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Abstract Weconsider themodel of two- or three-dimensional biopixels array,which
can be used for the design of biosensors. The model is based on the system of lattice
differential equations with time delay, describing interactions of biological species of
neighboring pixels. The qualitative analysis includes permanence and extinction of
solutions, stability investigation, bifurcations, and transition to chaos. The stability
conditions are obtained with help of the method of Lyapunov functionals. They are
formulated in terms of the value of time necessary for immune response. Numerical
research is presented with the help of phase portraits, square and hexagonal lattice
plots, and bifurcation diagrams.
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1 Introduction

Nowadays, reaction-diffusion models are used in designing and studies of a lot of
detecting, measuring, and sensing devices. One of the examples is the immunosensor
which is studied here. Such spatial-temporal models are described by the systems of
partial or lattice differential equations.
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The biosensor models are traditionally studied from the viewpoint of their qualita-
tive analysis. Even in case of a small number of spatial elements, they show complex
behavior. In [1], it was shown that the model describes the chemical reaction of two
morphogens (reactants), one of them diffusing within two compartments, results in
“bi-chaotic” behavior. The origin of such chaotic phenomena1 were also explained
with the help of statistics of topological defects [2].

When considering continuously distributed reaction-diffusion models described
by nonlinear partial differential equations, FeigenbaumSharkovskiiMagnitskii bifur-
cation theory can be applied, which results in a subharmonic cascade of bifurcations
of stable limit cycles [3].

The lattice differential equations describe the systems with the discrete spatial
structure, which is more consistent with pixel devices. These equations were also
called earlier by a series of authors as spatially discrete differential equations [4].

Due to [5], a typical lattice differential equation takes the form

u̇ξ = gξ ({uζ }ζ∈Λ), ξ ∈ Λ, (1)

where we consider a lattice Λ ⊂ R
n , which can be presented as a discrete subset

of Rn , consisting of either finite or infinite number of points, which are located in
accordance with some regular spatial structure. The vectors uξ , ξ ∈ Λ are the values
of the state u = {

uξ

}
ξ∈Λ

, calculated at the points of the lattice, and gξ are the right
sides of the equations with the properties enabling us the solution existence.

As a rule, without loss of generality, they consider Λ = Z
n , which is the integer

lattice in R
n . The methods developed can be easily applied to different types of

lattices, namely, the planar rectangular and hexagonal lattice, the crystallographic
lattices in R3.

They pay attention to the notion of delay in lattice differential equations, so-called
delayed lattice differential equations. One of the applications dealing with them is
the investigation of traveling wavefronts and their stability [5]. The main results are
applied to the delayed and discretely diffusive models for the population (see, e.g.,
[6, 7]).

Lattice differential equations are used as models in a lot of applications, for
example, cellular neural networks, image processing, chemical kinetics, material
science, in particular, metallurgy and biology [5, 8]. Lattice models are extremely
attractive from the viewpoint of population dynamics, especially in case of spatially
separated populations [5, 6, 8–11].

There are few reasons requiring consideration of the hexagonal grid instead of
rectangular ones (primarily in image and vision computing). Namely, the equal dis-
tances between neighboring pixels for hexagonal coordinate systems [12]; hexagonal
points are packedmore densely [13]; since the “hexagons are ‘rounder’ than squares”,
the presentation of curves are more consistent with help of hexagonal systems [13];
hence mathematical operations of edge detection and shape extraction are more suc-
cessful when applying hexagonal lattices [14].

1 They call it as “spiral turbulence” [2].
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With the purpose of indexing hexagonal pixels, as a rule, they use two-2 or three-
element3 coordinate systems [15]. Our reasoning will be based on the last one. In
contrary to skewed axes, the use of the cubic coordinates enables us symmetries with
respect to all three axes.

2 Lattice Model of Antibody–Antigen Interaction
for Two-Dimensional Biopixels Array

Let Vi, j (t) be the concentration of antigens, Fi, j (t) be the concentration of antibodies
in biopixel (i, j), i, j = 1, N .
The model is based on the following biological assumptions for arbitrary biopixel
(i, j).

1. We have some constant birthrate β > 0 for antigen population.
2. Antigens are detected, binded, and finally neutralized by antibodies with some

probability rate γ > 0.
3. We have some constant death rate of antibodies μ f > 0.
4. We assume that when the antibody colonies are absent, the antigen colonies are

governed by the well-known delay logistic equation

dVi, j (t)

dt
= (β − δvVi, j (t − τ))Vi, j (t), (2)

where β and δv are positive numbers and τ ≥ 0 denotes delay in the negative
feedback of the antigen colonies.

5. The antibody decreases the average growth rate of antigen linearly with a certain
time delay τ ; this assumption corresponds to the fact that antibodies cannot detect
and bind antigen instantly; antibodies have to spend τ units of time before they
are capable of decreasing the average growth rate of the antigen colonies; these
aspects are incorporated in the antigen dynamics by the inclusion of the term
−γ Fi, j (t − τ), where γ is a positive constant which can vary depending on the
specific colonies of antibodies and antigens.

6. In the absence of antigen colonies, the average growth rate of the antibody
colonies decreases exponentially due to the presence of −μ f in the antibody
dynamics and so as to incorporate the negative effects of antibody crowding, we
have included the term −δ f Fi, j (t) in the antibody dynamics.

7. The positive feedback ηγ Vi, j (t − τ) in the average growth rate of the antibody
has a delay since mature adult antibodies can only contribute to the production
of antibody biomass; one can consider the delay τ in ηγ Vi, j (t − τ) as a delay
in antibody maturation.

2 So called “skewed-axis” coordinate system.
3 It is also known as “cube hex coordinate system”.
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8. While the last delay need not be the same as the delay in the hunting term and
in the term governing antigen colonies, we have retained this for simplicity. We
remark that the delays in the antibody term, antibody replacement term, and
antigen negative feedback term can be made different and a similar analysis can
be followed.

9. We have some diffusion of antigens from four neighboring pixels (i − 1, j),
(i + 1, j), (i, j − 1), (i, j + 1) (see Fig. 1) with diffusion D > 0. Here we con-
sider only diffusion of antigens because the model describes the so-called “com-
petitive” configuration of immunosensor [16]. When considering competitive
configuration of immunosensor, the factors immobilized on the biosensor matrix
are antigens, while the antibodies play the role of analytes or particles to be
detected.

10. We consider surface lateral diffusion (movement of molecules on the surface on
solid phase toward immobilizated molecules) [17]. Moreover, there are works
[18, 19] which assume and consider surface diffusion as an entirely independent
stage.

11. We extend the definition of the usual diffusion operator in case of surface dif-
fusion in the following way. Let n ∈ (0, 1] be a factor of diffusion disbalance.
It means that only nth portion of antigens of the pixel (i, j) may be included in
the diffusion process to any neighboring pixel as a result of surface diffusion.

For the reasoning given,we consider a very simple delayed antibody–antigen com-
petition model for biopixels two-dimensional array, which is based on well-known
Marchuk model [20–23] and using spatial operator Ŝ offered in [24] (Supplementary
information, p. 10)

Fig. 1 Linear lattice
interconnected four
neighboring pixels model,
n > 0 is disbalance constant

Pixel
(i− 1, j)

Pixel (i, j)
Pixel

(i, j− 1)
Pixel

(i, j+ 1)

Pixel
(i+ 1, j)

Dvi−1, j(t)Dnvi, j(t)

Dvi, j+1(t)

Dnvi, j(t)Dvi, j−1(t)

Dnvi, j(t)

Dnvi, j(t)Dvi+1, j(t)
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dVi, j (t)
dt = (β − γ Fi, j (t − τ) − δvVi, j (t − τ))Vi, j (t) + Ŝ{Vi, j },

dFi, j (t)
dt = (−μ f + ηγ Vi, j (t − τ) − δ f Fi j (t)

)
Fi, j (t)

(3)

with given initial functions

Vi, j (t) = V 0
i, j (t) ≥ 0, Fi, j (t) = F0

i, j (t) ≥ 0, t ∈ [−τ, 0),

Vi, j (0), Fi, j (0) > 0.
(4)

For a square N × N array of traps, we use the following discrete diffusion form
of the spatial operator [24]

Ŝ{Vi, j } =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D
[
V1,2 + V2,1 − 2nV1,1

]
i, j = 1

D
[
V2, j + V1, j−1 + V1, j+1 − 3nVi, j

]
i = 1, j ∈ 2, N − 1

D
[
V1,N−1 + V2,N − 2nV1,N

]
i = 1, j = N

D
[
Vi−1,N + Vi+1,N + Vi,N−1 − 3nVi,N

]
i =∈ 2, N − 1, j = N

D
[
VN−1,N + VN ,N−1 − 2nVN ,N

]
i = N , j = N

D
[
VN−1, j + VN , j−1 + VN , j+1 − 3nVN , j

]
i = N , j ∈ 2, N − 1

D
[
VN−1,1 + VN ,2 − 2nVN ,1

]
i = N , j = 1

D
[
Vi−1,1 + Vi+1,1 + Vi,2 − 3nVi,1

]
i ∈ 2, N − 1, j = 1

D
[
Vi−1, j + Vi+1, j + Vi, j−1 + Vi, j+1 − 4nVi, j

]
i, j ∈ 2, N − 1

(5)
Each colony is affected by the antigen produced in four neighboring colonies, two in
each dimension of the array, separated by the equal distanceΔ. We use the boundary
condition Vi, j = 0 for the edges of the array i, j = 0, N + 1. Further, we will use
the following notation of the constant

k(i, j) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

2 i, j = 1; i = 1, j = N ; i = N , j = N ; i = N , j = 1,

3 i = 1, j ∈ 2, N − 1; i ∈ 2, N − 1, j = N ; i = N , j ∈ 2, N − 1;
i ∈ 2, N − 1, j = 1

4 i, j ∈ 2, N − 1

(6)

which will be used in manipulations with the spatial operator (20).
Results of modeling (3) are presented further. It can be seen that the qualitative

behavior of the system is determined mostly by the time of immune response τ (or
time delay), diffusion D, and constant n.
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2.1 Stability Investigation

2.1.1 Steady States

The steady states of themodel (3) are the intersection of the null-clines dVi, j (t)/dt =
0 and dFi, j (t)/dt = 0, i, j = 1, N .

Antigen-free steady state. If Vi, j (t) ≡ 0, the free antigen equilibrium is at E 0
i, j ≡(

0, 0
)
, i, j = 1, N or E 0

i, j ≡
(
0,−μ f

δ f

)
, i, j = 1, N . The last solution does not have

biological sense and cannot be reached for nonnegative initial conditions (19).

When considering endemic steady state E ∗
i, j ≡

(
V ∗
i, j , F

∗
i, j

)
, i, j = 1, N for (3)

we get algebraic system:

(
β − γ F∗

i, j − δvV
∗
i, j

)
V ∗
i, j + Ŝ

{
V ∗
i, j

} = 0,
(

− μ f + ηγ V ∗
i, j − δ f F

∗
i, j

)
F∗
i, j = 0, i, j = 1, N .

(7)

The solutions
(
V ∗
i, j , F

∗
i, j

)
of (7) can be found as a result of solving lattice equation

with respect to V ∗
i, j , and using relation F∗

i, j = −μ f +ηγ V ∗
i, j

δ f

Thus we have to differ two cases.
Identical endemic state for all pixels. Let’s assume there is the solution of

(7) V ∗
i, j ≡ V ∗, F∗

i, j ≡ F∗, i, j = 1, N , i.e., Ŝ
{
V ∗
i, j

}
≡ 0. Then E ∗

i, j =
(
V ∗, F∗

)
,

i, j = 1, N can be calculated as

V ∗ = −βδ f − γμ f

δvδ f − ηγ 2
, F∗ = δvμ f − ηγβ

δvδ f − ηγ 2
. (8)

provided that δvδ f − ηγ 2 < 0.
Nonidentical endemic state for pixels. In the general case, we have an endemic

steady state which is different from (8). It is shown numerically in Appendix B that
it appears as a result of diffusion between pixels D.

At the absence of diffusion, i.e., D = 0, we have only an identical endemic state
for pixels of external layer. At the presence of diffusion,i.e., D > 0, nonidentical
endemic states tends to be identical ones (8) at internal pixels, which can be observed
at numerical simulation. This phenomenon clearly appears at bigger amount of pixels.

Basic reproduction numbers. Here we define the basic reproduction number
for antigen colony which is localized in pixel (i, j). When considering epidemic
models, the basic reproduction number, R0, is defined as the expected number of
secondary cases produced by a single (typical) infection in a completely susceptible
population. It is important to note that R0 is a dimensionless number [25]. When
applying this definition to the pixel (i, j), which is described by the Eq. (3), we get
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R0,i, j = Ti, j ci, j , di, j

whereTi, j is the transmissibility (i.e., probability of binding given constant between
an antigen and antibody), ci, j is the average rate of contact between antigens and
antibodies, and di, j is the duration of binding of antigen by antibody till deactivation.

Unfortunately, the lattice system (3) doesn’t include all parameters, which allows
to calculate the basic reproduction numbers in a clear form. Firstly, let’s consider
pixel (i�, j�) without diffusion, i.e., Ŝ

{
Vi�, j�

} ≡ 0. In this case, the non-negative
equilibria of (3) are

E 0
i�, j� = (

V 0, 0
) := ( β

δv

, 0
)
, E �

i�, j� = (
V �, F�

)
.

Due to the approach which was offered in [26] (in pages 4 for ordinary differential
equations, 5 for delay model), we introduce the basic reproduction number for pixel
(i�, j�) without diffusion, which is given by expression

R0,i�, j� := V 0

V �
= β

δvV �
= β(ηγ 2 − δvδ f )

δv(βδ f + γμ f )
.

Its biological meaning is given as being the average number of offsprings produced
by a mature antibody in its lifetime when introduced in an antigen-only environment
with antigen at carrying capacity.

According to the common theory, it can be shown that antibody-free equilibrium
E 0
i�, j� is locally asymptotically stable ifR0,i�, j� < 1 and it is unstable ifR0,i�, j� > 1.

It can be done with help of analysis of the roots of characteristic equation (similarly
to [26], p. 5). Thus, R0,i�, j� > 1 is sufficient condition for existence of the endemic
equilibrium E �

i�, j� .
We can consider the expressionmentioned above for the general case of the lattice

system (3), i.e., when considering diffusion. In this case, we have the “lattice” of the
basic reproduction numbersR0,i, j , i, j = 1, N satisfying to

R0,i, j := V 0
i, j

V �
i, j

, i, j = 1, N , (9)

where E 0
i, j , i, j = 1, N are nonidentical steady states, which are found as a result of

solution of the algebraic system

(
β − δvV

0
i, j

)
V 0
i, j + Ŝ

{
V 0
i, j

} = 0, i, j = 1, N , (10)

endemic states E �
i, j =

(
V �
i, j , F

�
i, j

)
, i, j = 1, N are found using (7).

It is worth to say that due to the common theory the conditions
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R0,i, j > 1, i, j = 1, N (11)

are sufficient for the existence of endemic state E �
i, j . We will check it only with help

of numerical simulations.

2.2 Persistence of the Solutions

We will use the following definition which generalizes [27] for lattice differential
equations.

Definition 1 System (3) is said to be uniformly persistent if for all i, j = 1, N
there exist compact regions Di, j ⊂ int R2 such that every solution (Vi, j (t), Fi, j (t)),
i, j = 1, N of (3) with the initial conditions (19) eventually enters and remains in
the region Di, j .

Theorem 1 Let (Vi, j (t), Fi, j (t)), i, j = 1, N be the solutions of (3) with initials
conditions (19). If

βηγ − μ f δv > 0, (12)

then
0 < Vi, j (t) ≤ Mv, 0 < Fi, j (t) ≤ M f (13)

for some large values of t . Here

Mv = β

δv

eβτ , M f = 1

δ f

(
ηγ Mv − μ f

)
. (14)

Proof Firstly, we can prove that there exists some large instant of time T1 that
Ŝ{Vi, j (t)} ≤ 0, i, j = 1, N , t > T1.

Let’s assume the contrary, i.e., there is i�, j� ∈ 1, N , that Ŝ{Vi, j (t)} > 0 at t > T1,
which is a contradiction with a balance principle.

Since the solutions of the system (3), (19) are positive, then

dVi, j (t)

dt
≤

(
β − δvVi, j (t − τ)

)
Vi, j (t). (15)

Further, we can apply the basic steps of proof of Lemma 3.1 [28] which is proved in
nonlattice case (i.e., without spatial operator).

Remark 1 Conditions of uniform persistence of system (3) in nonlattice case were
obtained in [29]. They resulted in inequality (12) provided that

βδ f + μ f γ > 0 (16)

holds.
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2.3 Extinction Research

The next result introduces a sufficient condition for the underlying grid size ensuring
that the solution of (3) is non-vanishing.

Theorem 2 Let for the system (3) the positive orthant Ω be positive invariant.
Besides that, let N be such that fextnc(N ) < 1 holds, where

fextnc(N ) = max
k,l=1,N

∣∣∣∣β − 4D

Δ2

(
1 + cos

π(k + l)

2(N + 1)
cos

π(k − l)

2(N + 1)

)∣∣∣∣. (17)

Then limt→∞ Vi, j (t) = 0, i, j = 1, N.

Proof It requires a comparison principle for differential equations.
The following inequalities hold for Vi, j (t)

Vi, j (t)

dt
< βVi, j (t) + Ŝ

{
Vi, j (t)

}
.

Consider N 2-vector of the form

V (n) =
(
V1,1(t), V1,2(t), . . . , V1,N (t), V2,1(t), . . . , V2,N (t), . . . ,

VN ,1(t), . . . , VN ,N (t)
)


.

We compare V (t)
dt ≤ CV (t), where C = IN ⊗ A + B ⊗ IN ,

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

β − 4D
Δ2

D
Δ2

D
Δ2 β − 4D

Δ2
D
Δ2

D
Δ2

. . .

. . .

β − 4D
Δ2

D
Δ2

D
Δ2 β − 4D

Δ2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

∈ R
N×N ,

B =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0 D
Δ2

D
Δ2 0 D

Δ2

D
Δ2

. . .

. . .

0 D
Δ2

D
Δ2 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

∈ R
N×N ,
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IN is N × N identity matrix. The N 2 eigenvalues of C are of the form (see [30],
Theorem 8.3.1) λk,l(C) = λk(A) + λl(B), k, l = 1, N , where the eigenvalues of A

λk(A) = β − 4D

Δ2
− 2D

Δ2
cos (πk/(N + 1)), k = 1, N ,

the eigenvalues of B

λl(B) = −2D

Δ2
cos (πl/(N + 1)), l = 1, N .

The comparison system Z(t)
dt = CZ(t) tends asymptotically to zero if

∣∣λk,l

∣∣ < 1.
That is

max
k,l=1,N

∣∣∣∣β − 4D

Δ2
− 2D

Δ2

(
cos

πk

N + 1
+ cos

πl

N + 1

)∣∣∣∣ < 1.

2.4 Numerical Simulation of Square 4 × 4 Pixels Array

First of all, we calculate the basic reproductive numbers R0,i, j , i, j = 1, 4 due to
(9) (See Table1). We see that the conditions (11) hold. Thus, equilibrium without
antibodies E 0

i, j , i, j = 1, 4 is unstable and there exists endemic equilibrium E �
i, j ,

i, j = 1, 4.
The numerical simulations were implemented at different values of n ∈ (0, 1].

Here we can see that when changing the value of τ we have changes in the qualitative
behavior of pixels and the entire immunosensor. We considered the parameter value
set given above and computed the long-time behavior of the system (3) for τ =
0.05, 0.22, 0.23, 0.2865, and 0.28725. The phase diagrams of the antibody versus
antigen populations for the pixel (1, 1) are shown in Table2.

For example, at τ ∈ [0, 0.22], we can see trajectories corresponding to the stable
node for all pixels.

For τ = 0.23, the phase diagrams show that the solution is a limit cycle with
two local extrema (one local maximum and one local minimum) per cycle. Then
for τ = 0.2825, the solution is a limit cycle with four local extrema per cycle, and,

Table 1 The values of R0,i, j , i, j = 1, 4

R�
0,i, j 1 2 3 4

1 3.218727 3.425273 3.474323 3.224824

2 3.171270 3.235043 3.236289 3.126438

3 3.092287 3.107824 3.096617 3.040443

4 2.997269 3.020902 3.012915 2.971442
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Table 2 The phase plane plots of the system (3) for antibody populations Fi, j versus antigen
populations Vi, j , i, j = 1, 4. Numerical simulation of the system (3) at n = 0.9, τ = 0.28725. Here
• indicates identical steady state, • indicates nonidentical steady state. Trajectories are constructed
for t ∈ [550, 800]. The solution behavior looks chaotic

for τ = 0.2868, 0.2869, 0.28695 the solutions are limit cycles with 8, 16, and 32
local extrema per cycle, respectively. Finally, for τ = 0.28725, the behavior shown
in Table2 is obtained which looks like chaotic behavior. In this paper, we have
regarded behavior as chaotic if no periodic behavior could be found in the long-time
behavior of the solutions.

As a check that the solution is chaotic for τ = 0.28725, we perturbed the initial
conditions to test the sensitivity of the system. Figure2 shows a comparison of
the solutions for the antigen population V1,3 with initial conditions V1,3(t) = 1 and
V1,3(t) = 1.001, t ∈ [−τ, 0], and identical all the rest ones. Near the initial time,
the two solutions appear to be the same, but as time increases, there is a marked
difference between the solutions supporting the conclusion that the system behavior
is chaotic at τ = 0.28725.

We have also checked numerically that the solutions for the limit cycles are peri-
odic and computed the periods for each of the local maxima andminima in the cycles.
In the chaotic solution region, the numerical calculations (not shown in this paper)
confirmed that no periodic behavior could be found.
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Fig. 2 The time series of the solutions to the system (3) for the antigen population V1,3 from
t = 0 to 700 with τ = 0.28725 for initial conditions V1,3(t) = 1 and V1,3(t) = 1.001 (deviated),
t ∈ [−τ, 0], and identical all the rest ones. At the beginning, the two solutions appear to be the same,
but as time increases there is a marked difference between the solutions supporting the conclusion
that the system behavior is chaotic

A bifurcation diagram showing the maximum and minimum points for the limit
cycles for the antigen population V1,3 as a function of time delay is given in Fig. 3.
The Hopf bifurcation from the stable equilibrium point to a simple limit cycle and
the sharp transitions at critical values of the time delay between limit cycles with
increasing numbers of maximum and minimum points per cycle can be clearly seen.

3 Three-Dimensional Biopixels Array

When modeling three-dimensional pixels array, it is natural way to apply the
model based on the hexagonal lattice. Such model may use the following assump-
tion. Namely, antigens are assumed to diffuse from six neighboring pixels, (i +
1, j, k − 1), (i + 1, j − 1, k), (i, j − 1, k + 1), (i − 1, j, k + 1), (i − 1, j + 1, k),
(i, j + 1, k − 1) (see Fig. 1), with diffusion rate DΔ−2, where D > 0 and Δ > 0 is
distance between pixels.
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Fig. 3 Abifurcation diagram showing the “bifurcation path to chaos” as the time delay is increased.
The points show the local extreme points per cycle for the V1,3 population. Chaotic-type solutions
occur at τ ≈ 0.28725 and are indicated in red in the figure with value 0 for the number of extreme
points
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Taking into account prerequisites mentioned above, we get a simplified antibody–
antigen competition model with delay for a hexagonal array of biopixels, which uses
Marchuk model of the immune response [20–23] and using spatial operator Ŝ which
is constructed similarly to [24] (Supplementary information, p. 10)

dVi, j,k(t)

dt
= (β − γ Fi, j,k(t − τ) − δvVi, j,k(t − τ))Vi, j,k(t) + Ŝ{Vi, j,k},

dFi, j,k(t)

dt
= (−μ f + ηγ Vi, j,k(t − τ) − δ f Fi, j,k(t)

)
Fi, j,k(t)

(18)

with given initial functions

Vi, j,k(t) = V 0
i, j,k(t) ≥ 0, Fi, j,k(t) = F0

i, j,k(t) ≥ 0, t ∈ [−τ, 0),

Vi, j,k(0), Fi, j,k(0) > 0.
(19)

We use the following spatial operator of discrete diffusion for a hexagonal array
of pixels4

Ŝ{Vi, j,k} = DΔ−2
[
Vi+1, j,k−1 + Vi+1, j−1,k + Vi, j−1,k+1 + Vi−1, j,k+1 + Vi−1, j+1,k

+ Vi, j+1,k−1 − 6nVi, j,k

]

i, j, k ∈ −N + 1, N − 1, i + j + k = 0.
(20)

Each pixel is affected by the antigens flowing out six neighboring pixels, two in
each of three directions of the hexagonal array. The adjoint pixels are separated by
the distance Δ (Fig. 4).

Boundary conditions Vi, j,k = 0 for the edges of the hexagonal array, i.e., if i ∨
j ∨ k ∈ {−N − 1, N + 1}, are used.

We can present analytical results with respect to the model (18) in the form of
restrictions for the parameters, enabling us persistence and global asymptotic stabil-
ity. Moreover, we executed numerical research of the system qualitative behavior in
dependence of changes of the time of immune response τ (delay of time), diffusion
rate DΔ−2 and factor n.

3.1 Persistence and Extinction of Solutions

Concerning persistence, for the hexagonal lattice the similar result can be obtained
as for square one (Theorem 1), just adding the third index.

4 Without loss of generality we consider spatial operator for internal pixels only.
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Fig. 4 Diffusion of antigens for the hexagonal lattice model. Antigens from six neighboring
pixels interact, n > 0 is the constant of disbalance. Here ‘1’, ‘3’, ‘5’, ‘8’, ‘9’, ‘11’ have to
be replaced with DΔ−2Vi, j,k(t), ‘2’ with DΔ−2Vi+1, j,k−1(t), ‘4’ with DΔ−2Vi+1, j−1,k(t), ‘6’
with DΔ−2Vi, j−1,k+1(t), ‘7’ with DΔ−2Vi−1, j,k+1(t), ‘10’ with DΔ−2Vi−1, j+1,k(t), ‘12’ with
DΔ−2Vi, j+1,k−1(t)

Unfortunately, we didn’t manage to present such a clear condition of extinction
as in Theorem 2. We can check it only numerically in an experimental way.

3.2 Numerical Study

For numerical simulation, we consider model (18) of hexagonal pixels array at
N = 4, β = 2 min−1, γ = 2 mL

min·μg , μ f = 1 min−1, η = 0.8/γ , δv = 0.5 mL
min·μg ,

δ f = 0.5 mL
min·μg , D = 0.2 nm2

min , Δ = 0.3nm. Numerical modeling was implemented
at different values of n ∈ (0, 1]. For this purpose, we used RStudio environment.

Using local bifurcation plot, dynamics of the system (18) was analyzed for differ-
ent values of n ∈ (0, 1].We have concluded that oscillatory and then chaotic behavior
starts for smaller values of τ at smaller values of n. Further, increasing the values of
n, we can observe asymptotically stable steady solutions for a wider range of τ .
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Fig. 5 Phase plots of the system (18) at τ = 0.287. Here • indicates initial state, • indicates
pixel-independent endemic state, • indicates pixel-dependent endemic state. The solution tends to
a stable limit cycle with six local extrema per cycle

Numerical integration of the system has shown the influence of time delay τ .
Namely, as it is agreed with the analytical results, we observe the stable focuses at
pixel-dependent endemic states for small delays τ ∈ [0, 0.18). At τ ≈ 0.18 min the
stable focus is transformed into a stable limit cycle of tiny radius, which corresponds
to Hopf bifurcation. A deeper study of this phenomenon requires obtaining the con-
dition of the appearance of the pair of purely imaginary roots of the characteristic
quasipolynomial of the linearized system. The limit cycles of ellipsoidal form are
observed till τ ≈ 0.285 min. Pay attention that when increasing τ , near τ = 0.285,
we get period doubling (see Fig. 5).5

The qualitative behavior of immunosensor model can be analyzed with help
of hexagonal tiling plots also. For this purpose, we can use both plots for anti-
gens (Fig. 6), antibodies (Fig. 7), and probabilities of binding antigens by antibodies
(Fig. 8).

5 It can be approximately seen from local bifurcation plot also.
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Fig. 6 Example of
hexagonal tiling plot for V

Fig. 7 Example of
hexagonal tiling plot for F

Fig. 8 Example of
hexagonal tiling plot for
probabilities of binding
antigens by antibodies, i.e.,
V × F . In case of optical
immunosensor, it is
fluorescence intensity
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4 Conclusions

In this work, reaction-diffusionmodels of two- and three-dimensional immunopixels
arraywere considered.Mathematically, it is described by the systemof lattice delayed
differential equations on rectangular or hexagonal grids. The systems include the
spatial operator describing the diffusion of antigens between pixels.

The main results are dealing with the qualitative investigation of the model. The
conditions of persistence were obtained. Also, we have managed to get the result
dealing with the extinction of the solutions. Namely, it can be seen that the amount
of pixels determines their non-vanishing. In a two-dimensional case, this dependence
can be presented in a clear form.

The conditions of local or global asymptotic stability can be obtained using the
construction of the Lyapunov functional. Because of the cumbersome evidence, we
didn’t include it here. They result in inequality including the system parameters and
delay. So, estimation of the delay enabling us local or global asymptotic stability can
be obtained.

Numerical analysis of themodel qualitative behavior is performedwith the help of
the bifurcation diagram, phase trajectories, and rectangular or hexagonal tile portraits.
It has shown the changes in qualitative behavior with respect to the growth of time
delay. Namely, starting from the stable focus at small delay values, then through
Hopf bifurcation to limit cycles, and finally through period doublings to deterministic
chaos. It is agreedwith the results on space-time chaos for reaction-diffusion systems,
which were previously obtained in [1–3].

As compared with the rectangular lattice model, for the hexagonal model, we
observe Hopf bifurcation at smaller values of τ . That is hexagonal lattice accelerates
changes in qualitative behavior.

Note, that model can be applied for an arbitrary amount of pixels determined by
natural N ≥ 1. However, it can be numerically seen that qualitative behavior of the
entire immunosensor is determined by 5 or 7 pixels array for square and hexagonal
lattices, respectively.
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which allowed us to improve the work.

References

1. Rössler, O.E.: Chemical turbulence: Chaos in a simple reaction-diffusion system. Zeitschrift
für Naturforschung A 31(10) (1976). https://doi.org/10.1515/zna-1976-1006

2. Hildebrand, M., Bar, M., Eiswirth, M.: Statistics of topological defects and spatiotemporal
chaos in a reaction-diffusion system. Phys. Rev. Lett. 75(8), 1503–1506 (1995). https://doi.
org/10.1103/physrevlett.75.1503

3. Zaitseva,M.F., Magnitskii, N.A.: Space-time chaos in a system of reaction-diffusion equations.
Differ. Equ. 53(11), 1519–1523 (2017)

https://doi.org/10.1515/zna-1976-1006
https://doi.org/10.1103/physrevlett.75.1503
https://doi.org/10.1103/physrevlett.75.1503


On Qualitative Research of Lattice Dynamical System … 205

4. Cahn, J.W., Chow, S., Van Vleck, E.S.: Spatially discrete nonlinear diffusion equations. Rocky
Mount. J. Math., to appear (1995)

5. Chow, S.-N., Mallet-Paret, J., Van Vleck, E.S.: Dynamics of lattice differential equations. Int.
J. Bifurc. Chaos 6(09), 1605–1621 (1996)

6. Pan, S.: Propagation of delayed lattice differential equations without local quasimonotonicity
(2014). arXiv:1405.1126

7. Huang, J., Lu, G., Zou, X.: Existence of traveling wave fronts of delayed lattice differential
equations. J. Math. Anal. Appl. 298(2), 538–558 (2004)

8. Niu, H.: Spreading speeds in a lattice differential equation with distributed delay. Turkish J.
Math. 39(2), 235–250 (2015)

9. Hoffman, A., Hupkes, H., Van Vleck, E.: Entire Solutions for Bistable Lattice Differential
Equations with Obstacles. American Mathematical Society, Providence (2017)

10. Wu, F.: Asymptotic speed of spreading in a delay lattice differential equation without quasi-
monotonicity. Electr. J. Differ. Equ. 2014(213), 1–10 (2014)

11. Zhang, G.-B.: Global stability of traveling wave fronts for non-local delayed lattice differential
equations. Nonlinear Anal.: Real World Appl. 13(4), 1790–1801 (2012)

12. Luczak, E., Rosenfeld, A.: Distance on a hexagonal grid. IEEE Trans. Comput. 25(5), 532–533
(1976). https://doi.org/10.1109/TC.1976.1674642

13. Hexagonal coordinate systems. https://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_
COPIES/AV0405/MARTIN/Hex.pdf. Accessed 12 May 2019

14. Middleton, L., Sivaswamy, J.: Edge detection in a hexagonal-image processing framework.
Image Vis. Comput. 19(14), 1071–1081 (2001)

15. Fayas, A., Nisar, H., Sultan, A.: Study on hexagonal grid in image processing. In: The 4th
International Conference on Digital Image Processing, pp. 7–8 (2012)

16. Cruz, H.J., Rosa, C.C., Oliva, A.G.: Immunosensors for diagnostic applications. Parasitol. Res.
88, S4–S7 (2002)

17. Paek, S.-H., Schramm, W.: Modeling of immunosensors under nonequilibrium conditions: I.
Mathematic modeling of performance characteristics. Anal. Biochem. 196(2), 319–325 (1991)

18. Bloomfield, V., Prager, S.: Diffusion-controlled reactions on spherical surfaces. application to
bacteriophage tail fiber attachment. Biophys. J. 27(3), 447–453 (1979)

19. Berg, O.: Orientation constraints in diffusion-limited macromolecular association. the role of
surface diffusion as a rate-enhancing mechanism. Biophys. J. 47(1), 1–14 (1985)

20. Marchuk, G., Petrov, R., Romanyukha, A., Bocharov, G.: Mathematical model of antivi-
ral immune response. i. Data analysis, generalized picture construction and parameters
evaluation for hepatitis b. J. Theor. Biol. 151(1), 1–40 (1991), cited By 38. https://doi.
org/10.1016/S0022-5193(05)80142-0. https://www.scopus.com/inward/record.uri?eid=2-s2.
0-0025819779&doi=10.1016

21. Fory’s, U.: Marchuk’s model of immune system dynamics with application to tumour
growth. J. Theor. Med. 4(1), 85–93 (2002). https://doi.org/10.1080/10273660290052151.
http://www.tandfonline.com/doi/pdf/10.1080/10273660290052151. http://www.tandfonline.
com/doi/abs/10.1080/10273660290052151

22. Nakonechny, A., Marzeniuk, V.: Uncertainties in medical processes control. Lecture Notes
in Economics and Mathematical Systems, vol. 581, pp. 185–192 (2006), cited By 2. https://
doi.org/10.1007/3-540-35262-7_11. https://www.scopus.com/inward/record.uri?eid=2-s2.0-
53749093113&doi=10.1007

23. Marzeniuk, V.: Taking into account delay in the problem of immune protection of organ-
ism. Nonlinear Anal.: Real World Appl. 2(4), 483–496 (2001), cited By 2. https://doi.
org/10.1016/S1468-1218(01)00005-0. https://www.scopus.com/inward/record.uri?eid=2-s2.
0-0041331752&doi=10.1016

24. Prindle, A., Samayoa, P., Razinkov, I., Danino, T., Tsimring, L.S., Hasty, J.: A sensing array
of radically coupled genetic ’biopixels’. Nature 481(7379), 39–44 (2011). https://doi.org/10.
1038/nature10722

25. Jones, J.H.: Notes on R0. Department of Anthropological Sciences, California (2007)

http://arxiv.org/abs/1405.1126
https://doi.org/10.1109/TC.1976.1674642
https://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/AV0405/MARTIN/Hex.pdf
https://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/AV0405/MARTIN/Hex.pdf
https://doi.org/10.1016/S0022-5193(05)80142-0
https://doi.org/10.1016/S0022-5193(05)80142-0
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025819779&doi=10.1016
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025819779&doi=10.1016
https://doi.org/10.1080/10273660290052151
http://www.tandfonline.com/doi/pdf/10.1080/10273660290052151
http://www.tandfonline.com/doi/abs/10.1080/10273660290052151
http://www.tandfonline.com/doi/abs/10.1080/10273660290052151
https://doi.org/10.1007/3-540-35262-7_11
https://doi.org/10.1007/3-540-35262-7_11
https://www.scopus.com/inward/record.uri?eid=2-s2.0-53749093113&doi=10.1007
https://www.scopus.com/inward/record.uri?eid=2-s2.0-53749093113&doi=10.1007
https://doi.org/10.1016/S1468-1218(01)00005-0
https://doi.org/10.1016/S1468-1218(01)00005-0
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0041331752&doi=10.1016
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0041331752&doi=10.1016
https://doi.org/10.1038/nature10722
https://doi.org/10.1038/nature10722


206 V. Martsenyuk et al.

26. Yang, J., Wang, X., Zhang, F.: A differential equation model of hiv infection of cd t-cells with
delay. Discrete Dynamics in Nature and Society, vol. 2008 (2008)

27. Kuang, Y.: DelayDifferential EquationswithApplications in PopulationDynamics. Academic,
New York (1993)

28. He, X.-z.: Stability and delays in a predator-prey system. J. Math. Anal. Appl. 198(2), 355–370
(1996). https://doi.org/10.1006/jmaa.1996.0087

29. Wendi, W., Zhien, M.: Harmless delays for uniform persistence. J. Math. Anal. Appl. 158(1),
256fffdfffdfffd268 (1991). https://doi.org/10.1016/0022-247x(91)90281-4

30. Lancaster, P., Tismenetsky, M.: The Theory of Matrices: With Applications. Elsevier, Amster-
dam (1985)

https://doi.org/10.1006/jmaa.1996.0087
https://doi.org/10.1016/0022-247x(91)90281-4

	 On Qualitative Research of Lattice Dynamical System of Two- and Three-Dimensional Biopixels Array
	1 Introduction
	2 Lattice Model of Antibody–Antigen Interaction for Two-Dimensional Biopixels Array
	2.1 Stability Investigation
	2.2 Persistence of the Solutions
	2.3 Extinction Research
	2.4 Numerical Simulation of Square 4times4 Pixels Array

	3 Three-Dimensional Biopixels Array
	3.1 Persistence and Extinction of Solutions
	3.2 Numerical Study

	4 Conclusions
	References


