Figure 2.14: The figure

shows a flower. The thick

lines represent edges of M.

Definition 2.93. A chain P = [ v 0 · · · v t ] is alternating if for

each i exactly one of the edges {vi−1, vi} and {vi, vi+1} is in M.
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We first show that we can find a shortest alternating chain with

endpoints in X. Let A be the set of edges of a directed graph (V ,A)

defined as follows

A = {u→ v | ∃x∈V {u, x } ∈ E and { x, v } ∈M }.

Then each alternating chain which starts and ends in X is a directed

path from X to NG(X) in (V ,A). Thus we can find an alternating

chain in G in polynomial time.

Definition 2.94. An alternating chain

P = [ v 0 · · · v t ]

is a flower if

1. t is odd

2. v0, . . . , vt−1 are distinct

3. vt = vi for some i < t where i is even.

The circuit [vi, . . . , vt] is called the blossom of the flower.

Lemma 2.95. A shortest alternating chain

P = [ v 0 · · · v t ]

from X to X is either an augmenting path or [ v 0 · · · v j ] is

a flower for some j 6 t.

Proof. Assume P is not a path. Let i < j be such that vi = vj and

such that j is as small as possible. Thus v0, . . . , vj−1 are distinct.

If j − i is even delete vi+1, . . . , vj from P and obtain a shorter

alternating chain from X to X.

Assume j− i is odd. The case where j is even and i is odd cannot

occur since this would imply that two edges of the matching meet

in vi.

Thus we may assume that j is odd and i is even which implies

that

[ v 0 · · · v j ]

is a flower.
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Let B the the blossom of a flower. The graph G/B replaces the

set of vertices of B by one new vertex. We call this new vertex B.

The edges of the graph G/B are

E(G/B ) = { {x,y} | {x,y} ∈ E and x,y /∈ B } ∪
{ {B, y } | y ∈ NG(B) }. (2.43)

For the matching M in G we let M/B be the set of corresponding

edges in G/B. An edge of M with both ends in B is not an edge of

M/B.

Lemma 2.96. Let

B = [ v i · · · v t ]

be a blossom in G. Then M is a matching of maximal cardinality in

the graph G if and only if M/B is a matching of maximal cardinality

in the graph G/B.

Proof. Assume that M/B is not maximum in G/B. Let P be an

augmenting path. If P does not contain B then it is an augmenting

path in G.

Assume that P enters B by an edge

{u, B } /∈ M/B.

Thus {u, vj} ∈ E for some j ∈ {i, . . . , t}. If j is odd then replace

B in P by [ v j v j+1 · · · v t ]. If j is even then replace B by

[ v j v j−1 · · · v i ]. In both cases we obtain an augmenting path

in G.

Now assume that |M| is not maximal. We may assume that i =

0 — that is — vi ∈ X. Otherwise we can replace M by the

symmetric difference M÷Q where Q is the set of lines in the chain

[ v 0 · · · v i ].

Let P = [u 0 · · · u s ] be an augmenting path in G. When

P does not visit B then P is an augmenting path in G/B. If P

visits B then we may assume that u0 /∈ B since otherwise we can

replace P by its reverse. Let uj be the first vertex of P in B. Then

[u 0 · · · u j−1 B ] is an augmenting path in G/B. — Thus —

|M/B| is not maximal.
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Edmonds ’ algorithm can be implemented to run in O(n2 ·m)

time. Micali and Vazirani show that a maximum matching can be

computed in O(
√
n ·m) time.

2.15.2 Minty ’ s Algorithm

We assume that the reader is familar with Edmonds ’ algorithm to

find a maximum matching in graphs. Minty ’ s algorithm computes

α(G) in claw-free graphs by reducing it to that of finding a maximum

matching in an auxiliary graph constructed from the input graph.

Let G be claw-free and let B be a maximal independent set in

G. Color the vertices of B black and the others white. Notice that

every white vertex has 1 or 2 black neighbors.

An augmenting path is a path that runs between two white

vertices — that each have only one black neighbor — and of which

the white vertices form an independent set.

Lemma 2.97. When two white vertices — both having two black

neighbors — are adjacent then they have a common black neighbor.

Proof. Let x and y be two white vertices that are adjacent. Notice

that

| (N(x) ∪N(y) ) ∩ B |> 4

implies a claw with one of the two whites as a center (since the

black vertices form an independent set). This is a contradiction.

If there exists an independent set of cardinality larger than |B|

then there must exist an augmenting path. Minty ’ s algorithm finds

an augmenting path — if it exists — as follows.

Definition 2.98. A wing is a nonempty subset of white vertices

that is a single white vertex that has only one black neighbor or

the common neighborhood of two black vertices.

We refer to the wings of the second kind as the ‘tipped wings.’

Definition 2.99. A black vertex is regular if either
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1. it is incident with a white vertex that has only one black neighbor

2. it is incident with at least three tipped wings.

Lemma 2.100. Let b be a regular black vertex of the second kind.

Let p,q, r ∈ N(b) and let them be in different tipped wings incident

with b. Then the number of pairs in {p,q, r} that are edges is odd.

Proof. The graph would have a claw when the number of edges in

{p,q, r} were 0 or 2 (either with b as a center or the one of p, q

and r that is adjacent to the other two ).

2.15.3 A Cute Lemma

In an attempt to find an augmenting path we may try to find an

augmenting path that runs between a fixed pair of white vertices

that have one black neighbor. By trying all O(n2) feasible pairs

this will find an augmenting path if it exists.

This approach has the advantage that we can reduce the graph:

Let s and t be two white vertices that are not adjacent and that have

each exactly one black neighbor. In the search for an augmenting

s ∼ t-path we can remove all white neighbors of s and t and all

other white vertices that have only one black neighbor. We refer to

this graph as the reduced structure.

Minty first shows that the neighborhood of any regular back

vertex has a partition into two classes such that all nonedges run

between vertices in different classes. For a regular vertex b that is

adjacent to s or to t one of the two classes is s or t and the other

class is N(b) \ {s, t}. The following lemma concerns itself with the

regular vertices that are incident with at least three tipped wings.
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Figure 2.15: A claw-free

graph; this one is a domino:
every vertex is in two maxi-

mal cliques.
Lemma 2.101. Let b be a black vertex that is incident with at

least three tipped wings. There exists a unique partition of N(b)

into at most two parts such that all nonedges that run between

whites in different wings have their endpoints in different parts and

all edges between whites in different wings have their endpoints in

similar parts.
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Proof. Notice that if x, y and z are three white vertices in different

tipped wings at b then the number of edges among {x,y, z} is odd.

We call a triple {x,y, z} with an odd number of edges among them

an odd triple .

First notice that — when each triple in a graph is odd — then the

graph is a union of at most two cliques. In that case we are done.

Consider a wing S and let z /∈ S. Define a binary relation Lz on S

as follows. Any two elements x and y in S are related if and only if

{x, z} and {y, z} are both edges or both nonedges.

It is not difficult to check that any z′ /∈ S produces the same

relation Lz′ = Lz on S — that is — we can write L instead of Lz.

Make two vertices in a wing S adjacent when they are related in L

and nonadjacent when they are not related in L. 48 Then every

48 Notice that any augment-

ing path can use only one
white vertex in a wing. So
the graph on the white ver-

tices within a wing is of
no importance. The lemma
makes no claim on the edges

that run between whites that
are in the same wing.

triple in the wing is an odd triple.

It is now easy to check that any triple {x,y, z} in N(b) is odd.

It follows that N(b) has a partition as claimed in the lemma.
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Figure 2.16: Three wings
(edges with white endpoints
are not shown)

Exercise 2.58

Let G be a graph and let Ω be its collection of odd triples. A

Seidel switch with respect to some set S ⊆ V changes all edges with

one endpoint in S into nonedges and it changes all nonedges with

one endpoint in S into edges.

Prove that a Seidel switch does not change Ω. When is a collection

of triples the set of odd triples of a graph?

Hint: A collection of triples is the collection of odd triples in a graph

if and only if every four elements contain an even number of even

triples.

2.15.4 Edmonds ’ Graph

Notice that we lack a partition — into nonadjacent classes — of

the neighborhoods of black vertices whose neighborhoods consists of

two tipped wings. Minty calls these vertices irregular.
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As a subroutine the algorithm determines whether two regular

black vertices — say a and b — are connected by an alternating

path whose white vertices form an independent set.

Consider a sequence (W0,b0,W1,b1, . . . ,Wn,bn,Wn+1) where

the bi are irregular black vertices and Wi is the wing at bi with

tip bi+1. We may assume that this sequence is maximal — that

is — W0 and Wn+1 are wings incident with regular vertices. By

dynamic programming we can determine whether there exists a

path

[a w 0 b 0 w 1 b 1 · · · wn+1 b ]

such that

1. a and b are the tips of W0 and Wn+1

2. a is not adjacent to w0 ∈ W0 and b is not adjacent to wn+1 ∈
Wn+1

3. consecutive white vertices wi ∈Wi and wi+1 ∈Wi+1 are nonad-

jacent.

We refer to such an a ∼ b-path as an irregular path.
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Figure 2.17: This is the sun.

The sun is claw-free. It is the
linegraph of the net.
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Figure 2.18: This graph

is called the bull . The
bull is claw-free, but has an

edge-contraction that pro-

duces a claw. Thus, the
class of claw-free graphs,

is not closed under edge-

contractions. BTW, what is
the complement of the bull?

Let N be the number of regular vertices in the graph. Edmonds ’

graph consists of a matching with N edges, representing the regular

vertices. The endpoints of an edge represent the two classes of the

partition of the regular black vertex. The graph has two more

vertices s and t. These are joined by an edge to the node-classes of

the two unique regular black neighbors.

By the subroutine described above for any two classes of regular

black vertices we can decide whether they are connected by an

augmenting path that uses no irregular vertices. Between any two

of the 2N endpoints of edges in the matching add an edge if the

two regular black vertices are connected by an irregular path that

uses the two classes.

Lemma 2.102. There exists an augmenting s ∼ t – path if and only

if Edmonds’ graph has an augmenting path.

We leave it as an exercise to check the correctness.
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Theorem 2.103. There exists an O(n 5 ) algorithm that computes

a maximum independent set in claw-free graphs.

Proof. The problem reduces to finding a augmenting path in Ed-

monds’ graph. The existence of irregular paths can be computed

in (overall) O(n2) time. Finding an augmenting path in Edmonds’

graph can be done in O(n3) time via the blossom algorithm. Since

the algorithm tries all feasible pairs s and t as endpoints of an

augmenting path the algorithm runs in O(n5) time.

Exercise 2.59

The problem to find α(G ) in a triangle – free graph is NP -

— complete. Reduce this problem to the clique problem in

claw – free graphs. Thus , finding ω(G ) in claw – free graphs

is NP – complete.

Faenza et al. show that the independence number in claw-free

graphs can be computed in O(n3) time.

2.16 Dominoes

A natural generalization of the class of linegraphs of bipartite

graphs, is the class of dominoes .

Definition 2.104. A graph is a domino if every vertex is in

at most two maximal cliques.

Notice that linegraphs of bipartite graphs are dominoes. 49

49 I spell: ”one domino” and
”two dominoes.”

Not all linegraphs are dominoes — for example — the linegraph

of the diamond is the 4 - wheel W4 and W4 is not a domino. rr r
r
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Figure 2.19: The linegraph

of the diamond, on the left,

is the 4-wheel, on the right.
The 4-wheel is not a domino.

Exercise 2.60

Show that every domino has at most n maximal cliques.
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Exercise 2.61

Show that the class of dominoes is hereditary — that is — a

graph G is a domino if and only if every induced subgraph of

G is a domino.

Dominoes can be characterized in various ways.

Theorem 2.105. The following propositions are equivalent.

1. G is a domino

2. G is {W4 , claw , gem } – free.
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Figure 2.20: The gem
Remark 2.106. The class of dominoes can be recognized in

linear time. — That is — there is a linear – time algorithm that

checks whether a graph is a domino. The algorithms operates

by identifying vertices that have the same closed neighborhood.

The graph on the equivalence classes is a linegraph (with some

additional properties). — Actually — a graph is a domino if and

only if its representative is the linegraph of a triangle-free graph in

which every vertex is adjacent to at most one pendant vertex.

Exercise 2.62

Let G be a graph. Call two vertices equivalent if they have

the same closed neighborhood. Show that this defines an equiva-

lence relation on V(G ). The representative R(G ) of a graph

A binary relation is an
equivalence relation if it
is reflexive, symmetric,

and transitive. To be precise,
a binary relation ∼ is an

equivalence relation if ∼

satisfies

1. ∀x x ∼ x,

2. ∀x∀y x ∼ y⇒ y ∼ x,

3. ∀x∀y∀z (x ∼ y and y ∼

z)⇒ x ∼ z.

The sets of mutually equiv-
alent vertices are called
equivalence classes.

G is the graph with

V(R ) = { X | X ⊆ V(G) is an equivalence class }.

Two vertices of R are adjacent if a pair of elements of the

classes are adjacent. Design a linear – time algorithm that com-

putes the representative of a graph.
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Exercise 2.63

A graph is strongly regular if there are numbers k , λ and µ

such that

(i) all vertices have the same degree — that is — the graph is

regular with degree k :

∀x∈V d( x ) = |N( x ) | = k

(ii)

∀x∈V ∀y∈V x 6= y ⇒

|N( x ) ∩ N(y ) | =

 λ if { x , y } ∈ E
µ if { x , y } /∈ E .

— For example — the Petersen graph is strongly regular with

parameters

(n , k , λ , µ ) = ( 10 , 3 , 0 , 1 ).

(I) Prove that L(Kn ) is strongly regular. Is it a domino ?

(II) Prove that the adjacancey matrix of a strongly regular graph

satisfies

A 2 = k · I+ λ ·A+ µ · ( J− I−A )

where I is the identity matrix and J is the matrix with all

elements equal to 1 .

Hint: Notice that J− I−A is the adjacency matrix of Ḡ .

2.17 Triangle partition of planar graphs

Definition 2.107. A graph has a partition if its set of edges can

be partitioned into triangles. 50 51 50 A triangle is a clique in

the graph with 3 vertices.
51 Finding a minimum set of
triangles that covers the
edges of a planar graph is

NP-complete.

In this chapter we show that there is a linear - time algorithm

to check if a planar graph has a partition.
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Definition 2.108. Let G be a plane graph — that is — the

graph G is planar and is given with an embedding in the plane.

A triangle T partitions the plane in two open regions say ‘inside’

and ‘outside.’ If both regions contain vertices of G the triangle is

separating.

Definition 2.109. Let T be a separating triangle and let x ∈ V(T).
The inside degree of x — say d(x) — is the number of edges that

is incident with x and some vertex inside T .

A separating triangle is even if d(x) is even for every x ∈ V(T).

The dual

Exercise 2.64

Assume that G has an edge which is in only one triangle. Say the

triangle has edges e1, e2 and e3. Then G has a partition if and

only if G− {e1, e2, e3} has a partition.

Exercise 2.65

Show that there is a linear-time reduction to the case where the

graph G is biconnected — that is — henceforth we assume that

G is biconnected. Furthermore we may assume that every vertex

of G has at least three neighbors. 52 52 A graph is biconnected if
each minimal separator has
at least two vertices.

Lemma 2.110. Let H be the dual of G. If G has a partition

then H is bipartite.

Proof. Assume G has a partition. Let C be a cycle in H. The

set of edges of C is a cut in G. Every triangle of the partition has

either all its vertices on the same side of the cut or one vertex on

one side and two on the other side. This shows that the cut has an

even number of edges — and so C is even.

2.17 Triangle partition of planar graphs
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The triangle partition algorithm

— By now — we may assume the following. 53 53 Check !

1. G is biconnected

2. the dual H is bipartite

3. every vertex of G has even degree at least 4

4. every edge of G is in at least two triangles.

Graphs without separating triangles

If the graph has no separating triangles then every triangle is a

face.

Lemma 2.111. Assume G has no separating triangle. Then G

has a partition if and only if every vertex of one color class of H

has degree 3.

Proof. Let H1 be a color class of H and assume that all vertices

of H1 have degree 3. Then the vertices of H1 form a partition of

E(G) into triangles.

Assume that G has a partition. The triangles of the partition are

faces and the corresponding vertices in H have degree 3. Between

any two of them the distance is even so they form a color class of

H.

Graphs with separating triangles

Let P be a partition of E(G) into triangles. A separating triangle

S = {x,y, z} is of one of the following types.

Type 1. S ∈ P or the three edges of S are in triangles with the third

vertex inside S

Type 2. the three edges of S are in triangles of P with the third vertex

outside S
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Type 3. some edge of S is in a triangle of P with the third vertex inside

S and some edge of S is in a triangle of P with the third vertex

outside S.

Exercise 2.66

If a separating triangle S is even then it is of Type 1 or Type 2

in any partition.

Hint: Let S be a separating triangle and let P ve a partition of the

edges of G into triangles. Let G′ be the graph induced by S and

the vertices inside S. When S ∈ P then S is even (otherwise G′ has

no partition).

Let {x,y} ∈ E(S) and assume that {x,y} is in a triangle of P with

the third vertex outside S. Assume that the two other edges of S

are in triangle with their third vertex inside S. (So S is of Type 3.)

Remove the edge {x,y} from the graph G′. There is a partition of

the edges of G′ − {x,y} into triangles — and so — the degree of

x and y must be even in G′ − {x,y}. But then S is not an even

triangle in G.

Exercise 2.67

All even separating triangles can be found in linear time.

Hint: Use Baker’s method to partition V(G) into layers. (See

Theorem 4.246 on Page 323.) 54

54 Jiawei Gao, Ton Kloks
and Sheung-Hung Poon, Tri-
angle - partitioning edges

of planar graphs, toroidal

graphs, and k-planar graphs ,
Springer - Verlag, Lecture
Notes in Computer Science
7748 (2013), pp. 194–205.

Definition 2.112. A separating triangle is outermost if none of

its vertices is inside any other separating triangle.

Consider the graph G∗ obtained from G by removing the interior

of all outermost even separating triangles. So the graph G∗ has no

even separating triangles. A special region of G∗ is a face that is

an outermost even separating triangle in G.

Let P be a partition of G∗. Every even region or face is of one of

two types.

2.17 Triangle partition of planar graphs
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Type a. the special region or face is a triangle of P

Type b. the edges of the boundary are in triangles of P that have their

third vertex outside.

Lemma 2.113. Assume G∗ has a partition. Let H1 and H2 be the

two color classes of the dual. Then all vertices of H1 are of Type a

and all vertices of H2 are of Type b or vice versa.

Proof. Along any path in the dual of G∗ the types of the vertices

must alternate. The dual is connected so all vertices of one color

class are of the same type.

This proves the lemma.

Theorem 2.114. There exists a linear - time algorithm to find a

partition of the edges of a planar graph in triangles.

Proof. There are only two ways to partition G∗.

Let S be an outermost even separating triangle. If S is labeled

Type a then a recursive step checks if the inside including S has a

partition. If S is labeled as Type b then the interior (without S)

is processed in a recursive step.

A list of all even separating triangles can be found in linear time.

All recursive steps are performed on separate subgraphs of G. This

proves that the algorithm runs in linear time.

This proves the theorem.

2.17.1 Intermezzo: PQ - trees

Booth and Luecker introduced PQ - trees in 1976 as a data -

structure that is useful for the recognition of eg planar graphs

and interval graphs. Implementations of PQ -

trees allow linear - time
recognition algorithms for in-

terval graphs and for planar

graphs.

Let V be a finite set. A PQ - tree is a rooted tree T and a

bijection from the elements of V to the leaves of T . Each internal

node is labeled P or Q and has at least two children.

The PQ - tree represents a set of permutations of V:
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1. the children of a P - node can be re-ordered in any way

2. the order of the children of a Q - node can be reversed (and

that is the only other valid order).

Let G be an interval graph — that is — there is an ordering

of the maximal cliques in G

C1 · · · Ct

such that each vertex is contained in a consecutive subset.

Consider the (0, 1) - matrix with V as its columns and the maximal

cliques in G as its rows and that has a 1 precisely when a vertex

is in a clique. Then the rows can be permuted so that all the ones

in a column are consecutive.

Exercise 2.68

Design an algorithm:

Input: A graph G and the set of all the maximal cliques in G —

say — {C1, · · · ,Ct}.

Output: A permutation of the cliques such that the (clique -

vertex) - incidence matrix has all ones in each column consecutive.

Hint: Build a PQ - tree. Start with a tree that has all its leaves

adjacent to the root and identified with C1, · · · Ct. Label the root

as a P - node. Add the vertices one by one and rebuild the tree

to satisfy the consecutive ones property.

2.18 Games

It’s almost Christmas — let’s play some games!

One of my teachers used to say: “Only games played between

two people are interesting. Larger groups of players give rise to

fights and 1-player games are boring!”
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2.18.1 Snake

Snake is a thrilling game played on a graph as follows. — Johan Cruijff was once
the greatest football player

in Holland. One of his
proverbs was: “Football is
a game of mistakes. Who-

ever makes the fewest wins!”

Of course — the game is played between two players. The ‘game

- board’ is a graph G. The two players take turns in making (legal)

moves. The player who can’t make a legal move loses the game.

The two players together build a path in the graph. One endpoint

of the path is the ‘head’ and the only
::::
legal moves that are available

to a player (when it is his turn) extend the path with one vertex

that is adjacent to the head. 55 A newly added vertex becomes the 55 Of course, only legal
moves are allowed. A player
is allowed to make a legal

move when it is his turn.

head of the path.

Player 1 makes the first move and he chooses one point in the

graph to start the path.

Exercise 2.69

Show that player 1 can easily win the game if the graph has an

isolated vertex. C. Berge, Combinatorial
games on a graph , Discrete

Mathematics 151 (1996),
pp. 59–65.

We are interested in the question whether player 1 has a winning

strategy.

Snake was invented by Berge and he formulated the following

beautiful theorem in 1996.

Theorem 2.115. Player 1 wins the game snake if and only if

the graph has no perfect matching.
A perfect matching in a
graph is a matching with n/2

edges; so it covers all the

vertices.

Proof. Suppose G has a perfect matching. We show that player 2

has a winning strategy.

To win the game player 2 fixes a perfect matching M and carries

that in his head. Player 1 chooses a vertex x to start the game.

There is a unique edge e ∈M that contains x. Player 2 chooses

the other endpoint of e to extend the path.
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At any point in the game when player 1 enters a new edge of M

player 2 chooses the other end of that edge. Since M is perfect

this is a winning strategy for player 2.

The exercise below takes care of the converse.

This proves the theorem.

Exercise 2.70

Suppose that G has no perfect matching. Show that player 1

has a winning strategy.

2.18.2 Grundy values

When it is a player’s turn he is faced with a position in the game.

Assume that the positions in a game form a DAG when there is an

arc from position x to position y if y is reached from x in one

move (by either player). 56 56 We want to consider only
finite games; if the digraph

has a directed cycle a game

can go on forever.
Give each position a Grundy value defined as follows. Each sink

in the DAG has Grundy value 0. Let x be a position with some

outgoing arcs. The Grundy value of x is the smallest element in

N ∪ {0} that is not a Grundy value of any of its out-neighbors. A sink in the DAG is a posi-
tion that ends the game.

Let s denote the starting - position — ie — s is the position in

which player 1 has to make his first move. Call the Grundy value

of s the Grundy value of the game. My teacher once said that we
could try to simulate chess
with a DAG; but it’s made

hard by rules that involve
the history of the game (like
‘castling’). “And then —
you need to deal with a case
where you offer a draw and

your opponent gets a red face
and resigns!”

Player 1 has a winning strategy if and only if the

Grundy value of the game is not 0.

To see that assume that the Grundy value of s is not 0. By the

definition of the Grundy value there must be a position y that

player 1 can reach which has Grundy value 0. Player 1 makes that

move. Since the Grundy value of y is zero player 2 can only make

moves to positions that have a non-zero Grundy value. — So —

the game ends when player 1 makes the final move to a sink.

A natural question is whether player 1 has a winning strategy.
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Input: A graph G and a game (ie a rule which defines legal

moves).

Output: Decide whether the Grundy value of a the game is 0.

For example, there is a polynomial-time algorithm to decide if the

Grundy value of snake is zero; just figure out if the graph has a

perfect matching.

2.18.3 De Bruijn’s game

De Bruijn shows that is can be quite difficult to find a winning

move. To decide a game is to decide

whether its Grundy value is
0. If the Grundy value is
> 0 then player 1 has a win-

ning move. In this section
we show a game in which it is
not easy to

:::
find that winning

move.

Consider this game played on the set [n]. During the game

two players alternate and scratch out certain numbers of [n]. A

number can be scratched out only once and when no number is left

the player who has to make a move loses the game.

The rule to scratch out numbers is this. When it is a player’s turn he

chooses a number that has not been scratched out before. The move

scratches out this number and all its divisors (ie those divisors

that were not scratched out already). So the number 1 gets
scratched out at the first

move.

Player 1 has a winning strategy.

To see that suppose player 1 chooses 1. This does not really change In this game player 1 has a
‘waiting move.’the game — that is — if now

:::::
player

::
2 wins the game then player 1

could have made that winning move instead of playing 1! — In

other words — player 1 wins the game. Player 1 wins the game but

finding the winning move is
not feasible —say — when
n > 100.Exercise 2.71

The NIM - game is played with some piles of stones. When it is a

player’s turn he must choose one nonempty pile and remove some

stones from it. When no pile has any stone left the player that has

to make a move loses the game.
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Let there be k piles and let the number of stones in these piles be

n1 · · · nk.

The Grundy value of this game is the nim - sum

n1 ⊕ · · · ⊕ nk.

To obtain the nim - sum add the ni with the following addition

rule

a⊕ b = min { k ∈ N ∪ {0} | ∀a′<a ∀b′<b
k 6= a′ ⊕ b and k 6= a⊕ b′ }.

Another way to obtain a⊕ b is to write a and b in binary and

then to add them up bit - by - bit without using a carry.

Exercise 2.72

In this game the board is a forest F of k rooted trees. On the

root of each tree lies a coin. A legal move chooses one tree in the

forest and moves the coin in this tree to a point that is further

away from the root.

Let di denote the maximal distance of any point in Ti ∈ F from

the root. The Grundy number of this game is

d1 ⊕ · · · ⊕ dk.

2.18.4 Poset games

Poset games are played on a poset. Two players play

a game on a poset (P,6). When it is his turn a player selects an

element x of P; this removes x and all elements y > x.

Example 2.116. 1. Clearly NIM is a poset game: the poset is a

union of chains (the piles).

2.18 Games



116

2. Hackendot is a game played on a forest of rooted tree. The

selection as a move of a vertex removes all vertices that are on

the path from the vertex to a root. (When the forest is a tree

then player 1 wins.)

J. Úlelha, A complete analy-
sis of Von Neumann’s Hack-

endot, International Journal
of Game Theory 9 (1980),

pp. 107–113.

Deuber and Tomassé show that the Grundy value of an N - free

poset - game can be computed in O(n4) time. W. Deuber and S. Thomassé,
Grundy sets of partial orders.

Technical report, University

Bielefeld, 1980.
2.18.5 Coin - turning games

Let a board be [n] with a coin on every element

that is showing head or tail. A move is a turn of two

coins subject to the condition that the right - most coin of the

two turns from head to tail. Write the numbers 1 · · ·n
from left to right.

As usual, when a player can’t make a legal move he loses the game.

Exercise 2.73

Suppose there is only one coin that is showing head. Show that

the game is equivalent to NIM with one pile of stones. How many

stones are there in the pile of the NIM-game?

Hint: If there is only one coin that shows head then a legal move

is the same as ‘shifting the head to the left.’ So, it is equivalent to

NIM with one pile of stones. The number of stones on the pile in

NIM is the number of positions the head can move to the left; if it

is in position k then it can move k− 1 positions to the left. (If the

head is in position 1 player 1 loses the game; accordingly g(1) = 0.)

Let’s take a bold step and see what happens if we simulate

the coin - turning game by a NIM - game that has one pile for

every head in the set.

Let A ⊆ [n] be the set of elements where the coin is showing head.

Simulate this game by a NIM - game; with a pile of stones for

every a ∈ A. The number of stones in a pile — say g(a) — is

the number of positions it can move to the left.
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Claim: the two games have the same Grundy value:⊕
a∈A

g(a).

Proof. A difficulty arises only when two coins are turned that are

both head. In a ‘perfect’ simulation of the coin - turning game

the two piles would ‘disappear.’ The two piles in the NIM - game

become of equal size — that is — they have the same number of

stones and so the sum of their Grundy values equals 0.

This proves the claim.

Exercise 2.74

Suppose the coin - turning game is played on an n×m - grid. Call

(n,m) - corner of the grid the North - East. One each point of

the grid lies a coin which shows head or tail.

A legal move turns all coins of a subgrid subject to the condition

that the North - East - corner of the subgrid turns from head to

tail.

Show that the Grundy value can be expressed as⊕
a∈A

g(a), (2.44)

where A is the set of vertices of the grid on which the coin shows

head. (What is g(a)?)

Exercise 2.75

Let (P,�) be a poset. Define the coin - turning game analogously

to the above. Show that there is an efficient way to decide if player 1

wins this game.

Hint: Introduce a
::::::
turning

:::
set for each element in the poset. All

coins in a turning set T(a) turn when a player turns the coin in

a. In this game we assume that each element a is the unique

maximal element of its turning set T(a).

A legal move flips all coins of a turning set T(a) provided that the

coin in a shows head. Show that the Grundy value of the game can

be expressed as in (2.44).
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2.18.6 Nim - multiplication

H. W. Lenstra, Jr., NIM - multiplication. Technical Report Insti-

tute des Hautes Etudes Scientifiques IHES/M/78/211. Research

supported by the Netherlands Organization for the Advancement of

Pure Research (Z.W.O), 1978.

This paper defines a game as follows.

This definition should end

with an exclamation mark!

Definition 2.117. A game is a set.

To explain this definition a game is identified with its

initial position and a position is a set of options. Each option is

again a position. — So — an element of a game is a position (a

set of options) and every element of a position is again a position.

In this section all elements of a set are sets.

To play a set S Player 1 chooses an element of S — say — S′.

Then Player two chooses an element S′′ of S′ and so on. The

player who needs to choose an element from an empty set loses the

game. We assume that this will — eventually — occur, after a

finite number of moves.

While we’re at it let’s define the Grundy number of a game

A as g(∅) = 0 and

g(A) = min { k | k 6= g(`) for ` ∈ A }

Then player 1 has a winning strategy if and only if the Grundy

value of the game is not zero.

The sum of two game A and B is the game

A+ B = { a+ B, b+A | a ∈ A and b ∈ B }

We assume that you are familiar with the sum - theorem.
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Theorem 2.118 (The sum theorem). The Grundy value of the sum

of two games A+ B is

g(A+ B) = g(A) ⊕ g(B),

where ⊕ is the NIM - addition:

α⊕ β = min { k | k 6= α′ ⊕ β and k 6= α⊕ β′

for all α′ < α and β′ < β. }.

Let us define the product of two games as

A× B = { (a× B) + (A× b) + (a× b) | a ∈ A and b ∈ B }.

Then the Grundy value of the product is

g(A× B) = g(A) ◦ g(B)
where the product n ◦m of two numbers is the smallest number

different from (n′ ◦m)⊕ (n ◦m′)⊕ (n′ ◦m′)
for all n′ < n and m′ < m. (2.45)

We want no zero divisors:

(n−n′) ◦ (m−m′) 6= 0.

So the Grundy value of n◦m
is the smallest number differ-
ent from all

(n′ ◦m)⊕ (n ◦m′)⊕
(n′ ◦m′).

Suppose we play the product game with two naturural

numbers n and m. After t moves the position looks like

(a1 ◦ b1) + (a2 ◦ b2) + · · ·+ (a2t+1 ◦ b2t+1).

For any pair a,b the term (a ◦ b) may appear many times

but only the parity of the number of occurrences of (a ◦ b) is of

interest.

A legal move is to replace a pair — say (a,b) — with three pairs

(a′ ◦ b) + (a ◦ b′) + (a′ ◦ b′),

where a′ < a and b′ < b. (N,⊕,◦) is a field of charac-

teristic two.
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If one of the three new term is already in the product then

the two equal terms cancel each other out because the sum of two

:::::
equal games is zero.

We can represent the positions of the n ◦m - game by a rect-

angular n ×m - grid. In each point of the grid there is a coin

showing red or blue (head or tail).

The rule for a legal move is as follows. Choose a rectangle of

which the
:::::
North

:
-
:::::

East
::::::
corner

:::
is

:::
red. Switch the color at the 4

corners of the rectangle.

Theorem 2.119 (The product theorem). The Grundy number of

a product game is the sum over all the red nodes of the nim -

product of the two coordinates.

In his paper (Exercise 4) Lenstra describes an algorithm to

calculate the NIM - product of two numbers n ◦m.

2.18.7 P3 - Games

Definition 2.120. Let G be a graph. A set S ⊆ V is P3 - convex

if

∀x/∈S |N(x) ∩ S| < 2.
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Notice that this defines an alignment — that is

1. ∅ and V are P3-convex

2. if A and B are P3-convex then A ∩ B is P3-convex.

Exercise 2.76

Let L be the collection of P3-convex sets. Define the hull

operator σ : 2V → L by

σ(A) = the smallest P3-convex set that contains A.

Show that this is a proper definition.

Two players play the P3-game. The board is a graph. In a

move certain vertices of the graph get labeled. Initially the

set of labeled vertices S = ∅.

A player selects an unlabeled vertex x. This changes the set

of labeled vertices as follows.

S ← σ(S+ x)

(The move labels all vertices of σ(S+ x).)

(At each point of the game prior to a move the set of labeled

vertices S is P3-convex.)

Exercise 2.77

Prove the following theorem.

Theorem 2.121. There exists an O(n2) algorithm to decide the

P3 - game on paths.
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Hint: Compute the Grundy value of the game played on every

subpath — using dynamic programming.
Wing Kai Hon, Ton Kloks,
Fu-Hong Liu, Hsiang-

Hsuan Liu and Tao-

Ming Wang, P3 - games.
Manuscript on arXiv:

1608.05169, 2016.

In the connected P3 - game the moves are restricted so that

the set of labeled vertices S must induce a connected subgraph.

Exercise 2.78

1. Player 1 wins the connected P3 - game on Pn if and only if

n 6= 2.

2. Player 1 wins the connected P3 - game on the cycle Cn if and

only if

n = 2 mod 3.

Exercise 2.79

1. Show that there is a polynomial - time algorithm to decide the

connected P3 - game on trees.

2. Show that there is a polynomial - time algorithm to decide the

P3 - game on cographs.

3. The ladder is the Cartesian product P2×Pn. Show that Player 1

wins the connected P3 - game on the ladder if and only if

n = 0 mod 6.

2.18.8 Chomp

Two players play a game on a graph. The name of the

game is chomp. When it is his turn a player removes a vertex

It is also called ‘the take-

away game.’

or edge of the graph. 57 The game ends when there are no more

57 The removal of a vertex

also removes all edges that
are incident with it.

vertices or edges left. The game ends when there is no graph left to

play with.
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Exercise 2.80

Show that player 1 loses the game on a triangle. Show that the

Grundy value for Chomp on Kn equals n mod 3.

Exercise 2.81

Show that there is an efficient way to decide the winner of a game

of chomp on K+
n which consists of a clique with n vertices and one

extra vertex that is adjacent to exactly one vertex in the clique.

A useful tool to compute the Grundy value of this game is the

flipping lemma. A flip is an
:::::::::::::
automorphism σ : V(G) → V(G)

which satisfies

1. for every x ∈ V {x,σ(x)} /∈ E

2. σ2 = σ.

The kernel of a flip is the set

{x | σ(x) = x }.

Lemma 2.122 (The flipping lemma). The Grundy value for chomp

on G equals the Grundy value on any kernel of a flip.

Kandhawit and Ye — extending older results of Draisma and

Van Rijnswou for the Grundy value of forests — showed that for

bipartite graphs the Grundy value equals

φ(G) = n2 + 2 ·m2, (2.46)

where n2 and m2 are the numbers of vertices and edges of the graph

modulo two.

Exercise 2.82

1. Show that an even wheel has a flip with kernel P3. — Conse-

quently — even wheels have Grundy value 1.

2. Show that also odd wheels have Grundy value 1.
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Exercise 2.83

Is there a polynomial time - algorithm to decide the winner of a

game of chomp played on a cograph?

Hint: Every cograph is either one vertex or the join or the union

of two smaller cographs. — Clearly — the Grundy value of the

graph is the nim - sum of the Grundy values of its components.
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