
Periodic Solutions for a Class of
Impulsive Delay Differential Equations

Dan Gamliel

Abstract We study two coupled linear delay differential equations (DDEs) with
additive impulses at regular time intervals. The equations are transformed to a DDE
coupled to an ODE. Conditions are found for positive periodic solutions, and some
examples are given for periodic solutions and for non-periodic solutions.
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1 Introduction

Periodic solutions to delay differential equations (DDE) have been studied by analogy
to Floquet theory ofODE [1], by lower and upper solutions [2], byLyapunov’s second
method and the contraction mapping principle [3], or by fixed point arguments [4–
6]. In this work, we use the results of [4] to investigate the conditions for periodic
solutions for the following linear DDE with impulses:

d

dt
x(t) + A(t) · x(t) + B(t) · x(t − r) = 0 (t ≥ tin) (1)

x
(
tk

+) − x (tk) = I(k) tk = t0 + k · T (k ∈ N ) (2)

where the constant time delay satisfies: r > 0, and t0 is related to the initial time
value tin by t0 − r ≥ tin . The impulses are assumed to be additive, as in [6]. The
arrays in (1) are defined as follows:
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x(t) =
(
x1(t)
x2(t)

)
(3)

A(t) =
(

a1(t) −a1(t)
−a2(t) a2(t)

)
(4)

B(t) = b1 · h(t) ·
(
1 1
1 1

)
(5)

Here, b1 is a constant, and the time interval T is the commonperiod of the functions
h(t), a1(t), a2(t).

This is given together with the initial condition

x1(t) = φ1(t)
x2(t) = φ2(t)

(6)

for t0 − r < t < t0 , with x1(t0) = m1 x2(t0) = m2.

2 Solutions for the DDE

In order to simplify the treatment of the coupled equations presented above, we define
the transformation

y(t) =
(
y1(t)
y2(t)

)
= 1

2

(
1 1
1 −1

)(
x1(t)
x2(t)

)
(7)

Then Eq. (1) leads to

d

dt
y1(t) + (a1(t) − a2(t)) · y2(t) + 2 · b1 · h(t) · y1(t − r) = 0 (8)

d

dt
y2(t) + (a1(t) + a2(t)) · y2(t) = 0 (9)

There are still two coupled functions, but now only one function, y1(t), satisfies a
DDE, whereas y2(t) satisfies an ODE. Impulses can be considered for each of these
functions. The initial conditions for the two functions are

y1(t) = 1
2 (φ1(t) + φ2(t))

y2(t) = 1
2 (φ1(t) − φ2(t))

(10)

for t0 − r < t < t0 , with y1(t0) = 1
2 (m1 + m2) y2(t0) = 1

2 (m1 − m2)

Using the notation
a(t) = (a1(t) + a2(t))

the function y2(t) is calculated (for t0 < t) as
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y2 (t) = exp

{
−

∫ t

t0

a(s) · ds
}

· y2 (t0) (11)

Note that if the initial conditions includem1 = m2, then y2(t0) = 0 so the function
remains zero for all times. We shall assume here that m1 �= m2 so that y2(t) is not
trivial.

Proposition 1 For the solution of Eq. (9), if

∫ t+T

t+
a(s) · ds = 0

then the solution is periodic. Otherwise, if the solution is modified by adding for each
tk ( k = 1, 2, …) the impulse

I2(k) = {1 − exp{−
∫ tk+T

t+k
a(s) · ds} · y2

(
t+k

)},

the resulting modified solution is periodic. If the function a(t) is continuous in the
interval [tk, tk + T ], then the solution y(t) is bounded.

The periodicity is checked by the evolution of the solution between tk and tk+1 =
tk + T :

y2 (tk + T ) = exp{−
∫ tk+T

t+k
a(s) · ds} · y2

(
t+k

)
(12)

In the trivial case where ∫ t+T

t+
a(s) · ds = 0,

the solution for y2(t) is already periodic, without any need for impulses. If

∫ t+T

t+
a(s) · ds > 0

and no impulses are applied, then the solution tends to zero for t → ∞, so that the
zero solution is stable, but there is no periodicity. If

∫ t+T

t+
a(s) · ds < 0

and no impulses are applied, the solution diverges as t → ∞. In the last two cases,
if the additive impulse

I2(k) = {1 − exp{−
∫ tk+T

t+k
a(s) · ds} · y2

(
t+k

)} (13)
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is applied at the times tk = k · T , i.e.,

y2
(
tk

+) − y2 (tk) = y2 (tk) + I2(k), (14)

then y2(t) is periodic. If the function a(t) is continuous in each interval [tk, tk + T ],
then y2(t) is bounded.

Equation (8) for y1(t) will be re-written as

d

dt
y1(t) + b(t) · y1(t − r) = − (a1(t) − a2(t)) · y2(t) (15)

where b(t) ≡ 2 · b1 · h(t). In [4], Schauder’s fixed point theorem is used in order to
prove that if there exists a continuous function w(t) such that

∫ t+T

t
b(s) · w(s) · ds = 0 ( f or t − r ≥ t0) (16)

and also ∫ t

t−r
b(s) · w(s) · ds = ln (w(t)) , (17)

then there is a positive periodic solution to the homogeneous part of Eq. (15). A way
to construct the solution is given in [4]. If this periodic solution is denoted by y0(t),
then the solution to full Eq. (15) is

y1(t) = y0(t) +
∫ t

t0

X (t, s) · {− (a1(s) − a2(s))} · y2(s) · ds (18)

where X (t, s) is the fundamental solution to Eq. (15) [7]. This solution evolves over
one period of y0(t) as

y1(t + T ) − y0(t + T ) = (19)

y1(t) − y0(t) +
∫ t+T

t+
X (t, s) · {− (a1(s) − a2(s))} · y2(s) · ds

Proposition 2 For the equation as Eq. (15) above, if

∫ t+T

t+
X (t, s) · {− (a1(s) − a2(s))} · y2(s) · ds = 0,

then the solution to the equation is positive and periodic. If the functions b(t) and
a(t) are continuous in each interval [tk, tk + T ] (with at most a finite number of finite
discontinuities), then the solution is bounded.

Note: If the integral in Eq. (19) is not zero, stability for Eq. (15) can hold if: (a) the
integral tends to zero as t → ∞ and (b) the equation for y0(t) is stable. The stability
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of y0(t) can be checked as in [8]. However, if the integral in Eq. (18) diverges for
t → ∞, then the equation for y1(t) is not stable, even if the equation for y0(t) is
stable.

The original Equation (1) is solved (for tk < t ≤ tk + T ) by

x1(t) = exp{−
∫ t

tk

a(s) · ds} · y2 (tk) + (20)

y0(t) +
∫ t

tk

X (t, s) · {− (a1(s) − a2(s))} · y2(s) · ds

x2(t) = −exp{−
∫ t

tk

a(s) · ds} · y2 (tk) +

y0(t) +
∫ t

tk

X (t, s) · {− (a1(s) − a2(s))} · y2(s) · ds (21)

where the properties of the individual terms ( y2 and y1 ) determine the properties of
the original variables x1(t), x2(t).

3 Examples

3.1 Example 1

Consider a delay of r = 6π and the following functions:
h(t) = cos(t)
a1(t) = c0 + c1 · cos(t), a2(t) = c2 · cos(t) where c0, c1, c2 are constants.

For initial conditions, let us choose m1 �= m2, so that y2(t0) �= 0 and take t0 = 0.
Then for 0 < t ,

y2 (t) = exp{−c0 · (t − t0) − (c1 + c2) · (sin(t) − sin(t0))} · y2
(
0+)

(22)

As for y1(t), the solution for the homogenous equation of Eq. (15) can be obtained
by choosing w(t) = 1, and then Eqs. (16) and (17) become

∫ t+2·π

t
2b1 · cos(s) · ds = 0

∫ t

t−6·π
2b1 · cos(s) · ds = 0

The solution for the homogeneous equation of y1(t) is

y0(t) = exp{2 · b1 · (sin(t0) − sin(t))}
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so that the fundamental solution is

X (t, s) = exp{2 · b1 · (sin(s) − sin(t))}

The integral in Eq. (18) is

∫ 2π

0+
X (t, s) · {−c0 − (c1 − c2) · cos(s)} · y2(s) · ds

3.1.1 Case 1.A

If c1 = c2, the only contribution to this integral in the a1 − a2 term is from c0.
Substituting in Eq. (18), one gets

y1(t) = y0(t) +
∫ t

t0

X (t, s) · {−c0} · exp{−c0 · (s − t0) − 2 · c1 · sin(s)} · ds · y2(0)
(23)

The integral term J ≡ y1(t) − y0(t) is equal (for t0 = 0) to

J = −c0 · exp{−2 · b1 · sin(t)} ·
∫ t

t0
exp{−c0 · s + sin(s) · (2b1 − 2c1)} · ds · y2(t0)

(24)
The result of the integral is a non-periodic function, so calculating the integral
between the limits: tk and tk + T will not give zero. In the special case

b1 = c1, the integral term is much simpler, but still the result is not periodic.Thus,
the function y1(t) is not periodic, unlike y0(t). Then the original variables x1(t) and
x2(t) are a combination of a periodic part (that of y2(t) and y0(t)) and a non-periodic
part (J). If one adds an impulse to y1(t):

I1(k) = {y1(tk) − y0(tk)} − {y1(tk + T ) − y0(tk + T )},

this will correct the value of the function only for a single time point. Due to the
dependence on the time delay, the behavior of the function for the next time interval
will in general be different from that in the previous interval, so y1(t) will remain
non-periodic. Therefore, in both cases, b1 �= c1 and b1 = c1, the solution diverges
for t → ∞.

3.1.2 Case 1.B

Now assume c1 �= c2 and c0 = 0. Now the integral term is equal to
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J =
∫ t

t0

X (t, s) · {− (c1 − c2) · cos(s)} · exp{− (c1 + c2) · sin(s)} · ds · y2(0)
= − (c1 − c2) · exp{−2 · b1 · sin(t)} ·

∫ t

t0

cos(s)exp{sin(s) · (2b1 − (c1 + c2))} · ds · y2(t0) (25)

If 2b1 �= c1 + c2, then the expression above is equal to

J = − (c1 − c2) · exp{−2 · b1 · sin(t)} ·
1

(2b1 − (c1 + c2)))
·

{exp{(2 · b1 − (c1 + c2)) · sin(t)} − exp{(2 · b1 − (c1 + c2)) · sin(t0)}} · y2(t0)

and this is a periodic function, so that also y1(t) is periodic. If 2b1 = c1 + c2,
then the expression is

J = − (c1 − c2) · exp{−2 · b1 · sin(t)} ·
∫ t

t0

cos(s) · ds · y2(t0)
= − (c1 − c2) · exp{−2 · b1 · sin(t)} · (sin(t) − sin(t0))

which is also periodic. Thus, regardless of the value of b1, the solution is periodic,
both for x1(t) and for x2(t).

3.2 Example 2

With the time delay: r = π
2 , consider the following functions:

h(t) = −sin(t) · exp{2b1 · (sin(t) − cos(t))}

and a1(t), a2(t) as in the previous example. Then y2(t) is the same as above, and for
y1(t), we define the function w(t) = exp{2b1 · (cos(t) − sin(t))}.

Then Eqs. (16) and (17) become

−
∫ t+2·π

t
2b1 · sin(s) · ds = 0

−
∫ t

t− π
2

2b1 · sin(s) · ds = 2b1 · (cos(t) − sin(t))

Now the solution for the homogenous equation of Eq. (15) is
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y0(t) = exp{2 · b1 · (cos(t0) − cos(t))}

so that the fundamental solution is

X (t, s) = exp{2 · b1 · (cos(s) − cos(t))}

3.2.1 Case 2.A

If c1 = c2, the only contribution to this integral is from c0.
Substituting in Eq. (17), one gets

y1(t) = y0(t) +
∫ t

t0

X (t, s) · {−c0} · exp{−c0 · (t − t0) − 2 · c1 · sin(s)} · ds · y2(0)
(26)

The integral term J ≡ y1(t) − y0(t) is equal to

J = − c0 · exp{−c0 · (t − t0) − 2 · b1 · cos(t)}· (27)
∫ t

t0

exp{(2b1 · cos(s) − 2c1 · sin(s))} · ds · y2(t0)

The result of the integral is a non-periodic function, so calculating the integral
between the limits: tk and tk + T will not give zero. In fact, for this case,

∫ 2π

0
exp{(2b1 · cos(s) − 2c1 · sin(s))} · ds = 2π I0(

√
4 · (b1)2 + 4 · (c1)2)

where I0(x) is the modified Bessel function of order zero.
Thus, the function y1(t) is not periodic, unlike y0(t). Then the original variables

x1(t) and x2(t) are a combination of a periodic part (that of y2(t) and y0(t)) and a
non-periodic part (J).

3.2.2 Case 2.B

Now assume c1 �= c2 and c0 = 0. Now the integral term is equal to

J =
∫ t

t0

X (t, s) · {− (c1 − c2) · cos(s)} · exp{− (c1 + c2) · sin(s)} · ds · y2(0)
= − (c1 − c2) · exp{−2 · b1 · cos(t)} ·

∫ t

t0

cos(s)exp{(2b1 · cos(s) − (c1 + c2) · sin(s))} · ds · y2(t0) (28)
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The result of the integration is not a periodic function. Also, for the special case
(c1 + c2) = 0, the result is not periodic, and in that case,

∫ 2π

0
cos(s) · exp{2b1 · cos(s)} · ds = 2π I1(2b1)

where I1(x) is the modified Bessel function of order one. Thus, regardless of the
value of b1, the solution is not periodic, both for x1(t) and for x2(t) . The solutions
diverge for t → ∞.

3.3 Example 3

With the time delay: r = π
2 consider the following functions:

h(t) = −sin(t) · exp{2b1 · (sin(t) − cos(t))}

and
a1(t) = c0 + c1 · sin(t), a2(t) = c2 · sin(t) where c0, c1, c2 are constants.

Then for 0 < t ,

y2 (t) = exp{−c0 · (t − t0) + (c1 + c2) · cos(t)} · y2
(
0+)

(29)

and for y1(t), we define the function w(t) = exp{2b1 · (cos(t) − sin(t))}.
Then Eqs. (16) and (17) are the same as in Example 2 above,
and also the solution for the homogenous equation of Eq. (15) and consequently

the fundamental solution are the same as in Example 2 above.

3.3.1 Case 3.A

If c1 = c2, the only contribution to this integral is from c0.
Substituting in Eq. (17), one gets

y1(t) = y0(t) +
∫ t

t0
X (t, s) · {−c0} · exp{−c0 · (s − t0) + 2 · c1 · cos(s)} · ds · y2(0)

(30)
The integral term J ≡ y1(t) − y0(t) is equal to

J = − c0 · exp{c0 · (t0) − 2 · b1 · cos(t)}· (31)
∫ t

t0

exp{c0 · s + (2b1 · cos(s) + 2c1 · cos(s))} · ds · y2(t0)
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Thus, the function y1(t) is not periodic, unlike y0(t).

3.3.2 Case 3.B

Now assume c1 �= c2 and c0 = 0. Now the integral term is equal to

J =
∫ t

t0

X (t, s) · {− (c1 − c2) · sin(s)} · exp{− (c1 + c2) · cos(s)} · ds · y2(0)
= − (c1 − c2) · exp{−2 · b1 · cos(t)} ·

∫ t

t0

sin(s)exp{(2b1 · cos(s) + (c1 + c2) · cos(s))} · ds · y2(t0) (32)

If 2b1 + c1 + c2 �= 0, then the expression above is equal to

J = + (c1 − c2) · exp{−2 · b1 · sin(t)} ·
1

(2b1 + (c1 + c2)))
·

{exp{(2 · b1 + (c1 + c2)) · cos(t)} − exp{(2 · b1 + (c1 + c2)) · cos(t0)}} · y2(t0)

and this is a periodic function, so that also y1(t) is periodic. If 2b1 = c1 + c2,
then the expression is

J = − (c1 − c2) · exp{−2 · b1 · cos(t)} ·
∫ t

t0

sin(s) · ds · y2(t0)
= + (c1 − c2) · exp{−2 · b1 · cos(t)} · (cos(t) − cos(t0))

which is also periodic. Thus, regardless of the value of b1, the solution is periodic,
both for x1(t) and for x2(t).
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