

Graphs

This book provides an introduction to the research area of graph algorithms. — To start — in this chapter we review some graph – theoretic concepts.

Definition 1.1. A graph G is an ordered pair of finite sets

$$
G = (V, E).
$$

The elements of the nonempty set V are called points — or vertices \cdot 1 The set E is a subset of the unordered pairs of \cdot 1 We have: one vertex, and points two vertices.

$$
E \subseteq \{\{a, b\} \mid \{a, b\} \subseteq V\}
$$

and the elements of E are called lines — or edges.²

When the sets V and E of a graph G are not clear from the context we denote them as $V(G)$ and $E(G)$. We require that $V \neq \emptyset$.³ A graph is called empty if $E = \emptyset$.

The two vertices of an edge are called the endpoints of that edge. An endpoint of an edge is said to be ' incident ' with that edge. Two vertices x and y are adjacent if $\{x, y\} \in E$ and they are nonadjacent if $\{x, y\} \notin E$. When two vertices are adjacent — we say that they are — neighbors — of each other.

All graphs that we consider in this book are finite — that is — the set V is a nonempty finite set.

Figure 1.1: Kloks' Teacher, Professor Jaap Seidel, once told him that this was his favorite graph. (The point in the middle was added on only when he grew older.)

² An edge is a set with two elements, which are two vertices.

³ A structure with $V = \emptyset$ is referred to as a 'null - graph.' (It is not a graph.) In English: 'null' $=$ 'invalid.'

Definition 1.2. A set V is finite if

$$
\exists_{k\in\mathbb{N}}\ |V|\leqslant k.
$$

By the way, we use

 $\mathbb{N} = \{ 1, 2, \ldots \}.$

The set $\mathbb N$ of the natural numbers is, by definition, countable but, it is not finite.

1.1 Isomorphic Graphs

Definition 1.3. Two graphs G_1 and G_2 are isomorphic if there exists a bijection $\pi : V(G_1) \to V(G_2)$ satisfying

$$
\{x, y\} \in E(G_1) \quad \Leftrightarrow \quad \{\pi(x), \pi(y)\} \in E(G_2). \tag{1.1}
$$

Exercise 1.1

Show that 'being isomorphic' is an equivalence relation $$ that is to say $-$ show that

- 1. Every graph is isomorphic to itself
- 2. If G_1 is isomorphic to G_2 then G_2 is isomorphic to G_1
- 3. If G_1 is isomorphic to G_2 and G_2 is isomorphic to G_3 then G_1 is isomorphic to G_3 .

1.2 Representing graphs

A graph can be represented by its adjacency matrix . Let G be a graph. The adjacency matrix A of G is a symmetric $0/1$ -matrix with rows and columns corresponding to the vertices of G. The elements $A_{x,y}$ of A are defined as follows.

$$
\forall_{x \in V} \quad \forall_{y \in V} \quad A_{x,y} = \begin{cases} 1 & \text{if } \{x,y\} \in E(G), \text{ and} \\ 0 & \text{otherwise.} \end{cases}
$$
 (1.2)

— For example — the graph in Figure [1.1](#page-0-0) on Page [1](#page-0-0) has an adjacency matrix:

$$
\begin{pmatrix}\n0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0\n\end{pmatrix}
$$
\n(1.3)

1.3 Neighborhoods

Definition 1.4. The neighborhood $N(x)$ of a vertex $x \in$ $V(G)$ is the set of vertices that are adjacent to $x - \text{that}$ is

$$
N(x) = \{ y \in V \mid \{ x, y \} \in E \}. \tag{1.4}
$$

When the graph G is not clear from the context we use $N_G(x)$ instead of $N(x)$.

The degree of a vertex x is the number of its neighbors, ie ⁴

$$
d(x) = |N(x)|. \tag{1.5}
$$

We use the notation

$$
N[x] = N(x) \cup \{x\} \tag{1.6}
$$

to denote the 'closed neighborhood' of a vertex x . For a nonempty set W of vertices we write

$$
N(W) = \left(\bigcup_{w \in W} N(w)\right) \setminus W
$$

= {y | y \in V \setminus W and N(y) \cap W \neq \emptyset}. (1.7)

We use $N[W] = N(W) \cup W$ to denote the closed neighborhood of W .

⁴ A graph G is called regular if all vertices have the same degree.

Figure 1.2: The Petersen graph is regular with degree 3.

1.4 Connectedness

A graph is connected if one can walk from any point to any other point via the edges of the graph $\frac{5}{5}$ $\frac{5}{5}$ $\frac{5}{5}$ When I told my teacher AB,

Definition 1.5. A graph G is connected if $|V| = 1$ — or else — if for every partition — $\{A, B\}$ of V — there exists elements $a \in A$ and $b \in B$ satisfying $\{a, b\} \in E$.

A graph is disconnected if it is not connected.

A partition of a set is defined as follows.

Definition 1.6. A collection of sets $\{V_1, \ldots, V_t\}$ is a partition of a set V if

1. $t \geqslant 2$,

- 2. all $V_i \neq \emptyset$,
- 3. for all $i \neq j$, $V_i \cap V_j = \emptyset$, and

4. $\bigcup V_i = V$.

1.5 Induced Subgraphs

Let G be a graph. A subgraph of G is a graph H with 6 6 The graph H is a

$$
V(H) \subseteq V(G) \quad \text{and} \quad E(H) \subseteq E(G). \tag{1.8}
$$

Definition 1.7. Let G be a graph. Let $W \subseteq V(G)$ and let $W \neq \emptyset$. The subgraph of G induced by W is the graph H with

 $V(H) = W$ and $E(H) = \{ \{a, b\} \mid \{a, b\} \subseteq W \text{ and } \{a, b\} \in E(G) \}.$ spanning subgraph of G if $V(H) = V(G)$ and $E(H) \subseteq E(G)$. When H is a spanning subgraph of G and also a tree it is called a spanning tree of G. Clearly, a graph can only have a spanning tree if it is connected.

back in 1984, that I needed this property to finish my proof, he said: "That's called connected !"

For a graph G and a nonempty set $W \subseteq V(G)$ we denote the subgraph of G induced by W as $G[W]$. We also write — where we use $V = V(G)$ —

$$
G - W = G[V \setminus W], \quad \text{when} \quad V \setminus W \neq \emptyset. \tag{1.9}
$$

For a vertex x we write $G - x$ instead of $G - \{x\}$. For an edge $e = \{x, y\}$ we write $G - e$ for the graph with vertices $V(G)$ and edges $E(G) \setminus \{e\}.$

1.6 Paths and Cycles

Let G be a graph. A path⁷ in G is a nonempty set of vertices $\frac{7}{4}$ that is ordered such that consecutive pairs are adjacent. A $\overline{\mathbf{a}}$ distinct. path has — by definition— at least one vertex. To denote a path P in G we use the notation

$$
\mathbf{P} = [\mathbf{x}_1 \quad \cdots \quad \mathbf{x}_t]. \tag{1.10}
$$

— Here — the vertices of P are

$$
V(P) = \{x_1, \cdots, x_t\} \subseteq V(G).
$$

The edges of P are the pairs of vertices that are consecutive in the ordering. Edges in G — that connect vertices in P A path with n vertices has which are not consecutive — are called chords of P. $n-1$ edges.

The points x_1 and x_t are the endpoints of P and we also say that P runs between x_1 and x_t . We call a path P an $x \sim y$ – path if x and y are the endpoints of P. The length of P is the number of edges in it — that is to say —

$$
\ell(P) = |E(P)| = |V(P)| - 1.
$$

Definition 1.8. For any two vertices x and y in a graph their distance is defined as

$$
d(x, y) = min \{ |E(P)| | P \text{ is an } x \sim y - path \}.
$$
 (1.11)

⁷ In a path all vertices are

In the case where $V(P) = V(G)$ and $E(P) = E(G)$ the graph G is called a path.⁸ We use a special notation to 8 A graph is a path if it condenote graphs that are paths with $\mathfrak n$ vertices — namely —

 $\forall_{n\in\mathbb{N}}$ P_n is the path with n vertices.

Exercise 1.2

Design an algorithm to check whether a graph G given as input is a path.

A cycle 9 C in a graph G is a set of at least three vertices that is ordered distinct.

$$
\mathbf{C} = [\mathbf{c}_1 \quad \cdots \quad \mathbf{c}_t] \tag{1.12}
$$

such that any two consecutive vertices are adjacent in G and — furthermore — also the first and last vertex of the sequence are adjacent.

The edges of the cycle C are the consecutive pairs and the pair $\{c_1, c_t\}$. Edges

$$
\{c_i\,,\,c_j\}\in E(\,G\,)\setminus E(\,C\,)
$$

are called chords of C .

When $V(G) = V(C)$ and $E(G) = E(C)$ we say that G is a cycle. For graphs isomorphic to a cycle with n vertices we use the special notation

 C_n is the cycle with n vertices.

Exercise 1.3

Show that a graph G is regular with all vertices of degree two, if and only if every component of G induces a cycle.

Exercise 1.4

Show that \bar{C}_5 and C_5 are isomorphic. Are there other cycles isomorphic to their complement?

tains a path to which it is isomorphic.

Figure 1.3: The figure shows a path with 4 vertices; that is, P4.

⁹ In a cycle all vertices are

Figure 1.4: C_5 : a cycle with 5 vertices

1.7 Complements

Let G be a graph. The complement of G is the graph \overline{G} with nicely! the following sets of vertices and edges.

 $V(\bar{G}) = V(G)$ and $E(\bar{G}) = \{ \{a, b\} | \{a, b\} \subseteq V(G) \text{ and } \{a, b\} \notin E(G) \}.$

1.8 Components

UNIONS of connected graphs $-$ without any additional edges between them — create new graphs. The constituent parts of the new graph are called its components .

Definition 1.9. A component of a graph G is a maximal set of vertices $W \subseteq V(G)$ such that $G[W]$ is connected.

Notice that, the set of components of a graph G forms a partition of $V(G)$ if and only if G is disconnected. Each component induces a connected subgraph of G .

1.8.1 Rem 's Algorithm

Let G be a graph and let $V(G) = [n]$.¹⁰ Rem's algorithm, ¹⁰ [n] = {1,..., n} Algorithm [1](#page-8-0) computes a function $\delta : V(G) \to [n]$ satisfying

$$
\forall_k\quad \delta(\,k\,) \,\leqslant\, k\quad {\rm and}\quad
$$

- (i) $\delta(k) = k$ if vertex k belongs to the component with number k
- (ii) $\delta(k) < k$ if vertex k lies in the same component as vertex $\delta(k)$.

Figure 1.5: The figure shows \bar{C}_4 , the complement of the 4cycle. Notice that this graph is disconnected.

s s

s

Figure 1.6: This is the house. It is the complement of P_5 : \bar{P}_5 .

For the number of components we have

components of $G = #\{x \mid x \in V \text{ and } \delta(x) = x\}.$ (1.13)

Notice that when G is the empty graph ¹¹ the identity ¹¹ G is empty if $E(G) = \emptyset$. function is a solution $\overline{}$ it puts a vertex k in the component with number k , for $k \in [n]$.

Rem's algorithm initializes the function δ as the identity function and, as it — one by one — adds the edges to the graph, it updates δ . The objective is to decrease the number of applications needed for a vertex to find the representative vertex in its component.¹² The algorithm is optimal in the ¹² That is, the number of sense that δ decreases at every pass of the loop that starts in Line 11 .

Exercise 1.5

Prove the correctness of Rem's algorithm in Algorithm [1.](#page-8-0) Show that it runs in $O(n^2)$ time. Implement and test it on the graph shown in Figure 2.2 on Page $23 - \text{that}$ is the graph with — say 20 — disjoint triangles.

Exercise 1.6

Design an algorithm that $-$ using Rem's algorithm as a subroutine — checks whether two vertices x and y are in the same component of a graph G .

Hint: Analyze what happens to their components if you add the edge $\{x, y\}$ to the graph.

Exercise 1.7

Suppose we measure the 'efficiency' of the algorithm by the maximal number of times one has to apply the function δ to a vertex to find its component's number. The efficiency of Rem's algorithm seems to depend on the order in which we add the edges. Is there a clever choice?

Hint: Suppose G is a path. Analyze different orderings in which to add the edges.

times one has to apply δ before it gets constant.

```
Algorithm 1: Rem 's<br>Algorithm
```

```
1: procedure REM
2:
3: for i \in [n] do
4: \delta(i) \leftarrow i5: end for
6:
7: for \{p, q\} \in E(G) do
8: p_0, q_0 \leftarrow p, q9: p_1, q_1 \leftarrow \delta(p_0), \delta(q_0)10:
11: while p_1 \neq q_1 do
12: if p_1 < q_1 then
13: \delta(q_0) \leftarrow p_114: q_0, q_1 \leftarrow q_1, \delta(q_1)15: else
16: \delta(p_0) \leftarrow q_117: p_0, p_1 \leftarrow p_1, \delta(p_1)18: end if
19: end while
20:
21: end for
22: end procedure
```
1.9 Separators

Definition 1.10. Let G be a graph.

- 1. A separator is a set $S \subset V$ such that $G S$ is disconnected.
- 2. For two nonadjacent vertices a and b , a set S is a minimal a | b - separator if a and b are in different components of $G - S$ and no proper subset of S has that property.
- 3. A set $S \subset V(G)$ is a minimal separator if S is a minimal $a|b$ -separator for some nonadjacent pair a and b .

 $-$ In a graph $-$ the empty set is a minimal separator if and only if the graph is disconnected. If a minimal separator contains only one vertex that vertex is called a cutvertex.

Exercise 1.8

Let a and b be nonadjacent vertices in a graph. Prove that there is exactly one minimal $a|b$ -separator contained in $N(a)$.

Exercise 1.9

Show that a set S is a minimal separator in a graph G if and only if $G - S$ has two components that have a neighbor of every vertex in S .

1.10 Trees

Definition 1.11. A connected graph T is a tree if it contains no cycles — that is — if no induced subgraph of T is a cycle.

Remark 1.12. Notice that Definition [1.11](#page-9-0) implies that every Figure 1.8: A tree connected induced subgraph of a tree is a tree.

Figure 1.7: Notice that one minimal separator can be properly contained in another one. This is clear when G is disconnected. In this example, the cutvertex is properly contained in a minimal separator for the nonadjacent pair of its neighbors in the 5-cycle.

Definition 1.13. A graph is a forest if each of its components induces a tree.

Exercise 1.10

Prove or disprove: A connected graph is a tree if and only if every minimal separator in it has cardinality 1. What are graphs in which every connected induced subgraph with at least three vertices has a cutvertex?

Theorem 1.14. A connected graph is a tree if and only if every connected induced subgraph with at least two vertices has a vertex of degree one. 13 13 In a tree T we call the

Proof. When a connected graph is not a tree then it contains a cycle, and so, the graph has an induced subgraph $-$ the cycle $$ without vertex of degree 1.

Let T be a tree. When $|V(T)| = 1$ the only induced subgraph of T is T itself. Since T has no induced subgraph with at least two vertices, the condition is void (as it should be).

Now assume that $|V(T)| > 1$ and let T be connected. We show that $\mathsf T$ has two leaves. Let $\mathsf x$ be any vertex of $\mathsf T$ and let C_1, \cdots, C_t be the components of $T - x$. If some component C_i has only one vertex, then this vertex has degree one, since its only neighbor is x .

If x has two neighbors in C_1 , say y and z, then there is a path P in $T[C_1]$ connecting y and z. Then $V(P) \cup \{x\}$ induces a cycle in T .

By induction — on the number of vertices of T — we may assume that each C_i induces a tree with at least two vertices. By induction on the number of vertices — since $|C_i| > 1$ — $T[C_i]$ contains at least two leaves. At least one of those leaves is not adjacent to $x -$ and so – there is a leaf in $T[C_i]$ which is a leaf in T .

To see that T has at least two leaves — observe that when $T - x$ has only one component that component contains a leaf vertices of degree at most one the leaves of T. Note that we have: 'one leaf' and 'two leaves.' (I did it wrong in my PhD thesis $;-(.)$ In graphs, vertices of degree one are called pendant vertices. A pendant vertex is pendent $($ ="dangling.") ' Pedant ' means something entirely different.

and x itself is a leaf. When $T - x$ has at least two components $-$ each component contains a leaf $-$ and so there are at least two leaves.

This proves the theorem.

Notice that the proof of Theorem [1.14](#page-10-0) shows that we can prune 14 leaves off a tree, until no vertex remains. $14 \cdot T_0$ prune ' means, to cut

Corollary 1.15. A graph \overline{I} is a tree if and only if it has an elimination order — that is an ordering of $V(T)$ — say

 $\begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix}$

such that

$$
\forall_{1 \leq i \leq n} \quad G[V_i] \text{ is a tree and } x_i \text{ is a leaf in } G[V_i]
$$
\n
$$
\text{where } V_i = \{x_i, \dots, x_n\}. \quad (1.14)
$$

Exercise 1.11

Design an algorithm that checks whether a graph given as input is a tree.

1.11 Bipartite Graphs

Definition 1.16. A graph G is bipartite if $|V(G)| = 1$ or else there is a partition of $V(G)$ — say $\{A, B\}$ — such that

$$
\forall_{e \in E(G)} \quad e \cap A \neq \varnothing \quad \text{and} \quad e \cap B \neq \varnothing. \tag{1.15}
$$

The two sets A and B in a partition as above are called color classes of G . Notice that these color classes are independent sets in $G -$ that is $-$ no two vertices in one color class are adjacent.

Definition 1.17. Let G be a graph and let

 $S \subseteq V$ and $S \neq \emptyset$.

The set S is an independent set if no two vertices in S are adjacent.

Exercise 1.12

off branches from a plant or tree. In our case, we just pick

leaves one by one.

Show that every tree is bipartite.

Exercise 1.13

A bipartite graph is complete bipartite if every pair of vertices in different color classes is adjacent. We denote a complete bipartite graph, with a and b vertices in its color classes, as $K_{a,b}$. What are the minimal separators in a complete bipartite graph?

 \Box

We represent the maximal cardinality of an independent set in G by

$$
\alpha(\mathsf{G})\,.
$$

Let C be some set — the elements of which are called colors. A coloring of a graph G is a map

$$
V(\,G\,)\,\rightarrow\,C
$$

with the property that the endpoints of any edge in G receive different colors of C .

Definition 1.18. The chromatic number of a graph G

 $x(G)$

is the smallest number of colors needed to color the vertices such that adjacent vertices have different colors.

By definition a graph G is bipartite if and only if $\chi(G) \leq 2$.

Exercise 1.14

Design an algorithm that checks whether a graph is bipartite. Hint: It doesn't seem clever to use Theorem [1.19.](#page-12-0)

We have seen that trees are exactly those connected graphs that contain no cycles. Bipartite graphs are characterized via cycles as follows.

Theorem 1.19. A graph is bipartite if and only if all cycles in it are even.

Proof. Let G be bipartite and let $\{A, B\}$ be a partition of V such that all edges have one end in A and the other in B. Let $C = [c_1 \cdots c_t]$ be a cycle. Then the elements c_i alternate between A and B. This proves that

$$
|V(C)| = |E(C)| = t \text{ is even.} \tag{1.16}
$$

Let G be a graph and assume that all cycles in G are even. We may assume that G is connected. Start coloring G by

assigning an arbitrary vertex $\mathbf r$ the color $\mathbf A$. Define the set $\mathbf A$ as the set of vertices that are at even distance from r. Let

$$
B=V\setminus A.
$$

We claim that $\{A, B\}$ is a coloring of G. Assume that A contains two adjacent vertices x and y . Then a shortest path from r to $x -$ together with a shortest path from r to y plus the edge $\{x, y\}$ — contains an odd cycle.

This proves the theorem.

1.12 Linegraphs

Definition 1.20. Let G be a graph with at least one edge. 15 15 When a graph is empty, its The linegraph $L(G)$ of G is the graph

$$
V(L) = E(G) \text{ and}
$$

\n
$$
E(L) = \{ \{e_1, e_2\} \mid \{e_1, e_2\} \subseteq E(G) \text{ and } e_1 \cap e_2 \neq \emptyset \}.
$$

\n(1.17)

Exercise 1.15

Describe the linegraphs of trees (with at least one edge).

Notice that linegraphs are graphs without claws (see Figure 2.11). For any fixed graph H, a graph is H-free if it does not have an induced subgraph isomorphic to H.

1.13 Cliques and Independent Sets

Definition 1.21. A clique in a graph G is a nonempty set

 $C \subset V$

such that any two vertices of C are adjacent.

'linegraph' would have no vertices, which makes it not a graph.

 \Box

— So — a clique in G is an independent set in \overline{G} and vice versa. ¹⁶ Let $\omega(G)$ denote the maximal cardinality of a ¹⁶ An independent set is de-fined in Definition [1.17.](#page-11-0) clique in G. Then

$$
\omega(\,G\,)\,=\,\alpha(\,\bar{G}\,)\,.
$$

We call a clique with three vertices a triangle. Of course, bipartite graphs have no triangles, since those are odd cycles. It follows that $\omega(G) \leq 2$ whenever G is bipartite.

A graph is called a clique if every pair of its vertices are adjacent 17 When G is a clique we have 17 For a clique with n ver-

$$
\omega(G) = |V(G)| = \chi(G) \text{ and } \alpha(G) = 1.
$$

 $-$ Similarly $-$ a graph is an independent set if it has no edges. When G is an independent set we have

$$
\omega(G) = \chi(G) = 1 \quad \text{and} \quad \alpha(G) = |V(G)|.
$$

1.14 On Notations

 $-$ To conclude this chapter — when there is no confusion possible we use — when a generic graph $\mathsf G$ underlies the discussion

$$
n = |V(G)|
$$
 and $m = |E(G)|$.

— Similarly — we use

$$
V = V(G) \quad E = E(G) \quad \omega = \omega(G) \quad \alpha = \alpha(G) \quad \&\text{tc.}
$$

whenever it is clear and convenient.¹⁸

We freely abuse notation when it clarifies the text $-$ for example — when S is some subset of vertices of a graph G then we use S also to denote $G[S]$ (see the Sidenote 2.4 on Page 30). The general rule applied removes uninformative variables and parentheses . ¹⁹

¹⁸ Perhaps I should have used ν and e , instead of π and m, but this choice has the advantage that I am used to it !

I *should* have used G instead of V (and use the 'old' notation where G is synonymous with (G, E) , but, unfortunately, 'recent traditions' kept me back.

```
19... to improve readabil-
ity ; we don't want to
compress the text. ;-)
```
tices we use the notation K_n .

15