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Abstract We survey mathematical models of the fluid flow in porous media based
on quasilinear parabolic partial differential equations. We focus on singular and/or
degenerate parabolic equations, which are suitable for modeling of turbulent filtra-
tion such as groundwater flow trough gravel and/or fractured crystalline rocks and
turbulent polytropic filtration of natural gas through rocks in standard deposits, on
one hand, and isothermic nanoporous (slow) filtration of natural gas in shale forma-
tions, on the other hand. Since in the case of singular and/or degenerate parabolic
equations, it is almost impossible to find explicit solutions, we survey some existence
and regularity theory together with maximum and comparison principles. We apply
this theory on some selected examples from practice.

Keywords Ground water · Drought · Flow in porous medium · Turbulence ·
Nonlinear Darcy law · Leibenson’s equations · Natural gas · p-Laplacian · Doubly
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1 Introduction

Climate change and shortage of natural freshwater resources are becoming very
serious issues nowadays. There is a need for bettermanagement of existing resources,
while looking for unconventional resources of this vital substance. Our aim is to
contribute to these important issues by surveying several nonlinear mathematical
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models of the fluid flow in porous media and their methods of study. We hope that
people from practice may find them useful.

Long-lasting droughts become serious problem not only in traditionally arid
and/or semi-arid areas, but newly also in countries with moderate climate such as
countries in Central Europe. Indeed, several regions of Europe including those in
Central and Northern Europe experienced severe drought conditions during June
and July 2019, resulting from a combination of the 2018 drought, the heatwaves
of 2019 and below-average precipitations in spring 2019, according to JRC Euro-
pean Drought Observatory report [39]. Moreover, below-average precipitations in
2018–2019 lead to lowering of the groundwater level which caused drying of wells
in many places in the Czech Republic as it can be seen from the weekly observa-
tions of water table in shallow boreholes (ca. 2–15m deep) conducted by the Czech
Hydrometeorological Institute [13], where most of the observations are significantly
below long-term average values (collected data since 1950s). The drought events of
2015–2019 also contributed to bark beetle calamity, see, e.g., [31, 32, 34, 55, 69],
peaking in Central Europe in 2019. Of course, the problems of drought were not
limited to Europe in 2019, significant problems were experienced also in many more
areas worldwide, e.g., in Southeast Australia [40], Southern Africa [42, 43], and
India [41] in 2019. According to [53], two-thirds of the global population live under
conditions of severe water scarcity for at least 1month of the year and half a billion
people face severe water scarcity all year round. It was already in 2008, when Gold-
man Sachs [28] estimated that the annual consumption of freshwater approximately
doubles every 20years, claimed that water will be oil of the forthcoming century, and
recommended to private investors to invest into infrastructure related with freshwater
supply.

Most of the mathematical models of the groundwater flow used in practice are
based on the linear Darcy (constitutive) law relating groundwater flux with piezo-
metric head loss per length:

q = const.
�h

�L
, (1.1)

where h = P
ρ g + z is the piezometric head, P is hydrostatic pressure, ρ is density,

g is acceleration due to gravity and z is vertical coordinate measured from arbitrary
(but fixed) horizontal level,�h stands for the piezometric head loss (difference of h),
�L is distance, and q is flux. This law was established empirically by Henry Darcy
[15] already in 1856 and it is sufficiently accurate in the case that the flow is laminar,
that is, when the Reynolds number related to flux is not “too high” (to be clarified in
Sect. 4). If, however, the Reynolds number of the flux is “too high” (see Sect. 4), the
turbulence occurs and the linear Darcy law should be replaced by a nonlinear one
such as the Smreker–Izbash–Missbach law

�h

�L
= const. qm or, equivalently, q = const.

( �h

�L

) 1
m

, (1.2)

or the Forchheimer law
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�h

�L
= aq + bq2 , (1.3)

where the positive multiplicative constants and the exponent m ∈ (1, 2] are to be
determined empirically. Note that the turbulence often occurs for reasonable and
realistic fluxes in practice in the case of coarse porous materials such as gravel or
fractured impermeable media with sufficiently wide fractures. A thorough historical
survey of development constitutive laws and their history is presented in [8].

With increasing demand on water supply, crystalline rock (or hard rock) aquifers
are gaining attention in the last decades [29, 60]. By crystalline rock (or hard rock),
we mean impermeable rocks of igneous or metamorphic origin (of negligible per-
meability) such as, e.g., basalts, granites, or gneisses, where the groundwater flow
occurs only in a system of cracks and fractures. Since the water is stored and flows
only in cracks and fractures, wells and boreholes in the crystalline rock aquifers have
significantly smaller yield as compared to those in porous sedimentary rocks or allu-
vial aquifers. Nevertheless, crystalline rocks of the Precambrian continental shields
occupy approx. 20% of the land surface [29]. Hence, crystalline rock aquifers may
become important source of freshwater in rural areas. More importantly, crystalline
rocks are commonly found in semi-arid areas where they may represent important
source of scarce freshwater. Indeed, continental shields occupy approx. 40% of the
semi-arid areas of the sub-SaharanAfrica [50, 77]. It is estimated that 40%of ground-
water in Australia is stored in the crystalline aquifers [27]. Crystalline aquifers are
intensively exploited by farming communities as a source of freshwater mostly used
for irrigation in semi-arid southern India [57]. Thus, good understanding of the flow
in crystalline aquifers can improve quality of life in these areas. The crystalline rocks
are commonly found in continental shields and massifs also in areas which do not
have lack of precipitations such as Brazil, Canada, and Scandinavia. On one hand,
the crystalline rock aquifers are used for water supply to rural communities in these
areas. On the other hand, there are also large underground construction projects such
as tunnels, mines, nuclear-waste disposal sites, and similar, see [29]. Thus, under-
standing groundwater flow in hard rock aquifers is important not only from the point
of view of water extraction, but also from the point of view of dewatering of these
construction projects.

Hand in hand with climate change, global water cycle intensifies and hydrological
extremes including floods may occur more frequently, see, e.g., [30, 33, 71, 76].
Thus, further research and development of effective drainage systems is needed.
It appears that coarse porous media such as gravel or geosynthetic materials are
suitable for this task, but it turns out that movement of water in these materials is
again governed by the nonlinear Smreker–Izbash–Missbach or Forchheimer law [10,
23].

Recent serious drought events are closely related to ongoing climate changes,
see, e.g., [14, 74, 75] and references therein. Although it may be the case that the
CO2 emissions are not the main reason of global warming, see, e.g., pro et contra
arguments in [11, 46, 47, 61, 62, 70], preference for fossil fuels with lower CO2

emissions will most likely not make the situation worse. Natural gas is a hydro-
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carbon gas mixture consisting primarily of methane (CH4), and thus has the most
favorable ratio between carbon and hydrogen in terms of emission reduction of all
fossil fuels. For comparison, the amount of CO2 produced by burning natural gas to
get a unit of energy is a half that of black coal (117 lb CO2 per 1 million Btu ver-
sus 205–228.6 lb CO2 per 1 million Btu) according to the U.S. Energy Information
Administration (see [72]). With geographically narrowly localized conventional gas
fields, unconventional deposits (e.g., shale gas deposits) are now increasingly being
opened worldwide to meet increasing demand. In order to better exploit valuable
natural resources, one needs good mathematical models. Natural gas flow in the rock
is a very complicated process which involves heat exchange with collector rock and
may involve turbulence. One of the first to develop satisfactory mathematical models
of non-stationary flow of natural gas in a collector rock of a conventional gas field
was Leibenson [48].

It turns out that the archetypal parabolic partial differential equation

∂v

∂t
− div

(|v|l |∇v|p−2∇v
) = f (x, t) (1.4)

is a suitable model for all above situations of the fluid flow in porous medium. Note
that (1.4) becomes Leibenson’s equation of filtration of a polytropic gas in a porous
strata for 3/2 < p ≤ 2, l > 0, see Sect. 3, and equation for the water table in an
unconfined aquifer for 3/2 ≤ p ≤ 2, l = 1, see Sect. 2. Note that the case p = 2
corresponds to laminar flow in both Leibenson’s equation and the water table equa-
tion, while the case p = 3/2 corresponds to a flow with fully developed turbulence.
Most importantly, for practical considerations, the intermediate case 3/2 < p < 2
corresponds to a flow with some effects of turbulence. Moreover, (1.4) with l = 1 and
2 < p < 10 is also model of fluid flow in nanoporous media (see [54]). Note that
such type of gas filtration occurs in the shale deposits, whose importance in natural
gas extraction has recently increased significantly.

2 Basic Terminology in Hydrology

2.1 Porous Medium

The attempt to formulate an exact definition of porous medium brings many pitfalls,
see Bear [6, Sects. 1.2 and 1.3]. We adopt the conceptual model presented in [6,
Sects. 1.3 and 4.5.2]. Moreover, we restrict ourselves to the case where a portion of
space (domain from mathematical point of view) is occupied by two homogeneous
kinds of matter. Solid phase (say rock) forms a rigid container for fluid phase. The
space occupied by solid phase is called solid matrix and the space filled by fluid
phase is called pore space. Porous medium contains solid matrix and pore space in
any sufficiently large subdomain (but still much smaller than the whole domain). In
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fact, the pore space includes many relatively narrow channels or tubes of various
length, cross-section, and orientation. We call a junction the part of void space where
at least three channels meet each other. The channels and the junctions have more or
less uniform spatial distribution.

In the case of fluid flow, we can assume that any two points in pore space may be
connected by a curve that lies completely within it since there is no flow in isolated
pores (subsets of pore space). Consequently, the isolated pores are considered as the
part of solid matrix, see [6, Sect. 1.2]. The remaining pore space (interconnected by
channels) is usually called effective pore space. We will assume that the pore space
includes only effective pore space for simplicity and hence we will omit the term
“effective”.

2.2 Groundwater

Typical porous media considered in hydrogeology are soils, sands, gravels, porous
rocks such as sandstones, and fractured crystalline rocks such as basalts, granites,
and gneisses. In general, the pore space of these porous media can be filled by air,
vapor, and liquid phase of water. Part of the porous medium where all pores are
filled by the water in liquid phase is called saturated zone and the part where the
pores contain gaseous phase (air and vapor) and also liquid phase (of water) for at
least part of the time is called aeration zone. For the purposes of this paper, the term
groundwater is limited to the water present beneath Earth’s surface in the saturated
zone. Mathematical models presented in this paper are restricted to the motion of
water in saturated zone.

2.3 Aquifer

Note that the saturated zone can be either overlain by an impermeable layer (of rock
or clay) or it can have a free upper surface, which is calledwater table. Thewater table
is characterized as a surface where the pressure is equal to the atmospheric pressure.
An aquifer is such saturated zone which allows groundwater flow. The aquifer with
the free upper surface is called unconfined aquiferwhile the aquifer enclosed between
two impermeable layers is called confined aquifer. In the presented paper, we are
interested in groundwater flow through unconfined aquifer.

2.4 Velocities and Flux

The real velocity of the groundwater in the porous medium is highly and unpre-
dictably fluctuating in space and time due to irregularity of the channels and their
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Fig. 1 Flow through porous medium. (a) specific discharge (or Darcy velocity) versus (b) stream-
lines of the real velocity field of the fluid

joints (and due to turbulence for high values of the Reynolds number). Thus, the real
velocity is useless for the practical purposes. Instead, average velocity (which can be
measured in practice) is used. Let us choose Cartesian coordinate system xyz, with
z being the vertical axis. Now, let us consider cross-sectional area Ax perpendicular
to x-axis. Let Qx be the volume of water that passes through Ax per unit of time.
The sign of Qx is positive, if the water (in bulk) passes through Ax in the direction
of axis x and negative otherwise. Then

qx
def= Qx

Ax
.

In analogous way, we define qy and qz . Then, �q=(qx , qy, qz) and q=
√
q2
x + q2

y + q2
z .

The quantity �q is called specific discharge orDarcy velocity. We also define average

velocity �v = �q/n, where n is porosity. Similarly, v
def= |�v| = q/n. This approach

works for any incompressible fluid (Fig. 1).

2.5 Groundwater Energy and Piezometric Head

The total mechanical energy of a unit volume of groundwater (or any other incom-
pressible fluid) is the sum of gravitational potential energy, pressure energy, and
kinetic energy

ET = z�g + P + 1

2
�v2,

see, e.g., [59]. Here, v stands for the magnitude of average velocity of the flow, see
above. Groundwater is losing total energy while flowing due to friction with porous
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medium. Thus, its total energy decreases in the direction of the flow. The total head
hT is the height of the fictive column of groundwater with the gravitational potential
energy equal to ET , i.e.,

hT = z + P

�g
+ 1

2 g
v2 .

Since the average velocity of the groundwater flow in real situations is maximally of
the order of ameter per day (that is, of the order 0.00001m/s), the term corresponding
to kinetic energy is negligible and can be dropped. In this way, we obtain piezometric
head

h = z + P

�g
,

which is the state variable in the mathematical models of underground move-
ment. Constitutive relations between specific discharge and piezometric head were
observed by in-field observations [67] as well as experimentally established in lab-
oratory conditions [15]. In general (for isotropic medium), these relations can be
written as

q = �

( �h

�L

)
,

where � is some nondecreasing function such that �(0) = 0. Note that the constitu-
tive laws are inferred from experiments for one-dimensional flow. However, ground-
water flow in the real world is three dimensional. The properties of the isotropic
porousmediumare the same in all directions. Thus, in this case, the three-dimensional
constitutive law can be inferred from the one-dimensional one in a straightforward
manner, taking into account that the specific discharge takes the opposite direction
of the gradient of the piezometric head and no flow occurs if the gradient of the
piezometric head is zero, i.e.,

�q =

⎧⎪⎨
⎪⎩

�0 for ∇h = �0 ,

−�(|∇h|) ∇h

|∇h| for ∇h �= �0 .
(2.1)

In particular, we obtain the linear Darcy law (1.1) for

�(r) = k r , r > 0 , (2.2)

the Smreker–Izbash–Missbach power law (1.2) for

�(r) = cr
1
m , r > 0 , (2.3)

1 < m < 2, inverse Forchheimer law (inverse formula to (1.3)) for
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�(r) =
√
a2 + 4br − a

2b
= 2 r√

a2 + 4br + a
, r > 0 . (2.4)

It has been observed byKing [45] that the flow ofwater in low-permeable clays obeys
(2.3) with 0 < m < 1. The work [68, p. 239] contains an overview of values ofm for
various materials where m ranges from 0.27 to 0.89 (note that 1/m = n, exponent
n taken from [68, Table (A), Appendix I, p. 239]). Recently, it has been found that
very slow filtration (i.e., 0 < m < 1) occurs in petroleum and gas extraction from
tight shales reservoirs. For laboratory experiments with real fluids and media, see
[25, 63].

2.6 Problem of the Free Surface, the Dupuit–Forchheimer
Assumption, and Simplified Problem

In the case of unconfined aquifers, the free surface of the groundwater is the upper
boundary of the aquifer. Thus, we need to solve a partial differential equation for
both an unknown h = h(x, y, z, t) and an unknown bounded domain � ≡ �(t) in
R

3 that represents the aquifer.
In 1863, Dupuit [21] simplified the problem of unknown boundary by observing

that the maximal piezometric head loss per length �h/�L is between 0.001 and
0.01 in typical unconfined aquifers and unconfined aquifer is bounded from below
by horizontal impermeable layer. Based on these observations, he formulated the
following assumptions on the flow:

(DF1) groundwater flows horizontally (and thus piezometric head is constant in
vertical direction z) and

(DF2) the Darcy law (1.1) applies to this flow (Dupuit assumed that the ground-
water flow is slow enough at these values of piezometric head loss per length so
that the nonlinear effects can be neglected).

We will derive a simplified model of groundwater flow in unconfined aquifer using
the assumption (DF1). We also assume that the lower boundary of the aquifer
formed by impermeable layer is the xy-plane. We choose � a bounded domain
in R

2 such that orthogonal projection to �(t) to the xy-plain is contained in �

for every t ∈ [0, T ]. We remind that for a fixed x, y, t , the point (x, y, z) belongs
to the water table if and only if h(x, y, z, t) = z. In case there is no water above
(x, y) ∈ � at t , we extend the definition of the water table to contain the point
(x, y, 0). We assume that the water table is the graph of a function of x , y, and t , that
is, there exists nonnegative and sufficiently smooth function H : R

2 × [0, T ] → R

such that h(x, y, H(x, y, t), t) = H(x, y, t). Then the mass of the water column
stacked above arbitrary two-dimensional disk A ⊂ � at time t is

mA(t) =
∫
A
n �water H(x, y, t)dxdy .
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Hence, the integral form of mass conservation law for water (or any other incom-
pressible fluid) has the following form:

mA(t2) − mA(t1) +
∫ t2

t1

∫
∂A

H(x, y, t) �j(x, y, t) · �n ds =
∫ t2

t1

∫
A
f (x, y, t) dxdydt ,

(2.5)
where �j = n �water �v = �water �q is the mass flow, �n is normal vector of ∂A, and f
quantifies the sources or absorption in column over the point (x, y) at time t . Let us
recall that �j(x, y, z, t) = �j(x, y, t) by the assumption (DF1).

UsingmA(t2) − mA(t1) = ∫ t2
t1
m ′

A(t) dt = ∫
A

∫ t2
t1
n �water

∂H
∂t (x, y, t) dtdxdy , and

the divergence theorem on the second term in (2.5), we arrive at

∫
A

∫ t2

t1
n �water

∂H

∂t
(x, y, t) dtdxdy −

∫ t2

t1

∫
A
div (H(x, y, t)�water �q) dxdydt =

∫ t2

t1

∫
A
f (x, y, t) dxdydt .

Since the integral identity is valid for any test disk A ⊂ � and any interval [t1, t2] ⊂
[0, T ], we infer the local form of the mass conservation law

n
∂H

∂t
(x, y, t) − div (H(x, y, t) �q) = f (x, y, t)

�water

a.e. in � × [0, T ]. Since h(x, y, ·, t) ≡ const. by the assumption (DF1) and h(x, y,
H(x, y, t), t)=H(x, y, t) on the water table, h(x, y, z, t) ≡ h(x, y, t)=H(x, y, t)
and

n
∂h

∂t
(x, y, t) − div (h(x, y, t) �q) = f (x, y, t)

�water
. (2.6)

By (DF2), we apply the Darcy law, i.e., (2.1) with (2.2) to conclude

∂h

∂t
− k

n
div (|h| ∇h) = f (x, y, t) (2.7)

with a little bit of abuse of notation (“hiding” multiplicative constants into f ). Note
that we can assume that k/n = 1 since we can get rid of this multiplicative constant
by a linear substitution in the time variable.

Based on numerous experiments and in-field observations summarized in [26],
Ph. Forchheimer [26, see p. 1782 and “Anhang,” pp. 1787–1788 ] pointed out that the
assumption (DF2) (i.e., the Darcy law (1.1)) is not accurate enough for piezometric
head loss per length greater than 0.0005 for certain porous media (sands) and thus
(1.3) has to be used instead while the assumption (DF1) is still applicable. Following
Forchheimer, we apply Forchheimer law, i.e., (2.1) with (2.4) to conclude

∂h

∂t
− 1

n
div

(
2 |h| ∇h√

a2 + 4b|∇h| + a

)
= f (x, y, t) . (2.8)
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Or alternatively, we apply Smreker–Izbash–Missbach law, i.e., (2.1) with (2.3) to
conclude

∂h

∂t
− c

n
div

(|h| |∇h|p−2 ∇h
) = f (x, y, t) , (2.9)

where p = 1 + 1/m. It turns out that the equation (2.9) is easier to handle both
theoretically and computationally and thus it is preferred in the literature.

3 Leibenson’s Equation and Flow of the Natural Gas

Following Leibenson [49], we assume that the porous medium is nondeformable,
isotropic, and homogeneous at macroscopic scale with constant porosity n and the
gas is a homogeneous mixture. The condition on the gas ensures that its density
depends on the pressure only. We also suppose that the examined thermodynamic
process is polytropic, i.e., it obeys the following relation:

P

�γ
= βγ . (3.1)

Here, x ∈ R
3, � = �(t, x) is the density, P = P(t, x) is the pressure, γ > 1 is the

polytropic index of the process, and β > 0 is a constant. The flow of the gas (as of
any fluid) in the porous medium is governed by continuity equation in the form

n
∂�

∂t
+ div (��q) = 0 (3.2)

and an appropriate constitutive law which relates specific discharge �q = n�v and
pressure gradient ∇P . Specific discharge is volumetric flux per unit area and the
term ��q represents mass flux per unit area. We refer to [6, Sect. 6.2] for derivation of
(3.2) for homogeneous mixture.

For compressible fluid, the specific discharge �q does not provide relevant infor-
mation and mass flux must be used instead. In this way, a similar power law for
compressible gas subjected to polytropic process,

��q = −C |∇P1|s−1 ∇P1 ,
1

2
< s < 1 , (3.3)

was experimentally established, where P1 = P (γ+1)/γ (see Leibenson [49]).
Plugging (3.3) into (3.2), we obtain

n
∂

∂t

⎛
⎝ P

1
γ+1

1

β

⎞
⎠ − C div

(|∇P1|s−1∇P1
) = 0
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by (3.1). This equation is often called the equation of turbulent polytropic filtration
of gas in porous medium and it has attracted attention of many researches, see, e.g.,
[4, 17, 19, 20, 24, 36].

4 Turbulence in Porous Medium and Real-World
Observations

The turbulence in porousmediumwas probably first conjectured from the experimen-
tally established deviations from the Darcy law by Pavlovskii [56], who proposed to
use the Reynolds number for the distinction of the validity range of the linear Darcy
law from the validity range of nonlinear laws. He also observed that formula for the
Reynolds number in the porous mediummust be different than the one for a pipe. He
proposed a definition suitable for grained porous media (e.g., sand or gravel) formed
of grains of approximately the same diameter. His formula reads

Re = 6.5 q d ρ

μ (0.75 n + 0.23)
,

where d is effective diameter of the grain, ρ is density of the incompressible fluid
(water), and μ is its dynamic viscosity. For this definition of Reynolds number, it
follows from the experiments that the Darcy law (2.2) is valid if the value of Re is
approximately below 50 to 60 (the boundary between the two cases is somewhat
blurred) and, for higher values of Re, the Smreker–Izbash–Missbach law (2.3) with
1 < m < 2 or the Forchheimer law (2.4) must be used instead. According to V. I.
Aravin and S. N. Numerov [1, p. 4 and p. 33], this was the first time in [56] when such
specification of ranges of the Reynolds number appears in the literature. As pointed
out in [1, p. 33], the value of the Reynolds number when the Darcy law becomes
inaccurate does not have to be the same as the critical value of the Reynolds number
when the turbulence in the flow occurs. Nowadays, it is known that there are at least
three ranges of Reynolds number with three different laws:

• pre-Darcy law (2.3) with 0 < m < 1 for very low values of the Reynolds number;
• Darcy law (2.2) for moderate values of the Reynolds number;
• post-Darcy law (2.3) with 1 < m < 2 or (2.4) for high values of the Reynolds
number.

To get the picture complete, experimental study of flow through porous media over
the complete flow regime is presented in, e.g., [2, 3, 66, 68].

Since the constitutive law can become nonlinear even in the laminar regime (as
pointed out by [1, p. 33]), we are often asked at conferences if the turbulence in the
flow through the porous medium was indeed observed in the laboratory. The modern
laboratory techniques can indeed capture the structure of turbulent vortexes, see the
recent paper [78].
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5 Functional Framework

In this section we survey relevant existence, uniqueness and regularity results con-
cerning generalized solutions of doubly nonlinear parabolic equations. There are
several approaches to generalized solutions of (singular/degenerate) doubly nonlin-
ear parabolic equations, see, e.g., [16, 18, 22, 36, 52]. For our purposes, we chose
the least technical approach presented in the survey paper by Ivanov [36] (for the
complete proofs of results surveyed in [36], see [35, 37] for p > 1 and [38] for
p > 2).

Let� be a bounded domain inR
N , N ≥ 1, and T > 0.We assume that� hasC0,1-

boundary (i.e., Lipschitz boundary) ∂�, see [58]. Then QT
def= � × (0, T ], ST def=

∂� × [0, T ] and �T
def= ST ∪ (� × {0}). We will use standard function spaces for

parabolic problems and, for the convenience of the reader, their traditional notation,
which is often different from the notation used in [36]. By C ([0, T ] → Lq (�)),
for q ≥ 1, we denote the space of all measurable functions v on QT such that the
mapping t �→ v( · , t) acting from [0, T ] to Lq (�) is continuous, i.e.,

lim
n→+∞ |tn − t | = 0 ⇒ lim

n→+∞ ‖v( · , tn) − v( · , t)‖Lq (�) = 0

for every sequence {tn}+∞
n=1, tn ∈ [0, T ] and t ∈ [0, T ].

By L p
([0, T ] → W 1,p(�)

)
, we mean a space of all measurable functions on QT

such that v( · , t) ∈ W 1,p(�) for a.e. t ∈ [0, T ] and

‖v‖L p([0,T ]→W 1,p(�))
def=

(∫ T

0
‖v( · , t)‖p

W 1,p(�)
dt

)1/p

< +∞ .

Note that if v ∈ L p
([0, T ] → W 1,p(�)

)
then the trace of v( · , t) on ∂� is defined

for a.e. t ∈ [0, T ].
Finally, by Cλ,λ/p(QT ) we mean a space of all continuous functions v on QT

such that

‖v‖Cλ,λ/p(QT ) = max
(x,t)∈QT

|v(x, t)| + sup
(x,t),(y,s)∈QT

(x,t)�=(y,s)

|u(x, t) − u(y, s)|
|x − y|λ + |t − s|λ/p

< +∞ .

We consider the prototype initial-boundary-value problem

{ ∂v

∂t
− div �a(x, t, v,∇v) = f (x, t) in QT ;

v = ψ on �T ,
(5.1)

where f ∈ L∞(QT ), and ψ ∈ Cλ,λ/p(QT ) such that ψ̂
def= ψl/(p−1)+1 ∈ L p([0, T ] → W 1,p(�)

)
, are given functions.
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The following structural hypotheses on the Carathéodory function �a are assumed
for a.e. (x, t) ∈ QT and any s ∈ R and any �r ∈ RN :

�a(x, t, s, �r) · �r ≥ ν0 |s|l |�r |p − μ0
(
1 + |s|δ) , (5.2)

|�a(x, t, s, �r)| ≤ ν1 |s|l |�r |p−1 + μ1 |s|l/p . (5.3)

Here p > 1, l ≥ 0, ν0, ν1 > 0, and μ0,μ1 ≥ 0 are certain given constants. Moreover,
0 ≤ δ < l + p is given constant for l + p > 2 and δ = 2 for 1 < l + p ≤ 2. Note
that these structural assumptions are satisfied in the particular case of the equation
(1.4).

Note that � with Lipschitz boundary satisfies the following structural hypothesis
from [36] (so-called property of positive geometric density) on the boundary ∂�:

∃α∗ ∈ (0, 1) ∃�∗ > 0 ∀x0 ∈ ∂� ∀ρ ∈ (0, �∗] : meas
(
� ∩ B� (x0)

) ≤ (1 − α∗)meas
(
Bρ (x0)

)
.

(5.4)

From [36, Def. 1.1 and Def. 2.1], we adapt the following notion of weak solution.

Definition 1 A nonnegative function v ∈ L∞(QT ) is a weak solution (supersolu-
tion, subsolution) if

(a) v ∈ C
([0, T ] → L1(�)

)
,∂vσ+1/∂xi ∈ L p(QT ) forσ

def= l/(p − 1), i = 1, . . . ,

N , and v̂
def= vσ+1 ∈ L p

([0, T ] → W 1,p(�)
)
.

(b) for any φ ∈ C1
0(QT ) and any t1, t2 ∈ [0, T ],

∫
�

v φ dx

∣∣∣∣
t2

t1

+
∫ t2

t1

∫
�

{
−v

∂φ

∂t
+ �a(x, t, v, �vx ) · ∇φ − f φ

}
dxdt = 0 , (5.5)

(φ ≥ 0, for supersolution:≥ 0, for subsolution:≤ 0), where �vx def= (vx1 , vx2 , . . . ,

vxN ) and

vxi
def=

⎧⎨
⎩

(1 + σ)−1v−σ ∂v̂

∂xi
in {(x, t) ∈ QT : v > 0} ,

0 in {(x, t) ∈ QT : v = 0} .

(5.6)

(c) v coincide with ψ on �T , that is,

v = ψ on ST in the sense of vσ+1trace ; (5.7)

lim
t→0+ ‖v( · , t) − ψ( · , 0)‖L1(�) = 0 . (5.8)

This definition makes sense, cf. [36, p. 24], in the general case p > 1, l > 1 − p.
However, we limit ourselves to p > 1 and l ≥ 0, which are values that appear in our
models. Note that the conditions (5.7) and (5.8) do not appear in [36, Definition 2.1]
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explicitly, however, they are mentioned in previous works by the same author, see,
e.g., [38, Definition 1.2].

The following result is a basic weak comparison principle for the weak sub-
and supersolutions of the doubly nonlinear equation from the initial-boundary-value
problem (5.1).

Proposition 1 cc(see [36, Prop. 4.1]) Let the assumptions (5.2), (5.3) be fulfilled.
Assume that v1 ∈ L p

([0, T ] → W 1,p(�)
)
is a subsolution of the equation

∂v

∂t
− div �a(x, t, v,∇v) = f1(x, t) in QT , (5.9)

and v2 ∈ L p
([0, T ] → W 1,p(�)

)
is a supersolution of the equation

∂v

∂t
− div �a(x, t, v,∇v) = f2(x, t) in QT , (5.10)

where f1, f2 ∈ L∞(QT ). If

v1 ≤ v2 on �T (in the sense of traces) , and f1 ≤ f2 in QT (5.11)

then, for any τ ∈ (0, T ], we have
∫

�

(v1(x, τ ) − v2(x, τ ))+ dx ≤
∫

�

(v1(x, 0) − v2(x, 0))
+ dx . (5.12)

From this proposition, we easily obtain uniqueness of weak solutions in the class
L p

([0, T ] → W 1,p(�)
)
.

Proposition 2 (see [36, Prop. 4.2]) Let assumptions (5.2), (5.3) be fulfilled. Then
there is atmost oneweak solution of the initial-boundary-value problem (5.1) belong-
ing to L p

([0, T ] → W 1,p(�)
)
.

Note that in the case of the doubly nonlinear equation, aweak solution v is assumed
to satisfy vσ+1 ∈ L p

([0, T ] → W 1,p(�)
)
for σ = l/(p − 1), which reduces to v ∈

L p
([0, T ] → W 1,p(�)

)
provided l = 0. For l �= 0, weak solutions to (5.1) do not

need to be of class L p
([0, T ] → W 1,p(�)

)
, in general. Note that if infQT v > 0 then

vσ+1 ∈ L p
([0, T ] → W 1,p(�)

)
implies v ∈ L p

([0, T ] → W 1,p(�)
)
.

Proposition 3 (see [36, Theorems 5.3 and 6.1]) Let p > 1 and either

l ≥ 0 , p + l ≥ 2

or
1 < p + l ≤ 2 .

Moreover, assume
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� ⊂ R
N is a bounded domain satisfying (20) , (5.13)

f ∈ L∞(QT ) , f ≥ 0 a.e. in QT , (5.14)

ψ ∈ L p
(
[0, T ] → W 1,p

0 (�)
)

∩ Cβ,β/p(QT ) , ψ ≥ 0, for some β ∈ (0, 1). (5.15)

Then there exists exactly one quasi-strong solution of the Cauchy–Dirichlet prob-
lem { ∂v

∂t
− div

(|v|l |∇v|p−2∇v
) = f (x, t) in QT ;
v = ψ on �T ,

which is Hölder continuous on QT .
Moreover, ∇ (

vα+1
) ∈ L p(QT ), with α = l/p, and

sup
(x,t),(x ′,t ′)∈QT

|v(x, t) − v(x ′, t ′)|
|x − x ′|λ + |t − t ′|λ/p

≤ K

with some λ ∈ (0, 1), K > 0 depending only on N, p, l, ‖ f ‖L∞(QT ),meas�, T , α∗,
and ρ∗ (from condition (5.4)), ‖ψ‖

L p
(
[0,T ]→W 1,p

0 (�)
), ‖ψ‖Cβ,β/p(QT ), and β ∈ (0, 1).

Proposition 4 (see [36, Theorem 3.1]) Let 1 < p < 2, p + l ≥ 2 and assume that
the structural conditions (5.2) and (5.3) are satisfied. Moreover, suppose that

(a) for a.e. (x, t) ∈ QT and any s ∈ R there exist ν1 > 0 and �b = �b(x, t, s) ∈ R
N ,

|�b(x, t, s)| < +∞, such that for a.e. (x, t) ∈ QT and all s ∈ R and �r1 , �r2 ∈ R
N

[�a(x, t, s, �r1) − �a(x, t, s, �r2)] · (�r1 − �r2) ≥ ν1|s|l |�r1 − �r2|2
{
|�r1 − �b|p + |�r2 − �b|p

}1− 2
p

holds.
(b) for a.e. (x, t) ∈ QT and any �r ∈ R

N , the functions s−αai (x, t, s, �r) and
s−αai (x, t, s, s−α�r) are continuous on R with respect to s. Here α = 1/p.

(c) ψ(x, t) is nonnegative in QT ,ψ ∈ L p
(
[0, T ] → W 1,p

0 (�)
)

∩ L∞(QT ), and we

have the Hölder condition

sup
(x,t),(x ′,t ′)∈QT

|ψ(x, t) − ψ(x ′, t ′)|
(|x − x ′|p + |t − t ′|)γ0/p ≤ K0

for some K0 > 0 and γ0 ∈ (0, 1).

Then there exists a weak solution v of the Cauchy–Dirichlet problem (5.1) which is
Hölder continuous in QT .Moreover,∇(vα+1) ∈ L p(QT ),α = 1/p, and the estimate

sup
(x,t),(x ′,t ′)∈QT

|v(x, t) − v(x ′, t ′)|
(|x − x ′|p + |t − t ′|)γ/p

≤ K
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holds with constants K > 0 and γ ∈ (0, 1) dependent only on the dimension N,
the known parameters from (5.2), (5.3), a)–b), the constants α∗ and �∗, |�|, T ,
‖ψ‖W 1,p(QT ), supQT

(ψ), γ0, and K0.

The following result stated in [38] guarantees the existence of a solution of (5.1)
with time-dependent boundary conditions. Let us emphasize that the result is valid
only for p > 2. As far as we know, a similar result has not been proved for 1 < p < 2
yet. In Proposition 5, we use Einstein’s summation convention as in [38].

Proposition 5 (see [38, Theorem 1.1]) Let p > 2 and assume that the structural
conditions (5.2) and (5.3) are satisfied. Moreover, suppose that

(a) for any s ∈ R, �r1, �r2 ∈ R
N and a.e. (x, t) ∈ QT ,

(ai (x, t, s, �r1) − ai (x, t, s, �r2)) · (
r1,i − r2,i

) ≥ ν1|s|l |�r1 − �r2|p

with ν1 = const. > 0.
(b) for a.e. (x, t) ∈ QT and all �r ∈ R

N , the limit

lim
s→0+ s−αai

(
x, t, s, s−α �r )

, α = l

p
,

exists.
(c) for any �r ∈ R

N and a.e. (x, t) ∈ QT ,

ai (x, t, s, �r)ri − f (x, t)s > −c1s
2 , c1 = const. > 0 ,

for all s < 0.
(d) concerning the functionψ(x, t), (x, t) ∈ QT , defining the boundary condition in

(5.1),ψ(x, t) ≥ 0,ψ ∈ W 1,p(QT ) ∩ L∞(QT ) andwe have theHölder condition

sup
(x,t),(x ′,t ′)∈QT

|ψ(x, t) − ψ(x ′, t ′)|
(|x − x ′|p + |t − t ′|)γ0/p ≤ K0

for some K0 > 0 and γ0 ∈ (0, 1).

Then problem (5.1) has at least one nonnegative weak solution v(x, t) for which

sup
(x,t),(x ′,t ′)∈QT

|v(x, t) − v(x ′, t ′)|
(|x − x ′|p + |t − t ′|)γ/p

≤ K

holds with K > 0 and γ ∈ (0, 1).
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6 Maximum and Comparison Principles

In case of singular and/or degenerate parabolic equations, it is impossible to find
explicit solutions except for very rare cases, thus we heavily rely on qualitative
methods of their study combined with numerical computations.Maximum and com-
parison principles play a prominent role among the qualitative methods. To remind
what maximum and comparison principles are, let us start with the well-known ellip-
tic Dirichlet Laplacian problem. Let ui ∈ W 1,2(�), i = 1, 2, be the weak solutions
of

−�ui = fi (x) in �,

fi ∈ L∞(�), in a bounded domain � ⊂ R
N . The weak comparison principle states

that if f1 ≤ f2 in � and u1 ≤ u2 on ∂� (in the sense of traces) then u1 ≤ u2 in �.
The strong comparison principle states that if, moreover, f1 �≡ f2 in � or u1 �≡ u2
on ∂� then u1 < u2 in �. In particular, the strong comparison principle says that
f1 < f2 in a small part of� of positive measure (and f1 ≡ f2 elsewhere) is sufficient
to have u1 < u2 everywhere in �.

Similar principles hold for the parabolic Cauchy–Dirichlet Laplacian problem.
Let ui ∈ L2

([0, T ] → W 1,2(�)
)
, i = 1, 2, be the weak solutions of

∂ui
∂t

− �ui = fi (x, t) in QT ,

fi ∈ L∞(QT ).Notice that this equation is a special case of (5.1)with �a(x, t, s, �r) = �r
satisfying both (5.2) and (5.3) with p = 2. If f1 ≤ f2 in QT and u1 ≤ u2 on �T (in
the sense of traces) then u1 ≤ u2 in QT (weak comparison principle, cf. Proposition
1). If, moreover, at least one of the following three conditions holds:

• f1 �≡ f2 in � × (0, t0) whenever 0 < t0 ≤ T ,
• u1 �≡ u2 on � × {0} (in the sense of traces),
• u1 �≡ u2 on ∂� × (0, t0) (in the sense of traces) whenever 0 < t0 ≤ T ,

then u1 < u2 in QT (strong comparison principle).
For the linear case p = 2, it is usual to prove themaximum principles first since the

comparison principles come forth as a consequence. Let u ∈ L2
([0, T ] → W 1,2(�)

)
be the weak solution of

∂u

∂t
− �u = f (x, t) in QT ,

f ∈ L∞(�). Theweakmaximum principle states that if f ≥ 0 in QT then u ≥ M
def=

ess inf
�T

u (in the sense of traces) in QT . We note that although it would make more

sense to call this statement a minimum principle and to call a maximum principle
that f ≤ 0 implies u ≤ ess sup

�T

u, these two are equivalent (we get one from the

other replacing u by −u) and thus we use only the term maximum principle. The
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strongmaximum principle states that if, moreover, at least one of the following three
conditions holds:

• f �≡ 0 in � × (0, t0) whenever 0 < t0 ≤ T ,
• u �≡ M on � × {0} (in the sense of traces),
• u �≡ M on ∂� × (0, t0) (in the sense of traces) whenever 0 < t0 ≤ T ,

then u > M in QT .
Once themaximum principle (weak or strong) is proved, the comparison principle

(weak or strong, respectively) is easily obtained choosing u = u2 − u1 (thus M ≥ 0)
and f = f2 − f1. Notice that the linearity of the left-hand side of the equation is
used. Conversely, if we have the comparison principle in our hands, the respective
maximum principle can be derived choosing u1 ≡ M , f1 ≡ 0, u2 = u and f2 = f
(no linearity is used here).

Let us now replace the Laplacian by the p-Laplace operator

�pu
def= div

(|∇u|p−2∇u
) = div �a(x, t, u,∇u) ,

p > 1,where �a(x, t, s, �r) = |�r |p−2�r satisfies both (5.2) and (5.3). Similarly as above,
the comparison principle implies the respective maximum principle. But since the
operator is nonlinear, the maximum principle does not imply the comparison princi-
ple. In other words, the maximum principle is weaker because it is only a comparison
with the constant solution. Moreover, the uniqueness of the weak solution is a conse-
quence of the weak comparison principle (cf. Proposition 2) but not a consequence
of the maximum principle.

As for the elliptic Dirichlet p-Laplacian problem for

−�pu = f (x) in �,

both the weak maximum and the weak comparison principle can be proved in a
standard way choosing an appropriate test function. Basically, the weak comparison
principle states that the p-Laplacian is a monotone operator. The strong maximum
principle was proved by Vázquez in 1984 [73]. The strong comparison principle was
proved by Cuesta and Takáč in 1998 [12] provided 0 ≤ f1 ≤ f2, f1 �≡ f2 and u ≡ 0
on ∂� (they focus on the influence of the right-hand side rather than the boundary
data).

While the weak maximum and the weak comparison principle for the parabolic
Cauchy–Dirichlet p-Laplacian problem for

∂u

∂t
− �pu = f (x, t) in QT (6.1)

is still standard (see Proposition 1), the strongmaximum and comparison principle is
muchmore involvedwhen p �= 2. It follows fromBarenblatt [4] thatwe cannot expect
the strong maximum principle in the degenerate case p > 2 (weak diffusion) even
locally in time. Indeed, an explicit radially symmetric solution u(x, t) ≡ �(|x |, t) =
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�(r, t), r = |x |, of (6.1) with f ≡ 0, is obtained from the well-known Barenblatt
solution of [4, Eq. (1.3)]:

c
∂�

∂t
= 1

r N−1

∂

∂r

[
r N−1

(
∂

∂r
�k

) ∣∣∣∣ ∂

∂r
�k

∣∣∣∣
m−1

]
(6.2)

with m = p − 1, k = 1, and c > 0 a constant. Hence, the case p > 2 corresponds
to k > 1/m. The support of such u (see [4, Fig. 1]) at each particular time is a
compact ball with the radius starting from 0 at t = 0 (the initial condition is the Dirac
distribution located at the origin) and increasing in time at finite speed. Consequently,
if we choose� a ball inR

N and an initial time in which the support of the solution is a
smaller ball (replacing t by t + εwith an ε > 0 small enough in [4]), then u �≡ M = 0
on � × {0} and u �> 0 in QT since u = 0 in a part of � (spherical shell) for positive
times until the support of the solution hits ∂�. Another counterexample to the strong
comparison principle in one spatial dimension where u1 ≡ u2 on �T , f1 ≤ f2, f1 �≡
f2 but u1 �< u2 is presented in [9]. On the other hand, a certain stronger condition
on the separation of f1 and f2 that guarantee the strong comparison principle is
formulated in [9].

Even in the singular case 1 < p < 2 (strong diffusion) the strong maximum prin-
ciple cannot hold for arbitrarily large T . It follows from the extinction in finite time
(see DiBenedetto [19, Sect. 2 of Chap. VII.]) which implies that if u > 0 on� × {0},
u ≡ 0 on ∂� × (0, T ) and f ≡ 0 in �T then u(·, t) vanishes in� for t large enough.
Hence, the strong maximum principle u > M = 0 does not hold globally in time. A
time-local version of the strong maximum principle was proved in [7] for even more
general doubly nonlinear equation

∂

∂t
b(u(x, t)) − �pu = f (x, t) in QT , (6.3)

where b : R+ → R+ is a continuous function, b(0) = 0, and b ∈ C1(0,+∞) with
b′ > 0 in (0,+∞). Notice that if b(s) ≡ s then (6.3) reduces to (6.1).

Theorem 1 (see [7, Theorem 1.1]) Let 1 < p < 2 and

lim
s→0+

s2−p b′(s)
| log s|p−1

= 0 . (6.4)

Assume that u : � × [0, T ) → R+ is a continuous, nonnegative, weak solution of
(6.3). Then, for any fixed t0 ∈ (0, T ), the solution u(·, t0) is either positive everywhere
on � or else identically zero on �.
In particular, if u(ξ, 0) > 0 for some ξ ∈ �, then there exists τ ∈ (0, T ] such that
u(x, t) > 0 for all (x, t) ∈ � × (0, τ ), i.e., the strong maximum principle is valid
in the (N + 1)-dimensional space-time cylinder � × (0, τ ). The number τ ∈ (0, T )

can be estimated as
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τ = sup{T ′ ∈ (0, T ] : u(ξ, t) > 0 for all t ∈ [0, T ′)} > 0 .

Notice that u(x, t) ≡ �k(|x |, t) where � is the Barenblatt solution of (6.2) is
a solution of (6.3) where b(s) = s1/k , p = m + 1, and f ≡ 0. If k ≤ 1/m, i.e.,
k ≤ 1/(p − 1), then the Barenblatt solution is positive everywhere in R

N for any
positive time. In other words, the speed of propagation is infinite, and it is reasonable
to expect at least the time-local strongmaximumprinciple to hold in this case. Indeed,
for b(s) = s1/k the condition (6.4) reads as

lim
s→0+

s1−p+1/k

k| log s|p−1
= 0

which is satisfied if and only if 1 − p + 1/k ≥ 0, i.e., k ≤ 1/(p − 1). Obviously,
condition (6.4) is natural and matches the Barenblatt result perfectly.

7 Basic Models

7.1 Parallel Ditches

Our first model is related to irrigation and drainage. Irrigation is especially impor-
tant in agriculture while drainage is very important in building and construction. We
assume that aquifer is homogeneous, isotropic, and resting on a horizontal imper-
meable layer. Bottom of all ditches reaches the impermeable layer and the water
levels in all ditches are at equal elevation. In our first model, we will consider two
infinite parallel ditches and we will study transient groundwater flow between them
with the possible recharge due to rain. For the sketch of the problem, see the ver-
tical cross-section perpendicular to the ditches in Fig. 2, where we place the axis
x to be perpendicular to the ditches and x = 0 is set to be exactly in the middle
between two ditches. Such problem has been intensively studied in [5, 51, 64, 65]
(and others, see references therein). In the aforementioned works, Darcy law is used
as constitutive law. Following Forchheimer’s observations from [26], we use non-
linear Smreker–Izbash–Missbach law instead. Thus, the governing equation is (2.9),
i.e.,

∂h

∂t
− div

(|h| |∇h|p−2 ∇h
) = f (x, y, t) ≥ 0 . (7.1)

We suppose that the problem is translation invariant with respect to y-axis, i.e.,
a possible recharge is described by f (x, y, t) ≡ f (x, t) ≥ 0. Thus, h(x, y, t) ≡
h(x, t) and Equation (2.9) reduces to

∂h

∂t
− ∂

∂x

(
|h|

∣∣∣∣∂h∂x

∣∣∣∣
p−2 ∂h

∂x

)
= f (x, t) . (7.2)
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The level ofwater in the ditches is supposed to be a constant equal to H . This enforces
the Dirichlet boundary conditions h(±L/2, t) = H . As an initial condition, we can
consider any functionh0(x) such that h0(±L/2) = H and it satisfies some reasonable
additional conditions to be specified later. It will turn out that our assumptions on
the initial condition are more general than those in [5, 51, 64, 65]. We distinguish
two cases, H = 0 (dry ditches) and H > 0 (flooded ditches). Function h0(x) − H
can be thought of as a sudden recharge at t = 0.

Case H = 0. We may directly apply Proposition 3 with l = 1 and

(fully developed turbulent flow)
3

2
< p < 2 (laminar flow)

to obtain the existence and uniqueness of the solution of the Cauchy–Dirichlet prob-

lem (7.2) in QT
def= (−L/2, L/2) × (0, T ]with h(±L/2, t) = 0 and h0(x) such that

h0(±L/2) = 0 whenever there exists an extension ψ of h0 on QT such that (5.15) is
satisfied. Note that such extension exists, e.g., in the case of h0 with h0(±L/2) = 0
being Lipschitz function by the McShane–Whitney extension theorem.

If f ≡ 0 and h0 is Lipschitz continuous with support [x0 − δ, x0 + δ] ⊂ (−L/2,
L/2) and h0(x0) > 0, then we will show that there exists τ ∈ (0, T ) such that
supp h( · , t) ⊂ (−L/2, L/2) for 0 < t < τ . Hence, the solution profile possesses
the finite speed of propagation in the sense of Kalašnikov [44]. We wish to use
some comparison principle. Unfortunately, the quasi-strong solutions obtained from
Proposition 3 do not have to be from L p

([0, T ] → W 1,p(�)
)
and thus Proposition 1

is not applicable. The situation becomes somewhat intricate and different framework
of weak solutions and corresponding weak comparison principle must be used (see
Díaz [16, Theorem 9, p. 329]). The following function is used as supersolution:

x = L
2x = 0x = −L

2

y = 0

y = H

Fig. 2 Perturbed water level
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U (x, t) = 1

(t + τ )λ

[
C − k

|x − x0|p′

(t + τ )
p′

2p−1

]p′

+

with

p′ = p

p − 1
, λ = p

2p2 − 3p + 1
, k =

(
p − 1

p

)2 (
1

2p − 1

) p
p−1

,

and some τ > 0 and C > 0 such that h0(x) ≤ U (x, 0) and

[x0 − δ, x0 + δ] ⊂ suppU ( · , 0) �

(
− L

2
,
L

2

)
.

Then

supp h( · , t) ⊂
(
x0 −

(
C

k

) 1
p′

(t + τ )
1

2p−1 , x0 +
(
C

k

) 1
p′

(t + τ )
1

2p−1

)
.

This means that the water from the localized sudden recharge h0(x) does not reach
any of the shores immediately.

Case H > 0. In contrast, if both the water level in the ditches and the water
table are at constant level H > 0, then the localized sudden recharge h0 − H ≥ 0
with supp(h0 − H) = [x0 − δ, x0 + δ] ⊂ (−L/2, L/2) and h0(x0) > 0 will cause
immediate rise of the water table in the whole aquifer between the ditches. In order
to apply theory fromSects. 5 and 6,we introduce a substitution v(x, t) = h(x, t) − H
and we arrive at

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂v

∂t
− ∂

∂x

(
|v + H |

∣∣∣∣∂v

∂x

∣∣∣∣
p−2 ∂v

∂x

)
= f (x, t) for (x, t) ∈

(
− L

2
,
L

2

)
× (0, T ) ,

v

(
± L

2
, t

)
= 0 for t ∈ (0, T ) ,

v(x, 0) = h0(x) − H for x ∈
(

− L

2
,
L

2

)
.

(7.3)
For any (x, t) ∈ QT , we set

a(x, t, s, r)
def=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

H |r |p−2 r for s < 0 ,

(s + H) |r |p−2 r for s ∈ [0, M] ,

(M + H) |r |p−2 r for s > M ,

(7.4)

where M = ‖h0 − H‖L∞(�) + T ‖ f ‖L∞(QT ). Then a(x, t, s, r) given by (7.4) satis-
fies the assumptions of Proposition 4 with l = 0 and 3

2 < p < 2. Then by Proposi-



Nonlinear Models of the Fluid Flow in Porous Media 37

tion 4, Cauchy–Dirichlet problem (5.1) possesses the unique quasi-strong solution
v ∈ L p([0, T ] → W 1,p(−L/2, L/2)) fora(x, t, s, r)givenby (7.4),ψ ∈ L p([0, T ] →
W 1,p

0 (−L/2, L/2)) is an extension of h0 − H . Since v is a subsolution of (5.9) with
f1 = f and v = ‖h0 − H‖L∞(�) + t‖ f ‖L∞(QT ) is a supersolution of (5.10) with
f2 = ‖ f ‖∞. Thus, by Proposition 1, (0 ≤)v ≤ v ≤ M on QT . It follows that v is
also the weak solution of (7.3). Since

∂v

∂x
= ∂(v + H)

∂x
and (v + H)

1
p−1

∂(v + H)

∂x
= p − 1

p

∂(v + H)
p

p−1

∂x

we may rewrite PDE in (7.3) as

∂v

∂t
−

(
p − 1

p

)p−1 ∂

∂x

⎛
⎝

∣∣∣∣∣
∂(v + H)

p
p−1

∂x

∣∣∣∣∣
p−2

∂(v + H)
p

p−1

∂x

⎞
⎠ = f (x, t) .

Introducing another substitution u = (v + H)p/(p−1) − H p/(p−1), we arrive at

∂

((
u + H

p
p−1

) p−1
p − H

)

∂t
−

(
p − 1

p

)p−1 ∂

∂x

(∣∣∣∣∂u∂x

∣∣∣∣
p−2 ∂u

∂x

)
= f (x, t) , (7.5)

which is in fact (6.3) with b(s) =
(
s + H

p
p−1

) p−1
p − H . Note that b(s) is a contin-

uous function, b(0) = 0, b ∈ C1(0,+∞) with b′ > 0 in (0,+∞), and it satisfies
(6.4) from Theorem 1. Since v ∈ Cγ,γ/p(QT ), u = (v + H)p/(p−1) − H p/(p−1) is a
continuous weak solution of (7.5) (and (6.3)), Theorem 1 guarantees the existence of
τ ∈ (0, T ) such that u(x, t) > 0 for all (x, t) ∈ � × (0, τ ). In particular, for f = 0
this means that localized sudden recharge h0 − H causes the immediate water table
rise in the whole aquifer between the ditches.

Conclusion. In the case of dry ditches (H = 0), the water from a localized sudden
recharge does not reach the shores of the ditches immediately and the boundaries
of the water mound expand toward the ditches with finite speed. In contrast, for the
flooded ditches (H > 0), the localized sudden recharge causes the immediate water
table rise in whole aquifer between the ditches. In the real world, all movements take
place at finite speeds. Thus, the above results should be interpreted as follows: for
H > 0, the water mound expands toward the ditches much faster than for H = 0.

7.2 Isothermic Nanoporous Filtration of Natural Gas

The shales are increasingly gaining importance in natural gas extraction due to their
abundance in the world in comparison with classical gas reservoirs. The size of pores
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and channels in shales is of order of several nanometers which leads to extremely
low permeability and the standard mathematical models fail in this situation, see
[54] for more details. Thus, in [54], the following mathematical model of isothermic
nanoporous filtration of natural gas was proposed (we slightly change their notation
in order not to interfere with ours)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂P

∂t
= ∂

∂x

(
|P(x)|

∣∣∣∣∂P∂x

∣∣∣∣
p−2 ∂P

∂x

)
for (x, t) ∈ (0,+∞) × (0, T ),

P(0, t) = P0 for t ∈ (0, T ),

lim
x→∞ P(x, t) = P for t ∈ (0, T ),

P(x, 0) = P0 for x ∈ (0,+∞),

for 2 < p < 10, P0 ≥ 0, P > 0 being given constants. This model was analyzed
using self-similarity of solutions in [54]. Using themethods of Sect. 5, we can analyze
the problem in situations which are not self-similar including time-varying boundary
conditions, but only on a bounded interval for x . Note that, e.g., if we assume (x, t) ∈
QT

def= (0, L) × (0, T ], for some L > 0, P(0, t) = P0(t) ≥ 0, P(L , t) = PL(t) ≥ 0
for t ∈ [0, T ] and P(x, 0) = Pinit(x) ≥ 0 for x ∈ [0, L] are Lipschitz functions such
that P0(0) = Pinit(0), PL(0) = Pinit(L). Then Proposition 5 guarantees existence of
at least one weak solution on QT = (0, L) × (0, T ] together with a priori bounds on
its Hölder norm.
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Heurich, M.: Influence of selected habitat and stand factors on bark beetle Ips typographus (L.)
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